Sample records for modeling material synthesis

  1. Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. (United States)

    Chen, Ritchie; Christiansen, Michael G; Anikeeva, Polina


    This article develops a set of design guidelines for maximizing heat dissipation characteristics of magnetic ferrite MFe2O4 (M = Mn, Fe, Co) nanoparticles in alternating magnetic fields. Using magnetic and structural nanoparticle characterization, we identify key synthetic parameters in the thermal decomposition of organometallic precursors that yield optimized magnetic nanoparticles over a wide range of sizes and compositions. The developed synthetic procedures allow for gram-scale production of magnetic nanoparticles stable in physiological buffer for several months. Our magnetic nanoparticles display some of the highest heat dissipation rates, which are in qualitative agreement with the trends predicted by a dynamic hysteresis model of coherent magnetization reversal in single domain magnetic particles. By combining physical simulations with robust scalable synthesis and materials characterization techniques, this work provides a pathway to a model-driven design of magnetic nanoparticles tailored to a variety of biomedical applications ranging from cancer hyperthermia to remote control of gene expression.

  2. Combinatorial materials synthesis

    Directory of Open Access Journals (Sweden)

    Ichiro Takeuchi


    Full Text Available The pace at which major technological changes take place is often dictated by the rate at which new materials are discovered, and the timely arrival of new materials has always played a key role in bringing advances to our society. It is no wonder then that the so-called combinatorial or high-throughput strategy has been embraced by practitioners of materials science in virtually every field. High-throughput experimentation allows simultaneous synthesis and screening of large arrays of different materials. Pioneered by the pharmaceutical industry, the combinatorial method is now widely considered to be a watershed in accelerating the discovery and optimization of new materials1–5.

  3. Synthesis of superhard materials

    Directory of Open Access Journals (Sweden)

    Vladimir L. Solozhenko


    Full Text Available The study of solids at high pressures and temperatures is an important area of modern condensed matter physics, chemistry, and materials science. The last decade has seen revolutionary developments in the field of high-pressure experimentation: new types of cells allow a wider range of experiments at higher pressures, and third-generation synchrotrons have brought the possibility of conducting X-ray diffraction experiments that were unthinkable only 10 years ago. In this review, we give some recent examples to illustrate how modern high-pressure tools, such as the diamond anvil cell (DAC, multianvil press, and shock compression, can be used to answer questions relevant to the synthesis of new advanced materials. Our examples will be related mostly to superhard materials.

  4. Essentials of inorganic materials synthesis

    CERN Document Server

    Rao, C N R


    This compact handbook describes all the important methods of synthesis employed today for synthesizing inorganic materials. Some features: Focuses on modern inorganic materials with applications in nanotechnology, energy materials, and sustainability Synthesis is a crucial component of materials science and technology; this book provides a simple introduction as well as an updated description of methods Written in a very simple style, providing references to the literature to get details of the methods of preparation when required

  5. Combustion synthesis of advanced composite materials (United States)

    Moore, John J.


    Self-propagating high temperature (combustion) synthesis (SHS), has been investigated as a means of producing both dense and expanded (foamed) ceramic and ceramic-metal composites, ceramic powders and whiskers. Several model exothermic combustion synthesis reactions were used to establish the importance of certain reaction parameters, e.g., stoichiometry, green density, combustion mode, particle size, etc. on the control of the synthesis reaction, product morphology and properties. The use of an in situ liquid infiltration technique and the effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e., solids, liquids and gases, with varying physical properties e.g., volatility and thermal conductivity, on the microstructure and morphology of synthesized composite materials is discussed. Conducting the combustion synthesis reaction in a reactive gas environment to take advantage of the synergistic effects of combustion synthesis and vapor phase transport is also examined.

  6. Ferroic materials synthesis and applications

    CERN Document Server

    Virk, Hardev Singh


    Ferroics is the generic name given to the study of ferromagnets, ferroelectrics, and ferroelastics. The basis of this study is to understand the large changes in physical characteristics that occur over a very narrow temperature range. In recent years, a new class of ferroic materials has been attracting increased interest. These multiferroics exhibit more than one ferroic property simultaneously in a single phase. The present volume: ""Ferroic Materials: Synthesis and Applications"" has ten Chapters, spread over areas as diverse as Magnetic Oxide Nanomaterials, Ferrites Synthesis, Hexaferrite

  7. Discrete element method based scale-up model for material synthesis using ball milling (United States)

    Santhanam, Priya Radhi

    Mechanical milling is a widely used technique for powder processing in various areas. In this work, a scale-up model for describing this ball milling process is developed. The thesis is a combination of experimental and modeling efforts. Initially, Discrete Element Model (DEM) is used to describe energy transfer from milling tools to the milled powder for shaker, planetary, and attritor mills. The rolling and static friction coefficients are determined experimentally. Computations predict a quasisteady rate of energy dissipation, E d, for each experimental configuration. It is proposed that the milling dose defined as a product of Ed and milling time, t, divided by the mass of milled powder, mp characterizes the milling progress independently of the milling device or milling conditions used. Once the milling dose is determined for one experimental configuration, it can be used to predict the milling time required to prepare the same material in any milling configuration, for which Ed is calculated. The concept is validated experimentally for DEM describing planetary and shaker mills. For attritor, the predicted Ed includes substantial contribution from milling tool interaction events with abnormally high forces (>103 N). The energy in such events is likely dissipated to heat or plastically deform milling tools rather than refine material. Indeed, DEM predictions for the attritor correlate with experiments when such events are ignored in the analysis. With an objective of obtaining real-time indicators of milling progress, power, torque, and rotation speed of the impeller of an attritor mill are measured during preparation of metal matrix composite powders in the subsequent portion of this thesis. Two material systems are selected and comparisons made between in-situ parameters and experimental milling progress indicators. It is established that real-time measurements can certainly be used to describe milling progress. However, they need to be interpreted carefully

  8. Composite nanoparticles: A new way to siliceous materials and a model of biosilica synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Annenkov, Vadim V., E-mail: [Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033 (Russian Federation); Pal' shin, Viktor A.; Verkhozina, Olga N. [Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033 (Russian Federation); Larina, Lyudmila I. [A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033 (Russian Federation); Danilovtseva, Elena N. [Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033 (Russian Federation)


    A new polyampholyte based on poly (acrylic acid) which bears pendant polyamine oligomeric chains (average number of the nitrogen atoms is 11.2) is obtained. This polymer is a model of silaffins – proteins playing important role in formation of siliceous structures in diatom algae and sponges. The polymer catalyses condensation of silicic acid. The obtained solutions contain oligosilicates coordinated with the polymer chains. The action of 50,000 g gravity on this solution results in concentrating-induced condensation of the pre-condensed siliceous oligomers. The obtained solid silica contains 4% admixture of the organic polymer which is close to the silica from diatom frustules. These results confirm the hypothesis about formation of biosilica under the action of desiccation agent, e.g. aquaporins. The formation of solid substances during centrifugation of solutions containing soluble oligomers is a new promising approach to inorganic and composite materials which allows to work in aqueous medium and to reuse the organic polymer. - Highlights: • A polyampholyte with pendant polyamine chains is obtained. • The polymer catalyses condensation of silicic acid giving stable solutions. • Gravity-induced (50,000 g) formation of solid silica was observed in these solutions. • The obtained silica is close to biosilica from diatom frustules. • A new approach to inorganic and composite materials is proposed.

  9. Synthesis of new nanocrystal materials (United States)

    Hassan, Yasser Hassan Abd El-Fattah

    Colloidal semiconductor nanocrystals (NCs) have sparked great excitement in the scientific community in last two decades. NCs are useful for both fundamental research and technical applications in various fields owing to their size and shape-dependent properties and their potentially inexpensive and excellent chemical processability. These NCs are versatile fluorescence probes with unique optical properties, including tunable luminescence, high extinction coefficient, broad absorption with narrow photoluminescence, and photobleaching resistance. In the past few years, a lot of attention has been given to nanotechnology based on using these materials as building blocks to design light harvesting assemblies. For instant, the pioneering applications of NCs are light-emitting diodes, lasers, and photovoltaic devices. Synthesis of the colloidal stable semiconductor NCs using the wet method of the pyrolysis of organometallic and chalcogenide precursors, known as hot-injection approach, is the chart-topping preparation method in term of high quality and monodisperse sized NCs. The advancement in the synthesis of these artificial materials is the core step toward their applications in a broad range of technologies. This dissertation focuses on exploring various innovative and novel synthetic methods of different types of colloidal nanocrystals, both inorganic semiconductors NCs, also known as quantum dots (QDs), and organic-inorganic metal halide-perovskite materials, known as perovskites. The work presented in this thesis focuses on pursuing fundamental understanding of the synthesis, material properties, photophysics, and spectroscopy of these nanostructured semiconductor materials. This thesis contains 6 chapters and conclusions. Chapters 1?3 focus on introducing theories and background of the materials being synthesized in the thesis. Chapter 4 demonstrates our synthesis of colloidal linker--free TiO2/CdSe NRs heterostructures with CdSe QDs grown in the presence of Ti

  10. Shock compression synthesis of hard materials

    Energy Technology Data Exchange (ETDEWEB)

    Willson, C.G. [Univ. of Texas, Austin, TX (United States). Dept. of Chemistry


    The purpose of this research was to adapt the high explosives technology that was developed in conjunction with nuclear weapons programs to subjecting materials to ultra-high pressures and to explore the utility of this technique for the synthesis of hard materials. The research was conducted in collaboration with researchers at the University of Texas, Texas Tech University and Pantex (Mason and Hanger Corp.). The group designed, modeled, built, and tested a new device that allows quantitative recovery of grams of material that have been subjected to unprecedented pressures. The modeling work was done at Texas Tech and Pantex. The metal parts and material samples were made at the University of Texas, and Pantex machined the explosives, assembled the devices and conducted the detonations. Sample characterization was carried out at the University of Texas and Texas Tech.

  11. Synthesis of Ordered Biosilica Materials

    Institute of Scientific and Technical Information of China (English)

    WANG,Li-Jun(王荔军); WANG,Yun-Hua(王运华); LI,Min(李敏); FAN,Ming-Sheng(范明生); ZHANG,Fu-Suo(张福锁); WU,Xue-Min(吴学民); YANG,Wen-Sheng(杨文胜); LI,Tie-Jin(李铁津)


    Biogenic silica with amazing diversity of nanostructure shells,fibers and granules in diatoms and sponges is mediated by proteins and polysaccharides and forms at ambient pressure and temperatures. Chemical synthetic methods, in contrast,have to rely on extreme pH and/or surfactants to induce the condensation of silica precursors into specific patterns. One kind of benign synthesis method through plant cell wall template-directed ordered biosilica materials under ambient conditions is intriguing in this context. Organized silica materials in intercellular spaces of epidermal cells of tall fescue leaves were synthesized through molecular recognition between Si-OH and polysaccharide-OH or glycoprotein-OH of main components of plant cell walls and cellular processing as well when Si(OEt)4 was supplied rather than monosilicic acid. The biosynthesis of structural silica in tall fescue plant was correlated with the Si species applied, reflecting the slower coudensation from tetraethoxrsilane (TEOS) and thus providing greater opportunities for structural control by the underlying matrix of cell walls. The composition was estimated by energy dispersive Xray (EDX) spectra on a scanning electron microscope. All organized structures showed carbon, oxygen and silicon peaks,indicating that their formations differ from natural siliceous process.

  12. Materials synthesis: Two-dimensional gallium nitride (United States)

    Koratkar, Nikhil A.


    Graphene is used as a capping sheet to synthesize 2D gallium nitride by means of migration-enhanced encapsulation growth. This technique may allow the stabilization of 2D materials that are not amenable to synthesis by traditional methods.

  13. Development of Novel Polymeric Materials for Gene Therapy and pH-Sensitive Drug Delivery: Modeling, Synthesis, Characterization, and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian Curtis [Iowa State Univ., Ames, IA (United States)


    The underlying theme of this thesis is the use of polymeric materials in bioapplications. Chapters 2-5 either develop a fundamental understanding of current materials used for bioapplications or establish protocols and procedures used in characterizing and synthesizing novel materials. In chapters 6 and 7 these principles and procedures are applied to the development of materials to be used for gene therapy and drug delivery. Chapter one is an introduction to the ideas that will be necessary to understand the subsequent chapters, as well as a literature review of these topics. Chapter two is a paper that has been published in the ''Journal of Controlled Release'' that examines the mechanism of drug release from a polymer gel, as well as experimental design suggestions for the evaluation of water soluble drug delivery systems. Chapter three is a paper that has been published in the ''Journal of Pharmaceutical Sciences'' that discusses the effect ionic salts have on properties of the polymer systems examined in chapter two. Chapter four is a paper published in the Materials Research Society Fall 2000 Symposium Series dealing with the design and synthesis of a pH-sensitive polymeric drug delivery device. Chapter five is a paper that has been published in the journal ''Biomaterials'' proposing a novel polymer/metal composite for use as a biomaterial in hip arthroplasty surgery. Chapter six is a paper that will appear in an upcoming volume of the Journal ''Biomaterials'' dealing with the synthesis of a novel water soluble cationic polymer with possible applications in non-viral gene therapy. Chapter seven is a paper that has been submitted to ''Macromolecules'' discussing several novel block copolymers based on poly(ethylene glycol) and poly(diethylamino ethyl methacrylate) that possess both pH-sensitive and temperature sensitive properties. Chapter eight contains a

  14. Development of Novel Polymeric Materials for Gene Therapy and pH-Sensitive Drug Delivery: Modeling, Synthesis, Characterization, and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brian Curtis Anderson


    The underlying theme of this thesis is the use of polymeric materials in bioapplications. Chapters 2-5 either develop a fundamental understanding of current materials used for bioapplications or establish protocols and procedures used in characterizing and synthesizing novel materials. In chapters 6 and 7 these principles and procedures are applied to the development of materials to be used for gene therapy and drug delivery. Chapter one is an introduction to the ideas that will be necessary to understand the subsequent chapters, as well as a literature review of these topics. Chapter two is a paper that has been published in the ''Journal of Controlled Release'' that examines the mechanism of drug release from a polymer gel, as well as experimental design suggestions for the evaluation of water soluble drug delivery systems. Chapter three is a paper that has been published in the ''Journal of Pharmaceutical Sciences'' that discusses the effect ionic salts have on properties of the polymer systems examined in chapter two. Chapter four is a paper published in the Materials Research Society Fall 2000 Symposium Series dealing with the design and synthesis of a pH-sensitive polymeric drug delivery device. Chapter five is a paper that has been published in the journal ''Biomaterials'' proposing a novel polymer/metal composite for use as a biomaterial in hip arthroplasty surgery. Chapter six is a paper that will appear in an upcoming volume of the Journal ''Biomaterials'' dealing with the synthesis of a novel water soluble cationic polymer with possible applications in non-viral gene therapy. Chapter seven is a paper that has been submitted to ''Macromolecules'' discussing several novel block copolymers based on poly(ethylene glycol) and poly(diethylamino ethyl methacrylate) that possess both pH-sensitive and temperature sensitive properties. Chapter eight contains a

  15. Radiation synthesis of materials and compounds

    CERN Document Server

    Kharisov, Boris Ildusovich; Ortiz Méndez, Ubaldo


    Researchers and engineers working in nuclear laboratories, nuclear electric plants, and elsewhere in the radiochemical industries need a comprehensive handbook describing all possible radiation-chemistry interactions between irradiation and materials, the preparation of materials under distinct radiation types, the possibility of damage of materials under irradiation, and more. Radiation nanotechnology is still practically an undeveloped field, except for some achievements in the fabrication of metallic nanoparticles under ionizing flows. Radiation Synthesis of Materials and Compounds presents the state of the art of the synthesis of materials, composites, and chemical compounds, and describes methods based on the use of ionizing radiation. It is devoted to the preparation of various types of materials (including nanomaterials) and chemical compounds using ionizing radiation (alpha particles, beta particles, gamma rays, x-rays, and neutron, proton, and ion beams). The book presents contributions from leaders ...

  16. Inorganic materials synthesis in ionic liquids

    Directory of Open Access Journals (Sweden)

    Christoph Janiak


    Full Text Available The field of "inorganic materials from ionic liquids" (ILs is a young and dynamically growing research area for less than 10 years. The ionothermal synthesis in ILs is often connected with the preparation of nanomaterials, the use of microwave heating and in part also ultrasound. Inorganic material synthesis in ILs allows obtaining phases which are not accessible in conventional organic or aqueous solvents or with standard methods of solid-state chemistry or under such mild conditions. Cases at hand include "ligand-free" metal nanoparticles without added stabilizing capping ligands, inorganic or inorganic-organic hybrid solid-state compounds, large polyhedral clusters and exfoliated graphene from low-temperature synthesis. There are great expectations that ILs open routes towards new, possibly unknown, inorganic materials with advantageous properties that cannot (or only with great difficulty be made via conventional processes.

  17. Physical basis for materials synthesis using biomineralization

    Energy Technology Data Exchange (ETDEWEB)

    De Yoreo, J; Orme, C; Dove, P; Teng, H


    Since the dawn of life on earth, organisms have directed the crystallization of inorganic ions from solution to form minerals that meet specific biological needs. The resulting materials often exhibit remarkable properties, making the processes involved in biomineralization of interest to a wide array of scientific disciplines. From a geochemical standpoint, perhaps the most important consequence is that CaCO{sub 3} biomineral formation occurs in the Oceans on such a large scale that it influences many aspects of seawater chemistry and results in sequestration of carbon in the form of carbonate sediments. In this manner, the products of biomineralization are preserved in the rock record and serve as an extensive chronicle of the interplay between biota and the earth system environment. From the point of view of materials synthesis, biological control over epitaxy is an elegant example of self-organization in complex molecular systems. Through selective introduction of peptides and proteins, living organisms deterministically modify nucleation, step kinetics, surface morphologies, and facet stabilities to produce nanophase materials, topologically complex single-crystals, and multi-layer composite. The resulting materials have biological functions as diverse as structural supports, porous filtration media, grinding and cutting tools, lenses, gravity sensors and magnetic guidance systems. As Table I shows, calcium carbonate minerals are ubiquitous amongst these biomineral structures. In addition , calcium carbonate is a well studied material that is easily crystallized and has known solution chemistry. Consequently, the calcium carbonate system provides an excellent model for investigating biomineralization processes. Surprisingly, in spite of the identification of carbonate biogenesis as a critical contributor to the carbon reservoir mediating climate change, and the enormous potential of biomimetic synthesis for production of tailored, crystalline nano- and micro

  18. Physical basis for materials synthesis using biomineralization

    Energy Technology Data Exchange (ETDEWEB)

    De Yoreo, J; Orme, C; Dove, P; Teng, H


    Since the dawn of life on earth, organisms have directed the crystallization of inorganic ions from solution to form minerals that meet specific biological needs. The resulting materials often exhibit remarkable properties, making the processes involved in biomineralization of interest to a wide array of scientific disciplines. From a geochemical standpoint, perhaps the most important consequence is that CaCO{sub 3} biomineral formation occurs in the Oceans on such a large scale that it influences many aspects of seawater chemistry and results in sequestration of carbon in the form of carbonate sediments. In this manner, the products of biomineralization are preserved in the rock record and serve as an extensive chronicle of the interplay between biota and the earth system environment. From the point of view of materials synthesis, biological control over epitaxy is an elegant example of self-organization in complex molecular systems. Through selective introduction of peptides and proteins, living organisms deterministically modify nucleation, step kinetics, surface morphologies, and facet stabilities to produce nanophase materials, topologically complex single-crystals, and multi-layer composite. The resulting materials have biological functions as diverse as structural supports, porous filtration media, grinding and cutting tools, lenses, gravity sensors and magnetic guidance systems. As Table I shows, calcium carbonate minerals are ubiquitous amongst these biomineral structures. In addition , calcium carbonate is a well studied material that is easily crystallized and has known solution chemistry. Consequently, the calcium carbonate system provides an excellent model for investigating biomineralization processes. Surprisingly, in spite of the identification of carbonate biogenesis as a critical contributor to the carbon reservoir mediating climate change, and the enormous potential of biomimetic synthesis for production of tailored, crystalline nano- and micro

  19. Microemulsion-based synthesis of nanocrystalline materials. (United States)

    Ganguli, Ashok K; Ganguly, Aparna; Vaidya, Sonalika


    Microemulsion-based synthesis is found to be a versatile route to synthesize a variety of nanomaterials. The manipulation of various components involved in the formation of a microemulsion enables one to synthesize nanomaterials with varied size and shape. In this tutorial review several aspects of microemulsion based synthesis of nanocrystalline materials have been discussed which would be of interest to a cross-section of researchers working on colloids, physical chemistry, nanoscience and materials chemistry. The review focuses on the recent developments in the above area with current understanding on the various factors that control the structure and dynamics of microemulsions which can be effectively used to manipulate the size and shape of nanocrystalline materials.

  20. Materials modelling in London (United States)

    Ciudad, David


    Angelos Michaelides, Professor in Theoretical Chemistry at University College London (UCL) and co-director of the Thomas Young Centre (TYC), explains to Nature Materials the challenges in materials modelling and the objectives of the TYC.

  1. Mechanics of materials model (United States)

    Meister, Jeffrey P.


    The Mechanics of Materials Model (MOMM) is a three-dimensional inelastic structural analysis code for use as an early design stage tool for hot section components. MOMM is a stiffness method finite element code that uses a network of beams to characterize component behavior. The MOMM contains three material models to account for inelastic material behavior. These include the simplified material model, which assumes a bilinear stress-strain response; the state-of-the-art model, which utilizes the classical elastic-plastic-creep strain decomposition; and Walker's viscoplastic model, which accounts for the interaction between creep and plasticity that occurs under cyclic loading conditions.

  2. Synthesis of two-dimensional materials for beyond graphene devices (United States)

    Zhang, Kehao; Eichfeld, Sarah; Leach, Jacob; Metzger, Bob; Lin, Yu-Chuan; Evans, Keith; Robinson, Joshua A.


    In this paper, we present an overview of the currently employed techniques to synthesize two-dimensional materials, focusing on MoS2 and WSe2, and summarize the progress reported to-date. Here we discuss the importance of controlling reactor geometries to improve film uniformity and quality for MoS2 through a combination of modeling and experimental design. In addition, development of processes scalable to provide wafer scale uniformity is explored using synthesis of WSe2 via metal-organic chemical vapor deposition. Finally, we discuss the impact of each of these processes for TMD synthesis on epitaxial graphene.

  3. Combustion and Plasma Synthesis of High-Temperature Materials (United States)

    Munir, Z. A.; Holt, J. B.


    KEYNOTE ADDRESS. Self-Propagating High-Temperature Synthesis: Twenty Years of Search and Findings (A. Merzhanov). SOLID-STATE COMBUSTION SYNTHESIS. Recent Progress in Combustion Synthesis of High-Performance Materials in Japan (M. Koizumi & Y. Miyamoto). Modeling and Numerical Computation of a Nonsteady SHS Process (A. Bayliss & B. Matkowsky). New Models of Quasiperiodic Burning in Combustion Synthesis (S. Margolis, et al.). Modeling of SHS Operations (V. Hlavacek, et al.). Combustion Theory for Sandwiches of Alloyable Materials (R. Armstrong & M. Koszykowski). Observations on the Combustion Reaction Between Thin Foils of Ni and Al (U. Anselmi-Tamburini & Z. Munir). Combustion Synthesis of Intermetallic Compounds (Y. Kaieda, et al.). Combustion Synthesis of Nickel Aluminides (B. Rabin, et al.). Self-Propagating High-Temperature Synthesis of NiTi Intermetallics (H. Yi & J. Moore). Shock-Induced Chemical Synthesis of Intermetallic Compounds (S. Work, et al.). Advanced Ceramics Via SHS (T. DeAngelis & D. Weiss). In-Situ Formation of SiC and SiC-C Blocked Solids by Self-Combustion Synthesis (S. Ikeda, et al.). Powder Purity and Morphology Effects in Combustion-Synthesis Reactions (L. Kecskes, et al.). Simultaneous Synthesis and Densification of Ceramic Components Under Gas Pressure by SHS (Y. Miyamoto & M. Koizumi). The Use of Self-Propagating High-Temperature Synthesis of High-Density Titanium Diboride (P. Zavitsanos, et al.). Metal--Ceramic Composite Pipes Produced by a Centrifugal-Thermit Process (O. Odawara). Simultaneous Combustion Synthesis and Densification of AIN (S. Dunmead, et al.). Fabrication of a Functionally Gradient Material by Using a Self-Propagating Reaction Process (N. Sata, et al.). Combustion Synthesis of Oxide-Carbide Composites (L. Wang, et al.). Heterogeneous Reaction Mechanisms in the Si-C System Under Conditions of Solid Combustion (R. Pampuch, et al.). Experimental Modeling of Particle-Particle Interactions During SHS of TiB2 -Al2O3 (K. Logan

  4. Modeling multiphase materials processes

    CERN Document Server

    Iguchi, Manabu


    ""Modeling Multiphase Materials Processes: Gas-Liquid Systems"" describes the methodology and application of physical and mathematical modeling to multi-phase flow phenomena in materials processing. The book focuses on systems involving gas-liquid interaction, the most prevalent in current metallurgical processes. The performance characteristics of these processes are largely dependent on transport phenomena. This volume covers the inherent characteristics that complicate the modeling of transport phenomena in such systems, including complex multiphase structure, intense turbulence, opacity of

  5. Modelling of thermoelectric materials

    DEFF Research Database (Denmark)

    Bjerg, Lasse

    In order to discover new good thermoelectric materials, there are essentially two ways. One way is to go to the laboratory, synthesise a new material, and measure the thermoelectric properties. The amount of compounds, which can be investigated this way is limited because the process is time...... consuming. Another approach is to model the thermoelectric properties of a material on a computer. Several crystal structures can be investigated this way without use of much man power. I have chosen the latter approach. Using density functional theory I am able to calculate the band structure of a material....... This band structure I can then use to calculate the thermoelectric properties of the material. With these results I have investigated several materials and found the optimum theoretical doping concentration. If materials with these doping concentrations be synthesised, considerably better thermoelectric...

  6. Synthesis, characterization and application of electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    He, Lin [Iowa State Univ., Ames, IA (United States)


    It has been known that significant advances in electrochemistry really depend on improvements in the sensitivity, selectivity, convenience, and/or economy of working electrodes, especially through the development of new working electrode materials. The advancement of solid state chemistry and materials science makes it possible to provide the materials which may be required as satisfactory electrode materials. The combination of solid state techniques with electrochemistry expands the applications of solid state materials and leads to the improvement of electrocatalysis. The study of Ru-Ti4O7 and Pt-Ti4O7 microelectrode arrays as introduced in paper 1 and paper 4, respectively, focuses on their synthesis and characterization. The synthesis is described by high temperature techniques for Ru or Pt microelectrode arrays within a conductive Ti4O7ceramic matrix. The characterization is based on the data obtained by x-ray diffractometry, scanning electron microscopy, voltammetry and amperometry. These microelectrode arrays show significant enhancement in current densities in comparison to solid Ru and Pt electrodes. Electrocatalysis at pyrochlore oxide Bi2Ru2O7.3 and Bi2Ir2O7 electrodes are described in paper 2 and paper 3, respectively. Details are reported for the synthesis and characterization of composite Bi2Ru2O7.3 electrodes. Voltammetric data are examined for evidence that oxidation can occur with transfer of oxygen to the oxidation products in the potential region corresponding to anodic discharge of H2O with simultaneous evolution of O2. Paper 3 includes electrocatalytic activities of composite Bi2Ir2O7 disk electrodes for the oxidation of I- and the reduction of IO3-.

  7. High temperature auto-propagating synthesis of advanced ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G.; Morbidelli, M. (Cagliari Univ. (Italy). Dip. di Ingegneria Chimica e Materiali)


    This paper analyzes the modelling and experimental aspects relative to the production of advanced ceramic materials (i.e., carbides, borides and silicides of suitable transition metals) by means of high temperature auto-propagating synthesis. This process is characterized by a reaction front which, once triggered, auto-propagates itself through the reagent mix in the form of a combustion wave, taking advantage of the strong exothermic nature of the reaction itself. The analysis in this paper includes an investigation of the capability of models to accurately simulate the synthesis process. The validity of one particular model is checked by comparison with experimental results reported in literature. In addition, non-linear parametric sensitivity analysis is used to define 'a priori' suitable operating conditions which would guarantee ignition of the reagent mix and contemporaneously allow the optimization of process energy consumption.

  8. Instrument Modeling and Synthesis (United States)

    Horner, Andrew B.; Beauchamp, James W.

    During the 1970s and 1980s, before synthesizers based on direct sampling of musical sounds became popular, replicating musical instruments using frequency modulation (FM) or wavetable synthesis was one of the “holy grails” of music synthesis. Synthesizers such as the Yamaha DX7 allowed users great flexibility in mixing and matching sounds, but were notoriously difficult to coerce into producing sounds like those of a given instrument. Instrument design wizards practiced the mysteries of FM instrument design.

  9. Modelling of flame temperature of solution combustion synthesis of nanocrystalline calcium hydroxyapatite material and its parametric optimization

    Indian Academy of Sciences (India)

    Samir K Ghosh; Sukhomay Pal; Sujit K Roy; Surjya K Pal; Debabrata Basu


    Hydroxyapatite (HAp), an important bio-ceramic was successfully synthesized by combustion in the aqueous system containing calcium nitrate-di-ammonium hydrogen orthophosphate-urea. The combustion flame temperature of solution combustion reaction depends on various process parameters, and it plays a significant role in the phase formation, phase stability and physical characteristics of calcium hydroxyapatite powder. In this work, an attempt has been made to evaluate the influence of each selected process parameters on the flame temperature as well as physical characteristics of powder, and to select an optimal parameters setting using Taguchi method. A regression model has also been developed to correlate the input parameters, viz. batch size, diluents, fuel to oxidizer ratio and initial furnace temperature, with flame temperature of the solution combustion reaction. The adequacy of the developed model has been checked using analysis of variance technique.

  10. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graham, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moon, Ji-Won [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Datskos, Panos G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gresback, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ivanov, Ilia N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jacobs, Christopher B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jellison, Gerald Earle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jang, Gyoung Gug [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joshi, Pooran C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jung, Hyunsung [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Phelps, Tommy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  11. Synthesis of functional materials in combustion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, V. D., E-mail:; Bamburov, V. G.; Ermakova, L. V.; Lobachevskaya, N. I. [Russian Academy of Sciences, Institute of Solid State Chemistry, Ural Branch (Russian Federation)


    The conditions for obtaining oxide compounds in combustion reactions of nitrates of metals with organic chelating–reducing agents such as amino acids, urea, and polyvinyl alcohol are reviewed. Changing the nature of internal fuels and the reducing agent-to-oxidizing agent ratio makes possible to modify the thermal regime of the process, fractal dimensionality, morphology, and dispersion of synthesized functional materials. This method can be used to synthesize simple and complex oxides, composites, and metal powders, as well as ceramics and coatings. The possibilities of synthesis in combustion reactions are illustrated by examples of αand γ-Al{sub 2}O{sub 3}, YSZ composites, uranium oxides, nickel powder, NiO and NiO: YSZ composite, TiO{sub 2}, and manganites, cobaltites, and aluminates of rare earth elements.

  12. Synthesis of functional materials in combustion reactions (United States)

    Zhuravlev, V. D.; Bamburov, V. G.; Ermakova, L. V.; Lobachevskaya, N. I.


    The conditions for obtaining oxide compounds in combustion reactions of nitrates of metals with organic chelating-reducing agents such as amino acids, urea, and polyvinyl alcohol are reviewed. Changing the nature of internal fuels and the reducing agent-to-oxidizing agent ratio makes possible to modify the thermal regime of the process, fractal dimensionality, morphology, and dispersion of synthesized functional materials. This method can be used to synthesize simple and complex oxides, composites, and metal powders, as well as ceramics and coatings. The possibilities of synthesis in combustion reactions are illustrated by examples of αand γ-Al2O3, YSZ composites, uranium oxides, nickel powder, NiO and NiO: YSZ composite, TiO2, and manganites, cobaltites, and aluminates of rare earth elements.

  13. Direct hydrothermal synthesis of novel functional mesoporous materials

    Institute of Scientific and Technical Information of China (English)

    WU Zhengying; WEI Yilun; WANG Yimeng; ZHU Jianhua


    A direct synthesis method of preparing alkaline earth or transition metal oxides supporting mesoporous materials is reported. Distinguishing from those traditional techniques characterized by "synthesis at first and then modification", this new method adds the precursor salts that have no perturbation in the strong acid synthetic system but easily form oxides after calcinations, into the initial synthetic mixture, performing the "synthesis" and "modification" in one-pot procedure.

  14. Catalytic Methods in Asymmetric Synthesis Advanced Materials, Techniques, and Applications

    CERN Document Server

    Gruttadauria, Michelangelo


    This book covers advances in the methods of catalytic asymmetric synthesis and their applications. Coverage moves from new materials and technologies to homogeneous metal-free catalysts and homogeneous metal catalysts. The applications of several methodologies for the synthesis of biologically active molecules are discussed. Part I addresses recent advances in new materials and technologies such as supported catalysts, supports, self-supported catalysts, chiral ionic liquids, supercritical fluids, flow reactors and microwaves related to asymmetric catalysis. Part II covers advances and milesto

  15. Synthesis and catalytic applications of combined zeolitic/mesoporous materials

    Directory of Open Access Journals (Sweden)

    Jarian Vernimmen


    Full Text Available In the last decade, research concerning nanoporous siliceous materials has been focused on mesoporous materials with intrinsic zeolitic features. These materials are thought to be superior, because they are able to combine (i the enhanced diffusion and accessibility for larger molecules and viscous fluids typical of mesoporous materials with (ii the remarkable stability, catalytic activity and selectivity of zeolites. This review gives an overview of the state of the art concerning combined zeolitic/mesoporous materials. Focus is put on the synthesis and the applications of the combined zeolitic/mesoporous materials. The different synthesis approaches and formation mechanisms leading to these materials are comprehensively discussed and compared. Moreover, Ti-containing nanoporous materials as redox catalysts are discussed to illustrate a potential implementation of combined zeolitic/mesoporous materials.

  16. Numerical modeling of advanced materials

    NARCIS (Netherlands)

    Meinders, T.; Perdahcioglu, E.S.; Riel, van M.; Wisselink, H.H.


    The finite element (FE) method is widely used to numerically simulate forming processes. The accuracy of an FE analysis strongly depends on the extent to which a material model can represent the real material behavior. The use of new materials requires complex material models which are able to descr

  17. Materials Analysis and Modeling of Underfill Materials.

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, Nicholas B [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chambers, Robert S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The thermal-mechanical properties of three potential underfill candidate materials for PBGA applications are characterized and reported. Two of the materials are a formulations developed at Sandia for underfill applications while the third is a commercial product that utilizes a snap-cure chemistry to drastically reduce cure time. Viscoelastic models were calibrated and fit using the property data collected for one of the Sandia formulated materials. Along with the thermal-mechanical analyses performed, a series of simple bi-material strip tests were conducted to comparatively analyze the relative effects of cure and thermal shrinkage amongst the materials under consideration. Finally, current knowledge gaps as well as questions arising from the present study are identified and a path forward presented.

  18. Microgravity Production of Nanoparticles of Novel Materials Using Plasma Synthesis (United States)

    Frenklach, Michael; Fernandez-Pello, Carlos


    The research goal is to study the formation in reduced gravity of high quality nanoparticulate of novel materials using plasma synthesis. Particular emphasis will be placed on the production of powders of non-oxide materials like diamond, SiC, SiN, c-BN, etc. The objective of the study is to investigate the effect of gravity on plasma synthesis of these materials, and to determine how the microgravity synthesis can improve the quality and yield of the nanoparticles. It is expected that the reduced gravity will aid in the understanding of the controlling mechanisms of plasma synthesis, and will increase the yield, and quality of the synthesized powder. These materials have properties of interest in several industrial applications, such as high temperature load bearings or high speed metal machining. Furthermore, because of the nano-meter size of the particulate produced in this process, they have specific application in the fabrication of MEMS based combustion systems, and in the development and growth of nano-systems and nano-structures of these materials. These are rapidly advancing research areas, and there is a great need for high quality nanoparticles of different materials. One of the primary systems of interest in the project will be gas-phase synthesis of nanopowder of non-oxide materials.

  19. Sol-Gel Synthesis of Non-Silica Monolithic Materials

    Directory of Open Access Journals (Sweden)

    Bartłomiej Gaweł


    Full Text Available Monolithic materials have become very popular because of various applications, especially within chromatography and catalysis. Large surface areas and multimodal porosities are great advantages for these applications. New sol-gel preparation methods utilizing phase separation or nanocasting have opened the possibility for preparing materials of other oxides than silica. In this review, we present different synthesis methods for inorganic, non-silica monolithic materials. Some examples of application of the materials are also included.

  20. Recent Advances in the Synthesis of High Explosive Materials

    Directory of Open Access Journals (Sweden)

    Jesse J. Sabatini


    Full Text Available This review discusses the recent advances in the syntheses of high explosive energetic materials. Syntheses of some relevant modern primary explosives and secondary high explosives, and the sensitivities and properties of these molecules are provided. In addition to the synthesis of such materials, processing improvement and formulating aspects using these ingredients, where applicable, are discussed in detail.

  1. Recent Advances in the Synthesis of High Explosive Materials


    Jesse J. Sabatini; Karl D. Oyler


    This review discusses the recent advances in the syntheses of high explosive energetic materials. Syntheses of some relevant modern primary explosives and secondary high explosives, and the sensitivities and properties of these molecules are provided. In addition to the synthesis of such materials, processing improvement and formulating aspects using these ingredients, where applicable, are discussed in detail.

  2. Catastrophic models of materials destruction


    Kupchishin, A. I.; Taipova, B. G.; A. A. Kupchishin; Voronova, N. A.; Kirdyashkin, V. I.; Fursa, Tatyana Viktorovna


    The effect of concentration and type of fillers on mechanical properties of composite material based on polyimide were studied. Polyethylene terephthalate (PET, polyester), polycarbonate (PCAR) and montmorillonite (MM) were used as the fillers. The samples were prepared by mechanically blending the polyimide-based lacquer solutions with different concentrations of the second component. The concentration of filler and its class, especially their internal structure and technology of synthesis d...

  3. Synthesis, Characterization and Testing of Novel Anode and Cathode Materials for Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    White, Ralph E.; Popov, Branko N.


    During this program we have synthesized and characterized several novel cathode and anode materials for application in Li-ion batteries. Novel synthesis routes like chemical doping, electroless deposition and sol-gel method have been used and techniques like impedance, cyclic voltammetry and charge-discharge cycling have been used to characterize these materials. Mathematical models have also been developed to fit the experimental result, thus helping in understanding the mechanisms of these materials.

  4. Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications. (United States)

    Kortshagen, Uwe R; Sankaran, R Mohan; Pereira, Rui N; Girshick, Steven L; Wu, Jeslin J; Aydil, Eray S


    Nonthermal plasmas have emerged as a viable synthesis technique for nanocrystal materials. Inherently solvent and ligand-free, nonthermal plasmas offer the ability to synthesize high purity nanocrystals of materials that require high synthesis temperatures. The nonequilibrium environment in nonthermal plasmas has a number of attractive attributes: energetic surface reactions selectively heat the nanoparticles to temperatures that can strongly exceed the gas temperature; charging of nanoparticles through plasma electrons reduces or eliminates nanoparticle agglomeration; and the large difference between the chemical potentials of the gaseous growth species and the species bound to the nanoparticle surfaces facilitates nanocrystal doping. This paper reviews the state of the art in nonthermal plasma synthesis of nanocrystals. It discusses the fundamentals of nanocrystal formation in plasmas, reviews practical implementations of plasma reactors, surveys the materials that have been produced with nonthermal plasmas and surface chemistries that have been developed, and provides an overview of applications of plasma-synthesized nanocrystals.

  5. Material Modelling - Composite Approach

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang


    in this report is that cement paste and concrete behave practically as linear-viscoelastic materials from an age of approximately 10 hours. This is a significant age extension relative to earlier studies in the literature where linear-viscoelastic behavior is only demonstrated from ages of a few days. Thus......, linear-viscoelastic analysis methods are justified from the age of approximately 10 hours.The rheological properties of plain cement paste are determined. These properties are the principal material properties needed in any stress analysis of concrete. Shrinkage (autogeneous or drying) of mortar...... and concrete and associated internal stress states are examples of analysis made in this report. In this context is discussed that concrete strength is not an invariable material property. It is a property the potentials of which is highly and negatively influenced by any damage caused by stress concentrations...

  6. Synthesis and design of silicide intermetallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.; Park, Y.; Hollis, K.J.; Kung, H.H.


    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries.

  7. Ion Implantation and Synthesis of Materials

    CERN Document Server

    Nastasi, Michael


    Ion implantation is one of the key processing steps in silicon integrated circuit technology. Some integrated circuits require up to 17 implantation steps and circuits are seldom processed with less than 10 implantation steps. Controlled doping at controlled depths is an essential feature of implantation. Ion beam processing can also be used to improve corrosion resistance, to harden surfaces, to reduce wear and, in general, to improve materials properties. This book presents the physics and materials science of ion implantation and ion beam modification of materials. It covers ion-solid interactions used to predict ion ranges, ion straggling and lattice disorder. Also treated are shallow-junction formation and slicing silicon with hydrogen ion beams. Topics important for materials modification, such as ion-beam mixing, stresses, and sputtering, are also described.

  8. Synthesis and design of silicide intermetallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; Castro, R.G.; Butt, D.P. [Los Alamos National Lab., NM (United States)] [and others


    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries. The program presently has a number of developing industrial connections, including a CRADA with Schuller International Inc. targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. Current experimental emphasis is on the development and characterization of MoSi{sub 2}-Si{sub 3}N{sub 4} and MoSi{sub 2}-SiC composites, the plasma spraying of MoSi{sub 2}-based materials, and the joining of MoSi{sub 2} materials to metals.

  9. Synthesis and chemistry of elemental 2D materials

    Energy Technology Data Exchange (ETDEWEB)

    Mannix, Andrew J.; Kiraly, Brian T.; Hersam, Mark C.; Guisinger, Nathan P.


    2D materials have attracted considerable attention in the past decade for their superlative physical properties. These materials consist of atomically thin sheets exhibiting covalent in-plane bonding and weak interlayer and layer-substrate bonding. Following the example of graphene, most emerging 2D materials are derived from structures that can be isolated from bulk phases of layered materials, which form a limited library for new materials discovery. Entirely synthetic 2D materials provide access to a greater range of properties through the choice of constituent elements and substrates. Of particular interest are elemental 2D materials, because they provide the most chemically tractable case for synthetic exploration. In this Review, we explore the progress made in the synthesis and chemistry of synthetic elemental 2D materials, and offer perspectives and challenges for the future of this emerging field.

  10. Interfacing materials models with fire field models

    Energy Technology Data Exchange (ETDEWEB)

    Nicolette, V.F.; Tieszen, S.R.; Moya, J.L.


    For flame spread over solid materials, there has traditionally been a large technology gap between fundamental combustion research and the somewhat simplistic approaches used for practical, real-world applications. Recent advances in computational hardware and computational fluid dynamics (CFD)-based software have led to the development of fire field models. These models, when used in conjunction with material burning models, have the potential to bridge the gap between research and application by implementing physics-based engineering models in a transient, multi-dimensional tool. This paper discusses the coupling that is necessary between fire field models and burning material models for the simulation of solid material fires. Fire field models are capable of providing detailed information about the local fire environment. This information serves as an input to the solid material combustion submodel, which subsequently calculates the impact of the fire environment on the material. The response of the solid material (in terms of thermal response, decomposition, charring, and off-gassing) is then fed back into the field model as a source of mass, momentum and energy. The critical parameters which must be passed between the field model and the material burning model have been identified. Many computational issues must be addressed when developing such an interface. Some examples include the ability to track multiple fuels and species, local ignition criteria, and the need to use local grid refinement over the burning material of interest.

  11. Synthesis of thin films and materials utilizing a gaseous catalyst (United States)

    Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard


    A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.

  12. Aerospace Materials Process Modelling (United States)


    deTresca La d~termination du coefficient de frottement de Tresca 9 est effectu~e de facon courante en forgeant un anneau de g~oan~trie fix~e. On mesure la...ailleurs et vaut a= 105 xt 0 , 2 5 Les riductions relatives du diam~tre int~rieur sont report~es sur l1abaque TVM(fig. 2a). Les coefficient de frottement ...validated material data bass. Information such as constitutive equations, intrinsic workability maps, effective heat-transfer coefficients , interface

  13. Global nuclear material control model

    Energy Technology Data Exchange (ETDEWEB)

    Dreicer, J.S.; Rutherford, D.A.


    The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of a disposition program for special nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool that treats the nuclear fuel cycle as a complete system. Such a tool must represent the fundamental data, information, and capabilities of the fuel cycle including an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, and a framework supportive of national or international perspective. They have developed a prototype global nuclear material management and control systems analysis capability, the Global Nuclear Material Control (GNMC) model. The GNMC model establishes the framework for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material.

  14. Synthesis of two-dimensional materials by selective extraction. (United States)

    Naguib, Michael; Gogotsi, Yury


    CONSPECTUS: Two-dimensional (2D) materials have attracted much attention in the past decade. They offer high specific surface area, as well as electronic structure and properties that differ from their bulk counterparts due to the low dimensionality. Graphene is the best known and the most studied 2D material, but metal oxides and hydroxides (including clays), dichalcogenides, boron nitride (BN), and other materials that are one or several atoms thick are receiving increasing attention. They may deliver a combination of properties that cannot be provided by other materials. The most common synthesis approach in general is by reacting different elements or compounds to form a new compound. However, this approach does not necessarily work well for low-dimensional structures, since it favors formation of energetically preferred 3D (bulk) solids. Many 2D materials are produced by exfoliation of van der Waals solids, such as graphite or MoS2, breaking large particles into 2D layers. However, these approaches are not universal; for example, 2D transition metal carbides cannot be produced by any of them. An alternative but less studied way of material synthesis is the selective extraction process, which is based on the difference in reactivity and stability between the different components (elements or structural units) of the original material. It can be achieved using thermal, chemical, or electrochemical processes. Many 2D materials have been synthesized using selective extraction, such as graphene from SiC, transition metal oxides (TMO) from layered 3D salts, and transition metal carbides or carbonitrides (MXenes) from MAX phases. Selective extraction synthesis is critically important when the bonds between the building blocks of the material are too strong (e.g., in carbides) to be broken mechanically in order to form nanostructures. Unlike extractive metallurgy, where the extracted metal is the goal of the process, selective extraction of one or more elements from

  15. Synthesis of functional materials by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Young Chang; Kim, Ki Yup; Kang, Phil Hyun and others


    The radiation can induce chemical reaction to modify polymer under even the solid condition or in the low temperature. Therefore, the radiation processing is used as the means to develop the high functional polymer and new material which is impossible by chemical process. The radiation grafting process has the advantage to endow the adsorption function to the existing materials such as polymer membrane, fabric, non-fabric, non-woven fabric and film. Radiation crosslinking is effected with no pressure and is performed at low temperatures. Thus, temperature sensitive additives can be used in radiation crosslinking. The radiation crosslinking and grafting can be easily adjusted and is easily reproducible by controlling the radiation dose. The finished product contains no residuals of substances required to initiate the chemical crosslinking and grafting which can restrict the application possibilities, or can increase the failure rate. In these studies, radiation grafting and crosslinking were used to develop the toxic gas adsorbent, blood compatible polymer, acetabular cup of artificial joint, urokinase adsorbent, hydrogel, hollow fiber membrane adsorbing the heavy metals, and battery separator membrane. Because cable in nuclear power plant is directly related to safe operation, the life assessment of the cable system is an important issue. To assess the degradation and life time of cable is complicated owing to the various types and the different formulation of cable. In order to make an estimate the long term degradation occurring in a material, it is necessary to carry out the accelerated aging studies and to establish the appropriate test method to characterize the degradation. These studies are aimed at the evaluation technique on radiation degradation of polymer material and applying these results to nuclear equipment qualification.

  16. Synthesis of new materials with properties ameliorated (United States)

    Baira, F.; Benfarhi, S.; Zidani, S.


    Cellulose is the most abundant polymer in nature. It is used mainly for the production of paper bet also as a reinforcement in the polymer matrixes[1]. The modification of this polysaccharide presents a great interest, for it is the main constituent of agricultural wastes. It is well known that the microcrystalline cellulose gives, after chemical modification, new biodegradable materials[2], which may be used, for instance, for packaging. The esterification of cellulose necessitates an acid pretreatment which makes hydroxyl groups more accessible by breaking hydrogen bonds. X-rays diffraction analysis showed a feeble diminution of the treated samples cristallinity[3]. Cellulose, activated in this way, is esterified in a classic way in DMF, in the presence of triethylamine, LiCl and acid chloride at 60C° for 24 hours[4]. The obtained ester is precipitated in MeOH. The residue, dissolved in CHCl3, gives after evaporation in the open air, a plastic film surface. The water drop test has shown the hydrophobe properties of the plastic film surface. Our work is the study of the preparation of composite materials from the basis of their derivatives. Well as the study of the photopolymerisation kinetic, and the chemical degradation. The obtained films were analyzed by IR-TF, and the volumetrie[5,6]. As a conclusion, we have prepared composite materials with improved properties with reference to the matrix alone.

  17. Synthesis Of Materials With Infrared And Ultraviolet Lasers (United States)

    Lyman, John L.


    This paper discusses three divergent examples of synthesis of materials with lasers. The three techniques are: (1) Infrared (CO2) laser synthesis of silane (SiH4) from disilane (Si2H6); (2) Excimer (ArF) laser production of fine silicon powders from methyl-and chlorosubstituted silanes; and, (3) Excimer (KrF) laser production of fine metallic powders by laser ablation. The mechanism for each process is discussed along with some conclusions about the features of the laser radiation that enable each application.

  18. Synthesis, processing and properties of materials for SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.L.; Armstrong, T.A.; Kingsley, J.J.; Pederson, L.R.


    The synthesis and processing methods of complex oxide materials can significantly influence use in solid oxide fuel cells (SOFCs). This paper discusses (1) effects of powder synthesis and conditioning on fabrication, i.e., sintering, where close, reproducible control of composition and structure are required, and (2) influences on electrical, mechanical, structural and electrochemical properties that can influence SOFC performance. Examples are given for chromites, manganites and related oxides used as interconnections and electrodes in SOFCs. Materials, from source to incorporation into the fuel cell and generator, is a major issue in the development of solid oxide fuel cells (SOFCs). An integral part of this is the synthesis from chemicals and other virgin materials, generally as an oxide or metal powder, which can become a SOFC component. In some instances, such as with electrochemical vapor deposition, the component is formed directly from the chemicals. The synthesized materials are then conditioned and processes prior to fabrication into the fuel cell component, either separately or in conjunction with other material components.

  19. Controlled synthesis of the tricontinuous mesoporous material IBN-9 and its carbon and platinum derivatives

    KAUST Repository

    Zhao, Yunfeng


    Controlled synthesis of mesoporous materials with ultracomplicated pore configurations is of great importance for both fundamental research of nanostructures and the development of novel applications. IBN-9, which is the only tricontinuous mesoporous silica with three sets of interpenetrating three-dimensional channel systems, appears to be an excellent model mesophase for such study. The extensive study of synthesis space diagrams proves mesophase transition among the cylindrical MCM-41, tricontinuous IBN-9 and bicontinuous MCM-48, and also allows a more precise control of phase-pure synthesis. On the other hand, rational design of structure-directing agents offers a possibility to extend the synthesis conditions of IBN-9, as well as tailor its pore size. Moreover, an unprecedented helical structure consisting of twisted 3-fold interwoven mesoporous channels is reported here for the first time. The unique tricontinuous mesostructure of IBN-9 has been well-replicated by other functional materials (e.g., carbon and platinum) via a "hard- templating" synthesis route. The obtained carbon material possesses large surface area (∼1900 m2/g), high pore volume (1.56 cm 3/g), and remarkable gas adsorption capability at both cryogenic temperatures and room temperature. The platinum material has an ordered mesostructure composed of highly oriented nanocrystals. © 2011 American Chemical Society.

  20. The Effects of Gravity on Combustion and Structure Formation During Synthesis of Advanced Materials (United States)

    Varma, A.; Pelekh, A.; Mukasyan, A.


    Combustion in a variety of heterogeneous systems, leading to the synthesis of advanced materials, is characterized by high temperatures (2000-3500 K) and heating rates (up to 10(exp 6) K/s) at and ahead of the reaction front. These high temperatures generate liquids and gases which are subject to gravity-driven flow. The removal of such gravitational effects is likely to provide increased control of the reaction front, with a consequent improvement in control of the microstructure of the synthesized products. Thus, microgravity experiments can lead to major advances in the understanding of fundamental aspects of combustion and structure formation under the extreme conditions of the combustion synthesis wave. In addition, the specific features of microgravity environment allow one to produce unique materials, which cannot be obtained under terrestrial conditions. The general goals of the current research are: 1) to improve the understanding of fundamental phenomena taking place during combustion of heterogeneous systems, 2) to use low-gravity experiments for insight into the physics and chemistry of materials synthesis processes, and 3) based on the obtained knowledge, to optimize processing conditions for synthesis of advanced materials with desired microstructures and properties. This research follows logically from the results of investigations we have conducted in the framework of our previous grant on gravity influence on combustion synthesis (CS) of gasless systems. Prior work, by others and by us, has clearly demonstrated that gravity plays an important role during combustion synthesis of materials. The immediate tasks for the future are to quantitatively identify the nature of observed effects, and to create accurate local kinetic models of the processes, which can lead to a control of the microstructure and properties of the synthesized materials. In summary, this is the value of the proposed research. Based on our prior work, we focus on the fundamental

  1. Perspective: Toward "synthesis by design": Exploring atomic correlations during inorganic materials synthesis (United States)

    Soderholm, L.; Mitchell, J. F.


    Synthesis of inorganic extended solids is a critical starting point from which real-world functional materials and their consequent technologies originate. However, unlike the rich mechanistic foundation of organic synthesis, with its underlying rules of assembly (e.g., functional groups and their reactivities), the synthesis of inorganic materials lacks an underpinning of such robust organizing principles. In the latter case, any such rules must account for the diversity of chemical species and bonding motifs inherent to inorganic materials and the potential impact of mass transport on kinetics, among other considerations. Without such assembly rules, there is less understanding, less predictive power, and ultimately less control of properties. Despite such hurdles, developing a mechanistic understanding for synthesis of inorganic extended solids would dramatically impact the range of new material discoveries and resulting new functionalities, warranting a broad call to explore what is possible. Here we discuss our recent approaches toward a mechanistic framework for the synthesis of bulk inorganic extended solids, in which either embryonic atomic correlations or fully developed phases in solutions or melts can be identified and tracked during product selection and crystallization. The approach hinges on the application of high-energy x-rays, with their penetrating power and large Q-range, to explore reaction pathways in situ. We illustrate this process using two examples: directed assembly of Zr clusters in aqueous solution and total phase awareness during crystallization from K-Cu-S melts. These examples provide a glimpse of what we see as a larger vision, in which large scale simulations, data-driven science, and in situ studies of atomic correlations combine to accelerate materials discovery and synthesis, based on the assembly of well-defined, prenucleated atomic correlations.

  2. Perspective: Toward “synthesis by design”: Exploring atomic correlations during inorganic materials synthesis

    Directory of Open Access Journals (Sweden)

    L. Soderholm


    Full Text Available Synthesis of inorganic extended solids is a critical starting point from which real-world functional materials and their consequent technologies originate. However, unlike the rich mechanistic foundation of organic synthesis, with its underlying rules of assembly (e.g., functional groups and their reactivities, the synthesis of inorganic materials lacks an underpinning of such robust organizing principles. In the latter case, any such rules must account for the diversity of chemical species and bonding motifs inherent to inorganic materials and the potential impact of mass transport on kinetics, among other considerations. Without such assembly rules, there is less understanding, less predictive power, and ultimately less control of properties. Despite such hurdles, developing a mechanistic understanding for synthesis of inorganic extended solids would dramatically impact the range of new material discoveries and resulting new functionalities, warranting a broad call to explore what is possible. Here we discuss our recent approaches toward a mechanistic framework for the synthesis of bulk inorganic extended solids, in which either embryonic atomic correlations or fully developed phases in solutions or melts can be identified and tracked during product selection and crystallization. The approach hinges on the application of high-energy x-rays, with their penetrating power and large Q-range, to explore reaction pathways in situ. We illustrate this process using two examples: directed assembly of Zr clusters in aqueous solution and total phase awareness during crystallization from K–Cu–S melts. These examples provide a glimpse of what we see as a larger vision, in which large scale simulations, data-driven science, and in situ studies of atomic correlations combine to accelerate materials discovery and synthesis, based on the assembly of well-defined, prenucleated atomic correlations.

  3. Mechanochemical synthesis of Fe-S materials

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Larsen, R.K.; Lin, R.


    Powder mixtures of metallic iron and sulfur have been milled in a high-energy planetary ball mill and the formation of iron sulfides has been studied by x-ray diffraction, Mossbauer spectroscopy, and scanning electron microscopy. For Fe:S ratios of 1:1 and 1:2 the final products are FeS with the ......Powder mixtures of metallic iron and sulfur have been milled in a high-energy planetary ball mill and the formation of iron sulfides has been studied by x-ray diffraction, Mossbauer spectroscopy, and scanning electron microscopy. For Fe:S ratios of 1:1 and 1:2 the final products are Fe......S with the modified NiAs structure and FeS2 (pyrite), respectively. No other iron sulfides were formed for any of the Fe:S ratios studied. The FeS phase has been tested as an electrode material in lithium batteries....

  4. Mechanochemical synthesis of nanocrystalline materials in an industrial mill

    Directory of Open Access Journals (Sweden)

    Eberhard Gock


    Full Text Available Nanosized materials are polycrystalline materials, whose crystal size is a few (typically 1-100 nanometers in at least one dimension. It has been proposed that as particles become smaller in size they may take on different chemical and physical properties. One of the most intriguing observations was that nanocrystals prepared by the altered “nano“ approach exhibited a higher surface chemical reactivity than more conventionally prepared samples. Nanocrystalline materials have many potential applications in the area of advanced materials. Their strongly size-dependent optical properties render them attractive candidates as tunable light absorbers and emitters in optoelectronic devices such as light-emitting diodes and quantum-dot lasers. These materials can be synthesized via solid state reactions where the efficiency of synthesis can be strongly enhanced by an intervention of high-energy milling (mechanochemical synthesis. The mechanochemical synthesis can effectively control and regulate the course of solid state reactions. Nanocrystalline materials MeS (Me=Pb, Zn, Cd, Cu were successfully synthesized by the mechanochemical route from the corresponding metal acetates and natrium sulphide in an industrial mill. Structure properties of the as-prepared products were characterized by the X-ray powder diffraction, revealing the crystalline nature of the MeS nanoparticles. The methods of TEM, particle size analysis and the low temperature nitrogen sorption were used to analyze the particle morphology and the surface composition. The average sizes of MeS particles of 4-18 nm were estimated by Scherrer´s formula. The nanocrystalline materials are obtained in the simple step, making the process attractive for industrial applications. The main advantage of the application of the industrial mill is that it is a “quantity” process, permitting kilograms of material to be produced at an ambient temperature in a very short processing time. Moreover

  5. Combustion Synthesis of Advanced Porous Materials in Microgravity Environment (United States)

    Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Johnson, D. P.


    Combustion synthesis, otherwise known as self-propagating high temperature synthesis (SHS), can be used to produce engineered advanced porous material implants which offer the possibility for bone ingrowth as well as a permanent structure framework for the long-term replacement of bone defects. The primary advantage of SHS is based on its rapid kinetics and favorable energetics. The structure and properties of materials produced by SHS are strongly dependent on the combustion reaction conditions. Combustion reaction conditions such as reaction stoichiometry, particle size, green density, the presence and use of diluents or inert reactants, and pre-heating of the reactants, will affect the exothermicity of the reaction. A number of conditions must be satisfied in order to obtain high porosity materials: an optimal amount of liquid, gas and solid phases must be present in the combustion front. Therefore, a balance among these phases at the combustion front must be created by the SHS reaction to successfully engineer a bone replacement material system. Microgravity testing has extended the ability to form porous products. The convective heat transfer mechanisms which operate in normal gravity, 1 g, constrain the combustion synthesis reactions. Gravity also acts to limit the porosity which may be formed as the force of gravity serves to restrict the gas expansion and the liquid movement during reaction. Infiltration of the porous product with other phases can modify both the extent of porosity and the mechanical properties.


    Energy Technology Data Exchange (ETDEWEB)

    Monica Sorescu


    The work described in this grant report was focused mainly on the properties of novel magnetic intermetallics. In the first project, we synthesized several 2:17 intermetallic compounds, namely Nd{sub 2}Fe{sub 15}Si{sub 2}, Nd{sub 2}Fe{sub 15}Al{sub 2}, Nd{sub 2}Fe{sub 15}SiAl and Nd{sub 2}Fe{sub 15}SiMn, as well as several 1:12 intermetallic compounds, such as NdFe{sub 10}Si{sub 2}, NdFe{sub 10}Al{sub 2}, NdFe{sub 10}SiAl and NdFe{sub 10}MnAl. In the second project, seven compositions of Nd{sub x}Fe{sub 100-x-y}B{sub y} ribbons were prepared by a melt spinning method with Nd and B content increasing from 7.3 and 3.6 to 11 and 6, respectively. The alloys were annealed under optimized conditions to obtain a composite material consisting of the hard magnetic Nd{sub 2}Fe{sub 14}B and soft magnetic {alpha}-Fe phases, typical of a spring magnet structure. In the third project, intermetallic compounds of the type Zr{sub 1}Cr{sub 1}Fe{sub 1}T{sub 0.8} with T = Al, Co and Fe were subjected to hydrogenation. In the fourth project, we performed three crucial experiments. In the first experiment, we subjected a mixture of Fe{sub 3}O{sub 4} and Fe (80-20 wt %) to mechanochemical activation by high-energy ball milling, for time periods ranging from 0.5 to 14 hours. In the second experiment, we ball-milled Fe{sub 3}O{sub 4}:Co{sup 2+} (x = 0.1) for time intervals between 2.5 and 17.5 hours. Finally, we exposed a mixture of Fe{sub 3}O{sub 4} and Co (80-20 wt %) to mechanochemical activation for time periods ranging from 0.5 to 10 hours. In all cases, the structural and magnetic properties of the systems involved were elucidated by X-ray diffraction (XRD), Moessbauer spectroscopy and hysteresis loop measurements. The four projects resulted in four papers, which were published in Intermetallics, IEEE Transactions on Magnetics, Journal of Materials Science Letters and Materials Chemistry and Physics. The contributions reveal for the first time in literature the effect of

  7. Synthesis Methods of Carbon Nanotubes and Related Materials

    Directory of Open Access Journals (Sweden)

    Andrea Szabó


    Full Text Available The challenge on carbon nanotubes is still the subject of many research groups. While in the first years the focus was on the new synthesis methods, new carbon sources and support materials, recently, the application possibilities are the principal arguments of the studies. The three main synthesis methods discussed in this review are the arc discharge, the laser ablation and the chemical vapour deposition (CVD with a special regard to the latter one. In the early stage of the nanotube production the first two methods were utilized mainly for the production of SWNTs while the third one produced mainly MWNTs. The principle of CVD is the decomposition of various hydrocarbons over transition metal supported catalyst. Single-walled (SWNT, multi-walled (MWNT and coiled carbon nanotubes are produced. In some case, interesting carbonaceous materials are formed during the synthesis process, such as bamboo-like tubes, onions, horn-like structures. In this paper, we refer to the progresses made in the field of the synthesis techniques of carbon nanotubes in the last decade.

  8. Carbonyl-bridged energetic materials: biomimetic synthesis, organic catalytic synthesis, and energetic performances. (United States)

    Feng, Yong-An; Qiu, Hao; Yang, Sa-Sha; Du, Jiang; Zhang, Tong-Lai


    In order to obtain high-performance energetic materials, in this work, carbonyl groups (C[double bond, length as m-dash]O) have been newly introduced as sole bridging groups in the field of energetic materials. To this end, two tailored green methods for the synthesis of carbonyl-bridged energetic compounds have been developed for the first time. One is a biomimetic synthesis, in which the conversion route of heme to biliverdin has been used to obtain metal-containing energetic compounds. The other one is an organocatalysis, in which guanidinium serves as an energetic catalyst to afford other energetic compounds. Experimental studies and theoretical calculations have shown that carbonyl-bridged energetic compounds exhibit excellent energetic properties, which is promising for the carbonyl group as a new important and effective linker in energetic materials.

  9. Constitutive modeling for isotropic materials (United States)

    Chan, K. S.; Lindholm, U. S.; Bodner, S. R.


    The third and fourth years of a 4-year research program, part of the NASA HOST Program, are described. The program goals were: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analysis of hot section components of gas turbine engines. The unified models selected for development and evaluation were those of Bodner-Partom and of Walker. The unified approach for elastic-viscoplastic constitutive equations is a viable method for representing and predicting material response characteristics in the range where strain rate and temperature dependent inelastic deformations are experienced. This conclusion is reached by extensive comparison of model calculations against the experimental results of a test program of two high temperature Ni-base alloys, B1900+Hf and Mar-M247, over a wide temperature range for a variety of deformation and thermal histories including uniaxial, multiaxial, and thermomechanical loading paths. The applicability of the Bodner-Partom and the Walker models for structural applications has been demonstrated by implementing these models into the MARC finite element code and by performing a number of analyses including thermomechanical histories on components of hot sections of gas turbine engines and benchmark notch tensile specimens. The results of the 4-year program have been published in four annual reports. The results of the base program are summarized in this report. The tasks covered include: (1) development of material test procedures, (2) thermal history effects, and (3) verification of the constitutive model for an alternative material.

  10. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gash, A; Pantoya, M; Jr., J S; Zhao, L; Shea, K; Simpson, R; Clapsaddle, B


    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology, affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Furthermore, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. As a result, the desired organic functionality is well dispersed throughout the composite material on the nanoscale. By introducing a fuel metal into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of these metal oxide/silicon oxide nanocomposites and their performance as energetic materials will be discussed.

  11. Synthesis of Refractory Materials by Skull Melting Technique (United States)

    Osiko, Vyacheslav V.; Borik, Mikhail A.; Lomonova, Elena E.

    This chapter discusses methods of growing refractory oxide single crystals and synthesis of refractory glasses by skull melting technique in a cold crucible. It shows the advantages of radiofrequency (RF) heating of dielectric materials in a cold crucible and points out some specific problems regarding the process of growing crystals by directional crystallization from the melt and by pulling on a seed from the melt. The distinctive features of the method of directional crystallization from the melt are discussed in detail on the example of technology of materials based on zirconia, i.e., cubic single crystals and partly stabilized single crystals. It is shown that the size and quality of crystals are functions of the process conditions, such as thermal conditions under crystallization, growth rate, and chemical composition. We provide an overview of research on the structure, phase composition, and physicochemical properties of crystals based on zirconia. The optical, mechanical, and electric properties of these crystals make them suitable for a number of technical and industrial applications in optics, electronics, materials processing, and medicine. In this chapter, we also consider some problems regarding the synthesis of refractory glasses by skull melting technique. The physicochemical and optical properties of glasses are given and their practical applications in technology are discussed. We note that one of the better developed and most promising applications of skull melting technique is the immobilization of liquid and solid waste (also radioactive waste) into solid-state materials by vitrification.

  12. Biology Teacher and Expert Opinions about Computer Assisted Biology Instruction Materials: A Software Entitled Nucleic Acids and Protein Synthesis (United States)

    Hasenekoglu, Ismet; Timucin, Melih


    The aim of this study is to collect and evaluate opinions of CAI experts and biology teachers about a high school level Computer Assisted Biology Instruction Material presenting computer-made modelling and simulations. It is a case study. A material covering "Nucleic Acids and Protein Synthesis" topic was developed as the…

  13. synthesis of new schiff bases as materials for the design of ...

    African Journals Online (AJOL)

    Kasmi-Mir S, ElKebich M, Dembahri Z, Haouzi A and Kirsch G

    1 mai 2016 ... SYNTHESIS OF NEW SCHIFF BASES AS MATERIALS FOR THE ... We describe the synthesis of new organic Schiff bases chromophores 5 containing a ...... solar cells controlled by nanocrystalline-TiO2 electrode thickness.

  14. Atomistic Modelling of Si Nanoparticles Synthesis

    Directory of Open Access Journals (Sweden)

    Giovanni Barcaro


    Full Text Available Silicon remains the most important material for electronic technology. Presently, some efforts are focused on the use of Si nanoparticles—not only for saving material, but also for improving the efficiency of optical and electronic devices, for instance, in the case of solar cells coated with a film of Si nanoparticles. The synthesis by a bottom-up approach based on condensation from low temperature plasma is a promising technique for the massive production of such nanoparticles, but the knowledge of the basic processes occurring at the atomistic level is still very limited. In this perspective, numerical simulations can provide fundamental information of the nucleation and growth mechanisms ruling the bottom-up formation of Si nanoclusters. We propose to model the low temperature plasma by classical molecular dynamics by using the reactive force field (ReaxFF proposed by van Duin, which can properly describe bond forming and breaking. In our approach, first-principles quantum calculations are used on a set of small Si clusters in order to collect all the necessary energetic and structural information to optimize the parameters of the reactive force-field for the present application. We describe in detail the procedure used for the determination of the force field and the following molecular dynamics simulations of model systems of Si gas at temperatures in the range 2000–3000 K. The results of the dynamics provide valuable information on nucleation rate, nanoparticle size distribution, and growth rate that are the basic quantities for developing a following mesoscale model.

  15. Synthesis and self-assembly of complex hollow materials

    KAUST Repository

    Zeng, Hua Chun


    Hollow materials with interiors or voids and pores are a class of lightweight nanostructured matters that promise many future technological applications, and they have received significant research attention in recent years. On the basis of well-known physicochemical phenomena and principles, for example, several solution-based protocols have been developed for the general preparation of these complex materials under mild reaction conditions. This article is thus a short introductory review on the synthetic aspects of this field of development. The synthetic methodologies can be broadly divided into three major categories: (i) template-assisted synthesis, (ii) self-assembly with primary building blocks, and (iii) induced matter relocations. In most cases, both synthesis and self-assembly are involved in the above processes. Further combinations of these methodologies appear to be very important, as they will allow one to prepare functional materials at a higher level of complexity and precision. The synthetic strategies are introduced through some simple case studies with schematic illustrations. Salient features of the methods developed have been summarized, and some urgent issues of this field have also been indicated. © 2011 The Royal Society of Chemistry.

  16. Gravitational Effects on Combustion Synthesis of Advanced Porous Materials (United States)

    Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Thorne, K.


    Combustion Synthesis (self-Propagating high-temperature synthesis-(SHS)) of porous Ti-TiB(x), composite materials has been studied with respect to the sensitivity to the SHS reaction parameters of stoichiometry, green density, gasifying agents, ambient pressure, diluents and gravity. The main objective of this research program is to engineer the required porosity and mechanical properties into the composite materials to meet the requirements of a consumer, such as for the application of bone replacement materials. Gravity serves to restrict the gas expansion and the liquid movement during SHS reaction. As a result, gravitational forces affect the microstructure and properties of the SHS products. Reacting these SHS systems in low gravity in the KC-135 aircraft has extended the ability to form porous products. This paper will emphasize the effects of gravity (low g, 1g and 2g) on the SHS reaction process, and the microstructure and properties of the porous composite. Some of biomedical results are also discussed.

  17. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Clapsaddle, B; Gash, A; Plantier, K; Pantoya, M; Jr., J S; Simpson, R


    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. By introducing a fuel metal, such as aluminum, into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. In addition, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. These organic additives can cause the generation of gas upon ignition of the materials, therefore resulting in a composite material that can perform pressure/volume work. Furthermore, the desired organic functionality is well dispersed throughout the composite material on the nanoscale with the other components, and is therefore subject to the same increased reaction kinetics. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of iron(III) oxide/organosilicon oxide nanocomposites and their performance as energetic materials will be discussed.

  18. Biogenic green synthesis of monodispersed gum kondagogu (Cochlospermum gossypium) iron nanocomposite material and its application in germination and growth of mung bean (Vigna radiata) as a plant model. (United States)

    Raju, Dugyala; Mehta, Urmil J; Beedu, Sashidhar Rao


    An eco-friendly green and one-pot synthesis of highly monodispersed iron (Fe) nanoparticles (NPs) by using a natural biopolymer, gum kondagogu (GK) as reducing and capping agent is proposed. The NPs synthesised were characterised by ultra-violet-visible spectroscopy, transmission electron microscopy, scanning electron microscopy and X-ray diffraction. As the concentration of gum and time increases, the intensity of NPs formation increased. The NPs were highly monodispersed with uniform circular shapes of 2-6 nm in size. The formed NPs were crystalline in nature which was confirmed by diffraction analysis. The conversion ratio of Fe ionic form to NPs was 21% which was quantified by inductively coupled plasma mass spectroscopy (ICP-MS). Fe is essential for plant growth and development. A study was conducted to examine the effect of these NPs on the growth of mung bean (Vigna radiata). The radical length and biomass was increased in seeds exposed to Fe NPs than the ions. The uptake of Fe NPs by the sprouts was also quantified by ICP-MS, in which Fe was more in mung bean seeds exposed to NPs. The α-amylase activity was increased in the seeds exposed to NPs. The observed increase in the biomass by Fe NPs and seed germination may facilitate its application in the agriculture as an important cost-effective method for plant growth.

  19. Modelling Hospital Materials Management Processes

    Directory of Open Access Journals (Sweden)

    Raffaele Iannone


    integrated and detailed analysis and description model for hospital materials management data and tasks, which is able to tackle information from patient requirements to usage, from replenishment requests to supplying and handling activities. The model takes account of medical risk reduction, traceability and streamlined processes perspectives. Second, the paper translates this information into a business process model and mathematical formalization.The study provides a useful guide to the various relevant technology‐related, management and business issues, laying the foundations of an efficient reengineering of the supply chain to reduce healthcare costs and improve the quality of care.

  20. Symposium DD: Low-Dimensional Materials-Synthesis, Assembly, Property Scaling and Modeling. Held in San Francisco, CA on April 9-13, 2007 (United States)


    quantum dots are exquisitely sensitive to extra charges. As for electrochromic materials, the optical absorption is directly modified by state filling...University, Daejeon, South Korea. Layer-by-layer( LbL ) self-assembly is a template-assisted process in which charge reversal techniques using...allows consecutive thin film deposition to proceed via the electrostatic LbL method. The persistence length is a basic property quantifying the stiffness

  1. Nanocrystalline functional materials and nanocomposites synthesis through aerosol routes

    Directory of Open Access Journals (Sweden)

    Milošević Olivera B.


    Full Text Available This paper represents the results of the design of functional nanocrystalline powders and nanocomposites using chemical reactions in aerosols. The process involves ultrasonic aerosol formation (mist generators with the resonant frequencies of 800 kHz, 1.7 and 2.5 MHz from precursor salt solutions and control over the aerosol decomposition in a high-temperature tubular flow reactor. During decomposition, the aerosol droplets undergo evaporation/drying, precipitation and thermolysis in a single-step process. Consequently, spherical, solid, agglomerate-free submicronic particles are obtained. The particle morphology, revealed as a composite structure consisting of primary crystallites smaller than 20 nm was analysed by several methods (XRD, DSC/DTA, SEM, TEM and discussed in terms of precursor chemistry and process parameters. Following the initial attempts, a more detailed aspect of nanocrystalline particle synthesis was demonstrated for the case of nanocomposites based on ZnO-MeO (MeO=Bi Cr+, suitable for electronic applications, as well as an yttrium-aluminum base complex system, suitable for phosphorus applications. The results imply that parts of the material structure responsible for different functional behaviour appear through in situ aerosol synthesis by processes of intraparticle agglomeration, reaction and sintering in the last synthesis stage.

  2. Synthesis of helical and supplementary chirally doped PMO materials. Suitable catalysts for asymmetric synthesis. (United States)

    García-Muñoz, Rafael A; Morales, Victoria; Linares, María; Rico-Oller, Beatriz


    Exciting helical mesoporous organosilicas including supplementary chirally doped moieties into their spiral walls were one-pot successfully synthesized with good structural order for, to the best of our knowledge, the first time. This one-step direct synthesis of helical chirally doped periodic mesoporous organosilica (PMO) materials was carried out by combination of a tartrate-based bis-organosilicon precursor with tetraethyl orthosilicate (TEOS) and two surfactants, cetyltrimethylammonium bromide and perfluoroctanoic acid (CTAB and PFOA). For comparison purposes, a conventional two-step postsynthetic grafting methodology was carried out. In this method, the chiral tartrate-based moieties were grafted onto the helical silica mesoporous materials previously prepared by the dual-templating approach (CTAB and PFOA). The chirally doped materials prepared by both methodologies exhibited helical structure and high BET surface area, pore size distributions, and total pore volume in the range of mesopores. Solid-state (13)C and (29)Si MAS NMR experiments confirmed the presence of the chiral organic precursor in the silica wall covalently bonded to silicon atoms. Nevertheless, one-pot direct synthesis led to a greater control of surface properties and presented larger incorporation of organic species compared with the two-step postsynthetic methodology. To further prove the potential feasibility of these materials in enantiomeric applications, Mannich diastereoselective asymmetric synthesis was chosen as catalytic test. In the case of the one-pot PMO material, the rigidity of the chiral ligand backbone provided by its integration into the inorganic helical wall in combination with the steric impediments supplied by the twisted geometry led to the reagents to adopt specific orientations. These geometrical constrictions resulted in an outstanding diastereomeric induction toward the preferred enantiomer.

  3. Carbon nanotube synthesis with different support materials and catalysts (United States)

    Gümüş, Fatih; Yuca, Neslihan; Karatepe, Nilgün


    Having remarkable characteristics, carbon nanotubes (CNTs) have attracted a lot of interest. Their mechanical, electrical, thermal and chemical properties make CNTs suitable for several applications such as electronic devices, hydrogen storage, textile, drug delivery etc. CNTs have been synthesized by various methods, such as arc discharge, laser ablation and catalytic chemical vapor deposition (CCVD). In comparison with the other techniques, CCVD is widely used as it offers a promising route for mass production. High capability of decomposing hydrocarbon formation is desired for the selected catalysts. Therefore, transition metals which are in the nanometer scale are the most effective catalysts. The common transition metals that are being used are Fe, Co, Ni and their binary alloys. The impregnation of the catalysts over the support material has a crucial importance for the CNT production. In this study, the influence of the support materials on the catalytic activity of metals was investigated. CNTs have been synthesized over alumina (Al2O3), silica (SiO2) and magnesium oxide (MgO) supported Fe, Co, Fe-Co catalysts. Catalyst - support material combinations have been investigated and optimum values for each were compared. Single walled carbon nanotubes (SWCNTs) were produced at 800°C. The duration of synthesis was 30 minutes for all support materials. The synthesized materials were characterized by thermal gravimetric analysis (TGA), Raman spectroscopy and transmission electron microscopy.

  4. Ultrafast Sol-Gel Synthesis of Graphene Aerogel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Mathew; Hu, Matthew; Manandhar, Sandeep; Sakshaug, Avery; Strong, Adam; Riley, Leah; Pauzauskie, Peter J.


    Graphene aerogels derived from graphene-oxide (GO) starting materials recently have been shown to exhibit a combination of high electrical conductivity, chemical stability, and low cost that has enabled a range of electrochemical applications. Standard synthesis protocols for manufacturing graphene aerogels require the use of sol-gel chemical reactions that are maintained at high temperatures for long periods of time ranging from 12 hours to several days. Here we report an ultrafast, acid-catalyzed sol-gel formation process in acetonitrile in which wet GO-loaded gels are realized within 2 hours at temperatures below 45°C. Spectroscopic and electrochemical analysis following supercritical drying and pyrolysis confirms the reduction of the GO in the aerogels to sp2 carbon crystallites with no residual carbon–nitrogen bonds from the acetonitrile or its derivatives. This rapid synthesis enhances the prospects for large-scale manufacturing of graphene aerogels for use in numerous applications including sorbents for environmental toxins, support materials for electrocatalysis, and high-performance electrodes for electrochemical capacitors and solar cells.

  5. Visual texture accurate material appearance measurement, representation and modeling

    CERN Document Server

    Haindl, Michal


    This book surveys the state of the art in multidimensional, physically-correct visual texture modeling. Features: reviews the entire process of texture synthesis, including material appearance representation, measurement, analysis, compression, modeling, editing, visualization, and perceptual evaluation; explains the derivation of the most common representations of visual texture, discussing their properties, advantages, and limitations; describes a range of techniques for the measurement of visual texture, including BRDF, SVBRDF, BTF and BSSRDF; investigates the visualization of textural info

  6. Modeling of Laser Material Interactions (United States)

    Garrison, Barbara


    Irradiation of a substrate by laser light initiates the complex chemical and physical process of ablation where large amounts of material are removed. Ablation has been successfully used in techniques such as nanolithography and LASIK surgery, however a fundamental understanding of the process is necessary in order to further optimize and develop applications. To accurately describe the ablation phenomenon, a model must take into account the multitude of events which occur when a laser irradiates a target including electronic excitation, bond cleavage, desorption of small molecules, ongoing chemical reactions, propagation of stress waves, and bulk ejection of material. A coarse grained molecular dynamics (MD) protocol with an embedded Monte Carlo (MC) scheme has been developed which effectively addresses each of these events during the simulation. Using the simulation technique, thermal and chemical excitation channels are separately studied with a model polymethyl methacrylate system. The effects of the irradiation parameters and reaction pathways on the process dynamics are investigated. The mechanism of ablation for thermal processes is governed by a critical number of bond breaks following the deposition of energy. For the case where an absorbed photon directly causes a bond scission, ablation occurs following the rapid chemical decomposition of material. The study provides insight into the influence of thermal and chemical processes in polymethyl methacrylate and facilitates greater understanding of the complex nature of polymer ablation.

  7. Electron Transport Materials: Synthesis, Properties and Device Performance

    Energy Technology Data Exchange (ETDEWEB)

    Cosimbescu, Lelia; Wang, Liang; Helm, Monte L.; Polikarpov, Evgueni; Swensen, James S.; Padmaperuma, Asanga B.


    We report the design, synthesis and characterization, thermal and photophysical properties of two silane based electron transport materials, dibenzo[b,d]thiophen-2-yltriphenylsilane (Si{phi}87) and (dibenzo[b,d]thiophen-2-yl)diphenylsilane (Si{phi}88) and their performance in blue organic light emitting devices (OLEDs). The utility of these materials in blue OLEDs with iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,C']picolinate (Firpic) as the phosphorescent emitter was demonstrated. Using the silane Si{phi}87 as the electron transport material (ETm) an EQE of 18.2% was obtained, with a power efficiency of 24.3 lm/W (5.8V at 1mA/cm{sup 2}), in a heterostructure. When Si{phi}88 is used, the EQE is 18.5% with a power efficiency of 26.0 lm/W (5.5V at 1mA/cm{sup 2}).

  8. Synthesis of phthalocyanine derivatives as materials for organic photovoltaic cells (United States)

    Collazo-Ramos, Aura

    Organic photovoltaics (OPVs) are used to convert sunlight into electricity by using thin films of organic semiconductors. OPVs have the potential to produce low cost, lightweight, flexible devices with an eased manufacturing process. This technology contains the potential to increase the use of clean, sustainable solar energy, helping manage the global energy and environmental crisis that results majorly from the constant use of fossil fuels as an energy source. The ability to modulate the physical properties of organic molecules by tuning their chemical structure is an advantage for OPVs. Phthalocyanines (Pcs) are highly pi-conjugated synthetic porphyrin analogs that have been explored as active layer components in OPVs due to their high extinction coefficients and hole mobilities. The Pc structure can be modified by the introduction of metals in the core and the incorporation of substituents into the periphery. These modifications tend to tune the solubility, photophysical properties and condensed phase organization of Pcs. The research work in this dissertation describes improved methods towards substituted Pc derivatives addressing: (1) the use of mass spectrometry techniques for Pcs characterization, (2) efforts to achieve materials with near-infrared (NIR) absorption, and (3) the potential of Pc as electron-acceptor materials. Herein, the synthesis of a series of asymmetric and symmetric metallated Pcs has been established, which resulted in interesting chemical, photophysical and electrochemical properties. The materials investigated in this thesis increase the potential of Pcs as organic semiconductors for OPVs.


    Energy Technology Data Exchange (ETDEWEB)

    Humrickhouse, Paul W; Corradini, Michael L


    A continuum framework for modeling of dust mobilization and transport, and the behavior of granular systems in general, has been reviewed, developed and evaluated for reactor design applications. The large quantities of micron-sized particles expected in the international fusion reactor design, ITER, will accumulate into piles and layers on surfaces, which are large relative to the individual particle size; thus, particle-particle, rather than particle-surface, interactions will determine the behavior of the material in bulk, and a continuum approach is necessary and justified in treating the phenomena of interest; e.g., particle resuspension and transport. The various constitutive relations that characterize these solid particle interactions in dense granular flows have been discussed previously, but prior to mobilization their behavior is not even fluid. Even in the absence of adhesive forces between particles, dust or sand piles can exist in static equilibrium under gravity and other forces, e.g., fluid shear. Their behavior is understood to be elastic, though not linear. The recent “granular elasticity” theory proposes a non-linear elastic model based on “Hertz contacts” between particles; the theory identifies the Coulomb yield condition as a requirement for thermodynamic stability, and has successfully reproduced experimental results for stress distributions in sand piles. The granular elasticity theory is developed and implemented in a stand- alone model and then implemented as part of a finite element model, ABAQUS, to determine the stress distributions in dust piles subjected to shear by a fluid flow. We identify yield with the onset of mobilization, and establish, for a given dust pile and flow geometry, the threshold pressure (force) conditions on the surface due to flow required to initiate it. While the granular elasticity theory applies strictly to cohesionless granular materials, attractive forces are clearly important in the interaction of

  10. Material synthesis and hydrogen storage of palladium-rhodium alloy.

    Energy Technology Data Exchange (ETDEWEB)

    Lavernia, Enrique J. (University of California, Davis); Yang, Nancy Y. C.; Ong, Markus D. (Whithworth University, Spokane, WA)


    Pd and Pd alloys are candidate material systems for Tr or H storage. We have actively engaged in material synthesis and studied the material science of hydrogen storage for Pd-Rh alloys. In collaboration with UC Davis, we successfully developed/optimized a supersonic gas atomization system, including its processing parameters, for Pd-Rh-based alloy powders. This optimized system and processing enable us to produce {le} 50-{mu}m powders with suitable metallurgical properties for H-storage R&D. In addition, we studied hydrogen absorption-desorption pressure-composition-temperature (PCT) behavior using these gas-atomized Pd-Rh alloy powders. The study shows that the pressure-composition-temperature (PCT) behavior of Pd-Rh alloys is strongly influenced by its metallurgy. The plateau pressure, slope, and H/metal capacity are highly dependent on alloy composition and its chemical distribution. For the gas-atomized Pd-10 wt% Rh, the absorption plateau pressure is relatively high and consistent. However, the absorption-desorption PCT exhibits a significant hysteresis loop that is not seen from the 30-nm nanopowders produced by chemical precipitation. In addition, we observed that the presence of hydrogen introduces strong lattice strain, plastic deformation, and dislocation networking that lead to material hardening, lattice distortions, and volume expansion. The above observations suggest that the H-induced dislocation networking is responsible for the hysteresis loop seen in the current atomized Pd-10 wt% Rh powders. This conclusion is consistent with the hypothesis suggested by Flanagan and others (Ref 1) that plastic deformation or dislocations control the hysteresis loop.

  11. Synthesis of phthalocyanine doped sol-gel materials (United States)

    Dunn, Bruce


    The synthesis of sol-gel silica materials doped with three different types of metallophthalocyanines has been studied. Homogeneous materials of good optical quality were prepared and the first optical limiting measurements of dyes in sol-gel hosts were carried out. The properties of these solid state limiters are similar to limiters based on phthalocyanine (Pc) in solution. Sol-gel silica materials containing copper, tin and germanium phthalocyanines were investigated. The initial step in all cases was to prepare silica sols by the sonogel method using tetramethoxy silane (TMOS), HCl and distilled water. Thereafter, the synthesis depended upon the specific Pc and its solubility characteristics. Copper phthalocyanine tetrasulfonic acid tetra sodium salt (CuPc4S) is soluble in water and various doping levels (1 x 10 (exp -4) M to 1 x 10 (exp -5) M) were added to the sol. The group IV Pc's, SnPc(OSi(n-hexyl)3)2 and GePc(OSi(n-hexyl)3)2, are insoluble in water and the process was changed accordingly. In these cases, the compounds were dissolved in THF and then added to the sol. The Pc concentration in the sol was 2 x 10(exp -5)M. The samples were then aged and dried in the standard method of making xerogel monoliths. Comparative nanosecond optical limiting experiments were performed on silica xerogels that were doped with the different metallophthalocyanines. The ratio of the net excited state absorption cross section (sigma(sub e)) to the ground state cross section (sigma(sub g)) is an important figure of merit that is used to characterize these materials. By this standard the SnPc sample exhibits the best limiting for the Pc doped sol-gel materials. Its cross section ratio of 19 compares favorably with the value of 22 that was measured in toluene. The GePc materials appear to not be as useful as those containing SnPc. The GePc doped solids exhibit a higher onset energy (2.5 mj and lower cross section ratio, 7. The CuPc4S sol-gel material has a still lower cross

  12. Statistical and Energetic Constraints in Population Synthesis Models

    CERN Document Server

    Buzzoni, A


    Physical and numerical constraints in building up self-consistent population synthesis models are briefly analysed discussing their application to most of the current synthesis codes widely adopted in Galactic and extragalactic studies.

  13. Integrated design and synthesis of smart material systems: an overview of the ARPA SPICES program (United States)

    Jacobs, Jack H.


    The Synthesis and Processing of Intelligent Cost Effective Structures (SPICES) program is comprised of a consortium of industrial, academic and government labs to develop cost effective material processing and synthesis technologies to enable new products using active vibration suppression and control devices to be brought to market. Each team member possesses a specialty in the area of smart structures which has been focused towards the development of several actively controlled smart material systems. Since smart structures involve the integration of multiple engineering disciplines, it is the objective of the consortium to establish cost effective design processes between this multiorganizational team for future incorporation of this new technology into each members respective product lines. To accomplish this task, the disciplines of materials, manufacturing, analytical modeling, actuation, sensing, signal processing, and control had to be synthesized into a unified approach between all ten consortium members. The process developed for intelligent structural systems can truly be classified as multiorganization/multidiciplined Integrated Product Development. This process is described in detail as it applies to the SPICES development articles and smart material fabrication in general.

  14. Ultrasound-assisted synthesis and processing of carbon materials (United States)

    Fortunato, Maria E.


    Part I: Porous carbons are of interest in many applications because of their high surface areas and other physicochemical properties, and much effort has been directed towards developing new methods for controlling the porosity of carbons. Ultrasonic spray pyrolysis (USP) is an aerosol method suitable for large-scale, continuous synthesis of materials. Ultrasound is used to create aerosol droplets of a precursor solution which serve as micron-sized spherical reactors for materials synthesis. This work presents a precursor system for the template-free USP synthesis of porous carbons using low-cost precursors that do not evolve or require hazardous chemicals: sucrose was used as the carbon source, and sodium carbonate, sodium bicarbonate, or sodium nitrate was added as a decomposition catalyst and porogen. The USP carbons had macroporous interiors and microporous shells with surface areas as high as 800 m2/g and a narrow pore size distribution. It was determined that the interior porosity was a result of the gas evolution from salt decomposition and not from the presence of a salt template. Porous carbon is frequently used as a catalyst support because it provides high surface area and it is chemically and physically stable under many anoxic reaction conditions. Typically, the preparation of supported catalysts requires multiple steps for carbonization and metal impregnation. In this work, iron-impregnated porous carbon microspheres (Fe-C) were prepared by a one-step USP process by incorporating both the carbon and metal sources into the precursor solution. Carbonization, pore formation, metal impregnation, and metal activation occurred simultaneously to produce Fe-C materials with surface areas as high as 800 m2/g and up to 10 wt% Fe incorporated as nanoparticles growth, and collapse of bubbles in a liquid. Bubble collapse produces intense localized heating (˜5000 K), high pressures (˜300 atm), and enormous heating and cooling rates (>109 K/sec). In solid

  15. Modeling protein synthesis from a physicist's perspective: a toy model

    CERN Document Server

    Basu, A; Basu, Aakash; Chowdhury, Debashish


    Proteins are polymers of amino acids. These macromolecules are synthesized by intracellular machines called {\\it ribosome}. Although, traditionally, the experimental investigation of protein synthesis has been an active area of research in molecular cell biology, important quantitative models of this phenomenon have been reported mostly in the research journals devoted to statistical physics and related interdisciplinary topics. From the perspective of a physicist, protein synthesis is a phenomenon of {\\it classical transport of interacting ribosomes on a messenger RNA (mRNA) template} that dictates the sequence of the amino acids on the protein. Here we bring this frontier area of contemporary research into the classroom by appropriate simplification of the models and methods. In particular, we develope a simple toy model and analyze it by some elementary techniques of non-equilibrium statistical mechanics to predict the average rate of protein synthesis and their spatial organization in the steady-state.

  16. Multi-length Scale Material Model Development for Armorgrade Composites (United States)


    synthesis -/processing-induced defects; (c) effect of 3 synthesis -/processing-induced defects on PPTA-fiber properties; (d) effect of fiber-/ yarn ...Derivation of the Materials Constitutive Relations for Carbon Nanotube Reinforced Poly-Vinyl-Ester-Epoxy Based Composites,” Journal of Materials Science, 42...fabric or PPTA-fiber-reinforced polymer-matrix composites. Specifically, the role of various material- synthesis -/fiber-processing-induced defects, as

  17. Material characterization models and test methods for historic building materials

    DEFF Research Database (Denmark)

    Hansen, Tessa Kvist; Peuhkuri, Ruut Hannele; Møller, Eva B.


    Predictions of long term hygrothermal performance can be assessed by dynamic hygrothermal simulations, in which material parameters are crucial input. Material parameters for especially historic materials are often unknown; therefore, there is a need to determine important parameters, and simple...... ways for estimation of these. A case study of a brick wall was used to create and validate a hygrothermal simulation model; a parameter study with five different parameters was performed on this model to determine decisive parameters. Furthermore, a clustering technique has been proposed to estimate...

  18. A bespoke single-band Hubbard model material (United States)

    Griffin, S. M.; Staar, P.; Schulthess, T. C.; Troyer, M.; Spaldin, N. A.


    The Hubbard model, which augments independent-electron band theory with a single parameter to describe electron-electron correlations, is widely regarded to be the "standard model" of condensed-matter physics. The model has been remarkably successful at addressing a range of correlation phenomena in solids, but it neglects many behaviors that occur in real materials, such as phonons, long-range interactions, and, in its simplest form, multiorbital effects. Here, we use ab initio electronic structure methods to design a material whose Hamiltonian matches as closely as possible that of the single-band Hubbard model. Our motivation is to compare the measured properties of our new material to those predicted by reliable theoretical solutions of the Hubbard model to determine the relevance of the model in the description of real materials. After identifying an appropriate crystal class and several appropriate chemistries, we use density-functional theory and dynamical mean-field theory to screen for the desired electronic band structure and metal-insulator transition. We then explore the most promising candidates for structural stability and suitability for doping, and we propose specific materials for subsequent synthesis. Finally, we identify a regime—that should manifest in our bespoke material—in which the single-band Hubbard model on a triangular lattice exhibits exotic d -wave superconductivity.

  19. Up-Scaled Supercritical Flow Synthesis of Hybrid Materials

    DEFF Research Database (Denmark)

    Hellstern, Henrik Christian; Becker, Jacob; Hald, Peter

    A new, up-scaled supercritical flow synthesis apparatus is currently under construction in Aarhus. A module based system allows for a range of parameter studies with improved parameter control. The dual-reactor setup enables both single phase and core-shell nanoparticle synthesis, and the large...


    Directory of Open Access Journals (Sweden)



    Full Text Available A model is described to simulate the formation of nanostructured materials by cluster beam deposition. Clusters are modelled by spherical balls with a given size distribution function, which fall to the substrate and stick to the growing structure. The mobility of clusters along the film surface is modelled by introduction of a critical angle at which a falling ball meets a ball that belongs to the structure. When the falling ball touches one of the balls in the structure at an angle smaller than the critical one, it sticks to the film; otherwise the ball rolls along the surface till it meets other balls. It is shown that a variety of structures similar to those observed experimentally can be produced. The density of the model structures, percolation thresholds and the surface roughness are analyzed.

  1. Synthesis and characterization of inverse spinels, intercalation materials for Li-ion batteries

    NARCIS (Netherlands)

    Van Landschoot, N.


    Chapter 2 describes the solid-state synthesis of LiNiVO4 and LiCoVO4. The materials are prepared at 800C and are phase pure, as shown by X-ray diffraction and have the inverse spinel structure. Due to the solid-state synthesis the particle size is quite large and the particle size distribution is la

  2. Synthesis and characterization of inverse spinels, intercalation materials for Li-ion batteries

    NARCIS (Netherlands)

    Van Landschoot, N.


    Chapter 2 describes the solid-state synthesis of LiNiVO4 and LiCoVO4. The materials are prepared at 800C and are phase pure, as shown by X-ray diffraction and have the inverse spinel structure. Due to the solid-state synthesis the particle size is quite large and the particle size distribution is

  3. Report on modelling and materials

    CERN Document Server

    EuCARD, Collaboration


    The WP8 aims at the design of advanced materials and collimators to allow for higher beam power in state-of-the-art accelerator facilities. Task 8.2 in particular focuses on the research, development, production, characterization and testing of novel materials for advanced thermal management applications primarily devoted to future Phase II Collimators, but having the potential to be applied to a much broader spectrum of applications. A broad variety of materials has been studied, produced and characterized, including metal-diamond composites such as Copper-Diamond, Silver-Diamond, Molybdenum-Diamond as well as Molybdenum-Graphite composites with very promising results. Advanced numerical simulation techniques have been used to study the behaviour of these, as well as more traditional materials under the effect of very intense, highly energetic particle beams. An intensive testing programme is being deployed to verify their behaviour under extreme conditions.

  4. Modeling and synthesis of strong ground motion

    Indian Academy of Sciences (India)

    S T G Raghu Kanth


    Success of earthquake resistant design practices critically depends on how accurately the future ground motion can be determined at a desired site. But very limited recorded data are available about ground motion in India for engineers to rely upon. To identify the needs of engineers, under such circumstances, in estimating ground motion time histories, this article presents a detailed review of literature on modeling and synthesis of strong ground motion data. In particular, modeling of seismic sources and earth medium, analytical and empirical Green’s functions approaches for ground motion simulation, stochastic models for strong motion and ground motion relations are covered. These models can be used to generate realistic near-field and far-field ground motion in regions lacking strong motion data. Numerical examples are shown for illustration by taking Kutch earthquake-2001 as a case study.

  5. Modeling pyrolysis of charring material in fire

    Institute of Scientific and Technical Information of China (English)


    A modified model of pyrolysis for charring materials in fire has been proposed in this note. In this model some special factors which show the effect on pyrolysis are considered, i.e. heat loss by convection and radiation caused by surface temperature rise and shrinkage of char surface are considered. Experimental device is designed specially for validating the reliability of the model. Effects of density of materials and heat radiation on pyrolysis of materials have also been investigated.

  6. Synthesis and cation-exchange properties of a bis-zwitterionic lamellar hybrid material

    Energy Technology Data Exchange (ETDEWEB)

    Besson, E. [ICSM Marcoule, UMR 5257, F-30207 Bagnols Sur Ceze, (France); Mehdi, A.; Reye, C.; Corriu, Robert J. P. [Univ Montpellier 2, Inst Charles Gerhardt Montpellier, CNRS-UM2-ENSCM-UM1, UMR 5253, Chim Mol et Org Sol, F-34095 Montpellier 5, (France); Chollet, H. [CEA Valduc, Dept Traitement Mat Nucl, F-21120 Is Sur Tille, (France); Guilard, R. [ICMUB, CNRS, UMR 5260, F-21078 Dijon, (France)


    The synthesis of a bis-zwitterionic lamellar hybrid material containing ammonium carboxylate groups is described. Cation-exchange properties of this material towards transition metal and lanthanide ions were studied as well as the regeneration and reuse of the material. (authors)

  7. Synthesis gas production using oxygen storage materials as oxygen carrier over circulating fluidized bed

    Institute of Scientific and Technical Information of China (English)

    DAI Xiaoping; YU Changchun; LI Ranjia; WU Qiong; HAO Zhengping


    A novel process for synthesis gas production over Circulating Fluidized Bed (CFB) using oxygen storage materials as oxygen carrier was reported. First, oxygen in the air was chemically fixed and converted to lattice oxygen of oxygen storage materials over regenerator, and then methane was selectively oxidized to synthesis gas with lattice oxygen of oxygen storage materials over riser reactor. The results from simulation reaction of CFB by sequential redox reaction on a fixed bed reactor using lanthanum-based perovskite LaFeO3 and La0.8Sr0.2Fe0.9Co0.1O3 oxides prepared by sol-gel, suggested that the depleted oxygen species could be regenerated, and methane could be oxidized to synthesis gas by lattice oxygen with high selectivity. The partial oxidation of methane to synthesis gas over CFB using lattice oxygen of the oxygen storage materials instead of gaseous oxygen should be possibly applicable.

  8. Titanium-Containing Mesoporous Materials: Synthesis and Application in Selective Catalytic Oxidation

    Institute of Scientific and Technical Information of China (English)

    Jie Li; Chunhui Zhou; Huali Xie; Zhonghua Ge; Liangcai Yuan; Xiaonian Li


    Titanium-containing mesoporous molecular sieves are of great significance in selective catalytic oxidation processes with bulky molecules. Recent researches and developments on the designing and synthesis of Ti-containing mesoporous materials have been reviewed. Various strategies for the preparation of Ti-containing mesoporous materials, such as direct synthesis and post-synthesis, are described. Modifications of Ti-containing mesoporous materials by surface-grafting and atom-planting are also discussed. All approaches aimed mainly at the improving of the stability, the hydrophobicity, and mostly the catalytic activity. Structural and mechanistic features of various synthetic systems are discussed. Ticontaining mesoporous materials in liquid phase catalytic oxidation of organic compounds with H2O2 as an oxidant is briefly summarized, showing their broad utilities for green synthesis of fine chemicals by catalytic oxidative reactions.

  9. Ionothermal synthesis--ionic liquids as functional solvents in the preparation of crystalline materials. (United States)

    Morris, Russell E


    Ionothermal synthesis is the use of ionic liquids simultaneously as both the solvent and potential template or structure directing agent in the formation of solids. It directly parallels hydrothermal synthesis where the solvent is water. In this feature article I discuss the general features of ionothermal synthesis and how the properties of the synthesis differ from those of other synthetic methodologies. In particular, I will discuss the role of the ionic liquid anion in determining the structure of the synthesised solid, the role of mineralisers such as water and fluoride, and the targeted use of unstable ionic liquids to produce new inorganic and inorganic-organic hybrid materials.

  10. Synthesis of Novel High Energy Density Materials Using Nitrocarbenes (United States)


    synthesis is our finding that the combination of titanium tetrachloride/methylene bromide/zinc smoothly converts the caged diketone to the bismethylene...AD-A248 465 AO PAGE ft 07ŕ Februa re 21 , 992uq" Final~o Repotm 8//9 -12319 4. TITLE AND SUBTITLE S. FUNOING NUMBERS Synthesis of Novel High Energy...theory to predict the structures and energies of potential energetic molecules and to guide the synthesis of the more promising candidate molecules, 2

  11. 'Beautiful' unconventional synthesis and processing technologies of superconductors and some other materials

    Directory of Open Access Journals (Sweden)

    Petre Badica, Adrian Crisan, Gheorghe Aldica, Kazuhiro Endo, Hanna Borodianska, Kazumasa Togano, Satoshi Awaji, Kazuo Watanabe, Yoshio Sakka and Oleg Vasylkiv


    Full Text Available Superconducting materials have contributed significantly to the development of modern materials science and engineering. Specific technological solutions for their synthesis and processing helped in understanding the principles and approaches to the design, fabrication and application of many other materials. In this review, we explore the bidirectional relationship between the general and particular synthesis concepts. The analysis is mostly based on our studies where some unconventional technologies were applied to different superconductors and some other materials. These technologies include spray-frozen freeze-drying, fast pyrolysis, field-assisted sintering (or spark plasma sintering, nanoblasting, processing in high magnetic fields, methods of control of supersaturation and migration during film growth, and mechanical treatments of composite wires. The analysis provides future research directions and some key elements to define the concept of 'beautiful' technology in materials science. It also reconfirms the key position and importance of superconductors in the development of new materials and unconventional synthesis approaches.

  12. 'Beautiful' unconventional synthesis and processing technologies of superconductors and some other materials. (United States)

    Badica, Petre; Crisan, Adrian; Aldica, Gheorghe; Endo, Kazuhiro; Borodianska, Hanna; Togano, Kazumasa; Awaji, Satoshi; Watanabe, Kazuo; Sakka, Yoshio; Vasylkiv, Oleg


    Superconducting materials have contributed significantly to the development of modern materials science and engineering. Specific technological solutions for their synthesis and processing helped in understanding the principles and approaches to the design, fabrication and application of many other materials. In this review, we explore the bidirectional relationship between the general and particular synthesis concepts. The analysis is mostly based on our studies where some unconventional technologies were applied to different superconductors and some other materials. These technologies include spray-frozen freeze-drying, fast pyrolysis, field-assisted sintering (or spark plasma sintering), nanoblasting, processing in high magnetic fields, methods of control of supersaturation and migration during film growth, and mechanical treatments of composite wires. The analysis provides future research directions and some key elements to define the concept of 'beautiful' technology in materials science. It also reconfirms the key position and importance of superconductors in the development of new materials and unconventional synthesis approaches.

  13. Combustion based technique for synthesis and joining of refractory materials (United States)

    White, Jeremiah David Edward

    Gasless combustion systems offer features that make them attractive tools for a variety of potential applications. Among them are rapid heating rates, high exothermicity, and high maximum temperatures. These characteristics were exploited to accomplish three separate concepts including the joining of refractory materials, synthesis of a pore-free composite, and the study of thermal explosion in mechanically activated powders. Honeywell Aerospace is a leading producer of carbon brakes for commercial aircraft. The manufacturing process involves chemical vapor infiltration (CVI) to form a carbon matrix around a carbon fiber preform. A major disadvantage of this approach is the time required to form a fully dense preform, which is on the order of 140 days. In addition, after the brakes are in service, they have to be discarded while there is a relatively thick amount of friction material still available. There is a profit motive for reusing these discs which are out of spec. One such example would be to perform a refurbishment by bonding a new thin C/C element onto a used "core" to produce a brake that meets performance specifications. Unfortunately, joining C/C composites is not a simple task, as carbon does not lend itself to welding, and other means (e.g. mechanical or adhesives) would not hold up to the harsh operational conditions. A novel apparatus was designed, built, and proven to join C/C using so-called reactive resistance welding (RRW). It is shown that a joint stronger than the original material can be achieved using moderate electrical current and mechanical force. Additionally, joining layers of similar thickness and microstructure were obtained with different reactive media, ranging from pellets of pressed powders (˜1-2 mm) to thin metal foils (˜25 micron). By modifying the schematic of the RRW apparatus, porous C/C was infiltrated with liquid silicon in order to form a new pore-free C/C-SiC composite. It is shown that using such a process, the silicon

  14. Synthesis, structure and properties of hierarchical nanostructured porous materials studied by molecular dynamics simulations (United States)

    Chae, Kisung

    For applications of porous materials in many fields of technological importance, such as catalysis, filtration, separation, energy storage and conversion, the efficiency is often limited by chemical kinetics, and/or diffusion of reactants and products to and from the active sites. Hierarchical nanostructured porous materials (HNPMs) that possess both mesopores (2 nm size size size and the pore wall roughness as well as the microporous structure such as the density and the graphitic pore walls can be independently controlled by synthesis parameters, such as the size of the template, the interaction strength between the template and carbon source, the initial carbon density and the quench rate, respectively. These atomic models allowed us to quantify the structure-mechanical properties relation in aligned carbon nanotubes/amorphous porous carbon nanocomposites. Our study shows that there is an optimum balance between the crystallinity of CNTs and the number bridging bonds between CNTs and the microporous matrix in order for the nanocomposites to have desired mechanical properties such as high stiffness and high buckling resistance under compressive loading. We further used these models to study the effects of the mesopore size and the pore wall roughness on the transport behaviors of methane in HNPCs. Our study shows that some defects in the mesopore walls do not have a significant effect on transport properties, especially in large channels. However, when the walls of small channels become rough, adsorption and transport behaviors change dramatically. Our study shows that the enhanced flow in CNTs observed in experiments is mainly due to the smooth potential energy surface of CNTs with high quality of graphitic walls. In order to carry out a systematic study on pressure-driven gas transport in HNPCs, a computationally efficient reflecting particle method (RPM) together with a perturbation-relaxation loop was developed in this work to make the pressure drop

  15. Computational Materials: Modeling and Simulation of Nanostructured Materials and Systems (United States)

    Gates, Thomas S.; Hinkley, Jeffrey A.


    The paper provides details on the structure and implementation of the Computational Materials program at the NASA Langley Research Center. Examples are given that illustrate the suggested approaches to predicting the behavior and influencing the design of nanostructured materials such as high-performance polymers, composites, and nanotube-reinforced polymers. Primary simulation and measurement methods applicable to multi-scale modeling are outlined. Key challenges including verification and validation of models are highlighted and discussed within the context of NASA's broad mission objectives.

  16. Synthesis of functionally graded materials via electrophoretic deposition and sintering (United States)

    Wang, Xuan

    In this research, both the experiments and the modeling aspects of the net-shape fabrication of Functionally Graded Materials (FGM) by Electrophoretic Deposition (EPD) and consecutive sintering have been investigated. In order to obtain FGMs with desired final shape and properties, the issues regarding the shape evolution during sintering, the optimization of initial properties and composition profiles, and the fabrication of green components by EPD have been analyzed. In order to fabricate FGMs by the proposed technological sequence (EPD with the following sintering), the initial shape has to be optimized prior to sintering. In this research, the formulations to simulate sintering of an FGM were developed based on the continuum theory of sintering. A finite element sintering-modeling subroutine has been created and linked to the commercial finite element package ABAQUS. The shape changes of FGM disks during sintering were simulated. In order to obtain the desired final shape after sintering, an inverse modeling methodology was developed to optimize the initial shape. In order to fabricate the optimized initial shape of a green FGM specimen determined by the inverse continuum modeling of sintering, EPD of a number of FGMs was investigated. The FGM green specimens made of Al2O 3 and ZrO2 with the initial shape predicted by the inverse modeling, were deposited using self-designed equipments. The acetone-based suspension with n-butylamine as a particle-charging additive was used. The comparison of the shape between the sintered and the green FGM indicated that the developed experimental-theoretical methodology provided a reliable solution for near net shaping of complex 3-D FGM components. Other applications of EPD, such as in electronic packaging materials and zeolites, were also investigated. In order to fabricate functionally graded materials based on aligned porous structures, unidirectional freezing followed by freeze-drying and sintering has been investigated

  17. Integrated modelling in materials and process technology

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri


    Integrated modelling of entire process sequences and the subsequent in-service conditions, and multiphysics modelling of the single process steps are areas that increasingly support optimisation of manufactured parts. In the present paper, three different examples of modelling manufacturing...... processes from the viewpoint of combined materials and process modelling are presented: solidification of thin walled ductile cast iron, integrated modelling of spray forming and multiphysics modelling of friction stir welding. The fourth example describes integrated modelling applied to a failure analysis...

  18. Preparation of bicontinuous mesoporous silica and organosilica materials containing gold nanoparticles by co-synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byunghwan [Korea Institute of Industrial Technology, ChonAn, Korea; Zhu, Haoguo [ORNL; Zhang, Zongtao [ORNL; Overbury, Steven {Steve} H [ORNL; Dai, Sheng [ORNL


    Catalytic activities of gold strongly depend on its particle size. It is necessary to have homogeneous distributions of small gold nanoparticles with diameters between 2 and 5 nm for excellent catalytic activities. In this study, gold-containing mesoporous silica materials were prepared by a co-synthesis method. The essence of this sol-gel co-synthesis method is to combine together neutral surfactant template synthesis of mesoporous silica materials with the introduction of metal ions via bifunctional silane ligands, so that the formation of mesostructures and metal-ion doping occur simultaneously. The formation of gold nanoparticles with size less than 5 nm inside mesoporous materials (HMS, MSU, and PMO) has been achieved by this co-synthesis sol-gel process. In addition, the effects of post-treatments, such as calcination and reduction, on pore structures and nanoparticle size distributions were also investigated.

  19. Oxidation control of fluxes for mixed-valent inorganic oxide materials synthesis (United States)

    Schrier, Marc David

    This dissertation is concerned with controlling the flux synthesis and ensuing physical properties of mixed-valence metal oxides. Molten alkali metal nitrates and hydroxides have been explored to determine and exploit their variable redox chemistries for the synthesis of mixed-valent oxide materials. Cationic and anionic additives have been utilized in these molten salts to control the relative concentrations of the redox-active species present to effectively tune and cap the electrochemical potential of the flux. Atoms like bismuth, copper, and manganese are capable of providing different numbers of electrons for bonding. With appropriate doping near the metal-insulator transition, many of these mixed-valent inorganic metal oxides exhibit extraordinary electronic and magnetic properties. Traditionally, these materials have been prepared by classical high temperature solid state routes where microscopic homogeneity is hard to attain. In these routes, the starting composition dictates the doping level, and in turn, the formal oxidation state achieved. Molten flux syntheses developed in this work have provided the potential for preparing single-phase, homogeneous, and crystalline materials. The redox-active fluxes provide a medium for enhanced doping and mixed-valency control in which the electrochemical potential adjusts the formal oxidation state, and the doping takes place to maintain charge neutrality. The two superconductor systems investigated are: (1) the potassium-doped barium bismuth oxides, and (2) the alkali metal- and alkaline earth metal-doped lanthanum copper oxides. Controlled oxidative doping has been achieved in both systems by two different approaches. The superconducting properties of these materials have been assessed, and the materials have been characterized by powder X-ray diffraction and e-beam microprobe elemental analyses. In the course of these studies, several other materials have been identified. Analysis of these materials, and the

  20. Synthesis, characterization and application of functional carbon nano materials (United States)

    Chu, Jin

    The synthesis, characterizations and applications of carbon nanomaterials, including carbon nanorods, carbon nanosheets, carbon nanohoneycombs and carbon nanotubes were demonstrated. Different growth techniques such as pulsed laser deposition, DC/RF sputtering, hot filament physical vapour deposition, evaporative casting and vacuum filtration methods were introduced or applied for synthesizing carbon nanomaterials. The morphology, chemical compositions, bond structures, electronic, mechanical and sensing properties of the obtained samples were investigated. Tilted well-aligned carbon micro- and nano- hybrid rods were fabricated on Si at different substrate temperatures and incident angles of carbon source beam using the hot filament physical vapour deposition technique. The morphologic surfaces and bond structures of the oblique carbon rod-like structures were investigated by scanning electron microscopy, field emission scanning electron microscopy, transmission electron diffraction and Raman scattering spectroscopy. The field emission behaviour of the fabricated samples was also tested. Carbon nanosheets and nanohoneycombs were also synthesized on Si substrates using a hot filament physical vapor deposition technique under methane ambient and vacuum, respectively. The four-point Au electrodes are then sputtered on the surface of the nanostructured carbon films to form prototypical humidity sensors. The sensing properties of prototypical sensors at different temperature, humidity, direct current, and alternative current voltage were characterized. Linear sensing response of sensors to relative humidity ranging from 11% to 95% is observed at room temperature. Experimental data indicate that the carbon nanosheets based sensors exhibit an excellent reversible behavior and long-term stability. It also has higher response than that of the humidity sensor with carbon nanohoneycombs materials. Conducting composite films containing carbon nanotubes (CNTs) were prepared in

  1. Material Synthesis and Characterization on Low-Dimensional Cobaltates (United States)

    Sha, Hao

    In this thesis, results of the investigation of a new low-dimensional cobaltates Ba2-xSrxCoO 4 are presented. The synthesis of both polycrystalline and single crystalline compounds using the methods of conventional solid state chemical reaction and floating-zone optical furnace is first introduced. Besides making polycrystalline powders, we successfully, for the first time, synthesized large single crystals of Ba2CoO4. Single crystals were also obtained for Sr doped Ba2-xSrxCoO 4. Powder and single crystal x-ray diffraction results indicate that pure Ba2CoO4 has a monoclinic structure at room temperature. With Sr doping, the lattice structure changes to orthorhombic when x ≥ 0.5 and to tetragonal when x = 2.0. In addition, Ba2CoO4 and Sr2CoO4, have completely different basic building blocks in the structure. One is CoO4 tetrahedron and the later is CoO6 octahedron, respectively. Electronic and magnetic properties were characterized and discussed. The magnetic susceptibility, specific heat and thermal conductivity show that Ba2CoO4 has an antiferromagnetic (AF) ground state with an AF ordering temperature TN = 25 K. However, the magnitude of the Neel temperature TN is significantly lower than the Curie-Weiss temperature (|theta| ˜ 110 K), suggesting either reduced-dimensional magnetic interactions and/or the existence of magnetic frustration. The AF interaction persists in all the samples with different doping concentrations. The Neel temperature doesn't vary much in the monoclinic structure regime but decreases when the system enters orthorhombic. Magnetically, Ba2CoO4 has an AF insulating ground state while Sr2CoO4 has a ferromagnetic (FM) metallic ground state. Neutron powder refinement results indicate a magnetic structure with the spin mostly aligned along the a-axis. The result from a mu-spin rotation/relaxation (mu+SR) experiment agrees with our refinement. It confirms the AF order in the ab -plane. We also studied the spin dynamics and its anisotropy in

  2. Synthesis and morphogenesis of organic and inorganic polymers by means of biominerals and biomimetic materials. (United States)

    Kijima, Misako; Oaki, Yuya; Munekawa, Yurika; Imai, Hiroaki


    We have studied the simultaneous synthesis and morphogenesis of polymer materials with hierarchical structures from nanoscopic to macroscopic scales. The morphologies of the original materials can be replicated to the polymer materials. In general, it is not easy to achieve the simultaneous synthesis and morphogenesis of polymer material even using host materials. In the present work, four biominerals and three biomimetic mesocrystal structures are used as the host materials or templates and polypyrrole, poly(3-hexylthiopehene), and silica were used as the precursors for the simultaneous syntheses and morphogenesis of polymer materials. The host materials with the hierarchical structure possess the nanospace for the incorporation of the monomers. After the incorporation of the monomers, the polymerization reaction proceeds in the nanospace with addition of the initiator agents. Then, the dissolution of the host materials leads to the formation and morphogenesis of the polymer materials. The scheme of the replication can be classified into the three types based on the structures of the host materials (types I-III). The type I template facilitates the hierarchical replication of the whole host material, type II mediates the hierarchical surface replication, and type III induces the formation of the two-dimensional nanosheets. Based on these results, the approach for the coupled synthesis and morphogenesis can be applied to a variety of combinations of the templates and polymer materials.

  3. Modeling growth in biological materials


    Jones, Gareth Wyn; Chapman, S. Jonathan


    The biomechanical modeling of growing tissues has recently become an area of intense interest. In particular, the interplay between growth patterns and mechanical stress is of great importance, with possible applications to arterial mechanics, embryo morphogenesis, tumor development, and bone remodeling. This review aims to give an overview of the theories that have been used to model these phenomena, categorized according to whether the tissue is considered as a continuum object or a collect...

  4. On the synthesis atmosphere influence in the technology of complex composite materials in the wide temperature range (United States)

    Uspensky, A. A.; Yavshits, S.; Lipin, V.; Zhigalov, P.; Slobodov, A.


    Heterogeneous and homogeneous processes of synthesis for complex functional materials are studied by the methods of thermodynamic modeling and calculation, based on minimization of the Gibbs energy of the researched system. The conditions and products of gasification in the field of 0-2000 °C are determined for the synthesis conditions of a ceramic tile with complex composition (10-component system). All main products of interaction of components of ceramic mass (the system SiO2 – K2O – Na2O – Al2O3 – Fe2O3 – CaO – MgO – TiO2 – P2O5 – SO3) and main components of air (the system N2 – O2 – CO2 – H2O) are found for the synthesis of material in the conditions of the air atmosphere at various temperatures. The character of physico-chemical influence of each components on the occurring processes is revealed, that determines a theoretical and calculation base of management and optimization of the synthesis engineering process for various functional materials.

  5. Advancing Material Models for Automotive Forming Simulations (United States)

    Vegter, H.; An, Y.; ten Horn, C. H. L. J.; Atzema, E. H.; Roelofsen, M. E.


    Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path. The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary. Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials. Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations

  6. Synthesis,characterization and applications of vinylsilafluorene copolymers:New host materials for electroluminescent devices

    Institute of Scientific and Technical Information of China (English)


    Vinylsilafluorene(VSiF) was successfully synthesized and copolymerized with vinylcarbazole and methyl methacrylate via free radical copolymerization for the first time.The synthesis,photophysical properties,computational modeling studies,and organic light-emitting devices of the VSiF copolymers were presented.The good coordinated photoluminescent(PL) spectra with the absorption of blue light-emitting materials and the high energy band-gap of the VSiF copolymers were observed.Higher triplet band gap(3Eg) to host the blue phosphorescent emitters and better HOMO and LUMO than PVK for electron and hole injection and transportation of the VSiF model compounds were revealed by density functional theory(DFT) calculations.The preliminary device results in applications of these copolymers as host materials for green phosphorescent emitters demonstrate the copolymers of VSiF and vinylcarbazole have comparable device performance of polyvinylcarazole(PVK),suggesting a bright future of VSiF as building blocks for host materials.

  7. Ceramic materials testing and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wilfinger, K. R., LLNL


    corrosion by limiting the transport of water and oxygen to the ceramic-metal interface. Thermal spray techniques for ceramic coating metallic structures are currently being explored. The mechanics of thermal spray resembles spray painting in many respects, allowing large surfaces and contours to be covered smoothly. All of the relevant thermal spray processes use a high energy input to melt or partially melt a powdered oxide material, along with a high velocity gas to impinge the molten droplets onto a substrate where they conform, quench, solidify and adhere mechanically. The energy input can be an arc generated plasma, an oxy-fuel flame or an explosion. The appropriate feed material and the resulting coating morphologies vary with technique as well as with application parameters. To date on this project, several versions of arc plasma systems, a detonation coating system and two variations of high velocity oxy-fuel (HVOF) fired processes have been investigated, operating on several different ceramic materials.

  8. The Synthesis of Third—order Optical Nonlinear Organic Polyheterocyclic Materials

    Institute of Scientific and Technical Information of China (English)

    JianRongGAO; LuBaiCHENG; 等


    Synthesis of the third-order nonlinear materials:bis (1,4-dihydroxynaphthalene) tetrathiafulvalene and bis (1,4-dialkoxylnaphthalene) tetrathiafulvalene has been achieved in four steps, starting from 2,3-dichloro-1,4-naphthaquinone. The materials exhibit larger third-order nonlinear optical susceptibilities χ.

  9. Fatigue modeling of materials with complex microstructures

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon


    A new approach and method of the analysis of microstructure-lifetime relationships of materials with complex structures is presented. The micromechanical multiscale computational analysis of damage evolution in materials with complex hierarchical microstructures is combined with the phenomenologi......A new approach and method of the analysis of microstructure-lifetime relationships of materials with complex structures is presented. The micromechanical multiscale computational analysis of damage evolution in materials with complex hierarchical microstructures is combined...... with the phenomenological model of fatigue damage growth. As a result, the fatigue lifetime of materials with complex structures can be determined as a function of the parameters of their structures. As an example, the fatigue lifetimes of wood modeled as a cellular material with multilayered, fiber reinforced walls were...

  10. Scalable synthesis and energy applications of defect engineeered nano materials (United States)

    Karakaya, Mehmet

    Nanomaterials and nanotechnologies have attracted a great deal of attention in a few decades due to their novel physical properties such as, high aspect ratio, surface morphology, impurities, etc. which lead to unique chemical, optical and electronic properties. The awareness of importance of nanomaterials has motivated researchers to develop nanomaterial growth techniques to further control nanostructures properties such as, size, surface morphology, etc. that may alter their fundamental behavior. Carbon nanotubes (CNTs) are one of the most promising materials with their rigidity, strength, elasticity and electric conductivity for future applications. Despite their excellent properties explored by the abundant research works, there is big challenge to introduce them into the macroscopic world for practical applications. This thesis first gives a brief overview of the CNTs, it will then go on mechanical and oil absorption properties of macro-scale CNT assemblies, then following CNT energy storage applications and finally fundamental studies of defect introduced graphene systems. Chapter Two focuses on helically coiled carbon nanotube (HCNT) foams in compression. Similarly to other foams, HCNT foams exhibit preconditioning effects in response to cyclic loading; however, their fundamental deformation mechanisms are unique. Bulk HCNT foams exhibit super-compressibility and recover more than 90% of large compressive strains (up to 80%). When subjected to striker impacts, HCNT foams mitigate impact stresses more effectively compared to other CNT foams comprised of non-helical CNTs (~50% improvement). The unique mechanical properties we revealed demonstrate that the HCNT foams are ideally suited for applications in packaging, impact protection, and vibration mitigation. The third chapter describes a simple method for the scalable synthesis of three-dimensional, elastic, and recyclable multi-walled carbon nanotube (MWCNT) based light weight bucky-aerogels (BAGs) that are

  11. Modeling mechanical response of heterogeneous materials (United States)

    Pal, Siladitya

    developed. It is found that two different material phases (collagens) of mussel byssus thread are optimally distributed along the thread. These applications demonstrate that the presence of heterogeneity in the system demands high computational resources for simulation and modeling. Thus, Higher Dimensional Model Representation (HDMR) based surrogate modeling concept has been proposed to reduce computational complexity. The applicability of such methodology has been demonstrated in failure envelope construction and in multiscale finite element techniques. It is observed that surrogate based model can capture the behavior of complex material systems with sufficient accuracy. The computational algorithms presented in this thesis will further pave the way for accurate prediction of macroscopic deformation behavior of various class of advanced materials from their measurable microstructural features at a reasonable computational cost.

  12. Learning strategies: a synthesis and conceptual model (United States)

    Hattie, John A. C.; Donoghue, Gregory M.


    The purpose of this article is to explore a model of learning that proposes that various learning strategies are powerful at certain stages in the learning cycle. The model describes three inputs and outcomes (skill, will and thrill), success criteria, three phases of learning (surface, deep and transfer) and an acquiring and consolidation phase within each of the surface and deep phases. A synthesis of 228 meta-analyses led to the identification of the most effective strategies. The results indicate that there is a subset of strategies that are effective, but this effectiveness depends on the phase of the model in which they are implemented. Further, it is best not to run separate sessions on learning strategies but to embed the various strategies within the content of the subject, to be clearer about developing both surface and deep learning, and promoting their associated optimal strategies and to teach the skills of transfer of learning. The article concludes with a discussion of questions raised by the model that need further research.

  13. Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage. (United States)

    Li, Gao-Ren; Xu, Han; Lu, Xue-Feng; Feng, Jin-Xian; Tong, Ye-Xiang; Su, Cheng-Yong


    Electrochemical synthesis represents a highly efficient method for the fabrication of nanostructured energy materials, and various nanostructures, such as nanorods, nanowires, nanotubes, nanosheets, dendritic nanostructures, and composite nanostructures, can be easily fabricated with advantages of low cost, low synthetic temperature, high purity, simplicity, and environmental friendliness. The electrochemical synthesis, characterization, and application of electrochemical energy nanomaterials have advanced greatly in the past few decades, allowing an increasing understanding of nanostructure-property-performance relationships. Herein, we highlight some recent progress in the electrochemical synthesis of electrochemical energy materials with the assistance of additives and templates in solution or grafted onto metal or conductive polymer supports, with special attention to the effects on surface morphologies, structures and, more importantly, electrochemical performance. The methodology for preparing novel electrochemical energy nanomaterials and their potential applications has been summarized. Finally, we outline our personal perspectives on the electrochemical synthesis and applications of electrochemical energy nanomaterials.

  14. Room-temperature Electrochemical Synthesis of Carbide-derived Carbons and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury [Drexel Univ., Philadelphia, PA (United States). Nanomaterials Group. Materials Science and Engineering Dept.


    This project addresses room-temperature electrochemical etching as an energy-efficient route to synthesis of 3D nanoporous carbon networks and layered 2D carbons and related structures, as well as provides fundamental understanding of structure and properties of materials produced by this method. Carbide-derived-carbons (CDCs) are a growing class of nanostructured carbon materials with properties that are desirable for many applications, such as electrical energy and gas storage. The structure of these functional materials is tunable by the choice of the starting carbide precursor, synthesis method, and process parameters. Moving from high-temperature synthesis of CDCs through vacuum decomposition above 1400°C and chlorination above 400°C, our studies under the previous DOE BES support led to identification of precursor materials and processing conditions for CDC synthesis at temperatures as low as 200°C, resulting in amorphous and highly reactive porous carbons. We also investigated synthesis of monolithic CDC films from carbide films at 250-1200°C. The results of our early studies provided new insights into CDC formation, led to development of materials for capacitive energy storage, and enabled fundamental understanding of the electrolyte ions confinement in nanoporous carbons.

  15. Hydrothermal Synthesis of Xonotlite-type Calcium Silicate Insulation Material Using Industrial Zirconium Waste Residue

    Institute of Scientific and Technical Information of China (English)

    JIANG Jinguo; CUI Chong; LIU Jinqiang; LIAO Wenli


    Xonotlite-type insulation material was prepared by hydrothermal synthesis technology using industrial zirconium waste residue in this paper, and the phase analysis together with the observation of micro-morphology were also carried out by XRD, SEM and TEM. The density and thermal conductivity were measured finally. The results indicate, chlorine ion impurity contained in zirconium waste residue can be removed effectively via water washed process, and the reactive activity of silicon dioxide is almost not affected,which make it be a good substitution of silicon material for the preparation of calcium silicate insulation material by hydrothermal synthesis technique. The density and thermal conductivity of xonotlite-type calcium silicate insulation material obtained by hydrothermal synthesis technique can reach 159 kg/m3, 0.049 W/(m·°C), respectively, meeting with National Standard well, when synthesis conditions are selected as follows: Ca/Si molar ratio equal to 1, synthesis temperature at 210 ℃ and kept for 8 hrs. It provides a new approach to realize lightweight and low thermal conductivity of calcium silicate insulation material.

  16. Synthesis, Properties and Mineralogy of Important Inorganic Materials

    DEFF Research Database (Denmark)

    Warner, Terence Edwin

    , ferroelectric, thermoelectric, luminescent, photochromic and magnetic materials; are technologically important classes of material, that are represented by numerous inorganic phases. Yet how many of us are aware of their precise chemical compositions, and have sufficient knowledge to actually make them...

  17. Electrochemical Synthesis and Characterization of Nanostructured Chalcogenide Materials


    Chang, Chong Hyun


    Nanostructured materials have attracted extensive attention due to their small dimension and enhanced properties compared to bulk materials, and their large range of potential applications in energy harvesting devices. Among these materials, nanostructured chalcogenides play an important role in thermoelectric and solar cell devices. Electrochemical techniques have drawn attention as an improved method for synthesizing nanostructured chalcogenide materials, since they provide a cost-effective...

  18. Direct Synthesis of Porous Multilayer Graphene Materials Using Thermal Plasma at Low Pressure

    Directory of Open Access Journals (Sweden)

    Ravil Amirov


    Full Text Available Porous multilayer graphenes have been synthesized by decomposition of hydrocarbons in a thermal plasma jet. Products of synthesis were characterized by electron microscopy, thermogravimetry, Raman spectroscopy, and X-ray diffraction. Possibility of producing a wide range of graphene materials with different morphology and structure has been shown. Influence of the experimental conditions on mesopores structure of the synthesis products has been investigated using the method of “limited evaporation.”

  19. Synthesis and Processing of Ultra-High Temperature Metal Carbide and Metal Diboride Nanocomposite Materials (United States)


    Synthesis and Processing of Ultra-High Temperature Metal Carbide and Metal Diboride Nanocomposite Materials Final Performance Report Contract Number...sintered commercially-available powders. Each project is summarized below: Synthesis : Zirconium diboride and a zirconium diboride/tantalum diboride...mixture were synthesized by solution-based processing. Zirconium n-propoxide was refluxed with 2,4-pentanedione to form zirconium diketonate . This compound

  20. Fundamentals and applications of organic electrochemistry synthesis, materials, devices

    CERN Document Server

    Fuchigami, Toshio; Inagi, Shinsuke


    This textbook is an accessible overview of the broad field of organic electrochemistry, covering the fundamentals and applications of contemporary organic electrochemistry.  The book begins with an introduction to the fundamental aspects of electrode electron transfer and methods for the electrochemical measurement of organic molecules. It then goes on to discuss organic electrosynthesis of molecules and macromolecules, including detailed experimental information for the electrochemical synthesis of organic compounds and conducting polymers. Later chapters highlight new methodology for organic electrochemical synthesis, for example electrolysis in ionic liquids, the application to organic electronic devices such as solar cells and LEDs, and examples of commercialized organic electrode processes. Appendices present useful supplementary information including experimental examples of organic electrosynthesis, and tables of physical data (redox potentials of various organic solvents and organic compounds and phy...

  1. Hydrothermal synthesis for new multifunctional materials: A few examples of phosphates and phosphonate-based hybrid materials (United States)

    Rueff, Jean-Michel; Poienar, Maria; Guesdon, Anne; Martin, Christine; Maignan, Antoine; Jaffrès, Paul-Alain


    Novel physical or chemical properties are expected in a great variety of materials, in connection with the dimensionality of their structures and/or with their nanostructures, hierarchical superstructures etc. In the search of new advanced materials, the hydrothermal technique plays a crucial role, mimicking the nature able to produce fractal, hyperbranched, urchin-like or snow flake structures. In this short review including new results, this will be illustrated by examples selected in two types of materials, phosphates and phosphonates, prepared by this method. The importance of the synthesis parameters will be highlighted for a magnetic iron based phosphates and for hybrids containing phosphonates organic building units crystallizing in different structural types.

  2. Material Model Research on Rubber Vibration Isolators

    Institute of Scientific and Technical Information of China (English)


    A viscohyperelastic constitutive model is proposed to describe the mechanical behaviour of vibration isolation rubber under broad-band vibration. This constitutive model comprises two parts: a component with three parameters to characterize the hyperelastic static properties of rubber materials,and the other component incorporating two relaxation time parameters, corresponding to high and low strain rates, respectively, to describe the dynamic response under vibration and impact loadings. Based on this proposed constitutive model, a series of experiments were performed on two types of rubber materials over a wide strain rate range. The results predicted from this model are in good agreement with the experimental data.

  3. The Model 9977 Radioactive Material Packaging Primer

    Energy Technology Data Exchange (ETDEWEB)

    Abramczyk, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    The Model 9977 Packaging is a single containment drum style radioactive material (RAM) shipping container designed, tested and analyzed to meet the performance requirements of Title 10 the Code of Federal Regulations Part 71. A radioactive material shipping package, in combination with its contents, must perform three functions (please note that the performance criteria specified in the Code of Federal Regulations have alternate limits for normal operations and after accident conditions): Containment, the package must “contain” the radioactive material within it; Shielding, the packaging must limit its users and the public to radiation doses within specified limits; and Subcriticality, the package must maintain its radioactive material as subcritical

  4. Synthesis of a naphthalene-hydroxynaphthalene polymer model compound

    Energy Technology Data Exchange (ETDEWEB)


    The objective of this project was the synthesis of one pound of a new naphthalene-hydroxynaphthalene polymer model compound for use in coal combustion studies. Since this compound was an unreported compound, this effort also required the development of a synthetic route to this compound (including routes to the unique and unreported intermediates leading to its synthesis).

  5. Discrete element modelling of granular materials

    NARCIS (Netherlands)

    Van Baars, S.


    A new model is developed by the author, which does not use the equations of motion but the equations of equilibrium to describe granular materials. The numerical results show great similarities with reality and can generally be described by an advanced Mohr-Coulomb model. However, many contacts betw

  6. Synthesis and characterisation of peptide-based materials

    NARCIS (Netherlands)

    Ramakers, B.E.I.


    Nature is an important source of inspiration for the creation of innovative materials that meet the demands of today’s society. The formation of complex materials from simple components is often driven by self-assembly and occurs on a large scale in Nature. This allows the formation of a host of ord

  7. Microwave synthesis of electrode materials for lithium batteries

    Indian Academy of Sciences (India)

    M Harish Bhat; B P Chakravarthy; P A Ramakrishnan; A Levasseur; K J RAO


    A novel microwave method is described for the preparation of electrode materials required for lithium batteries. The method is simple, fast and carried out in most cases with the same starting material as in conventional methods. Good crystallinity has been noted and lower temperatures of reaction has been inferred in cases where low temperature products have been identified.

  8. Materials Selection, Synthesis, and Dielectrical Properties of PVC Nanocomposites


    Youssef Mobarak; Bassyouni, M.; Almutawa, M.


    Materials selection process for electrical insulation application was carried out using Cambridge Engineering Selector (CES) program. Melt mixing technique was applied to prepare polyvinyl-chloride- (PVC-) nanofumed silica and nanomontmorillonite clay composites. Surface analysis and particles dispersibility were examined using scanning electron microscope. Dielectrical properties were assessed using Hipot tester. An experimental work for dielectric loss of the nanocomposite materials has bee...

  9. Multiscale Materials Modeling in an Industrial Environment. (United States)

    Weiß, Horst; Deglmann, Peter; In 't Veld, Pieter J; Cetinkaya, Murat; Schreiner, Eduard


    In this review, we sketch the materials modeling process in industry. We show that predictive and fast modeling is a prerequisite for successful participation in research and development processes in the chemical industry. Stable and highly automated workflows suitable for handling complex systems are a must. In particular, we review approaches to build and parameterize soft matter systems. By satisfying these prerequisites, efficiency for the development of new materials can be significantly improved, as exemplified here for formulation polymer development. This is in fact in line with recent Materials Genome Initiative efforts sponsored by the US government. Valuable contributions to product development are possible today by combining existing modeling techniques in an intelligent fashion, provided modeling and experiment work hand in hand.

  10. Hysteretic behavior modeling of elastoplastic materials

    Directory of Open Access Journals (Sweden)

    Šumarac Dragoslav


    Full Text Available In the present paper the Preisach model of hysteresis is applied to model cyclic behavior of elasto-plastic material. Rate of loading and viscous effects will not be considered. The problem of axial loading of rectangular cross section and cyclic bending of rectangular tube (box will be studied in details. Hysteretic stress-strain loop for prescribed history of stress change is plotted for material modeled by series connection of three unite element. Also moment-curvature hysteretic loop is obtained for a prescribed curvature change of rectangular tube (box. One chapter of the paper is devoted to results obtained by FEM using Finite Element Code ABAQUS. All obtained results clearly show advantages of the Preisach model for describing cyclic behavior of elasto-plastic material.

  11. Synthesis and characterization of a new organic semiconductor material

    Energy Technology Data Exchange (ETDEWEB)

    Tiffour, Imane [Laboratoire de Génie Physique, Département de Physique, Université de Tiaret, Tiaret 14000 (Algeria); Faculté des Sciences et Technologies, Université Mustapha Stambouli, Mascara 29000 (Algeria); Dehbi, Abdelkader [Laboratoire de Génie Physique, Département de Physique, Université de Tiaret, Tiaret 14000 (Algeria); Mourad, Abdel-Hamid I., E-mail: [Mechanical Engineering Department, Faculty of Engineering, United Arab Emirates University, Al-Ain, P.O. Box 15551 (United Arab Emirates); Belfedal, Abdelkader [Faculté des Sciences et Technologies, Université Mustapha Stambouli, Mascara 29000 (Algeria); LPCMME, Département de Physique, Université d' Oran Es-sénia, 3100 Oran (Algeria)


    The objective of this study is to create an ideal mixture of Acetaminophen/Curcumin leading to a new and improved semiconductor material, by a study of the electrical, thermal and optical properties. This new material will be compared with existing semiconductor technology to discuss its viability within the industry. The electrical properties were investigated using complex impedance spectroscopy and optical properties were studied by means of UV-Vis spectrophotometry. The electric conductivity σ, the dielectric constant ε{sub r}, the activation energy E{sub a}, the optical transmittance T and the gap energy E{sub g} have been investigated in order to characterize our organic material. The electrical conductivity of the material is approximately 10{sup −5} S/m at room temperature, increasing the temperature causes σ to increase exponentially to approximately 10{sup −4} S/m. The activation energy obtained for the material is equal to 0.49 ± 0.02 ev. The optical absorption spectra show that the investigating material has absorbance in the visible range with a maximum wavelength (λ{sub max}) 424 nm. From analysis, the absorption spectra it was found the optical band gap equal to 2.6 ± 0.02 eV and 2.46 ± 0.02 eV for the direct and indirect transition, respectively. In general, the study shows that the developed material has characteristics of organic semiconductor material that has a promising future in the field of organic electronics and their potential applications, e.g., photovoltaic cells. - Highlights: • Development of a new organic acetaminophen/Curcumin semiconductor material. • The developed material has characteristics of an organic semiconductor. • It has electrical conductivity comparable to available organic semiconductors. • It has high optical transmittance and low permittivity/dielectric constant.

  12. Synthesis of nano-carbon (nanotubes, nanofibres, graphene) materials

    Indian Academy of Sciences (India)

    Kalpana Awasthi; Rajesh Kumar; Himanshu Raghubanshi; Seema Awasthi; Ratnesh Pandey; Devinder Singh; T P Yadav; O N Srivastava


    In the present study, we report the synthesis of carbon nanotubes (CNTs) using a new natural precursor: castor oil. The CNTs were synthesized by spray pyrolysis of castor oil–ferrocene solution at 850°C under an Ar atmosphere. We also report the synthesis of carbon nitrogen (C–N) nanotubes using castor oil–ferrocene–ammonia precursor. The as-grown CNTs and C–N nanotubes were characterized through scanning and transmission electron microscopic techniques. Graphitic nanofibres (GNFs) were synthesized by thermal decomposition of acetylene (C2H2) gas using Ni catalyst at 600°C. As-grown GNFs reveal both planar and helical morphology. We have investigated the structural and electrical properties of multi-walled CNTs (MWNTs)–polymer (polyacrylamide (PAM)) composites. The MWNTs–PAM composites were prepared using as purified, with ball milling and functionalized MWNTs by solution cast technique and characterized through SEM. A comparative study has been made on the electrical property of these MWNTs–PAM composites with different MWNTs loadings. It is shown that the ball milling and functionalization of MWNTs improves the dispersion of MWNTs into the polymer matrix. Enhanced electrical conductivity was observed for the MWNTs–PAM composites. Graphene samples were prepared by thermal exfoliation of graphite oxide. XRD analysis confirms the formation of graphene.

  13. Numerical modeling of materials under extreme conditions

    CERN Document Server

    Brown, Eric


    The book presents twelve state of the art contributions in the field of numerical modeling of materials subjected to large strain, high strain rates, large pressure and high stress triaxialities, organized into two sections. The first part is focused on high strain rate-high pressures such as those occurring in impact dynamics and shock compression related phenomena, dealing with material response identification, advanced modeling incorporating microstructure and damage, stress waves propagation in solids and structures response under impact. The latter part is focused on large strain-low strain rates applications such as those occurring in technological material processing, dealing with microstructure and texture evolution, material response at elevated temperatures, structural behavior under large strain and multi axial state of stress.

  14. Numerical modeling in materials science and engineering

    CERN Document Server

    Rappaz, Michel; Deville, Michel


    This book introduces the concepts and methodologies related to the modelling of the complex phenomena occurring in materials processing. After a short reminder of conservation laws and constitutive relationships, the authors introduce the main numerical methods: finite differences, finite volumes and finite elements. These techniques are developed in three main chapters of the book that tackle more specific problems: phase transformation, solid mechanics and fluid flow. The two last chapters treat inverse methods to obtain the boundary conditions or the material properties and stochastic methods for microstructural simulation. This book is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics and for engineering professionals or researchers who want to get acquainted with numerical simulation to model and compute materials processing.

  15. 己烯雌酚的仿生合成%Dtethyl Stilboestrol Biological Modeling Synthesis

    Institute of Scientific and Technical Information of China (English)

    张艺川; 林楸晨; 雷江; 缪舒; 张李华


    The biological modeling synthesis utilized in the organic synthesis reduced the traditional organic synthesis complex tedious, caused its efficiency to be high, wastes few and the green environmental protection and so on, thus enabled it to obtain the widespread approval and the promotion. This article takes the catalyst biological modeling synthesis diethyl stilboestrol by Vitamin B1. Through the improvement,enables the new building-up reactions to have raw material to be easy, non-toxic, the response condition to be temperate, production rate higher characteristic. Thus applies successfully the biological modeling synthesis in the organic synthesis.%仿生合成运用于有机合成中减少了传统有机合成的复杂繁琐,使其效率高,浪费少和绿色环保等,从而使其得到广泛认可与推广.文章以维生素B1作为催化剂仿生合成己烯雌酚,通过改进,使得新合成反应具有原料易得、无毒、反应条件温和、产率较高等特点,从而成功地把仿生合成应用于有机合成中.

  16. Stochastic multiscale modeling of polycrystalline materials (United States)

    Wen, Bin

    provides a new outlook to multi-scale materials modeling accounting for microstructure and process uncertainties. Predictive materials modeling will accelerate the development of new materials and processes for critical applications in industry.

  17. Highly Loaded Fe-MCM-41 Materials: Synthesis and Reducibility Studies

    Directory of Open Access Journals (Sweden)

    Malose P. Mokhonoana


    Full Text Available Fe-MCM-41 materials were prepared by different methods. The Fe was both incorporated into the structure and formed crystallites attached to the silica. High Fe content MCM-41 (~16 wt% with retention of mesoporosity and long-range order was achieved by a range of new synthetic methodologies: (i by delaying the addition of Fe3+(aq to the stirred synthesis gel by 2 h, (ii by addition of Fe3+ precursor as a freshlyprecipitated aqueous slurry, (iii by exploiting a secondary synthesis with Si-MCM-41 as SiO2 source. For comparative purposes the MCM-41 was also prepared by incipient wetness impregnation (IWI. Although all these synthesis methods preserved mesoporosity and long-range order of the SiO2 matrix, the hydrothermally-fabricated Fe materials prepared via the secondary synthesis route has the most useful properties for exploitation as a catalyst, in terms of hydrothermal stability of the resulting support. Temperatureprogrammed reduction (TPR studies revealed a three-peak reduction pattern for this material instead of the commonly observed two-peak reduction pattern. The three peaks showed variable intensity that related to the presence of two components: crystalline Fe2O3 and Fe embedded in the SiO2 matrix (on the basis of ESR studies. The role of secondary synthesis of Si-MCM-41 on the iron reducibility was also demonstrated in IWI of sec-Si-MCM-41.

  18. Synthesis, Properties and Mineralogy of Important Inorganic Materials

    DEFF Research Database (Denmark)

    Warner, Terence Edwin

    the chemical nature of the elements from which they are composed. Five of these materials contain the element copper situated in different chemical environments, which creates a convenient forum to discuss various topics, including; chemical affinity, electronegativity, acid-base chemistry, oxidation states...... students, and is intended to be used as a textbook for laboratory courses in chemistry, ceramics, materials science, and solid state physics degree programmes. It is written in a style that should encourage the student to make the transition from reading to researching for one’s degree, and thereby help......-specialists, who are interested in learning more about how technological ceramic materials and artificial minerals are made. Finally, the author assumes that the reader is familiar with the basic principles and concepts of materials chemistry (or at least has access to such knowledge), such as; thermodynamic...

  19. Probabilistic Modeling of Graded Timber Material Properties

    DEFF Research Database (Denmark)

    Faber, M. H.; Köhler, J.; Sørensen, John Dalsgaard


    The probabilistic modeling of timber material characteristics is considered with special emphasis to the modeling of the effect of different quality control and selection procedures used as means for quality grading in the production line. It is shown how statistical models may be established...... an important role in the overall probabilistic modeling. Therefore a scheme for estimating the parameters of probability distribution parameters focusing on the tail behavior has been established using a censored Maximum Likelihood estimation technique. The proposed probabilistic models have been formulated...

  20. Synthesis and design of intermetallic materials - molybdenum disilicide

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; Castro, R.G.; Butt, D.P. [Los Alamos National Laboratory, NM (United States)] [and others


    The objective of this program is to develop structural silicide-based composite materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature composite materials and important applications in major energy-intensive U.S. processing industries. The program presently has a number of developing industrial connections, including a CRADA with the advanced materials company Advanced Refractory Technologies Inc. and interactions targeted at developing industrial gas burner and metal and glass melting/processing applications. Current experimental emphasis is on the development and characterization of SiC reinforced-MoSi{sub 2} matrix composites, plasma sprayed MoSi{sub 2}-based materials and microlaminate composites, and MoSi{sub 2} reinforced-Si{sub 3}N{sub 4} matrix composites. We are developing processing methods for MoSi{sub 2{minus}}based materials and microlaminate composites, and MoSi{sub 2} reinforced-Si{sub 3}N{sub 4} matrix composites. We are developing processing methods for MoSi{sub 2{minus}} based materials, such as plasma spraying/spray forming and electrophoretic deposition. We are also pursuing the fabrication of prototype industrial gas burner and injection tube components of these materials, as well as prototype components for glass processing.

  1. Synthesis and study of composite organic silica sorption materials

    Directory of Open Access Journals (Sweden)

    Anna Nikolaevna Shipulya


    Full Text Available Currently, one of the promising areas of applied chemistry is research and development of composite absorption materials used as sorbents with a wide range of action, as well as media for biologic preparations and drugs. We have performed research on the development of composite organic silica chitosan-silica based materials with certain composition and biochemical action. Silica was used as the main component, and chitosan - as bio-compatible polymer in the composition of the composite sorbent.

  2. Modeling of Irradiation Hardening of Polycrystalline Materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongsheng; Zbib, Hussein M.; Garmestani, Hamid; Sun, Xin; Khaleel, Mohammad A.


    High energy particle irradiation of structural polycrystalline materials usually produces irradiation hardening and embrittlement. The development of predict capability for the influence of irradiation on mechanical behavior is very important in materials design for next generation reactors. In this work a multiscale approach was implemented to predict irradiation hardening of body centered cubic (bcc) alpha-iron. The effect of defect density, texture and grain boundary was investigated. In the microscale, dislocation dynamics models were used to predict the critical resolved shear stress from the evolution of local dislocation and defects. In the macroscale, a viscoplastic self-consistent model was applied to predict the irradiation hardening in samples with changes in texture and grain boundary. This multiscale modeling can guide performance evaluation of structural materials used in next generation nuclear reactors.

  3. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials

    Directory of Open Access Journals (Sweden)

    Peter Hesemann


    Full Text Available The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA, mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the “anionic templating” strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  4. Synthesis, characterization and application of soluble fullerenat ed polymer materials

    Institute of Scientific and Technical Information of China (English)

    CHEN, Yu; CAI, Rui-Fang; HUANG, Zu-En; WANG, Jing-Xia


    This article only deals with the topic of intense interest to us and to a considerable extent of our own experimental results on the synthesis, characterization and application of C60-con taining functional polymers such as poly (N-vinylcarbazole), polyrene and polyacrylonitrne-based fullerene polymers. The results demonstrate that [60] fullerene can be directly in corporated into a variety of functional polymers by copolymer ization or grafting, but also can be used to modify or improve the electronic, optiical and physicochemical properties of poly mers. Both the stereo-electroniceffect and the steric hindrance of C60 have an important influence on the structu-e and physicochemical properties of the parent polymer.

  5. Synthesis, Characterization and properties studies of new magnetic materials (United States)

    Messai, Amel; Luneau, Dominique


    We are interested in molecular polymetallic species having high spin and nuclearities in relation to the field of so call single-molecule magnets (SMMs). The goal is to find a way to synthesis metal clusters which may have application in magnetism and nanosciences. With this purpose, we decided to investigate the coordination chemistry of the Schiff base.Along this way we were able to create cubane-like complexes and elaborate new Single Molecule-Magnets. The idea was to use Schiff base ligands and different metals to generate high nuclear complexes. Complexation of Shiff base with copper has been investigated. Tetranuclear complex with a cubane like core have been synthesised with (Sciff base), with the same base and cobalt we obtains an other single magnetic complex completely different.

  6. Simulation of DME synthesis from coal syngas by kinetics model

    Energy Technology Data Exchange (ETDEWEB)

    Shim, H.M.; Lee, S.J.; Yoo, Y.D.; Yun, Y.S.; Kim, H.T. [Ajou University, Suwon (Republic of Korea)


    DME (Dimethyl Ether) has emerged as a clean alternative fuel for diesel. In this study it is developed a simulation model through a kinetics model of the ASPEN plus simulator, performed to detect operating characteristics of DME direct synthesis. An overall DME synthesis process is referenced by experimental data of 3 ton/day (TPD) coal gasification pilot plant located at IAE in Korea. Supplying condition of DME synthesis model is equivalently set to 80 N/m{sup 3} of syngas which is derived from a coal gasification plant. In the simulation it is assumed that the overall DME synthesis process proceeds with steady state, vapor-solid reaction with DME catalyst. The physical properties of reactants are governed by Soave-Redlich-Kwong (SRK) EOS in this model. A reaction model of DME synthesis is considered that is applied with the LHHW (Langmuir-Hinshelwood Hougen Watson) equation as an adsorption-desorption model on the surface of the DME catalyst. After adjusting the kinetics of the DME synthesis reaction among reactants with experimental data, the kinetics of the governing reactions inner DME reactor are modified and coupled with the entire DME synthesis reaction. For validating simulation results of the DME synthesis model, the obtained simulation results are compared with experimental results: conversion ratio, DME yield and DME production rate. Then, a sensitivity analysis is performed by effects of operating variables such as pressure, temperature of the reactor, void fraction of catalyst and H{sub 2}/CO ratio of supplied syngas with modified model. According to simulation results, optimum operating conditions of DME reactor are obtained in the range of 265-275{sup o}C and 60 kg/cm{sup 2}. And DME production rate has a maximum value in the range of 1-1.5 of H{sub 2}/CO ratio in the syngas composition.

  7. Synthesis, properties and applications of bio-based materials (United States)

    Srinivasan, Madhusudhan

    Bio-based feedstock have become very significant as they offer a value proposition in terms of carbon balance and also in terms of endowing biodegradability where needed. Thus a lot of attention is being given to the modification such feedstock for different applications. Soybean oil is one such feedstock. The oil is a triglyceride ester composed of different fatty acids, which are common to other plant oils. Thus soybean oil serves as a platform for plant oils, as modifications of this oil, can in theory be extended to cover other plant oils. Methyl oleate was used as a model fatty acid ester, to synthesize hydroxyesters with ethylene glycol via a two stage oxidative cleavage of the double bonds. Ozone was chosen as the oxidant due to its many advantages. The first stage involved oxidation of the double bond to aldehydes, ozonides and acetals, which were subsequently converted to hydroxyesters (hydroxy values of 220 - 270) in near quantitative yield by treatment with Oxone. This method could be extended to soybean oil to make "polyols" which could find applications in resin syntheses. Silylation was employed as another platform to functionalize soybean oil and fatty acid methyl esters with a reactive silane (vinyltrimethoxy silane). This simple modification produced materials that are cured by atmospheric moisture and are useful as coatings. The silylation was controlled by varying the grafting time, cure temperature and the concentration of the silane. Products with gel content as high as 90% could be achieved. The coating exhibited good adhesion to metal, glass, concrete and paper. Steel panels coated with these coatings exhibited good stability against corrosion in high humidity conditions and moderate stability against a salt spray. The silylation was also successfully utilized to improve the tensile strength of the blend of biodegradable polyester, poly (butylene adipate-co-terephthalate) with talc. A reactive extrusion process was employed to graft vinyl

  8. Modeling ready biodegradability of fragrance materials. (United States)

    Ceriani, Lidia; Papa, Ester; Kovarich, Simona; Boethling, Robert; Gramatica, Paola


    In the present study, quantitative structure activity relationships were developed for predicting ready biodegradability of approximately 200 heterogeneous fragrance materials. Two classification methods, classification and regression tree (CART) and k-nearest neighbors (kNN), were applied to perform the modeling. The models were validated with multiple external prediction sets, and the structural applicability domain was verified by the leverage approach. The best models had good sensitivity (internal ≥80%; external ≥68%), specificity (internal ≥80%; external 73%), and overall accuracy (≥75%). Results from the comparison with BIOWIN global models, based on group contribution method, show that specific models developed in the present study perform better in prediction than BIOWIN6, in particular for the correct classification of not readily biodegradable fragrance materials. © 2015 SETAC.

  9. Material Transport and Synthesis by Cantilever-free Scanning Probe Lithography (United States)

    Liao, Xing

    Reliably synthesizing and transporting materials in nanoscale is the key question in many fields of nanotechnology. Cantilever-free scanning probe lithography, by replacing fragile and costly cantilevers with a robust and low cost elastomeric structure, fundamentally solved the low-throughput nature of scanning probe lithography, which has great potential to be a powerful and point-of-use tool for high throughput synthesis of various kinds of nanomaterials. Two nanolithographic methods, polymer pen lithography (PPL) and beam pen lithography (BPL), have been developed based on the cantilever-free architecture to directly deliver materials and transfer energy to substrates, respectively. The first portion of my thesis, including chapter two and chapter three, addresses major challenges remaining in the cantilever-free scanning probe lithographic techniques. Chapter two details the role of contact force in polymer pen lithography. A geometric model was developed to quantitatively explain the relationship between the z-piezo extension, the contact force and the resulted feature size. With such a model, force can be used as the in-situ feedback during the patterning and a new method for leveling the pen arrays was developed, which utilizes the total force between the pen arrays and the surface to achieve leveling with a tilt of less than 0.004°. In chapter three, massively multiplexed near-field photolithography has been demonstrated by combining BPL with a batch method to fabricate nanometer scale apertures in parallel fashion and a strategy to individually actuation of each pen in the pen array are discussed. This transformative combination enables one to writing arbitrary patterns composed of diffraction-unlimited features over square centimeter areas that are in registry with existing patterns and nanostructures, creating a unified tool for constructing and studying nanomaterials. The second portion of this thesis focuses on applications of cantilever-free scanning

  10. Synthesis and characterization of large specific surface area nanostructured amorphous silica materials. (United States)

    Marquez-Linares, Francisco; Roque-Malherbe, Rolando M A


    Large specific surface area materials attract wide attention because of their applications in adsorption, catalysis, and nanotechnology. In the present study, we describe the synthesis and characterization of nanostructured amorphous silica materials. These materials were obtained by means of a modification of the Stobe-Fink-Bohn (SFB) method. The morphology and essential features of the synthesized materials have been studied using an automated surface area and pore size analyzer and scanning electron microscopy. The existence of a micro/mesoporous structure in the obtained materials has been established. It was also found that the obtained particle packing materials show large specific surface area up to 1,600 m2/g. (To our best knowledge, there is no any reported amorphous silica material with such a higher specific surface area.) The obtained materials could be useful in the manufacture of adsorbents, catalyst supports, and other nanotechnological applications.

  11. Excited Electronic and Vibrational State Decomposition of Energetic Materials and Model Systems on Both Nanosecond and Femtosecond Time Scales (United States)


    behavior of these species is then compared with that of very similar model systems in order to enable the synthesis of new materials that will in order to enable the synthesis of new materials that will be energetic by design. This must be the first step in the determination of the unique...1,2,4- triazole -1,1’-diol, respectively), following electronic state excitation, is investigated both experimentally and theoretically. Different from

  12. Towards Cluster-Assembled Materials of True Monodispersity in Size and Chemical Environment: Synthesis, Dynamics and Activity (United States)


    pathway Status: not yet published Diverse technologies, from catalyst coking to graphene synthesis , entail hydrocarbon dehydrogena- tion and...AFRL-AFOSR-UK-TR-2016-0037 Towards cluster-assembled materials of true monodispersity in size and chemical environment: Synthesis , Dynamics and...Towards cluster-assembled materials of true monodispersity in size and chemical environment: synthesis , dynamics and activity 5a.  CONTRACT NUMBER 5b

  13. A Sorption Hysteresis Model For Cellulosic Materials

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Damkilde, Lars


    The equilibrium concentration of adsorbed water in cellulosic materials is dependent on the history of the variations of vapor pressure in the ambient air, i.e. sorption hysteresis. Existing models to describe this phenomenon such as the independent domain theory have numerical drawbacks and....../or imply accounting for the entire history variations of every material point. This paper presents a sorption hysteresis model based on a state formulation and expressed in closed-form solutions, which makes it suitable for implementation into a numerical method....

  14. Production of advanced materials by methods of self-propagating high-temperature synthesis

    CERN Document Server

    Tavadze, Giorgi F


    This translation from the original Russian book outlines the production of a variety of materials by methods of self-propagating high-temperature synthesis (SHS). The types of materials discussed include: hard, refractory, corrosion and wear-resistant materials, as well as other advanced and speciality materials. The authors address the issue of optimal parameters for SHS reactions occurring during processes involving a preliminary metallothermic reduction stage, and they calculate this using thermodynamic approaches. In order to confirm the effectiveness of this approach, the authors describe experiments focussing on the synthesis of elemental crysalline boron, boron carbides and nitrides. Other parts of this brief include theoretical and experimental results on single-stage production of hard alloys on the basis of titanium and zirconium borides, as well as macrokinetics of degassing and compaciton of SHS-products.This brief is suitable for academics, as well as those working in industrial manufacturing com...

  15. A review of nanostructured lithium ion battery materials via low temperature synthesis. (United States)

    Chen, Jiajun


    Nanostructured materials afford us new opportunities to improve the current technology for synthesizing Li ion batteries. Generating nanomaterials with new properties via an inexpensive approach offers a tremendous potential for realizing high performance Li-ion batteries. In this review, I mainly summarize some of the recent progress made, and describe the patents awarded on synthesizing nanostructured cathode materials for these batteries via low temperature wet- chemistry methods. From an economical view, such syntheses, especially hydrothermal synthesis, may offer the opportunities for significantly lowering the cost of manufacturing battery materials, while conferring distinct environmental advantages. Recent advances in in-situ (real time) X-ray diffraction for studying hydrothermal synthesis have great potential for bettering the rational design of advanced lithium-electrode materials. The development of this technique also will be discussed.

  16. Exploration of the role of anions in the synthesis of Cr containing mesoporous materials at room temperature

    NARCIS (Netherlands)

    Mahony, L; Wu, C.M.; Kibombo, H.S.; Thiruppathi, E.; Baltrusaitis, J.; Rasalingam, S; Koodali, R.T.


    Chromium containing mesoporous silica materials were synthesized via a modified Stöber synthesis at room temperature. The chromium ion loading and the effect of counter ion in the synthesis were studied in detail. The mesoporous materials were extensively characterized by powder X-ray diffraction (X

  17. Controllable synthesis and formation mechanism of carbon micro/nano-structural materials (United States)

    Zhang, Chang'an; Lv, Meijiao; Wang, Xianbao; Li, Jing; Yang, Xuyu; Yang, Jia; Hu, Hao


    Three different structures of carbon materials, including carbon spheres, bamboo-like carbon nanotubes and straight carbon nanotubes, were obtained by pyrolysis of iron(II) phthalocyanine with different flow rates of H2 at 1000 °C. The suitable mechanism for formation process of the carbon nanomaterials from spheres to straight nanotubes was suggested. The competing processes between the catalyst forward and the shell growth have been used to explain the formation mechanism of three materials. The controllable synthesis of carbon materials was achieved only by changing the H2 flow rates, and it is important to explore applications of carbon materials with different shapes.

  18. Electrospray-assisted synthesis methods of nanostructured materials for Li-ion batteries

    NARCIS (Netherlands)

    Valvo, M.


    This PhD thesis focuses on the synthesis of nanostructured materials via an aerosol-assisted route based on electrospraying of liquid precursors. Electrospraying is a powerful technique for the production of nearly-monodispersed, highly-charged droplets. The possibility of tailoring the droplet

  19. S-(+)-carvone as starting material in the enantioselective synthesis of natural products.

    NARCIS (Netherlands)

    Verstegen-Haaksma, A.A.


    In this thesis the applicability of S-(+)-carvone as chiral starting material in the synthesis of biologically active compounds is examined. S-(+)-carvone is the major compound of caraway essential oil. The essential oil content of caraway seed may vary from 2-7% and it contains about 50-60% of S-(+

  20. Electrospray-assisted synthesis methods of nanostructured materials for Li-ion batteries

    NARCIS (Netherlands)

    Valvo, M.


    This PhD thesis focuses on the synthesis of nanostructured materials via an aerosol-assisted route based on electrospraying of liquid precursors. Electrospraying is a powerful technique for the production of nearly-monodispersed, highly-charged droplets. The possibility of tailoring the droplet size

  1. Potato glycoalkaloids as starting material for the synthesis of steroid hormones

    NARCIS (Netherlands)

    Vronen, P.J.E.


    Since the first structure elucidation of solanidine about 70 years ago, there has been an interest to convert this aglycon to an intermediate suitable for the synthesis of steroids. A renewed interest in this conversion is stimulated by the rising prices of the present starting material diosgenine .

  2. The Synthesis of Third-order Optical Nonlinear Organic Polyheterocyclic Materials

    Institute of Scientific and Technical Information of China (English)


    Synthesis of the third-order nonlinear materials: bis (l,4-dihydroxynaphthalene)tetrathiafulvalene and bis (1,4-dialkoxylnaphthalene) tetrathiafulvalene has been achieved in four steps, starting from 2,3-dichloro-l,4-naphthaquinone. The matcrials exhibit larger third-order nonlinear optical susceptibilities X(3).

  3. (+)-Aromadendrene as chiral starting material for the synthesis of fragrances and pheromones

    NARCIS (Netherlands)

    Lamers, Y.M.A.W.


    (+)-Aromadendrene ( 1 ) is a sesquiterpene present in the distillation tail of the oil of Eucalyptus globulus . This distillation tail is commercially available in large quantities at low price and is an interesting starting material for the synthesis of other chiral products. A fai

  4. Hydrothermal carbonization: a greener route towards the synthesis of advanced carbon materials

    Directory of Open Access Journals (Sweden)

    M.M. Titirici


    Full Text Available This review paper provides an overview of thehydrothermal carbonisation (HTC technology, a“green” and versatile strategy for the synthesis ofadvanced carbon materials suitable for a wide varietyof applications of high impact in the current society.We will focus on the carbon formation mechanism,chemical and structural properties of hydrothermalcarbons, porosity development, nanostructuring,functionalisation and applications.

  5. Synthesis of Hafnium-Based Ceramic Materials for Ultra-High Temperature Aerospace Applications (United States)

    Johnson, Sylvia; Feldman, Jay


    This project involved the synthesis of hafnium (Hf)-based ceramic powders and Hf-based precursor solutions that were suitable for preparation of Hf-based ceramics. The Hf-based ceramic materials of interest in this project were hafnium carbide (with nominal composition HE) and hafnium dioxide (HfO2). The materials were prepared at Georgia Institute of Technology and then supplied to research collaborators Dr. Sylvia Johnson and Dr. Jay Feldman) at NASA Ames Research Center.

  6. Synthesis of Hafnium-Based Ceramic Materials for Ultra-High Temperature Aerospace Applications (United States)

    Johnson, Sylvia; Feldman, Jay


    This project involved the synthesis of hafnium (Hf)-based ceramic powders and Hf-based precursor solutions that were suitable for preparation of Hf-based ceramics. The Hf-based ceramic materials of interest in this project were hafnium carbide (with nominal composition HE) and hafnium dioxide (HfO2). The materials were prepared at Georgia Institute of Technology and then supplied to research collaborators Dr. Sylvia Johnson and Dr. Jay Feldman) at NASA Ames Research Center.

  7. Synthesis, Properties and Mineralogy of Important Inorganic Materials

    CERN Document Server

    Warner, Terence E


    Intended as a textbook for courses involving preparative solid-state chemistry, this book offers clear and detailed descriptions on how to prepare a selection of inorganic materials that exhibit important optical, magnetic and electrical properties, on a laboratory scale. The text covers a wide range of preparative methods and can be read as separate, independent chapters or as a unified coherent body of work. Discussions of various chemical systems reveal how the properties of a material can often be influenced by modifications to the preparative procedure, and vice versa. References to miner

  8. Modeling and Simulation of Nuclear Fuel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ramaswami; Van Brutzel, Laurent; Chartier, Alan; Gueneau, Christine; Mattsson, Ann E.; Tikare, Veena; Bartel, Timothy; Besmann, T. M.; Stan, Marius; Van Uffelen, Paul


    We review the state of modeling and simulation of nuclear fuels with emphasis on the most widely used nuclear fuel, UO2. The hierarchical scheme presented represents a science-based approach to modeling nuclear fuels by progressively passing information in several stages from ab initio to continuum levels. Such an approach is essential to overcome the challenges posed by radioactive materials handling, experimental limitations in modeling extreme conditions and accident scenarios, and the small time and distance scales of fundamental defect processes. When used in conjunction with experimental validation, this multiscale modeling scheme can provide valuable guidance to development of fuel for advanced reactors to meet rising global energy demand.

  9. Thermodynamic and kinetic modelling: creep resistant materials

    DEFF Research Database (Denmark)

    Hald, John; Korcakova, L.; Danielsen, Hilmar Kjartansson


    particles and coarsening of MX, M23C6 and Laves phase particles. The modelling provided new insight into the long term stability of new steels. Modelling of the detrimental precipitation of Z phase Cr(V,Nb)N is described, which points to new approaches in alloy development for higher temperatures......The use of thermodynamic and kinetic modelling of microstructure evolution in materials exposed to high temperatures in power plants is demonstrated with two examples. Precipitate stability in martensitic 9–12%Cr steels is modelled including equilibrium phase stability, growth of Laves phase...

  10. A continuum damage model for piezoelectric materials

    Institute of Scientific and Technical Information of China (English)

    Yiming Fu; Xianqiao Wang


    In this paper, a constitutive model is proposed for piezoelectric material solids containing distributed cracks.The model is formulated in a framework of continuum damage mechanics using second rank tensors as internal variables. The Helmhotlz free energy of piezoelectric mate-rials with damage is then expressed as a polynomial including the transformed strains, the electric field vector and the ten-sorial damage variables by using the integrity bases restricted by the initial orthotropic symmetry of the material. By using the Talreja's tensor valued internal state damage variables as well as the Helmhotlz free energy of the piezoelectric mate-rial, the constitutive relations of piezoelectric materials with damage are derived. The model is applied to a special case of piezoelectric plate with transverse matrix cracks. With theKirchhoff hypothesis of plate, the free vibration equationsof the piezoelectric rectangular plate considering damage isestablished. By using Galerkin method, the equations are sol-ved. Numerical results show the effect of the damage on the free vibration of the piezoelectric plate under the close-circuit condition, and the present results are compared with those of the three-dimensional theory.

  11. Quality quantification model of basic raw materials

    Directory of Open Access Journals (Sweden)

    Š. Vilamová


    Full Text Available Basic raw materials belong to the key input sources in the production of pig iron. The properties of basic raw materials can be evaluated using a variety of criteria. The essential ones include the physical and chemical properties. Current competitive pressures, however, force the producers of iron more and more often to include cost and logistic criteria into the decision-making process. In this area, however, they are facing a problem of how to convert a variety of vastly different parameters into one evaluation indicator in order to compare the available raw materials. This article deals with the analysis of a model created to evaluate the basic raw materials, which was designed as part of the research.

  12. Modeling Bamboo as a Functionally Graded Material (United States)

    Silva, Emílio Carlos Nelli; Walters, Matthew C.; Paulino, Glaucio H.


    Natural fibers are promising for engineering applications due to their low cost. They are abundantly available in tropical and subtropical regions of the world, and they can be employed as construction materials. Among natural fibers, bamboo has been widely used for housing construction around the world. Bamboo is an optimized composite material which exploits the concept of Functionally Graded Material (FGM). Biological structures, such as bamboo, are composite materials that have complicated shapes and material distribution inside their domain, and thus the use of numerical methods such as the finite element method and multiscale methods such as homogenization, can help to further understanding of the mechanical behavior of these materials. The objective of this work is to explore techniques such as the finite element method and homogenization to investigate the structural behavior of bamboo. The finite element formulation uses graded finite elements to capture the varying material distribution through the bamboo wall. To observe bamboo behavior under applied loads, simulations are conducted considering a spatially-varying Young's modulus, an averaged Young's modulus, and orthotropic constitutive properties obtained from homogenization theory. The homogenization procedure uses effective, axisymmetric properties estimated from the spatially-varying bamboo composite. Three-dimensional models of bamboo cells were built and simulated under tension, torsion, and bending load cases.

  13. Full microwave synthesis of advanced Li-rich manganese based cathode material for lithium ion batteries (United States)

    Shi, Shaojun; Zhang, Saisai; Wu, Zhijun; Wang, Ting; Zong, Jianbo; Zhao, Mengxi; Yang, Gang


    In technologically important Li-rich layered cathode materials, the synthesis time is a critical determinant to overcome the practical difficulties. Normal technology costs at least one day or even more to obtain final Li-rich cathode material. Full microwave synthesis is performed here to obtain final Li1.2Mn0.56Ni0.16Co0.08O2 within 60 min with high time-efficiency and power economization. The as-prepared Li-rich oxides keep the spherical hierarchical structure of the precursor. Compared to the same material obtained by traditional calcination, it exhibits well-formed layered structure with higher ordered ion arrangement. X-ray photoelectron spectroscopy (XPS) indicates that microwave assisted heating contributes to a more ordered and stable surface with desired Mn, Co, Ni element states and less impurity. Thus, the as-prepared material reveals remarkable electrochemical property with high discharge capacity of 159.3 mAh g-1 at high current density of 2000 mA g-1. And 88.6% specific capacity is remained after 300 cycles at such high current density. Furthermore, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) are carried out to overall investigate and estimate the material. It is concluded that such full microwave synthesis is really promising as one of the dominant way to obtain Li-rich layered cathode material for applications.

  14. Truly Absorbed Microbial Protein Synthesis, Rumen Bypass Protein, Endogenous Protein, and Total Metabolizable Protein from Starchy and Protein-Rich Raw Materials

    NARCIS (Netherlands)

    Parand, Ehsan; Vakili, Alireza; Mesgaran, Mohsen Danesh; Duinkerken, Van Gert; Yu, Peiqiang


    This study was carried out to measure truly absorbed microbial protein synthesis, rumen bypass protein, and endogenous protein loss, as well as total metabolizable protein, from starchy and protein-rich raw feed materials with model comparisons. Predictions by the DVE2010 system as a more

  15. Simulation, design and proof-of-concept of a two-stage continuous hydrothermal flow synthesis reactor for synthesis of functionalized nano-sized inorganic composite materials

    DEFF Research Database (Denmark)

    Zielke, Philipp; Xu, Yu; Simonsen, Søren Bredmose


    Computational fluid dynamics simulations were employed to evaluate several mixer geometries for a novel two-stage continuous hydrothermal flow synthesis reactor. The addition of a second stage holds the promise of allowing the synthesis of functionalized nano-materials as for example core...

  16. Nanostructured organic electronic materials: Synthesis and sensor applications (United States)

    Dua, Vineet


    This study is an investigation into (a) the process by which one obtains bulk quantities of nanofibers of parent polythiophene, (b) in-situ deposition of nanofibers of polythiophene on flexible substrate and its application in vapor sensing, and (c) inkjet printing of graphene on flexible substrate and its application as a detector. (a) The 2 nd chapter of the thesis is an extension of "seeding" method from aqueous to organic solvents to synthesize parent polythiophene nanofibers. Bulk quantities of parent polythiophene nanofibers were synthesized in one step using catalytic amounts of freeze dried V2O5. This work is published in Chemistry Letters 2008 37(5), 526--527. (b) The 3rd chapter deals with in-situ films of polythiophene nanofibers on plastic substrates. In this a one step method to directly deposit nanofibers of parent polythiophene on flexible substrate is discussed. These films show a reversible detection of highly oxidizing vapors such as NO2, Cl2 and SO 2 at ppb levels under ambient conditions. This work is published in Macromolecules 2009, 42, 5414--5415. (c) The 4 th chapter describes the synthesis of reduced graphene oxide (RGO) using a mild reducing agent ascorbic acid (Vitamin C) rather than traditionally used harsh reducing agents (N2H4). Dispersions of RGO were inkjet printed on flexible substrate and has been shown to detect aggressive vapors NO2 and Cl2 at ambient conditions. This work is accepted for publication in Angewandte Chemie (Nov 2009).

  17. Cellular Automata Model for Elastic Solid Material

    Institute of Scientific and Technical Information of China (English)

    DONG Yin-Feng; ZHANG Guang-Cai; XU Ai-Guo; GAN Yan-Biao


    The Cellular Automaton (CA) modeling and simulation of solid dynamics is a long-standing difficult problem.In this paper we present a new two-dimensional CA model for solid dynamics.In this model the solid body is represented by a set of white and black particles alternatively positioned in the x-and y-directions.The force acting on each particle is represented by the linear summation of relative displacements of the nearest-neighboring particles.The key technique in this new model is the construction of eight coefficient matrices.Theoretical and numerical analyses show that the present model can be mathematically described by a conservative system.So,it works for elastic material.In the continuum limit the CA model recovers the well-known Navier equation.The coefficient matrices are related to the shear module and Poisson ratio of the material body.Compared with previous CA model for solid body,this model realizes the natural coupling of deformations in the x-and y-directions.Consequently,the wave phenomena related to the Poisson ratio effects are successfully recovered.This work advances significantly the CA modeling and simulation in the field of computational solid dynamics.

  18. Modelling irradiation effects in fusion materials

    DEFF Research Database (Denmark)

    Victoria, M.; Dudarev, S.; Boutard, J.L.;


    We review the current status of the European fusion materials modelling programme. We describe recent findings and outline potential areas for future development. Large-scale density functional theory (DFT) calculations reveal the structure of the point defects in α-Fe, and highlight the crucial...

  19. A Sorption Hysteresis Model For Cellulosic Materials

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Damkilde, Lars


    The equilibrium concentration of adsorbed water in cellulosic materials is dependent on the history of the variations of vapor pressure in the ambient air, i.e. sorption hysteresis. Existing models to describe this phenomenon such as the independent domain theory have numerical drawbacks and/or i...


    Institute of Scientific and Technical Information of China (English)

    Yen Wei; Kun-yuan Qiu


    We describe the sol-gel synthesis of a new family of organic-inorganic hybrid materials, in which various vinyl polymers are covalently bonded to and uniformly distributed in inorganic oxide matrices. The materials can be tailored to have both good toughness and hardness while maintaining excellent optical transparency. Doping the sol-gel metal oxides with optically active compounds such as D-glucose results in new optical rotatory composite materials. Removal of the dopant compounds from the composites affords mesoporous oxide materials, which represents a new, nonsurfactant-templated route to mesoporous molecular sieves. We have successfully immobilized a series of enzymes and other bioactive agents in mesoporous materials. Catalytical activities of the enzyme encapsulated in mesoporous materials were found to be much higher than those encapsulated in microporous materials.

  1. Constitutive modeling for isotropic materials (HOST) (United States)

    Chan, Kwai S.; Lindholm, Ulric S.; Bodner, S. R.; Hill, Jeff T.; Weber, R. M.; Meyer, T. G.


    The results of the third year of work on a program which is part of the NASA Hot Section Technology program (HOST) are presented. The goals of this program are: (1) the development of unified constitutive models for rate dependent isotropic materials; and (2) the demonstration of the use of unified models in structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are those of Bodner-Partom and of Walker. A test procedure was developed for assisting the generation of a data base for the Bodner-Partom model using a relatively small number of specimens. This test procedure involved performing a tensile test at a temperature of interest that involves a succession of strain-rate changes. The results for B1900+Hf indicate that material constants related to hardening and thermal recovery can be obtained on the basis of such a procedure. Strain aging, thermal recovery, and unexpected material variations, however, preluded an accurate determination of the strain-rate sensitivity parameter is this exercise. The effects of casting grain size on the constitutive behavior of B1900+Hf were studied and no particular grain size effect was observed. A systematic procedure was also developed for determining the material constants in the Bodner-Partom model. Both the new test procedure and the method for determining material constants were applied to the alternate material, Mar-M247 . Test data including tensile, creep, cyclic and nonproportional biaxial (tension/torsion) loading were collected. Good correlations were obtained between the Bodner-Partom model and experiments. A literature survey was conducted to assess the effects of thermal history on the constitutive behavior of metals. Thermal history effects are expected to be present at temperature regimes where strain aging and change of microstructure are important. Possible modifications to the Bodner-Partom model to account for these effects are outlined


    Energy Technology Data Exchange (ETDEWEB)

    Miller, Joel S. [Univ. of Utah, Salt Lake City, UT (United States)


    We have synthesized and characterized several families of organic-based magnets, a new area showing that organic species can exhibit the technologically important property of magnetic ordering. Thin film magnets with ordering temperatures exceeding room temperature have been exceeded. Hence, organic-based magnets represent a new class of materials that exhibit magnetic ordering and do not require energy-intensive metallurgical processing and are based upon Earth-abundant elements.

  3. Synthesis of Microporous Materials and Their VSC Adsorption Properties (United States)

    Yokogawa, Y.; Morikawa, H.; Sakanishi, M.; Utaka, H.; Nakamura, A.; Kishida, I.


    Oral malodor is caused by volatile sulfur compounds (VSC) such as hydrogen sulfide (H2S), methyl mercaptan and dimethyl sulfide produced in mouth. VSC induces permeability of mucous membrane and oral malodor formation. Thus, the adsorbent which highly adsorbs VSC should be useful for health in mouth and may prevent teeth from decaying. The microporous material, hydrotalcite, was synthesized by a wet method, and the H2S adsorption was studied. The samples, identified by powder X-ray diffraction method, were put into glass flask filled with H2S gas. The initial concentration of H2S was 30 ppm. The change in concentrations of H2S was measured at rt, and the amount of H2S absorbed on the hydrotalcite for 24 h was 300 micro L/g. The samples were taken out from the above glass flask and put into a pyrolysis plant attached to gas chromatography-mass spectrometry to determine the amount of H2S desorbed from samples. Only 3 % of H2S was desorbed when heated at 500 °C. H2S in water was also found to adsorb into hydrotalcite, which was confirmed by the headspace gas chromatography with flame photometric detector. The hydrotalcite material should be expected to be an adsorbent material, useful for health in mouth.

  4. A nonlinear constitutive model for magnetostrictive materials

    Institute of Scientific and Technical Information of China (English)

    Xin'en Liu; Xiaojing Zheng


    A general nonlinear constitutive model is proposed for magnetostrictive materials, based on the important physical fact that a nonlinear part of the elastic strain produced by a pre-stress is related to the magnetic domain rotation or movement and is responsible for the change of the maximum magnetostrictive strain with the pre-stress. To avoid the complicity of determining the tensor function describing the nonlinear elastic strain part, this paper proposes a simplified model by means of linearizing the nonlinear function.For the convenience of engineering applications, the expressions of the 3-D (bulk), 2-D (film) and 1-D (rod) models are, respectively, given for an isotropic material and their applicable ranges are also discussed. By comparison with the experimental data of a Terfenol-D rod, it is found that the proposed model can accurately predict the magnetostrictive strain curves in low, moderate and high magnetic field regions for various compressive pre-stress levels. The numerical simulation further illustrates that, for either magnetostrictive rods or thin films, the proposed model can effectively describe the effects of the pre-stress or residual stress on the magnetization and magnetostrictive strain curves, while none of the known models can capture all of them. Therefore, the proposed model enjoys higher precision and wider applicability than the previous models, especially in the region of the high field.

  5. PDMS based microfluidic chips and their application in material synthesis (United States)

    Gong, Xiuqing

    Microfluidics is a highly interdisciplinary science which is to deal with the behavior, control and manipulation of fluids that are constrained to sub-milimeter scale. It incorporates the knowledge and technique intersecting physics, chemistry, mechanics, nanoscience and biotechnology, with practical applications to the design of systems in which small volumes of fluids will be used. In this thesis, we started our research from GER fluid synthesis which then is applied to designing different functions of microfluidic devices, valve, pump, and mixer. We built a way to correlate mechanical signal with electric signal by soft matter. The mechanical devices based GER fluid had good operating stability and mechanical performance. We studied how to improve the performance of GER fluid by increasing the yield stress while avoiding the sendimentation of nanoparticles in GER suspension. The meaning of this work is to enhance the stability and mechanical strength of GER fluid when it is applyed to the microfluidc channels. We tried different oils and studied the particle size for the GER effect. The largest yield stress which amounts to 300 kPa is achievable compared to previous GER fluid with 100 kPa. Microfluidic reactor, directing the flow of microliter volumes along microscale channels, offers the advantages of precise control of reagent loading, fast mixing and an enhanced reaction rate, cessation of the reaction at specific stages, and more. Basically, there are two microfluidic flow regimes, continuous flow and segmented flow (suspended droplets, channel-spanning slug, and wall-wetting films). Both flow regimes offer chemical reaction applications, e.g., continuous flow formation of polymer nanospheres and inorganic nanoparticles, size- and shape-control synthesis by segmented flow, and precipitate-forming reactions in droplets, wherein the segmented flow has gained more popularity in that area. The compartmentalization of segmented flow offers advantages to chemical

  6. A Hysteresis Model for Piezoceramic Materials (United States)

    Smith, Ralph C.; Ounaies, Zoubeida


    This paper addresses the modeling of nonlinear constitutive relations and hysteresis inherent to piezoceramic materials at moderate to high drive levels. Such models are, necessary to realize the, full potential of the materials in high performance control applications, and a necessary prerequisite is the development of techniques which permit control implementation. The approach employed here is based on the qualification of reversible and irreversible domain wall motion in response to applied electric fields. A comparison with experimental data illustrates that because the resulting ODE model is physics-based, it can be employed for both characterization and prediction of polarization levels throughout the range of actuator operation. Finally, the ODE formulation is amenable to inversion which facilitates the development of an inverse compensator for linear control design.

  7. Viscoelastic models for explosive binder materials

    Energy Technology Data Exchange (ETDEWEB)

    Bardenhagen, S.G.; Harstad, E.N.; Maudlin, P.J.; Gray, G.T. [Los Alamos National Lab., NM (United States); Foster, J.C. Jr. [Wright Lab., Eglin AFB, FL (United States)


    An improved model of the mechanical properties of the explosive contained in conventional munitions is needed to accurately simulate performance and accident scenarios in weapons storage facilities. A specific class of explosives can he idealized as a mixture of two components: energetic crystals randomly suspended in a polymeric matrix (binder). Strength characteristics of each component material are important in the macroscopic behavior of the composite (explosive). Of interest here is the determination of an appropriate constitutive law for a polyurethane binder material. This paper is a continuation of previous work in modeling polyurethane at moderately high strain rates and for large deformations. Simulation of a large deformation (strains in excess of 100%) Taylor Anvil experiment revealed numerical difficulties which have been addressed. Additional experimental data have been obtained including improved resolution Taylor Anvil data, and stress relaxation data at various strain rates. A thorough evaluation of the candidate viscoelastic constitutive model is made and possible improvements discussed.

  8. The Synthesis, Characterization and Catalytic Reaction Studies of Monodisperse Platinum Nanoparticles in Mesoporous Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M. [Univ. of California, Berkeley, CA (United States)


    A catalyst design program was implemented in which Pt nanoparticles, either of monodisperse size and/or shape were synthesized, characterized and studied in a number of hydrocarbon conversion reactions. The novel preparation of these materials enables exquisite control over their physical and chemical properties that could be controlled (and therefore rationally tuned) during synthesis. The ability to synthesize rather than prepare catalysts followed by thorough characterization enable accurate structure-function relationships to be elucidated. This thesis emphasizes all three aspects of catalyst design: synthesis, characterization and reactivity studies. The precise control of metal nanoparticle size, surface structure and composition may enable the development of highly active and selective heterogeneous catalysts.

  9. Diffusion in condensed matter methods, materials, models

    CERN Document Server

    Kärger, Jörg


    Diffusion as the process of particle transport due to stochastic movement is a phenomenon of crucial relevance for a large variety of processes and materials. This comprehensive, handbook- style survey of diffusion in condensed matter gives detailed insight into diffusion as the process of particle transport due to stochastic movement. Leading experts in the field describe in 23 chapters the different aspects of diffusion, covering microscopic and macroscopic experimental techniques and exemplary results for various classes of solids, liquids and interfaces as well as several theoretical concepts and models. Students and scientists in physics, chemistry, materials science, and biology will benefit from this detailed compilation.

  10. Chaos and Hyperchaos in a Model of Ribosome Autocatalytic Synthesis


    Likhoshvai, Vitaly A.; Vladislav V. Kogai; Fadeev, Stanislav I.; Khlebodarova, Tamara M.


    Any vital activities of the cell are based on the ribosomes, which not only provide the basic machinery for the synthesis of all proteins necessary for cell functioning during growth and division, but for biogenesis itself. From this point of view, ribosomes are self-replicating and autocatalytic structures. In current work we present an elementary model in which the autocatalytic synthesis of ribosomal RNA and proteins, as well as enzymes ensuring their degradation are described with two mon...

  11. Containerless synthesis of amorphous and nanophase organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Benmore, Chris J.; Weber, Johann R.


    The invention provides a method for producing a mixture of amorphous compounds, the method comprising supplying a solution containing the compounds; and allowing at least a portion of the solvent of the solution to evaporate while preventing the solute of the solution from contacting a nucleation point. Also provided is a method for transforming solids to amorphous material, the method comprising heating the solids in an environment to form a melt, wherein the environment contains no nucleation points; and cooling the melt in the environment.

  12. The synthesis and properties of nanoscale ionic materials

    KAUST Repository

    Rodriguez, Robert Salgado


    In this article we discuss the effect of constituents on structure, flow, and thermal properties of nanoscale ionic materials (NIMs). NIMs are a new class of nanohybrids consisting of a nanometer-sized core, a charged corona covalently attached to the core, and an oppositely charged canopy. The hybrid nature of NIMs allows for their properties to be engineered by selectively varying their components. The unique properties associated with these systems can help overcome some of the issues facing the implementation of nanohybrids to various commercial applications, including carbon dioxide capture,water desalinization and as lubricants. Copyright © 2010 John Wiley & Sons, Ltd.

  13. Surfactant Assisted Hydrothermal Synthesis of CdSe Nanostructural Materials

    Institute of Scientific and Technical Information of China (English)

    Ganganagappa Nagaraju; Cujjarahalli Thimmanna Chandrappa


    CdSe/CTAB composite nanostructural materials were successfully synthesized at 160-200℃ for 2 days through a facile surfactant (cetyl trimethyl ammonium bromide-CTAB) assisted hydrothermal method us- ing cadmium acetate and sodium selenate as precursor. The obtained products were characterized by X-ray diffraction, energy dispersive X-ray analysis, Fourier transform infrared spectroscopy and thermo gravimetric analysis. Optical properties were studied by photoluminescence and UV-visible spectroscopy and morphology was investigated by scanning electron microscopy.

  14. Rational design, synthesis, purification, and activation of metal-organic framework materials. (United States)

    Farha, Omar K; Hupp, Joseph T


    The emergence of metal-organic frameworks (MOFs) as functional ultrahigh surface area materials is one of the most exciting recent developments in solid-state chemistry. Now constituting thousands of distinct examples, MOFs are an intriguing class of hybrid materials that exist as infinite crystalline lattices with inorganic vertices and molecular-scale organic connectors. Useful properties such as large internal surface areas, ultralow densities, and the availability of uniformly structured cavities and portals of molecular dimensions characterize functional MOFs. Researchers have effectively exploited these unusual properties in applications such as hydrogen and methane storage, chemical separations, and selective chemical catalysis. In principle, one of the most attractive features of MOFs is the simplicity of their synthesis. Typically they are obtained via one-pot solvothermal preparations. However, with the simplicity come challenges. In particular, MOF materials, especially more complex ones, can be difficult to obtain in pure form and with the optimal degree of catenation, the interpenetration or interweaving of identical independent networks. Once these two issues are satisfied, the removal of the guest molecules (solvent from synthesis) without damaging the structural integrity of the material is often an additional challenge. In this Account, we review recent advances in the synthetic design, purification, and activation of metal-organic framework materials. We describe the rational design of a series of organic struts to limit framework catenation and thereby produce large pores. In addition, we demonstrate the rapid separation of desired MOFs from crystalline and amorphous contaminants cogenerated during synthesis based on their different densities. Finally, we discuss the mild and efficient activation of initially solvent-filled pores with supercritical carbon dioxide, yielding usable channels and high internal surface areas. We expect that the

  15. The DOE Center of Excellence for the Synthesis and Processing of Advanced Materials: Research briefs

    Energy Technology Data Exchange (ETDEWEB)



    This publication is designed to inform present and potential customers and partners of the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials about significant advances resulting from Center-coordinated research. The format is an easy-to-read, not highly technical, concise presentation of the accomplishments. Selected accomplishments from each of the Center`s seven initial focused projects are presented. The seven projects are: (1) conventional and superplastic forming; (2) materials joining; (3) nanoscale materials for energy applications; (4) microstructural engineering with polymers; (5) tailored microstructures in hard magnets; (6) processing for surface hardness; and (7) mechanically reliable surface oxides for high-temperature corrosion resistance.

  16. Microwave synthesis of LiCoO2 cathode materials

    Institute of Scientific and Technical Information of China (English)

    YU Yong-li; ZHAI Xiu-jing; FU Yan; YAO Guang-chun


    LiCoO2 powder used as cathode material for lithium ion battery was synthesized by microwave heating markedly affect the purity, morphology and electrochemical behaviors of the samples. X-ray diffraction (XRD) patterns display that the samples synthesized at 360 W for 10 min are pure layered LiCoO2, and SEM photos show that the powders are crystalline with well-defined facets whose sizes are about 5 μm. The performance of Co3O4 and starting materials by microwave heating and conventional heating was investigated. It is indicated that Co3O4 decomposes into CoO in microwave field at 750 ℃ and the mechanism of preparing LiCoO2 by microwave heating is different from that by conventional heating. The electrochemical behaviors of samples were tested. As a result, the highest specific discharge capacity is 134.3 mAh/g and the coulomb efficiency is 92.56%.

  17. Materials Selection, Synthesis, and Dielectrical Properties of PVC Nanocomposites

    Directory of Open Access Journals (Sweden)

    Youssef Mobarak


    Full Text Available Materials selection process for electrical insulation application was carried out using Cambridge Engineering Selector (CES program. Melt mixing technique was applied to prepare polyvinyl-chloride- (PVC- nanofumed silica and nanomontmorillonite clay composites. Surface analysis and particles dispersibility were examined using scanning electron microscope. Dielectrical properties were assessed using Hipot tester. An experimental work for dielectric loss of the nanocomposite materials has been investigated in a frequency range of 10 Hz–50 kHz. The initial results using CES program showed that microparticles of silica and clay can improve electrical insulation properties and modulus of elasticity of PVC. Nano-montmorillonite clay composites were synthesized and characterized. Experimental analyses displayed that trapping properties of matrix are highly modified by the presence of nanofillers. The nanofumed silica and nanoclay particles were dispersed homogenously in PVC up to 10% wt/wt. Dielectric loss tangent constant of PVC-nanoclay composites was decreased successfully from 0.57 to 0.5 at 100 Hz using fillers loading from 1% to 10% wt/wt, respectively. Nano-fumed silica showed a significant influence on the electrical resistivity of PVC by enhancing it up to 1 × 1011 Ohm·m.

  18. Modeling electrical dispersion phenomena in Earth materials

    Directory of Open Access Journals (Sweden)

    D. Patella


    Full Text Available It is illustrated that IP phenomena in rocks can be described using conductivity dispersion models deduced as solutions to a 2nd-order linear differential equation describing the motion of a charged particle immersed in an external electrical field. Five dispersion laws are discussed, namely: the non-resonant positive IP model, which leads to the classical Debye-type dispersion law and by extension to the Cole-Cole model, largely used in current practice; the non-resonant negative IP model, which allows negative chargeability values, known in metals at high frequencies, to be explained as an intrinsic physical property of earth materials in specific field cases; the resonant flat, positive or negative IP models, which can explain the presence of peak effects at specific frequencies superimposed on flat, positive or negative dispersion spectra.

  19. Three-dimensional modeling of piezoelectric materials. (United States)

    Brissaud, Michel


    This paper deals with 3-D modeling of piezoelectric materials. The model is based on an exact description of the potential and electric field inside a material. Moreover, coherent piezoelectric equations are used. Modeling has been applied to rectangular and cylindrical elements. In each case, the exact equations of the displacements along the three coordinate axes and the corresponding electric impedance are calculated. The general resonance conditions are stated for these two geometries. It is shown that, contrary to the 1-D models, a unique equation describes lateral and thickness vibrations, or radial and thickness vibrations. These properties enable us to analytically calculate the frequency spectrum of rectangular elements, thick disks, or cylinders and also thick rings or hollow cylinders versus the width to thickness ratio. It is then very easy to determine the corresponding dispersion diagram related to each geometry sample. These resonance conditions are similar to those deduced from the 1-D model described in the IEEE standard but are more general and necessitate no cancelling out assumptions. In addition, contrary to 1-D models, the wave velocities and the permittivity are independent of the element geometry (parallelepiped or cylindrical). The wave velocities are equal to those stated for the wave propagation in infinite medium and measured with pulse-echo techniques. It is the coupling inside the material which modifies the resonance conditions and not the geometrical dimensions of the vibrating element. 3-D modeling and 1-D radial mode of the admittance of a thick disk are calculated and compared with experimental measurements. Theoretical and measured admittances are compared and discussed.

  20. Plasma-enhanced synthesis of green flame retardant cellulosic materials (United States)

    Totolin, Vladimir

    The natural fiber-containing fabrics and composites are more environmentally friendly, and are used in transportation (automobiles, aerospace), military applications, construction industries (ceiling paneling, partition boards), consumer products, etc. Therefore, the flammability characteristics of the composites based on polymers and natural fibers play an important role. This dissertation presents the development of plasma assisted - green flame retardant coatings for cellulosic substrates. The overall objective of this work was to generate durable flame retardant treatment on cellulosic materials. In the first approach sodium silicate layers were pre-deposited onto clean cotton substrates and cross linked using low pressure, non-equilibrium oxygen plasma. A statistical design of experiments was used to optimize the plasma parameters. The modified cotton samples were tested for flammability using an automatic 45° angle flammability test chamber. Aging tests were conducted to evaluate the coating resistance during the accelerated laundry technique. The samples revealed a high flame retardant behavior and good thermal stability proved by thermo-gravimetric analysis. In the second approach flame retardant cellulosic materials have been produced using a silicon dioxide (SiO2) network coating. SiO 2 network armor was prepared through hydrolysis and condensation of the precursor tetraethyl orthosilicate (TEOS), prior coating the substrates, and was cross linked on the surface of the substrates using atmospheric pressure plasma (APP) technique. Due to protection effects of the SiO2 network armor, the cellulosic based fibers exhibit enhanced thermal properties and improved flame retardancy. In the third approach, the TEOS/APP treatments were extended to linen fabrics. The thermal analysis showed a higher char content and a strong endothermic process of the treated samples compared with control ones, indicating a good thermal stability. Also, the surface analysis proved

  1. Combustion synthesis of advanced materials. [using in-situ infiltration technique (United States)

    Moore, J. J.; Feng, H. J.; Perkins, N.; Readey, D. W.


    The combustion synthesis of ceramic-metal composites using an in-situ liquid infiltration technique is described. The effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e. solids, liquids and gases, with varying physical properties e.g. thermal conductivity, on the microstructure and morphology of synthesized products is also described. Alternatively, conducting the combustion synthesis reaction in a reactive gas environment is also discussed, in which advantages can be gained from the synergistic effects of combustion synthesis and vapor phase transport. In each case, the effect of the presence or absence of gravity (density) driven fluid flow and vapor transport is discussed as is the potential for producing new and perhaps unique materials by conducting these SHS reactions under microgravity conditions.

  2. Theoretical Synthesis of Mixed Materials for CO2 Capture Applications

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua


    These pages provide an example of the layout and style required for the preparation of four-page papers for the TechConnect World 2015 technical proceedings.Documents must be submitted in electronic (Adobe PDFfile) format. Please study the enclosed materials beforebeginning the final preparation of your paper. Proofread your paper carefully before submitting (it will appear in the published volume in exactly the same form). Your PDF manuscript must be uploaded online by April 11th, 2015.You will receive no proofs. Begin your paper with an abstract of no more than 18 lines. Thoroughly summarize your article in this section since this text will be used for on-line listing and classification of the publication.

  3. Nanostructured carbon materials decorated with organophosphorus moieties: synthesis and application (United States)

    Biagiotti, Giacomo; Langè, Vittoria; Ligi, Cristina; Caporali, Stefano; Muniz-Miranda, Maurizio; Flis, Anna; Pietrusiewicz, K Michał; Ghini, Giacomo; Brandi, Alberto


    A new synthetic approach for the production of carbon nanomaterials (CNM) decorated with organophosphorus moieties is presented. Three different triphenylphosphine oxide (TPPO) derivatives were used to decorate oxidized multiwalled carbon nanotubes (ox-MWCNTs) and graphene platelets (GPs). The TPPOs chosen bear functional groups able to react with the CNMs by Tour reaction (an amino group), nitrene cycloaddition (an azido group) or CuAAC reaction (one terminal C–C triple bond). All the adducts were characterized by FTIR, Raman spectroscopy, TEM, XPS, elemental analysis and ICP-AES. The cycloaddition of nitrene provided the higher loading on ox-MWCNTs and GPs as well, while the Tour approach gave best results with nanotubes (CNTs). Finally, we investigated the possibility to reduce the TPPO functionalized CNMs to the corresponding phosphine derivatives and applied one of the materials produced as heterogeneous organocatalyst in a Staudinger ligation reaction.

  4. Combinatorial microfluidic droplet engineering for biomimetic material synthesis (United States)

    Bawazer, Lukmaan A.; McNally, Ciara S.; Empson, Christopher J.; Marchant, William J.; Comyn, Tim P.; Niu, Xize; Cho, Soongwon; McPherson, Michael J.; Binks, Bernard P.; deMello, Andrew; Meldrum, Fiona C.


    Although droplet-based systems are used in a wide range of technologies, opportunities for systematically customizing their interface chemistries remain relatively unexplored. This article describes a new microfluidic strategy for rapidly tailoring emulsion droplet compositions and properties. The approach uses a simple platform for screening arrays of droplet-based microfluidic devices and couples this with combinatorial selection of the droplet compositions. Through the application of genetic algorithms over multiple screening rounds, droplets with target properties can be rapidly generated. The potential of this method is demonstrated by creating droplets with enhanced stability, where this is achieved by selecting carrier fluid chemistries that promote titanium dioxide formation at the droplet interfaces. The interface is a mixture of amorphous and crystalline phases, and the resulting composite droplets are biocompatible, supporting in vitro protein expression in their interiors. This general strategy will find widespread application in advancing emulsion properties for use in chemistry, biology, materials, and medicine.

  5. The evolution of the protein synthesis system. I - A model of a primitive protein synthesis system (United States)

    Mizutani, H.; Ponnamperuma, C.


    A model is developed to describe the evolution of the protein synthesis system. The model is comprised of two independent autocatalytic systems, one including one gene (A-gene) and two activated amino acid polymerases (O and A-polymerases), and the other including the addition of another gene (N-gene) and a nucleotide polymerase. Simulation results have suggested that even a small enzymic activity and polymerase specificity could lead the system to the most accurate protein synthesis, as far as permitted by transitions to systems with higher accuracy.

  6. Dynamic modelling of packaging material flow systems. (United States)

    Tsiliyannis, Christos A


    A dynamic model has been developed for reused and recycled packaging material flows. It allows a rigorous description of the flows and stocks during the transition to new targets imposed by legislation, product demand variations or even by variations in consumer discard behaviour. Given the annual reuse and recycle frequency and packaging lifetime, the model determines all packaging flows (e.g., consumption and reuse) and variables through which environmental policy is formulated, such as recycling, waste and reuse rates and it identifies the minimum number of variables to be surveyed for complete packaging flow monitoring. Simulation of the transition to the new flow conditions is given for flows of packaging materials in Greece, based on 1995--1998 field inventory and statistical data.

  7. Finite element modeling for materials engineers using Matlab

    CERN Document Server

    Oluwole, Oluleke


    Finite Element Modeling for Materials Engineers Using MATLAB® combines the finite element method with MATLAB to offer materials engineers a fast and code-free way of modeling for many materials processes.

  8. ANN valuation model of material LCIA profile

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei-ping; LIU Hua; ZHAO Hai-dong; ZHU Quan-li; LI Yuan-yuan


    Weighting model is the only valuation model of life cycle impact assessment(LCIA) profile now.It simplifies evaluation function into linear function,and makes the determination of weighting factor complicated.Therefore the valuation of LCIA profile is the most critical and controversial step in life cycle assessment(LCA).Development on valuation models,which are understood easily and accepted widely,is urgently needed in the field of LCA.The modeling approaches for the linear evaluation function were summed up.The modeling approaches for the nonlinear evaluation function were set up by function approximation theory,which include choosing preference products,forming preference data,establishing artificial neural network(ANN) and training ANN by preference data.By selecting 7 material products as preference product,experience was done with modeling approaches of the nonlinear evaluation function.The results show that the modeling approaches and valuation model of the nonlinear evaluation function are more practical than the weighting model.

  9. Micromechanical models for graded composite materials

    DEFF Research Database (Denmark)

    Reiter, T; Dvorak, G.J.; Tvergaard, Viggo


    Elastic response of selected plane-array models of graded composite microstructures is examined under both uniform and linearly varying boundary tractions and displacements, by means of detailed finite element studies of large domains containing up to several thousand inclusions. Models consisting...... fields are predicted by Mori-Tanaka estimates. On the other hand, the response of graded materials with a skeletal microstructure in a wide transition zone between clearly defined matrix phases is better approximated by the self-consistent estimates. Certain exceptions are noted for loading by overall...

  10. Synthesis and characterization of mesoporous Mn-MCM-41 materials

    Energy Technology Data Exchange (ETDEWEB)

    Saladino, Maria Luisa, E-mail: [Dipartimento di Chimica Fisica ' S. Cannizzaro' and INSTM UdR Palermo, Universita di Palermo, Parco d' Orleans II, Viale delle Scienze pad.17, Palermo 90128 (Italy); Kraleva, Elka; Todorova, Silvia [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Spinella, Alberto; Nasillo, Giorgio [Centro Grandi Apparecchiature-UniNetLab, Universita di Palermo, Via Marini 14, Palermo 90128 (Italy); Caponetti, Eugenio [Dipartimento di Chimica Fisica ' S. Cannizzaro' and INSTM UdR Palermo, Universita di Palermo, Parco d' Orleans II, Viale delle Scienze pad.17, Palermo 90128 (Italy); Centro Grandi Apparecchiature-UniNetLab, Universita di Palermo, Via Marini 14, Palermo 90128 (Italy)


    Highlights: {center_dot} Manganese MCM-41 as catalyst. {center_dot} Influence of pH on the structure of MCM-41. {center_dot} Influence of manganese on the structure and activity of Mn-MCM-41. - Abstract: MCM-41 has been synthesized at two different pH using cetyl-trimethylammonium bromide (CTAB) surfactant as template and adding the silica precursor to aqueous solutions containing CTAB. The obtained solids were calcined at 600 deg. C for 4 h. Mn-MCM-41 powders with different Mn/Si molar ratios were prepared using the incipient wetness method, followed by calcination at 550 deg. C for 5 h. At the end of the impregnation process the powders colour changed from white to brown whose intensity depends on manganese quantity. The materials characterization was performed by X-ray diffraction, N{sub 2} adsorption, {sup 29}Si Cross Polarization-Magic Angle Spinning NMR, and X-ray Photoelectron Spectroscopy. The effects of the manganese quantity and of the structural characteristic of the MCM-41 support were studied. The catalytic activity of the prepared systems was evaluated in a complete n-hexane oxidation.

  11. Synthesis of Titania-Silica Materials by Sol-Gel

    Directory of Open Access Journals (Sweden)

    Rubia F. S. Lenza


    Full Text Available In this work TiO2-SiO2 glasses containing as much as 20 mol % of TiO2 were prepared via sol-gel process using titanium and silicon alkoxides, in the presence of chlorine, in the form of titanium tetrachloride or HCl. The gels were heat-treated until 800 °C. X-ray diffraction and Fourier transform infrared spectroscopy were used to understand the structural properties of TiO2-SiO2 oxides calcined at different temperatures and to evaluate the homogeneity of these materials. The degree of the compactness of the silica network is inferred from the frequency of the asymmetric stretching vibrations of Si-O-Si bonds. Formation of Si-O-Ti bridges, as monitored by the intensity of characteristic 945 cm-1 ¾ 960 cm-1 vibration, is particularly prominent if the method of basic two-step prehydrolysis of silicon alkoxide, addition of titanium alkoxide and completion of hydrolysis was used.

  12. Synthesis and Investigation of Advanced Energetic Materials Based on Bispyrazolylmethanes. (United States)

    Fischer, Dennis; Gottfried, Jennifer L; Klapötke, Thomas M; Karaghiosoff, Konstantin; Stierstorfer, Jörg; Witkowski, Tomasz G


    Herein we present the preparation and characterization of three new bispyrazolyl-based energetic compounds with great potential as explosive materials. The reaction of sodium 4-amino-3,5-dinitropyrazolate (5) with dimethyl iodide yielded bis(4-amino-3,5-dinitropyrazolyl)methane (6), which is a secondary explosive with high heat resistance (Tdec =310 °C). The oxidation of this compound afforded bis(3,4,5-trinitropyrazolyl)methane (7), which is a combined nitrogen- and oxygen-rich secondary explosive with very high theoretical and estimated experimental detonation performance (Vdet (theor)=9304 m s(-1) versus Vdet (exp)=9910 m s(-1) ) in the range of that of CL-20. Also, the thermal stability (Tdec =205 °C) and sensitivities of 7 are auspicious. The reaction of 6 with in situ generated nitrous acid yielded the primary explosive bis(4-diazo-5-nitro-3-oxopyrazolyl)methane (8), which showed superior properties to those of currently used diazodinitrophenol (DDNP). © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Group Contribution Based Process Flowsheet Synthesis, Design and Modelling

    DEFF Research Database (Denmark)

    Gani, Rafiqul; d'Anterroches, Loïc


    This paper presents a process-group-contribution Method to model. simulate and synthesize a flowsheet. The process-group based representation of a flowsheet together with a process "property" model are presented. The process-group based synthesis method is developed on the basis of the computer...

  14. Multidimensional DDT modeling of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Baer, M.R.; Hertel, E.S.; Bell, R.L.


    To model the shock-induced behavior of porous or damaged energetic materials, a nonequilibrium mixture theory has been developed and incorporated into the shock physics code, CTH. The foundation for this multiphase model is based on a continuum mixture formulation given by Baer and Nunziato. This multiphase mixture model provides a thermodynamic and mathematically-consistent description of the self-accelerated combustion processes associated with deflagration-to-detonation and delayed detonation behavior which are key modeling issues in safety assessment of energetic systems. An operator-splitting method is used in the implementation of this model, whereby phase diffusion effects are incorporated using a high resolution transport method. Internal state variables, forming the basis for phase interaction quantities, are resolved during the Lagrangian step requiring the use of a stiff matrix-free solver. Benchmark calculations are presented which simulate low-velocity piston impact on a propellant porous bed and experimentally-measured wave features are well replicated with this model. This mixture model introduces micromechanical models for the initiation and growth of reactive multicomponent flow that are key features to describe shock initiation and self-accelerated deflagration-to-detonation combustion behavior. To complement one-dimensional simulation, two-dimensional numerical calculations are presented which indicate wave curvature effects due to the loss of wall confinement. This study is pertinent for safety analysis of weapon systems.

  15. High Yield Synthesis of Aspect Ratio Controlled Graphenic Materials from Anthracite Coal in Supercritical Fluids. (United States)

    Sasikala, Suchithra Padmajan; Henry, Lucile; Yesilbag Tonga, Gulen; Huang, Kai; Das, Riddha; Giroire, Baptiste; Marre, Samuel; Rotello, Vincent M; Penicaud, Alain; Poulin, Philippe; Aymonier, Cyril


    This paper rationalizes the green and scalable synthesis of graphenic materials of different aspect ratios using anthracite coal as a single source material under different supercritical environments. Single layer, monodisperse graphene oxide quantum dots (GQDs) are obtained at high yield (55 wt %) from anthracite coal in supercritical water. The obtained GQDs are ∼3 nm in lateral size and display a high fluorescence quantum yield of 28%. They show high cell viability and are readily used for imaging cancer cells. In an analogous experiment, high aspect ratio graphenic materials with ribbon-like morphology (GRs) are synthesized from the same source material in supercritical ethanol at a yield of 6.4 wt %. A thin film of GRs with 68% transparency shows a surface resistance of 9.3 kΩ/sq. This is apparently the demonstration of anthracite coal as a source for electrically conductive graphenic materials.

  16. Advances in design and modeling of porous materials (United States)

    Ayral, André; Calas-Etienne, Sylvie; Coasne, Benoit; Deratani, André; Evstratov, Alexis; Galarneau, Anne; Grande, Daniel; Hureau, Matthieu; Jobic, Hervé; Morlay, Catherine; Parmentier, Julien; Prelot, Bénédicte; Rossignol, Sylvie; Simon-Masseron, Angélique; Thibault-Starzyk, Frédéric


    This special issue of the European Physical Journal Special Topics is dedicated to selected papers from the symposium "High surface area porous and granular materials" organized in the frame of the conference "Matériaux 2014", held on November 24-28, 2014 in Montpellier, France. Porous materials and granular materials gather a wide variety of heterogeneous, isotropic or anisotropic media made of inorganic, organic or hybrid solid skeletons, with open or closed porosity, and pore sizes ranging from the centimeter scale to the sub-nanometer scale. Their technological and industrial applications cover numerous areas from building and civil engineering to microelectronics, including also metallurgy, chemistry, health, waste water and gas effluent treatment. Many emerging processes related to environmental protection and sustainable development also rely on this class of materials. Their functional properties are related to specific transfer mechanisms (matter, heat, radiation, electrical charge), to pore surface chemistry (exchange, adsorption, heterogeneous catalysis) and to retention inside confined volumes (storage, separation, exchange, controlled release). The development of innovative synthesis, shaping, characterization and modeling approaches enables the design of advanced materials with enhanced functional performance. The papers collected in this special issue offer a good overview of the state-of-the-art and science of these complex media. We would like to thank all the speakers and participants for their contribution to the success of the symposium. We also express our gratitude to the organization committee of "Matériaux 2014". We finally thank the reviewers and the staff of the European Physical Journal Special Topics who made the publication of this special issue possible.

  17. Design, synthesis, and characterization of new phosphazene related materials, and study the structure property correlations (United States)

    Tian, Zhicheng

    The work described in this thesis is divided into three major parts, and all of which involve the exploration of the chemistry of polyphosphazenes. The first part (chapters 2 and 3) of my research is synthesis and study polyphoshazenes for biomedical applications, including polymer drug conjugates and injectable hydrogels for drug or biomolecule delivery. The second part (chapters 4 and 5) focuses on the synthesis of several organic/inorganic hybrid polymeric structures, such as diblock, star, brush and palm tree copolymers using living cationic polymerization and atom transfer radical polymerization techniques. The last part (chapters 6 and 7) is about exploratory synthesis of new polymeric structures with fluorinated side groups or cycloaliphatic side groups, and the study of new structure property relationships. Chapter 1 is an outline of the fundamental concepts for polymeric materials, as such the history, important definitions, and some introductory material for to polymer chemistry and physics. The chemistry and applications of phopshazenes is also briefly described. Chapter 2 is a description of the design, synthesis, and characterization of development of a new class of polymer drug conjugate materials based on biodegradable polyphosphazenes and antibiotics. Poly(dichlorophosphazene), synthesized by a thermal ring opening polymerization, was reacted with up to 25 mol% of ciprofloxacin or norfloxacin and three different amino acid esters (glycine, alanine, or phenylalanine) as cosubstituents via macromolecular substitutions. Nano/microfibers of several selected polymers were prepared by an electrospinning technique. Chapter 3 is concerned with the development of a class of injectable and biodegradable hydrogels based on water-soluble poly(organophosphazenes) containing oligo(ethylene glycol) methyl ethers and glycine ethyl esters. The hydrogels can be obtained by mixing alpha-cyclodextrin aqueous solution and poly(organophosphazenes) aqueous solution in

  18. Synthesis, Characterization, and Multimillion-Atom Simulation of Halogen-Based Energetic Materials for Agent Defeat (United States)


    Kolesnikov NIST: Liu New Discoveries, Inventions, or Patent Disclosures K. O. Christe and G. Drake, “Energetic Ionic Liquids ,” US Patent 7,771,549, Aug...DTRA-TR-13-23 Synthesis, Characterization, and Multimillion-Atom Simulation of Halogen -Based Energetic Materials for Agent Defeat Approved for...second foot foot-pound-force gallon (U.S. liquid ) inch jerk joule/kilogram (J/kg) radiation dose absorbed kilotons kip (1000 lbf) kip/inch 2

  19. Block copolymers : controlling nanostructure to generate functional materials : synthesis, characterization, and engineering


    Epps, Thomas H.; O'Reilly, Rachel K.


    n this perspective, we survey recent advances in the synthesis and characterization of block copolymers, discuss several key materials opportunities enabled by block copolymers, and highlight some of the challenges that currently limit further realization of block copolymers in promising nanoscale applications. One significant challenge, especially as the complexity and functionality of designer macromolecules increases, is the requirement of multiple complementary techniques to fully charact...

  20. Material Ecocriticism: Materiality, Agency, and Models of Narrativity

    Directory of Open Access Journals (Sweden)

    Serenella Iovino


    Full Text Available The proliferation of studies bearing on the intellectual movement known as the "new materialisms" evinces that a material turn is becoming an important paradigm in environmental humanities. Ranging from social and science studies, feminism, to anthropology, geography, environmental philosophies and animal studies, this approach is bringing innovative ways of considering matter and material relations that, coupled with reflections on agency, text, and narrativity, are going to impact ecocriticism in an unprecedented way.In consideration of the relevance of this debate, we would like to draw for Ecozon@'s readers an introductory map of the new paradigm and introduce what can be called "material ecocriticism." We will illustrate what we consider to be its main features, situating them in the conceptual horizons of the new materialisms. From this genealogical sketch, we will examine the re-definitions of concepts like matter, agency, discursivity, and intentionality, with regard to their effects on ecocriticism and in terms of their ethical perspectives.

  1. Anisotropic Cloth Modeling for Material Fabric (United States)

    Zhang, Mingmin; Pan, Zhigengx; Mi, Qingfeng

    Physically based cloth simulation has been challenging the graphics community for more than three decades. With the developing of virtual reality and clothing CAD, it has become the key technique of virtual garment and try-on system. Although it has received considerable attention in computer graphics, due to its flexible property and realistic feeling that the textile engineers pay much attention to, there is not a successful methodology to simulate cloth both in visual realism and physical accuracy. We present a new anisotropic textile modeling method based on physical mass-spring system, which models the warps and wefts separately according to the different material fabrics. The simulation process includes two main steps: firstly the rigid object simulation and secondly the flexible mass simulation near to be equilibrium. A multiresolution modeling is applied to enhance the tradeoff fruit of the realistic presentation and computation cost. Finally, some examples and the analysis results show the efficiency of the proposed method.

  2. Synthesis and functional properties of nanostructured ceria materials; Synthese und funktionelle Eigenschaften nanostrukturierter Ceroxidmaterialien

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, Meike


    Nanostructured ceria tubes have been synthesised using electro spun polymer fibers as templating material. These polymer mats are produced by electro spinning starting with a polymer solution. In a next step polymer fibers are decorated with cer containing sol, which is then dried. To receive ceria tubes the polymer is removed on the one hand by thermal decomposition of the polymer or on the other hand by oxygen plasma treatment of ceria/polymer hybrid material. The resulting ceria tubes have a specific surface area of 98 m2 g-1. TEM, XRD, SAED and Raman investigations show a fully nanostructured crystallinity with cubic fluorine type structure. This obtained material shows a photo catalytic activity within decomposition of methylene blue in the Vis part of the electromagnetic spectrum. This photo catalytic activity can be increased using doping ions of transition and rare earth elements that are introduced in the sol-gel synthesis. Also here XRD and TEM investigations show a fully nano crystalline structure of ceria. Raman spectroscopy verifies the doping of ceria by transition and rare earth elements up to 22% of doping. No phase separation can be observed. The photo catalytic activity can be increased using these doped materials. Additionally a catalytic activity of pure ceria and mixed ceria/zirconia materials have been investigated synthesis of dimethylcarboxilate without water addition. Here a direct dependence between turn over and doping cannot be detected. The dependence can be deduced to the synthesis process of the catalyst. Terminal sensoric properties of doped and undoped ceria (n-type semiconductor) are investigated. The prepared materials are used as chemiresistors against oxygen at temperatures of 700 C. These investigations show a reversible increase of the electrical resistance against oxygen.

  3. Simplified Application of Material Efficiency Green Metrics to Synthesis Plans: Pedagogical Case Studies Selected from "Organic Syntheses" (United States)

    Andraos, John


    This paper presents a simplified approach for the application of material efficiency metrics to linear and convergent synthesis plans encountered in organic synthesis courses. Computations are facilitated and automated using intuitively designed Microsoft Excel spreadsheets without invoking abstract mathematical formulas. The merits of this…

  4. Simplified Application of Material Efficiency Green Metrics to Synthesis Plans: Pedagogical Case Studies Selected from "Organic Syntheses" (United States)

    Andraos, John


    This paper presents a simplified approach for the application of material efficiency metrics to linear and convergent synthesis plans encountered in organic synthesis courses. Computations are facilitated and automated using intuitively designed Microsoft Excel spreadsheets without invoking abstract mathematical formulas. The merits of this…

  5. Advanced materials from natural materials: synthesis of aligned carbon nanotubes on wollastonites. (United States)

    Zhao, Meng-Qiang; Zhang, Qiang; Huang, Jia-Qi; Nie, Jing-Qi; Wei, Fei


    The growth of carbon nanotubes (CNTs) on natural materials is a low-cost, environmentally benign, and materials-saving method for the large-scale production of CNTs. Directly building 3D CNT architectures on natural materials is a key issue for obtaining advanced materials with high added value. We report the fabrication of aligned CNT arrays on fibrous natural wollastonite. Strongly dispersed iron particles with small sizes were produced on a planar surface of soaked fibrous wollastonite by a reduction process. These particles then catalyzed the decomposition of ethylene, leading to the synchronous growth of CNTs to form leaf- and brush-like wollastonite/CNT hybrids. The as-obtained hybrids could be further transformed into porous SiO(2)/CNT hybrids by reaction with hydrochloric acid. Further treatment with hydrofluoric acid resulted in aligned CNT arrays, with purities as high as 98.7 %. The presented work is very promising for the fabrication of advanced materials with unique structures and properties that can be used as fillers, catalyst supports, or energy-absorbing materials.

  6. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer (United States)

    Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; von Bojnicic-Kninski, Clemens M.; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A. R.; Breitling, Frank


    Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a "solid" solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  7. Chemical synthesis of Cd-free wide band gap materials for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R.; Sartale, S.D.; Ennaoui, A. [Hahn-Meitner-Institut, Berlin (Germany). Department of Solar Energy Research; Lokhande, C.D. [Shivaji University, Kolhapur (India). Department of Physics


    Chemical methods are nowadays very attractive, since they are relatively simple, low cost and convenient for larger area deposition of thin films. In this paper, we outline our work related to the synthesis and characterization of some wide band gap semiconducting material thin films prepared by using solution methods, namely, chemical bath deposition and successive ionic layer adsorption and reaction (SILAR). The optimum preparative parameters are given and respective structural, surface morphological, compositional, optical, and electrical properties are described. Some materials we used in solar cells as buffer layers and achieved remarkable results, which are summarized. (author)

  8. Synthesis of Chalcone and Flavanone Compound Using Raw Material of Acetophenone and Benzaldehyde Derivative

    Directory of Open Access Journals (Sweden)

    Ismiyarto Ismiyarto


    Full Text Available Synthesis of flavanoid compounds of chalcone and flavanone groups have been conducted. Flavanoid Is one of the group natural products which is mostly found in plants and have been proved to have physiological activity as drug. In this research, chalcone proup compounds that being synthesized are: chalcone, 3,4-dimethoxychalcone, 2'-hidroxy-3,4-dimethoxychalcone where as compound of flavanone group that being synthesized is 3',4'-dimethoxyflavanone. The synthesis of chalcone group are carried out based on Claisen-Schmidt reaction by using raw material of aromatic aldehydes and aromatic ketones. The synthesis in carried out by stirring at the room temperature using alkali solution as catalyst and ethanol as solvent. The synthesis of 3',4'-dimethoxyflanone is made based on the nucleophilic 1,4 addition of the unsaturated α,β ketone. The synthesis is made by refluxing 2'-hydroxy-3,4-dimethoxychalcone in alkali condition for 12 hours. The identification of flavanoid compound is carried out by using spectroscopic IR, GC-MS and 1H-NMR methods. The result of each synthesis chalcone group are follows: chalcone as yellowish solid with m.p= 50 °C and the yield is 83.39%; 3,4-dimethoxychalcone as yellow solid with m.p= 57°C and the yield is 76.00% ; 2'-hydroxy-3,4-dimethoxychalcone as orange solid with m.p= 90 °C and the yield is 74.29%, for 3',4'-dimethoxyflavanone as pale yellow solid with m.p= 80 °C and the yield is 72.00%.

  9. Concurrent multiscale modeling of amorphous materials (United States)

    Tan, Vincent


    An approach to multiscale modeling of amorphous materials is presented whereby atomistic scale domains coexist with continuum-like domains. The atomistic domains faithfully predict severe deformation while the continuum domains allow the computation to scale up the size of the model without incurring excessive computational costs associated with fully atomistic models and without the introduction of spurious forces across the boundary of atomistic and continuum-like domains. The material domain is firstly constructed as a tessellation of Amorphous Cells (AC). For regions of small deformation, the number of degrees of freedom is then reduced by computing the displacements of only the vertices of the ACs instead of the atoms within. This is achieved by determining, a priori, the atomistic displacements within such Pseudo Amorphous Cells associated with orthogonal deformation modes of the cell. Simulations of nanoscale polymer tribology using full molecular mechanics computation and our multiscale approach give almost identical prediction of indentation force and the strain contours of the polymer. We further demonstrate the capability of performing adaptive simulations during which domains that were discretized into cells revert to full atomistic domains when their strain attain a predetermined threshold. The authors would like to acknowledge the financial support given to this study by the Agency of Science, Technology and Research (ASTAR), Singapore (SERC Grant No. 092 137 0013).

  10. Novel bio-based epoxy-polyurethane materials from modified vegetable oils – synthesis and characterization

    Directory of Open Access Journals (Sweden)

    A. Sienkiewicz


    Full Text Available Presented research shows the results of a study on mechanical properties of materials obtained in the course of innovatory application of epoxidized vegetable oil in the synthesis of new bio-based epoxy resins, crosslinked with curing agents which are not typical for epoxy materials. The product was obtained via modern and pro-ecological modification of a well-known synthesis method of epoxies, namely the epoxy fusion process, then it was crosslinked using polyisocyanates of different structure: toluene-2,4-diisocyanate (TDI, hexamethylene diisocyanate (HDI and 4,4’-methylene diphenyl diisocyanate (MDI. The obtained epoxy-polyurethane materials are characterized by various mechanical properties, which depend on the type of chosen isocyanate. Compositions based on HDI exhibit better mechanical characteristics than elastic polyurethane materials based on hydroxylated soybean oil. Materials cured with aromatic isocyanates MDI and TDI are characterized by higher mechanical resistance comparable with cast polyurethane based on petrochemical resources. Epoxy fusion product cured with toluene-2,4-diisocyanate in a presence of Dabco T9 appears to have the best mechanical properties among all tested compositions.

  11. Modeling of alkynes: synthesis and theoretical properties

    Directory of Open Access Journals (Sweden)

    Renato Rosseto


    Full Text Available In this paper we present the synthesis and simulation of alkynes derivatives. Semiempirical calculations were carried out for the ground and first excited states, including the spectroscopic properties of the absorption and emission (fluorescence and phosphorescence spectra by INDO/S-CI and DNdM-INDO/S-CI methods with geometries fully optimized by PM3/CI. The fact that the theoretical spectra are in accord with the experimental absorption spectra gives us a new possible approach on how structure modifications could affect the non-linear optical properties of alkynes.

  12. Management Model Applicable to Metallic Materials Industry

    Directory of Open Access Journals (Sweden)

    Adrian Ioana


    Full Text Available This paper presents an algorithmic analysis of the marketing mix in metallurgy. It also analyzes the main correlations and their optimizing possibilities through an efficient management. Thus, both the effect and the importance of the marketing mix, for components (the four “P-s” areanalyzed in the materials’ industry, but their correlations as well, with the goal to optimize the specific management. There are briefly presented the main correlations between the 4 marketing mix components (the 4 “P-s” for a product within the materials’ industry, including aspects regarding specific management.Keywords: Management Model, Materials Industry, Marketing Mix, Correlations.

  13. Standard Model as the topological material

    CERN Document Server

    Volovik, G E


    Study of the Weyl and Dirac topological materials (topological semimetals, insulators, superfluids and superconductors) opens the route for the investigation of the topological quantum vacua of relativistic fields. The symmetric phase of the Standard Model (SM), where both electroweak and chiral symmetry are not broken, represents the topological semimetal. The vacua of the SM (and its extensions) in the phases with broken Electroweak symmetry represent the topological insulators of different types. We discuss in details the topological invariants in both symmetric and broken phases and establish their relation to the stability of vacuum.

  14. Controlling Magnetic and Ferroelectric Order Through Geometry: Synthesis, Ab Initio Theory, Characterization of New Multi-Ferric Fluoride Materials

    Energy Technology Data Exchange (ETDEWEB)

    Halasyamani, Shiv [Univ. of Houston, TX (United States); Fennie, Craig [Cornell Univ., Ithaca, NY (United States)


    We have focused on the synthesis, characterization, and ab initio theory on multi-functional mixed-metal fluorides. With funding from the DOE, we have successfully synthesized and characterized a variety of mixed metal fluoride materials.

  15. Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Charlotte Vichery


    Full Text Available Thanks to their high biocompatibility and bioactivity, bioactive glasses are very promising materials for soft and hard tissue repair and engineering. Because bioactivity and specific surface area intrinsically linked, the last decade has seen a focus on the development of highly porous and/or nano-sized materials. This review emphasizes the synthesis of bioactive glass nanoparticles and materials design strategies. The first part comprehensively covers mainly soft chemistry processes, which aim to obtain dispersible and monodispersed nanoparticles. The second part discusses the use of bioactive glass nanoparticles for medical applications, highlighting the design of materials. Mesoporous nanoparticles for drug delivery, injectable systems and scaffolds consisting of bioactive glass nanoparticles dispersed in a polymer, implant coatings and particle dispersions will be presented.

  16. Geometrical modeling of fibrous materials under compression (United States)

    Maze, Benoit; Tafreshi, Hooman Vahedi; Pourdeyhimi, Behnam


    Many fibrous materials such as nonwovens are consolidated via compaction rolls in a so-called calendering process. Hot rolls compress the fiber assembly and cause fiber-to-fiber bonding resulting in a strong yet porous structure. In this paper, we describe an algorithm for generating three dimensional virtual fiberwebs and simulating the geometrical changes that happen to the structure during the calendering process. Fibers are assumed to be continuous filaments with square cross sections lying randomly in the x or y direction. The fibers are assumed to be flexible to allow bending over one another during the compression process. Lateral displacement is not allowed during the compaction process. The algorithm also does not allow the fibers to interpenetrate or elongate and so the mass of the fibers is conserved. Bending of the fibers is modeled either by considering a constant "slope of bending" or constant "span of bending." The influence of the bending parameters on the propagation of compression through the material's thickness is discussed. In agreement with our experimental observations, it was found that the average solid volume fraction profile across the thickness becomes U shaped after the calendering. The application of these virtual structures in studying transport phenomena in fibrous materials is also demonstrated.

  17. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials

    Directory of Open Access Journals (Sweden)

    Gurunathan S


    Full Text Available Sangiliyandi Gurunathan, Jin-Hoi Kim Stem Cell and Regenerative Biology, Konkuk University, Seoul, Republic of Korea Abstract: Graphene is a two-dimensional atomic crystal, and since its development it has been applied in many novel ways in both research and industry. Graphene possesses unique properties, and it has been used in many applications including sensors, batteries, fuel cells, supercapacitors, transistors, components of high-strength machinery, and display screens in mobile devices. In the past decade, the biomedical applications of graphene have attracted much interest. Graphene has been reported to have antibacterial, antiplatelet, and anticancer activities. Several salient features of graphene make it a potential candidate for biological and biomedical applications. The synthesis, toxicity, biocompatibility, and biomedical applications of graphene are fundamental issues that require thorough investigation in any kind of applications related to human welfare. Therefore, this review addresses the various methods available for the synthesis of graphene, with special reference to biological synthesis, and highlights the biological applications of graphene with a focus on cancer therapy, drug delivery, bio-imaging, and tissue engineering, together with a brief discussion of the challenges and future perspectives of graphene. We hope to provide a comprehensive review of the latest progress in research on graphene, from synthesis to applications. Keywords: biomedical applications, cancer therapy, drug delivery, graphene, graphene-related materials, tissue engineering, toxicity 

  18. Modeling plasticity of materials with nanostructure (United States)

    Kudinova, N. R.


    A new approach to modeling of the plasticity of materials with the particle size in the range from 3 to 20 nm (nanostructure) has been proposed. It is based on classical thermodynamic approach employing the surface tension of nanoparticles. Its main advantage is the minimum number of physical parameters in use. In the context of the proposed model, we calculated the dependence of the melting temperature on the nanoparticle size which is consistent with experimental data. The volume density of the surface energy of nanoparticles was also determined. This energy is assumed to be a significant part of the internal energy during deformation Yield point was interpreted as the result of changes of grains surface energy during the deformation. The obtained yield point dependence on the grain size was related to the Hall–Petch law, and this resulted in confirmation of the hypothesis on the crucial role of surface tension forces in the initial stage of plastic deformation of nanomaterials.

  19. Modeling and simulation of tube-shell reactor for dimethyl-ether synthesis from coal-based synthesis gas

    Institute of Scientific and Technical Information of China (English)

    CHEN Da-sheng; ZHANG Hai-tao; YING Wei-yong; FANG Ding-ye


    Mathematical simulation was performed on tube-shell reactor for dimethyl ether (DME) synthesis from coal-based syngas. The model was established based on kinetics of dimethyl-ether synthesis from syngas over a bifunctional catalyst,which is mixed by methanol synthesis catalyst and dehydration catalyst as 1:1 mass ratio. Methanol synthesis from CO and CO2 and methanol dehydration were selected as three-independent reactions, CO, CO2, and DME as key components to establish the one-dimensional mathematical model of the reactor. The gas concentration and temperature profiles inside the reactor tubes were obtained. The operating conditions affecting DME synthesis were also discussed based on the model. The simulations indicate that higher pressure and lower temperature at the inlet and rich hydrogen in the reactant are favorable in direct DME synthesis in fixed-bed process, and the temperature of boiling water affect the reactor performance seriously.

  20. Synthesis and characterizaton of inorganic materials for sodium-ion batteries (United States)

    Shanmugam, Rengarajan

    Development of low-cost energy storage devices is critical for wide-scale implementation of intermittent renewable energy technologies and improving the electricity grid. Commercial devices remain prohibitively expensive or lack the performance specifications for a wider market reach. Na-ion batteries would perfectly suited for these large-scale applications as the raw materials (such as soda ash, salt, etc.) are plentiful, inexpensive and geographically unconstrained. However, extensive materials research on insertion electrodes is required for better understanding of the electrochemical and structural properties and engineering high performance Na-ion batteries. This thesis research involves exploratory study on new insertion materials with various crystallographic structure-types and extensive characterization of promising new inorganic compositions. Tunnel-type materials, sodium nickel phosphate-Na4Ni7(PO4)6, and sodium cobalt titanate- Na0.8Co0.4Ti1.6O4, were investigated to capitalize on the intrinsic structural stability offered by framework materials. Sol-gel and solid-state reaction synthetic techniques were employed for inorganic powder synthesis. Galvanostatic and potentiostatic testing confirm reversible sodium insertion/de-insertion reactions albeit with inadequate electrochemical characteristics (high voltage hysteresis> 1V). Subsequent efforts involved investigating layer-structured materials supporting fast ionic transport for better electrochemical performance. P2-sodium nickel titanate, Na2/3[Ni1/3Ti2/3]O2 (P2NT), with prismatic sodium co-ordination, was synthesized by solid-state technique. The 'bifunctional' oxide contains Ni2+/4+ and Ti4+/3+ redox couples with redox potentials of 3.6 V, 0.7 V vs. Na/Na+, respectively. This bifunctional approach would simplify electrode processing and provide cost reduction opportunities in battery manufacturing. The structural changes monitored using ex-situ XRD demonstrate a favorably broad solid

  1. Synthesis of functional materials by radiation and qualification testing of organic materials in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Young Chang; Kim, Ki Yup; Kang, Phil Hyun and others [KAERI, Taejon (Korea, Republic of); Jun, Hong Jae [Catholic Univ. of Korea, Seoul (Korea, Republic of); Suh, Dong Hak; Lee, Young Moo [Hanyang Univ., Seoul (Korea, Republic of); Min, Byung Kak [Chungju National Univ., Chungju (Korea, Republic of); Bae, You Han [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)


    The radiation crosslinking and grafting can be easily adjusted and is easily reproducible by controlling the radiation dose. These studies aim to develop new biomaterials such as covering for burns and wound, and controlled release of drug. A radiation technology was used to develop PTC materials useful in devices that limit electric fault currents. Radiation-curing of fiber-matrix composites is a promising application. There are a number of advantages to radiation curing of composites, compared with conventional thermal processing. Radiation curing at ambient temperature allows tighter control of part dimensions, and elimination of internal stresses which otherwise occur on cooling and which reduce material strength. These studies involved radiation curing of epoxy resins with various fibers and filler for structural application for aerospace and sport goods. The chain scission is the basis of other radiation treatments aimed at enhancing processing characteristics of polymers. These studies aim to make PTFE powder from PTFE scrap using the radiation degradation which allows incorporation of the material into coatings, inks etc. Low density polyethylene, crosslinked polyethylene, ethylene propylene rubber, and acrylonitrile butadiene rubber as cable insulating, seathing and sealing materials were irradiated for the accelerated ageing tests. Degradation was investigated by measuring dielectric analysis, thermogravimetric analysis, and dynamic mechanical analysis. Dielectric tan{delta}, storage modulus and loss modulus were increased with irradiation doses. However, decomposition temperature decreased with irradiation doses.

  2. Geochemistry Model Validation Report: Material Degradation and Release Model

    Energy Technology Data Exchange (ETDEWEB)

    H. Stockman


    The purpose of this Analysis and Modeling Report (AMR) is to validate the Material Degradation and Release (MDR) model that predicts degradation and release of radionuclides from a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. This AMR is prepared according to ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 17). The intended use of the MDR model is to estimate the long-term geochemical behavior of waste packages (WPs) containing U. S . Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The model is intended to predict (1) the extent to which criticality control material, such as gadolinium (Gd), will remain in the WP after corrosion of the initial WP, (2) the extent to which fissile Pu and uranium (U) will be carried out of the degraded WP by infiltrating water, and (3) the chemical composition and amounts of minerals and other solids left in the WP. The results of the model are intended for use in criticality calculations. The scope of the model validation report is to (1) describe the MDR model, and (2) compare the modeling results with experimental studies. A test case based on a degrading Pu-ceramic WP is provided to help explain the model. This model does not directly feed the assessment of system performance. The output from this model is used by several other models, such as the configuration generator, criticality, and criticality consequence models, prior to the evaluation of system performance. This document has been prepared according to AP-3.10Q, ''Analyses and Models'' (Ref. 2), and prepared in accordance with the technical work plan (Ref. 17).

  3. Cooperative Research Alliance Multiscale Modeling of Electronic Materials (MSME) (United States)


    transport characterization in nano-scale structures DC-40GHz environmental cryogenic I/V probe station Spectral dissection of bacteria and thin-films...Sensors and actuators for microrobots Graphene Flexible Displays Family of UGS Compact Radar Carbon Nanotubes Environmental Sensing Reformed...simulations • Develop innovative experimentation & validation techniques • Define multiscale material metrics • Perform processing & synthesis Multi

  4. Evolutionary Population Synthesis Models of Primeval Galaxies a Critical Appraisal

    CERN Document Server

    Buzzoni, A


    A theoretical approach relying on evolutionary population synthesis models could help refining the search criteria in deep galaxy surveys on the basis of a better knowledge of the expected apparent photometric properties of high-redshift objects. The following is a brief discussion reviewing some relevant aspects of the question in order to allow a more critical appraisal to primeval galaxy recognition.

  5. Synthesis of graphene and related two-dimensional materials for bioelectronics devices. (United States)

    Zhang, Tao; Liu, Jilun; Wang, Cheng; Leng, Xuanye; Xiao, Yao; Fu, Lei


    In recent years, graphene and related two-dimensional (2D) materials have emerged as exotic materials in nearly every fields of fundamental science and applied engineering. The latest progress has shown that these 2D materials could have a profound impact on bioelectronics devices. For the construction of these bioelectronics devices, these 2D materials were generally synthesized by the processes of exfoliation and chemical vapor deposition. In particular, the macrostructures of these 2D materials have also been realized by these two processes, which have shown great potentials in the self-supported and special-purpose biosensors. Due to the high specific surface area, subtle electron properties, abundant surface atoms of these 2D materials, the as-constructed bioelectronics devices have exhibited enhanced performance in the sensing of small biomolecules, heavy metals, pH, protein and DNA. The aim of this review article is to provide a comprehensive scientific progress in the synthesis of 2D materials for the construction of five typical bioelectronics devices (electrochemical biosensors, FET-based biosensors, piezoelectric devices, electrochemiluminescence devices and supercapacitors) and to overview the present status and future perspective of the applications of these bioelectronics devices based on 2D materials.

  6. Ultra-Fast Synthesis for Ag2Se and CuAgSe Thermoelectric Materials (United States)

    DUAN, H. Z.; LI, Y. L.; ZHAO, K. P.; QIU, P. F.; SHI, X.; CHEN, L. D.


    Ag2Se and CuAgSe have been recently reported as promising thermoelectric materials at room temperature. The traditional melting-annealing-sintering processes are used to grow Ag2Se and CuAgSe materials with the disadvantages of high costs of energy and time. In this work, phase-pure polycrystalline Ag2Se and CuAgSe compounds were synthesized from raw elemental powders directly by manual mixing followed by spark plasma sintering (MM-SPS) in a few minutes. The influence of SPS heating rate on the phase composition, microstructure, and thermoelectric properties, including Seebeck coefficient, electrical conductivity, and thermal conductivity, were investigated. The zTs of 0.8 at 390 K and 0.6 at 450 K are obtained for Ag2Se and CuAgSe, respectively, which is comparable with the values in the materials prepared by the traditional method. Furthermore, this ultrafast sample synthesis can significantly save material synthesis time and thus has the obvious advantage for large-scale production.

  7. Physical-chemical characterization of Tunisian clays for the synthesis of geopolymers materials (United States)

    Selmani, S.; Essaidi, N.; Gouny, F.; Bouaziz, S.; Joussein, E.; Driss, A.; Sdiri, A.; Rossignol, S.


    Natural clay materials from Tunisia were examined as an aluminosilicate source for the synthesis of consolidated materials at low temperatures. Three clay samples were collected from the El Kef, Douiret and Gafsa basins and calcined at different temperatures. All of the samples were characterized using chemical and mineralogical analyses, thermogravimetry, dilatometry, and Fourier transform infrared spectroscopy (FTIR) measurements. The chemical (XRF) and mineralogical analyses (XRD and FTIR) indicated that all of the samples contained various amounts of kaolinite and quartz, followed by calcite, mica, palygorskite and gypsum. Curing produced a binder which did not significantly affect the physic-chemical properties of these clays. The obtained materials heterogeneous did not reach the geopolymerization stage, most likely because of their low kaolinite content. The addition of a suitable aluminosilicate to these clays is therefore recommended to produce homogeneous consolidated geopolymers. The synthesized materials obtained after the addition of metakaolin to the formulation to improve reactivity have interesting properties, thereby providing good potential for Tunisian clays in the synthesis of geopolymers.

  8. Modelling binary rotating stars by new population synthesis code BONNFIRES

    CERN Document Server

    Lau, Herbert H B; Schneider, Fabian R N


    BONNFIRES, a new generation of population synthesis code, can calculate nuclear reaction, various mixing processes and binary interaction in a timely fashion. We use this new population synthesis code to study the interplay between binary mass transfer and rotation. We aim to compare theoretical models with observations, in particular the surface nitrogen abundance and rotational velocity. Preliminary results show binary interactions may explain the formation of nitrogen-rich slow rotators and nitrogen-poor fast rotators, but more work needs to be done to estimate whether the observed frequencies of those stars can be matched.

  9. Synthesis of LiNiO2 cathode materials with homogeneous Al doping at the atomic level

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zengcai [ORNL; Zhen, Honghe [Soochow University, Suzhou, People' s Republic of China; Kim, Yoongu [ORNL; Liang, Chengdu [ORNL


    Aluminum doped LiNiO2 cathode materials are synthesized by using Raney nickel as the starting material. The structure and composition are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with elemental mapping. The lithium deficiency is analyzed by Rieveld refinement. The initial capacity and retention of capacity are correlated to the lithium deficiency of the resulting cathode material. Using strong oxidant of Li2O2 in the synthesis results in materials with improved electrochemical cyclability. The improvement is related to the diminishing of lithium deficiency in strong oxidizing synthesis conditions.

  10. Modeling charge transport in organic photovoltaic materials. (United States)

    Nelson, Jenny; Kwiatkowski, Joe J; Kirkpatrick, James; Frost, Jarvist M


    The performance of an organic photovoltaic cell depends critically on the mobility of charge carriers within the constituent molecular semiconductor materials. However, a complex combination of phenomena that span a range of length and time scales control charge transport in disordered organic semiconductors. As a result, it is difficult to rationalize charge transport properties in terms of material parameters. Until now, efforts to improve charge mobilities in molecular semiconductors have proceeded largely by trial and error rather than through systematic design. However, recent developments have enabled the first predictive simulation studies of charge transport in disordered organic semiconductors. This Account describes a set of computational methods, specifically molecular modeling methods, to simulate molecular packing, quantum chemical calculations of charge transfer rates, and Monte Carlo simulations of charge transport. Using case studies, we show how this combination of methods can reproduce experimental mobilities with few or no fitting parameters. Although currently applied to material systems of high symmetry or well-defined structure, further developments of this approach could address more complex systems such anisotropic or multicomponent solids and conjugated polymers. Even with an approximate treatment of packing disorder, these computational methods simulate experimental mobilities within an order of magnitude at high electric fields. We can both reproduce the relative values of electron and hole mobility in a conjugated small molecule and rationalize those values based on the symmetry of frontier orbitals. Using fully atomistic molecular dynamics simulations of molecular packing, we can quantitatively replicate vertical charge transport along stacks of discotic liquid crystals which vary only in the structure of their side chains. We can reproduce the trends in mobility with molecular weight for self-organizing polymers using a cheap, coarse

  11. Effective utilization of incinerated municipal solid waste incineration ash: zeolitic material synthesis and silica extraction. (United States)

    Bac, Bui Hoang; Song, Yungoo; Moon, Yonghee; Kim, Myung Hun; Kang, Il Mo


    In this study the effective utilization of two types of municipal solid waste incinerator (MSWI) ashes, namely air-cooled ash (ACS) and water-cooled ash (WCS) samples obtained from a municipal solid waste incineration plant, was examined by applying zeolitic material synthesis and silica extraction. The influence of the experimental conditions including the ratio of sample : NaOH solution, the reaction temperature and time, and the concentration of NaOH solution were investigated. The results for the 25 experimental trials can be summarized as: (1) the formation of tobermorite and/or pectolite-1A as a major component in most conditions; (2) the synthesis of hydroxycancrinite as a major phase at 200 degrees C; (3) a dramatic increase in the extracted SiO(2) yield at 1 : 30 value of sample : NaOH ratio and 200 degrees C, even at short reaction times; and (4) relatively high SiO(2) yields for WCS ashes rather than ACS ashes. An increase in the reaction time improved the quantity of synthesized zeolitic materials. The reaction temperature determined the type of zeolite. An increase in the NaOH concentration can be an essential factor to improve zeolitic material synthesis, but it significantly reduced the yield of SiO(2) extraction. In conclusion, suitable conditions for obtaining both SiO(2) extraction and synthesized zeolites from the ashes of the incinerated solid waste materials should be: 200 degrees C reaction temperature; a 1 : 30 (g : mL) value for the sample : NaOH ratio; 2 mol L(-1) NaOH concentration; and a reaction time of more than 24 h.

  12. Precision Synthesis of Functional Polysaccharide Materials by Phosphorylase-Catalyzed Enzymatic Reactions

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa


    Full Text Available In this review article, the precise synthesis of functional polysaccharide materials using phosphorylase-catalyzed enzymatic reactions is presented. This particular enzymatic approach has been identified as a powerful tool in preparing well-defined polysaccharide materials. Phosphorylase is an enzyme that has been employed in the synthesis of pure amylose with a precisely controlled structure. Similarly, using a phosphorylase-catalyzed enzymatic polymerization, the chemoenzymatic synthesis of amylose-grafted heteropolysaccharides containing different main-chain polysaccharide structures (e.g., chitin/chitosan, cellulose, alginate, xanthan gum, and carboxymethyl cellulose was achieved. Amylose-based block, star, and branched polymeric materials have also been prepared using this enzymatic polymerization. Since phosphorylase shows a loose specificity for the recognition of substrates, different sugar residues have been introduced to the non-reducing ends of maltooligosaccharides by phosphorylase-catalyzed glycosylations using analog substrates such as α-d-glucuronic acid and α-d-glucosamine 1-phosphates. By means of such reactions, an amphoteric glycogen and its corresponding hydrogel were successfully prepared. Thermostable phosphorylase was able to tolerate a greater variance in the substrate structures with respect to recognition than potato phosphorylase, and as a result, the enzymatic polymerization of α-d-glucosamine 1-phosphate to produce a chitosan stereoisomer was carried out using this enzyme catalyst, which was then subsequently converted to the chitin stereoisomer by N-acetylation. Amylose supramolecular inclusion complexes with polymeric guests were obtained when the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of the guest polymers. Since the structure of this polymeric system is similar to the way that a plant vine twines around a rod, this polymerization system has been named

  13. Efficient Synthesis of Primary Nitrocarbamates of Sugar Alcohols: From Food to Energetic Materials. (United States)

    Axthammer, Quirin J; Klapötke, Thomas M; Krumm, Burkhard


    The synthesis of various new polyvalent nitrocarbamates derived from sugar alcohols was accomplished by an economically benign two-step synthesis. The precursor carbamates were synthesized with the reagent chlorosulfonyl isocyanate (CSI) and further nitrated using mixed acid. The starting materials, sugar alcohols, are renewable biomass, mainly used in food and cosmetic industry. The structures of one carbamate and one nitrocarbamate were exemplary described by single-crystal X-ray-analysis. The heat of formation is calculated by the use of isodesmic reactions and the energetic performance data were estimated. All compounds were fully characterized by elemental analysis, vibrational spectroscopy, (1)H, (13)C, and (14/15)N NMR spectroscopy and thermal analysis (DSC). The nitrocarbamates exhibit good detonation performance and have significantly lower sensitivities compared to the commonly used nitrate ester explosive PETN.

  14. Romp: The Method of Choice for Precise Macromolecular Engineering and Synthesis of Smart Materials (United States)

    Khosravi, Ezat; Castle, Thomas C.; Kujawa, Margaret; Leejarkpai, Jan; Hutchings, Lian R.; Hine, Peter J.

    The recent advances in olefin metathesis highlight the impact of Ring Opening Metathesis Polymerisation (ROMP) as a powerful technique for macromolecular engineering and synthesis of smart materials with well-defined structures. ROMP has attracted a considerable research attention recently particularly by industry largely due to the development of well-defined metal complexes as initiators and also because of the award of the Noble Prize for Chemistry in 2005 to three scientists (Chauvin, Grubbs, Schrock) for their contributions in this area. This chapter discusses several interesting examples in order to demonstrate that ROMP is a power tool in macromolecular engineering and that it allows the design and synthesis of polymers with novel topologies.


    Directory of Open Access Journals (Sweden)

    Prapti Rahayu


    Full Text Available Metal-organic frameworks (MOFs are porous coordination polymer containing bi-or polidentate organic linker coordinated with inorganic part, such as metal oxide cluster or metal cation as node which called as secondary building unit (SBU to form infinite structure. Due to high porosity and surface area, good thermal stability as well as the availability of unsaturated metal center or the linker influence attracts the interaction with gases, thus MOFs have potential to be applied as hydrogen storage material. One type of MOFs that have been widely studied is [Zn4O(benzene-1,4-dicarboxylate3], namely, MOF-5.Various synthesis method have been developed to obtain optimum results. Characterization of MOF-5 from various synthesis method such as crystallinity, capacity, stability, and quantum dot behavior of MOF-5 have been summarized in this review.

  16. Synthesis of organic carbonates based on CO{sub 2} as raw material

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M.; Dibenedetto, A. [University of Bari, Bari (Italy). Dept. of Chemistry


    The global market of carbonates (open chain or cyclic) and polycarbonate is increasing very rapidly. The conventional syntheses are based on the use, as starting material, of phosgene, a dangerous chemical. The possibility of developing alternative technologies that substitute phosgene with carbon dioxide for the synthesis of carbonates is very attractive. In fact CO{sub 2} is non toxic, very cheap and potentially ubiquitous. In this paper the potential of the utilisation of CO{sub 2} for the synthesis of carbonates and polycarbonate is discussed. An assessment of the different synthetic strategies of dimethylcarbonate will be also given using LCA and the potential of utilisation of CO{sub 2} will be defined. 23 refs., 1 fig.

  17. Modeling of a Reverse Flow Reactor for Methanol Synthesis

    Institute of Scientific and Technical Information of China (English)

    陈晓春; P.L.Silveston; 等


    An accurate one-dimensional,heterogeneous model taking account of axial dispersion and heat transfer to the reactor wall,and heat conduction through the reactor wall for methanol synthesis in a bench scale reactor under periodic reversal of flow direction is presented.Adjustable parameters in this model are the effectiveness factors for each of the three reactions occurring in the synthesis and a factor for the bed to wall heat transfer coefficient correlation.Experimental data were used to evaluate these parameters and reasonable values of these parameters were obtained.The model was found to closely predict the reactor performance under a wide range of parameters were obtained.The model was found to closely predict the reactor preformance under a wide range of operating conditions,such as carbon oxide concentrations,volumetric flow rate,and cyclic period.

  18. Block-Krylov component synthesis method for structural model reduction (United States)

    Craig, Roy R., Jr.; Hale, Arthur L.


    A new analytical method is presented for generating component shape vectors, or Ritz vectors, for use in component synthesis. Based on the concept of a block-Krylov subspace, easily derived recurrence relations generate blocks of Ritz vectors for each component. The subspace spanned by the Ritz vectors is called a block-Krylov subspace. The synthesis uses the new Ritz vectors rather than component normal modes to reduce the order of large, finite-element component models. An advantage of the Ritz vectors is that they involve significantly less computation than component normal modes. Both 'free-interface' and 'fixed-interface' component models are derived. They yield block-Krylov formulations paralleling the concepts of free-interface and fixed-interface component modal synthesis. Additionally, block-Krylov reduced-order component models are shown to have special disturbability/observability properties. Consequently, the method is attractive in active structural control applications, such as large space structures. The new fixed-interface methodology is demonstrated by a numerical example. The accuracy is found to be comparable to that of fixed-interface component modal synthesis.

  19. Imitation model of destruction of aviation fibrous polymeric composite materials

    Directory of Open Access Journals (Sweden)

    В. М. Синеглазов


    Full Text Available Considered are models imitating influence of lighting on dielectric construction materials with elements of lighting protection. Described are models of current spreading in multilayer materials and thermal destruction of fibrous polymeric composite materials caused by lighting current flowing on such materials

  20. One-Step Facile Synthesis of a Simple Hole Transport Material for Efficient Perovskite Solar Cells

    KAUST Repository

    Chen, Hu


    A hole transporting material was designed for use in perovskite solar cells, with a facile one-step synthesis from inexpensive, com-mercially available reagents. The molecule comprises a central fluorinated phenyl core with pendant aryl amines, namely, 3,6-difluoro-N1,N1,N2,N2,N4,N4,N5,N5-octakis(4-methoxyphenyl)benzene-1,2,4,5-tetraamine (DFTAB). A power conversion efficiency of up to 10.4% was achieved in a mesoporous perovskite device architecture. The merits of a simple and potentially low cost syn-thetic route as well as promising performance in perovskite devices, encourages further development of this materials class as new low-cost hole transporting materials for the scale up of perovskite solar cells.

  1. Cellulose acetate fibers prepared from different raw materials with rapid synthesis method. (United States)

    Chen, Jinghuan; Xu, Jikun; Wang, Kun; Cao, Xuefei; Sun, Runcang


    Transesterification is a mild process to prepare cellulose acetate (CA) as compared with the traditional method. In this study, CA fibers were produced from six cellulose raw materials based on a simple and rapid transesterification method. The properties of the CA solutions and the obtained CA fibers were investigated in detail. Results showed that all of the cellulose raw materials were esterified within 15 min, and spinning dopes could be obtained by concentrating the CA solutions via vacuum distillation. The XRD, FT-IR, (1)H, (13)C and HSQC NMR analysis confirmed the successful synthesis of CA. The degree of substitution (DS) of the obtained CA was significantly affected by the degree of polymerization (DP) of cellulose raw materials, which further influenced the viscosity of CA solutions as well as the structural, thermal and mechanical properties of the CA fibers.

  2. Synthesis of a New Optoelectronic Material Based on Oriented Adsorption of Dyes to Nanoparticles Surface

    Institute of Scientific and Technical Information of China (English)

    LI Gui-an; SONG Jian-ping; LI Xiu


    Synthesis of the optoelectronic storage material with structure for coating by nanosized metal and azo-dye was reported. The characterization of composites was made by using transmission electron microscope (TEM), ultraviolet-visible spectrometer (UV-Vis) and thermogravity analyzer (TGA). It is found that, due to the specific structure, in which azo-dye molecules are oriented and adsorbed on the spherical surface of nanosized metal, the absorption maximum of azo-dye methyl orange shift towards shorter wavelength band. The experimental results show that the proposed technique here would offer a promising way to synthesize short wavelength optoelectronic storage material by doping of metal nanoparticles coated with dyes in polymer. Furthermore, the composites based on the structure can present excellent thermal properties suitable for the requirements of optical storage. This new type of material is capable of matching semiconductor laser (GaN) in optoelectronic storage technology.

  3. Ullmann-like reactions for the synthesis of complex two-dimensional materials (United States)

    Quardokus, Rebecca C.; Tewary, V. K.; DelRio, Frank W.


    Engineering two-dimensional materials through surface-confined synthetic techniques is a promising avenue for designing new materials with tailored properties. Developing and understanding reaction mechanisms for surface-confined synthesis of two-dimensional materials requires atomic-level characterization and chemical analysis. Beggan et al (2015 Nanotechnology 26 365602) used scanning tunneling microscopy and x-ray photoelectron spectroscopy to elucidate the formation mechanism of surface-confined Ullmann-like coupling of thiophene substituted porphyrins on Ag(111). Upon surface deposition, bromine is dissociated and the porphyrins couple with surface adatoms to create linear strands and hexagonally packed molecules. Annealing the sample results in covalently-bonded networks of thienylporphyrin derivatives. A deeper understanding of surface-confined Ullmann-like coupling has the potential to lead to precision-engineered nano-structures through synthetic techniques. Contribution of the National Institute of Standards and Technology, not subject to copyright in the United States of America.

  4. Solid-State Thermal Reaction of a Molecular Material and Solventless Synthesis of Iron Oxide (United States)

    Roy, Debasis; Roy, Madhusudan; Zubko, Maciej; Kusz, Joachim; Bhattacharjee, Ashis


    Solid-state thermal decomposition reaction of a molecular material {As}({C}6{H}5)4[{Fe}^{II}{Fe}^{III} ({C}2{O}4)3]}n has been studied using non-isothermal thermogravimetry (TG) in an inert atmosphere. By analyzing the TG data collected at multiple heating rates in 300 K-1300 K range, the kinetic parameters (activation energy, most probable reaction mechanism function and frequency factor) are determined using different multi-heating rate analysis programs. Activation energy and the frequency factor are found to be strongly dependent on the extent of decomposition. The decomposed material has been characterized to be hematite using physical techniques (FT-IR and powder XRD). Particle morphology has been checked by TEM. A solid-state reaction pathway leading the molecular precursor to hematite has been proposed illustrating an example of solventless synthesis of iron oxides utilizing thermal decomposition as a technique using innocuous materials.

  5. Utilisation of theoretical models and frameworks in the process of evidence synthesis. (United States)

    Godfrey, Christina M; Harrison, Margaret B; Graham, Ian D; Ross-White, Amanda


    A systematic review is a comprehensive enquiry or study of secondary data sources. There is a research question, an a priori articulation of methods and a set of procedures to focus the investigation. Despite these rigorous structures to guide the review, synthesising evidence is a challenging, resource intense and time consuming process. Large volumes of information complicate not only the search functions, but also the conceptualisation of the evidence needed to create the concise and integrated results. Use of a theoretical model or framework could serve as an essential element in effectively focusing the review and designing the methods to respond to the knowledge question. This scoping review sought to confirm the value of models or frameworks used by authors working within traditional methodologies for evidence synthesis. Types of participants The focus of this review was on the context of health care.Types of intervention(s)/phenomena of interest All studies that discussed models or frameworks used specifically to address the process of synthesis were included.Types of studies Discussion, scholarship or methodology papers and reviews were included.Types of outcome All theoretical models or frameworks were described, with specific attention to the purpose of the framework for each study, and the contribution of the framework to the process of synthesis. The search strategy aimed to find both published and unpublished studies. A three-step search strategy was utilised. The databases for published material included CINAHL; Medline; EMBASE; PsycINFO; AMED; Cochrane; Biomed Central; Scirus; and Mednar. Databases for unpublished material included Dissertation Abstracts; Sociological Abstracts; Conference proceedings. The review was a focused scoping review to locate and describe the contribution of theoretical models or frameworks to the process of synthesis. The methodological quality of the discussion papers was therefore not assessed. Data was extracted from

  6. Synthesis of High-Purity alpha-and beta-PbO and Possible Applications to Synthesis and Processing of Other Lead Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Dale L.; Wilkinson, T. J.


    The red, tetragonal form of lead oxide, alpha-PbO, litharge, and the yellow, orthorhombic form, beta-PbO, massicot, have been synthesized from lead(II) salts in aqueous media at elevated temperature. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the size, morphology, and crystallographic structural forms of the products. The role of impurities in the experimental synthesis of the materials and microstructural variations in the final products are described, and the implications of these observations with respect to the synthesis of different conducting lead oxides and other related materials are discussed.

  7. Cathode materials produced by spray flame synthesis for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, NoorAshrina Binti A.


    Lithium ion batteries are one of the most enthralling rechargeable energy storage systems for portable application due to their high energy density. Nevertheless, with respect to electromobility innovation towards better electrochemical properties such as higher energy and power density is required. Altering the cathode material used in Li-ion batteries is favorable since the mass- and volume performance is closely related to the cathode electrode mass. Instead of using LiCoO{sub 2} as cathode electrode, LiFePO{sub 4} has gained serious attention as this material owns a high theoretical capacity of 170 mAh g{sup -1}. It is non-toxic, cheap and consists of abundant materials but suffers from low electronic and ionic conductivity. Utilization of nanotechnology methods in combination with composite formation is known to cure this problem effectively. In this work, a new combination of techniques using highly scalable gas-phase synthesis namely spray-flame synthesis and subsequent solid-state reaction has been used to synthesize nanocomposite LiFePO{sub 4}/C. At first this work deals with the formation and characterization of nanosize FePO{sub 4} from a solution of iron(III)acetylacetonate and tributyl phosphate in toluene using spray-flame synthesis. It was shown that a subsequent solid state reaction with Li{sub 2}CO{sub 3} and glucose yielded a LiFePO{sub 4}/C nanocomposite with very promising electrochemical properties. Based on these initial findings the influence of two synthesis parameter - carbon content and annealing temperature - was investigated towards the physicochemical properties of LiFePO{sub 4}/C. It was shown that an annealing temperature of 700 C leads to high purity composite materials consisting of crystalline LiFePO{sub 4} with crystallite sizes well below 100 nm and amorphous carbon consisting of disordered and graphite-like carbon. Variation of glucose amount between 10 and 30 wt% resulted in carbon contents between 2.1 and 7.3 wt%. In parallel

  8. Novel LLM series high density energy materials: Synthesis, characterization, and thermal stability (United States)

    Pagoria, Philip; Zhang, Maoxi; Tsyshevskiy, Roman; Kuklja, Maija

    Novel high density energy materials must satisfy specific requirements, such as an increased performance, reliably high stability to external stimuli, cost-efficiency and ease of synthesis, be environmentally benign, and be safe for handling and transportation. During the last decade, the attention of researchers has drifted from widely used nitroester-, nitramine-, and nitroaromatic-based explosives to nitrogen-rich heterocyclic compounds. Good thermal stability, the low melting point, high density, and moderate sensitivity make heterocycle materials attractive candidates for use as oxidizers in rocket propellants and fuels, secondary explosives, and possibly as melt-castable ingredients of high explosive formulations. In this report, the synthesis, characterization, and results of quantum-chemical DFT study of thermal stability of LLM-191, LLM-192 and LLM-200 high density energy materials are presented. Work performed under the auspices of the DOE by the LLNL (Contract DE-AC52-07NA27344). This research is supported in part by ONR (Grant N00014-12-1-0529) and NSF. We used NSF XSEDE (Grant DMR-130077) and DOE NERSC (Contract DE-AC02-05CH11231) resources.


    Directory of Open Access Journals (Sweden)

    Mochamad Zaenuri


    Full Text Available In oral communication, listening skill is important because communication does not take place successfully if the message stated is not understood. To master the skill, learners should learn it. Therefore, good listening materials are needed. However, English teachers often find it difficult to teach listening skills because the listening materials are not adequately available. Besides, if the materials are available, they are not appropriate with the students’ needs and the curriculum. In that case, English teachers need to develop listening materials by themselves. For this, they should have knowledge of materials development. This paper presents ideas and tips for English teachers how to develop good and applicable listening materials.

  10. Interface modification and material synthesis of organic light-emitting diodes using plasma technology (United States)

    Liang, Rongqing; Ou, Qiongrong; Yang, Cheng; He, Kongduo; Yang, Xilu; Zhong, Shaofeng; plasma application Team


    Organic light-emitting diodes (OLEDs), due to their unique properties of solution processability, compatibility with flexible substrates and with large-scale printing technology, attract huge interest in the field of lighting. The integration of plasma technology into OLEDs provides a new route to improve their performance. Here we demonstrate the modification of indium-tin-oxide (ITO) work function by plasma treatment, synthesis of thermally activated delayed fluorescence (TADF) materials using plasma grafting (polymerisation), and multi-layer solution processing achieved by plasma cross-linking.

  11. Synthesis and Characterization of Storage Energy Materials Prepared from Nano-crystalline Cellulose/Polyethylene Glycol

    Institute of Scientific and Technical Information of China (English)

    Xiao Ping YUAN; En Yong DING


    This paper gives a brief report of the synthesis of a new kind of solid-solid phase change materials (SSPCMs), nano-crystalline cellulose/polyethylene glycol (NCC/PEG). These PCMs have very high ability for energy storage, and their enthalpies reach 103.8 J/g. They are composed of two parts, PEG as functional branches for energy storage, and NCC as skeleton. The flexible polymer PEG was grafted onto the surface of rigid powder of NCC by covalent bonds. The results of DSC, FT-IR were briefly introduced, and some comments were also given.

  12. N-Nitrosarcosine: An Economic Precursor for the Synthesis of New Energetic Materials. (United States)

    Klapötke, Thomas M; Krumm, Burkhard; Scharf, Regina


    New energetic compounds have been synthesized starting from the readily available N-(cyanomethyl)-N-methylamine. From this, N-nitrosarcosine was prepared in few steps, which serves as a starting material for the synthesis of oxygen-rich compounds. The compounds were thoroughly characterized including multinuclear NMR and vibrational spectroscopy and also molecular structures by single X-ray diffraction were obtained. Their energetic properties were determined including the sensitivities towards impact and friction, their heat of formations were calculated and the detonation and combustion parameters were predicted using EXPLO5 V6.02. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cost-effective synthesis of amine-tethered porous materials for carbon capture. (United States)

    Lu, Weigang; Bosch, Mathieu; Yuan, Daqiang; Zhou, Hong-Cai


    A truly cost-effective strategy for the synthesis of amine-tethered porous polymer networks (PPNs) has been developed. A network containing diethylenetriamine (PPN-125-DETA) exhibits a high working capacity comparable to current state-of-art technology (30 % monoethanolamine solutions), yet it requires only one third as much energy for regeneration. It has also been demonstrated to retain over 90 % capacity after 50 adsorption-desorption cycles of CO2 in a temperature-swing adsorption process. The results suggest that PPN-125-DETA is a very promising new material for carbon capture from flue gas streams.

  14. Combinatorial Ion Synthesis and Cathodoluminescence Analyses of Materials Libraries on Thermally Grown SiO2

    Institute of Scientific and Technical Information of China (English)

    Chang-Ming Chen; H.C.Pan; D.Z. Zhu; J.Hu; M.Q.Li


    We first report a method combining ion implantationand physical masking to generate material libraries of various ion-implanted samples. This approach offers rapid synthesis of samples with potential new compounds formed in the matrix, which may have specific luminescent properties. The depthresolved cathodoluminescence (CL) measurements, accompanied with Rutherford backscattering spectrometry (RBS) and proton elastic scattering (PES) revealed some specific optical properties in the samples correlated with implanted ion distributions. These measurements are capable of nondestructively and rapidly characterizing the composition and the inhomogeneity of the combinatorial film libraries, which may determine their physical properties.

  15. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment. (United States)

    Cambié, Dario; Bottecchia, Cecilia; Straathof, Natan J W; Hessel, Volker; Noël, Timothy


    Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.

  16. Mechanistic Studies of Combustion and Structure Formation During Synthesis of Advanced Materials (United States)

    Varma, A.; Lau, C.; Mukasyan, A. S.


    Combustion in a variety of heterogeneous systems, leading to the synthesis of advanced materials, is characterized by high temperatures (2000-3500 K) and heating rates (up to 10(exp 6) K/s) at and ahead of the reaction front. These high temperatures generate liquids and gases which are subject to gravity-driven flow. The removal of such gravitational effects is likely to provide increased control of the reaction front, with a consequent improvement in control of the microstructure of the synthesized products. Thus, microgravity (mu-g) experiments lead to major advances in the understanding of fundamental aspects of combustion and structure formation under the extreme conditions of the combustion synthesis (CS) wave. In addition, the specific features of microgravity environment allow one to produce unique materials, which cannot be obtained under terrestrial conditions. The current research is a logic continuation of our previous work on investigations of the fundamental phenomena of combustion and structure formation that occur at the high temperatures achieved in a CS wave. Our research is being conducted in three main directions: 1) Microstructural Transformations during Combustion Synthesis of Metal-Ceramic Composites. The studies are devoted to the investigation of particle growth during CS of intermetallic-ceramic composites, synthesized from nickel, aluminum, titanium, and boron metal reactants. To determine the mechanisms of particle growth, the investigation varies the relative amount of components in the initial mixture to yield combustion wave products with different ratios of solid and liquid phases, under 1g and mu-g conditions; 2) Mechanisms of Heat Transfer during Reactions in Heterogeneous Media. Specifically, new phenomena of gasless combustion wave propagation in heterogeneous media with porosity higher than that achievable in normal gravity conditions, are being studied. Two types of mixtures are investigated: clad powders, where contact between

  17. Supercritical hydrothermal synthesis of polycrystalline gadolinium aluminum perovskite materials (GdAlO3, GAP

    Directory of Open Access Journals (Sweden)

    HN Girish


    Full Text Available The orthorhombic perovskite, Gadolinium aluminum oxide (GdAlO3, GAP material was successfully prepared by hydrothermal supercritical fluid method using co-precipitated gel of GAP. All experiments were carried out in the pressure and temperature ranges of 100–150 MPa and 180–650 °C respectively. The as-prepared GAP samples were systematically characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-IR, X-ray spectroscopy (EDS, thermo gravimetry (TGA and differential thermo gravimetry analysis (DTA. The XRD profile confirms fully crystalline and orthorhombic nature of as-prepared materials, which is well correlated to the reported results. The SEM studies reveal that the GAP materials synthesized at 650 °C/150 MPa for 92 hrs possesses polycrystalline nature with average particle size in the range of 5–20 µm. The DTA shows a crystallization peak at 361 °C at this temperature the agglomerated GAP gel starts to crystallize into polycrystalline GAP materials. When compared with other methods, like sol-gel and solid-state reactions our crystallization temperature is very much lower and feasible. This work not only demonstrates a simple way to fabricate GAP polycrystalline materials from co-precipitated gels but also shows a possible utilization of same technique for synthesis of other high temperature materials.

  18. RF building block modelling : optimization and synthesis

    NARCIS (Netherlands)

    Cheng, Wei


    For circuit designers it is desirable to have relatively simple RF circuit models that do give decent estimation accuracy and provide sufficient understanding of circuits. Chapter 2 in this thesis shows a general weak nonlinearity model that meets these demands. Using a method that is related to har

  19. RF building block modeling: optimization and synthesis

    NARCIS (Netherlands)

    Cheng, W.


    For circuit designers it is desirable to have relatively simple RF circuit models that do give decent estimation accuracy and provide sufficient understanding of circuits. Chapter 2 in this thesis shows a general weak nonlinearity model that meets these demands. Using a method that is related to

  20. New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology

    Directory of Open Access Journals (Sweden)

    Peng Q


    Full Text Available Qing Peng,1 Albert K Dearden,2 Jared Crean,1 Liang Han,1 Sheng Liu,3 Xiaodong Wen,4,5 Suvranu De11Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; 2Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, USA; 3Institute for Microsystems, School of Mechanical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China; 4State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, People's Republic of China; 5Synfuels China Co, Ltd, Huairou, Beijing, People's Republic of ChinaAbstract: Plenty of new two-dimensional materials including graphyne, graphdiyne, graphone, and graphane have been proposed and unveiled after the discovery of the "wonder material" graphene. Graphyne and graphdiyne are two-dimensional carbon allotropes of graphene with honeycomb structures. Graphone and graphane are hydrogenated derivatives of graphene. The advanced and unique properties of these new materials make them highly promising for applications in next generation nanoelectronics. Here, we briefly review their properties, including structural, mechanical, physical, and chemical properties, as well as their synthesis and applications in nanotechnology. Graphyne is better than graphene in directional electronic properties and charge carriers. With a band gap and magnetism, graphone and graphane show important applications in nanoelectronics and spintronics. Because these materials are close to graphene and will play important roles in carbon-based electronic devices, they deserve further, careful, and thorough studies for nanotechnology applications.Keywords: two-dimensional materials, graphene-like structures, properties and synthesis, nanotechnology applications, graphyne, hydrogenation of grapheme

  1. Synthesis, strctural and electrochemical characterizations of lithium- manganese- rich composite cathode materials for lithium ion batteries (United States)

    Wang, Dapeng

    The electrification trend for transportation systems requires alternative cathode materials to LiCoO2 with improved safety, lowered cost and extended cycle life. Lithium- manganese- rich composite cathode materials, which can be presented in a two component notation as xLi2MnO3·(1-x)LiMO 2, (M= Ni, Co or Mn) have superior cost and energy density advantages. These cathode materials have shown success in laboratory scale experiments, but are still facing challenges such as voltage fade, moderate rate capacity and tap density for commercialization. The synthesis of precursors with high packing density and suitable physical properties is critical to achieve high energy density as well as the other acceptable electrochemical performance for the next generation lithium ion batteries. The aim of this study is to correlate the electrochemical properties of materials to their structural, morphological, and physical properties by coordinating the science of synthesis with the science of function, in order to enable the use of these compounds in vehicle technologies. Three different precursors including carbonate, hydroxide and oxalate were synthesized by co-precipitation reactions using continuous stirred tank reactor (CSTR) under various conditions. Research focused on areas such as nucleation and growth mechanisms, synthesis optimizations, and intrinsic limitations of each co-precipitation method. A combination of techniques such as PSA, BET, SEM, EDX FIB, TEM, Raman, FTIR, TGA-DSC, XRD, and ICP-MS, as well as electrochemical test methods such as cycling, CV, EIS and HPPC tests were used in correlation with each other in order to deepen our understanding to these materials. Related topics such as the composite structure formation process during the solid state reaction, lithium and nickel content effects on the cathode properties were also discussed. Additionally, the side reactions between the active materials and electrolyte as a result of the high charge potential were

  2. PETRA. The Forecast Model. Synthesis report

    Energy Technology Data Exchange (ETDEWEB)



    The aim of the PETRA project was to develop a model that could recreate the main aspects involved in the demand for travel. The attainment of this objective requires that the model system should retain a high degree of detail and be based on disaggregate models. This was both to ensure an accurate representation of the underlying behavioural intentions, and allow analysis of the underlying travel demand and related aspects across a number of dimensions. This has been achieved in all main respects. The model system is capable of close reproduction of the observed behaviour and generally responds as expected to changes, exhibiting consistent and plausible reactions. The dis-aggregation of the forecast population, according to the various criteria, allows the model to clearly illustrates the behavioural differences between different population segments. Thus, it seems reasonable to conclude that PETRA is capable of detailed analyses of the distributional and behavioural effects of policy changes. (au) EFP-94. 20 refs.

  3. Hydrotherrnal synthesis, structure and property of nano-BaTiO3-based dielectric materials

    Institute of Scientific and Technical Information of China (English)

    DING; ShiIiang


    [1]Su, W., The proposition of technical progress and development for barium solts, Inorganic Salt Industry (in Chinese), 1992,3: 5.[2]West, A. R., Solid State Chemistry and Its Applications, New Delhi: John Wiley, 1984, 367,534-548.[3]Heistand, R. H., Duquette, L. G., Skeele, E P. et al., Coprecipitated barium titanate(BaTiO3)-based powder formulated from catechol coordination compounds, Ceram. Trans., 1988, 2: 94.[4]Ding, S. W., Ma, G. C., Wang, Z. Q. et al., Synthesis, structure and properties of BaZrxTi1-xO3 · yLa203 solid solutions, Chemical Journal of Chinese Universities (in Chinese), 1998, 19: 1542.[5]Ding, S. W., Zhai, Y. Q., Li, X. M. et al., Synthesis, structure and properties of Ba1-xCaxSnyTi1-y03 solid solutions, Acta Chim. Sinica (in Chinese), 2000, 58:1139.[6]Ding, S. W., Zhal, Y. Q., Li, Y. et al., Synthesis, structure and properties of Bal-xSrxMyTil-yO3 nano-materials, Science in China, Ser. B, 2000, 43(3): 283.[7]

  4. Density functional theory and multiscale materials modeling

    Indian Academy of Sciences (India)

    Swapan K Ghosh


    One of the vital ingredients in the theoretical tools useful in materials modeling at all the length scales of interest is the concept of density. In the microscopic length scale, it is the electron density that has played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids. In the intermediate mesoscopic length scale, an appropriate picture of the equilibrium and dynamical processes has been obtained through the single particle number density of the constituent atoms or molecules. A wide class of problems involving nanomaterials, interfacial science and soft condensed matter has been addressed using the density based theoretical formalism as well as atomistic simulation in this regime. In the macroscopic length scale, however, matter is usually treated as a continuous medium and a description using local mass density, energy density and other related density functions has been found to be quite appropriate. A unique single unified theoretical framework that emerges through the density concept at these diverse length scales and is applicable to both quantum and classical systems is the so called density functional theory (DFT) which essentially provides a vehicle to project the many-particle picture to a single particle one. Thus, the central equation for quantum DFT is a one-particle Schrödinger-like Kohn–Sham equation, while the same for classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninteracting particles in the field of a density-dependent effective potential. Selected illustrative applications of quantum DFT to microscopic modeling of intermolecular interaction and that of classical DFT to a mesoscopic modeling of soft condensed matter systems are presented.

  5. A one pot organic/CdSe nanoparticle hybrid material synthesis with in situ π-conjugated ligand functionalization. (United States)

    Mazzio, Katherine A; Okamoto, Ken; Li, Zhi; Gutmann, Sebastian; Strein, Elisabeth; Ginger, David S; Schlaf, Rudy; Luscombe, Christine K


    A one pot method for organic/colloidal CdSe nanoparticle hybrid material synthesis is presented. Relative to traditional ligand exchange processes, these materials require smaller amounts of the desired capping ligand, shorter syntheses and fewer processing steps, while maintaining nanoparticle morphology.

  6. A Working Model of Protein Synthesis Using Lego(TM) Building Blocks. (United States)

    Templin, Mark A.; Fetters, Marcia K.


    Uses Lego building blocks to improve the effectiveness of teaching about protein synthesis. Provides diagrams and pictures for a 2-3 day student activity. Discusses mRNA, transfer RNA, and a protein synthesis model. (MVL)

  7. Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials. (United States)

    Carriazo, Daniel; Serrano, María Concepción; Gutiérrez, María Concepción; Ferrer, María Luisa; del Monte, Francisco


    The aim of this review is to provide an exposition of some of the most recent applications of deep-eutectic solvents (DESs) in the synthesis of polymers and related materials. We consider that there is plenty of room for the development of fundamental research in the field of DESs because their compositional flexibility makes the number of DESs susceptible of preparation unlimited and so do the range of properties that DESs can attain. Ultimately, these properties can be transferred into the resulting materials in terms of both tailored morphologies and compositions. Thus, interesting applications can be easily envisaged, especially in those fields in which the preparation of high-tech products via low cost processes is critical. We hope that the preliminary work surveyed in this review will encourage scientists to explore the promising perspectives offered by DESs.

  8. Physicochemical properties of carbon materials obtained by combustion synthesis of perchlorinated hydrocarbons

    Directory of Open Access Journals (Sweden)

    S. Cudziło


    Full Text Available We present studies on the combustion synthesis of carbon materials from several perchlorinated organic compounds : tetrachloromethane (CCl4, hexachloroethane (C2Cl6, tetrachloroethylene (C2Cl4, hexachloro-1,3-butadiene (C4Cl6, hexachlorocyclopentadiene (C5Cl6. The porosity (obtained by low-temperature nitrogen adsorption, microstructure (SEM, structural arrangement (XRD and Raman spectroscopy, surface chemistry (FTIR and electrochemical behavior (cyclic voltammetry of the obtained carbons were investigated. The synthesized materials exhibit an ordered structure similar to carbon black. Their physicochemical properties strongly depended on the structure of the perchlorocarbon precursor. It was found that perchlorinated compounds with unsaturated bonds yielded more amorphous products. The electrochemical properties (e.g. edl capacity depend mainly on the mesopore surface area of the carbonaceous products.

  9. Survey on Services Composition Synthesis Model

    Directory of Open Access Journals (Sweden)

    Ibrahima Kalil Toure


    Full Text Available Current web services development tools are more sophisticated though ease of use, which leverage the creation of more web services thereof. This is the fact that, web services are being created and updated frequently, this multiplication of web services cannot be easily controlled by human being because it is almost impossible to analyze them and generate the composition plan. Composition of web services is the issue of synthesizing a new composite web service, obtained by combining a set of available (component services, when a client request cannot be satisfied by available web services. To address this issue, three main models have been proposed as a solution. The OWL-S model, the Conversational model and the Roman model which is investigated here. In this paper, we propose a survey on the so-called Roman model and present the framework and all its extension. We also underline its drawback, shortcomings and some advantages, and then try to provide some research direction.

  10. Synthesis and modeling perspectives of rhizosphere priming. (United States)

    Cheng, Weixin; Parton, William J; Gonzalez-Meler, Miquel A; Phillips, Richard; Asao, Shinichi; McNickle, Gordon G; Brzostek, Edward; Jastrow, Julie D


    The rhizosphere priming effect (RPE) is a mechanism by which plants interact with soil functions. The large impact of the RPE on soil organic matter decomposition rates (from 50% reduction to 380% increase) warrants similar attention to that being paid to climatic controls on ecosystem functions. Furthermore, global increases in atmospheric CO2 concentration and surface temperature can significantly alter the RPE. Our analysis using a game theoretic model suggests that the RPE may have resulted from an evolutionarily stable mutualistic association between plants and rhizosphere microbes. Through model simulations based on microbial physiology, we demonstrate that a shift in microbial metabolic response to different substrate inputs from plants is a plausible mechanism leading to positive or negative RPEs. In a case study of the Duke Free-Air CO2 Enrichment experiment, performance of the PhotoCent model was significantly improved by including an RPE-induced 40% increase in soil organic matter decomposition rate for the elevated CO2 treatment--demonstrating the value of incorporating the RPE into future ecosystem models. Overall, the RPE is emerging as a crucial mechanism in terrestrial ecosystems, which awaits substantial research and model development. No claim to original US government works. New Phytologist © 2013 New Phytologist Trust.

  11. Synthesis and mechanical properties of bulk quantities of electrodeposited nanocrystalline materials (United States)

    Brooks, Iain

    Nanocrystalline materials have generated immense scientific interest, primarily due to observations of significantly enhanced strength and hardness resulting from Hall-Petch grain size strengthening into the nano-regime. Unfortunately, however, most previous studies have been unable to present material strength measurements using established tensile tests because the most commonly accepted tensile test protocols call for specimen geometries that exceeded the capabilities of most nanocrystalline material synthesis processes. This has led to the development of non-standard mechanical test methodologies for the evaluation of miniature specimens, and/or the persistent use of hardness indentation as a proxy for tensile testing. This study explored why such alternative approaches can be misleading and revealed how reliable tensile ductility measurements and material strength information from hardness indentation may be obtained. To do so, an electrodeposition-based synthesis method to produce artifact-reduced specimens large enough for testing in accordance with ASTM E8 was developed. A large number of 161 samples were produced, tested, and the resultant data evaluated using Weibull statistical analysis. It was found that the impact of electroforming process control on both the absolute value and variability of achievable tensile elongation was strong. Tensile necking was found to obey similar processing quality and geometrical dependencies as in conventional engineering metals. However, unlike conventional engineering metals, intrinsic ductility (as measured by maximum uniform plastic strain) was unexpectedly observed to be independent of microstructure over the grain size range 10-80nm. This indicated that the underlying physical processes of grain boundary-mediated damage development are strain-oriented phenomena that can be best defined by a critical plastic strain regardless of the strength of the material as a whole. It was further shown that the HV = 3

  12. Synthesis, microstructure and properties of BiFeO{sub 3}-based multiferroic materials: A review

    Energy Technology Data Exchange (ETDEWEB)

    Bernardo, M. S.


    BiFeO{sub 3}-based materials are currently one of the most studied multiferroics due to their possible applications at room temperature. However, among the large number of published papers there is much controversy. For example, possibility of synthesizing a pure BiFeO{sub 3} phase is still source of discussion in literature. Not even the nature of the binary Bi{sub 2}O{sub 3}-Fe{sub 2}O{sub 3} diagram has been clarified yet. The difficulty in controlling the formation of parasite phases reaches the consolidation step. Accordingly, the sintering conditions must be carefully determined both to get dense materials and to avoid bismuth ferrite decomposition. However, the precise conditions to attain dense bismuth ferrite materials are frequently contradictory among different works. As a consequence, the reported properties habitually result opposed and highly irreproducible hampering the preparation of BiFeO{sub 3} materials suitable for practical applications. In this context, the purpose of the present review is to summarize the main researches regarding BiFeO{sub 3} synthesis, microstructure and properties in order to provide an easier understanding of these materials. (Author)

  13. Soft-Templating Synthesis of Mesoporous Silica-Based Materials for Environmental Applications (United States)

    Gunathilake, Chamila Asanka

    Dissertation research is mainly focus on: 1) the development of mesoporous silica materials with organic pendant and bridging groups (isocyanurate, amidoxime, benzene) and incorporated metal (aluminum, zirconium, calcium, and magnesium) species for high temperature carbon dioxide (CO2) sorption, 2) phosphorous-hydroxy functionalized mesoporous silica materials for water treatment, and 3) amidoxime-modified ordered mesoporous silica materials for uranium sorption under seawater conditions. The goal is to design composite materials for environmental applications with desired porosity, surface area, and functionality by selecting proper metal oxide precursors, organosilanes, tetraethylorthosilicate, (TEOS), and block copolymer templates and by adjusting synthesis conditions. The first part of dissertation presents experimental studies on the merge of aluminum, zirconium, calcium, and magnesium oxides with mesoporous silica materials containing organic pendant (amidoxime) and bridging groups (isocyanurate, benzene) to obtain composite sorbents for CO2 sorption at ambient (0-25 °C) and elevated (60-120 °C) temperatures. These studies indicate that the aforementioned composite sorbents are fairly good for CO2 capture at 25 °C via physisorption mechanism and show a remarkably high affinity toward CO2 chemisorption at 60-120 °C. The second part of dissertation is devoted to silica-based materials with organic functionalities for removal of heavy metal ions such as lead from contaminated water and for recovery of metal ions such as uranium from seawater. First, ordered mesoporous organosilica (OMO) materials with diethylphosphatoethyl and hydroxyphosphatoethyl surface groups were examined for Pb2+ adsorption and showed unprecedented adsorption capacities up to 272 mg/g and 202 mg/g, respectively However, the amidoxime-modified OMO materials were explored for uranium extraction under seawater conditions and showed remarkable capacities reaching 57 mg of uranium per gram

  14. Synthesis and Characterization of High Aluminum Zeolite X from Technical Grade Materials

    Directory of Open Access Journals (Sweden)

    Seyed Kamal Masoudian


    Full Text Available Zeolites are widely used as ion exchangers, adsorbents, separation materials and catalyst due to their well-tailored and highly-reproducible structures; therefore, the synthesis of zeolite from low grade resources can be interested. In the present work, high aluminum zeolite X was prepared from mixing technical grade sodium aluminate and sodium silicate solutions at temperatures between 70°C and 100°C. The synthesized zeolite X was characterized by SEM and X-ray methods according to ASTM standard procedures. The results showed that aging of the synthesis medium at the room temperature considerably increased the selectivity of zeolite X formation. On the other hand, high temperature of reaction mixture during crystallization formed zeolite A in the product; therefore, it decreased the purity of zeolite X. In addition, it was found that increasing H2O/Na2O and decreasing Na2O/SiO2 molar ratios in the reaction mixture resulted product with higher purity. © 2013 BCREC UNDIP. All rights reservedReceived: 7th January 2013; Revised: 7th April 2013; Accepted: 19th April 2013[How to Cite: Masoudian, S. K., Sadighi, S., Abbasi, A. (2013. Synthesis and Characterization of High Alu-minum Zeolite X from Technical Grade Materials. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 54-60. (doi:10.9767/bcrec.8.1.4321.54-60][Permalink/DOI:] | View in  |


    Directory of Open Access Journals (Sweden)

    Suyanta Suyanta


    Full Text Available The research about synthesis and characterization of MCM-41 from rice husk has been done. Silica (SiO2 was extracted from rice husk by refluxing with 3M hydrochloric solution at 80 °C for 3 h. The acid-leached rice husk was filtered, washed, dried and calcined at 650 °C for 6 h lead the rough powder of rice husk silica with light brown in color. Characterization was carried out by X-ray diffraction (XRD and FTIR spectroscopy method. Rice husk silica was dissolved into the sodium hydroxide solution leading to the solution of sodium silicate, and used as silica source for the synthesis of MCM-41. MCM-41 was synthesized by hydrothermal process to the mixture prepared from 29 g of distilled water, 8.67 g of cetyltrimethyl ammonium bromide (CTMAB, 9.31 g of sodium silicate solution, and amount mL of 1 M H2SO4. Hydrothermal process was carried out at 100 °C in a teflon-lined stainless steel autoclave heated in the oven for 36 h. The solid phase was filtered, then washed with deionised water, and dried in the oven at 100 °C for 2 h. The surfactant CTMAB was removed by calcination at 550 °C for 10 h with heating rate 2 °C/min. The as-synthesized and calcined crystals were characterized by using FTIR spectroscopy, X-ray diffraction and N2 physisorption methods. In order to investigate the effect of silica source, the same procedure was carried out by using pure sodium silicate as silica source. It was concluded that silica extracted from rice husk can be used as raw materials in the synthesis of MCM-41, there is no significant difference in crystallinity and pore properties when was compared to material produced from commercial sodium silicate.

  16. Modelling, Synthesis, and Configuration of Networks-on-Chips

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo

    This thesis presents three contributions in two different areas of network-on-chip and system-on-chip research: Application modelling and identifying and solving different optimization problems related to two specific network-on-chip architectures. The contribution related to application modellin...... for solving the network synthesis problem in the MANGO network-on-chip, and the identification and formalization of the ReNoC configuration problem together with three heuristics for solving it....

  17. Synthesis and comparison of the activities of a catalyst supported on two silicate materials

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Eduardo G., E-mail: [Departamento de Física e Química, Unesp-Univ Estadual Paulista, Av. Brasil, 56-Centro, Caixa Postal 31, CEP 15385-000, Ilha Solteira, São Paulo (Brazil); Silva, Rafael O.; Carmo, Devaney R. do [Departamento de Física e Química, Unesp-Univ Estadual Paulista, Av. Brasil, 56-Centro, Caixa Postal 31, CEP 15385-000, Ilha Solteira, São Paulo (Brazil); Junior, Enes F. [Departamento de Fitotecnia, Tecnologia de Alimentos e Sócio Economia, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, São Paulo (Brazil); Dias Filho, Newton L., E-mail: [Departamento de Física e Química, Unesp-Univ Estadual Paulista, Av. Brasil, 56-Centro, Caixa Postal 31, CEP 15385-000, Ilha Solteira, São Paulo (Brazil); Universidade do Extremo Sul Catarinense, Av. Universitaria, 1105, CP 3167, CEP 88806-000, Criciúma, SC (Brazil)


    The focus of this work is inspecting the synthesis and comparison of the activities of a catalyst supported on two silicate materials in the epoxidation of 1-octene. The two new catalyst materials were characterized by infrared spectroscopy, elemental analysis, solid-state {sup 29}Si and {sup 13}C nuclear magnetic resonance, scanning electronic microscope (SEM) and analysis of nitrogen. Lastly, the two new catalysts, Silsesq-TCA-[(W(CO){sub 3}I{sub 2}){sub 3}] and Silica-TCA-[W(CO){sub 3}I{sub 2}] were tested as catalysts in reactions of epoxidation of 1-octene and compared with their analogue not supported [W(CO){sub 3}I{sub 2}(thiocarbamide)]. After an extensive literature search, we verified that our work is the first that has reported the immobilization process of [W(CO){sub 3}I{sub 2}(NCCH{sub 3}){sub 2}] on silsesquioxane and silica gel functionalized with propyl-thiocarbamide groups and their applications as catalysts of reactions of catalytic epoxidation of 1-octene. - Highlights: • Immobilization of [W(CO){sub 3}I{sub 2}(NCCH{sub 3}){sub 2}] complex onto mesoporous supports. • Synthesis and characterization of new mesoporous catalysts. • The new catalysts exhibit great catalytic activity in the epoxidation of 1-octene. • Recyclable catalysts with excellent reusability and stability.

  18. Synthesis and Characterization of Biocomposite BCP/Collagen for Bone Material Scaffold

    Directory of Open Access Journals (Sweden)

    Anjarsari Anjarsari


    Full Text Available AbstractBiphasic calcium phosphate (BCP widely used as implants and scaffolds in different orthopedic and dental application. The aim of this study was to determine synthesis and characteristics of biocomposite BCP/collagen as bone scaffold material. BCP/collagen was classified into three groups: 1 BCP/K5 (5% collagen in scaffold, 2 BCP/K10 (10% collagen in scaffold, and 3 BCP/K15 (15% collagen in scaffold. The samples were characterized by Fourier Transform Infrared (FTIR Spectroscopy, and Scanning Electron Microscope (SEM techniques. Overall, concentration of collagen was not significantly different to the spectrum. However, FTIR analysis shows the change intensity in bio-composite BCP/collagen. Collagen intensity Higher concentration when collagen concentration in scaffold higher. Morphology analysis of the scaffold showed significant differences in pore formation. BCP/K15 was showed pores formed in scaffold. Synthesis of composite BCP/collagen does not affect the spectrum of functional groups, but affects the formation of pores in the bone scaffold material.

  19. Synthesis of magnetic and multiferroic materials from polyvinyl alcohol-based gels (United States)

    Lisnevskaya, I. V.; Bobrova, I. A.; Lupeiko, T. G.


    This review article summarizes results on the synthesis of the magnetic materials including modified nickel ferrite (Ni0.9Co0.1Cu0.1Fe1.9O4-δ), yttrium iron garnet (Y3Fe5O12), lanthanum-containing manganites (MxLa1-xMnO3 (M=Pb, Ba or Sr; x=0.3-0.35)), and multiferroics (BiFeO3 and BiFe0.5Mn0.5O3) from polyvinyl alcohol-based gels. It is shown that the ammonium nitrate accelerates destruction of organic components of xerogels and thus Ni0.9Co0.1Cu0.1Fe1.9O4-δ and BiFeO3 can be prepared at record low temperatures (100 and 250 °C, respectively) which are 200-300 °C lower compared to the process where air is used as an oxidizing agent. As for the synthesis of Y3Fe5O12, MxLa1-xMnO3 and BiFe0.5Mn0.5O3, the presence of NH4NO3 favors formation of foreign phases, which ultimately complicate reaction mechanisms and lead to the higher temperature to synthesize target products. Developed methods provide nanoscale magnetic and multiferroic materials with an average particle size of ∼20-50 nm.

  20. Design, Synthesis and Characterization of Functional Metal-Organic Framework Materials

    KAUST Repository

    Alamer, Badriah


    Over the past few decades, vast majority of industrial and academic research throughout the world has witnessed the emergence of materials that can serve as ideal candidates for potential utility in desired applications, and these materials are known as Metal Organic Framework (MOFs). This exceptional new family of porous materials is fabricated by linkage of metal ions or clusters and organic linkers via strong bonds. MOFs have been awarded with remarkable interest and widely studied due to their inherent structural methodology (e.g. use of various metals, expanded library of organic building blocks with different geometry and functionality particularly frameworks designed from carboxylate organic linkers) and unquestionably unique structural and chemical features for many practical applications. (i.e. gas storage/separation, catalysis, drug delivery etc). Simply, metal organic frameworks epitomize the beauty of porous chemical structures. From a design perspective, the introduction of the Molecular Building Block (MBB) approach is actively being pursued pathway by researchers toward the construction of MOFs by employing inorganic building blocks and organic linkers and taking advantage of not only their multiple coordination modes and geometries but also the way in which they are reticulated to generate final framework. In this thesis, research studies will be directed toward (i) the investigation of the relationship between experimental parameters and synthesis of well-known fcu –MOF, (ii) rational design and synthesis of new rare earth (RE) based MOFs, (ii) isoreticular materials based on particular MBB ([M3O(RCO2)6]), M= p-and d-block metals, and (iv) zeolite- like metal organic framework assembled from single-metal ion based MBB ([MN2(CO2)4]) via 2-, 3-,and 4-connected organic linkers. Consequently, the porosity, chemical and thermal stability, and gas sorption properties will be evaluated and detailed.

  1. Light element synthesis in baryon isocurvature models

    CERN Document Server

    Kumar, D L P


    The prejudice against baryon isocurvature models is primarily because of their inconsistency with early universe light element nucleosynthesis results. We propose that incipient low metallicity (Pop II) star forming regions can be expected to have environments conducive to Deuterium production by spallation, up to levels observed in the universe.

  2. Freeze-drying of “pearl milk tea”: A general strategy for controllable synthesis of porous materials (United States)

    Zhou, Yingke; Tian, Xiaohui; Wang, Pengcheng; Hu, Min; Du, Guodong


    Porous materials have been widely used in many fields, but the large-scale synthesis of materials with controlled pore sizes, pore volumes, and wall thicknesses remains a considerable challenge. Thus, the controllable synthesis of porous materials is of key general importance. Herein, we demonstrate the “pearl milk tea” freeze-drying method to form porous materials with controllable pore characteristics, which is realized by rapidly freezing the uniformly distributed template-containing precursor solution, followed by freeze-drying and suitable calcination. This general and convenient method has been successfully applied to synthesize various porous phosphate and oxide materials using different templates. The method is promising for the development of tunable porous materials for numerous applications of energy, environment, and catalysis, etc.

  3. Exploring the interdependencies between parameters in a material model.

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart Andrew; Fermen-Coker, Muge


    A method is investigated to reduce the number of numerical parameters in a material model for a solid. The basis of the method is to detect interdependencies between parameters within a class of materials of interest. The method is demonstrated for a set of material property data for iron and steel using the Johnson-Cook plasticity model.

  4. Generalized continua as models for classical and advanced materials

    CERN Document Server

    Forest, Samuel


    This volume is devoted to an actual topic which is the focus world-wide of various research groups. It contains contributions describing the material behavior on different scales, new existence and uniqueness theorems, the formulation of constitutive equations for advanced materials. The main emphasis of the contributions is directed on the following items - Modelling and simulation of natural and artificial materials with significant microstructure, - Generalized continua as a result of multi-scale models, - Multi-field actions on materials resulting in generalized material models, - Theories including higher gradients, and - Comparison with discrete modelling approaches.

  5. Synthesis and characterization of cathode, anode and electrolyte materials for rechargeable lithium batteries (United States)

    Yang, Shoufeng

    Two new classes of cathode materials were studied: iron phosphate/sulfate materials and layered manganese oxides, both of which are low cost and had shown some potential. The first class of materials have poor conductivity and cyclability. I studied a number of methods for increasing the conductivity, and determined that grinding the material with carbon black was as effective as special in-situ coatings. The optimum carbon loading was determined to be between 6 and 15 wt%. Too much carbon reduces the volumetric energy density, whereas too little significantly increased cell polarization (reduced the rate of reaction). The kinetic and thermodynamic stability of LiFePO 4 was also studied and it was determined that over discharge protection will be needed as irreversible Li3PO4 can be formed at low potentials. A novel hydrothermal synthesis method was developed, but the significant level of Fe on the Li site reduces the reaction rate too much. In the case of the layered manganese oxide, cation substitution with Co and Ni is found to be effective in avoiding Jahn-Teller effects and improving electrochemistry. A wide range of tin compounds have been suggested as lithium storage media for advanced anode materials, as tin can store over 4 Li per Sn atom. Lithium hexafluorophosphate, LiPF6, is presently the salt of choice for LiCoO2 batteries, but it is expensive and dissolves some manganese compounds. The lithium bis(oxolato)borate (BOB) salt was recently reported, and I made a study of its use in cells with the LiFePO4 cathode and the tin anode. During its synthesis, it became clear that LiBOB is very reactive with many solvents, and these complexes were characterized to better understand this new material. In LiBOB the lithium is five coordinated, an unstable configuration for the lithium ion so that water and many other solvents rapidly react to make a six coordination. Only in the case of ethylene carbonate was the lithium found to be four coordinated. The Li

  6. Mathematical Model of Synthesis Catalyst with Local Reaction Centers

    Directory of Open Access Journals (Sweden)

    I. V. Derevich


    Full Text Available The article considers a catalyst granule with a porous ceramic passive substrate and point active centers on which an exothermic synthesis reaction occurs. A rate of the chemical reaction depends on the temperature according to the Arrhenius law. Heat is removed from the pellet surface in products of synthesis due to heat transfer. In our work we first proposed a model for calculating the steady-state temperature of a catalyst pellet with local reaction centers. Calculation of active centers temperature is based on the idea of self-consistent field (mean-field theory. At first, it is considered that powers of the reaction heat release at the centers are known. On the basis of the found analytical solution, which describes temperature distribution inside the granule, the average temperature of the reaction centers is calculated, which then is inserted in the formula for heat release. The resulting system of transcendental algebraic equations is transformed into a system of ordinary differential equations of relaxation type and solved numerically to achieve a steady-state value. As a practical application, the article considers a Fischer-Tropsch synthesis catalyst granule with active cobalt metallic micro-particles. Cobalt micro-particles are the centers of the exothermic reaction of hydrocarbons macromolecular synthesis. Synthesis occurs as a result of absorption of the components of the synthesis gas on metallic cobalt. The temperature distribution inside the granule for a single local center and reaction centers located on the same granule diameter is found. It was found that there is a critical temperature of reactor exceeding of which leads to significant local overheating of the centers - thermal explosion. The temperature distribution with the local reaction centers is qualitatively different from the granule temperature, calculated in the homogeneous approximation. It is shown that, in contrast to the homogeneous approximation, the


    An Azerbaidzhan SSR. Institute of additive chemistry additives to lubricating oils . Problems of synthesis, investigation and use of oil additives; fuels and polymer materials (Selected articles)--Translation.

  8. Continuous-Flow Synthesis and Materials Interface Engineering of Lead Sulfide Quantum Dots for Photovoltaic Applications

    KAUST Repository

    El-Ballouli, Ala’a O.


    Harnessing the Sun’s energy via the conversion of solar photons to electricity has emerged as a sustainable energy source to fulfill our future demands. In this regard, solution-processable, size-tunable PbS quantum dots (QDs) have been identified as a promising active materials for photovoltaics (PVs). Yet, there are still serious challenges that hinder the full exploitation of QD materials in PVs. This dissertation addresses two main challenges to aid these QDs in fulfilling their tremendous potential in PV applications. First, it is essential to establish a large-scale synthetic technique which maintains control over the reaction parameters to yield QDs with well-defined shape, size, and composition. Rigorous protocols for cost-effective production on a scale are still missing from literature. Particularly, previous reports of record-performance QD-PVs have been based on small-scale, manual, batch syntheses. One way to achieve a controlled large-scale synthesis is by reducing the reaction volume to ensure uniformity. Accordingly, we design a droplet-based continuous-flow synthesis of PbS QDs. Only upon separating the nucleation and growth phases, via a dual-temperature-stage reactor, it was possible to achieve high-quality QDs with high photoluminescence quantum yield (50%) in large-scale. The performance of these QDs in a PV device was comparable to batch-synthesized QDs, thus providing a promise in utilizing automated synthesis of QDs for PV applications. Second, it is crucial to study and control the charge transfer (CT) dynamics at QD interfaces in order to optimize their PV performance. Yet, the CT investigations based on PbS QDs are limited in literature. Here, we investigate the CT and charge separation (CS) at size-tunable PbS QDs and organic acceptor interfaces using a combination of femtosecond broadband transient spectroscopic techniques and steady-state measurements. The results reveal that the energy band alignment, tuned by the quantum

  9. Combinatorial methods for discovery of new photocatalytic materials for hydrogen synthesis

    Energy Technology Data Exchange (ETDEWEB)

    McFarland, E.W.; Baeck, S.-H.; Brandli, C.; Ivanovskaya, A.; Jaramillo, T. [California Univ., Santa Barbara, CA (United States). Dept. of Chemical Engineering


    Hydrogen is considered to be an alternative, renewable energy source that can replace fossil fuels, but the high cost of efficient photoelectrochemical synthesis is prohibitive. New materials for hydrogen production by photosynthesis from water are under investigation using a combination of methods based on electrochemistry. Parallel and serial rapid electrosynthesis systems have been developed for obtaining a mixed metal oxide collection of materials. High-throughput materials screening was achieved by direct detection of hydrogen using a two-dimensional WO{sub 3}/Pd based chemo-optical sensor system. It was also achieved indirectly by the measured photocurrents. Hundreds of different compositions were automatically synthesized on glass, metal or semiconductor hosts. New compositions indicate that performance is promising and show that the use of combinatorial chemistry methods is a powerful method to produce hydrogen. The potential photocatalysts were metal oxide semiconductor hosts (TiO{sub 2}, Fe{sub 2}O{sub 3}, WO{sub 3} and CU{sub 2}O) doped with different cations of Ru, Pt, Cr, Zn, Co, Cu, Ni, Mn, Fe, and Sn. Zero bias photocurrents were plotted for each material. 17 refs., 8 figs.

  10. On the Influence of Material Parameters in a Complex Material Model for Powder Compaction (United States)

    Staf, Hjalmar; Lindskog, Per; Andersson, Daniel C.; Larsson, Per-Lennart


    Parameters in a complex material model for powder compaction, based on a continuum mechanics approach, are evaluated using real insert geometries. The parameter sensitivity with respect to density and stress after compaction, pertinent to a wide range of geometries, is studied in order to investigate completeness and limitations of the material model. Finite element simulations with varied material parameters are used to build surrogate models for the sensitivity study. The conclusion from this analysis is that a simplification of the material model is relevant, especially for simple insert geometries. Parameters linked to anisotropy and the plastic strain evolution angle have a small impact on the final result.

  11. Eco-friendly synthesis for MCM-41 nanoporous materials using the non-reacted reagents in mother liquor (United States)


    Nanoporous materials such as Mobil composite material number 41 (MCM-41) are attractive for applications such as catalysis, adsorption, supports, and carriers. Green synthesis of MCM-41 is particularly appealing because the chemical reagents are useful and valuable. We report on the eco-friendly synthesis of MCM-41 nanoporous materials via multi-cycle approach by re-using the non-reacted reagents in supernatant as mother liquor after separating the solid product. This approach was achieved via minimal requirement of chemical compensation where additional fresh reactants were added into the mother liquor followed by pH adjustment after each cycle of synthesis. The solid product of each successive batch was collected and characterized while the non-reacted reagents in supernatant can be recovered and re-used to produce subsequent cycle of MCM-41. The multi-cycle synthesis is demonstrated up to three times in this research. This approach suggests a low cost and eco-friendly synthesis of nanoporous material since less waste is discarded after the product has been collected, and in addition, product yield can be maintained at the high level. PMID:23497184

  12. Modeling consonant-vowel coarticulation for articulatory speech synthesis.

    Directory of Open Access Journals (Sweden)

    Peter Birkholz

    Full Text Available A central challenge for articulatory speech synthesis is the simulation of realistic articulatory movements, which is critical for the generation of highly natural and intelligible speech. This includes modeling coarticulation, i.e., the context-dependent variation of the articulatory and acoustic realization of phonemes, especially of consonants. Here we propose a method to simulate the context-sensitive articulation of consonants in consonant-vowel syllables. To achieve this, the vocal tract target shape of a consonant in the context of a given vowel is derived as the weighted average of three measured and acoustically-optimized reference vocal tract shapes for that consonant in the context of the corner vowels /a/, /i/, and /u/. The weights are determined by mapping the target shape of the given context vowel into the vowel subspace spanned by the corner vowels. The model was applied for the synthesis of consonant-vowel syllables with the consonants /b/, /d/, /g/, /l/, /r/, /m/, /n/ in all combinations with the eight long German vowels. In a perception test, the mean recognition rate for the consonants in the isolated syllables was 82.4%. This demonstrates the potential of the approach for highly intelligible articulatory speech synthesis.

  13. Optimization on electrochemical synthesis of HKUST-1 as candidate catalytic material for Green diesel production (United States)

    Lestari, W. W.; Nugraha, R. E.; Winarni, I. D.; Adreane, M.; Rahmawati, F.


    In the effort to support the discovery of new renewable energy sources in Indonesia, biofuel is one of promising options. The conversion of vegetable oil into ready-biofuel, especially green diesel, needs several steps, one of which is a hydrogenation or hydro-deoxygenation reaction. In this case, the catalyst plays a very important role regarding to its activity and selectivity, and Metal-Organic Frameworks (MOFs) becoming a new generation of heterogeneous catalyst in this area. In this research, a preliminary study to optimize electrochemical synthesis of the catalytic material based on MOFs, namely HKUST-1 [Cu3(BTC)2], has been conducted. Some electrochemical reaction parameters were tested, for example by modifying the electrochemical synthetic conditions, i.e. by performing variation of voltages (12, 13, 14, and 15 Volt), temperatures (RT, 40, 60, and 80 °C) and solvents (ethanol, water, methanol and dimethyl-formamide (DMF)). Material characterization was carried out by XRD, SEM, FTIR, DTA/TG and SAA. The results showed that the optimum synthetic conditions of HKUST-1 are performed at room temperature in a solvent combination of water: ethanol (1: 1) and a voltage of 15 Volt for 2 hours. The XRD-analysis revealed that the resulted peaks are identical to the simulated powder pattern generated from single crystal data and comparable to the peaks of solvothermal method. However, the porosity of the resulting material through electrochemical method is still in the range of micro-pore according to IUPAC and 50% smaller than the porosity resulted from solvothermal synthesis. The corresponding compounds are thermally stable until 300 °C according to TG/DTA.

  14. Synthesis of nanodispersed filler for polymer composite materials of thermostatic purpose

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich


    Full Text Available The paper presents data on the synthesis of nanosized filler for nonpolar polymer matrix. Aqueous solution of sodium methylsiliconate with empirical formula CH3–Si(OH2ONa was used as the base component for the synthesis of nanosized filler. The production process of filler consists of several stages, these are the main ones: synthesizing of gel that was obtained in gel formation from sol colloidal solution – transformation of free-dispersed system (sol into connected-dispersed one; gel precipitation by centrifugation and washing from ion Na+; gel drying at temperature of 100оC to obtain a powder filler; dispersion in the mill to the particle size of 0,1–1 microns. To destroy globules and diminish particle size to nanoscale level the obtained material was exposed to dispersion in planetary mill with further sonication (22 Hz. To study the obtained filler X-ray, differential thermal and microscopic methods have been used. For quantification of colloidal component (nanoparticles in the suspension the centrifugation method was used at high speeds. It has been determined that the content of nanoparticles (up to 200 nm in the obtained substance is about 10%. Damping edge angle of the obtained material is 110–120оC, that shows high hydrophobic properties of the synthesized powder. The obtained material possesses high dispersiveness, hydrophobicity and silicone frame resistant to the temperature range up to 531оC (there are no significant chemical transformations except dealkylation and dehydration reactions. Thermal degradation of the synthesized filler distinctly observed at the temperaturemore than 531оC.

  15. On the synthesis of the pilot optimal control model

    Directory of Open Access Journals (Sweden)

    Adrian TOADER


    Full Text Available The study continues some work of the authors, this time performing a synthesis of optimal control model of the human pilot in systems with input delay, by removing the Padé or Hess approximations characterizing the pilot structural central nervous block and their introduction as a pure delay block. On the one hand, the method ensures a better accuracy of synthesis and on the other hand is advantageous with respect to general results to date for time delay systems since: a the optimal control law is given explicitly and b the Riccati equations for the gain matrices do not contain any time advanced or delayed arguments. The approach is stimulated by recent works of M. Basin and his collaborators.

  16. Serotonin synthesis, release and reuptake in terminals: a mathematical model

    Directory of Open Access Journals (Sweden)

    Best Janet


    Full Text Available Abstract Background Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system. Methods We construct a mathematical model of serotonin synthesis, release, and reuptake in a single serotonergic neuron terminal. The model includes the effects of autoreceptors, the transport of tryptophan into the terminal, and the metabolism of serotonin, as well as the dependence of release on the firing rate. The model is based on real physiology determined experimentally and is compared to experimental data. Results We compare the variations in serotonin and dopamine synthesis due to meals and find that dopamine synthesis is insensitive to the availability of tyrosine but serotonin synthesis is sensitive to the availability of tryptophan. We conduct in silico experiments on the clearance of extracellular serotonin, normally and in the presence of fluoxetine, and compare to experimental data. We study the effects of various polymorphisms in the genes for the serotonin transporter and for tryptophan hydroxylase on synthesis, release, and reuptake. We find that, because of the homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have smaller effects than one expects. We compute the expected steady concentrations of serotonin transporter knockout mice and compare to

  17. Modelling of Landslides with the Material-point Method

    DEFF Research Database (Denmark)

    Andersen, Søren; Andersen, Lars


    A numerical model for studying the dynamic evolution of landslides is presented. The numerical model is based on the Generalized Interpolation Material Point Method. A simplified slope with a house placed on top is analysed. An elasto-plastic material model based on the Mohr-Coulomb yield criterion...

  18. Modeling of Landslides with the Material Point Method

    DEFF Research Database (Denmark)

    Andersen, Søren Mikkel; Andersen, Lars


    A numerical model for studying the dynamic evolution of landslides is presented. The numerical model is based on the Generalized Interpolation Material Point Method. A simplified slope with a house placed on top is analysed. An elasto-plastic material model based on the Mohr-Coulomb yield criterion...

  19. Nebular Continuum and Line Emission in Stellar Population Synthesis Models

    CERN Document Server

    Byler, Nell; Conroy, Charlie; Johnson, Benjamin D


    Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emission can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the total line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improve estimates of global gas properties derived with diagnostic diagrams, star formation rates based on H$\\alpha$, and stellar masses derived from NIR broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H II regions and star-forming galaxies...

  20. Modeling of Nearshore-Placed Dredged Material (United States)


    and nourishes the beach. The focus of the present study is to examine the design for nearshore placement of dredged material through laboratory...Army Engineer Research and Development Center,, Coastal and Hydraulics Laboratory,3909 Halls Ferry Road,,Vicksburg,,MS, 39180 8. PERFORMING...Material Ernest R. Smith and Rusty L. Permenter Coastal and Hydraulics Laboratory U.S. Army Engineer Research and Development Center 3909 Halls

  1. Interatomic Potential Models for Ionic Materials (United States)

    Gale, Julian D.

    Ionic materials are present in many key technological applications of the modern era, from solid state batteries and fuel cells, nuclear waste immobiliza tion, through to industrial heterogeneous catalysis, such as that found in automotive exhaust systems. With the boundless possibilities for their utilization, it is natural that there has been a long history of computer simulation of their structure and properties in order to understand the materials science of these systems at the atomic level.

  2. Quality quantification model of basic raw materials


    Š. Vilamová; P. Besta; R. Kozel; K. Janovská; M. Piecha; Levit, A; Straka, M.; Šanda, M.


    Basic raw materials belong to the key input sources in the production of pig iron. The properties of basic raw materials can be evaluated using a variety of criteria. The essential ones include the physical and chemical properties. Current competitive pressures, however, force the producers of iron more and more often to include cost and logistic criteria into the decision-making process. In this area, however, they are facing a problem of how to convert a variety of vastly differ...

  3. Modelling cohesive, frictional and viscoplastic materials (United States)

    Alehossein, Habib; Qin, Zongyi


    Most materials in mining and civil engineering construction are not only viscoplastic, but also cohesive frictional. Fresh concrete, fly ash and mining slurries are all granular-frictional-visco-plastic fluids, although solid concrete is normally considered as a cohesive frictional material. Presented here is both a formulation of the pipe and disc flow rates as a function of pressure and pressure gradient and the CFD application to fresh concrete flow in L-Box tests.

  4. Modeling release of chemicals from multilayer materials into food

    Directory of Open Access Journals (Sweden)

    Huang Xiu-Ling


    Full Text Available The migration of chemicals from materials into food is predictable by various mathematical models. In this article, a general mathematical model is developed to quantify the release of chemicals through multilayer packaging films based on Fick's diffusion. The model is solved numerically to elucidate the effects of different diffusivity values of different layers, distribution of chemical between two adjacent layers and between material and food, mass transfer at the interface of material and food on the migration process.

  5. Method and apparatus for modeling, visualization and analysis of materials

    KAUST Repository

    Aboulhassan, Amal


    A method, apparatus, and computer readable medium are provided for modeling of materials and visualization of properties of the materials. An example method includes receiving data describing a set of properties of a material, and computing, by a processor and based on the received data, geometric features of the material. The example method further includes extracting, by the processor, particle paths within the material based on the computed geometric features, and geometrically modeling, by the processor, the material using the geometric features and the extracted particle paths. The example method further includes generating, by the processor and based on the geometric modeling of the material, one or more visualizations regarding the material, and causing display, by a user interface, of the one or more visualizations.

  6. Controlled synthesis of organic nanophotonic materials with specific structures and compositions. (United States)

    Cui, Qiu Hong; Zhao, Yong Sheng; Yao, Jiannian


    Organic nanomaterials have drawn great interest for their potential applications in high-speed miniaturized photonic integration due to their high photoluminescence quantum efficiency, structural processability, ultrafast photoresponse, and excellent property engineering. Based on the rational design on morphological and componential levels, a series of organic nanomaterials have been controllably synthesized in recent years, and their excitonic/photonic behaviors has been fine-tuned to steer the light flow for specific optical applications. This review presents a comprehensive summary of recent breakthroughs in the controlled synthesis of organic nanomaterials with specific structures and compositions, whose tunable photonic properties would provide a novel platform for multifunctional applications. First, we give a general overview of the tailored construction of novel nanostructures with various photonic properties. Then, we summarize the design and controllable synthesis of composite materials for the modulation of their functionalities. Subsequently, special emphasis is put on the fabrication of complex nanostructures towards wide applications in isolated photonic devices. We conclude with our personal viewpoints on the development directions in the novel design and controllable construction of organic nanomaterials for future applications in highly integrated photonic devices and chips.

  7. Plasmachemical Synthesis of Nanopowders in the System Ti(O,C,N for Material Structure Modification

    Directory of Open Access Journals (Sweden)

    Michael Filkov


    Full Text Available Refractory nanoparticles are finding broad application in manufacturing of materials with enhanced physical properties. Production of carbide, nitride, and carbonitride nanopowders in high volumes is possible in the multijet plasmachemical reactor, where temperature and velocity distributions in reaction zone can be controlled by plasma jet collision angle and mixing chamber geometry. A chemical reactor with three Direct Current (DC arc plasma jets intersecting at one point was applied for titanium carbonitride synthesis from titanium dioxide, propane-butane mixture, and nitrogen. The influence of process operational parameters on the product chemical and phase composition was investigated. Mixing conditions in the plasma jet collision zone, particles residence time, and temperatures were evaluated with the help of Computational Fluid Dynamics (CFD simulations. The synthesized nanoparticles have predominantly cubic shape and dimensions in the range 10–200 nm. Phase compositions were represented by oxycarbonitride phases. The amount of free (not chemically bonded carbon in the product varied in the range 3–12% mass, depending on synthesis conditions.

  8. Synthesis of nanoscale materials via a novel chemical vapor deposition based apparatus (United States)

    Klug, Kevin L.

    Nanoscale materials are of interest due to the unusual properties afforded by their size. Two such morphologies, nanoparticles and the recently discovered "nanobelt" materials, are explored in this thesis. A novel nanoscale material synthesis apparatus was constructed. It consists of four primary components: an evaporation chamber, a chemical vapor deposition furnace, a collection chamber, and a powder reservoir. A two-stage subsonic jet separates the first two components, permitting nanoparticle production to occur independently of subsequent chemical and thermal treatment. An experimental design was conducted to examine the roles of several variables during the formation of graphite-encapsulated nickel nanoparticles. Coating morphology was strongly dependent on furnace temperature, which exhibited a more subtle influence on mean particle size. The percentage of nickel surviving acid treatment depended primarily on hydrocarbon identity, as well as furnace temperature and carbon atom flux. Acetylene at high temperature yielded crystalline carbon coatings and the greatest percentage of protected nickel achieved, but with an excess of carbon in the product. Additional encapsulated nickel experiments were conducted with reduced acetylene flowrates and a staggered furnace temperature. Thermogravimetric analysis of the as-collected powder revealed that the coating was a crystalline and amorphous carbon hybrid. While this coating effectively protected large clumps of embedded nickel, removal of the amorphous carbon by oxidation rendered individual particles susceptible to hydrochloric acid attack. Amorphous silica was introduced as an alternative coating material via tetraethoxysilane decomposition. Transmission electron microscopy confirmed the production of well-dispersed, acid-resistant particles with a nickel core and silica shell. The synthesis of nanoscale alumina heterogeneous catalyst substrates was investigated. Exposure of aluminum nanoparticles to large

  9. High pressure synthesis of novel, zeolite based nano-composite materials (United States)

    Santoro, Mario


    Meso/micro-porous solids such as zeolites are complex materials exhibiting an impressive range of applications, including molecular sieve, gas storage, catalysis, electronics and photonics. We used these materials, particularly non catalytic zeolites in an entirely different fashion. In fact, we performed high pressure (0.5-30 GPa) chemical reactions of simple molecules on a sub-nanometer scale in the channels of a pure SiO2 zeolite, silicalite to obtain unique nano-composite materials with drastically modified physical and chemical properties. Our material investigations are based on a combination of X-ray diffraction and optical spectroscopy techniques in the diamond anvil cell. I will first briefly show how silicalite can be easily filled by simple molecules such as Ar, CO2 and C2H4 among others from the fluid phase at high pressures, and how this efficient filling removes the well known pressure induced amorphization of the silica framework (Haines et al., JACS 2010). I will then present on a silicon carbonate crystalline phase synthesized by reacting silicalite and molecular CO2 that fills the nano-pores, at 18-26 GPa and 600-980 K; after the synthesis the compound is temperature quenched and it results to be slightly metastable at room conditions (Santoro et al., PNAS 2011). On the other hand, a stable at room condition spectacular crystalline nano-composite is obtained by photo-polymerizing ethylene at 0.5-1.5 GPa under UV (351-364 nm) irradiation in the channels of silicalite (Santoro et al., Nat. Commun, in press 2013). For this composite we obtained a structure with single polyethylene chains adapting very well to the confining channels, which results in significant increases in bulk modulus and density, and the thermal expansion coefficient changes sign from negative to positive with respect to the original silicalite host. Mechanical properties may thus be tuned by varying the amount of polymerized ethylene. We then think our findings could allow the

  10. Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays

    Directory of Open Access Journals (Sweden)

    Christoph Rehbock


    Full Text Available Due to the abundance of nanomaterials in medical devices and everyday products, toxicological effects related to nanoparticles released from these materials, e.g., by mechanical wear, are a growing matter of concern. Unfortunately, appropriate nanoparticles required for systematic toxicological evaluation of these materials are still lacking. Here, the ubiquitous presence of surface ligands, remaining from chemical synthesis are a major drawback as these organic residues may cause cross-contaminations in toxicological studies. Nanoparticles synthesized by pulsed laser ablation in liquid are a promising alternative as this synthesis route provides totally ligand-free nanoparticles. The first part of this article reviews recent methods that allow the size control of laser-fabricated nanoparticles, focusing on laser post irradiation, delayed bioconjugation and in situ size quenching by low salinity electrolytes. Subsequent or parallel applications of these methods enable precise tuning of the particle diameters in a regime from 4–400 nm without utilization of any artificial surface ligands. The second paragraph of this article highlights the recent progress concerning the synthesis of composition controlled alloy nanoparticles by laser ablation in liquids. Here, binary and ternary alloy nanoparticles with totally homogeneous elemental distribution could be fabricated and the composition of these particles closely resembled bulk implant material. Finally, the model AuAg was used to systematically evaluate composition related toxicological effects of alloy nanoparticles. Here Ag+ ion release is identified as the most probable mechanism of toxicity when recent toxicological studies with gametes, mammalian cells and bacteria are considered.

  11. SRM (Solid Rocket Motor) propellant and polymer materials structural modeling (United States)

    Moore, Carleton J.


    The following investigation reviews and evaluates the use of stress relaxation test data for the structural analysis of Solid Rocket Motor (SRM) propellants and other polymer materials used for liners, insulators, inhibitors, and seals. The stress relaxation data is examined and a new mathematical structural model is proposed. This model has potentially wide application to structural analysis of polymer materials and other materials generally characterized as being made of viscoelastic materials. A dynamic modulus is derived from the new model for stress relaxation modulus and is compared to the old viscoelastic model and experimental data.

  12. Device and materials modeling in PEM fuel cells

    CERN Document Server

    Promislow, Keith


    Device and Materials Modeling in PEM Fuel Cells is a specialized text that compiles the mathematical details and results of both device and materials modeling in a single volume. Proton exchange membrane (PEM) fuel cells will likely have an impact on our way of life similar to the integrated circuit. The potential applications range from the micron scale to large scale industrial production. Successful integration of PEM fuel cells into the mass market will require new materials and a deeper understanding of the balance required to maintain various operational states. This book contains articles from scientists who contribute to fuel cell models from both the materials and device perspectives. Topics such as catalyst layer performance and operation, reactor dynamics, macroscopic transport, and analytical models are covered under device modeling. Materials modeling include subjects relating to the membrane and the catalyst such as proton conduction, atomistic structural modeling, quantum molecular dynamics, an...

  13. Use of different types of mesoporous materials as tools for organic synthesis. (United States)

    Witula, Tomasz; Holmberg, Krister


    Mesoporous materials have been investigated as auxiliary agents for organic synthesis comprising reactants with widely different solubility characteristics. The finely divided oxide material was immersed in an aqueous solution of a water-soluble reactant, potassium iodide, and the loaded particles were kept under stirring in the hydrophobic reactant, 4-tert-butylbenzyl bromide, or in a hydrocarbon solution of this reactant. The reaction proceeded well in alumina and silica of either bicontinuous cubic or hexagonal geometry. It was shown for silica that the particle size was an important parameter; the smaller the size the faster the reaction. Titania gave a much lower reaction rate than alumina and silica. It was found that the hexagonal mesoporous alumina could be reused either as a slurry or in a column procedure. Attempts were also made to use hydrophobic mesoporous materials, either mesoporous graphite or mesoporous oxide treated with chlorotrimethylsilane, in the reversed mode. The hydrophobic solid was then immersed in a solution of the hydrophobic reactant and subsequently dispersed in an aqueous solution of the water-soluble reactant. Two nucleophilic substitution reactions and one oxidation reaction were investigated but the yields were low in all cases.

  14. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors (United States)

    Wang, Ronghua; Han, Meng; Zhao, Qiannan; Ren, Zonglin; Guo, Xiaolong; Xu, Chaohe; Hu, Ning; Lu, Li


    As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10-20 nm are uniformly composited with GNS by a two-step hydrothermal-assistant chemical oxidation polymerization process; while PANi nanofibers with diameter of 50~100 nm are obtained by a one-step direct hydrothermal process. Benefitting from the ultrathin layer and porous structure, the sheet-like GNS/PANi composites can deliver specific capacitances of 532.3 to 304.9 F/g at scan rates of 2 to 50 mV/s. And also, this active material showed very good stability with capacitance retention as high as ~99.6% at scan rate of 50 mV/s, indicating a great potential for using in supercapacitors. Furthermore, the effects of hydrothermal temperatures on the electrochemical performances were systematically studied and discussed.

  15. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors (United States)

    Wang, Ronghua; Han, Meng; Zhao, Qiannan; Ren, Zonglin; Guo, Xiaolong; Xu, Chaohe; Hu, Ning; Lu, Li


    As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10–20 nm are uniformly composited with GNS by a two-step hydrothermal-assistant chemical oxidation polymerization process; while PANi nanofibers with diameter of 50~100 nm are obtained by a one-step direct hydrothermal process. Benefitting from the ultrathin layer and porous structure, the sheet-like GNS/PANi composites can deliver specific capacitances of 532.3 to 304.9 F/g at scan rates of 2 to 50 mV/s. And also, this active material showed very good stability with capacitance retention as high as ~99.6% at scan rate of 50 mV/s, indicating a great potential for using in supercapacitors. Furthermore, the effects of hydrothermal temperatures on the electrochemical performances were systematically studied and discussed. PMID:28291246

  16. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis. (United States)

    Xu, Hui; Li, Qin; Shen, Lifeng; Zhang, Mengqun; Zhai, Jianping


    In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solution as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production.

  17. High-pressure synthesis of a polyethylene/zeolite nano-composite material. (United States)

    Santoro, Mario; Gorelli, Federico A; Bini, Roberto; Haines, Julien; van der Lee, Arie


    Meso/micro-porous solids, such as zeolites, are complex materials used in an impressive range of applications. Here we photo-polymerized ethylene using non-catalytic high-pressure techniques at 0.5-1.5 GPa under ultraviolet (351-364 nm) irradiation on a sub-nanometre scale in the channels of a pure SiO2 zeolite, silicalite, to obtain a unique nano-composite material with drastically modified mechanical properties. The structure obtained contains single polyethylene chains, which adapt very well to the confining channels as shown by optical spectroscopy and X-ray diffraction. The formation of this nano-composite results in significant increases in bulk modulus and density, and the thermal expansion coefficient changes sign from negative to positive with respect to silicalite. Mechanical properties may thus be tuned by varying the amount of polymerized ethylene. Our findings could allow the high-pressure, catalyst-free synthesis of a unique generation of technological, functional materials based on simple hydrocarbons polymerized in confining meso/micro-porous solids.

  18. Coordination Covalent Frameworks: A New Route for Synthesis and Expansion of Functional Porous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Elsaidi, Sameh K.; Mohamed, Mona H.; Loring, John S.; McGrail, Bernard. Pete; Thallapally, Praveen K.


    The synthetic approaches for fine-tuning the structural properties of coordination polymers or metal organic frameworks have exponentially grown during the last decade. This is due to the control over the properties of the resulting structures such as stability, pore size, pore chemis-try and surface area for myriad possible applications. Herein, we present a new class of porous materials called Covalent Coordination Frameworks (CCFs) that were designed and effectively synthesized using a two-step reticular chemistry approach. During the first step, trigonal prismatic molecular building block was isolated using 4-aminobenazoic acid and Cr (III) salt, subsequently in the second step the polymerization of the isolated molecular building blocks (MBBs) takes place by the formation of strong covalent bonds where small organic molecules can connect the MBBs forming extended porous CCF materials. All the isolated CCFs were found to be permanently porous while the discrete MBB were non-porous. This approach would inevitably open a feasible path for the applications of reticular chemistry and the synthesis of novel porous materials with various topologies under ambient conditions using simple organic molecules and versatile MBBs with different functionalities which would not be possible using the traditional one step approach

  19. Synthesis of A Novel Photosensitive Prepolymer with Trimethylolpropane Triglycidylether and Acrylic Acid as Starting Materials

    Institute of Scientific and Technical Information of China (English)

    HUANG Biwu; HUANG Shuhuai; SHI Yusheng; MO Jianhua


    A novel photosensitive prepolymer of trimethylolpropane triglycidylether triacrylate was synthesized by utilizing trimethylolpropane triglycidylether and acrylic acid as two starting materials, triphenyl phosphine as catalyst and p-hydroxyanisole as inhibitor. The optimum synthesis conditions were that the concentration of triphenyl phosphine was 0.85wt% of reactants, the concentration of p-hydroxyanisole was 0.3wt% of reactants, and the reaction temperature was at 90-110 ℃. Benzil dimethyl ketal of a UV-cured initiator was added to the synthesized trimethylolpropane triglycidylether triacrylate to prepare a kind of UV-cured coating. The mechanical properties of the UV-cured films were determined, giving 28.43 MPa of tensile strength, 965.59MPa of Young's modulus and 4.10% of elongation at tear.

  20. Plausible role of nanoparticle contamination in the synthesis and properties of organic electronic materials (United States)

    Ananikov, Valentine P.


    Traceless transition metal catalysis (Pd, Ni, Cu, etc.) is very difficult to achieve. Metal contamination in the synthesized products is unavoidable and the most important questions are: How to control metal impurities? What amount of metal impurities can be tolerated? What is the influence of metal impurities? In this brief review, the plausible origins of nanoparticle contamination are discussed in the framework of catalytic synthesis of organic electronic materials. Key factors responsible for increasing the probability of contamination are considered from the point of view of catalytic reaction mechanisms. The purity of the catalyst may greatly affect the molecular weight of a polymer, reaction yield, selectivity and several other parameters. Metal contamination in the final polymeric products may induce some changes in the electric conductivity, charge transport properties, photovoltaic performance and other important parameters.

  1. High-Throughput Synthesis and Characterization of BiMoVOX Materials (United States)

    Russu, Sergio; Tromp, Moniek; Tsapatsaris, Nikolaos; Beesley, Angela M.; Schroeder, Sven L. M.; Weller, Mark T.; Evans, John


    The high throughput synthesis and characterization of a particular family of ceramic materials, bismuth molybdenum vanadium oxides (BiMoVOX), suitable as inorganic yellow pigments and low temperature oxidation catalysts, is described. Samples, synthesized by calcination and peroxo sol-gel methods, are characterized by X-ray powder diffraction, UV-visible and XAFS spectroscopy. A combined high-throughput XRD/XAFS study of a 54 samples array, with simultaneous refinement of data of both techniques, has been performed. Molybdenum doping of bismuth vanadate results in a phase transition from monoclinic BiVO4 to tetragonal Bi(V,Mo)O4, both of scheelite type. Both central metals, V5+ and Mo6+, remain in a tetrahedral coordination. UV/visible spectroscopy identifies a linear blue shift as a function of Mo6+ amount.

  2. Rare earth based nanostructured materials: synthesis, functionalization, properties and bioimaging and biosensing applications (United States)

    Escudero, Alberto; Becerro, Ana I.; Carrillo-Carrión, Carolina; Núñez, Nuria O.; Zyuzin, Mikhail V.; Laguna, Mariano; González-Mancebo, Daniel; Ocaña, Manuel; Parak, Wolfgang J.


    Rare earth based nanostructures constitute a type of functional materials widely used and studied in the recent literature. The purpose of this review is to provide a general and comprehensive overview of the current state of the art, with special focus on the commonly employed synthesis methods and functionalization strategies of rare earth based nanoparticles and on their different bioimaging and biosensing applications. The luminescent (including downconversion, upconversion and permanent luminescence) and magnetic properties of rare earth based nanoparticles, as well as their ability to absorb X-rays, will also be explained and connected with their luminescent, magnetic resonance and X-ray computed tomography bioimaging applications, respectively. This review is not only restricted to nanoparticles, and recent advances reported for in other nanostructures containing rare earths, such as metal organic frameworks and lanthanide complexes conjugated with biological structures, will also be commented on.

  3. Experimental studies of superhard materials carbon nitride CNx prepared by ion-beam synthesis method

    Institute of Scientific and Technical Information of China (English)

    辛火平; 林成鲁; 许华平; 邹世昌; 石晓红; 吴兴龙; 朱宏; P.L.FHemment


    Formation of superhard materials carbon nitride CNt by using ion-beam synthesis method is reported.100-keV high-dose N+ ions were implanted into carbon thin films at different temperatures.The samples were evaluated by X-ray photoelectron spectroscopy (XPS),Fourier transformation-infrared absorption spectroscopy (FTIR),Raman spectroscopy,cross-sectional transmission electron microscopy (XTEM),Rutherford backscattering spectroscopy (RBS).X-ray diffraction analysis (XRD) and Vickers microhardness measurement.The results show that the buried carbon nitride CN> layer has been successfully formed by using 100-keV high-dose N+ ions implantation into carbon thin film.Implantation of reactive ions into silicon (IRIS) computer program has been used to simulate the formation of the buried β-C3N4 layer as N+ ions are implanted into carbon.A good agreement between experimental measurements and IRIS simulation is found.

  4. Synthesis of Nano-Crystalline Materials in Open-Air Laboratory: A Case Study of Tobacco. (United States)

    Satpati, Biswarup; Bhattacherjee, Ashis; Roy, Madhusudan


    The work deals with synthesis of nano-crystalline materials in open-air laboratory and in-depth investigation of the tobacco sample of one branded cigarette and its ash using high-resolution transmission electron microscopy and associated techniques. It exhibits the presence of nanocrystals and nanorods of various oxides in cigarette ash. The structure, shape, size and composition of these nanocrystals and nanorods are explored. The energy dispersive X-ray spectra from different regions of the tobacco sample and its ash using high-angle annular dark field scanning/transmission electron microscopy mode are utilized to obtain elemental composition and their relative abundances. For a detailed distribution of different elements in the nanorods, elemental mapping using energy-filtered transmission electron microscopy is also presented. The results highlight the conversion of amorphous constituents of tobacco to nanomaterials on combustion at low temperatures, thus mixing up in the atmosphere.

  5. Creep characterization of gels and nonlinear viscoelastic material model (United States)

    Ishikawa, Kiyotaka; Fujikawa, Masaki; Makabe, Chobin; Tanaka, Kou


    In this paper, we examine gel creep behavior and develop a material model for useful and simple numerical simulation of this behavior. This study has three stages and aims: (1) gel creep behavior is examined; (2) the material model is determined and the material constants are identified; and (3) the versatility of the material model and the constants are evaluated. The creep behavior is found to be independent of the initial stress level in the present experiment. Thus, the viscoelastic model proposed by Simo is selected, and its material constants are identified using the results of creep tests. Moreover, from the results of numerical calculations and experiments, it is found that the chosen material model has good reproducibility, predictive performance and high versatility.

  6. Synthesis and gas adsorption study of porous metal-organic framework materials (United States)

    Mu, Bin

    Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) have become the focus of intense study over the past decade due to their potential for advancing a variety of applications including air purification, gas storage, adsorption separations, catalysis, gas sensing, drug delivery, and so on. These materials have some distinct advantages over traditional porous materials such as the well-defined structures, uniform pore sizes, chemically functionalized sorption sites, and potential for postsynthetic modification, etc. Thus, synthesis and adsorption studies of porous MOFs have increased substantially in recent years. Among various prospective applications, air purification is one of the most immediate concerns, which has urgent requirements to improve current nuclear, biological, and chemical (NBC) filters involving commercial and military purposes. Thus, the major goal of this funded project is to search, synthesize, and test these novel hybrid porous materials for adsorptive removal of toxic industrial chemicals (TICs) and chemical warfare agents (CWAs), and to install the benchmark for new-generation NBC filters. The objective of this study is three-fold: (i) Advance our understanding of coordination chemistry by synthesizing novel MOFs and characterizing these porous coordination polymers; (ii) Evaluate porous MOF materials for gasadsorption applications including CO2 capture, CH4 storage, other light gas adsorption and separations, and examine the chemical and physical properties of these solid adsorbents including thermal stability and heat capacity of MOFs; (iii) Evaluate porous MOF materials for next-generation NBC filter media by adsorption breakthrough measurements of TICs on MOFs, and advance our understanding about structureproperty relationships of these novel adsorbents.

  7. Low Temperature One-Step Synthesis of Barium Titanate:Thermodynamic Modeling and Experimental Synthesis

    Institute of Scientific and Technical Information of China (English)

    沈志刚; 李世刚; 刘朝文; 张建文; 陈建峰


    A thermodynamic model has been developed to determine the reaction conditions favoring low temperature direct synthesis of barium titanate (BaTiO3). The method utilizes standard-state thermodynamic data for solid and aqueous species and a Debye-Hǔckel coefficients model to represent solution nonideality. The method has been used to generate phase stability diagrams that indicate the ranges of pH and reagent concentrations, for which various species predominate in the system at a given temperature. Also, yield diagrams have been constructed that indicate the concentration, pH and temperature conditions for which different yields of crystalline BaTiO3 can be obtained. The stability and yield diagrams have been used to predict the optimum synthesis conditions (e.g.,reagent concentrations, pH and temperature). Subsequently, these predictions have been experimentally verified.As a result, phase-pure perovskite BaTiO3 has been obtained at temperature ranging from 55 to 85℃ using BaCl2,TiCl4 as a source for Ba and Ti. and NaOH as a orecioitator.

  8. Non-local modeling of materials

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof


    Numerical studies of non-local plasticity effects on different materials and problems are carried out. Two different theories are used. One is of lower order in that it retains the structure of a conventional plasticity boundary value problem, while the other is of higher order and employs higher...... order stresses as work conjugates to higher order strains and uses higher order boundary conditions. The influence of internal material length parameters is studied, and the effects of higher order boundary conditions are analyzed. The focus of the thesis is on metal-matrix composites, and non...

  9. Synthesis and Characterization of A2Mo3O 12 Materials (United States)

    Young, Lindsay Kay

    Negative thermal expansion (NTE) materials have attracted considerable research interest in recent decades. These unique materials shrink when heated, offering a potential means to control the overall thermal expansion of composites. Several families of materials display this behavior, the largest of which is the A2Mo3O12 family (also called the scandium tungstate family), in which A is a trivalent cation and M is molybdenum or tungsten. These materials show NTE in an orthorhombic structure, but many members transform to a monoclinic structure with positive expansion at low temperatures. Many properties of these materials are dependent on their elemental composition, especially the identity of the A3+ cation. This includes the magnitude of NTE, as well as the phase transition behavior as a function of temperature and pressure. It is also possible to create "mixed site" cation A2Mo3O12 materials, in which the A site is occupied by two different cations. These are described as AxA'2-xM3O12 materials, as the composition A:A' can vary. Creating these new compositions may result in different phase transition properties or the ability to tune the NTE properties of these materials. In this work, the focus was on synthesis and characterization of indium gallium molybdate (InxGa2-xM3O12). The non-hydrolytic sol-gel (NHSG) method was used to synthesize indium gallium molybdate while exploring a variety of reaction parameters. While the goal was to create stoichiometric, homogenous materials, it was found that this could not be accomplished using easily accessible parameters during NHSG reactions. However, it was discovered that certain conditions allowed unusually low temperature (230 °C) crystallization of these materials. Similar conditions were explored for single cation A2Mo3O12 materials, and it was determined that crystallization of indium molybdate, iron molybdate, and scandium molybdate was possible at temperatures of 230 or 300 °C. This extremely low temperature

  10. Design, synthesis, and initial evaluation of D-glyceraldehyde crosslinked gelatin-hydroxyapatite as a potential bone graft substitute material (United States)

    Florschutz, Anthony Vatroslav

    Utilization of bone grafts for the treatment of skeletal pathology is a common practice in orthopaedic, craniomaxillofacial, dental, and plastic surgery. Autogenous bone graft is the established archetype but has disadvantages including donor site morbidity, limited supply, and prolonging operative time. In order to avoid these and other issues, bone graft substitute materials are becoming increasingly prevalent among surgeons for reconstructing skeletal defects and arthrodesis applications. Bone graft substitutes are biomaterials, biologics, and guided tissue/bone regenerative devices that can be used alone or in combinations as supplements or alternatives to autogenous bone graft. There is a growing interest and trend to specialize graft substitutes for specific indications and although there is good rationale for this indication-specific approach, the development and utility of a more universal bone graft substitute may provide a better answer for patients and surgeons. The aim of the present research focuses on the design, synthesis, and initial evaluation of D-glyceraldehyde crosslinked gelatin-hydroxyapatite composites for potential use as a bone graft substitutes. After initial establishment of rational material design, gelatinhydroxyapatite scaffolds were fabricated with different gelatin:hydroxyapatite ratios and crosslinking concentrations. The synthesized scaffolds were subsequently evaluated on the basis of their swelling behavior, porosity, density, percent composition, mechanical properties, and morphology and further assessed with respect to cell-biomaterial interaction and biomineralization in vitro. Although none of the materials achieved mechanical properties suitable for structural graft applications, a reproducible material design and synthesis was achieved with properties recognized to facilitate bone formation. Select scaffold formulations as well as a subset of scaffolds loaded with recombinant human bone morphogenetic protein-2 were

  11. Vibro-acoustics of porous materials - waveguide modeling approach

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey V.


    The porous material is considered as a compound multi-layered waveguide (i.e. a fluid layer surrounded with elastic layers) with traction free boundary conditions. The attenuation of the vibro-acoustic waves in such a material is assessed. This approach is compared with a conventional Biot's model...... in porous materials....


    Directory of Open Access Journals (Sweden)

    Sergii Filonenko


    Full Text Available Modeling of acoustic emission energy during the composite material machining for termoactivativemodel of acoustic radiation is simulated. The regularities of resultant signals energy parameters change dependingon composite materials machining speed are determined. Obtained regularities with their statistical characteristicsare described. Sensitivity of acoustic emission energy parameters to the change of composite material machiningspeed is shown.


    The Interagency Steering Committee on Radiation Standards (ISCORS) has recently completed a study of the occurrence within the United States of radioactive materials in sewage sludge and sewage incineration ash. One component of that effort was an examination of the possible tra...

  14. Multi-scale modeling of softening materials

    NARCIS (Netherlands)

    Lloberas Valls, O.; Simone, A.; Sluys, L.J.


    This paper presents an assessment of a two-scale framework for the study of softening materials. The procedure is based on a hierarchical Finite Element (FE) scheme in which computations are performed both at macro and mesoscopic scale levels. The methodology is chosen specifically to remain valid

  15. A Review of Constitutive Models for Rubber-Like Materials

    Directory of Open Access Journals (Sweden)

    Aidy Ali


    Full Text Available Problem statement: This study reviewed the needs of different constitutive models for rubber like material undergone large elastic deformation. The constitutive models are widely used in Finite Element Analysis (FEA packages for rubber components. Most of the starting point for modeling of various kinds of elastomer is a strain energy function. In order to define the hyperelastic material behavior, stress-strain response is required to determine material parameters in the strain energy potential and also proper selection of rubber elastic material model is the first attention. Conclusion: This review provided a sound basis decision to engineers and manufactures to choose the right model from several constitutive models based on strain energy potential for incompressible and isotropic materials.

  16. Synthesis, model and stability of helically coiled carbon nanotubes

    DEFF Research Database (Denmark)

    Fejes, Dora; Raffai, Manuella; Hernadi, Klara


    Structural model of helically coiled carbon nanotubes is proposed. It is constructed by means of topological coordinate method. Relaxation and cohesive energy calculation are performed by molecular mechanics, using second-generation bond order potential for hydrocarbons introduced by D. W. Brenner....... Our experiments focused on the production and development of catalysts for the synthesis of helically coiled CNTs (carbon nanotubes). The catalysts were tested in the decomposition of acetylene by CCVD (Catalytic Chemical Vapor Deposition) method. The carbon deposit was imaged by TEM (Transmission...

  17. Dynamic Characterization and Modeling of Potting Materials for Electronics Assemblies (United States)

    Joshi, Vasant; Lee, Gilbert; Santiago, Jaime


    Prediction of survivability of encapsulated electronic components subject to impact relies on accurate modeling. Both static and dynamic characterization of encapsulation material is needed to generate a robust material model. Current focus is on potting materials to mitigate high rate loading on impact. In this effort, encapsulation scheme consists of layers of polymeric material Sylgard 184 and Triggerbond Epoxy-20-3001. Experiments conducted for characterization of materials include conventional tension and compression tests, Hopkinson bar, dynamic material analyzer (DMA) and a non-conventional accelerometer based resonance tests for obtaining high frequency data. For an ideal material, data can be fitted to Williams-Landel-Ferry (WLF) model. A new temperature-time shift (TTS) macro was written to compare idealized temperature shift factor (WLF model) with experimental incremental shift factors. Deviations can be observed by comparison of experimental data with the model fit to determine the actual material behavior. Similarly, another macro written for obtaining Ogden model parameter from Hopkinson Bar tests indicates deviations from experimental high strain rate data. In this paper, experimental results for different materials used for mitigating impact, and ways to combine data from resonance, DMA and Hopkinson bar together with modeling refinements will be presented.

  18. System Modeling for Ammonia Synthesis Energy Recovery System (United States)

    Bran Anleu, Gabriela; Kavehpour, Pirouz; Lavine, Adrienne; Ammonia thermochemical Energy Storage Team


    An ammonia thermochemical energy storage system is an alternative solution to the state-of-the-art molten salt TES system for concentrating solar power. Some of the advantages of this emerging technology include its high energy density, no heat losses during the storage duration, and the possibility of long storage periods. Solar energy powers an endothermic reaction to disassociate ammonia into hydrogen and nitrogen, which can be stored for future use. The reverse reaction is carried out in the energy recovery process; a hydrogen-nitrogen mixture flowing through a catalyst bed undergoes the exothermic ammonia synthesis reaction. The goal is to use the ammonia synthesis reaction to heat supercritical steam to temperatures on the order of 650°C as required for a supercritical steam Rankine cycle. The steam will flow through channels in a combined reactor-heat exchanger. A numerical model has been developed to determine the optimal design to heat supercritical steam while maintaining a stable exothermic reaction. The model consists of a transient one dimensional concentric tube counter-flow reactor-heat exchanger. The numerical model determines the inlet mixture conditions needed to achieve various steam outlet conditions.

  19. Compendium of Material Composition Data for Radiation Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Ralph G.; Gesh, Christopher J.; Pagh, Richard T.


    Computational modeling of radiation transport problems including homeland security, radiation shielding and protection, and criticality safety all depend upon material definitions. This document has been created to serve two purposes: 1) to provide a quick reference of material compositions for analysts and 2) a standardized reference to reduce the differences between results from two independent analysts. Analysts are always encountering a variety of materials for which elemental definitions are not readily available or densities are not defined. This document provides a location where unique or hard to define materials will be located to reduce duplication in research for modeling purposes. Additionally, having a common set of material definitions helps to standardize modeling across PNNL and provide two separate researchers the ability to compare different modeling results from a common materials basis.

  20. Modeling magnetostrictive material for high-speed tracking (United States)

    Bottauscio, Oriano; Roccato, Paolo E.; Zucca, Mauro


    This work proposes a simplified model applicable to devices based on magnetostrictive materials conceived to be implemented in the control of a micropositioner. The 1D magnetomechanical dynamic model of the active material is based on the Preisach hysteresis model and includes classical eddy currents. The model has been used in a digital signal processing procedure for the determination of the supply current tracking position. Comparisons with experiments, obtained by controlling the actual micropositioner in an open loop chain, are satisfactory.

  1. Sol–gel one-pot synthesis in soft conditions of mesoporous silica materials ready for drug delivery system

    NARCIS (Netherlands)

    Tourne-Peteilh, C.; Begu, S.; Lerner, D.A.; Galarneau, A.; Lafont, U.; Devoiselle, J.-M.


    The present work reveals a new and simple strategy, a one-step sol–gel procedure, to encapsulate a low water-soluble drug in silica mesostructured microparticles and to improve its release in physiological media. The synthesis of these new materials is based on the efficient solubilisation of a poor

  2. Sol–gel one-pot synthesis in soft conditions of mesoporous silica materials ready for drug delivery system

    NARCIS (Netherlands)

    Tourne-Peteilh, C.; Begu, S.; Lerner, D.A.; Galarneau, A.; Lafont, U.; Devoiselle, J.-M.


    The present work reveals a new and simple strategy, a one-step sol–gel procedure, to encapsulate a low water-soluble drug in silica mesostructured microparticles and to improve its release in physiological media. The synthesis of these new materials is based on the efficient solubilisation of a poor

  3. Business models for material efficiency services. Conceptualization and application

    Energy Technology Data Exchange (ETDEWEB)

    Halme, Minna; Anttonen, Markku; Kuisma, Mika; Kontoniemi, Nea [Helsinki School of Economics, Department of Marketing and Management, P.O. Box 1210, 00101 Helsinki (Finland); Heino, Erja [University of Helsinki, Department of Biological and Environmental Sciences (Finland)


    Despite the abundant research on material flows and the growing recognition of the need to dematerialize the economy, business enterprises are still not making the best possible use of the many opportunities for material efficiency improvements. This article proposes one possible solution: material efficiency services provided by outside suppliers. It also introduces a conceptual framework for the analysis of different business models for eco-efficient services and applies the framework to material efficiency services. Four business models are outlined and their feasibility is studied from an empirical vantage point. In contrast to much of the previous research, special emphasis is laid on the financial aspects. It appears that the most promising business models are 'material efficiency as additional service' and 'material flow management service'. Depending on the business model, prominent material efficiency service providers differ from large companies that offer multiple products and/or services to smaller, specialized providers. Potential clients (users) typically lack the resources (expertise, management's time or initial funds) to conduct material efficiency improvements themselves. Customers are more likely to use material efficiency services that relate to support materials or side-streams rather than those that are at the core of production. Potential client organizations with a strategy of outsourcing support activities and with experience of outsourcing are more keen to use material efficiency services. (author)

  4. Synthesis of partial stabilized cement-gypsum as new dental retrograde filling material

    Energy Technology Data Exchange (ETDEWEB)

    Sadhasivam, S. [Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan (China); Division of Medical Engineering Research, National Health Research Institute, Zhunan, Miaoli County, Taiwan (China); Chen, Jung-Chih [Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan (China); Medical Device Innovation Center, National Cheng Kung University, Tainan,Taiwan (China); Savitha, S. [Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan (China); Hsu, Ming-Xiang; Hsu, Chung-King [Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei, Taiwan (China); Lin, Chun-Pin [School of Dentistry and Graduate Institute of Clinical Dentistry, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan (China); Lin, Feng-Huei, E-mail: [Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan (China); Division of Medical Engineering Research, National Health Research Institute, Zhunan, Miaoli County, Taiwan (China)


    The study describes the sol-gel synthesis of a new dental retrograde filling material partial stabilized cement (PSC)-gypsum by adding different weight percentage of gypsum (25% PSC + 75% gypsum, 50% PSC + 50% gypsum and 75% PSC + 25% gypsum) to the PSC. The crystalline phase and hydration products of PSC-gypsum were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. The handling properties such as setting time, viscosity, tensile strength, porosity and pH, were also studied. The XRD and microstructure analysis demonstrated the formation of hydroxyapatite and removal of calcium dihydrate during its immersion in simulated body fluid (SBF) on day 10 for 75% PSC + 25% gypsum. The developed PSC-gypsum not only improved the setting time but also greatly reduced the viscosity, which is very essential for endodontic surgery. The cytotoxic and cell proliferation studies indicated that the synthesized material is highly biocompatible. The increased alkaline pH of the PSC-gypsum also had a remarkable antibacterial activity. - Highlights: Black-Right-Pointing-Pointer A new dental retrograde filling material PSC-gypsum was developed. Black-Right-Pointing-Pointer PSC-gypsum cement has shown excellent initial and final setting time as 15-35 min. Black-Right-Pointing-Pointer It not only improved the setting time but also retain the viscosity, 2 Pa{center_dot}s. Black-Right-Pointing-Pointer High alkaline pH of the cement had a remarkable antibacterial activity. Black-Right-Pointing-Pointer Cytotoxicity studies revealed that the synthesized material is highly biocompatible.

  5. Synthesis of NiMnO3/C nano-composite electrode materials for electrochemical capacitors. (United States)

    Kakvand, Pejman; Rahmanifar, Mohammad Safi; El-Kady, Maher F; Pendashteh, Afshin; Kiani, Mohammad Ali; Hashami, Masumeh; Najafi, Mohsen; Abbasi, Ali; Mousavi, Mir F; Kaner, Richard B


    Demand for high-performance energy storage materials has motivated research activities to develop nano-engineered composites that benefit from both high-rate and high-capacitance materials. Herein, NiMnO3 (NMO) nanoparticles have been synthesized through a facile co-precipitation method. As-prepared NMO samples are then employed for the synthesis of nano-composites with graphite (Gr) and reduced graphene oxide (RGO). Various samples, including pure NMO, NMO-graphite blend, as well as NMO/Gr and NMO/RGO nano-composites have been electrochemically investigated as active materials in supercapacitors. The NMO/RGO sample exhibited a high specific capacitance of 285 F g(-1) at a current density of 1 A g(-1), much higher than the other samples (237 F g(-1) for NMO/Gr, 170 F g(-1) for NMO-Gr and 70 F g(-1) for NMO). Moreover, the NMO/RGO nano-composite has shown excellent cycle stability with a 93.5% capacitance retention over 1000 cycles at 2 A g(-1) and still delivered around 87% of its initial capacitance after cycling for 4000 cycles. An NMO/RGO composite was assessed in practical applications by assembling NMO/RGO//NMO/RGO symmetric devices, exhibiting high specific energy (27.3 Wh kg(-1)), high specific power (7.5 kW kg(-1)), and good cycle stability over a broad working voltage of 1.5 V. All the obtained results demonstrate the promise of NMO/RGO nano-composite as a high-performance electrode material for supercapacitors.

  6. Surrogate Modeling for Geometry Optimization in Material Design

    DEFF Research Database (Denmark)

    Rojas Larrazabal, Marielba de la Caridad; Abraham, Yonas B.; Holzwarth, Natalie A.W.;


    We propose a new approach based on surrogate modeling for geometry optimization in material design. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)......We propose a new approach based on surrogate modeling for geometry optimization in material design. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)...

  7. Nebular Continuum and Line Emission in Stellar Population Synthesis Models (United States)

    Byler, Nell; Dalcanton, Julianne J.; Conroy, Charlie; Johnson, Benjamin D.


    Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emissions can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improve estimates of global gas properties derived with diagnostic diagrams, star formation rates based on Hα, and physical properties derived from broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H ii regions and star-forming galaxies. Our models show improved agreement with the observed H ii regions in the Ne iii/O ii plane and show satisfactory agreement with He ii emission from z = 2 galaxies, when including rotating stellar models. Models including post-asymptotic giant branch stars are able to reproduce line ratios consistent with low-ionization emission regions. The models are integrated into current versions of FSPS and include self-consistent nebular emission predictions for MIST and Padova+Geneva evolutionary tracks.

  8. Cumulative Damage Model for Advanced Composite Materials. (United States)


    ultimately used an exponential in the present example for added simplicity) and we norma - lize the function so that it becomes the modifier that determines...Testing and Design (Second Conference), ASTM STP 497, ASTM (1972) pp. 170-188. 5. Halpin, J. C., et al., "Characterization of Composites for the...Graphite Epoxy Composites," Proc. Symposium on Composite Materials: Testing and Design, ASTM , (Ma’rch 20, 1978) New Orleans, LA. 18. Hashin, Z. and Rotem

  9. A probabilistic model for component-based shape synthesis

    KAUST Repository

    Kalogerakis, Evangelos


    We present an approach to synthesizing shapes from complex domains, by identifying new plausible combinations of components from existing shapes. Our primary contribution is a new generative model of component-based shape structure. The model represents probabilistic relationships between properties of shape components, and relates them to learned underlying causes of structural variability within the domain. These causes are treated as latent variables, leading to a compact representation that can be effectively learned without supervision from a set of compatibly segmented shapes. We evaluate the model on a number of shape datasets with complex structural variability and demonstrate its application to amplification of shape databases and to interactive shape synthesis. © 2012 ACM 0730-0301/2012/08-ART55.

  10. Control of crystallite and particle size in the synthesis of layered double hydroxides: Macromolecular insights and a complementary modeling tool. (United States)

    Galvão, Tiago L P; Neves, Cristina S; Caetano, Ana P F; Maia, Frederico; Mata, Diogo; Malheiro, Eliana; Ferreira, Maria J; Bastos, Alexandre C; Salak, Andrei N; Gomes, José R B; Tedim, João; Ferreira, Mário G S


    Zinc-aluminum layered double hydroxides with nitrate intercalated (Zn(n)Al-NO3, n=Zn/Al) is an intermediate material for the intercalation of different functional molecules used in a wide range of industrial applications. The synthesis of Zn(2)Al-NO3 was investigated considering the time and temperature of hydrothermal treatment. By examining the crystallite size in two different directions, hydrodynamic particle size, morphology, crystal structure and chemical species in solution, it was possible to understand the crystallization and dissolution processes involved in the mechanisms of crystallite and particle growth. In addition, hydrogeochemical modeling rendered insights on the speciation of different metal cations in solution. Therefore, this tool can be a promising solution to model and optimize the synthesis of layered double hydroxide-based materials for industrial applications.

  11. Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres (United States)

    Lin, Shangchao; Ryu, Seunghwa; Tokareva, Olena; Gronau, Greta; Jacobsen, Matthew M.; Huang, Wenwen; Rizzo, Daniel J.; Li, David; Staii, Cristian; Pugno, Nicola M.; Wong, Joyce Y.; Kaplan, David L.; Buehler, Markus J.


    Scalable computational modelling tools are required to guide the rational design of complex hierarchical materials with predictable functions. Here, we utilize mesoscopic modelling, integrated with genetic block copolymer synthesis and bioinspired spinning process, to demonstrate de novo materials design that incorporates chemistry, processing and material characterization. We find that intermediate hydrophobic/hydrophilic block ratios observed in natural spider silks and longer chain lengths lead to outstanding silk fibre formation. This design by nature is based on the optimal combination of protein solubility, self-assembled aggregate size and polymer network topology. The original homogeneous network structure becomes heterogeneous after spinning, enhancing the anisotropic network connectivity along the shear flow direction. Extending beyond the classical polymer theory, with insights from the percolation network model, we illustrate the direct proportionality between network conductance and fibre Young's modulus. This integrated approach provides a general path towards de novo functional network materials with enhanced mechanical properties and beyond (optical, electrical or thermal) as we have experimentally verified.

  12. Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres. (United States)

    Lin, Shangchao; Ryu, Seunghwa; Tokareva, Olena; Gronau, Greta; Jacobsen, Matthew M; Huang, Wenwen; Rizzo, Daniel J; Li, David; Staii, Cristian; Pugno, Nicola M; Wong, Joyce Y; Kaplan, David L; Buehler, Markus J


    Scalable computational modelling tools are required to guide the rational design of complex hierarchical materials with predictable functions. Here, we utilize mesoscopic modelling, integrated with genetic block copolymer synthesis and bioinspired spinning process, to demonstrate de novo materials design that incorporates chemistry, processing and material characterization. We find that intermediate hydrophobic/hydrophilic block ratios observed in natural spider silks and longer chain lengths lead to outstanding silk fibre formation. This design by nature is based on the optimal combination of protein solubility, self-assembled aggregate size and polymer network topology. The original homogeneous network structure becomes heterogeneous after spinning, enhancing the anisotropic network connectivity along the shear flow direction. Extending beyond the classical polymer theory, with insights from the percolation network model, we illustrate the direct proportionality between network conductance and fibre Young's modulus. This integrated approach provides a general path towards de novo functional network materials with enhanced mechanical properties and beyond (optical, electrical or thermal) as we have experimentally verified.

  13. Molecular modeling and multiscaling issues for electronic material applications

    CERN Document Server

    Iwamoto, Nancy; Yuen, Matthew; Fan, Haibo

    Volume 1 : Molecular Modeling and Multiscaling Issues for Electronic Material Applications provides a snapshot on the progression of molecular modeling in the electronics industry and how molecular modeling is currently being used to understand material performance to solve relevant issues in this field. This book is intended to introduce the reader to the evolving role of molecular modeling, especially seen through the eyes of the IEEE community involved in material modeling for electronic applications.  Part I presents  the role that quantum mechanics can play in performance prediction, such as properties dependent upon electronic structure, but also shows examples how molecular models may be used in performance diagnostics, especially when chemistry is part of the performance issue.  Part II gives examples of large-scale atomistic methods in material failure and shows several examples of transitioning between grain boundary simulations (on the atomistic level)and large-scale models including an example ...

  14. Modelling inorganic material in activated sludge systems

    African Journals Online (AJOL)



    Apr 2, 2004 ... organic models above, predictive models for the reactor inorganic ... included TSS as a non-conservative compound (Gujer and Lawson,. 1995) .... The OHO and PAO fractions of the VSS (favOHO, favPAO) are defined by, and ...

  15. Mathematical Modelling of Laser/Material Interactions. (United States)


    translated to the model input. Even an experimental mode print can also be digitalised for the model. In trying to describe high order modes matliematically...4. Mazumder J. Steen W.M. "Welding of Ti 6al - 4V by continuous wave CO2 laser". Metal construction Sept. 1980 pp423 - 427. 5. Kogelnik H, Li.T Proc

  16. Synthesis, characterization, and electrochemical investigation of novel electrode materials for lithium ion batteries (United States)

    Kerr, Tracy Alexandra


    As the demand for better energy storage devices increases, finding new materials capable of improvement on existing technology becomes essential. Within this body of work, several new electrode materials of different structure type have been synthesized, characterized, and evaluated for their lithium insertion/deinsertion behavior in lithium ion batteries. Nanocomposites of novel alloy, and convertible oxide anode materials have been studied. Nanoparticles of Ge and Sn that are able to form lithium rich alloys have been synthesized, and their low potential lithium insertion behavior studied. In order to inhibit agglomeration of the tiny particles, a novel synthesis route was designed to attach ionically conducting polymers to their surfaces. Characterization by a combination of techniques (XRD, TEM, SEM and FTIR spectroscopy) verified the existence of nanoparticles embedded in a polymer matrix, albeit with some impurities. Electrochemical data show that even when the lithium insertion capacity within these materials is high, the process is extremely irreversible as lithium ions become trapped within the matrix, and only a very small anodic capacity is realized. The first convertible polymer/oxide nanocomposite (poly(para-phenylene)/MoO 3) to be evaluated as an anode material was synthesized using a novel surfactant mediated method. XRD data indicated a 5.2 A increase in the MoO3 layer spacing to 12.1 A after polymer incorporation. Low potential electrochemical insertion properties show that the polymer/oxide nanocomposite behaves in a similar manner to the host MoO3 material. A variety of cathode materials were also synthesized and evaluated for their high potential lithium insertion properties. A comparative study on the effect that synthetic procedure may have on the electrochemical properties of the poly(aniline)/MoO3 cathode material have been studied. Poly(aniline)/MoO 3 nanocomposites have been synthesized from a solution insertion route and via hydrothermal

  17. The mathematical model for synthesis process management of the carbon nanostructures (United States)

    Chistyakova, T. B.; Petrov, D. N.


    In this article, key difficulties of management process for carbon nanostructure synthesis are described. Tasks of optimum control of the carbon nanostructure synthesis process and management in case of emergency situations are formulated. The mathematical model of carbon nanostructure synthesis is offered. The equations for calculation of quantitative, qualitative indexes, indicators of safety and operability of engineering procedure are provided. The necessity of mathematical model use for carbon nanostructure synthesis is caused by improvement of the quality, the quantity, a decrease in the cost value of carbon nanostructures and an increase in safety of the engineering procedure of their obtaining. Testing and approbation of the mathematical model for carbon nanostructure synthesis are executed on a fullerene industrial production line. Suitability of the mathematical model of carbon nanostructure synthesis for production control in the mode of optimum control and management in case of emergency situations is confirmed. The obtained solution is recommended for implementation on the enterprises of a similar purpose.

  18. Synthesis and Characterization of Bio-Oil Phenol Formaldehyde Resin Used to Fabricate Phenolic Based Materials. (United States)

    Cui, Yong; Hou, Xiaopeng; Wang, Wenliang; Chang, Jianmin


    In this study, bio-oil from the fast pyrolysis of renewable biomass was used as the raw material to synthesize bio-oil phenol formaldehyde (BPF) resin-a desirable resin for fabricating phenolic-based material. During the synthesis process, paraformaldehyde was used to achieve the requirement of high solid content and low viscosity. The properties of BPF resins were tested. Results indicated that BPF resin with the bio-oil addition of 20% had good performance on oxygen index and bending strength, indicating that adding bio-oil could modify the fire resistance and brittleness of PF resin. The thermal curing behavior and heat resistance of BPF resins were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Results showed that adding bio-oil had an impact on curing characteristics and thermal degradation process of PF resin, but the influence was insignificant when the addition was relatively low. The chemical structure and surface characteristics of BPF resins were determined by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The analysis demonstrated that adding bio-oil in the amount of 20% was able to improve the crosslinking degree and form more hydrocarbon chains in PF resin.

  19. Copper-containing ceramic precursor synthesis: Solid-state transformations and materials technology (United States)

    Hepp, Aloysius F.; Eckles, William E.; Duraj, Stan A.; Andras, Maria T.; Fanwick, Phillip E.; Richman, Robert M.; Sabat, Michael L.; Power, Michael B.; Gordon, Edward M.; Barron, Andrew


    Three copper systems with relevance to materials technology are discussed. In the first, a CuS precursor, Cu4S1O (4-methylpyridine)(sub 4)- (4-MePy), was prepared by three routes: reaction of Cu2S, reaction of CuBr-SMe2, and oxidation of copper powder with excess sulfur in 4-methylpyridine by sulfur. In the second, copper powder was found to react with excess thiourea (H2NC(S)NH2) in 4-methylpyridine to produce thiocyanate (NCS(-)) complexes. Three isolated and characterized compounds are: Cu(NCS)(4-MePy)(sub 2), a polymer, (4-MePy-H)(Cu(NCS)(sub 3)(4-MePy)(sub 2)), a salt, and t-Cu(NCS)(sub 2)(4-MePy)(sub 4). Finally, an attempt to produce a mixed-metal sulfide precursor of Cu and Ga in N-methylimidazole (N-MeIm) resulted in the synthesis of a Cu-containing polymer, Cu(SO4)(N-MeIm). The structures are presented; the chemistry will be briefly discussed in the context of preparation and processing of copper-containing materials for aerospace applications.

  20. Bottom-up synthesis of vertically oriented two-dimensional materials (United States)

    Vilá, R. A.; Momeni, K.; Wang, Q.; Bersch, B. M.; Lu, N.; Kim, M. J.; Chen, L. Q.; Robinson, J. A.


    Understanding nucleation and growth of two-dimensional (2D) and layered materials is a challenging topic due to the complex van der Waals interactions between layers and substrate. The morphology of 2D materials is known vary depending on experimental conditions. For the case of MoS2, the morphology has been shown to vary from rounded (molybdenum rich) domains to equilateral triangular (sulfur rich) domains. These different morphologies can result in drastically different properties, which can be exploited for applications in catalytic reactions, digital electronics, optoelectronics, and energy storage. Powder vaporization (PV) synthesis of molybdenum disulfide (MoS2) can yield vertical domains, however, these domains are often ignored when the morphology evolution of MoS2 is discussed, thereby completely omitting a major part of the impact of the Mo:S ratio to the growth mode of MoS2 during PV. Combining experimental and numerical simulation methods, we reveal a vertical-to-horizontal growth mode transition for MoS2 that occurs in the presence of a molybdenum oxide partial pressure gradient. Transmission electron microscopy reveals that the growth of vertical MoS2 results from initial seeding of single crystalline molybdenum dioxide, followed by sulfurization from the substrate upward to form vertically oriented MoS2 domains.

  1. Synthesis of Carbon Nano Materials Originated from Waste Cooking Oil Using a Nebulized Spray Pyrolysis (United States)

    Arie, A. A.; Hadisaputra, L.; Susanti, R. F.; Devianto, H.; Halim, M.; Enggar, R.; Lee, J. K.


    Synthesis of nanocarbon on snake fruit-peel’s activated carbon from waste cooking oil palm was conducted by a nebulized spray pyrolysis process (NSP) by varying the processing temperature from 650 to 750 °C. Ferrocene was used as a catalyst with constant concentration of 0.015 g/ml of carbon source. The structure of nanocarbon was studied by using scanning electron microscope (SEM),x-ray diffraction (XRD), surface area analyzer and Raman spectroscopy. SEM results showed that the structures of carbon products was in the the form of carbon nanopsheres (CNS). XRD and Raman analysis confirmed the CNS structure. The carbon producs were then tested as electrode’s materials for lithium ion capacitors (LIC) by cyclic voltammetry (CV) instruments. From the CV results the specific capacitance was estimated as 79.57 F / g at a scan rate of 0.1 mV / s and voltage range from 2.5 - 4 V. This study shows that the nano carbons synthesized from the waste cooking oil can be used as prospective electrode materials for LIC.

  2. Synthesis by plasma of polymer-metal materials; Sintesis por plasma de materiales polimero-metal

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez R, G


    The objective of this work is the design of an experimental set-up to synthesize polymer- metal composites by plasma with versatility in the conditions of synthesis. The main components are a vacuum system capable to reach up to 10{sup -2} mbar and valves and accessories to control the pressure in the system. In order to generate the electrical discharges and the plasma, an electrical circuit with an inductive connection at 13.56 MHz of frequency was constructed. The electric field partially ionizes the reactor atmosphere where the polymer-metal composites were synthesized. The reactor has two metallic electrodes, one in front of the other, where the particles electrically charged collide against the electrodes producing ablation on them. The polymer-metal composites were synthesized by means of an inductive connection at 13.56 MHz. Aniline, 3-chlorine-ethylene and electrodes of silver (Ag) and copper (Cu) were used in a cylindrical reactor coupled with an external coil to generate glow discharges. The average pressures were 6.15 X 10{sup -1} and 5.2 X 10{sup -1} mbar for the synthesis of Poly aniline (P An) and Poly chloroethylene (PE-CI), respectively. The synthesis was performed during 60 and 180 minutes for P An and PE-CI, respectively. The polymers were formed, as films, with an average thickness of 6.42 {mu}m for P An and, in the case of PE-CI, with an approximately growing rate of 14 {eta}m/W. The power in the syntheses was 30, 50, 70 and 90 W for P An and 50, 100, 120, 140 170, and 200 W for PE-CI. The characterization of the polymer-metal composites was done by energy dispersive spectroscopy to study the composition and the relation of the elements involved in the synthesis. The morphology of the films was studied by means of scanning electron microscopy. The infrared analysis (IR) was done to study the chemicals bonds and the structure of these polymers. Another important study in these materials was the behavior of the electrical conductivity ({sigma

  3. Stochastic Multiscale Modeling of Polycrystalline Materials (United States)


    η η Maximum Entropy Estimation ( MaxEnt ): amongst the probability distributions that satisfy our incomplete information about the system, the...avoids anything that is unknown. The form of MaxEnt distribution is ( ( )) , 1, 2,...n nE f M n= =x 1 1 ( ) ( ) *( ) , N Nn n n n f x f xep x Z e dx Z λ...constraints are satisfied, the MaxEnt distribution is a standard Gaussian distribution ~ ( , )Nη 0 I Materials Process Design and Control Laboratory Cornell

  4. Computer modelling of granular material microfracturing

    CSIR Research Space (South Africa)

    Malan, DF


    Full Text Available Microscopic observations indicate that intra- and transgranular fracturing are ubiquitous processes in the damage of rock fabrics. Extensive modelling of intergranular fracturing has been carried out previously using the distinct-element approach...

  5. Electrochemical synthesis and characterisation of hybrid materials polypyrrole/dodecatungstophosphate as protective agents against steel corrosion (United States)

    Bonastre Cano, Jose Antonio

    hand, this pretreatment should guarantee appropriate conditions in order to obtain a coating with high adhesion on carbon steel. Once studied the better parameters for the synthesis of the hybrid material by cyclic voltammetry, hybrid material is morphological, chemical and electrochemical characterised by the following techniques: Cyclic Voltammetry, Scanning Electron Microscopy, Energy Dispersive X Ray, X Ray Photoelectron Spectroscopy and Electrochemical Impedance Spectroscopy. The hybrid material polypyrrole/PW 12O403-. chemical structure presents Fe oxides and hydroxide within the polypyrrole polycationic matrix. Hybrid material polypyrrol/PW12O403- diminishes the corrosion of carbon steel in NaOH and Porland cement filtering solutions. These cement solutions simulate the pore fluid conditions existing in cured mortar or concrete elements. Fe ion concentration data were determinated in corrosion tests. Voltammetric response of polymeric coatings was evaluated by cyclic voltammetry. Finally, the protection provided by hybrid material polypyrrole/PW 12O403, in oxidised and reduced state, was evaluated on carbon steel electrodes embedded in Portland cement mortars immersed in seawater and submitted to an accelerated carbonation process for 265 days. Polymeric material covered carbon steel electrodes in reduced state suffer a Fe gravimetric loss 15 times lower than the ones of bare electrodes against chlorides attack, due to the effect of physical barrier. Hybrid material covered electrodes in oxidised state after being submitted to a carbonation process suffer a Fe gravimetric loss 2.5 times lower than the ones of bare electrodes, due to galvanic protection provided by hybrid material polypyrrole/PW 12O403- on carbon steel.

  6. On the suppression of superconducting phase formation in YBCO materials by templated synthesis in the presence of a sulfated biopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Elliott; Schnepp, Zoe [Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Cantock' s Close, Bristol BS8 1TS (United Kingdom); Wimbush, Stuart C. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Hall, Simon R. [Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Cantock' s Close, Bristol BS8 1TS (United Kingdom)], E-mail:


    The use of biopolymers as templates to control superconductor crystallization is a recent phenomenon and is generating a lot of interest both from the superconductor community and in materials chemistry circles. This work represents a critical finding in the use of such biopolymers, in particular the contraindicatory nature of sulfur when attempting to affect a morphologically controlled synthesis. Synthesis of superconducting nanoparticles was attempted using carrageenan as a morphological template. Reactive sulfate groups on the biopolymer prevent this, producing instead significant quantities of barium sulfate nanotapes. By substituting the biopolymer for structurally analogous, non-sulfated agar, we show that superconducting nanoparticles could be successfully synthesized.

  7. Preparation, characterization and catalytic properties of MCM-48 supported tungstophosphoric acid mesoporous materials for green synthesis of benzoic acid (United States)

    Wu, Hai-Yan; Zhang, Xiao-Li; Chen, Xi; Chen, Ya; Zheng, Xiu-Cheng


    MCM-48 and tungstophosphoric acid (HPW) were prepared and applied for the synthesis of HPW/MCM-48 mesoporous materials. The characterization results showed that HPW/MCM-48 obtained retained the typical mesopore structure of MCM-48, and the textural parameters decreased with the increase loading of HPW. The catalytic oxidation results of benzyl alcohol and benzaldehyde with 30% H2O2 indicated that HPW/MCM-48 was an efficient catalyst for the green synthesis of benzoic acid. Furthermore, 35 wt% HPW/MCM-48 sample showed the highest activity under the reaction conditions.

  8. Identifiability and identification of a Synthesis Load Model

    Institute of Scientific and Technical Information of China (English)


    A Synthesis Load Model (SLM) including both the power load and the distribution network has been proposed in the references. The identifiability of SLM is analyzed at first, it is concluded that the model parameters are identifiable if one of the resistance, reactance and the ratio of them is known. The conclusion is validated through a simulation example. A strategy for parameter identification of SLM is proposed with the combination of the component based approach and the measurement based approach. During parameter identification, only the key parameters playing very important roles in the dynamics of the load and the system are estimated, while the other parameters playing limited role are set as the default values. The proposed strategy is verified by the field measurements.

  9. Modelling of water permeability in cementitious materials

    DEFF Research Database (Denmark)

    Guang, Ye; Lura, Pietro; van Breugel, K.


    This paper presents a network model to predict the permeability of cement paste from a numerical simulation of its microstructure. Based on a linked list pore network structure, the effective hydraulic conductivity is estimated and the fluid flow is calculated according to the Hagen-Poiseuille law....... The pressure gradient at all nodes is calculated with the Gauss elimination method and the absolute permeability of the pore network is calculated directly from Darcy's law. Finally, the permeability model is validated by comparison with direct water permeability measurements. According to this model......, the predicted permeability of hydrating cement pastes is extremely sensitive to the particle size distribution of the cement and especially to the minimum size of the cement particles. Both in simulations and experiments, the permeability of cement pastes is mainly determined by the critical diameter...

  10. Possibilities of modeling masonry as a composite softening material: Interface modeling and anisotropic continuum modeling

    NARCIS (Netherlands)

    Lourenço, P.B.; Rots, J.G.


    Results of using recently developed material models for the analysis of masonry structures are shown. Both interface modeling, in which masonry components (units and joints) are represented, as continuum modeling, in which masonry is represented as a homogeneous continuum, are addressed. It is shown

  11. Stochastic Modeling of Radioactive Material Releases

    Energy Technology Data Exchange (ETDEWEB)

    Andrus, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pope, Chad [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    Nonreactor nuclear facilities operated under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculates the radiation dose associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA was developed using the MATLAB coding framework. The software application has a graphical user input. SODA can be installed on both Windows and Mac computers and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC, rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The work was

  12. Bio-inspired evolutionary oral tract shape modeling for physical modeling vocal synthesis. (United States)

    Howard, David M; Tyrrell, Andy M; Murphy, Damian T; Cooper, Crispin; Mullen, Jack


    Physical modeling using digital waveguide mesh (DWM) models is an audio synthesis method that has been shown to produce an acoustic output in music synthesis applications that is often described as being "organic," "warm," or "intimate." This paper describes work that takes its inspiration from physical modeling music synthesis and applies it to speech synthesis through a physical modeling mesh model of the human oral tract. Oral tract shapes are found using a computational technique based on the principles of biological evolution. Essential to successful speech synthesis using this method is accurate measurements of the cross-sectional area of the human oral tract, and these are usually derived from magnetic resonance imaging (MRI). However, such images are nonideal, because of the lengthy exposure time (relative to the time of articulation of speech sounds) required, the local ambient acoustic noise associated with the MRI machine itself and the required supine position for the subject. An alternative method is described where a bio-inspired computing technique that simulates the process of evolution is used to evolve oral tract shapes. This technique is able to produce appropriate oral tract shapes for open vowels using acoustic and excitation data from two adult males and two adult females, but shapes for close vowels that are less appropriate. This technique has none of the drawbacks associated with MRI, because all it requires from the subject is an acoustic and electrolaryngograph (or electroglottograph) recording. Appropriate oral tract shapes do enable the model to produce excellent quality synthetic speech for vowel sounds, and sounds that involve dynamic oral tract shape changes, such as diphthongs, can also be synthesized using an impedance mapped technique. Efforts to improve performance by reducing mesh quantization for close vowels had little effect, and further work is required.

  13. Modelling Various Solar Cells Materials Using Lorentzian-Drude Coefficients

    Directory of Open Access Journals (Sweden)

    Sameh Osama Abdellatif


    Full Text Available In order to develop an optoelectronic model for simulating different light trapping structures sandwiching the photovoltaic active layer, determining the materials dispersion and absorption properties is a must. The targeted model should be able to simulate the desperation and absorption capabilities of different conductor and semiconductor materials over the entire sun spectrum (200 nm to 1700 nm. Therefore, the Lorentzian-Dude (LD model is chosen due to its simplicity in implementation with the finite difference time domain algorithm chosen for optical modelling. In this paper, various materials are selected to be modelled with the LD model. The proposed algorithm is not only used for modelling material behaviour of various conducting materials published in literature, but is also used for other conducting and semiconducting materials that the original model was not capable of modelling over the entire range of spectrum. Besides that, the suggested algorithm showed a better time performance than those mentioned in literature. Experimental 1D grating structure prototype samples were made to validate the simulation results, showing perfect agreement.

  14. Rapid automated materials synthesis instrument: exploring the composition and heat-treatment of nanoprecursors toward low temperature red phosphors. (United States)

    Lin, Tian; Kellici, Suela; Gong, Kenan; Thompson, Kathryn; Evans, Julian R G; Wang, Xue; Darr, Jawwad A


    We report on the commissioning experimental run of the rapid automated materials synthesis instrument (RAMSI), a combinatorial robot designed to manufacture, clean, and print libraries of nanocrystal precursor solid compositions. The first stage of RAMSI, parallel synthesis, uses a fully automated high throughput continuous hydrothermal (HiTCH) flow reactor for automatic metal salt precursor mixing, hydrothermal flow reaction, and sample slurry collection. The second stage of RAMSI provides integrated automated cleanup, and the third section is a ceramic printing function. Nanocrystal precursor solid ceramics were synthesized from precursor solutions and collected into 50 mL centrifuge tubes where they were cleaned by multiple centrifugation and redispersion cycles (monitored by intelligent scanning turbidimetry) and printed with an automated pipette. Eight unique compositions of a model phosphor library comprising pure nano-Y(OH)(3) and Eu(3+) doped-yttrium hydroxide, Y(OH)(3):Eu(3+) nanocrystal precursor solid were synthesized (with 2 centrifuge tubes' worth collected per composition), processed, and printed in duplicate as 75, 100, and 125 microL dots in a 21.6 ks (6 h) experiment (note: the actual time for synthesis of each sample tube was only 12 min so up to 60 compositions could easily be synthesized in 12 h if one centrifuge tube per composition was collected instead). The Y(OH)(3):Eu(3+) samples were manually placed in a furnace and heat-treated in air for 14.4 ks (4 h) in the temperature range 200-1200 at 100 degrees C intervals (giving a total of 84 samples plus one as-prepared pure Y(OH)(3) sample). The as-prepared and heat-treated ceramic samples were affixed to 4 mm wide hemispherical wells in a custom-made aluminum well-plate and analyzed using a fluorescence spectrometer. When the library was illuminated with a 254 nm light source (and digitally imaged and analyzed), the 3 mol % Eu(3+) sample heat-treated at 1200 degrees C gave the most intense

  15. Chiral hybrid inorganic-organic materials: synthesis, characterization, and application in stereoselective organocatalytic cycloadditions. (United States)

    Puglisi, Alessandra; Benaglia, Maurizio; Annunziata, Rita; Chiroli, Valerio; Porta, Riccardo; Gervasini, Antonella


    The synthesis of chiral imidazolidinones on mesoporous silica nanoparticles, exploiting two different anchoring sites and two different linkers, is reported. Catalysts 1-4 were prepared starting from l-phenylalanine or l-tyrosine methyl esters and supporting the imidazolidinone onto silica by grafting protocols or azide-alkyne copper(I)-catalyzed cycloaddition. The four catalysts were fully characterized by solid-state NMR, N2 physisorption, SEM, and TGA in order to provide structural assessments, including an evaluation of surface areas, pore dimensions, and catalyst loading. They were used in organocatalyzed Diels-Alder cycloadditions between cyclopentadiene and different aldehydes, affording results comparable to those obtained with the nonsupported catalyst (up to 91% yield and 92% ee in the model reaction between cyclopentadiene and cinnamic aldehyde). The catalysts were recovered from the reaction mixture by simple filtration or centrifugation. The most active catalyst was recycled two times with some loss of catalytic efficiency and a small erosion of ee.

  16. Stochastic Multiscale Modeling of Polycrystalline Materials (United States)


    Thrun, and K. Ober- mayer , editors, Advances in Neural Information Processing Systems 15, pages 705–712, Cambridge, MA, 2003. MIT Press. [19] E Van der...modeling of polycrystalline IN 100. International Journal of Plasticity, 24(10):1694–1730, 2008. Special Issue in Honor of Jean - Louis Chaboche. [111] V. B

  17. Applications of Molecular and Materials Modeling (United States)


    nittalabo-e.html Osaka University, Institute for Protein Research Protein modeling Prof. Haruki Nakamura structure of YH3. Phys. Rev. B 61, 16491- 16496. Nagashima, U., S. Obara, K. Murakami , T. Yoshii, S. Shirakawa, T. Amisake, K. Kitamura, O. Kitao

  18. Modeling the kinetics of essential oil hydrodistillation from plant materials

    Directory of Open Access Journals (Sweden)

    Milojević Svetomir Ž.


    Full Text Available The present work deals with modeling the kinetics of essential oils extraction from plant materials by water and steam distillation. The experimental data were obtained by studying the hydrodistillation kinetics of essential oil from juniper berries. The literature data on the kinetics of essential oils hydrodistillation from different plant materials were also included into the modeling. A physical model based on simultaneous washing and diffusion of essential oil from plant materials were developed to describe the kinetics of essential oils hydrodistillation, and two other simpler models were derived from this physical model assuming either instantaneous washing followed by diffusion or diffusion with no washing (i.e. the first-order kinetics. The main goal was to compare these models and suggest the optimum ones for water and steam distillation and for different plant materials. All three models described well the experimental kinetic data on water distillation irrespective of the type of distillation equipment and its scale, the type of plant materials and the operational conditions. The most applicable one is the model involving simultaneous washing and diffusion of the essential oil. However, this model was generally inapplicable for steam distillation of essential oils, except for juniper berries. For this hydrodistillation technique, the pseudo first-order model was shown to be the best one. In a few cases, a variation of the essential oil yield with time was observed to be sigmoidal and was modeled by the Boltzmann sigmoid function.

  19. Synthesis of Two-Photon Materials and Two-Photon Liquid Crystals (United States)

    Subramaniam, Girija


    The duration of the grant was interrupted by two major accidents that the PI met with-- an auto accident in Pasadena, CA during her second summer at JPL which took almost eight months for recovery and a second accident during Fall 2000 that left her in crutches for the entire semester. Further, the time released agreed by the University was not given in a timely fashion. The candidate has been given post-grant expire time off. In spite of all these problems, the PI synthesized a number of new two-photon materials and studied the structure-activity correlation to arrive at the best-optimized structure. The PI's design proved to be one of the best in the sense that these materials has a hitherto unreported two-photon absorption cross section. Many materials based on PI's design was later made by the NASA colleague. This is Phase 1. Phase II of this grant is to orate liquid crystalline nature into this potentially useful materials and is currently in progress. Recent observations of nano- and pico-second response time of homeotropically aligned liquid crystals suggest their inherent potentials to act as laser hardening materials, i.e., as protective devices against short laser pulses. The objective of the current project is to exploit this potential by the synthesis of liquid crystals with high optical nonlinearity and optimizing their performance. The PI is trying structural variations to bring in liquid crystalline nature without losing the high two-photon cross section. Both Phase I and Phase II led to many invited presentations and publications in reputed journals like 'Science' and 'Molecular Crystals'. The list of presentations and reprints are enclosed. Another important and satisfying outcome of this grant is the opportunity that this grant offered to the budding undergraduate scientists to get involved in a visible research of international importance. All the students had a chance to learn a lot during research, had the opportunity to present their work at

  20. Synthesis, microstructure and properties of BiFeO3-based multiferroic materials: A review

    Directory of Open Access Journals (Sweden)

    Bernardo, M. S.


    Full Text Available BiFeO3-based materials are currently one of the most studied multiferroics due to their possible applications at room temperature. However, among the large number of published papers there is much controversy. For example, possibility of synthesizing a pure BiFeO3 phase is still source of discussion in literature. Not even the nature of the binary Bi2O3-Fe2O3 diagram has been clarified yet. The difficulty in controlling the formation of parasite phases reaches the consolidation step. Accordingly, the sintering conditions must be carefully determined both to get dense materials and to avoid bismuth ferrite decomposition. However, the precise conditions to attain dense bismuth ferrite materials are frequently contradictory among different works. As a consequence, the reported properties habitually result opposed and highly irreproducible hampering the preparation of BiFeO3 materials suitable for practical applications. In this context, the purpose of the present review is to summarize the main researches regarding BiFeO3 synthesis, microstructure and properties in order to provide an easier understanding of these materials.Los materiales basados en BiFeO3 son en la actualidad uno de los multiferroicos más estudiados debido a sus posibles aplicaciones a temperatura ambiente. Sin embargo, entre la multitud de trabajos publicados referentes a estos materiales existe mucha controversia. Por ejemplo, la posibilidad de sintetizar una fase BiFeO3 pura es aún objeto de discusión en la bibliografía y la naturaleza de los diagramas de fases del sistema Bi2O3-Fe2O3 aún no está clara. La dificultad para controlar las fases parásitas se extiende al proceso de consolidación por lo que las condiciones de sinterización deben ser cuidadosamente controladas para obtener materiales densos y al mismo tiempo evitar la descomposición de la ferrita. No obstante, las condiciones precisas para obtener materiales densos de BiFeO3 son frecuentemente

  1. Synthesis and characterization of inorganic nanostructured materials for advanced energy storage (United States)

    Xie, Jin

    to the challenges. The understanding of the synergistic effect between electrolyte decomposition and electrode decomposition, nevertheless, is conspicuously lacking. To better understand the reaction chemistries in lithium oxygen batteries, I designed, synthesized, and studied heteronanostructure-based carbon-free inorganic electrodes, as well as carbon electrodes whose surfaces protected by metal oxide thin films. The new types of electrodes prove to be highly effective in minimizing parasitic reactions, reducing operation overpotentials and boosting battery lifetimes. The improved stability and well-defined electrode morphology also enabled detailed studies on the formation and decomposition of Li2O 2. To summarize, this dissertation presented the synthesis and characterization of inorganic nanostructured materials for advanced energy storage. On a practical level, the new types of materials allow for the immediate advancement of the energy storage technology. On a fundamental level, it helped to better understand reaction chemistries and fading mechanisms of battery electrodes.

  2. Cathode materials for lithium-ion batteries: Synthesis, analysis, and thermal studies (United States)

    Kim, Jeom-Soo


    The effect of synthesis technique was studied with two representative techniques such as solid-state reaction (SSR) and sol-gel methods used for LixMn2O4 (x = 1.03) preparation. For the in-cell performance of LixMn2O4 as electrode material, variation in processing temperature and intermittent grinding were found to be the key parameters of synthesis. The characteristics of powder synthesized by these different methods were investigated and compared with stoichiometric LiMn2O4 spinel using a combination of physicochemical and electrochemical techniques. Physicochemical characteristics investigated including phase identification, particle size, density, BET surface area, and composition. The electrochemical performance was characterized with 2016 coin type cells, using a battery tester. In addition, the electro-analytical response was studied using slow sweep cyclic voltammetry (SSCV) and current pulse response (CPR). The hybrid pulse power characterization (HPPC), one of the test profiles proposed by the Partnership for New Generation Vehicle (PNGV), was applied to check the possibility of using LixMn 2O4 electrodes in HEV batteries. Chemical diffusion coefficients of lithium (D Li+) in spinel LixMn2O 4 were measured by various electrochemical techniques such as potentiostatic intermittent titration technique (PITT), electrochemical impedance spectroscopy (EIS), and galvanostatic intermittent titration technique (GITT). DLi+ varied with x in LixMn2O4, showing strong dependence on the concentration of lithium. The thermal behavior of major cathode materials for Li-ion battery (LiCoO 2, LiNi0.8Co0.2O2, and LiMn2O 4) was investigated using an isothermal microcalorimeter, in combination with a battery tester. The total heat generation rate was found to be dependent on the concentration of lithium in LixMn2O4 and LixCoO2 while it was relatively constant in the case of LixNi0.8Co0.2O2. The area-specific impedance (ASI) measured in these tests indicated that the heat

  3. Characterization of Bulk Nanostructural Bi2Te3-based Material Prepared by Microwave-solvothermal Synthesis and Hot Isostatic Pressure

    Directory of Open Access Journals (Sweden)

    O.N. Ivanov


    Full Text Available The bulk nanostructural Bi2Te3-based material was prepared by microwave assisted solvothermal method and hot isostatic pressure. Optimal synthesis conditions of the Bi2Te3 nanopowder were found. It was established that hot isostatic pressing of the nanopowders at the temperature of 400 С and the pressures of 2, 4, 6 and 8 GPa allowed us to prepare the homogeneous and dense Bi2Te3-based material with the mean grain size of  50 nm. It is found that an electrical resistivity increases as the mean grain size of the material under study decreases.

  4. Assessing extreme models of the Stoeber synthesis using transients under a range of initial composition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.; McCormick, A.V. [Univ. of Minnesota, Minneapolis, MN (United States); Look, J.L. [Oak Ridge National Lab., TN (United States); Harris, M.T. [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical Engineering


    Monodispersely sized micrometer-scale spherical colloids of metal oxides are important for the controlled fabrication of high quality ceramic materials. Their synthesis by the hydrolysis of metal alkoxides is of particular interest. {sup 29}Si-NMR, conductimetry, and photon correlation spectroscopy are used to monitor the temporal profile of intermediate concentrations in Stoeber synthesis (i.e., ammonia-catalyzed hydrolysis of tetraethoxysilane in a batch reactor). Extreme models of the process are assessed by examining the effect of initial composition on these transients (over a wider range of composition than attempted previously). The trends with initial composition suggest that the nucleation is rate-limited by the hydrolysis of the singly hydrolyzed monomer, the product of which probably phase separates. Moreover, the trends are consistent with the aggregation model discussed by G.H. Bogush and C.F. Zukoski (J. Colloid Interface Sci. 142, 1, 19, 1991) and by M.T. Harris (Ph.D. dissertation, Univ. of Tennessee, 1992). The trends are not consistent with a growth model without aggregation.

  5. Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials: organic molecular control of self-organization of hybrids. (United States)

    Arakaki, Atsushi; Shimizu, Katsuhiko; Oda, Mayumi; Sakamoto, Takeshi; Nishimura, Tatsuya; Kato, Takashi


    Organisms produce various organic/inorganic hybrid materials, which are called biominerals. They form through the self-organization of organic molecules and inorganic elements under ambient conditions. Biominerals often have highly organized and hierarchical structures from nanometer to macroscopic length scales, resulting in their remarkable physical and chemical properties that cannot be obtained by simple accumulation of their organic and inorganic constituents. These observations motivate us to create novel functional materials exhibiting properties superior to conventional materials--both synthetic and natural. Herein, we introduce recent progress in understanding biomineralization processes at the molecular level and the development of organic/inorganic hybrid materials by these processes. We specifically outline fundamental molecular studies on silica, iron oxide, and calcium carbonate biomineralization and describe material synthesis based on these mechanisms. These approaches allow us to design a variety of advanced hybrid materials with desired morphologies, sizes, compositions, and structures through environmentally friendly synthetic routes using functions of organic molecules.

  6. Perovskite sensing materials for syngas composition monitoring and biomass gasifier numerical model validation: A preliminary approach (United States)

    Pallozzi, V.; Di Carlo, A.; Zaza, F.; Villarini, M.; Carlini, M.; Bocci, E.


    Biomass gasification represents a suitable choice for global environmental impact reduction, but more efforts on the process efficiency need to be conducted in order to enhance the use of this technology. Studies on inputs and outputs of the process, as well as measurements and controls of syngas composition and correlated organic and inorganic impurities, are crucial points for the optimization of the entire process: models of the system and sensing devices are, thus, very attractive for this purpose. In particular, perovskite based chemoresistive sensors could represent a promising technology, since their simplicity in function, relatively low cost and direct high temperature operation. The aim of this work is to develop a steam fluidized bed biomass gasifier model, for the prediction of the process gas composition, and new perovskite compounds, LaFeO3 based, as sensing material of chemoresistive sensors for syngas composition and impurities measurements. Chemometric analysis on the combustion synthesis via citrate-nitrate technique of LaFeO3 was also performed, in order to evaluate the relationship between synthesis conditions and perovskite materials and, thus, sensor properties. Performance of different sensors will be tested, in next works, with the support of the developed gasifier model.

  7. Laser interaction with biological material mathematical modeling

    CERN Document Server

    Kulikov, Kirill


    This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.



    Bobyr, M.; Khalimon, O.; Bondarets, O.


    Damage in metals is mainly the process of the initiation and growth of voids. A formulation for anisotropic damage is established in the framework of the principle of strain equivalence, principle of increment complementary energy equivalence and principle of elastic energy equivalence. This paper presents the development of an anisotropic damage theory. This work is focused on the development of evolution anisotropic damage models which is based on a Young’s modulus/Poisson’s ratio change of...

  9. Preparation, characterization and catalytic properties of MCM-48 supported tungstophosphoric acid mesoporous materials for green synthesis of benzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hai-Yan; Zhang, Xiao-Li; Chen, Xi; Chen, Ya; Zheng, Xiu-Cheng, E-mail:


    MCM-48 and tungstophosphoric acid (HPW) were prepared and applied for the synthesis of HPW/MCM-48 mesoporous materials. The characterization results showed that HPW/MCM-48 obtained retained the typical mesopore structure of MCM-48, and the textural parameters decreased with the increase loading of HPW. The catalytic oxidation results of benzyl alcohol and benzaldehyde with 30% H{sub 2}O{sub 2} indicated that HPW/MCM-48 was an efficient catalyst for the green synthesis of benzoic acid. Furthermore, 35 wt% HPW/MCM-48 sample showed the highest activity under the reaction conditions. Highlights: • 5–45 wt% HPW/MCM-48 mesoporous catalysts were prepared and characterized. • Their catalytic activities for the green synthesis of benzoic acid were investigated. • HPW/MCM-48 was approved to be an efficient catalyst. • 5 wt% HPW/MCM-48 exhibited the highest catalytic activity.

  10. Synthesis and characterization of bismuth telluride based nanostructured thermoelectric composite materials (United States)

    Keshavarz Khorasgani, Mohsen

    Thermoelectric (TE) materials and devices are attractive in solid-state energy conversion applications such as waste heat recovery, air-conditioning, and refrigeration. Since the 1950's lots of unremitting efforts have been made to enhance the efficiency of energy conversion in TE materials (i. e. improving the figure of merit (ZT)), however, most of commercial bulk TE materials still suffer from low efficiency with ZTs around unity. To enhance the performance of bismuth telluride based TE alloys, we have developed composite TE materials, based on the idea that introducing more engineered interfaces in the bulk TE materials may lead to thermal conductivity reduction due to increased phonon scattering by these interfaces. In this approach it is expected that the electronic transport properties of the material are not effectively affected. Consequently, ZT enhancement can be achieved. In this dissertation we will discuss synthesis and characterization of two types of bismuth telluride based bulk composite TE materials. The first type is engineered to contain the presence of coherent interfaces between phases in the material resulting from different mixtures of totally miscible compounds with similar composition. The second type includes the nanocomposites with embedded foreign nano-particles in which the matrix and the particles are delimited by incoherent interfaces. The synthesis procedure, micro- and nano-structures as well as thermoelectric properties of these composites will be presented. In our study on the composites with coherent interfaces, we produced a series of different composites of p-type bismuth antimony telluride alloys and studied their microstructure and thermoelectric properties. Each composite consists of two phases that were obtained in powder form by mechanical alloying. Mixed powders in various proportions of the two different phases were consolidated by hot extrusion to obtain each bulk composite. The minimum grain size of bulk composites as

  11. Synthesis of designed materials by laser-based direct metal deposition technique: Experimental and theoretical approaches (United States)

    Qi, Huan

    Direct metal deposition (DMD), a laser-cladding based solid freeform fabrication technique, is capable of depositing multiple materials at desired composition which makes this technique a flexible method to fabricate heterogeneous components or functionally-graded structures. The inherently rapid cooling rate associated with the laser cladding process enables extended solid solubility in nonequilibrium phases, offering the possibility of tailoring new materials with advanced properties. This technical advantage opens the area of synthesizing a new class of materials designed by topology optimization method which have performance-based material properties. For better understanding of the fundamental phenomena occurring in multi-material laser cladding with coaxial powder injection, a self-consistent 3-D transient model was developed. Physical phenomena including laser-powder interaction, heat transfer, melting, solidification, mass addition, liquid metal flow, and species transportation were modeled and solved with a controlled-volume finite difference method. Level-set method was used to track the evolution of liquid free surface. The distribution of species concentration in cladding layer was obtained using a nonequilibrium partition coefficient model. Simulation results were compared with experimental observations and found to be reasonably matched. Multi-phase material microstructures which have negative coefficients of thermal expansion were studied for their DMD manufacturability. The pixel-based topology-optimal designs are boundary-smoothed by Bezier functions to facilitate toolpath design. It is found that the inevitable diffusion interface between different material-phases degrades the negative thermal expansion property of the whole microstructure. A new design method is proposed for DMD manufacturing. Experimental approaches include identification of laser beam characteristics during different laser-powder-substrate interaction conditions, an

  12. Computer-Aided Process Model For Carbon/Phenolic Materials (United States)

    Letson, Mischell A.; Bunker, Robert C.


    Computer program implements thermochemical model of processing of carbon-fiber/phenolic-matrix composite materials into molded parts of various sizes and shapes. Directed toward improving fabrication of rocket-engine-nozzle parts, also used to optimize fabrication of other structural components, and material-property parameters changed to apply to other materials. Reduces costs by reducing amount of laboratory trial and error needed to optimize curing processes and to predict properties of cured parts.

  13. Steady Modeling for an Ammonia Synthesis Reactor Based on a Novel CDEAS-LS-SVM Model

    Directory of Open Access Journals (Sweden)

    Zhuoqian Liu


    Full Text Available A steady-state mathematical model is built in order to represent plant behavior under stationary operating conditions. A novel modeling using LS-SVR based on Cultural Differential Evolution with Ant Search is proposed. LS-SVM is adopted to establish the model of the net value of ammonia. The modeling method has fast convergence speed and good global adaptability for identification of the ammonia synthesis process. The LS-SVR model was established using the above-mentioned method. Simulation results verify the validity of the method.

  14. Policaprolactone/polyvinylpyrrolidone/siloxane hybrid materials: Synthesis and in vitro delivery of diclofenac and biocompatibility with periodontal ligament fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Peña, José A. [Departamento de Química, Pontificia Universidad Javeriana, Bogotá D.C. (Colombia); Gutiérrez, Sandra J., E-mail: [Centro de investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá (Colombia); Villamil, Jean C. [Centro de investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá (Colombia); Agudelo, Natalia A. [Instituto de Química, Universidad de Antioquia, Medellin (Colombia); Pérez, León D., E-mail: [Grupo de Macromoléculas, Departamento de Química, Universidad Nacional de Colombia, Carrera 45 No 26–85, edificio 451 of. 449, Bogotá D.C. Colombia (Colombia)


    In this paper, we report the synthesis of polycaprolactone (PCL) based hybrid materials containing hydrophilic domains composed of N-vinylpyrrolidone (VP), and γ-methacryloxypropyltrimethoxysilane (MPS). The hybrid materials were obtained by RAFT copolymerization of N-vinylpyrrolidone and MPS using a pre-formed dixanthate-end-functionalized PCL as macro-chain transfer agent, followed by a post-reaction crosslinking step. The composition of the samples was determined by elemental and thermogravimetric analyses. Differential scanning calorimetry and X-ray diffraction indicated that the crystallinity of PCL decreases in the presence of the hydrophilic domains. Scanning electron microscopy images revealed that the samples present an interconnected porous structure on the swelling. Compared to PCL, the hybrid materials presented low water contact angle values and higher elastic modulus. These materials showed controlled release of diclofenac, and biocompatibility with human periodontal ligament fibroblasts. - Highlights: • Synthesis of Policaprolactone/polyvinylpyrrolidone/siloxane hybrid materials • Moderated hydrophilic materials with high swelling resistance • Organic–inorganic hybrid materials were biocompatible.

  15. Quality Assurance Model for Digital Adult Education Materials (United States)

    Dimou, Helen; Kameas, Achilles


    Purpose: This paper aims to present a model for the quality assurance of digital educational material that is appropriate for adult education. The proposed model adopts the software quality standard ISO/IEC 9126 and takes into account adult learning theories, Bloom's taxonomy of learning objectives and two instructional design models: Kolb's model…

  16. Model Stirrer Based on a Multi-Material Turntable for Microwave Processing Materials (United States)

    Ye, Jinghua; Hong, Tao; Wu, Yuanyuan; Wu, Li; Liao, Yinhong; Zhu, Huacheng; Yang, Yang; Huang, Kama


    Microwaves have been widely used in the treatment of materials, such as heating, drying, and sterilization. However, the heating in the commonly used microwave applicators is usually uneven. In this paper, a novel multi-material turntable structure is creatively proposed to improve the temperature uniformity in microwave ovens. Three customized turntables consisting of polyethylene (PE) and alumina, PE and aluminum, and alumina and aluminum are, respectively, utilized in a domestic microwave oven in simulation. During the heating process, the processed material is placed on a fixed Teflon bracket which covers the constantly rotating turntable. Experiments are conducted to measure the surface and point temperatures using an infrared thermal imaging camera and optical fibers. Simulated results are compared qualitatively with the measured ones, which verifies the simulated models. Compared with the turntables consisting of a single material, a 26%–47% increase in temperature uniformity from adapting the multi-material turntable can be observed for the microwave-processed materials. PMID:28772457

  17. Extended propagation model for interfacial crack in composite material structure

    Institute of Scientific and Technical Information of China (English)

    闫相桥; 冯希金


    An interfacial crack is a common damage in a composite material structure . An extended propaga-tion model has been established for an interfacial crack to study the dependence of crack growth on the relativesizes of energy release rates at left and right crack tips and the properties of interfacial material characterize thegrowth of interfacial crack better.

  18. A continuum theory for modeling the dynamics of crystalline materials. (United States)

    Xiong, Liming; Chen, Youping; Lee, James D


    This paper introduces a multiscale field theory for modeling and simulation of the dynamics of crystalline materials. The atomistic formulation of a multiscale field theory is briefly introduced. Its applicability is discussed. A few application examples, including phonon dispersion relations of ferroelectric materials BiScO3 and MgO nano dot under compression are presented.

  19. Synthesis, characterization and evaluation of 1,2-bis(2,4,6-trinitrophenyl) hydrazine: a key precursor for the synthesis of high performance energetic materials. (United States)

    Badgujar, D M; Talawar, M B; Harlapur, Sujata F; Asthana, S N; Mahulikar, P P


    1,2-Bis(2,4,6-trinitrophenyl) hydrazine (3) is one of the precursors in the synthesis of an important energetic material viz., hexanitrazobenzene. The simple and convenient lab scale synthesis of title compound (3) was carried out by the condensation of picryl chloride (2) with hydrazine hydrate at 30-50 degrees C in methanol based on the lines of scanty literature reports. Picryl chloride was synthesized by the reaction of picric acid (1) with phosphorous oxychloride based on the lines of reported method. The synthesized compound (3) was characterized by IR and 1H NMR spectral data. Some of the energetic properties of the synthesized compound have also been studied. The theoretically computed energetic properties of the title compound (3) indicated the superior performance in comparison to tetranitrodibenzo tetraazapentalene (TACOT) and hexanitrostilbene (HNS) in terms of velocity of detonation.

  20. Synthesis and engineering of quasi-one dimensional nano-materials (United States)

    Chang, Pai-Chun

    Quasi-one-dimensional (Q1D) nanoscale systems have been intensively investigated and proven to be of great potential as nanoelectronics building blocks. Nanowires made from organic, inorganic are now available and give research opportunities for understanding of nanomaterials and future applications. In this field, the research can be divided into three categories: nanomaterial synthesis, material characterizations, device fabrication for applications. These three main thrusts govern the research route to understand the Q1D systems. This dissertation also follows these three basic elements and consists of eight chapters. Chapter 1 will give an introduction of low dimensional systems. Chapter 2 and 3 will discuss how nanowires be synthesized in vapor phase. Chapter 4 and 5 will investigate the liquid phase growth. In Chapter 6, unique properties of nanowires due to the shrinkage in size will be depicted. Chapter 7 demonstrates a process to implement high performance nanowire field effect transistors, which are the basic element in nanoelectronics devices. In the last chapter, few possible future directions of nanoelectronic applications will be given and discussed.

  1. Synthesis and Characterization of Polythiophene/Bi2Te3 Nanocomposite Thermoelectric Material (United States)

    Ao, W. Q.; Wang, L.; Li, J. Q.; Pan, Fred; Wu, C. N.


    To achieve low thermal conductivity, polythiophene (PTh)/bismuth telluride (Bi2Te3) nanocomposite has been prepared by spark plasma sintering using a mixture of nanosized Bi2Te3 and PTh powders. Bi2Te3 powder with spherical-shaped particles of 30 nm diameter and PTh nanosheet powder were first prepared by hydrothermal synthesis and chemical oxidation, respectively. X-ray diffraction analysis and scanning electron microscopy observations revealed that the hybrid composite consists of PTh nanosheets and spherical Bi2Te3. The organic PTh acts as an adhesive in the composite. Transport measurements showed that the PTh in the Bi2Te3 matrix can reduce its thermal conductivity significantly, but also dramatically reduces its electrical conductivity. As a result, the figure of merit of the composite is lower than that of pure Bi2Te3 prepared under the same conditions. The maximum value of ZT for the sample with 5% PTh (by weight) was 0.18 at 473 K, which is rather high compared with other polymer/inorganic thermoelectric material composites.

  2. Co-implantation of carbon and nitrogen into silicon dioxide for synthesis of carbon nitride materials

    CERN Document Server

    Huang, M B; Nuesca, G; Moore, R


    Materials synthesis of carbon nitride has been attempted with co-implantation of carbon and nitrogen into thermally grown SiO sub 2. Following implantation of C and N ions to doses of 10 sup 1 sup 7 cm sup - sup 2 , thermal annealing of the implanted SiO sub 2 sample was conducted at 1000 degree sign C in an N sub 2 ambient. As evidenced in Fourier transform infrared measurements and X-ray photoelectron spectroscopy, different bonding configurations between C and N, including C-N single bonds, C=N double bonds and C=N triple bonds, were found to develop in the SiO sub 2 film after annealing. Chemical composition profiles obtained with secondary ion mass spectroscopy were correlated with the depth information of the chemical shifts of N 1s core-level electrons, allowing us to examine the formation of C-N bonding for different atomic concentration ratios between N and C. X-ray diffraction and transmission electron microscopy showed no sign of the formation of crystalline C sub 3 N sub 4 precipitates in the SiO ...

  3. Research work of radiation induced graft polymerization for synthesis and modification of polymer materials in CRICI

    Energy Technology Data Exchange (ETDEWEB)

    Hu Fumin; Ma Xueming [Chenguan Research Institute of Chemical Industry, Chengdu (China)


    The direct and post radiation induced graft polymerization had been studied in CRICI (Chenguan Research Institute of Chemical Industry). The method consists of irradiation of various polymer substrates in the presence (or absence) of monomers in a liquid, saturated vapour or gaseous and non-saturated vapour. 1. Grafting of functional monomers. --- It is possible to divide the grafting into two main approaches for synthesis of functional polymer materials. The first is grafting of monomers attached required functional group such as unsaturated carboxylic acid (acrylic and methacrylic acid), unsaturated nitrogen containing (alkali) base (vinylpyridine), monomers with hydrophilic unionized and polar groups (acrylamide, N-vinylpyrrolidone glycidylmethacrylate) and so on. The second is grafting of monomers capable of continuing chemical modification after graft polymerization. This approach essentially expands synthetic possibility of RGP for preparing functional polymers. 2. The effect of some salts on aqueous solution graft polymerization. The grafting of AA or AAm onto PE by direct or post radiation method in the presence of Mohr's salt or cupric nitrate was studied in detail. 3. Radiation induced graft polymerization by gaseous phase of monomers. This method consists of irradiation or preirradiation of various polymer substrates in the presence (or absence for preirradiation) of monomer in a gaseous of nonsaturated vapour state. (J.P.N.)

  4. Organic luminescent materials. First results on synthesis and characterization of Alq{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Baldacchini, G.; Gagliardi, S.; Montereali, R.M.; Pace, A. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Div. Fisica Applicata; Balaji Pode, R. [Nagpur University, Nagpur (India). Dept. of Physics


    Inorganic semiconductor diodes brought a technological revolution in the field of efficient light and laser sources in the last 20 years. New development in this field are expected from organic compounds, thanks to their low cost of synthesis and the relative easiness of growth as thin films. In particular, electrically pumped luminescent devices based on organic thin layers are among the most promising systems for next generation flat panel displays and semiconductor lasers. The tris - (8-hydroxy quinoline)-aluminium complex-Alq{sub 3} - is one of the most studied electro luminescent materials. In this paper, after a short introduction regarding historical development in the field, are reported preliminary results on the growth of Alq{sub 3} films and on their optical and spectroscopic characterization. [Italian] Negli ultimi 20 anni i diodi semiconduttori hanno portato una rivoluzione tecnologica nel campo delle sorgenti luminose e laser. Un nuovo sviluppo possibile in questo campo sono i composti organici, grazie al basso costo di sintesi e la relativa facilita' di crescerli in forma di film sottile. In particolare, dispositivi luminescenti pompati elettricamente basati su film sottili di materiali organici sono promettenti per una nuova generazione di display per schermi piatti e laser a Alq{sub 3} e' uno dei materiali elettroluminescenti piu' studiati. In questo rapporto, dopo una breve introduzione sullo sviluppo storico in questo campo, presentiamo i nostri primi risultati sulla crescita e caratterizzazione ottica di film di Alq{sub 3}.

  5. Synthesis and energetic properties of TAGDNAT: a new high-nitrogen material

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, David E [Los Alamos National Laboratory


    This paper describes the synthesis and characterization of Bis-(triaminoguanidinium)3,3'-dinitro5,5'-azo-1,2,4-triazolate (TAGDNAT), a novel high-nitrogen molecule that derives its energy release from both a high heat of formation and intramolecular oxidation reactions. TAGDNAT shows promise as a propellant or explosive ingredient not only due to its high nitrogen content (66.35 wt%) but additionally due to its high hydrogen content (4.34 wt%). This new molecule has been characterized with respect to its morphology, sensitivity properties, explosive and combustion performance. The heat of formation of TAGDNAT was also experimentally determined. The results of these studies show that TAGDNAT has one of the gastest low-pressure burning rates (at 1000 PSI) we have yet measured, 6.79 cm/s at 100 p.s.i. (39% faster than triaminoguanidinium azotetrazolate (TAGzT), a comparable high-nitrogen/high-hydrogen material). Furthermore, its pressure sensitivity is 0.507, a 33% reduction compared to TAGzT.

  6. Epoxy resin synthesis using low molecular weight lignin separated from various lignocellulosic materials. (United States)

    Asada, Chikako; Basnet, Sunita; Otsuka, Masaya; Sasaki, Chizuru; Nakamura, Yoshitoshi


    A low molecular weight lignin from various lignocellulosic materials was used for the synthesis of bio-based epoxy resins. The lignin extracted with methanol from steam-exploded samples (steaming time of 5 min at steam pressure of 3.5 MPa) from different biomasses (i.e., cedar, eucalyptus, and bamboo) were functionalized by the reaction with epichlorohydrin, catalyzed by a water-soluble phase transfer catalyst tetramethylammonium chloride, which was further reacted with 30 wt% aqueous NaOH for ring closure using methyl ethyl ketone as a solvent. The glycidylated products of the lignin with good yields were cured to epoxy polymer networks with bio-based curing agents i.e., lignin itself and a commercial curing agent TD2131. Relatively good thermal properties of the bio-based epoxy network was obtained and thermal decomposition temperature at 5% weight loss (Td5) of cedar-derived epoxy resin was higher than that derived from eucalyptus and bamboo. The bio-based resin satisfies the stability requirement of epoxy resin applicable for electric circuit boards. The methanol-insoluble residues were enzymatically hydrolyzed to produce glucose. This study indicated that the biomass-derived methanol-soluble lignin may be a promising candidate to be used as a substitute for petroleum-based epoxy resin derived from bisphenol A, while insoluble residues may be processed to give a bioethanol precursor i.e., glucose.

  7. New anthracene-based-phtalocyanine semi-conducting materials: Synthesis and optoelectronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kahouech, M.S. [Laboratoire de Chimie Organique et Analytique, Institut Supérieur de l' Education et de la Formation Continue (Université El Manar), Bardo 2000 (Tunisia); Hriz, K., E-mail: [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir (Université de Monastir), Bd. de l' Environnement, Monastir 5019 (Tunisia); Touaiti, S.; Bassem, J. [Laboratoire de Chimie Organique et Analytique, Institut Supérieur de l' Education et de la Formation Continue (Université El Manar), Bardo 2000 (Tunisia)


    Highlights: • Synthesis of tow phtalocyanines based on the anthracene and tetrazole. • Semi-conducting supramolecular material. • Good PL quantum yield. • The film morphology of the phtalocynine containing tetrazole group enhanced the carrier mobility. - Abstract: A new anthracene-based semi-conducting phtalocyanines AnPc and AnPc-Tr were synthesized in solvent-free conditions. The supramolecular structure of these compounds was confirmed by NMR and FT-IR spectroscopies. Their optical properties were investigated by UV–vis and photoluminescence spectroscopies. The optical gaps were estimated from the absorption-onsets films, and the obtained values were of 1.50 eV and 1.47 eV for AnPc-Tr and AnPc respectively. In solid state, a weaker π–π-interactions of conjugated systems were obtained in the case of AnPc-Tr in comparison with AnPc. This behavior was explained by steric hindrance of triazol groups, which decrease the planarity of macromolecular structure. The HOMO and LUMO levels were estimated using cyclic voltammetry analysis; two phtalocyanine derivatives show a comparable ionization potential. The phtalacyanine containing triazole groups (AnPc-Tr) reveals a higher electron affinity in comparison with AnPc. Single-layer diode devices were fabricated and showed relatively low turn-on voltages.

  8. Novel synthesis of tin oxide/graphene aerogel nanocomposites as anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zheyu [College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000 (China); Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Li, Xifei, E-mail: [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Tai, Limin, E-mail: [College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000 (China); Song, Haoze; Zhang, Yiyan; Yan, Bo; Fan, Linlin; Shan, Hui [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Li, Dejun, E-mail: [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China)


    A novel method of mechanical exfoliation followed by hydrothermal approach was proposed to synthesize the tin oxide/graphene aerogels (SnO{sub 2}/GAs) nanocomposites. Homogeneous distribution of SnO{sub 2} nanocrystals on GAs was confirmed by SEM, XRD and TEM characterization. It was found that optimized exfoliation of the SnS{sub 2} is the key factor to obtain high electrochemical lithiation/delithiation performance of the anodes. The as-prepared SnO{sub 2}/GA nanocomposites exhibited high reversible capacity (up to 1086.7 mAh g{sup −1} after 100 cycles) and excellent cycling stability. The improved rate capability was also obtained, for instance, the reversible capacity at a current density of 800 mA g{sup −1} is over 447.9 mAh g{sup −1}, and then recovered to as high as 784.4 mAh g{sup −1} at a current density of 100 mA g{sup −1}. - Highlights: • A novel approach was employed to synthesize the SnO{sub 2}/GA nanocomposites. • The designed SnO{sub 2}/GAs exhibited high reversible capacity and excellent cycling stability. • The volume change challenge of SnO{sub 2} was markedly alleviated by the GA matrix. • The novel synthesis method can be extended for other materials in lithium ion batteries.

  9. Synthesis of ultra high molecular weight polyethylene: A differentiate material for specialty applications

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, Sudhakar, E-mail: [Research Centre, Vadodara Manufacturing Division, Reliance Industries Limited, Vadodara, 391 346, Gujarat (India); Sarma, Krishna R.; Rupak, Kishor; Sharma, Shashikant [Research Centre, Vadodara Manufacturing Division, Reliance Industries Limited, Vadodara, 391 346, Gujarat (India)


    Tailoring the synthesis of a suitable Ziegler-Natta (ZN) catalyst coupled with optimized polymerization conditions using a suitable activator holds the key for an array of differentiated polymers with diverse and unique properties. Ultra high molecular weight polyethylene (UHMWPE) is one such polymer which we have synthesized using TiCl{sub 4} anchored on MgCl{sub 2} as the support and activated using AlRR'{sub 2} (where R, R' = iso-prenyl or isobutyl) under specific conditions. Here in we have accomplished a process for synthesizing UHMWPE in hydrocarbon as the medium with molecular weights ranging from 5 to 10 million g/mole. The differentiated polymers exhibited the desired properties such as particle size distribution (PSD), average particle size (APS), bulk density (BD) and molecular weight (MW) with controlled amount of fine and coarse particles. Scanning electron micrographs (SEM) reflected the material to have uniform particle size distribution with a spherical morphology. The extent of entanglement was determined from thermal studies and it was found to be highly entangled.

  10. Synthesis of Hydrophobic Mesoporous Material MFS and Its Adsorption Properties of Water Vapor

    Directory of Open Access Journals (Sweden)

    Guotao Zhao


    Full Text Available Fluorine-containing hydrophobic mesoporous material (MFS with high surface area is successfully synthesized with hydrothermal synthesis method by using a perfluorinated surfactant SURFLON S-386 template. The adsorption properties of water vapor on the synthesized MFS are also investigated by using gravimetric method. Results show that SEM image of the MFS depicted roundish morphology with the average crystal size of 1-2 μm. The BET surface area and total pore volume of the MFS are 865.4 m2 g−1 and 0.74 cm3 g−1 with a narrow pore size distribution at 4.9 nm. The amount of water vapor on the MFS is about 0.41 mmol g−1 at 303 K, which is only 52.6% and 55.4% of MCM-41 and SBA-15 under the similar conditions, separately. The isosteric adsorption heat of water on the MFS is gradually about 27.0–19.8 kJ mol−1, which decreases as the absorbed water vapor amount increases. The value is much smaller than that on MCM-41 and SBA-15. Therefore, the MFS shows more hydrophobic surface properties than the MCM-41 and SBA-15. It may be a kind of good candidate for adsorption of large molecule and catalyst carrier with high moisture resistance.

  11. Synthesis and rate performance of lithium vanadium phosphate as cathode material for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Huang Bing, E-mail: [Laboratory of Clean Energy, Department of Chemistry and Chemical Engineering, Binzhou University, Binzhou, Shandong 256603 (China); Fan Xiaoping [Military Representative Office in ChangHong Group, Mianyang, Sichuan 621000 (China); Zheng Xiaodong; Lu Mi [Laboratory of Clean Energy, Department of Chemistry and Chemical Engineering, Binzhou University, Binzhou, Shandong 256603 (China)


    Research highlights: > The Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C composite is sphere-like with carbon-coated. > The composite containing large amount of ultrafine particles linked together. > The synthesis method is two-session-ball-milling-assisted spray-drying. > The discharge capacity is 100 mAh g{sup -1} at 20 C rate in the voltage range of 3.0-4.3 V. - Abstract: A sphere-like carbon-coated Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} composite was synthesized by carbothermal reduction method with two sessions of ball milling followed by spray-drying with the dispersant of polyethylene glycol added. The structure, particle size, and surface morphology of the cathode material were investigated via X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. Results indicate that the Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C composite has a sphere-like morphology composed of a large number of carbon-coated ultrafine particles linked together with a monoclinic structure. In the voltage range of 3.0-4.3 V, it exhibits the discharge capacities of 130 mAh g{sup -1} and 100 mAh g{sup -1} at 0.2 C and 20 C rates, respectively. This behavior indicates that the obtained Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C material has excellent rate capability.

  12. Materials and vapour-phase techniques for the synthesis of ceramic coatings

    Directory of Open Access Journals (Sweden)

    Albella, J. M.


    Full Text Available A survey on recent advances in the synthesis of hard ceramic coatings is given, including materials processes and techniques. Emphasis is made on the parameters which control the coating properties (crystalline structure, morphology, etc, namely arrival energy of the atoms to the growing surface and substrate temperature. Some relevant coating materials are discussed in relation to their applications either as hard protective coatings or with decorative purposes, namely: the family of metal nitrides, carbides, and oxides, in different layer structures (monolithic, multilayers and nanocomposites and ternary compounds of the BCN system.

    Se hace un descripción de los avances recientes en la síntesis de recubrimientos duros de tipo cerámico, depositados mediante técnicas de deposición en fase vapor. Se dedica especial atención a los parámetros del proceso de deposición que controlan las propiedades finales de las capas (estructura cristalina, morfología, etc, tales como la energía de llegada de los átomos a las superficie en crecimiento, y la temperatura. Finalmente, se hace una revisión de los materiales más relevantes en lo que se refiere a sus aplicaciones como recubrimientos duros y protectores, o como recubrimientos decorativos, entre ellos, la familia de los nitruros, carburos y óxidos metálicos, depositados en diversos tipos de estructuras (monolíticas, multicapas y nanocomposites, y los compuestos ternarios del sistema BCN.

  13. Models and Methods for Free Material Optimization

    DEFF Research Database (Denmark)

    Weldeyesus, Alemseged Gebrehiwot

    FMO problem formulations with stress constraints. These problems are highly nonlinear and lead to the so-called singularity phenomenon. The method described in the thesis has successfully solved these problems. In the numerical experiments the stress constraints have been satisfied with high...... conditions for physical attainability, in the context that, it has to be symmetric and positive semidefinite. FMO problems have been studied for the last two decades in many articles that led to the development of a wide range of models, methods, and theories. As the design variables in FMO are the local....... These problems are more difficult to solve and demand higher computational efforts than the standard optimization problems. The focus of today’s development of solution methods for FMO problems is based on first-order methods that require a large number of iterations to obtain optimal solutions. The scope...

  14. Computational modelling in materials at the University of the North

    CSIR Research Space (South Africa)

    Ngoepe, PE


    Full Text Available The authors review computational modelling studies in materials resulting from the National Research Foundation-Royal Society collaboration. Initially, investigations were confined to transport and defect properties in fluorine and oxygen ion...

  15. Application of mesoscale modeling optimization to development of advanced materials

    Institute of Scientific and Technical Information of China (English)

    SONG Xiaoyan


    The rapid development of computer modeling in recent years offers opportunities for materials preparation in a more economic and efficient way. In the present paper, a practicable route for research and development of advanced materials by applying the visual and quantitative modeling technique on the mesoscale is introduced. A 3D simulation model is developed to describe the microstructure evolution during the whole process of deformation, recrystallization and grain growth in a material containing particles. In the light of simulation optimization, the long-term stabilized fine grain structures ideal for high-temperature applications are designed and produced. In addition, the feasibility, reliability and prospects of material development based on mesoscale modeling are discussed.

  16. [Emission model of volatile organic compounds from materials used indoors]. (United States)

    Han, K


    Various materials, such as wall-paper, floor-wax, paint, multicolor wall-coat, air freshener and mothball were experimented in a simulated test chamber under constant selected temperature, humidity and air exchange rate. The relation between the total VOCs concentration and time was regressed by four emission models and the surface emission rate was calculated. The regressed results indicated the similarity among four emission models for the liquid materials with volatile-solvent such as paint and multicolor wall-coat. But for low volatile solid materials, such as wall-paper, floor-wax, mothball, the sink model and the empirical model were better than the dilution model and vapor pressure model. Only for air freshener, it was improper to the total VOCs concentration as a parameter.

  17. Calibrating the Abaqus Crushable Foam Material Model using UNM Data

    Energy Technology Data Exchange (ETDEWEB)

    Schembri, Philip E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewis, Matthew W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Triaxial test data from the University of New Mexico and uniaxial test data from W-14 is used to calibrate the Abaqus crushable foam material model to represent the syntactic foam comprised of APO-BMI matrix and carbon microballoons used in the W76. The material model is an elasto-plasticity model in which the yield strength depends on pressure. Both the elastic properties and the yield stress are estimated by fitting a line to the elastic region of each test response. The model parameters are fit to the data (in a non-rigorous way) to provide both a conservative and not-conservative material model. The model is verified to perform as intended by comparing the values of pressure and shear stress at yield, as well as the shear and volumetric stress-strain response, to the test data.

  18. A generalized methodology to characterize composite materials for pyrolysis models (United States)

    McKinnon, Mark B.

    The predictive capabilities of computational fire models have improved in recent years such that models have become an integral part of many research efforts. Models improve the understanding of the fire risk of materials and may decrease the number of expensive experiments required to assess the fire hazard of a specific material or designed space. A critical component of a predictive fire model is the pyrolysis sub-model that provides a mathematical representation of the rate of gaseous fuel production from condensed phase fuels given a heat flux incident to the material surface. The modern, comprehensive pyrolysis sub-models that are common today require the definition of many model parameters to accurately represent the physical description of materials that are ubiquitous in the built environment. Coupled with the increase in the number of parameters required to accurately represent the pyrolysis of materials is the increasing prevalence in the built environment of engineered composite materials that have never been measured or modeled. The motivation behind this project is to develop a systematic, generalized methodology to determine the requisite parameters to generate pyrolysis models with predictive capabilities for layered composite materials that are common in industrial and commercial applications. This methodology has been applied to four common composites in this work that exhibit a range of material structures and component materials. The methodology utilizes a multi-scale experimental approach in which each test is designed to isolate and determine a specific subset of the parameters required to define a material in the model. Data collected in simultaneous thermogravimetry and differential scanning calorimetry experiments were analyzed to determine the reaction kinetics, thermodynamic properties, and energetics of decomposition for each component of the composite. Data collected in microscale combustion calorimetry experiments were analyzed to

  19. Bio-templated synthesis of highly ordered macro-mesoporous silica material for sustained drug delivery (United States)

    Qu, Fengyu; Lin, Huiming; Wu, Xiang; Li, Xiaofeng; Qiu, Shilun; Zhu, Guangshan


    The bimodal porous structured silica materials consisting of macropores with the diameter of 5-20 μm and framework-like mesopores with the diameter of 4.7-6.0 nm were prepared using natural Manchurian ash and mango linin as macropored hard templates and P123 as mesopore soft templates, respectively. The macroporous structures of Manchurian ash and mango linin were replicated with the walls containing highly ordered mesoporous silica as well. As-synthesized dual porous silica was characterized by scanning electron microscope (SEM), powder X-ray diffraction (XRD), transmission electron microscope (TEM) and nitrogen adsorption/desorption, fourier transform IR (FTIR) spectroscopy, and thermo-gravimetric analyzer (TGA). Ibuprofen (Ibu) was employed as a model drug and the release profiles showed that the dual porous material had a sustained drug delivery capability. And such highly ordered dual pore silica materials may have potential applications for bimolecular adsorption/separation and tissue repairing.

  20. Microwave Synthesis of Cathode Material LixMn2O4 for Lithium-ion Battery

    Institute of Scientific and Technical Information of China (English)

    HAO Hua; LIU Han-xing; OUYANG Shi-xi


    LiMn2O4 was synthesized rapidly by microwa e heating. The product phases of the microwave synthesis and conventional solid-state synthesis were comparatively invesitigated. The capacity of microwave synthesis product decreases relatively slow. The lithium ion can be inserted into and extracted from the spinel framework structure fluently after cycling. But the capacity of the conventional solid-state synthesis product is more remarkably lowered. The spinel framework structure was destroyed which hindered the lithium ion from inserting and extracting. The influential factors of the process parameters are discussed such as heat preservation time, pre-heating at 400℃ for 24h and coupled agent.

  1. Properties of granular analogue model materials: A community wide survey (United States)

    Klinkmüller, M.; Schreurs, G.; Rosenau, M.; Kemnitz, H.


    We report the material properties of 26 granular analogue materials used in 14 analogue modelling laboratories. We determined physical characteristics such as bulk density, grain size distribution, and grain shape, and performed ring shear tests to determine friction angles and cohesion, and uniaxial compression tests to evaluate the compaction behaviour. Mean grain size of the materials varied between c. 100 and 400 μm. Analysis of grain shape factors shows that the four different classes of granular materials (14 quartz sands, 5 dyed quartz sands, 4 heavy mineral sands and 3 size fractions of glass beads) can be broadly divided into two groups consisting of 12 angular and 14 rounded materials. Grain shape has an influence on friction angles, with most angular materials having higher internal friction angles (between c. 35° and 40°) than rounded materials, whereas well-rounded glass beads have the lowest internal friction angles (between c. 25° and 30°). We interpret this as an effect of intergranular sliding versus rolling. Most angular materials have also higher basal friction angles (tested for a specific foil) than more rounded materials, suggesting that angular grains scratch and wear the foil. Most materials have an internal cohesion in the order of 20-100 Pa except for well-rounded glass beads, which show a trend towards a quasi-cohesionless (C < 20 Pa) Coulomb-type material. The uniaxial confined compression tests reveal that rounded grains generally show less compaction than angular grains. We interpret this to be related to the initial packing density after sifting, which is higher for rounded grains than for angular grains. Ring-shear test data show that angular grains undergo a longer strain-hardening phase than more rounded materials. This might explain why analogue models consisting of angular grains accommodate deformation in a more distributed manner prior to strain localisation than models consisting of rounded grains.

  2. Are paleoclimate model ensembles consistent with the MARGO data synthesis?

    Directory of Open Access Journals (Sweden)

    J. C. Hargreaves


    Full Text Available We investigate the consistency of various ensembles of model simulations with the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO sea surface temperature data synthesis. We discover that while two multi-model ensembles, created through the Paleoclimate Model Intercomparison Projects (PMIP and PMIP2, pass our simple tests of reliability, an ensemble based on parameter variation in a single model does not perform so well. We show that accounting for observational uncertainty in the MARGO database is of prime importance for correctly evaluating the ensembles. Perhaps surprisingly, the inclusion of a coupled dynamical ocean (compared to the use of a slab ocean does not appear to cause a wider spread in the sea surface temperature anomalies, but rather causes systematic changes with more heat transported north in the Atlantic. There is weak evidence that the sea surface temperature data may be more consistent with meridional overturning in the North Atlantic being similar for the LGM and the present day, however, the small size of the PMIP2 ensemble prevents any statistically significant results from being obtained.

  3. Are paleoclimate model ensembles consistent with the MARGO data synthesis?

    Directory of Open Access Journals (Sweden)

    J. C. Hargreaves


    Full Text Available We investigate the consistency of various ensembles of climate model simulations with the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO sea surface temperature data synthesis. We discover that while two multi-model ensembles, created through the Paleoclimate Model Intercomparison Projects (PMIP and PMIP2, pass our simple tests of reliability, an ensemble based on parameter variation in a single model does not perform so well. We show that accounting for observational uncertainty in the MARGO database is of prime importance for correctly evaluating the ensembles. Perhaps surprisingly, the inclusion of a coupled dynamical ocean (compared to the use of a slab ocean does not appear to cause a wider spread in the sea surface temperature anomalies, but rather causes systematic changes with more heat transported north in the Atlantic. There is weak evidence that the sea surface temperature data may be more consistent with meridional overturning in the North Atlantic being similar for the LGM and the present day. However, the small size of the PMIP2 ensemble prevents any statistically significant results from being obtained.

  4. Lovastatin Corrects Excess Protein Synthesis and Prevents Epileptogenesis in a Mouse Model of Fragile X Syndrome


    Chuang, Shih-Chieh; Chubykin, Alexander A.; Sidorov, Michael; Bianchi, Riccardo; Wong, Robert K.S.; Osterweil, Emily; Bear, Mark; Chubykin, Alexander A.


    Many neuropsychiatric symptoms of fragile X syndrome (FXS) are believed to be a consequence of altered regulation of protein synthesis at synapses. We discovered that lovastatin, a drug that is widely prescribed for the treatment of high cholesterol, can correct excess hippocampal protein synthesis in the mouse model of FXS and can prevent one of the robust functional consequences of increased protein synthesis in FXS, epileptogenesis. These data suggest that lovastatin is potentially disease...

  5. Lovastatin corrects excess protein synthesis and prevents epileptogenesis in a mouse model of fragile X syndrome


    Osterweil, Emily K.; Chuang, Shih-Chieh; Chubykin, Alexander A.; Sidorov, Michael; Bianchi, Riccardo; Wong, Robert K. S.; Bear, Mark F.


    Many neuropsychiatric symptoms of fragile X syndrome (FXS) are believed to be a consequence of altered regulation of protein synthesis at synapses. We discovered that lovastatin, a drug that is widely prescribed for treatment of high cholesterol, can correct excess hippocampal protein synthesis in themouse model of FXS and can prevent one of the robust functional consequences of increased protein synthesis in FXS, epileptogenesis. These data suggest that lovastatin is potentially disease modi...

  6. Elastoplastic cup model for cement-based materials

    Directory of Open Access Journals (Sweden)

    Yan ZHANG


    Full Text Available Based on experimental data obtained from triaxial tests and a hydrostatic test, a cup model was formulated. Two plastic mechanisms, respectively a deviatoric shearing and a pore collapse, are taken into account. This model also considers the influence of confining pressure. In this paper, the calibration of the model is detailed and numerical simulations of the main mechanical behavior of cement paste over a large range of stress are described, showing good agreement with experimental results. The case study shows that this cup model has extensive applicability for cement-based materials and other quasi-brittle and high-porosity materials in a complex stress state.

  7. Thermomechanics of solid materials with application to the Gurson-Tvergaard material model

    Energy Technology Data Exchange (ETDEWEB)

    Santaoja, K. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity


    The elastic-plastic material model for porous material proposed by Gurson and Tvergaard is evaluated. First a general description is given of constitutive equations for solid materials by thermomechanics with internal variables. The role and definition of internal variables are briefly discussed and the following definition is given: The independent variables present (possibly hidden) in the basic laws for thermomechanics are called controllable variables. The other independent variables are called internal variables. An internal variable is shown always to be a state variable. This work shows that if the specific dissipation function is a homogeneous function of degree one in the fluxes, a description for a time-independent process is obtained. When damage to materials is evaluated, usually a scalar-valued or tensorial variable called damage is introduced in the set of internal variables. A problem arises when determining the relationship between physically observable weakening of the material and the value for damage. Here a more feasible approach is used. Instead of damage, the void volume fraction is inserted into the set of internal variables. This allows use of an analytical equation for description of the mechanical weakening of the material. An extension to the material model proposed by Gurson and modified by Tvergaard is derived. The derivation is based on results obtained by thermomechanics and damage mechanics. The main difference between the original Gurson-Tvergaard material model and the extended one lies in the definition of the internal variable `equivalent tensile flow stress in the matrix material` denoted by {sigma}{sup M}. Using classical plasticity theory, Tvergaard elegantly derived an evolution equation for {sigma}{sup M}. This is not necessary in the present model, since damage mechanics gives an analytical equation between the stress tensor {sigma} and {sigma}M. Investigation of the Clausius-Duhem inequality shows that in compression

  8. Material appearance modeling a data-coherent approach

    CERN Document Server

    Dong, Yue; Guo, Baining


    A principal aim of computer graphics is to generate images that look as real as photographs. Realistic computer graphics imagery has however proven to be quite challenging to produce, since the appearance of materials arises from complicated physical processes that are difficult to analytically model and simulate, and image-based modeling of real material samples is often impractical due to the high-dimensional space of appearance data that needs to be acquired.This book presents a general framework based on the inherent coherency in the appearance data of materials to make image-based appeara

  9. A multifluid mix model with material strength effects

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C. H. [Los Alamos National Laboratory; Scannapieco, A. J. [Los Alamos National Laboratory


    We present a new multifluid mix model. Its features include material strength effects and pressure and temperature nonequilibrium between mixing materials. It is applicable to both interpenetration and demixing of immiscible fluids and diffusion of miscible fluids. The presented model exhibits the appropriate smooth transition in mathematical form as the mixture evolves from multiphase to molecular mixing, extending its applicability to the intermediate stages in which both types of mixing are present. Virtual mass force and momentum exchange have been generalized for heterogeneous multimaterial mixtures. The compression work has been extended so that the resulting species energy equations are consistent with the pressure force and material strength.

  10. Microwave Plasma Synthesis of Materials—From Physics and Chemistry to Nanoparticles: A Materials Scientist’s Viewpoint

    Directory of Open Access Journals (Sweden)

    Dorothée Vinga Szabó


    Full Text Available In this review, microwave plasma gas-phase synthesis of inorganic materials and material groups is discussed from the application-oriented perspective of a materials scientist: why and how microwave plasmas are applied for the synthesis of materials? First, key players in this research field will be identified, and a brief overview on publication history on this topic is given. The fundamental basics, necessary to understand the processes ongoing in particle synthesis—one of the main applications of microwave plasma processes—and the influence of the relevant experimental parameters on the resulting particles and their properties will be addressed. The benefit of using microwave plasma instead of conventional gas phase processes with respect to chemical reactivity and crystallite nucleation will be reviewed. The criteria, how to choose an appropriate precursor to synthesize a specific material with an intended application is discussed. A tabular overview on all type of materials synthesized in microwave plasmas and other plasma methods will be given, including relevant citations. Finally, property examples of three groups of nanomaterials synthesized with microwave plasma methods, bare Fe2O3 nanoparticles, different core/shell ceramic/organic shell nanoparticles, and Sn-based nanocomposites, will be described exemplarily, comprising perspectives of applications.

  11. Synthesis and Applications of Boronate Affinity Materials: From Class Selectivity to Biomimetic Specificity. (United States)

    Liu, Zhen; He, Hui


    Due to the complexity of biological systems and samples, specific capture and targeting of certain biomolecules is critical in much biological research and many applications. cis-Diol-containing biomolecules, a large family of important compounds including glycoproteins, saccharides, nucleosides, nucleotides, and so on, play essential roles in biological systems. As boronic acids can reversibly bind with cis-diols, boronate affinity materials (BAMs) have gained increasing attention in recent years. However, real-world applications of BAMs are often severely hampered by three bottleneck issues, including nonbiocompatible binding pH, weak affinity, and difficulty in selectivity manipulation. Therefore, solutions to these issues and knowledge about the factors that influence the binding properties are of significant importance. These issues have been well solved by our group in past years. Our solutions started from the synthesis and screening of boronic acid ligands with chemical moieties favorable for binding at neutral and acidic pH. To avoid tedious synthesis routes, we proposed a straightforward strategy called teamed boronate affinity, which permitted facile preparation of BAMs with strong binding at neutral pH. To enhance the affinity, we confirmed that multivalent binding could significantly enhance the affinity toward glycoproteins. More interestingly, we observed that molecular interactions could be significantly enhanced by confinement within nanoscale spaces. To improve the selectivity, we investigated interactions that govern the selectivity and their interplays. We then proposed a set of strategies for selectivity manipulation, which proved to be useful guidelines for not only the design of new BAMs but also the selection of binding conditions. Applications in metabolomic analysis, glycoproteomic analysis, and aptamer selection well demonstrated the great potential of the prepared BAMs. Molecular imprinting is an important methodology for creating

  12. Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Du, Qiang [Pennsylvania State Univ., State College, PA (United States)


    The rational design of materials, the development of accurate and efficient material simulation algorithms, and the determination of the response of materials to environments and loads occurring in practice all require an understanding of mechanics at disparate spatial and temporal scales. The project addresses mathematical and numerical analyses for material problems for which relevant scales range from those usually treated by molecular dynamics all the way up to those most often treated by classical elasticity. The prevalent approach towards developing a multiscale material model couples two or more well known models, e.g., molecular dynamics and classical elasticity, each of which is useful at a different scale, creating a multiscale multi-model. However, the challenges behind such a coupling are formidable and largely arise because the atomistic and continuum models employ nonlocal and local models of force, respectively. The project focuses on a multiscale analysis of the peridynamics materials model. Peridynamics can be used as a transition between molecular dynamics and classical elasticity so that the difficulties encountered when directly coupling those two models are mitigated. In addition, in some situations, peridynamics can be used all by itself as a material model that accurately and efficiently captures the behavior of materials over a wide range of spatial and temporal scales. Peridynamics is well suited to these purposes because it employs a nonlocal model of force, analogous to that of molecular dynamics; furthermore, at sufficiently large length scales and assuming smooth deformation, peridynamics can be approximated by classical elasticity. The project will extend the emerging mathematical and numerical analysis of peridynamics. One goal is to develop a peridynamics-enabled multiscale multi-model that potentially provides a new and more extensive mathematical basis for coupling classical elasticity and molecular dynamics, thus enabling next

  13. Percolation modeling of self-damaging of composite materials (United States)

    Domanskyi, Sergii; Privman, Vladimir


    We propose the concept of autonomous self-damaging in “smart” composite materials, controlled by activation of added nanosize “damaging” capsules. Percolation-type modeling approach earlier applied to the related concept of self-healing materials, is used to investigate the behavior of the initial material's fatigue. We aim at achieving a relatively sharp drop in the material's integrity after some initial limited fatigue develops in the course of the sample's usage. Our theoretical study considers a two-dimensional lattice model and involves Monte Carlo simulations of the connectivity and conductance in the high-connectivity regime of percolation. We give several examples of local capsule-lattice and capsule-capsule activation rules and show that the desired self-damaging property can only be obtained with rather sophisticated “smart” material's response involving not just damaging but also healing capsules.

  14. Models for acoustical properties of green roof materials



    To predict the acoustical effects of green roof structures it is necessary to be able to model the acoustical properties of their materials including gravel. For time domain calculations it is convenient to use the phenomenological model due to Zwikker and Kosten. However this phenomenological model is related to a low frequency/high flow resistivity approximation of more ‘exact’ identical pore models. The results of fitting predictions to short range level difference data and to impedance da...

  15. Novel Mesoporous Silica Materials with Hierarchically Ordered Nanochannel: Synthesis with the Assistance of Straight-Chain Alkanes and Application

    Directory of Open Access Journals (Sweden)

    Haidong Zhang


    Full Text Available The straight-chain alkane-assisted synthesis of hierarchical mesoporous silica materials (MSM results in variable mesostructures and morphologies due to remarkably different self-assembly routes of template agent from those without the assistance of straight-chain alkanes. The textural properties, particularly pore size, channel structure, morphology, and hierarchical structure of those MSM make them demonstrate peculiar effects in the immobilization of homogeneous catalysts.

  16. Build/Couple/Pair and Multifunctional Catalysis Strategies for the Synthesis of Heterocycles from Simple Starting Materials

    DEFF Research Database (Denmark)

    Ascic, Erhad

    to synthesize anti-amino alcohols displaying pairwise reactive combinations of alkene moieties. Upon treatment with a ruthenium alkylidene catalyst, these dienes selectively undergo ring-closing metathesis reactions to form skeletally distinct heterocycles. In addition, a ruthenium-catalyzed tandem RCM....... Multifunctional Catalysis: Synthesis of Heterocycles from Simple Starting Materials A multifunctional catalysis approach, involving a ruthenium-catalyzed tandem ringclosing metathesis/isomerization/N-acyliminium cyclization sequence, is described. Double bonds created during ring-closing metathesis isomerize...

  17. Dynamic brittle material response based on a continuum damage model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, E.P.


    The response of brittle materials to dynamic loads was studied in this investigation based on a continuum damage model. Damage mechanism was selected to be interaction and growth of subscale cracks. Briefly, the cracks are activated by bulk tension and the density of activated cracks are described by a Weibull statistical distribution. The moduli of a cracked solid derived by Budiansky and O`Connell are then used to represent the global material degradation due to subscale cracking. This continuum damage model was originally developed to study rock fragmentation and was modified in the present study to improve on the post-limit structural response. The model was implemented into a transient dynamic explicit finite element code PRONTO 2D and then used for a numerical study involving the sudden stretching of a plate with a centrally located hole. Numerical results characterizing the dynamic responses of the material were presented. The effect of damage on dynamic material behavior was discussed.

  18. Modeling of electromigration salt removal methods in building materials

    DEFF Research Database (Denmark)

    Johannesson, Björn; Ottosen, Lisbeth M.


    A model is established for the prediction of the effect of salt removal of building materials using electromigration. Salt-induced decay of building materials, such as masonry and sandstone, is a serious threat to our cultural heritage. Electromigration of salts from building materials, sensitive...... for salt attack of various kinds, is one potential method to preserve old building envelopes. By establishing a model for ionic multi-species diffusion, which also accounts for external applied electrical fields, it is proposed that an important complement to the experimental tests and that verification...... can be obtained. One important issue is to be able to optimizing the salt removing electromagration method in the field by first studying it theoretically. Another benefit is that models can give some answers concerning the effect of the inner surfaces of the material on the diffusion mechanisms...

  19. Dynamic Materials do the Trick in Participatory Business Modeling

    DEFF Research Database (Denmark)

    Caglio, Agnese; Buur, Jacob

    In this position paper we suggest that design material with dynamic behaviour is particularly suited to scaffold groups of diverse participants in discussing the ‘if – then’ causalities of business models. Based on video data from a number of innovation project workshops we present a comparison m...... matrix of five different material types for participatory business modeling. The comparison matrix highlights patterns in the use of materials, and how they allow people to participate, negotiate and make meaning.......In this position paper we suggest that design material with dynamic behaviour is particularly suited to scaffold groups of diverse participants in discussing the ‘if – then’ causalities of business models. Based on video data from a number of innovation project workshops we present a comparison...

  20. Thermal modelling of extrusion based additive manufacturing of composite materials

    DEFF Research Database (Denmark)

    Jensen, Mathias Laustsen; Sonne, Mads Rostgaard; Hattel, Jesper Henri


    One of the hottest topics regarding manufacturing these years is additive manufacturing (AM). AM is a young branch of manufacturing techniques, which by nature is disruptive due to its completely different manufacturing approach, wherein material is added instead of removed. By adding material...... process knowledge, and validating the generated toolpaths before the real manufacturing process takes place: Hence removing time consuming and expensive trial-and-error processes for new products. This study applies a 2D restricted finite volume model aimed to describe thermoplastic Acrylonitrille......-butadiene-styrene (ABS) and thermosetting polyurethane (PU) material extrusion processes. During the experimental evaluation of the produced models it is found that some critical material properties needs to be further investigated to increase the precision of the model. It is however also found that even with only...

  1. A hydrodynamic model for granular material flows including segregation effects (United States)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad


    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  2. Ultrasound assisted synthesis of nanocrystalline zinc oxide: Experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Mongia [Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS, Université Paris 13, 99 av. J.B. Clément, 93430 Villetaneuse (France); Farhat, Samir, E-mail: [Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS, Université Paris 13, 99 av. J.B. Clément, 93430 Villetaneuse (France); Schoenstein, Frederic; Karmous, Farah; Jouini, Noureddine [Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS, Université Paris 13, 99 av. J.B. Clément, 93430 Villetaneuse (France); Viana, Bruno [LCMCP Chimie-Paristech, UPMC, Collège de France, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Mgaidi, Arbi [Laboratoire de chimie minérale industrielle université Tunis el Manar (Tunisia)


    Highlights: • ZnO nanospheres and nanowires were grown using ultrasound and thermal activation techniques. • The growth uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). • A thermochemical model was developed based on thermodynamic equilibrium calculations. • We estimate species distribution in the bubble in temperature range from 5000 K to ambient. • We propose a new mechanism for ZnO growth assisted by ultrasound irradiation. - Abstract: A fast and green approach is proposed for the preparation of nanocrystalline zinc oxide (ZnO) via ultrasonic (US) irradiation in polyol medium. The process uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). The protocol is compared to thermal activation under the same chemical environment. The activation method is found to be playing a critical role in the selective synthesis of morphologically distinct nanostructures. As compared to thermally activated conventional polyol process, (US) permits to considerably reduce reaction time as well as size of particles. In addition, the shape of these nanoparticles was changed from long nanowires to small nanospheres, indicating different reaction mechanisms. To explain this difference, a thermochemical model was developed based on thermodynamic equilibrium calculations. The model estimate species distribution in the bubble in temperature range from 5000 K to ambient simulating quenching process during bubble formation and collapse. Our results indicate the presence of high density of zinc atoms that could be responsible of a high density of nucleation as compared to thermal activation.

  3. Yunnan-III models for Evolutionary population synthesis

    CERN Document Server

    Zhang, F; Han, Z; Zhuang, Y; Kang, X


    We build the Yunnan-III evolutionary population synthesis (EPS) models by using the MESA stellar evolution code, BaSeL stellar spectra library and the initial mass functions (IMFs) of Kroupa and Salpeter, and present colours and integrated spectral energy distributions (ISEDs) of solar-metallicity stellar populations (SPs) in the range of 1Myr-15 Gyr. The main characteristic of the Yunnan-III EPS models is the usage of a set of self-consistent solar-metallicity stellar evolutionary tracks (the masses of stars are from 0.1 to 100Msun). This set of tracks is obtained by using the state-of-the-art MESA code. MESA code can evolve stellar models through thermally pulsing asymptotic giant branch (TP-AGB) phase for low- and intermediate-mass stars. By comparisons, we confirm that the inclusion of TP-AGB stars make the V-K, V-J and V-R colours of SPs redder and the infrared flux larger at ages log(t/yr)>7.6 (the differences reach the maximum at log(t/yr)~8.6, ~0.5-0.2mag for colours, ~2 times for K-band flux). The st...

  4. Materials and electromagnetism. The modeling of composite materials; Materiaux en electromagnetisme. Modelisation des materiaux composites

    Energy Technology Data Exchange (ETDEWEB)

    Priou, A. [Institut Universitaire de Technologie, 92 - Ville-d' Avray (France)


    Maxwell laws are briefly described and the different types of electromagnetic materials are presented. Composite materials are made up of at least 2 phases: a host phase and an inclusion. The inclusion is a discontinuous phase coming from a conducting material (metal, carbon based material, semi-conductor, solid electrolytes or conducting polymers) and is spread within the host phase either in an aleatory or organized way. The modeling of such media can be made by 3 different approaches. In the multi-diffusion approach, the size of the particles enclosed in the host material and their mutual interactions are taken into account. The quasi-static approach allows the definition of an equivalent medium in order to describe percolation phenomena. The approach based on cluster theory gives a complete mathematical description of composite materials. The modeling of dielectric-conducting multilayer is also presented. The last part of the article is dedicated to the characteristics and applications of chiral media and of last generation electromagnetic materials. (A.C.)

  5. Inhibiting Glycogen Synthesis Prevents Lafora Disease in a Mouse Model (United States)

    Pederson, Bartholomew A.; Turnbull, Julie; Epp, Jonathan R.; Weaver, Staci A.; Zhao, Xiaochu; Pencea, Nela; Roach, Peter J.; Frankland, Paul; Ackerley, Cameron A.; Minassian, Berge A.


    Lafora disease (LD) is a fatal progressive myoclonus epilepsy characterized neuropathologically by aggregates of abnormally structured glycogen and proteins (Lafora bodies, LB), and neurodegeneration. Whether LB could be prevented by inhibiting glycogen synthesis and whether they are pathogenic remain uncertain. We genetically eliminated brain glycogen synthesis in LD mice. This resulted in long-term prevention of LB formation, neurodegeneration, and seizure susceptibility. This study establishes that glycogen synthesis is requisite for LB formation and that LB are pathogenic. It opens a therapeutic window for potential treatments in LD with known and future small molecule inhibitors of glycogen synthesis. PMID:23913475

  6. Synthesis and optical characterisation of triphenylamine-based hole extractor materials for CdSe quantum dots. (United States)

    Planells, Miquel; Reynolds, Luke X; Bansode, Umesh; Chhatre, Shraddha; Ogale, Satishchandra; Robertson, Neil; Haque, Saif A


    We report the synthesis and optical characterisation of different triphenylamine-based hole capture materials able to anchor to CdSe quantum dots (QDs). Cyclic voltammetry studies indicate that these materials exhibit reversible electrochemical behaviour. Photoluminescence and transient absorption spectroscopy techniques are used to study interfacial charge transfer properties of the triphenylamine functionalized CdSe QDs. Specifically, we show that the functionalized QDs based on the most easily oxidised triphenylamine display efficient hole-extraction and long-lived charge separation. The present findings should help identify new strategies to control charge transfer QD-based optoelectronic devices.

  7. Low-temperature plasma synthesis of carbon nanotubes and graphene based materials and their fuel cell applications. (United States)

    Wang, Qi; Wang, Xiangke; Chai, Zhifang; Hu, Wenping


    Carbon nanotubes (CNTs) and graphene, and materials based on these, are largely used in multidisciplinary fields. Many techniques have been put forward to synthesize them. Among all kinds of approaches, the low-temperature plasma approach is widely used due to its numerous advantages, such as highly distributed active species, reduced energy requirements, enhanced catalyst activation, shortened operation time and decreased environmental pollution. This tutorial review focuses on the recent development of plasma synthesis of CNTs and graphene based materials and their electrochemical application in fuel cells.

  8. Synthesis of AgGaGeS4 polycrystalline materials by vapor transporting and mechanical oscillation method (United States)

    Huang, Wei; Zhao, Beijun; Zhu, Shifu; He, Zhiyu; Chen, Baojun; Pu, Yunxiao; Lin, Li; Zhao, Zhangrui; Zhong, Yikai


    Single-phase AgGaGeS4 polycrystalline materials were synthesized directly from the constituent elements by vapor transporting and mechanical oscillation method. The problem of explosions was solved by careful control of the heating and cooling cycle and adopting the two-zone rocking furnace with specially designed temperature profile. The mechanical and temperature oscillations, as well as gradient cooling, were introduced in the synthesis process. The X-ray diffraction (XRD) analysis and Energy Dispersive Spectrometer (EDS) micro analysis indicated that the synthesized compound is a single-phase AgGaGeS4 polycrystalline material.

  9. Multi-scale modeling in microstructure evolution of materials

    Institute of Scientific and Technical Information of China (English)


    Intelligent design and control of the microstructure to tailor properties of materials is the dream that materials scientists have been worked hard for many years. Formation of research area of computational materials science paves the way to realize the dream. Simulation of microstructure evolution is a chief branch of the computational materials science and has caused great attention from materials researchers. Multi-scale modeling gets popular just within 5- 6 years recently due to huge research works to try to shorten the distance between simulation and application. People have to command one or more classical simulation methods in order to do the multi-scale modeling so chief simulation methods will be discussed first and then more reviews in detail are given to the phase field simulation. The main part of the paper is carried out to introduce two key approaches to do the multi-scale modeling job. It is suggested that extension of the multiscale modeling is necessary to study the technologies to link microstructure simulation, processing simulation and property simulation each other as well as to build bridges between different simulation methods and between analytical models and numerical models.

  10. Airflow resistivity of models of fibrous acoustic materials

    DEFF Research Database (Denmark)

    Tarnow, Viggo


    for the resistivity are given, which are valid for the cylinder (fiber) concentrations found in acoustic materials. A one-dimensional model consisting of parallel plates with random spacing between the plates is first discussed. Then a two-dimensional model consisting of parallel cylinders randomly spaced is treated...

  11. Finite element modelling of fibre-reinforced brittle materials

    NARCIS (Netherlands)

    Kullaa, J.


    The tensile constitutive behaviour of fibre-reinforced brittle materials can be extended to two or three dimensions by using the finite element method with crack models. The three approaches in this study include the smeared and discrete crack concepts and a multi-surface plasticity model. The tensi

  12. Physical and Model Uncertainty for Fatigue Design of Composite Material

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    The main aim of the present report is to establish stochastic models for the uncertainties related to fatigue design of composite materials. The uncertainties considered are the physical uncertainty related to the static and fatigue strength and the model uncertainty related to Miners rule...

  13. Richpig: a semantic model to assess enrichment materials for pigs

    NARCIS (Netherlands)

    Bracke, M.B.M.


    A computer-based model was constructed to assess enrichment materials (EMats) for intensively-farmed weaned, growing and fattening pigs on a scale from 0 to 10. This model, called RICHPIG, was constructed in order to support the further implementation of EC Directive 2001/93/EC, which states that "p

  14. Modelling of advanced structural materials for GEN IV reactors (United States)

    Samaras, M.; Hoffelner, W.; Victoria, M.


    The choice of suitable materials and the assessment of long-term materials damage are key issues that need to be addressed for the safe and reliable performance of nuclear power plants. Operating conditions such as high temperatures, irradiation and a corrosive environment degrade materials properties, posing the risk of very expensive or even catastrophic plant damage. Materials scientists are faced with the scientific challenge to determine the long-term damage evolution of materials under service exposure in advanced plants. A higher confidence in life-time assessments of these materials requires an understanding of the related physical phenomena on a range of scales from the microscopic level of single defect damage effects all the way up to macroscopic effects. To overcome lengthy and expensive trial-and-error experiments, the multiscale modelling of materials behaviour is a promising tool, bringing new insights into the fundamental understanding of basic mechanisms. This paper presents the multiscale modelling methodology which is taking root internationally to address the issues of advanced structural materials for Gen IV reactors.

  15. Thermal modeling of wide bandgap materials for power MOSFETs (United States)

    Manandhar, Mahesh B.; Matin, Mohammad A.


    This paper investigates the thermal performance of different wide bandgap (WBG) materials for their applicability as semiconductor material in power electronic devices. In particular, Silicon Carbide (SiC) and Gallium Nitride (GaN) are modeled for this purpose. These WBG materials have been known to show superior intrinsic material properties as compared to Silicon (Si), such as higher carrier mobility, lower electrical and thermal resistance. These unique properties have allowed for them to be used in power devices that can operate at higher voltages, temperatures and switching speeds with higher efficiencies. Digital prototyping of power devices have facilitated inexpensive and flexible methods for faster device development. The commercial simulation software COMSOL Multiphysics was used to simulate a 2-D model of MOSFETs of these WBG materials to observe their thermal performance under different voltage and current operating conditions. COMSOL is a simulation software that can be used to simulate temperature changes due to Joule heating in the case of power MOSFETs. COMSOL uses Finite Element/Volume Analysis methods to solve for variables in complex geometries where multiple material properties and physics are involved. The Semiconductor and Heat Transfer with Solids modules of COMSOL were used to study the thermal performance of the MOSFETs in steady state conditions. The results of the simulations for each of the two WBG materials were compared with that of Silicon to determine relative stability and merit of each material.

  16. Micro-Scale Experiments and Models for Composite Materials with Materials Research

    DEFF Research Database (Denmark)

    Zike, Sanita

    Numerical models are frequently implemented to study micro-mechanical processes in polymer/fibre composites. To ensure that these models are accurate, the length scale dependent properties of the fibre and polymer matrix have to be taken into account. Most often this is not the case, and material...... properties acquired at macro-scale are used for micro-mechanical models. This is because material properties at the macro-scale are much more available and the test procedures to obtain them are well defined. The aim of this research was to find methods to extract the micro-mechanical properties of the epoxy...... resin used in polymer/fibre composites for wind turbine blades combining experimental, numerical, and analytical approaches. Experimentally, in order to mimic the stress state created by a void in a bulk material, test samples with finite root radii were made and subjected to a double cantilever beam...

  17. Multiscale modeling of complex materials phenomenological, theoretical and computational aspects

    CERN Document Server

    Trovalusci, Patrizia


    The papers in this volume deal with materials science, theoretical mechanics and experimental and computational techniques at multiple scales, providing a sound base and a framework for many applications which are hitherto treated in a phenomenological sense. The basic principles are formulated of multiscale modeling strategies towards modern complex multiphase materials subjected to various types of mechanical, thermal loadings and environmental effects. The focus is on problems where mechanics is highly coupled with other concurrent physical phenomena. Attention is also focused on the historical origins of multiscale modeling and foundations of continuum mechanics currently adopted to model non-classical continua with substructure, for which internal length scales play a crucial role.

  18. Structural and microstructural characterization of tin(II oxide useful as anode material in lithium rechargeable batteries obtained from a different synthesis route at room temperature

    Directory of Open Access Journals (Sweden)

    Mario Alberto Macías


    Full Text Available Tin (II oxide has been proposed as potential anode material in lithium rechargeable batteries. Different methods to obtain such compound have been developed with relative difficulty due to the fact that Sn(II is easily oxidized to Sn(IV. We have applied a different methodology to synthesize SnO-romarchite by modifying the solvent nature of the controlled precipitation route using acetic acid and not water. Although the formation of Sn(IV oxide could not be completely avoided, X-ray diffraction analysis confirmed the synthesis of metastable tin(II oxide as major phase at room temperature. In depth analysis using Popa's model for Rietveld refinement allows to precise that the material corresponds to small and distorted crystallites, very anisotropic in size. SEM technique confirmed the microstructure is build of flower-like agglomerates of ~15 µm, in turn made of plate-like individual grains that remind the crystallite structure anisotropy.

  19. Synthesis, Characterization and Application of the novel, regular mesoporous materials MCM-41 and MCM-48

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.


    In the application of zeolites to catalytic cracking of heavy oil fractions the need of regular solids with large pore sizes has become very obvious. The scope of this thesis was to synthesize and characterize the novel mesoporous materials MCM-41 and MCM-48 with the major emphasis laid on MCM-41. MCM-41 materials with bulk Si/Al ratios of 4, 9, 18 and {infinity} were synthesized and characterized by XRD and HREM. The catalytic cracking behaviour of Al-containing MCM-41 materials was investigated by pulse reactor studies using decalin as model feed and by Micro Activity Tests using atmospheric residue or n-hexadecane as feed. Aluminium containing MCM-41 was found to be active for the cracking of heavy oil fractions. Purely siliceous MCM-41 materials with pore sizes ranging from 18 Aa to 40 Aa were synthesized and their properties studied by means of NMR spectroscopy. The MCM-48, which is a cubic member of the M41S family with a three dimensional pore system, was studied by means of a combination of X-ray powder diffraction and HREM technique. 210 refs., 76 figs., 9 tabs.

  20. A physically-based abrasive wear model for composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gun Y.; Dharan, C.K.H.; Ritchie, Robert O.


    A simple physically-based model for the abrasive wear of composite materials is presented based on the mechanics and mechanisms associated with sliding wear in soft (ductile) matrix composites containing hard (brittle) reinforcement particles. The model is based on the assumption that any portion of the reinforcement that is removed as wear debris cannot contribute to the wear resistance of the matrix material. The size of this non-contributing portion of the reinforcement is estimated by modeling the three primary wear mechanisms, specifically plowing, interfacial cracking and particle removal. Critical variables describing the role of the reinforcement, such as its relative size and the nature of the matrix/reinforcement interface, are characterized by a single contribution coefficient, C. Predictions are compared with the results of experimental two-body (pin-on drum) abrasive wear tests performed on a model aluminum particulate-reinforced epoxy matrix composite material.