WorldWideScience

Sample records for modeling gadolinium-lead-borate glasses

  1. Investigation into the structure of lead-borate glass

    International Nuclear Information System (INIS)

    Kurtsinovskaya, R.I.

    1976-01-01

    X-ray phase and IR analysis of lead borate glasses show that glasses containing from 12 to 45 mole % PbO consist of several phases. A comparison of x-ray different data for lead borate and lead germanate glasses, which have two maxima on the diffraction patterns throughout the glass-formation region, shows that the microstructure of lead borate glasses is far more complex

  2. Study of neutron and gamma shielding by lead borate and bismuth lead borate glasses: transparent radiation shielding

    International Nuclear Information System (INIS)

    Singh, Vishwanath P.; Badiger, N.M.

    2013-01-01

    Radiation shielding for gamma and neutron is the prominent area in nuclear reactor technology, medical application, dosimetry and other industries. Shielding of these types of radiation requires an appropriate concrete with mixture of low-to-high Z elements which is an opaque medium. The transparent radiation shielding in visible light for gamma and neutron is also extremely essential in the nuclear facilities as lead window. Presently various types of lead equivalent glass oxides have been invented which are transparent as well as provide protection from radiation. In our study we have assessment of effectiveness of neutron and gamma radiation shielding of xPbO.(1-x) B 2 O 3 (x=0.15 to 0.60) and xBi 2 O 3 .(0.80-x) PbO.0.20 B 2 O 3 (x=0.10 to 0.70) transparent borate and bismuth glasses by NXCOM program. The neutron effective mass removal cross section, Σ R /ρ (cm 2 /g) of the lead, bismuth and boron oxides are given. We found invariable Σ R /ρ of various combinations of the lead borate glass for x=0.15 to 0.60 and bismuth lead borate glass for x=0.10 to 0.70. It is observed that the effective removal cross-section for fast neutron (cm -1 ) of lead borate reduces significantly whereas roughly constant for bismuth borate. The gamma mass attenuation coefficients (μ/ρ) of the glasses were also compared with possible experimental values and found comparable. High (μ/ρ) for gamma radiation of the bismuth glasses shows that it is better gamma shielding compared with lead containing glass. However lead borate glasses are better neutron shielding as the neutron removal coefficient are higher. Our investigation is very useful for nuclear reactor technology where prompt neutron of energy 17 MeV and gamma photon up to 10 MeV produced. (author)

  3. Thermal property of holmium doped lithium lead borate glasses

    Science.gov (United States)

    Usharani, V. L.; Eraiah, B.

    2018-04-01

    The new glass system of holmium doped lithium lead borate glasses were prepared by conventional melt quenching technique. The thermal stability of the different compositions of Ho3+ ions doped lithium lead borate glasses were studied by using TG-DTA. The Tg values are ranging from 439 to 444 °C with respect to the holmium concentration. Physical parameters like polaron radius(rp), inter-nuclear distance (ri), field strength (F) and polarizability (αm) of oxide ions were calculated using appropriate formulae.

  4. Ultrasonic and Thermal Properties of Borate and Phosphate Glasses Containing Bismuth and Lead

    International Nuclear Information System (INIS)

    Aziz, Sidek Hj. Abd.; Ahmad, Hamezan; Wahab, Zaidan A.; Sulaiman, Zainal Abidin; Talib, Zainal Abidin; Shaari, A. Halim; Senin, H. B.

    2007-01-01

    Systematic series of (B2O3,P2O5)-Bi2O3-PbO glasses have been successfully prepared by using the rapid quenching technique in which each oxide content changes for every series on the basis of its weight percentage. Their amorphous natures were confirmed earlier by the x-ray diffraction technique. The experimental results show that the density of both glasses, determined by using the Archimedes principle, increases with the glass modifier content. This is due to the replacement of Bi2O3 and PbO in the borate and phosphate glassy networks. The molar volume for borate glass increases with the addition of bismuth and lead oxides, but a reverse trend occurs for the phosphate glass. The longitudinal and shear ultrasound velocities, determined by the MBS 8000 system, of both lead bismuth borate and phosphate glasses show a decreasing trend as more PbO and Bi2O3 are added to the glass system. The increase in PbO/Bi2O3 content was probably related to the progressive increase in the concentration of non-bridging oxygen (NBOs). Thermal studies of the glass, using the Labsys DTA-Setaram machine, show that the value of the glass transition temperature (Tg) is closely related to the chemical bond in the system. In lead bismuth borate glasses, the addition of more Pb2+ and Bi3+ results in a more dominant ionic bond character in the system and hence decreases Tg of the sample. However, in lead bismuth phosphate glasses, the addition of Pb2+ and Bi3+ not only failed to weaken the covalent character in P-O-P bonds, but strengthened it further, leading to an increment in the values of Tg

  5. Shielding behavior of V2O5 doped lead borate glasses towards gamma irradiation

    International Nuclear Information System (INIS)

    Ghoneim, N.A.; ElBatal, H.A.; Abdelghany, A.M.; Ali, I.S.

    2011-01-01

    Highlights: → Base lead borate glass together with samples of the same composition doped with varying V 2 O 5 contents were prepared. → UV-visible and infrared spectroscopy were measured before and after successive gamma irradiation. → Glass samples are observed to absorb strongly in the UV. → Infrared absorption spectra indicate the presence of both triangular and tetrahedral borate groups besides the sharing of lead ions in network forming and network modifying sites. - Abstract: Undoped lead borate glass of the composition PbO 70%-B 2 O 3 30% together with samples of the same composition and doped with varying V 2 O 5 contents were prepared. UV-visible absorption spectra were measured out in the range 200-1500 nm before and after successive gamma irradiation. Infrared absorption measurements within the range 4000-400 cm -1 were carried out for the undoped and V 2 O 5 doped samples before gamma irradiation and after being irradiated with a dose of 6 Mrad. All the glass samples are observed to absorb strongly in the UV region due to the combined contributions of absorption due to trace iron impurities and that from the divalent lead Pb 2+ ions. The V 2 O 5 -doped glasses reveal extra visible absorption bands which are attributed to the existence of V 3+ ions in measurable content but not neglecting the other valence states of vanadium ions (V 4+ , V 5+ ). Infrared absorption spectra indicate the presence of both triangular and tetrahedral borate groups besides the sharing of lead ions in network forming and network modifying sites.

  6. FTIR of binary lead borate glass: Structural investigation

    Science.gov (United States)

    Othman, H. A.; Elkholy, H. S.; Hager, I. Z.

    2016-02-01

    The glass samples were prepared according to the following formula: (100-x) B2O3 - x PbO, where x = 20-80 mol% by melt quenching method. The density of the prepared samples was measured and molar volume was calculated. IR spectra were measured for the prepared samples to investigate the glass structure. The IR spectra were deconvoluted using curves of Gaussian shape at approximately the same frequencies. The deconvoluted data were used to study the effect of PbO content on all the structural borate groups. Some structural parameters such as density, packing density, bond length and bond force constant were theoretically calculated and were compared to the obtained experimental results. Deviation between the experimental and theoretically calculated parameters reflects the dual role of PbO content on the network of borate glass.

  7. Influence of tellurite on lifetime for samarium doped lanthanum lead borate glass

    Science.gov (United States)

    Madhu, A.; Eraiah, B.

    2018-04-01

    Samarium substituted tellurium lanthanum lead borate glass is prepared using melt quenching technique. Luminescence spectra have been recorded upon excitation with 402 nm various transitions from 4G5/2 level, for samarium doped tellurite glasses are studied and also lifetime for all the samples exhibit single exponential behaviour of decay curve. Luminescence spectra of present glasses show quenching effect due to cross-relation channels of samarium ions. The lifetime of glass samples decrease as the tellurite concentration is decreased. So, it evidences that to attain longer lifetime for lasing material one can tune the host by selecting concentration of tellurite.

  8. Luminescence investigations of rare earth doped lead-free borate glasses modified by MO (M = Ca, Sr, Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Janek, Joanna, E-mail: janek.joanna@gmail.com; Sołtys, Marta; Żur, Lidia; Pietrasik, Ewa; Pisarska, Joanna; Pisarski, Wojciech A.

    2016-09-01

    Series of lead-free borate glasses with different oxide modifiers and lanthanide ions were prepared. The effect of oxide modifiers MO (M = Ca, Sr, Ba) on spectroscopic properties of trivalent Ln{sup 3+} (Ln = Eu, Er, Pr) were systematically investigated. Especially, the luminescence spectra of Ln{sup 3+}-doped lead-free borate glasses are presented and discussed in relation to the impact of selective components (CaO, SrO and BaO). Several spectroscopic parameters, such as the fluorescence intensity ratio R/O (Eu{sup 3+}) and measured luminescence lifetimes for the {sup 5}D{sub 0} (Eu{sup 3+}), {sup 4}I{sub 13/2} (Er{sup 3+}) and {sup 1}D{sub 2} (Pr{sup 3+}) excited states of lanthanide ions were analyzed in details. The research proved that spectroscopic properties of trivalent Ln{sup 3+} depend significantly on kind of presence oxide modifiers MO (M = Ca, Sr, Ba) in glass host matrices. - Highlights: • Luminescence of Ln{sup 3+}-doped borate glasses was presented and discussed. • Effect of glass modifiers on spectroscopic properties of rare earths was studied. • Measured luminescence lifetimes of Ln{sup 3+} (Ln = Eu, Er, Pr) were analyzed. • Luminescence intensity ratios R/O (Eu{sup 3+}) were determined.

  9. Exoelectron emission from magnesium borate glass ceramics

    International Nuclear Information System (INIS)

    Kawamoto, Takamichi; Yanagisawa, Hideo; Nakamichi, Hiroshi; Kikuchi, Riichi; Kawanishi, Masaharu.

    1986-01-01

    Thermally stimulated exoelectron emission (TSEE) of a magnesium borate glass ceramics was investigated for its application to dosemetric use. It has been found that the TSEE glow patterns of the magnesium borate glass ceramics as well as a Li 2 B 4 O 7 glass ceramics depend on the kind of the radiation used and that the heat resistance of the magnesium borate glass ceramics is higher than that of the Li 2 B 4 O 7 glass ceramics. Therefore, the TSEE glow patterns of the magnesium borate glass ceramics indicate a possibility to be used as the dose measurement for each kind of radiation in the mixed radiation field. (author)

  10. Spectroscopic investigations on Pr3+ ions doped lead telluro-borate glasses for photonic applications

    Science.gov (United States)

    Suthanthirakumar, P.; Mariyappan, M.; Marimuthu, K.

    2018-04-01

    A new series of Lead telluro-borate glasses doped with different concentrations of Pr3+ ions (xPLTB) were prepared by melt quenching technique and their structural and spectroscopic properties were investigated by recording XRD, FTIR, optical absorption and luminescence spectral measurements. XRD measurements confirm the amorphous nature and the FTIR spectra reveal the presence of different vibrational modes of borate and tellurite networks in the prepared glasses. The bonding parameter values (δ) obtained from the absorption band positions indicates that the bonding between Pr3+ ions and their surrounding ligands is of ionic in nature. The optical band gap (Eopt) corresponding to the direct and indirect allowed transitions were determined with the framework of tauc's plot. From the luminescence spectra, important radiative parameters such as stimulated emission cross-section (σPE) , branching ratios (βR) and radiative lifetime (τR) were calculated for the dominant emission transition 3P0→3H4 (blue) in order to suggest the suitability of the studied glasses for suitable photonic applications.

  11. Ultrasonic relaxations in borate glasses

    International Nuclear Information System (INIS)

    D'Angelo, G.; Tripodo, G.; Carini, G.; Cosio, E.; Bartolotta, A.; Di Marco, G.

    2004-01-01

    The attenuation and velocity of ultrasonic waves of frequencies in the range from 10 to 70 MHz have been measured in M 2 O-B 2 O 3 borate glasses (M: Li or Ag) as a function of temperature between 15 and 350 K. The velocity of sound waves decreases with increasing temperature in all the glasses, the decrease as the temperature is increased is larger in glasses containing silver than in those with lithium. A broad relaxation peak characterises the attenuation behaviour of the lithium and silver borate glasses at temperatures below 100 K and is paralleled by a corresponding dispersive behaviour of the sound velocity. Above 100 K, the ultrasonic velocity shows a nearly linear behaviour regulated by the vibrational anharmonicity, which decreases with increasing content of modifier oxide and is smaller in lithium than in silver borates. These results suggest that the relaxation of structural defects and the anharmonicity of borate glasses are strongly affected by two parameters: the number of bridging bonds per network forming ion and the polarising power of network modifier ions which occupy sites in the existing interstices

  12. Glass laser discs with annular alkali lead borate coatings and use thereof

    International Nuclear Information System (INIS)

    Cooley, R.F.

    1975-01-01

    A laser assembly that includes a novel glass laser disc having an annular alkali lead borate glass coating for use in the assembly is disclosed. The annular coating has an index of refraction that is about 3 to 12 percent greater than the index of refraction of the laser disc, the thermal properties also being sufficiently matched with the glass laser disc so as to prevent the development of undesirable strains therein, the glass coating comprising a mixture of alkali metal oxides in which at least two different alkali metal oxides are present, and any K 2 O that is present is limited to an amount of not substantially more than about 1 percent by weight and an effective energy absorbing amount of heavy metal oxide that absorbs energy at a wavelength of about 1.06 microns to prevent parasitic oscillations. The heavy metal oxides include oxides of transition metals of the 3d, 4d, 4f, 5d and 5f orbital series. (auth)

  13. Optical and physical properties of sodium lead barium borate glasses doped with praseodymium ion

    Science.gov (United States)

    Lenkennavar, Susheela K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-05-01

    Praseodymium doped sodium lead barium borate glasses have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses using PekinElemer Lambda-35 Uv-Vis spectrometer in the range of 200 -1100 nm. The optical direct band gap energies were found to be in the range of 3.62 eV to 3.69 eV and indirect band gap energies were found to be in the range of 3.57 eV to 3.62eV. The refractive indices were measured by using Abbe refractometer the values are in the range of 1.620 to 1.625.

  14. Density of mixed alkali borate glasses: A structural analysis

    International Nuclear Information System (INIS)

    Doweidar, H.; El-Damrawi, G.M.; Moustafa, Y.M.; Ramadan, R.M.

    2005-01-01

    Density of mixed alkali borate glasses has been correlated with the glass structure. It is assumed that in such glasses each alkali oxide associates with a proportional quantity of B 2 O 3 . The number of BO 3 and BO 4 units related to each type of alkali oxide depends on the total concentration of alkali oxide. It is concluded that in mixed alkali borate glasses the volumes of structural units related to an alkali ion are the same as in the corresponding binary alkali borate glass. This reveals that each type of alkali oxide forms its own borate matrix and behaves as if not affected with the presence of the other alkali oxide. Similar conclusions are valid for borate glasses with three types of alkali oxide

  15. UV-visible, infrared and Raman spectroscopic and thermal studies of tungsten doped lead borate glasses and the effect of ionizing gamma irradiation

    International Nuclear Information System (INIS)

    El-Kheshen, Amany A.; El-Batal, Fatma H.; Marzouk, Samir Y.

    2008-01-01

    Ultraviolet-visible, infrared and Raman spectroscopy together with thermal properties were measured for undoped and WO 3 - doped (up to 10%) lead borate glasses. Also, the effect of gamma irradiation was followed by UV-visible measurements. The UV visible spectrum of the undoped glass reveals before irradiation intense ultraviolet bands due to the combined effects of trace iron impurities (Fe 3+ ) and Pb 2+ ions which remain unchanged with the addition of WO 3 . Infrared and Raman measurements show characteristic bands due to borate group and the possible sharing of lead-oxygen and tungsten-oxygen groups. The studied glasses show obvious resistance to gamma irradiation. The thermal and density data are correlated with the introduction of highly polarizable and heavy (W 6+ ) ions and to the change in structural arrangement with varying glass composition. (author)

  16. Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices

    Directory of Open Access Journals (Sweden)

    Suwimon Ruengsri

    2014-01-01

    Full Text Available Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of the glass matrices. The silicate and phosphate glass systems are more appropriate choices as lead-based radiation shielding glass than the borate glass system. Moreover, comparison of results has shown that the glasses possess better shielding properties than standard shielding concretes, suggesting a smaller size requirement in addition to transparency in the visible region.

  17. Gamma-ray shielding effect of Gd3+ doped lead barium borate glasses

    Science.gov (United States)

    Kummathi, Harshitha; Naveen Kumar, P.; Vedavathi T., C.; Abhiram, J.; Rajaramakrishna, R.

    2018-05-01

    The glasses of the batch xPbO: 10BaO: (90-x)B2O3: 0.2Gd2O3 (x = 40,45,50 mol %) were prepared by melt-quench technique. The work emphasizes on gamma ray shielding effect on doped lead glasses. The role of Boron is significant as it acts as better neutron attenuator as compared with any other materials, as the thermal neutron cross-sections are high for Gadolinium, 0.2 mol% is chosen as the optimum concentration for this matrix, as higher the concentration may lead to further increase as it produces secondary γ rays due to inelastic neutron scattering. Shielding effects were studied using Sodium Iodide (NaI) - Scintillation Gamma ray spectrometer. It was found that at higher concentration of lead oxide (PbO) in the matrix, higher the attenuation which can be co-related with density. Infra-red (I.R.) spectra reveals that the conversion of Lose triangles to tight tetrahedral structure results in enhancement of shielding properties. The Differential Scanning Calorimeter (D.S.C.) study also reveals that the increase in glass forming range increases the stability which in-turn results in inter-conversion of BO3 to BO4 units such that the density of glass increases with increase in PbO content, resulting in much stable and efficient gamma ray shielding glasses.

  18. Strontium borate glass: potential biomaterial for bone regeneration

    OpenAIRE

    Pan, H. B.; Zhao, X. L.; Zhang, X.; Zhang, K. B.; Li, L. C.; Li, Z. Y.; Lam, W. M.; Lu, W. W.; Wang, D. P.; Huang, W. H.; Lin, K. L.; Chang, J.

    2009-01-01

    Boron plays important roles in many life processes including embryogenesis, bone growth and maintenance, immune function and psychomotor skills. Thus, the delivery of boron by the degradation of borate glass is of special interest in biomedical applications. However, the cytotoxicity of borate glass which arises with the rapid release of boron has to be carefully considered. In this study, it was found that the incorporation of strontium into borate glass can not only moderate the rapid relea...

  19. Fragility, anharmonicity and anelasticity of silver borate glasses

    International Nuclear Information System (INIS)

    Carini, Giovanni; Carini, Giuseppe; D'Angelo, Giovanna; Tripodo, Gaspare; Bartolotta, Antonio; Marco, Gaetano Di

    2006-01-01

    The fragility and the anharmonicity of (Ag 2 O) x (B 2 O 3 ) 1-x borate glasses have been quantified by measuring the change in the specific heat capacity at the glass transition temperature T g and the room-temperature thermodynamic Grueneisen parameter. Increasing the silver oxide content above X = 0.10 leads to an increase of both the parameters, showing that a growing fragility of a glass-forming liquid is predictive of an increasing overall anharmonicity of its glassy state. The attenuation and velocity of ultrasonic waves of frequencies in the range of 10-70 MHz have also been measured in silver borate glasses as a function of temperature between 1.5 and 300 K. The experimental data reveal anelastic behaviours which are governed by (i) quantum-mechanical tunnelling below 20 K (ii) thermally activated relaxations between 20 and 200 K and (iii) vibrational anharmonicity at even higher temperatures. Evaluation of tunnelling (C) and relaxation (C * ) strengths shows that C is independent of the structural changes affecting the borate network with increasing metal oxide content and is at least one order of magnitude smaller than C * . The latter observation implies that only a small fraction of the locally mobile defects are subjected to tunnelling motions

  20. The experimental and theoretical investigations on the structure of the gadolinium-lead-tellurate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Rada, S., E-mail: Simona.Rada@phys.utcluj.ro [Physics Department, Technical University of Cluj-Napoca, 400641 Cluj-Napoca (Romania); Culea, E.; Rada, M. [Physics Department, Technical University of Cluj-Napoca, 400641 Cluj-Napoca (Romania)

    2011-08-15

    Highlights: {yields} Pronounced affinities of the lead and gadolinium ions towards [TeO{sub 3}] structural units. {yields} The reorganization of the tellurate structural units and the formation of new [Te{sub 3}O{sub 8}]{sup -4} and [Te{sub 6}O{sub 15}]{sup -6} structural units. {yields} Pb{sub 2}Te{sub 3}O{sub 8} and Gd{sub 2}Te{sub 6}O{sub 15} crystalline phases. - Abstract: The purpose of this paper was to approach the structure of gadolinium-lead-tellurate glasses with compositions xGd{sub 2}O{sub 3} (100 - x)[7TeO{sub 2}.3PbO], x = 0-90 mol% using the X-ray diffraction, DFT calculations, FTIR, EPR and UV-VIS spectroscopy. Our results show that the doping with gadolinium ions will deform the Te-O-Te linkages, will affect the length of Te=O bonds and the accommodation of the network with excess of oxygen will be realized by the reorganization of the tellurate structural units. These affinities pronounced of the lead and gadolinium cations towards tellurium atoms yield the formation of the Pb{sub 2}Te{sub 3}O{sub 8} and Gd{sub 2}Te{sub 6}O{sub 15} crystalline phases because tellurate structural units can adopt a variety of structures due to the presence of the lone-pair electrons.

  1. Intrinsic luminescence of un-doped borate glasses

    International Nuclear Information System (INIS)

    Kindrat, I.I.; Padlyak, B.V.; Drzewiecki, A.

    2017-01-01

    The nature of intrinsic luminescence in the un-doped borate glasses of different compositions has been investigated using spectroscopic methods including photoluminescence, optical absorption, electron paramagnetic resonance (EPR), and thermally stimulated luminescence (TSL). The un-doped borate glasses with Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 basic compositions were obtained from corresponding polycrystalline compounds in the air with usage the standard technology of glasses. Three different broad emission bands in the UV–Visible spectral range have been observed under different wavelength of photoexcitation. The luminescence kinetics of the observed emission bands have been registered and analysed. The nature and possible mechanisms of the intrinsic luminescence in the investigated borate glasses are considered and discussed based on the obtained results and referenced data.

  2. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    Energy Technology Data Exchange (ETDEWEB)

    Omar, R. S., E-mail: ratnasuffhiyanni@gmail.com; Wagiran, H., E-mail: husin@utm.my; Saeed, M. A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia)

    2016-01-22

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05  mol % ≤ y ≤ 0.7  mol % of dyprosium were prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.

  3. Strontium borate glass: potential biomaterial for bone regeneration.

    Science.gov (United States)

    Pan, H B; Zhao, X L; Zhang, X; Zhang, K B; Li, L C; Li, Z Y; Lam, W M; Lu, W W; Wang, D P; Huang, W H; Lin, K L; Chang, J

    2010-07-06

    Boron plays important roles in many life processes including embryogenesis, bone growth and maintenance, immune function and psychomotor skills. Thus, the delivery of boron by the degradation of borate glass is of special interest in biomedical applications. However, the cytotoxicity of borate glass which arises with the rapid release of boron has to be carefully considered. In this study, it was found that the incorporation of strontium into borate glass can not only moderate the rapid release of boron, but also induce the adhesion of osteoblast-like cells, SaOS-2, thus significantly increasing the cyto-compatibility of borate glass. The formation of multilayers of apatite with porous structure indicates that complete degradation is optimistic, and the spread of SaOS-2 covered by apatite to form a sandwich structure may induce bone-like tissue formation at earlier stages. Therefore, such novel strontium-incorporated borosilicate may act as a new generation of biomaterial for bone regeneration, which not only renders boron as a nutritious element for bone health, but also delivers strontium to stimulate formation of new bones.

  4. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    The alkaline earth borate glasses containing heavy metal oxides show good solubility of rare-earth ions. Glasses containing PbO exhibit low glass transition temperature (Tg) and high ..... These oxygen ions carry a partial negative charge and.

  5. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions

    International Nuclear Information System (INIS)

    Chen, Sisi; Yang, Qingbo; Brow, Richard K.; Liu, Kun; Brow, Katherine A.; Ma, Yinfa

    2017-01-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. - Highlights: • Novel dynamic flow cell culture modules were designed. • Bioactive glass fibers were evaluated for their effects on VEGF secretion. • Borate-based glass fibers stimulate VEGF secretion under dynamic condition. • CuO and ZnO doped borate-based glass fibers stimulate the greatest VEGF release.

  6. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sisi [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Yang, Qingbo [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Brow, Richard K. [Department of Material Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Liu, Kun [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Brow, Katherine A. [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Ma, Yinfa [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); and others

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. - Highlights: • Novel dynamic flow cell culture modules were designed. • Bioactive glass fibers were evaluated for their effects on VEGF secretion. • Borate-based glass fibers stimulate VEGF secretion under dynamic condition. • CuO and ZnO doped borate-based glass fibers stimulate the greatest VEGF release.

  7. Barium-borate-flyash glasses: As radiation shielding materials

    International Nuclear Information System (INIS)

    Singh, Sukhpal; Kumar, Ashok; Singh, Devinder; Thind, Kulwant Singh; Mudahar, Gurmel S.

    2008-01-01

    The attenuation coefficients of barium-borate-flyash glasses have been measured for γ-ray photon energies of 356, 662, 1173 and 1332 keV using narrow beam transmission geometry. The photon beam was highly collimated and overall scatter acceptance angle was less than 3 o . Our results have an uncertainty of less than 3%. These coefficients were then used to obtain the values of mean free path (mfp), effective atomic number and electron density. Good agreements have been observed between experimental and theoretical values of these parameters. From the studies of the obtained results it is reported here that from the shielding point of view the barium-borate-flyash glasses are better shields to γ-radiations in comparison to the standard radiation shielding concretes and also to the ordinary barium-borate glasses

  8. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions.

    Science.gov (United States)

    Chen, Sisi; Yang, Qingbo; Brow, Richard K; Liu, Kun; Brow, Katherine A; Ma, Yinfa; Shi, Honglan

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    International Nuclear Information System (INIS)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-01-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70–x) B 2 O 3 –30 Li 2 O–(x) Dy 2 O 3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5–5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy 2 O 3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD). - Highlights: • TL response of undoped and dysprosium doped lithium borate glass subjected to 6 MV photons irradiation at low dose range. • TL linear response of dysprosium doped lithium borate glass. • The sensitivity of dysprosium doped lithium borate glass is approximately 93 times higher than undoped glass

  10. Glass-Forming Ability of Soda Lime Borate Liquids

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Mauro, J.C.; Smedskjær, Morten Mattrup

    2012-01-01

    We investigate the composition dependence of glass-forming ability (GFA) of a series of iron-containing soda lime borate liquids by substituting Na2O for B2O3. We have characterized GFA by measuring the glass stability against crystallization using a differential scanning calorimeter (DSC......). The results show that the GFA decreases when substituting Na2O for B2O3. Moreover, we find that there is no direct link between the kinetic fragility and GFA for the soda lime borate series studied herein. We have also discovered and clarified a striking thermal history dependence of the glass stability...

  11. Ultrasonic investigations of some bismuth borate glasses doped with ...

    Indian Academy of Sciences (India)

    Keywords. Bismuth borate glasses; elastic moduli; Makishima–Mackenzie model. 1. Introduction ... former because of the small field strength of Bi3+ ion. Bi2O3 ..... Typically, when the material undergoes a phase change, the value of the.

  12. Composition effect of potassium-borate glasses on their relaxation properties

    International Nuclear Information System (INIS)

    Lomovskoj, V.A.; Bartenev, G.M.

    1995-01-01

    Relaxation processes in potassium-borate glasses have been investigated in detail for the first time. It is shown that low-temperature β-process of relaxation relating to rotational mobility of the B-O bond is the same for all potassium-borate glasses and B 2 O 3 . The process of β k -relaxation related to diffusion mobility of potassium ions depends on the composition of the glasses in the same way as α-relaxation (glass formation).12 refs., 10 figs., 2 tabs

  13. Rheological properties of potassium barium borate glasses

    NARCIS (Netherlands)

    Szwejda, K.A.; Vogel, D.L.; Stevels, J.M.

    1973-01-01

    Several series of potassium barium borate glasses have been investigated as to their rheological properties. It has been found, that all these glasses show deviations from ‘Newtonian’ behaviour below temperatures corresponding to viscosities of 1010 poises. The activation energies of viscous flow

  14. Structural and luminescence properties of samarium doped lead alumino borate glasses

    Science.gov (United States)

    Mohan, Shaweta; Kaur, Simranpreet; Singh, D. P.; Kaur, Puneet

    2017-11-01

    The study reports the effect of samarium concentration on the physical, structural and spectroscopic characteristics of samarium doped lead alumino borate glasses having composition 20PbO-(10-x)Al2O3-70B2O3-xSm2O3; x = 0.1, 0.5, 1.0 and 2.0 mol %. The glasses were fabricated by conventional melt-quenching technique and then characterized by XRD, FTIR, optical absorption and fluorescence spectra. X-ray diffraction studies confirmed the amorphous nature of the prepared glasses. FTIR spectra indicate the presence of BO3, BO4, AlO6 and a few other structural groups. Various physical properties such as density, molar volume, refractive index, rare earth ion concentration, boron-boron distance and polarizability etc. were determined using conventional methods and standard formulae. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. The value of Ω2 was found to be highest for glass with 1 mol% Sm2O3 and attributed to the asymmetry of the ligand field at the rare earth ion site and the rare earth oxygen (Sm-O) covalency. The calculated intensity parameters and fluorescence spectra were further used to predict the radiative transition probability (A), radiative lifetime (τR), branching ratio (βR), peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σ) for the characteristic 4G5/2 → 6H5/2, 6H7/2 and 6H9/2 transitions of the Sm3+ ion. Concentration quenching was observed for 2 mol% concentration of Sm2O3 and ascribed to energy transfer through various cross-relaxation channels between Sm3+ ions. Reasonably high values of branching ratios and stimulated emission cross-section for the prepared glasses points towards their utility in the development of visible lasers emitting in the reddish-orange spectral region. However, the glass with 1 mol% Sm2O3 was found to show better radiative properties.

  15. Thermoluminescence properties of alkali borate glasses containing neodymium

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, A.F.; Henaish, B.A.; Kenaway, M.A.; Salem, L.R.

    1988-01-01

    The thermoluminescence properties of sodium borate glasses as a function of neodymium oxide content as well as the divalent metal oxides (RO = ZnO, MgO and CaO) in replacement of Na/sub 2/O have been investigated. It is observed that the addition of Nd/sub 2/O/sub 3/ imparts to the host glass a monopeak glow curve according to an active luminescent centre (E approx. = 0.97 eV to 1.232 eV). The gradual addition of neodymium oxide to the sodium borate glass causes gradual enhancement in the TL-intensity up to a quenching concentration value (4 g Nd/sub 2/O/sub 3/ added to 100 g of borate glass) above which a draw back in TL-intensity occurs. On the other hand the replacement of 5 wt% Na/sub 2/O by RO shows that CaO dominates the other two divalent metal oxides used, as it possesses a much deeper luminescent trap (1.232 eV). The results obtained suggest that these glasses can be used in radiation detection and dosimetry. The ..gamma..-induced Tl-signal of such type of glass is found to be reproducible within an acceptable error of not more than 3.5% in all individual and group scattering over the detector samples each of which is used 10 times for evaluating the same ..gamma..-dose.

  16. Thermal, structural and spectroscopic properties of Pr3+-doped lead zinc borate glasses modified by alkali metal ions

    Directory of Open Access Journals (Sweden)

    M.V. Sasi kumar

    2017-07-01

    Full Text Available This paper offers a study on Pr3+-doped alkali and mixed-alkali borate glasses prepared by the melt quenching technique and characterized by thermal, structural and spectroscopic studies. The amorphous nature of the glassy systems was identified based on X-ray diffraction. The thermal behaviour of glasses was studied using differential thermal analysis (DTA. The functional groups contained in the glasses were identified by Fourier transform infrared spectroscopy (FTIR. Spectral intensities were evaluated from the absorption spectra and used for calculating J–O intensity parameters, Ωλ (λ = 2, 4 and 6. Further, these parameters were used for calculating different radiative properties. The best radiative state was identified as the laser transition state among the various states. Emission analysis was performed for this state by calculating the branching ratios and stimulated emission cross sections (σp for all the prepared glasses. These studies suggest that borate glasses are useful for visible fluorescence.

  17. Identification of ε-Fe{sub 2}O{sub 3} nano-phase in borate glasses doped with Fe and Gd

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, O.S.; Ivantsov, R.D. [L.V. Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnoyarsk (Russian Federation); Edelman, I.S., E-mail: ise@iph.krasn.ru [L.V. Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnoyarsk (Russian Federation); Petrakovskaja, E.A. [L.V. Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnoyarsk (Russian Federation); Velikanov, D.A. [L.V. Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnoyarsk (Russian Federation); Siberian Federal University, 660036 Krasnoyarsk (Russian Federation); Zubavichus, Y.V. [NRC “Kurchatov Institute”, 123182 Moscow (Russian Federation); Zaikovskii, V.I. [Boreskov Institute of Catalysis, Siberian Branch of RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Stepanov, S.A. [Vavilov State Optical Institute, All-Russia Research Center, 192371 Petersburg (Russian Federation)

    2016-03-01

    A new type of magnetic nanoparticles was revealed in borate glasses co-doped with low contents of iron and gadolinium. Structure and magnetic properties of the particles differ essentially from that of the α-Fe{sub 2}O{sub 3}, γ-Fe{sub 2}O{sub 3}, or Fe{sub 3}O{sub 4} nanoparticles which were detected earlier in similar glass matrices. Transmission electron microscopy including STEM-HAADF and EDX, synchrotron radiation-based XRD, static magnetic measurements, magnetic circular dichroism, and electron magnetic resonance studies allow referring the nanoparticles to the iron oxide phase-ε-Fe{sub 2}O{sub 3}. Analysis of the data set has shown that it is Gd atoms that govern the process of nanoparticles’ nucleation and its incorporation into the particles in different proportions can be used to adjust their magnetic and magneto-optical characteristics. - Highlights: • Alumina-potassium-borate glasses co-doped with Fe and Gd are studied. • Magnetic nanoparticles with structure close to ε-Fe{sub 2}O{sub 3} are shown to arise in glasses • Magnetic hysteresis loops and EMR evidence on the ferromagnetic and paramagnetic nano-phases coexistence. • Magnetic circular dichroism for ε-Fe{sub 2}O{sub 3} is studied for the first time.

  18. Novel method for early investigation of bioactivity in different borate bio-glasses

    Science.gov (United States)

    Abdelghany, A. M.

    Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm-1 after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses.

  19. Bone bonding ability of some borate bio-glasses and their corresponding glass-ceramic derivatives

    Directory of Open Access Journals (Sweden)

    Fatma H. Margha

    2012-12-01

    Full Text Available Ternary borate glasses from the system Na2O·CaO·B2O3 together with soda-lime-borate samples containing 5 wt.% of MgO, Al2O3, SiO2 or P2O5 were prepared. The obtained glasses were converted to their glass-ceramic derivatives by controlled heat treatment. X-ray diffraction was employed to investigate the separated crystalline phases in glass-ceramics after heat treatment of the glassy samples. The glasses and corresponding glass-ceramics after immersion in water or diluted phosphate solution for extended times were characterized by the grain method (adopted by several authors and recommended by ASTM and Fourier-transform infrared spectra to justify the formation of hydroxyapatite as an indication of the bone bonding ability. The influence of glass composition on bioactivity potential was discussed too.

  20. The influence of CdSe and ZnSe nanoparticles on the optical properties of Sm"3"+ ions in lead borate glasses

    International Nuclear Information System (INIS)

    Mallur, Saisudha B.; Heidorn, William D.; Fatokun, Stephen O.; Joshi, Krishna D.; Bista, Sandip S.; Babu, Panakkattu K.

    2017-01-01

    The effect of glass composition and the presence of CdSe/ZnSe nanoparticles (NPs) on the optical absorption and fluorescence of Sm-doped lead borate glasses are studied. Three sets of glass samples xPbO:(99.5-x) B_2O_3:0.5Sm_2O_3, x = 29.5–69.5 mol%, xPbO:(96.5-x) B_2O_3:0.5Sm_2O_3: 3CdSe/ZnSe, x = 36.5, and 56.5 mol% are prepared. NPs are grown by annealing these glasses just below the glass transition temperature. Average size of both types of NPs increases with annealing time; however, CdSe NPs grew to a larger size range (2 to 20 nm) compared to ZnSe NPs (1 to 16 nm). We analyzed the hypersensitive transition, intensity parameters, radiative transition probability, stimulated emission cross section (σ_p), and the area ratio of the electric dipole/magnetic dipole transitions of Sm"3"+. The intensity parameters show a minimum at 11 h annealing for 36.5 mol% and a maximum for the same annealing duration in 56.5 mol% PbO containing CdSe NPs. The σ_p for 56.5 mol% of PbO with CdSe NPs is found to be a maximum when the average NP size is around 14 nm. ZnSe NPs containing glasses also show significant changes in σ_p when the average particle size is ~16 nm, for 36.5 mol% PbO. Our results suggest that the optical properties of Sm"3"+ in lead borate glasses are sensitive to its electronic environment which can be modified by varying the base glass composition and/or incorporating large NPs of CdSe/ZnSe. The large σ_p values that we observe for some of the glass compositions make them attractive materials for photonic devices and photovoltaic applications.

  1. Corrosion mechanism and bioactivity of borate glasses analogue to Hench’s bioglass

    Directory of Open Access Journals (Sweden)

    Mona A. Ouis

    2012-09-01

    Full Text Available Bioactive borate glasses (from the system Na2O-CaO-B2O3-P2O5 and corresponding glass-ceramics as a new class of scaffold material were prepared by full replacement of SiO2 with B2O3 in Hench patented bioactive glass. The prepared samples were investigated by differential thermal analysis (DTA, Fourier transform infrared (FTIR spectroscopy and X-ray diffraction (XRD analysis. The DTA data were used to find out the proper heat treatment temperatures for preparation of the appropriate glass-ceramics with high crystallinity. The prepared crystalline glass-ceramics derivatives were examined by XRD to identify the crystalline phases that were precipitated during controlled thermal treatment. The FTIR spectroscopy was used to justify the formation of hydroxyapatite as an indication of the bioactivity potential or activity of the studied ternary borate glasses or corresponding glass-ceramics after immersion in aqueous phosphate solution. The corrosion results are interpreted on the basis of suggested recent views on the corrosion mechanism of such modified borate glasses in relation to their composition and constitution.

  2. Effect of alkali content on AC conductivity of borate glasses containing two transition metals

    International Nuclear Information System (INIS)

    Kashif, I.; Rahman, Samy A.; Soliman, A.A.; Ibrahim, E.M.; Abdel-Khalek, E.K.; Mostafa, A.G.; Sanad, A.M.

    2009-01-01

    Sodium borate glasses containing iron and molybdenum ions with the total concentration of transition ions constant and gradual substitution of sodium oxide (network modifier) by borate oxide (network former) was prepared. Densities, molar volume, DC and AC conductivities are measured. The trends of these properties are attributed to changes in the glass network structure. Their DC and AC conductivity increased with increasing NaO concentration. The increase of AC conductivity of sodium borate glasses is attributed to the chemical composition and the hopping mechanism of conduction. Measurements of the dielectric constant (ε) and dielectric loss (tan δ) as a function of frequency (50 Hz-100 kHz) and temperature (RT-600 K) indicate that the increase in dielectric constant and loss (ε and tan δ) values with increasing sodium ion content could be attributed to the assumption that Fe and Mo ions tend to assume network-forming position in the glass compositions studied. The variation of the value of frequency exponent s for all glass samples as the function of temperature at a definite frequency indicates that the value of s decreases with increasing the temperature which agrees with the correlated barrier-hopping (CBH) model.

  3. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    Science.gov (United States)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-07-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70-x) B2O3-30 Li2O-(x) Dy2O3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5-5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy2O3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD).

  4. Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices

    OpenAIRE

    Ruengsri, Suwimon

    2014-01-01

    Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of th...

  5. The influence of CdSe and ZnSe nanoparticles on the optical properties of Sm{sup 3+} ions in lead borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mallur, Saisudha B.; Heidorn, William D.; Fatokun, Stephen O.; Joshi, Krishna D.; Bista, Sandip S.; Babu, Panakkattu K., E-mail: PK-Babu@wiu.edu [Western Illinois University, Department of Physics (United States)

    2017-03-15

    The effect of glass composition and the presence of CdSe/ZnSe nanoparticles (NPs) on the optical absorption and fluorescence of Sm-doped lead borate glasses are studied. Three sets of glass samples xPbO:(99.5-x) B{sub 2}O{sub 3}:0.5Sm{sub 2}O{sub 3}, x = 29.5–69.5 mol%, xPbO:(96.5-x) B{sub 2}O{sub 3}:0.5Sm{sub 2}O{sub 3}: 3CdSe/ZnSe, x = 36.5, and 56.5 mol% are prepared. NPs are grown by annealing these glasses just below the glass transition temperature. Average size of both types of NPs increases with annealing time; however, CdSe NPs grew to a larger size range (2 to 20 nm) compared to ZnSe NPs (1 to 16 nm). We analyzed the hypersensitive transition, intensity parameters, radiative transition probability, stimulated emission cross section (σ{sub p}), and the area ratio of the electric dipole/magnetic dipole transitions of Sm{sup 3+}. The intensity parameters show a minimum at 11 h annealing for 36.5 mol% and a maximum for the same annealing duration in 56.5 mol% PbO containing CdSe NPs. The σ{sub p} for 56.5 mol% of PbO with CdSe NPs is found to be a maximum when the average NP size is around 14 nm. ZnSe NPs containing glasses also show significant changes in σ{sub p} when the average particle size is ~16 nm, for 36.5 mol% PbO. Our results suggest that the optical properties of Sm{sup 3+} in lead borate glasses are sensitive to its electronic environment which can be modified by varying the base glass composition and/or incorporating large NPs of CdSe/ZnSe. The large σ{sub p} values that we observe for some of the glass compositions make them attractive materials for photonic devices and photovoltaic applications.

  6. Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xu [Institute of Bioengineering and Information Technology Materials, Tongji University, Shanghai 200092 (China); Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055 (China); Huang, Wenhai [Institute of Bioengineering and Information Technology Materials, Tongji University, Shanghai 200092 (China); Zhang, Yadong, E-mail: zhangyadong6@126.com [Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120 (China); Huang, Chengcheng; Yu, Zunxiong; Wang, Lei; Liu, Wenlong; Wang, Ting [Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055 (China); Zhou, Jie; Wang, Hui; Zhou, Nai; Wang, Deping [Institute of Bioengineering and Information Technology Materials, Tongji University, Shanghai 200092 (China); Pan, Haobo, E-mail: hb.pan@siat.ac.cn [Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055 (China); Rahaman, Mohamed N., E-mail: rahaman@mst.edu [Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120 (China); Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409-0340 (United States)

    2017-04-01

    There is a need for synthetic biomaterials to heal bone defects using minimal invasive surgery. In the present study, an injectable cement composed of bioactive borate glass particles and a chitosan bonding solution was developed and evaluated for its capacity to heal bone defects in a rabbit femoral condyle model. The injectability and setting time of the cement in vitro decreased but the compressive strength increased (8 ± 2 MPa to 31 ± 2 MPa) as the ratio of glass particles to chitosan solution increased (from 1.0 g ml{sup −1} to 2.5 g ml{sup −1}). Upon immersing the cement in phosphate-buffered saline, the glass particles reacted and converted to hydroxyapatite, imparting bioactivity to the cement. Osteoblastic MC3T3-E1 cells showed enhanced proliferation and alkaline phosphatase activity when incubated in media containing the soluble ionic product of the cement. The bioactive glass cement showed a better capacity to stimulate bone formation in rabbit femoral condyle defects at 12 weeks postimplantation when compared to a commercial calcium sulfate cement. The injectable bioactive borate glass cement developed in this study could provide a promising biomaterial to heal bone defects by minimal invasive surgery. - Highlights: • New class of injectable bone cement composed of bioactive borate glass particles and chitosan bonding phase was created. • The cement is biocompatible and bioactive, and has a much lower temperature increase during setting than PMMA cement. • The cement has a more controllable degradation rate and higher strength over a longer time than calcium sulfate cement. • The cement showed a better ability to heal bone defects than calcium sulfate over a twelve-week implantation period.

  7. Femtosecond laser-induced reduction in Eu-doped sodium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ki-Soo [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)]. E-mail: kslim@chungbuk.ac.kr; Lee, Sunkyun [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Trinh, Minh-Tuan [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Suk-Ho [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Lee, Myeongkyu [Departent of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seoul 120-749 (Korea, Republic of); Hamilton, Douglas S. [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Gibson, George N. [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States)

    2007-01-15

    In this work, we report permanent reduction of Eu{sup 3+} to Eu{sup 2+} in sodium borate glasses by irradiation of near-infrared femtosecond laser. Glass composition of sodium borate was 85B{sub 2}O{sub 3}-15Na{sub 2}O. The glasses were doped with 0.05, 0.1, and 0.5 mol% Eu{sub 2}O{sub 3}. Absorption and fluorescence dynamics were studied to investigate valence state change of europium ions and the energy transfer between Eu{sup 2+} and Eu{sup 3+} ions. As the femtosecond laser intensity or exposure time increases, the emission band at 400 nm becomes stronger. However, the photoreduction efficiency decreases as the dopant concentration increases. We discuss the photoreduction mechanism under multiphoton absorption.

  8. Neutron shielding properties of a borated high-density glass

    Directory of Open Access Journals (Sweden)

    Saeed Aly Abdallah

    2017-01-01

    Full Text Available The neutron shielding properties of a borated high density glass system was characterized experimentally. The total removal macroscopic cross-section of fast neutrons, slow neutrons as well as the linear attenuation coefficient of total gamma rays, primary in addition to secondary, were measured experimentally under good geometric condition to characterize the attenuation properties of (75-x B2O3-1Li2O-5MgO-5ZnO-14Na2O-xBaO glassy system. Slabs of different thicknesses from the investigated glass system were exposed to a collimated beam of neutrons emitted from 252Cf and 241Am-Be neutron sources in order to measure the attenuation properties of fast and slow neutrons as well as total gamma rays. Results confirmed that barium borate glass was suitable for practical use in the field of radiation shielding.

  9. A model for the stabilization of atomic hydrogen centers in borate glasses

    International Nuclear Information System (INIS)

    Pontuschka, W.M.; Isotani, S.; Furtado, W.W.; Piccini, A.; Rabbani, S.R.

    1989-04-01

    A model describing the trapping site of the interstitial atomic hydrogen (H sup(0) sub(i) in borate glasses x-irradiated at 77 K is proposed. The hydrogen atom is stabilized at the centers of oxygen polygons belonging to B-O ring structures in the glass network by van der Waals forces. The previously reported H sup(0) sub(i) isothermal decay experimental data are discussed in the light of this microscopic model. A coupled differential equation system describing the possible reactions was numerically solved by means of Runge-Kutta's method. The parameter best fit was found by trial and error. The untrapping parameter provided an activation energy of 0.7 x 10 sup(-19) J, in good agreement with the calculated results for dispersion interactions between the stabilized atomic hydrogen and the neighbouring oxygen atoms at the vertices of hexagonal and heptagonal structures. The retrapping and recombination parameters were found to be correlated to (T sup1/2) - T sup(1/2) sub(0)) where t sub(0)=179 K is a cutoff temperature for the kinetics process. (author)

  10. Isotope effect in glass-transition temperature and ionic conductivity of lithium-borate glasses

    International Nuclear Information System (INIS)

    Nagasaki, Takanori; Morishima, Ryuta; Matsui, Tsuneo

    2002-01-01

    The glass-transition temperature and the electrical conductivity of lithium borate (0.33Li 2 O-0.67B 2 O 3 ) glasses with various isotopic compositions were determined by differential thermal analysis and by impedance spectroscopy, respectively. The obtained glass-transition temperature as well as the vibrational frequency of B-O network structure was independent of lithium isotopic composition. This result indicates that lithium ions, which exist as network modifier, only weakly interact with B-O network structure. In addition, the glass-transition temperature increased with 10 B content although the reason has not been understood. The electrical conductivity, on the other hand, increased with 6 Li content. The ratio of the conductivity of 6 Li glass to that of 7 Li glass was found to be 2, being larger than the value (7/6) 1/2 calculated with the simple classical diffusion theory. This strong mass dependence could be explained by the dynamic structure model, which assumes local structural relaxation even far below the glass-transition temperature. Besides, the conductivity appeared to increase with the glass-transition temperature. Possible correlations between the glass-transition temperature and the electrical conductivity were discussed. (author)

  11. Microwave and conventional preparation of Zinc borate glass: Eu3+ ion as luminescent probe

    International Nuclear Information System (INIS)

    Mandal, Ashis K.; Balaji, S.; Sen, Ranjan

    2014-01-01

    Highlights: • IR transparent Zinc borate glass is prepared using microwave heating. • Glass transition temperature of microwave melted glass is found higher than that of glass prepared in conventional melting. • Low OH concentration in glass can be prepared in microwave heating. • We report higher reduction of Eu 3+ to Eu 2+ in microwave processing of Zinc borate glass. - Abstract: Transparent Zinc borate glass is melted using microwave energy as an alternative heating route to conventional resistive heating. A comparative study of the properties of the glasses prepared by both the methods is conducted by adopting X-ray diffraction (XRD), Differential scanning calorimetry (DSC), UV–VIS–NIR spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Refractive Indices (RI). Amorphous nature of samples is confirmed by X-ray diffraction study. Glass transition temperature (T g ) of microwave melted glass is found ∼7–9 °C higher than that of glass prepared in conventional melting. OH content is found less than 250 ppm in microwave melted glass whereas it is above 330 ppm in conventional melted glasses. Photoluminescence study of Eu 2 O 3 doped glass prepared in microwave heating indicates higher reduction of Eu 3+ → Eu 2+ than the glass melted in conventional route. Thus, microwave processing can be an alternative energy efficient, time saving, environmental friendly glass preparation method

  12. Red light emission from europium doped zinc sodium bismuth borate glasses

    Science.gov (United States)

    Hegde, Vinod; Viswanath, C. S. Dwaraka; Upadhyaya, Vyasa; Mahato, K. K.; Kamath, Sudha D.

    2017-12-01

    Zinc sodium bismuth borate (ZNBB) glasses doped with different concentrations of europium were prepared by conventional melt quenching method and characterized through the measurements of density, refractive index, X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectra, optical absorption, luminescence and radiative lifetimes. FTIR spectra showed seven characteristic peaks of bismuth and borate functional groups in the range of 400-1600 cm-1. The optical band gap and bonding parameters have been calculated from absorption spectra. Photoluminescence spectra recorded in the visible region with 394 nm excitation are used to calculate the Judd-Ofelt (JO) intensity parameters (Ω2 and Ω4). The JO intensity parameters have been used to calculate the radiative parameters such as branching ratio (β), stimulated emission cross-section (σse), transition probability (A) for the fluorescent level of 5D0→7F2. Decay rates through single exponential are used to calculate the lifetime (τm) of the meta-stable state 5D0 of (Eu3+ ion) these glasses. The radiative parameters measured for all these glasses show 0.7 mol% europium doped zinc sodium bismuth borate glass 5D0→7F2 transition has the potential for red laser applications. The quality of the colour emitted by the present glasses are estimated quantitatively by CIE chromaticity coordinates, which confirms the suitability of these glasses as a red emitting material for field emission technologies and LEDs.

  13. Effect of alkali ion on relaxation properties of binary alkali-borate glasses

    International Nuclear Information System (INIS)

    Lomovskoj, V.A.; Bartenev, G.M.

    1992-01-01

    Method of relaxation spectrometry were used to analyze the data on internal friction spectra of lithium, sodium, potassium and rubidium alkali-borate glasses in wide range of temperatures and frequencies. The nature of two relaxation processes was clarified: β m -process, related with mobility of alkaline metal cations, and α-process (vitrification), conditioned by system transformation from viscous-flow to vitreous state. It is shown that atomic-molecular mechanism of vitrification process changes when passing from vitreous B 2 O 3 to alkali-borate glasses

  14. Investigation of Er doped zinc borate glasses by low-temperature photoluminescence

    Czech Academy of Sciences Publication Activity Database

    Kostka, Petr; Kabalci, I.; Tay, T.; Gladkov, Petar; Zavadil, Jiří

    2017-01-01

    Roč. 192, DEC 2017 (2017), s. 1104-1109 ISSN 0022-2313 Institutional support: RVO:67985891 ; RVO:67985882 Keywords : borate glasses * rare-earth ions * stark levels * photoluminiscence Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass; JH - Ceramics, Fire-Resistant Materials and Glass (URE-Y) OBOR OECD: Ceramics; Ceramics (URE-Y) Impact factor: 2.686, year: 2016

  15. Thermoluminescence properties of the Cu-doped lithium potassium borate glass

    International Nuclear Information System (INIS)

    Aboud, Haydar; Wagiran, H.; Hussin, R.; Ali, Hassan; Alajerami, Yasser; Saeed, M.A.

    2014-01-01

    Characteristics of lithium potassium borate glasses with various copper concentrations are reported. The glasses were prepared by the melt quenching method and irradiated with photons to doses in the 0.5–4.0 Gy range. Glowing curves, dose response curves, reproducibility of the response, dose threshold, thermal fading and optical bleaching were studied

  16. Interfacial reactions between titanium and borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K. [Sandia National Labs., Albuquerque, NM (United States); Saha, S.K.; Goldstein, J.I. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Materials Science

    1992-12-31

    Interfacial reactions between melts of several borate glasses and titanium have been investigated by analytical scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS). A thin titanium boride interfacial layer is detected by XPS after short (30 minutes) thermal treatments. ASEM analyses after longer thermal treatments (8--120 hours) reveal boron-rich interfacial layers and boride precipitates in the Ti side of the interface.

  17. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions.

    Science.gov (United States)

    Sathish, K; Thirumaran, S

    2015-08-05

    The present work describes the glass samples of composition (x% V₂O₅-(80-x)% B₂O₃-20% Na₂CO₃) VBS glass system and (x%MnO₂-(80-x)% B₂O₃-20% Na₂CO₃) in MBS glass system with mol% ranging from x=3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V₂O₅ doped glass system,(VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO₂ doped glass system (VBS glass system). The present study critically observes the doping of V₂O₅ with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO₂. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO₃ or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na₂CO₃, V₂O₅ and MnO₂ contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs

  18. Stability and electronic properties of groups IIB to VB metal ions in unusual oxidation states and the 2S /SUB 1/2/ electronic state in lithium borate glasses

    International Nuclear Information System (INIS)

    Aleksandrov, A.I.; Bubnov, N.N.; Kraevskii, S.L.; Prokof'ev, A.I.; Raspertova, Z.I.; Solinov, V.F.

    1986-01-01

    The authors study lithium borate glasses containing groups IIB to VB metal oxides. Chemically pure reagents were used to synthesize the glasses which were subjected to gamma-rays at 77 and 300 K with doses of up to 100 kR. The EST spectra were recorded on a Varian E-12 spectrometer in the 3 cm CW frequency region with a 100 kHz magnetic field modulation. It was established that after gamma-irradiation at 77 and 300 K of the lithium borate glass system containing up to 10% of cadmium, tin, thalium, and lead oxides, additional ESR lines arise in the free electron g factor region. The authors have determined the missing ESR spectra for nonactivated lithium borate glasses by studying glasses with additions of Zn, Ge, and Sb oxides

  19. Electron magnetic resonance and magnetooptical studies of nanoparticle-containing borate glasses

    International Nuclear Information System (INIS)

    Kliava, Janis; Edelman, Irina; Ivanova, Oxana; Ivantsov, Ruslan; Petrakovskaja, Eleonora; Hennet, Louis; Thiaudiere, Dominique; Saboungi, Marie-Louise

    2011-01-01

    We report electron magnetic resonance (EMR) and magnetooptical studies of borate glasses of molar composition 22.5K 2 O-22.5Al 2 O 3 -55B 2 O 3 co-doped with low concentrations of Fe 2 O 3 and MnO. In as-prepared samples the paramagnetic ions, as a rule, are in diluted state. However, in the case where the ratio of the iron and manganese oxides in the charge is 3/2, magnetic nanoparticles with characteristics close to those of manganese ferrite are formed already at the first stage of the glass preparation, as evidenced by both magnetic circular dichroism (MCD) and EMR. After thermal treatment all glasses show characteristic MCD and EMR spectra, attesting to the presence of magnetic nanoparticles, predominantly including iron ions. Preliminary EXAFS measurements at the Fe K-absorption edge show an emergence of nanoparticles with a structure close to MnFe 2 O 4 after annealing the glasses at 560 o C. By computer simulating the EMR spectra at variable temperatures, a superparamagnetic nature of relatively broad size and shape distribution with the average diameter of ca. 3-4 nm. The characteristic temperature-dependent shift of the apparent resonance field is explained by a strong temperature dependence of the magnetic anisotropy in the nanoparticles. The formation of magnetic nanoparticles confers to the potassium-alumina-borate glasses magnetic and magneto-optical properties typical of magnetically ordered substances. At the same time, they remain transparent in a part of the visible and near infrared spectral range and display a high Faraday rotation value. - Research Highlights: →Magnetic nanoparticles are formed in borate glasses co-doped with Fe 2 O 3 and MnO. →The nanoparticle structure is close to that of manganese ferrite. →The particles have large morphological distributions with mean size of 3-4 nm. →These glasses remain transparent in a part of visible and near infrared range. →The glasses show hysteresis in the magnetic field dependence of the

  20. Electron magnetic resonance and magnetooptical studies of nanoparticle-containing borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kliava, Janis, E-mail: j.kliava@cpmoh.u-bordeaux1.f [CPMOH, UMR 5798, Universite Bordeaux 1-CNRS, 351 Cours de la Liberation, 33405 Talence Cedex (France); Edelman, Irina; Ivanova, Oxana; Ivantsov, Ruslan; Petrakovskaja, Eleonora [L.V. Kirensky Institute of Physics, Siberian Branch of the RAS, 660036 Krasnoyarsk (Russian Federation); Hennet, Louis [CEMHTI, UPR3079 CNRS et Universite d' Orleans, 1D Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2 (France); Thiaudiere, Dominique [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Saboungi, Marie-Louise [CRMD, UMR 6619, Universite d' Orleans-CNRS, 1b Rue de la Ferollerie, 45071 Orleans Cedex 2 (France)

    2011-03-15

    We report electron magnetic resonance (EMR) and magnetooptical studies of borate glasses of molar composition 22.5K{sub 2}O-22.5Al{sub 2}O{sub 3}-55B{sub 2}O{sub 3} co-doped with low concentrations of Fe{sub 2}O{sub 3} and MnO. In as-prepared samples the paramagnetic ions, as a rule, are in diluted state. However, in the case where the ratio of the iron and manganese oxides in the charge is 3/2, magnetic nanoparticles with characteristics close to those of manganese ferrite are formed already at the first stage of the glass preparation, as evidenced by both magnetic circular dichroism (MCD) and EMR. After thermal treatment all glasses show characteristic MCD and EMR spectra, attesting to the presence of magnetic nanoparticles, predominantly including iron ions. Preliminary EXAFS measurements at the Fe K-absorption edge show an emergence of nanoparticles with a structure close to MnFe{sub 2}O{sub 4} after annealing the glasses at 560 {sup o}C. By computer simulating the EMR spectra at variable temperatures, a superparamagnetic nature of relatively broad size and shape distribution with the average diameter of ca. 3-4 nm. The characteristic temperature-dependent shift of the apparent resonance field is explained by a strong temperature dependence of the magnetic anisotropy in the nanoparticles. The formation of magnetic nanoparticles confers to the potassium-alumina-borate glasses magnetic and magneto-optical properties typical of magnetically ordered substances. At the same time, they remain transparent in a part of the visible and near infrared spectral range and display a high Faraday rotation value. - Research Highlights: >Magnetic nanoparticles are formed in borate glasses co-doped with Fe{sub 2}O{sub 3} and MnO. >The nanoparticle structure is close to that of manganese ferrite. > The particles have large morphological distributions with mean size of 3-4 nm. > These glasses remain transparent in a part of visible and near infrared range. > The glasses show

  1. Thermoluminescence Response of Copper-Doped Potassium Borate Glass Subjected to 6 Megavolt X-Ray Irradiation

    Science.gov (United States)

    Hossain, I.; Shekaili, N. K.; Wagiran, H.

    2015-03-01

    This study addresses the characteristics of Cu-doped and undoped potassium borate glass for use as ionizing radiation dosimeters by investigating and comparing the thermoluminescence responses, linearity, sensitivity and dose response s of the two types of glasses. A number of samples based on xK 2 CO 3 + (100 - x)H 3 BO 3 , where 10 ≤ x ≤ 30 mol.%, have been prepared using a melt quenching technique. The amorphous phases were identified using X-ray diffraction (XRD). The undoped potassium borate samples 20K 2 CO 3 + 80H 3 BO 3 (mol.%) and Cu-doped (0.5 mol.%) samples were placed in a solid phantom apparatus and irradiated with in X-ray tube under 6 MV accelerating voltage with doses ranging from 0.5 to 4.0 Gy. This beam was produced by the Primus MLC 3339 linear accelerator (LINAC) available at Hospital Sultan Ismail, Johor Bahru, Malaysia. The results clearly show the superiority of Cu-doped glass in terms of response and sensitivity to producing luminescence over undoped potassium borate glass. The sensitivity of Cu-doped glass is 6.75 times greater than that of undoped glass.

  2. A medium range order structural connection to the configurational heat capacity of borate-silicate mixed glasses.

    Science.gov (United States)

    Liu, Hao; Smedskjaer, Morten M; Tao, Haizheng; Jensen, Lars R; Zhao, Xiujian; Yue, Yuanzheng

    2016-04-28

    It has been reported that the configurational heat capacity (C(p,conf)) first increases and then becomes saturated with increasing B2O3/SiO2 ratio in borate-silicate mixed glasses. Through Raman spectroscopy measurements, we have, in this work, found an implication for the intermediate range order (IRO) structural connection to the composition dependence of the C(p,conf) of borate-silicate mixed glasses. In the silica-rich compositions, the C(p,conf) rapidly increases with increasing B2O3 content. This is attributed to the increase of the content of the B-O-Si network units ([B2Si2O8](2-)) and 6-membered borate rings with 1 or 2 B(4). In the boron-rich compositions, the C(p,conf) is almost constant, independent of the increase in the B2O3/SiO2 ratio. This is likely attributed to the counteraction between the decrease of the fraction of two types of metaborate groups and the increase of the fraction of other borate superstructural units (particularly 6-membered borate rings). The overall results suggest that the glasses containing more types of superstructural units have a larger C(p,conf).

  3. Structural influence of mixed transition metal ions on lithium bismuth borate glasses

    Science.gov (United States)

    Yadav, Arti; Dahiya, Manjeet S.; Hooda, A.; Chand, Prem; Khasa, S.

    2017-08-01

    Lithium bismuth borate glasses containing mixed transition metals having composition 7CoO·23Li2O·20Bi2O3·50B2O3 (CLBB), 7V2O5·23Li2O·20Bi2O3·50B2O3 (VLBB) and x(2CoO·V2O5)·(30 - x)Li2O·20Bi2O3·50B2O3 (x = 0.0 (LBB) and x = 2.0, 5.0, 7.0, 10.0 mol% (CVLBB1-4)) are synthesized via melt quench route. The synthesized compositions are investigated for their physical properties using density (D) and molar volume (Vm), thermal properties by analyzing DSC/TG thermo-graphs, structural properties using IR absorption spectra in the mid-IR range and optical properties using UV-Vis-NIR spectroscopy. The Electron Paramagnetic Resonance (EPR) spectra of vanadyl and cobalt ion have been analyzed to study compositional effects on spin-Hamiltonian parameters. The non linear variations in physical properties depict a strong structural influence of Co/V- oxides on the glassy matrix. The compositional variations in characteristic temperatures (glass transition temperature Tg, glass crystallization temperature Tp and glass melting temperature Tm) reveals that Tg for glass samples CLBB is relatively less than that of pure lithium bismuth borate (LBB) glass sample wherein Tg for sample VLBB is higher than that of LBB. The increase in Tg (as compared with LBB) with an enhanced substitution of mixed transition metal oxides (2CoO·V2O5) shows a progressive structure modification of bismuth borate matrix. These predictions are very well corroborated by corresponding compositional trends of Tp and Tm. FTIR studies reveal that Co2+& VO2+ ions lead to structural rearrangements through the conversion of three-coordinated boron into four coordinated boron and thereby reducing number of non-bridging oxygen atoms. Bismuth is found to exist in [BiO6] octahedral units only, whereas boroxol rings are not present in the glass network. The theoretical values of optical basicity (Λth) and corresponding oxide ion polarizability (αo2-) have also been calculated to investigate oxygen covalency of

  4. Comparative study of ion conducting pathways in borate glasses

    International Nuclear Information System (INIS)

    Hall, Andreas; Swenson, Jan; Adams, Stefan

    2006-01-01

    The conduction pathways in metal-halide doped silver, lithium, and sodium diborate glasses have been examined by bond valence analysis of reverse Monte Carlo (RMC) produced structural models of the glasses. Although all glass compositions have basically the same short-range structure of the boron-oxygen network, it is evident that the intermediate-range structure is strongly dependent on the type of mobile ion. The topography of the pathways and the coordination of the pathway sites differ distinctly between the three glass systems. The mobile silver ions in the AgI-doped glass tend to be mainly iodine-coordinated and travel in homogeneously distributed pathways located in salt-rich channels of the borate network. In the NaCl-doped glass, there is an inhomogeneous spatial distribution of pathways that reflects the inhomogeneous introduction of salt ions into the glass. However, since the salt clusters are not connected, no long-range conduction pathways are formed without including also oxygen-rich regions. The pathways in the LiCl-doped glass are slightly more evenly distributed compared to the NaCl-doped glass (but not as ordered as in the AgI-doped glass), and the regions of mainly oxygen-coordinated pathway sites are of higher importance for the long-range migration. In order to more accurately investigate how these differences in the intermediate-range order of the glasses affect the ionic conductivity, we have compared the realistic structure models to more or less randomized structures. An important conclusion from this comparison is that we find no evidence that a pronounced intermediate-range order in the atomic structure or in the network of conduction pathways, as in the AgI-doped glass, is beneficial for the dc conductivity

  5. Evaluation of gamma-ray attenuation properties of bismuth borate glass systems using Monte Carlo method

    International Nuclear Information System (INIS)

    Tarim, Urkiye Akar; Ozmutlu, Emin N.; Yalcin, Sezai; Gundogdu, Ozcan; Bradley, D.A.; Gurler, Orhan

    2017-01-01

    A Monte Carlo method was developed to investigate radiation shielding properties of bismuth borate glass. The mass attenuation coefficients and half-value layer parameters were determined for different fractional amounts of Bi 2 O 3 in the glass samples for the 356, 662, 1173 and 1332 keV photon energies. A comparison of the theoretical and experimental attenuation coefficients is presented. - Highlights: • Radiation shielding properties of bismuth borate glass systems have been reported. • Mass attenuation coefficients increase linearly with increase in Bi concentration. • Half-value layer decreases with increasing concentration of Bi. • Half-value layer decreases with the increase in the sample density.

  6. SYNTHESIS, STRUCTURE AND SPECTRAL PROPERTIES OF POTASSIUMALUMINA- BORATE GLASS WITH NANOCRYSTALS OF MANGANESE FERRITE

    Directory of Open Access Journals (Sweden)

    D. I. Sobolev

    2016-07-01

    Full Text Available Subject of Research.The paper presents research results of optical properties of potassium-alumina-borate glass, activated with ions of iron and manganese. The formation process of nanocrystals of manganese ferrite MnFe2O4 in potassium-alumina-borate glass host was studied. Magneto-optical characteristics were analyzed. Method. The studied glasses were synthesized by the method of charge melting in the crucible. Potassium-alumina-borate glass system was used (K2O-Al2O3-B2O3 proposed by S.A. Stepanov (Vavilov State Institute. Glass system was doped by 3 wt% of Fe2O3 and 2 wt% MnO by weight (composition 1 and 2 wt% Fe2O3 and 1 wt% MnO by weight (composition 2. The glass transition temperature was 430 °C. Segregating of the crystal phase of manganese ferrite MnFe2O4 occurred during heat treatment at 550 °C for 2 hours in a programmable muffle furnace. The absorption spectrum in the wavelength range 200-2000 nm was recorded with Perkin Elmer Lambda 650 and Varian Cary 500 spectrophotometers. The XRD patterns were obtained on Rigaku Ultima IV X-ray diffractometer by copper anode with a wavelength λ (Cu = 0.15418 nm. Magneto-optical Verde constant was measured by the angle of polarization plane rotation of the passing light through the sample when the sample is placed in magnetic field. Main Results. New technological modes of potassium-alumina-borate glass synthesis doped with ions of iron and manganese were developed and studied. It is established that during heat treatment nanocrystals of manganese ferrites are evolved with an average size of 18 nm. These glasses have a Verde constant equal to 0.9 arc.min/(cm·Oe. It is shown that obtained glasses possess high absorbance in ultra-violet and visible light spectrum. Practical Relevance. Proposed and analyzed nanoglass-ceramics could be accepted as a basis for creation of sensing environments for sensors current and magnetic field and for creation of optical isolators based on the Faraday effect.

  7. Luminescence properties of the Sm-doped borate glasses

    International Nuclear Information System (INIS)

    Kindrat, I.I.; Padlyak, B.V.; Drzewiecki, A.

    2015-01-01

    The optical absorption and photoluminescence (emission and excitation) spectra as well as decay kinetics of a series of the Sm-doped glasses with Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 compositions were investigated and analysed. The Li 2 B 4 O 7 :Sm, LiKB 4 O 7 :Sm, CaB 4 O 7 :Sm, and LiCaBO 3 :Sm glasses of high optical quality have been obtained from the corresponding polycrystalline compounds in the air atmosphere, using a standard glass technology. On the basis of electron paramagnetic resonance (EPR) and optical spectra analysis it was shown that the samarium impurity is incorporated into the glass network as Sm 3+ (4f 5 , 6 H 5/2 ) ions, exclusively. All observed 4f – 4f transitions of the Sm 3+ centres in the optical absorption and luminescence spectra of the investigated glasses are identified. Most intense emission band of the Sm 3+ ions peaked about 598 nm ( 4 G 5/2 → 6 H 7/2 transition) is characterised by a single exponential decay with typical lifetime values, which depend on the basic glass composition as well as concentration and local structure of the Sm 3+ luminescence centres. The quantum efficiency has been evaluated for observed transitions of the Sm 3+ centres using obtained experimental lifetimes and radiative lifetimes calculated by Judd–Ofelt theory. The calculated high quantum efficiencies and measured quantum yields of luminescence show that the investigated borate glasses are perspective luminescence materials. Energy transfer from the Ce 3+ non-controlled impurity and intrinsic luminescence centres to the Sm 3+ centres has been observed. Peculiarities of the Sm 3+ local structure in the network of investigated glasses have been discussed based on the obtained spectroscopic results and structural data. - Highlights: • The Sm-doped Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 glasses of high quality were obtained. • EPR, optical absorption and luminescence spectra of Sm 3+ ions in obtained glasses were

  8. Thermoluminescence characteristics of Cu2O doped Calcium Lithium borate glass irradiated with the cobalt-60 gamma rays

    International Nuclear Information System (INIS)

    Rammadhan, Ismail; Taha, Saddon; Wagiran, H.

    2017-01-01

    The aim of this study is to prepare and investigate the thermoluminescence characteristics for the un-doped and Cu 2 O doped calcium lithium borate glass upon adding various Cu 2 O concentrations of 0.005% to 0.1 mol%. The glasses were prepared by melt quenching method and irradiated with 60 CO gamma-ray having different doses in the range of (0.5–4) Gy, (5–10) Gy, and (20–100) Gy. The amorphous phases were identified for optimization glass samples, effect of heating rate, glowing curves, linearity, sensitivity, fading, reproducibility of response and minimum detectable dose are also studied. The TL sample with 0.02 mol% Cu 2 O concentration has higher response compared to the other samples concentration for a delivered dose of 50 Gy, The recorded glow curves consist a dominant peak at 187 °C for a heating rate of 5 °C s −1 . However, the value of effective atomic number Z eff is 8.84 for 0.02Cu 2 O doped which are near to the atomic number of soft tissue. - Highlights: •We have prepared and investigate the crystalline structure for the un-doped and Cu 2 O doped calcium lithium borate glass are carried out. •Investigate the amorphous structure of calcium lithium borate glass. •Determine the best setting of annealing temperature, annealing time and heating rate for Cu 2 O doped calcium lithium borate glass. •The doping effects of Cu 2 O on the thermoluminescence properties of calcium lithium borate glass subjected gamma radiations. •The new dosimeter showed simple glow curve with single prominent peak centred at 187 °C and linear dose–response range 0.5–100 Gy, good reproducibility, the fading of the signal is relatively slow. •Effective atomic number for Cu 2 O doped Calcium lithium borate close to the effective atomic number of soft tissue.

  9. Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials

    International Nuclear Information System (INIS)

    Singh, Narveer; Singh, Kanwar Jit; Singh, Kulwant; Singh, Harvinder

    2004-01-01

    Gamma-ray mass attenuation coefficients have been measured experimentally and calculated theoretically for PbO-B 2 O 3 and Bi 2 O 3 -PbO-B 2 O 3 glass systems using narrow beam transmission method. These values have been used to calculate half value layer (HVL) parameter. These parameters have also been calculated theoretically for some standard radiation shielding concretes at same energies. Effect of replacing lead by bismuth has been analyzed in terms of density, molar volume and mass attenuation coefficient

  10. The structural analysis of zinc borate glass by laboratory EXAFS and X-ray diffraction measurements

    International Nuclear Information System (INIS)

    Kajinami, Akihiko; Harada, Yasushi; Inoue, Shinsuke; Deki, Shigehito; Umesaki, Norimasa

    1999-01-01

    The structure of zinc borate glass has been investigated by laboratory EXAFS and X-ray diffraction measurement as preliminary investigations for the detailed study in SPring-8. The zinc borate glass was prepared in the range from 40 to 65 mol% of zinc oxide content. The X-ray diffraction was measured by horizontal θ-θ goniometer with 60 kV and 300 mA output of Mo target. The EXAFS of zinc borate glass was measured by laboratory EXAFS system with 20 kV, 100 mA output of Mo target for the K absorption edge of zinc atom. From the X-ray diffraction and the EXAFS measurements, it is found that the zinc ion is surrounded by four oxygen atoms and formed a tetrahedral structure whose (Zn-O) distance is about 2 A and that the structure is unchanged with the zinc oxide content. The diffraction data show that the neighboring structure of boron atom transforms from BO 4 tetrahedra to BO 3 tetragonal planar structure with increasing of the zinc oxide content. (author)

  11. Effect of TeO2 on the elastic moduli of sodium borate glasses

    International Nuclear Information System (INIS)

    Saddeek, Y.B.; Abd El Latif, Lamia

    2004-01-01

    Sodium borate glass containing tellurite as Te x Na 2-2x B 4-4x O 7-5x with x=0, 0.05, 0.15, 0.25 and 0.35 have been prepared by rapid quenching. Ultrasonic velocity (both longitudinal and shear) measurements have been made using a transducer operated at the fundamental frequency of 4 MHz at room temperature. The density was measured by the conventional Archimedes method. The elastic moduli, the Debye temperature, Poisson's ratio, and the parameters derived from the Makishima-Mackenzie model and the bond compression model have been obtained as a function of TeO 2 content. The monotonic decrease in the velocities and the elastic moduli, and the increase in the ring diameter and the ratio K bc /K e as a function of TeO 2 modifier content reveals the loose packing structure, which is attributed to the increase in the molar volume and the reduction in the vibrations of the borate lattice. The observed results confirm that the addition of TeO 2 changes the rigid character of Na 2 B 4 O 7 to a matrix of ionic behaviour bonds (NBOs). This is due to the creation of more and more discontinuities and defects in the glasses, thus breaking down the borax structure

  12. Luminescence properties of the Sm-doped borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kindrat, I.I. [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland); Padlyak, B.V., E-mail: B.Padlyak@if.uz.zgora.pl [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland); Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79-005 Lviv (Ukraine); Drzewiecki, A. [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland)

    2015-10-15

    The optical absorption and photoluminescence (emission and excitation) spectra as well as decay kinetics of a series of the Sm-doped glasses with Li{sub 2}B{sub 4}O{sub 7}, LiKB{sub 4}O{sub 7}, CaB{sub 4}O{sub 7}, and LiCaBO{sub 3} compositions were investigated and analysed. The Li{sub 2}B{sub 4}O{sub 7}:Sm, LiKB{sub 4}O{sub 7}:Sm, CaB{sub 4}O{sub 7}:Sm, and LiCaBO{sub 3}:Sm glasses of high optical quality have been obtained from the corresponding polycrystalline compounds in the air atmosphere, using a standard glass technology. On the basis of electron paramagnetic resonance (EPR) and optical spectra analysis it was shown that the samarium impurity is incorporated into the glass network as Sm{sup 3+} (4f{sup 5}, {sup 6}H{sub 5/2}) ions, exclusively. All observed 4f – 4f transitions of the Sm{sup 3+} centres in the optical absorption and luminescence spectra of the investigated glasses are identified. Most intense emission band of the Sm{sup 3+} ions peaked about 598 nm ({sup 4}G{sub 5/2} → {sup 6}H{sub 7/2} transition) is characterised by a single exponential decay with typical lifetime values, which depend on the basic glass composition as well as concentration and local structure of the Sm{sup 3+} luminescence centres. The quantum efficiency has been evaluated for observed transitions of the Sm{sup 3+} centres using obtained experimental lifetimes and radiative lifetimes calculated by Judd–Ofelt theory. The calculated high quantum efficiencies and measured quantum yields of luminescence show that the investigated borate glasses are perspective luminescence materials. Energy transfer from the Ce{sup 3+} non-controlled impurity and intrinsic luminescence centres to the Sm{sup 3+} centres has been observed. Peculiarities of the Sm{sup 3+} local structure in the network of investigated glasses have been discussed based on the obtained spectroscopic results and structural data. - Highlights: • The Sm-doped Li{sub 2}B{sub 4}O{sub 7}, LiKB{sub 4}O{sub 7}, Ca

  13. Thermoluminescence characteristics of Cu{sub 2}O doped Calcium Lithium borate glass irradiated with the cobalt-60 gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Rammadhan, Ismail, E-mail: ismail.rammadhan@koyauniversity.org [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Department of Physics, Faculty of Sciences and Health, Koya University, Danielle Mitterrand Boulevard, Koya 45, Kurdistan Region (Iraq); Taha, Saddon [Department of Physics, Faculty of Sciences and Health, Koya University, Danielle Mitterrand Boulevard, Koya 45, Kurdistan Region (Iraq); Wagiran, H. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

    2017-06-15

    The aim of this study is to prepare and investigate the thermoluminescence characteristics for the un-doped and Cu{sub 2}O doped calcium lithium borate glass upon adding various Cu{sub 2}O concentrations of 0.005% to 0.1 mol%. The glasses were prepared by melt quenching method and irradiated with {sup 60}CO gamma-ray having different doses in the range of (0.5–4) Gy, (5–10) Gy, and (20–100) Gy. The amorphous phases were identified for optimization glass samples, effect of heating rate, glowing curves, linearity, sensitivity, fading, reproducibility of response and minimum detectable dose are also studied. The TL sample with 0.02 mol% Cu{sub 2}O concentration has higher response compared to the other samples concentration for a delivered dose of 50 Gy, The recorded glow curves consist a dominant peak at 187 °C for a heating rate of 5 °C s{sup −1}. However, the value of effective atomic number Z{sub eff} is 8.84 for 0.02Cu{sub 2}O doped which are near to the atomic number of soft tissue. - Highlights: •We have prepared and investigate the crystalline structure for the un-doped and Cu{sub 2}O doped calcium lithium borate glass are carried out. •Investigate the amorphous structure of calcium lithium borate glass. •Determine the best setting of annealing temperature, annealing time and heating rate for Cu{sub 2}O doped calcium lithium borate glass. •The doping effects of Cu{sub 2}O on the thermoluminescence properties of calcium lithium borate glass subjected gamma radiations. •The new dosimeter showed simple glow curve with single prominent peak centred at 187 °C and linear dose–response range 0.5–100 Gy, good reproducibility, the fading of the signal is relatively slow. •Effective atomic number for Cu{sub 2}O doped Calcium lithium borate close to the effective atomic number of soft tissue.

  14. Optical and physical properties of samarium doped lithium diborate glasses

    Science.gov (United States)

    Hanumantharaju, N.; Sardarpasha, K. R.; Gowda, V. C. Veeranna

    2018-05-01

    Sm3+ doped lithium di-borate glasses with composition 30Li2O-60B2O3-(10-x) PbO, (where 0 molar volume with samarium ion content indicates the openness of the glass structure. The gradual increase in average separation of boron-boron atoms with VmB clearly indicates deterioration of borate glass network, which in turn leads to decrease in the oxygen packing density. The replacements of Sm2O3 for PbO depolymerise the chain structure and that would increase the concentration of non-bridging oxygens. The marginal increase of optical band gap energy after 1.0 mol.% of Sm2O3 is explained by considering the structural modification in lead-borate. The influence of Sm3+ ion on physical and optical properties in lithium-lead-borate glasses is investigated and the results were discussed in view of the structure of borate glass network.

  15. Fragility Variation of Lithium Borate Glasses Studied by Temperature-Modulated DSC

    Science.gov (United States)

    Matsuda, Yu; Fukawa, Yasuteru; Kawashima, Mitsuru; Kojima, Seiji

    2008-02-01

    The fragility of lithium borate glass system has been investigated by Temperature-Modulated Differential Scanning Calorimetry (TMDSC). The frequency and temperature dependences of dynamic specific heat have been observed in the vicinity of a glass transition temperature Tg. It is shown that the value of the fragility index m can be determined from the temperature dependence of the α-relaxation times observed by TMDSC, when the raw phase angle is properly corrected. The composition dependence of the fragility has been also discussed.

  16. Gamma radiation shielding and optical properties measurements of zinc bismuth borate glasses

    International Nuclear Information System (INIS)

    Yasaka, P.; Pattanaboonmee, N.; Kim, H.J.; Limkitjaroenporn, P.; Kaewkhao, J.

    2014-01-01

    Highlights: • 10ZnO:xBi 2 O 3 :(90−x)B 2 O 3 , (ZBB) glasses were prepared. • Radiation shielding and optical properties were investigated. • Higher 25 mol% of Bi 2 O 3 show better shielding property compared with concretes. • ZBB glasses can develop as a Pb-free radiation shielding material. - Abstract: In this work, the zinc bismuth borate (ZBB) glasses of the composition 10ZnO:xBi 2 O 3 :(90−x)B 2 O 3 (where x = 15, 20, 25 and 30 mol%) were prepared by the melt quenching technique. Their radiation shielding and optical properties were investigated and compared with theoretical calculations. The mass attenuation coefficients of ZBB glasses have been measured at different energies obtained from a Compton scattering technique. The results show a decrease of the mass attenuation coefficient, effective atomic number and effective electron density values with increasing of gamma-ray energies; and good agreements between experimental and theoretical values. The glass samples with Bi 2 O 3 concentrations higher than 25 mol% (25 and 30 mol%) were observed with lower mean free path (MFP) values than all the standard shielding concretes studied. These results are indications that the ZBB glasses in the present study may be developed as a lead-free radiation shielding material in the investigated energy range

  17. Electron magnetic resonance and magnetooptical studies of nanoparticle-containing borate glasses

    Science.gov (United States)

    Kliava, Janis; Edelman, Irina; Ivanova, Oxana; Ivantsov, Ruslan; Petrakovskaja, Eleonora; Hennet, Louis; Thiaudière, Dominique; Saboungi, Marie-Louise

    2011-03-01

    We report electron magnetic resonance (EMR) and magnetooptical studies of borate glasses of molar composition 22.5K 2O-22.5Al 2O 3-55B 2O 3 co-doped with low concentrations of Fe 2O 3 and MnO. In as-prepared samples the paramagnetic ions, as a rule, are in diluted state. However, in the case where the ratio of the iron and manganese oxides in the charge is 3/2, magnetic nanoparticles with characteristics close to those of manganese ferrite are formed already at the first stage of the glass preparation, as evidenced by both magnetic circular dichroism (MCD) and EMR. After thermal treatment all glasses show characteristic MCD and EMR spectra, attesting to the presence of magnetic nanoparticles, predominantly including iron ions. Preliminary EXAFS measurements at the Fe K-absorption edge show an emergence of nanoparticles with a structure close to MnFe 2O 4 after annealing the glasses at 560 °C. By computer simulating the EMR spectra at variable temperatures, a superparamagnetic nature of relatively broad size and shape distribution with the average diameter of ca. 3-4 nm. The characteristic temperature-dependent shift of the apparent resonance field is explained by a strong temperature dependence of the magnetic anisotropy in the nanoparticles. The formation of magnetic nanoparticles confers to the potassium-alumina-borate glasses magnetic and magneto-optical properties typical of magnetically ordered substances. At the same time, they remain transparent in a part of the visible and near infrared spectral range and display a high Faraday rotation value.

  18. Violet and visible up-conversion emission in Yb{sup 3+}-Ho{sup 3+} co-doped germanium-borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yanmin, E-mail: mihuyym@163.co [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Zhang Meixin [Forensic Science Lab, Hebei University, Baoding 071002 (China); Yang Zhiping [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Fu Zuoling [Key Laboratory of Coherent Light, Atomic and Molecular Spectroscopy, College of physics, Jilin University, Ministry of Education, Changchun 130023 (China)

    2010-10-15

    The up-conversion emission properties of Yb{sup 3+}-Ho{sup 3+} co-doped germanium-borate glasses have been investigated with 980 nm excitation. The violet, blue, green and red emission bands at about 350, 485, 544 and 653 nm can be identified, respectively. Experimental results indicated that the relative intensity ratios of the peaks I{sub Red}/I{sub Green} increased with increasing B{sub 2}O{sub 3} concentration, which led to changing color of up-conversion emission from green at x=0 to yellow at x=40, to red at x=60. The violet emission at 350 nm was first reported in germanium-borate glass host and up-conversion mechanisms of the emissions were discussed. The Yb{sup 3+}-Ho{sup 3+} co-doped germanium-borate glasses could be an alternative for the generation of violet and primary colors for application in solid-state displays.

  19. Effect of SiO2 addition and gamma irradiation on the lithium borate glasses

    Science.gov (United States)

    Raut, A. P.; Deshpande, V. K.

    2018-01-01

    The physical properties like density, glass transition temperature (Tg), and ionic conductivity of lithium borate (LB) glasses with SiO2 addition were measured before and after gamma irradiation. Remarkable changes in properties have been obtained in the physical properties of LB glasses with SiO2 addition and after gamma irradiation. The increase in density and glass transition temperature of LB glasses with SiO2 addition has been explained with the help of increase in density of cross linking due to SiO4 tetrahedra formation. The increase in ionic conductivity with SiO2 addition was explained with the help of ‘mixed glass former effect’. The increase in density and Tg of LB glasses with SiO2 addition after gamma irradiation has been attributed to fragmentation of bigger ring structure into smaller rings, which increases the density of cross linking and hence compaction. The exposure of gamma irradiation has lead to decrease in ionic conductivity of LB glasses with SiO2 addition. The atomic displacement caused by gamma irradiation resulted in filling of interstices and decrease in trapping sites. This explains the obtained decrease in ionic conductivity after gamma irradiation of glasses. The obtained results of effect of SiO2 addition and gamma irradiation on the density, Tg and ionic conductivity has been supported by FTIR results.

  20. Local structure of alkalis in mixed-alkali borate glass to elucidate the origin of mixed-alkali effect

    Directory of Open Access Journals (Sweden)

    Yomei Tokuda

    2015-12-01

    Full Text Available We report the structural analysis of Na+ and Cs+ in sodium cesium borate crystals and glasses using 23Na and 133Cs magic-angle spinning nuclear magnetic resonance (MAS NMR spectroscopy. The composition dependence of NMR spectra of the borate was similar to that of the silicate: (1 the peak position of cesium borate crystals shifted to upfield for structures with larger Cs+ coordination numbers, (2 the MAS NMR spectra of xNa2O-yCs2O-3B2O3 (x = 0, 0.25, 0.5, 0.75, 1.0, x + y = 1 glass showed that the average coordination number (CN of both the alkali cations decreases with increasing Cs+/(Na+ + Cs+ ratio. However, the degree of decrement in borates is much smaller than that in silicates. We have considered that the small difference in CN is due to 4-coordinated B, because it is electrically compensated by the alkali metal ions resulting in the restriction of having various coordinations of O to alkali metal.

  1. Laser- and gamma-induced transformations of optical spectra of indium-doped sodium borate glass

    CERN Document Server

    Kopyshinsky, O V; Zelensky, S E; Danilchenko, B A; Shakhov, O P

    2003-01-01

    The optical absorption and luminescence properties of indium-doped sodium borate glass irradiated by gamma-rays and by powerful UV lasers within the impurity-related absorption band are investigated experimentally. It is demonstrated that both the laser- and gamma-irradiation cause similar transformations of optical spectra in the UV and visible regions. The changes of the spectra observed are described with the use of a model which includes three types of impurity centres formed by differently charged indium ions.

  2. Topological phases in Ba-Borate glasses

    Science.gov (United States)

    Holbrook, Chad; Czaja, Andrew; Boolchand, Punit

    2015-03-01

    Twelve compositions in the (BaO)x(B2O3)100-x pseudo binary, in the 15% Modulated- DSC and Raman scattering experiments were undertaken systematically as function of BaO content (x). Calorimetric measurements reveal Tg(x) to show a broad maximum and the non-reversing enthalpy to show a Gaussian-like reversibility window2, both centered near x = 28%. Raman scattering displays rich lineshapes with modes similar to those observed in Na-Borates2. Modes near 808 cm-1, 770 cm-1, 740 cm-1 and 705 cm-1 are observed, and identified with breathing modes of pure and mixed rings from characteristic structural groupings2. These preliminary results suggest that glasses at x 30% in the flexible phase. Supported by NSF Grant DMR 08-53957.

  3. Optical and vibrational spectroscopy of Ba0.85Ca0.15Zr0.1Ti0.9O3 modified lithium borate glass ceramics

    Science.gov (United States)

    Viswanath, Pamarti; Prashanth, Sadhu Sai Pavan; Molli, Muralikrishna; Wicram, Jaschin Prem; Sai Muthukumar, V.

    2018-04-01

    Glass ceramics are excellent replacement for single crystalline materials which are expensive and difficult to fabricate. In this context, we have attempted to fabricate glass nanocomposites comprising of Lithium Borate glass matrix embedded with lead free ferroelectric Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT). Both of these functional materials are known to exhibit excellent ferroelectric behavior and are currently explored for various device applications. We have prepared these novel glass nanocomposite using melt-quenching techniquein various chemical composition involving different molar ratio. x(Ba0.85Ca0.15Zr0.1Ti0.9O3)-(1-x)(Li2O.2B2O3) where (x=0.1,0.2,0.3,0.4). The as-quenched samples exhibited amorphous nature as revealed by X-ray Diffraction studies. With the increase in BCZT content we have observed significant alteration in optical bandgap and Urbach energy. The tailoring of optical properties by tuning the structure was probed by Raman vibrational spectroscopy which confirmed the dominant role played by BCZT as a network modifier in these borate glasses. Concomitantly, these glass nanocomposites were found to be excellent UV absorbers.

  4. Contribution of Eu ions on the precipitation of silver nanoparticles in Ag-Eu co-doped borate glasses

    International Nuclear Information System (INIS)

    Jiao, Qing; Qiu, Jianbei; Zhou, Dacheng; Xu, Xuhui

    2014-01-01

    Graphical abstract: - Highlights: • Silver nanoparticles are precipitated from the borate glasses during the melting process without any further heat treatment. • The reduction of Eu 3+ ions to Eu 2+ ions is presented in this material. • The intensity of Ag + luminescence. • The introduction of Eu ions accelerated the reaction between Eu 2+ ions and silver ions inducing the silver clusters formation. - Abstract: Ag + doped sodium borate glasses with different Eu ions concentration were prepared by the melt-quenching method. The absorption at about 410 nm which was caused by the surface plasmon resonance (SPR) of Ag nanoparticles (NPs) is promoted with increasing of Eu ions concentration. Meanwhile, the luminescent spectra showed that the emission intensity of Ag + decreased while that of the Ag aggregates increased simultaneously. The results indicated that the Ag ions intend to form the high-polymeric state such as Ag aggregates and nanoparticles with increasing of europium ions. Owing to the self-reduction of Eu 3+ to Eu 2+ in our glass system, it revealed that Ag + has been reduced by the neighboring Eu 2+ which leads to the formation of Ag aggregates and the precipitation of Ag NPs in the matrix. In addition, energy transfer (ET) process from Ag + /Ag aggregates to the Eu 3+ was investigated for the enhancement of Eu 3+ luminescence

  5. Structural and optical properties of antimony-germanate-borate glass and glass fiber co-doped Eu3+ and Ag nanoparticles.

    Science.gov (United States)

    Zmojda, Jacek; Kochanowicz, Marcin; Miluski, Piotr; Baranowska, Agata; Pisarski, Wojciech A; Pisarska, Joanna; Jadach, Renata; Sitarz, Maciej; Dorosz, Dominik

    2018-08-05

    In the paper analysis of structural and luminescent properties of antimony-germanate-borate glasses and glass fiber co-doped with 0.6AgNO 3 /0.2Eu 2 O 3 are presented. Heat treatment of the fabricated glass and optical fiber (400 °C, 12 h) enabled to obtain Ag nanoparticles (NPs) with average size 30-50 nm on their surface. It has been proofed that silver ions migrate to the glass surface, where they are reduced to Ag 0 nanoparticles. Simultaneously, FTIR analysis showed that heat treatment of the glass and optical fiber increases the local symmetry of the Eu 3+ site. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. EPR of SeO2- and SeO3- radicals in alkaline borate glasses with 77Se isotope

    International Nuclear Information System (INIS)

    Galimov, D.G.; Tarzimanov, K.D.

    1977-01-01

    Alkaline borate glasses with 77 Se were investigated in order to establish the nature of selenium compounds and radicals in glasses. The relationship between alkali ions and the oxygen radical of selenium was determined by decoding the hyperfine structure of the alkaline borate glass EPR spectra obtained before and after γ-irradiation. The irradiated and non-irradiated glasses were characterized by hyperfine splitting of the EPR lines from the α- and β centres. Moreover, the irradiated samples were noted to have a line doublet (signal phi). With intenser reduction conditions of glass fusion, the intensities of α, β, and phi signals were noted to decline. This confirmes the suggestion that these centres were caused by oxygen compouds. The authors concluded that α and β signals were due to the paramagnetic centres of SeO 2 - and [SeO 2 - ]R + , and phi signal to the SeO 3 - radicals

  7. Laser and thermal bleaching of colour centres in sodium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Bukharaev, A A; Yafaev, N R [AN SSSR, Kazan. Fiziko-Tekhnicheskij Inst.

    1978-12-01

    The maximum of the additional absorption band in ..gamma..- or UV-irradiated sodium borate glasses shifts to higher energy when the low-energy side of the band is bleached by a helium-neon laser, ..lambda.. = 632.8 nm. Simultaneously the half-width of the additional absorption band decreases. This phenomenon is associated with the fact that because of structural disorder of glasses there is a distribution of ground-state energies of trapped electrons forming the light-sensitive absorption band. The distribution interval of the activation energy for trapped electrons is estimated using the decomposition of the initial thermal bleaching curves into components. For UV irradiated glasses it is aproximately 0.24 eV, and for ..gamma..-irradiated glasses only 0.12 eV. These values correlate with the relative shift maximum of the absorption band at laser bleaching.

  8. Effect of glass composition on the relaxation of the 4Isub(13/2) level of erbium ions in borate and silicate glasses

    International Nuclear Information System (INIS)

    Ryba-Romanowski, W.; Jezowska-Trzebiatowska, B.

    1979-01-01

    The effect of glass nerwork formers and glass modifiers on radiative transition probabilities and quantum efficiencies of the 4 Isub(13/2) level of Er +3 ions in ternary borate and silicate glasses was studied by both absorption and emission spectroscopy. It was found that the transition probabilities may be widely varied by changes glass network former and alkali ion substitution. The role of multiphonon emission and O-H vibration in the relaxation of the 4 Isub(13/2) level is discussed. (author)

  9. Infrared spectra of zinc doped lead borate glasses

    Indian Academy of Sciences (India)

    Unknown

    size, smaller heat of fusion and valence (= 3) of B. In ... of amorphous materials, we have used it to determine the structure ... 1073 K. The homogenized molten glass was cast in two ... ing the glass, all the samples were immediately transferred.

  10. Effect of 3d-transition metal doping on the shielding behavior of barium borate glasses: a spectroscopic study.

    Science.gov (United States)

    ElBatal, H A; Abdelghany, A M; Ghoneim, N A; ElBatal, F H

    2014-12-10

    UV-visible and FT infrared spectra were measured for prepared samples before and after gamma irradiation. Base undoped barium borate glass of the basic composition (BaO 40%-B2O3 60mol.%) reveals strong charge transfer UV absorption bands which are related to unavoidable trace iron impurities (Fe(3+)) within the chemical raw materials. 3d transition metal (TM)-doped glasses exhibit extra characteristic absorption bands due to each TM in its specific valence or coordinate state. The optical spectra show that TM ions favor generally the presence in the high valence or tetrahedral coordination state in barium borate host glass. Infrared absorption bands of all prepared glasses reveal the appearance of both triangular BO3 units and tetrahedral BO4 units within their characteristic vibrational modes and the TM-ions cause minor effects because of the low doping level introduced (0.2%). Gamma irradiation of the undoped barium borate glass increases the intensity of the UV absorption together with the generation of an induced broad visible band at about 580nm. These changes are correlated with suggested photochemical reactions of trace iron impurities together with the generation of positive hole center (BHC or OHC) within the visible region through generated electrons and positive holes during the irradiation process. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Complex Heat Capacity of Lithium Borate Glasses Studied by Modulated DSC

    International Nuclear Information System (INIS)

    Matsuda, Yu; Ike, Yuji; Matsui, Chihiro; Kodama, Masao; Kojima, Seiji

    2006-01-01

    Complex heat capacity, C p * = C p ' - iC p '', of lithium borate glasses Li2O·(1-x)B2O3 (x = 0.00 - 0.33) has been investigated by Modulated DSC (MDSC). We have successfully observed the frequency dependent C p * by MDSC in the frequency range 0.01 to 0.1 Hz, and the average relaxation time of glass transition has been determined as a function of temperature. Moreover, the composition dependence of the thermal properties has been investigated. The calorimetric glass transition temperatures become higher with the increase of concentration of Li2O and show the board maximum around x = 0.26-0.28. The width of glass transition region becomes narrower as Li2O increases. These results relate to the change of the fragility of the system. It has been proven that the complex heat capacity spectroscopy by MDSC is a powerful tool to investigate the glass transition phenomena

  12. Complex Heat Capacity of Lithium Borate Glasses Studied by Modulated DSC

    Science.gov (United States)

    Matsuda, Yu; Matsui, Chihiro; Ike, Yuji; Kodama, Masao; Kojima, Seiji

    2006-05-01

    Complex heat capacity, Cp* = Cp' - iCp″, of lithium borate glasses Li2Oṡ(1-x)B2O3 (x = 0.00 - 0.33) has been investigated by Modulated DSC (MDSC). We have successfully observed the frequency dependent Cp* by MDSC in the frequency range 0.01 to 0.1 Hz, and the average relaxation time of glass transition has been determined as a function of temperature. Moreover, the composition dependence of the thermal properties has been investigated. The calorimetric glass transition temperatures become higher with the increase of concentration of Li2O and show the board maximum around x = 0.26-0.28. The width of glass transition region becomes narrower as Li2O increases. These results relate to the change of the fragility of the system. It has been proven that the complex heat capacity spectroscopy by MDSC is a powerful tool to investigate the glass transition phenomena.

  13. Evaluation of gamma-ray attenuation properties of bismuth borate glass systems using Monte Carlo method

    Science.gov (United States)

    Tarim, Urkiye Akar; Ozmutlu, Emin N.; Yalcin, Sezai; Gundogdu, Ozcan; Bradley, D. A.; Gurler, Orhan

    2017-11-01

    A Monte Carlo method was developed to investigate radiation shielding properties of bismuth borate glass. The mass attenuation coefficients and half-value layer parameters were determined for different fractional amounts of Bi2O3 in the glass samples for the 356, 662, 1173 and 1332 keV photon energies. A comparison of the theoretical and experimental attenuation coefficients is presented.

  14. Moessbauer effect and infrared study of some borate glass containing Mn and Fe oxides

    International Nuclear Information System (INIS)

    Gabr, M.

    2005-01-01

    Lithium borate glasses containing transition metals appeared now of very high technological and scientific interest. Therefore some lithium borate glasses containing mixed transition metal ions (manganese and iron) were investigated. The glass batches were melted at 1250 degree C for three hours and annealed at 350 degree C -over night- to obtain strain free glasses. Moessbauer Effect spectroscopy and Infrared analysis were employed to investigate the structural changes due to the change of their batches composition. Differential thermal analysis, magnetic susceptibility, density and molar volume measurements were also performed to study the effect of changing both manganese and iron oxides at the expense of boron oxide on these properties. Infrared analysis indicated the presence of different structural groups such as BO 3 , BO 4 , FeO 4 and MnO 6 as well as different vibrations indicated the presence of various bonds in the glass network. The values of the characteristic temperatures (T g , T c and T m ) showed gradual increase except those of the last sample where they showed a decrease. The mid sample showed the lowest stability value. It was found that the molar volume showed its highest value at R=0.33 [where R is the ratio of glass network modifier to the glass network former]. After that it showed gradual linear decrease. The magnetic susceptibility measurements showed approximately stable value between R=0.29 and 0.33, then it increased up to R=0.38, and after that, it decreased up to R= 0.43. The obtained magnetic susceptibility values indicated that all these glasses are paramagnetic. The obtained Moessbauer spectra and the calculated parameters confirmed that iron ions participated in the glass network as network former cations. It confirmed also that all glasses reflect paramagnetic character. The observed structural change were explained and correlated with the change of the measured physical properties

  15. Optical and FT Infrared spectral studies of vanadium ions in cadmium borate glass and effects of gamma irradiation.

    Science.gov (United States)

    AbdelAziz, T D; EzzElDin, F M; El Batal, H A; Abdelghany, A M

    2014-10-15

    Combined optical and infrared absorption spectra of V2O5-doped cadmium borate glasses were investigated before and after gamma irradiation with a dose of 8 Mrad (=8×10(4) Gy). The undoped base cadmium borate glass reveals a spectrum consisting of strong charge transfer UV absorption bands which are related to the presence of unavoidable contaminated trace iron impurities (mainly Fe(3+)). The V2O5-doped glasses reveal an extra band at 380nm and the high V2O5-content glass also shows a further band at about 420nm. The observed optical spectrum indicates the presence of vanadium ions mainly in the pentavalent state (d(0) configuration). The surplus band at 420nm shows that some trivalent vanadium ions are identified at high V2O5 content. The optical spectra of the glasses after gamma irradiation show small decrease of the intensity of the UV absorption which are interpreted by assuming the transformation of some Fe(3+) ions by photochemical reactions with the presence of high content (45mol%) of heavy massive CdO causing some shielding behavior. FT infrared absorption spectra of the glasses show vibrational bands due to collective presence of triangular and tetrahedral borate groups in their specific wavenumbers. The FTIR spectra are observed to be slightly affected by both the V2O5-dopants being present in modifying low percent or gamma irradiation due to the presence of high content heavy CdO. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Formation, characterization and magnetic properties of maghemite γ-Fe2O3 nanoparticles in borate glasses

    International Nuclear Information System (INIS)

    Edelman, I.S.; Ivanova, O.S.; Petrakovskaja, E.A.; Velikanov, D.A.; Tarasov, I.A.; Zubavichus, Y.V.; Trofimova, N.N.; Zaikovskii, V.I.

    2015-01-01

    Highlights: • Fe and large-ion-radius elements (Y, Bi, Pb, and Sm) co-doped borate glasses were prepared. • Maghemite, γ-Fe 2 O 3 , nanoparticles arise in the glasses as a result of the thermal treatment. • The particles structure is the same for all large-ion-radius elements used. • The particle size depends on the large-ion-radius elements nature and concentration. • The glass magnetic properties correlate with the particles size. - Abstract: A new type of nanocomposite materials based on maghemite, γ-Fe 2 O 3 , nanoparticles dispersed in borate glasses co-doped with low contents of iron together with the larger radius element combinations: Y and Bi, or Sm and Pb, or Y and Pb is studied. Nanoparticles arise as a result of heat treatment of the glasses which gives them properties characteristic of magnetically ordered substances. Transmission electron microscopy and XRD show that only one magnetic phase, namely γ-Fe 2 O 3 nanoparticles, occurs in glasses subjected to the thermal treatment at 540 °C during 24 h independently on the doping element nature. At the same time doping element and their concentrations ratio in every combination affect the particles average size and glass magnetic properties, such as magnetization temperature dependences, Faraday rotation value and electron magnetic resonance spectrum characteristics

  17. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives

    Science.gov (United States)

    Abdelghany, A. M.; Ouis, M. A.; Azooz, M. A.; ElBatal, H. A.; El-Bassyouni, G. T.

    2016-01-01

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680 cm-1 after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.

  18. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives.

    Science.gov (United States)

    Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T

    2016-01-05

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Appearance of small polaron hopping conduction in iron modified cobalt lithium bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Dahiya, M. S.; Khasa, S., E-mail: skhasa@yahoo.com; Yadav, Arti [Physics Department, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India-131039 (India); Agarwal, A. [Applied Physics Department, Guru Jambheshwara University of Science and Technology, Hisar, India-125001 (India)

    2016-05-23

    Lithium bismuth borate glasses containing different amounts of cobalt and iron oxides having chemical composition xFe{sub 2}O{sub 3}•(20-x)CoO•30Li{sub 2}O•10Bi{sub 2}O{sub 3}•40B{sub 2}O{sub 3} (x = 0, 5, 10, 15 and 20 mol% abbreviated as CFLBB1-5 respectively) prepared via melt quench technique have been investigated for their dc electrical conductivity. The amorphous nature of prepared glasses has been confirmed through X-ray diffraction measurements. The dc electrical conductivity has been analyzed by applying Mott’s small polaron hopping model. Activation energies corresponding to lower and higher temperature region have been evaluated. The iron ion concentration (N), mean spacing between iron ions (R) and polaron radius (R{sub p}) has been evaluated using the values of phonon radius (R{sub ph}) and Debye temperature (θ{sub D}). The glass sample without iron (CFLBB1) shows ionic conductivity but the incorporation of iron in the glass matrix results in the appearance of electronic conductivity.

  20. Luminescence properties of Ce3+ doped gadolinium-calcium-silicaborate glass scintillator

    International Nuclear Information System (INIS)

    Park, J.M.; Ha, D.H.; Kaewjeang, S.; Maghanemi, U.; Kothan, S.; Kaewkhao, J.; Kim, H.J.

    2016-01-01

    In this work, the Ce 3+ doped gadolinium-calcium-silicaborate glass scintillators of the composition ratio 25Gd 2 O 3 :10CaO:10SiO 2 :(55−x)B 2 O 3 :xCeF 3 , have been fabricated by using the melt-quenching technique. The doping concentration of the Ce 3+ was varied from 0.05 mol% to 2.5 mol%. The 4f-5d transition of the Ce 3+ allowed scintillation with a fast decay time. The absorption spectrum, X-ray induced emission spectrum, photo luminescence spectrum, laser luminescence spectrum and decay time of the scintillators were measured for studying the luminescence properties. From the X-ray induced emission spectrum result, we checked the trend between doping concentration and light yield. The laser induced luminescence spectrum was measured while changing the temperature from 300 K to 10 K. We also measured the decay time by using the laser excitation of the 0.15 mol% Ce 3+ doped glass scintillator. - Highlights: • Ce 3+ doped gadolinium-calcium-silicaborate glass scintillators were developed. • Glass is easily fabricated with large sizes and various doping materials. • The luminescence properties are studied by using various radiation sources. • The light yield and decay time were measured at low temperature. • One decay time component is found.

  1. Role of oxygen on the optical properties of borate glass doped with ZnO

    International Nuclear Information System (INIS)

    Abdel-Baki, Manal; El-Diasty, Fouad

    2011-01-01

    Lithium tungsten borate glass (0.56-x)B 2 O 3 -0.4Li 2 O-xZnO-0.04WO 3 (0≤x≤0.1 mol%) is prepared by the melt quenching technique for photonic applications. Small relative values of ZnO are used to improve the glass optical dispersion and to probe as well the role of oxygen electronic polarizability on its optical characteristics. The spectroscopic properties of the glass are determined in a wide spectrum range (200-2500 nm) using a Fresnel-based spectrophotometric technique. Based on the Lorentz-Lorenz theory, as ZnO content increases on the expense of B 2 O 3 the glass molar polarizability increased due to an enhanced unshared oxide ion 2p electron density, which increases ionicity of the chemical bonds of glass. The role of oxide ion polarizability is explained in accordance with advanced measures and theories such as optical basicity, O 1s binding energy, the outer most cation binding energy in Yamashita-Kurosawa's interionic interaction parameter and Sun's average single bond strength. FT-IR measurements confirm an increase in bridging oxygen bonds, as a result of replacement of ZnO by B 2 O 3 , which increase the UV glass transmission window and transmittance. - Graphical abstract: O1s, Yamashita-Kurosawa's parameter and average single bond strength of charge overlapping between electronic shells are used to explain enhanced oxide ion 2p electron density, which increases refractive index of glasses. Highlights: → New borate glass for photonic application is prepared. → The dispersion property of the glass is effectively controlled using small amounts of ZnO. → ZnO is used to probe the glass structure and investigate the role of oxygen on the obtained optical properties of the glasses. → Modern theories are used to explain enhanced unshared oxide ion 2p electron density, which increases ionicity of chemical bonds of the glass.

  2. Urbach tails in the absorption spectra of semiconducting molybdenum-borate glasses

    International Nuclear Information System (INIS)

    Jamel Basha Adlan, M.; Wan Yusri Wan Yusuff; Tan, C.W.; Yam, F.K.

    1991-01-01

    The absorption curve of many amorphous compound semiconductors may be divided into three regions: (1) the high absorption region (α(w)≥10 4 cm -1 ), (2) an exponential region (1cm -1 ≤(w)≤10 4 cm -1 ) which obeys Urbach's rule and (3) a weak absorption tail (α(w)≤1cm -1 ). In this paper we will present the absorption edge of binary Molybdenum-Borate glasses at the exponential region of the spectra

  3. In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method

    International Nuclear Information System (INIS)

    Fu Hailuo; Fu Qiang; Zhou Nai; Huang Wenhai; Rahaman, Mohamed N.; Wang Deping; Liu Xin

    2009-01-01

    Borate-based bioactive glass scaffolds with a microstructure similar to that of human trabecular bone were prepared using a polymer foam replication method, and evaluated in vitro for potential bone repair applications. The scaffolds (porosity = 72 ± 3%; pore size = 250-500 μm) had a compressive strength of 6.4 ± 1.0 MPa. The bioactivity of the scaffolds was confirmed by the formation of a hydroxyapatite (HA) layer on the surface of the glass within 7 days in 0.02 M K 2 HPO 4 solution at 37 deg. C. The biocompatibility of the scaffolds was assessed from the response of cells to extracts of the dissolution products of the scaffolds, using assays of MTT hydrolysis, cell viability, and alkaline phosphatase activity. For boron concentrations below a threshold value (0.65 mM), extracts of the glass dissolution products supported the proliferation of bone marrow stromal cells, as well as the proliferation and function of murine MLO-A5 cells, an osteogenic cell line. Scanning electron microscopy showed attachment and continuous increase in the density of MLO-A5 cells cultured on the surface of the glass scaffolds. The results indicate that borate-based bioactive glass could be a potential scaffold material for bone tissue engineering provided that the boron released from the glass could be controlled below a threshold value.

  4. Structure and properties of gadolinium loaded calcium phosphate glasses

    International Nuclear Information System (INIS)

    Wang, Cuiling; Liang, Xiaofeng; Li, Haijian; Yu, Huijun; Li, Zhen; Yang, Shiyuan

    2014-01-01

    The glass samples with composition xGd 2 O 3 –(50 − x)CaO–50P 2 O 5 (0 ⩽ x ⩽ 9 mol%) were prepared by the conventional melt quench method. The structure and properties of gadolinium loaded in calcium phosphate glasses were investigated using XRD, SEM, DTA, IR and Raman spectroscopy. The XRD and SEM analysis for the samples show that the majority of samples are amorphous, and crystallization occurs when the content of Gd 2 O 3 containing is up to 6 mol%. Two main crystalline phases, Ca 2 P 2 O 7 and Gd 3 (P 2 O 7 ) 3 , are embedded in an amorphous matrix. IR and Raman data indicate that glass structure consists of predominantly metaphosphate (Q 2 ) units and the depolymerization of phosphate network with the addition of Gd 2 O 3 . Both the chemical durability and the glass transition temperature (T g ) are improved with the increase of Gd 2 O 3 , which suggests that the Gd acts a role of strengthening the cross-links between the phosphate chains of the glass

  5. Study of Paramagnetic Species in γ-irradiated Lithium Borate Glasses Doped With Cu2+ Ions

    International Nuclear Information System (INIS)

    Mansour, A.; Abd-Allah, W.M.; El-Alaily, N.A.; Ezz-Eldin, F.M.

    2013-01-01

    Mixed alkali borate glasses doped with different concentration of Cu O ranging from (0.1-10) wt% have been prepared by the melt quenching technique. The prepared samples were studied by means of density, molar volume, infrared spectroscopy and electron paramagnetic resonance (EPR) measurements before and after successive gamma irradiation (50-200 kGy). The results showed that the density increase while molar volume decrease with the increase of CuO %. The infrared absorption studies revealed that structure of the glass network consists of BO 3 , BO 4 and B-O-Cu linkages. Gamma irradiation causes minor changes in the IR spectral bands which are related to the bond break of the B-O bond and formation non-bridging oxygen. Gamma irradiation causes irregular change in the intensities of the EPR spectra for samples doped with 0.1, 0.2 and 10 wt % of Cu O, however, no change in the EPR spectra of 2 and 5 wt % of Cu O for all absorbed doses (50-200 kGy). It is expected that the Cu-doped lithium borate glass 2 and 5 wt % of Cu O may be used for radiation shielding.

  6. Broad-spectrum antibacterial properties of metal-ion doped borate bioactive glasses for clinical applications

    Science.gov (United States)

    Ottomeyer, Megan

    Bioactive glasses with antimicrobial properties can be implemented as coatings on medical devices and implants, as well as a treatment for tissue repair and prevention of common hospital-acquired infections such as MRSA. A borate-containing glass, B3, is also undergoing clinical trials to assess wound-healing properties. The sensitivities of various bacteria to B3, B3-Ag, B3-Ga, and B3-I bioactive glasses were tested. In addition, the mechanism of action for the glasses was studied by spectroscopic enzyme kinetics experiments, Live-Dead staining fluorescence microscopy, and luminescence assays using two gene fusion strains of Escherichia coli. It was found that gram-positive bacteria were more sensitive to all four glasses than gram negative bacteria, and that a single mechanism of action for the glasses is unlikely, as the rates of catalysis for metabolic enzymes as well as membrane permeability were altered after glass exposure.

  7. Structure of B2O3 and alkali borates in glass-like and melted states

    International Nuclear Information System (INIS)

    Golubkov, V.V.

    1992-01-01

    Structure of boron oxide and alkali-borate oxide and alkali-borate glasses and melts at temperatures up to 100 deg C was investigated using method of x-ray scattering at small angles (RSA). Specified and detailed concentration dependences were given for the main parameters of the structure: sizes of non-uniformity regions, values of surface interface, data of average square of difference of electron densities. Uppearance of ordered structures at sharp drop of temperature of B 2 O 3 sample was shown. Interference effects connected with this phenomenon significantly influence on value of RSA intensity in the field of small angles and correspondingly on light diffusion intensity. Conclusion on existence of structural differences between liquids and supercooled liquids was confirmed. Narrow temperature range of transition from one state to another esisted. Submicrononuniform structure of alkaliborate glasses wasn't connected with critical phenomenon. In the fields of non-uniformity 25-50% of alkali ions were concentrated

  8. On the Elastic behavior of Sodium Borate Glasses

    Science.gov (United States)

    Vignarooban, K.; Boolchand, P.; Kerner, R.; Micoulaut, M.

    2010-03-01

    Alkali Borates are industrial glasses and their physical properties are of general interest. We have made a special effort to synthesize dry (Na2O)x(B2O3)100-x glasses over a wide composition range, 0 modulated-DSC, Raman scattering, FTIR, and molar volume experiments. The enthalpy of relaxation at Tg shows a global minimum in the 20% < x < 40% range, which we identify with the rigid but stress-free Intermediate Phase (IP). The Boroxyl ring vibrational mode near 808 cm-1 in B2O3, steadily softens by about 4 cm-1 as the soda content increases to about 20%. A vibrational mode of mixed ringsfootnotetextKamitsos et al., Jour. Mol. Struct 247, 1 (1996). (containing 3-fold and 4-fold B) is also observed near 775 cm-1 at low x, and it also steadily softens by nearly 10 cm-1 as x increases in the 20% < x < 40% soda range (IP). We are examining the underlying optical elasticity power-laws to ascertain the nature of the elastic phases. IR reflectance experiments provide the 4-fold coordinated B fraction to increase from 0.17 near x = 20% to 0.44 near x = 40% in broad agreement with NMR results. Evolution of physical properties of these glasses with soda content will be reviewed.

  9. Volume and structural relaxation in compressed sodium borate glass.

    Science.gov (United States)

    Svenson, Mouritz N; Youngman, Randall E; Yue, Yuanzheng; Rzoska, Sylwester J; Bockowski, Michal; Jensen, Lars R; Smedskjaer, Morten M

    2016-11-21

    The structure and properties of glass can be modified through compression near the glass transition temperature (T g ), and such modified structure and properties can be maintained at ambient temperature and pressure. However, once the compressed glass undergoes annealing near T g at ambient pressure, the modified structure and properties will relax. The challenging question is how the property relaxation is correlated with both the local and the medium-range structural relaxation. In this paper, we answer this question by studying the volume (density) and structural relaxation of a sodium borate glass that has first been pressure-quenched from its T g at 1 GPa, and then annealed at ambient pressure under different temperature-time conditions. Using 11 B MAS NMR and Raman spectroscopy, we find that the pressure-induced densification of the glass is accompanied by a conversion of six-membered rings into non-ring trigonal boron (B III ) units, i.e. a structural change in medium-range order, and an increase in the fraction of tetrahedral boron (B IV ), i.e. a structural change in short-range order. These pressure-induced structural conversions are reversible during ambient pressure annealing near T g , but exhibit a dependence on the annealing temperature, e.g. the ring/non-ring B III ratio stabilizes at different values depending on the applied annealing temperature. We find that conversions between structural units cannot account for the pressure-induced densification, and instead we suggest the packing of structural units as the main densification mechanism.

  10. Comparision of γ -ray shielding properties of some borate glasses

    International Nuclear Information System (INIS)

    Thind, K.S.

    2003-01-01

    Several new glasses have been prepared in recent years to suit their increasing number of applications. Some of the glass compositions have distinct properties which make them the most preferred materials for certain applications such as shielding, optical fibers, electronics displays etc. The information of composition, processing and effect of environment on the glass properties is of great importance for their design and application. The shielding ability of pure elements and some mixtures have already been studied but limited attempts have been made on glasses. A good shielding glass should have high absorption cross - section for radiation and at the same time irradiation effects on its mechanical and optical properties should be small. By keeping in view of the importance of shielding ability of borate glasses, we have studied two series of different glass type: x PbO - (1-x) B 2 O 3 and x ZnO - 2xPbO - (1-3x) B 2 O 3 (where x is the mole fraction) by using narrow beam transmission method. A 2' x 2' NaI(Tl) crystal with an energy resolution of 12.5% at 662 keV of 137 Cs was used for the determination of attenuation coefficients and hence interaction cross-sections. Glass samples were prepared by using melt-quenching technique. Thickness measurement was carried out by micrometer and density was measured by Archimede's Principle using benzene as the immersion liquid. The densities of the glasses were found to increase linearly with the increase in the chemical composition of heavy metal oxide. Variations in mass attenuation coefficients and interaction cross ' sections were observed with the change in chemical composition and photon energy. It is found that these glasses have potential applications to be used as radiation shielding materials

  11. Infrared luminescence and thermoluminescence of lithium borate glasses doped with Sm3+ ions

    Directory of Open Access Journals (Sweden)

    Anjaiah J.

    2015-03-01

    Full Text Available Thermoluminescence (TL characteristics of X-ray irradiated pure and doped with Sm3+ ions Li2O-MO-B2O3 (where MO=ZnO, CaO, CdO glasses have been studied in the temperature range of 303 to 573 K. All the pure glasses exhibited single TL peaks at 382 K, 424 K and 466 K. When these glasses were doped with Sm3+ ions no additional peaks have been observed but the glow peak temperature of the existing glow peak shifted gradually towards higher temperatures with gain in intensity of TL light output. The area under the glow curve was found to be maximum for Sm3+ doped glasses mixed with cadmium oxide as a modifier. The trap depth parameters associated with the observed TL peaks have been evaluated using Chen’s formulae. The possible use of these glasses in radiation dosimetry has been described. The results clearly showed that samarium doped cadmium borate glass has a potential to be considered as a thermoluminescence dosimeter.

  12. Dosimetric and kinetic parameters of lithium cadmium borate glasses doped with rare earth ions

    Directory of Open Access Journals (Sweden)

    J. Anjaiah

    2014-10-01

    Full Text Available Thermoluminescence (TL characteristics of X-ray irradiated pure and doped with four different rare earth ions (viz., Pr3+, Nd3+, Sm3+ and Eu3+ Li2O–Cdo–B2O3 glasses have been studied in the temperature range 303–573 K; the pure glass has exhibited single TL peak at 466 K. When this glass is doped with different rare earth ions no additional peaks are observed but the glow peak temperature of the existing glow peak shifted gradually towards higher temperatures with gain in intensity of TL light output. The area under the glow curve is found to be maximum for Eu3+ doped glasses. The trap depth parameters associated with the observed TL peaks have been evaluated using Chen's formulae. The possible use of these glasses in radiation dosimetry has been described. The result clearly showed that europium doped cadmium borate glass has a potential to be considered as the thermoluminescence dosimeter.

  13. Structural study of some gadolinium glass ceramics obtained by sol-gel method

    International Nuclear Information System (INIS)

    Coroiu, Ilioara; Simiti, Vida I.; Bratu, I.; Borodi, Gh.; Darabont, Al.

    2004-01-01

    Increased interest in silicate systems containing different rare earth oxides has resulted from their important applications in various fields of technology including laser, optical fiber and optical waveguides in telecommunication applications, microelectronics and catalysis. Glass-ceramics of 0.95 SiO 2 -0.05 Na 2 O composition containing up to 15% molar Gd 2 O 3 were obtained by the sol-gel method. We chose the sol-gel method because this offers the advantage of a good chemical homogeneity and a better control of physical and chemical properties in comparison with traditional methods used to obtain glasses and ceramics. The obtained samples were pressed at 200 kgf/cm 2 as disks with a diameter of Φ=22 mm and a thickness of around 1 mm. Then, they were heat-treated at 250 deg C, 500 deg C and 1000 deg C for about 48 hours. The structural study was made using X-ray diffraction, scanning electron microscopy (SEM) and IR spectroscopy. The X-ray diffraction patterns show that addition of Gd 2 O 3 exerts an important influence on the crystallization process of the studied samples. The crystalline phase decreases with increasing the Gd 2 O 3 concentration. SEM data support this assertion. IR spectra point out also that the increasing of the gadolinium oxide content and the thermal treatment temperature produce the strengthening of the glass ceramic network. Thus, the gadolinium ions play the role of network modifier of the glass ceramic structure. (authors)

  14. Structure and properties of gadolinium loaded calcium phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cuiling [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Liang, Xiaofeng, E-mail: XFLiang@swust.edu.cn [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Li, Haijian; Yu, Huijun; Li, Zhen [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Yang, Shiyuan [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China)

    2014-10-15

    The glass samples with composition xGd{sub 2}O{sub 3}–(50 − x)CaO–50P{sub 2}O{sub 5} (0 ⩽ x ⩽ 9 mol%) were prepared by the conventional melt quench method. The structure and properties of gadolinium loaded in calcium phosphate glasses were investigated using XRD, SEM, DTA, IR and Raman spectroscopy. The XRD and SEM analysis for the samples show that the majority of samples are amorphous, and crystallization occurs when the content of Gd{sub 2}O{sub 3} containing is up to 6 mol%. Two main crystalline phases, Ca{sub 2}P{sub 2}O{sub 7} and Gd{sub 3}(P{sub 2}O{sub 7}){sub 3}, are embedded in an amorphous matrix. IR and Raman data indicate that glass structure consists of predominantly metaphosphate (Q{sup 2}) units and the depolymerization of phosphate network with the addition of Gd{sub 2}O{sub 3}. Both the chemical durability and the glass transition temperature (T{sub g}) are improved with the increase of Gd{sub 2}O{sub 3}, which suggests that the Gd acts a role of strengthening the cross-links between the phosphate chains of the glass.

  15. Structural and morphological studies lead borate glasses by melt quenching technique

    International Nuclear Information System (INIS)

    Jetruth Mary Alphonsa, K.; Sumathi, T.

    2013-01-01

    The studies of oxide glasses have gained attention due to their structural features. This type of glass has some remarkable features such as low melting temperature, impressive wide glass formation region, high resistance against devitrification and high refractive index. 60B 2 O 3 -(30-x) PbO-xK 2 O/Li 2 O glasses were prepared using the melt quenching technique because of its rapid glass forming ability. The amorphous nature of the prepared glass samples were confirmed by XRD (X-Ray diffraction technique) and SEM (Scanning Electron Microscopy). The quantitative analysis has been carried out in order to obtain more information about the structure of these glasses using FT-IR (Fourier transform infrared spectroscopy). (author)

  16. Electrical properties of fast ion conducting silver based borate glasses: Application in solid battery

    International Nuclear Information System (INIS)

    Masoud, Emad M.; Khairy, M.; Mousa, M.A.

    2013-01-01

    Graphical abstract: -- Highlights: •AgI dopant created more opened borate network structure. •Dielectric constant and loss values increased with AgI concentration. •AgI dopant enhanced both ion migration and orientation. •0.6 AgI–0.27 Ag 2 O–0.13 B 2 O 3 showed the highest DC-conductivity at room temperature. •It showed also good life time as a solid electrolyte in solid battery at room temperature. -- Abstract: The electrical properties of the ternary ionic conducting glass system xAgI–(1 – x)[0.67Ag 2 O–0.33B 2 O 3 ], where x = 0.4 , 0.5, 0.6, 0.7 and 0.8, were studied for emphasizing the influence of silver iodide concentration on the transport properties in the based borate glasses. The glasses were prepared by melt quenching technique and characterized using X-ray diffraction (XRD), FT-IR spectra and differential thermal analysis (DTA). XRD confirmed a glassy nature for all investigated compositions. Electrical conductivity (σ), dielectric constant (ε′), dielectric loss (ε ″ ) and impedance spectra (Z′–Z′′) were studied for all samples at a frequency range of 0–10 6 Hz and over a temperature range of 303–413 K. Changes of conductivity and dielectric properties with composition, temperature and frequency were analyzed and discussed. A silver iodine battery using glassy electrolyte sample with the highest ionic conductivity (x = 0.6) was studied

  17. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Melo, B. M. G.; Graça, M. P. F., E-mail: mpfg@ua.pt; Prezas, P. R.; Valente, M. A. [Physics Department (I3N), Aveiro University, Campus Universitário de Santiago, Aveiro (Portugal); Almeida, A. F.; Freire, F. N. A. [Mechanics Engineering Department, Ceará Federal University, Fortaleza (Brazil); Bih, L. [Equipe Physico-Chimie la Matière Condensée, Faculté des Sciences de Meknès, Meknès (Morocco)

    2016-08-07

    In this work, phosphate-borate based glasses with molar composition 20.7P{sub 2}O{sub 5}–17.2Nb{sub 2}O{sub 5}–13.8WO{sub 3}–34.5A{sub 2}O–13.8B{sub 2}O{sub 3}, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric, and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σ{sub ac} and σ{sub dc}, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz–1 MHz.

  18. Ordered and disordered models of local structure around Ag cations in silver borate glasses based on x-ray absorptio n near-edge structure spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Šipr, Ondřej; Dalba, G.; Rocca, F.

    2004-01-01

    Roč. 69, - (2004), 134201/1-134201/16 ISSN 0163-1829 R&D Projects: GA ČR GA202/02/0841 Institutional research plan: CEZ:AV0Z1010914 Keywords : disordered systems * structural analysis * XANES * silver * borate glass es Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.075, year: 2004

  19. Dielectric and optical properties of glasses of CdO-B2O3 system

    International Nuclear Information System (INIS)

    Semin, V.N.; Mal'tsev, V.T.; Panich, A.E.

    1986-01-01

    Dielectric and optical properties of glasses of CdO-B 2 O 3 system are investigated. It is shown, that on changing the composition, cadmic-borate glasses undergo structural changes, similar to those, taking place in lead-borate glasses, and the maximum part of the boron atoms in the oxygen tetrahedral coordination is at CdO:B 2 O 3 =3:2

  20. XRD and FTIR analysis heat treated lithium bismo-borate glasses doped with 1.0 mol% copper ferrite

    Science.gov (United States)

    Yadav, Arti; Narwal, P.; Dahiya, Manjeet S.; Dahiya, T.; Agarwal, A.; Khasa, S.

    2018-05-01

    Glasses of compositions of 20Li20 • xBi2O3• (79-x)B2O3 + (1.0 mol%) CuFe2O4, with 0 ≤ x ≤ 40 were prepared by melt-quench technique. To obtain the glass-ceramics the controlled heat treatment were given to the prepared glasses. Two nano crystalline phases, i.e., Li2B4O7 and LiB3O5 were observed from X-ray diffraction patterns of the prepared glass- ceramic samples. We investigated the change in coordination number of network formers B2O3 and Bi2O3 and network modifiers Bi2O3, Li2O and CuFe2O4. Crystallites size (lies in range ˜47-50nm) and lattice strain (ɛ) were calculated for major phases for all prepared samples. FT-IR study revealed the de-polymerization of borate groups that change with heat treatment and Bi2O3 content. Deconvolution of IR absorption spectra resolves the overlapped and hidden peaks in IR spectra. Sharp and more intense FTIR peaks confirm the vibrations due to crystallites Li2B4O7 and LiB3O5 and change in coordination of network forming borate units.

  1. In vitro bioactivity behavior of modified multicomponent borate glasses containing dopants of Ag2O, CuO, CeO2 or V2O5

    Science.gov (United States)

    Marzouk, M. A.; ElBatal, F. H.; Ghoneim, N. A.

    2018-02-01

    Some multi-component borate glasses containing dopants of Ag2O, CuO, CeO2 or V2O5 were prepared. Multi-characterization techniques were carried out to investigate their bioactivity, corrosion weight loss after immersion in phosphate solution. Controlled thermal heat-treatment by two-step technique was done to convert the prepared glasses to their corresponding glass-ceramic derivatives. X-ray diffraction analysis was performed to identify the crystalline phases formed by thermal treatment. Infrared absorption of glasses and glass-ceramics reveal vibrational bands due to combined main triangular and tetrahedral borate groups in their specific wavenumbers besides some sharing of phosphate group. After immersion in the phosphate solution, two extra characteristic peaks are generated indicating the bioactivity of the studied glasses and glass-ceramics through the formation of calcium phosphate (hydroxyapatite). X-ray diffraction data indicate the formation of crystalline phases which are variable with the introduced dopants. The main crystalline phase identified is calcium borate together with some other phases some of which contain phosphate ions. These data indicate that the presence of CaO and P2O5 initiates phase separation and subsequent crystallization of the parent and doped glasses. Weight loss data indicate that glass-ceramics are obviously durable than the parent glasses. SEM micrographs of glass-ceramics before immersion show multiconstituent crystalline phases due to the basic chemical composition consisting of multicomponent mixed alkali and alkaline earth oxides beside P2O5 and with the main B2O3 constituent. After immersion, the crystalline phases are identified to be more distinct in different shapes because of the multi-composition involved.

  2. Structure and luminescence properties of Dy2O3 doped bismuth-borate glasses

    International Nuclear Information System (INIS)

    Mugoni, Consuelo; Gatto, C.; Pla-Dalmau, A.; Siligardi, C.

    2017-01-01

    In this study heavy bismuth-borate glasses were studied as host matrices of Dy 2 O 3 rare earth, for potential application as scintillator materials in high energy physics experiments and in general radiation detection systems. Glass matrices were prepared from 20BaO-xBi 2 O 3 -(80-x)B 2 O 3 (x = 20, 30, 40 mol%) ternary systems and synthesized by the melt-quenching method at different temperatures in order to obtain high density and high transparency in the UV/Vis range. Particularly, the glass manifesting the higher transparency and with sufficiently high density was doped with Dy 2 O 3 (2.5 and 5 mol%) in order to induce the luminescence characteristics. The effects of Bi 2 O 3 and Dy 2 O 3 on density, thermal behaviour, transmission as well as luminescence properties under UV excitation, were investigated. The experimental results show that the synthesized glasses can be considered promising candidate materials as dense scintillators, due to the Dy 3+ centres emission.

  3. Silver lead borate glasses doped with europium ions for phosphors

    Indian Academy of Sciences (India)

    From the differential scanning calorimetry studies, the glass transition temperatures ( T g )have been investigated and their values are ranging from 449 to 458 ∘ C. The investigation of Fourier transformer infraredspectra shows the presence of boron atoms in both BO 3 and BO 4 units in the glass network. In addition, it was ...

  4. Spectroscopic properties of Pr{sup 3+} ions embedded in lithium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ramteke, D.D. [Department of Applied Physics, Visvesvaraya National Institute of Technology, Nagpur 440010 (India); Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Gedam, R.S., E-mail: rupesh_gedam@rediffmail.com [Department of Applied Physics, Visvesvaraya National Institute of Technology, Nagpur 440010 (India)

    2016-01-01

    A series of lithium borate glasses with different Pr{sup 3+} contents were prepared by the melt quench technique to explore the new material for solid state light applications. We found that the addition of Pr{sup 3+} ions in the glass matrix has a profound effect on the properties of the glasses. The presence of Pr{sup 3+} ions in the glass matrix created various absorption bands compared to the base glass. These bands were due to the ground state ({sup 3}H{sub 4}) of the Pr{sup 3+} to the various excited states. Optical energy band gap was calculated by Tauc's method which showed a decreasing trend with an increase in the Pr{sup 3+} content. This might be due to structural changes when the glass structure became rigid due to the Pr{sup 3+} ions and this was confirmed by the density results. Rigidity of the glass structure was further confirmed by the Fourier transformed infrared results. The excitation spectra showed bands at {sup 3}H{sub 4}→{sup 3}P{sub 2}, {sup 3}P{sub 1} and {sup 3}P{sub 0} nm. The {sup 3}H{sub 4}→{sup 3}P{sub 2} band was used to study the unresolved {sup 1}D{sub 2}→{sup 3}H{sub 4} and {sup 3}P{sub 0}→{sup 3}H{sub 6} transitions of the Pr{sup 3+} ions.

  5. Thermoluminescence dosimetry properties and kinetic parameters of lithium potassium borate glass co-doped with titanium and magnesium oxides

    International Nuclear Information System (INIS)

    Hashim, S.; Alajerami, Y.S.M.; Ramli, A.T.; Ghoshal, S.K.; Saleh, M.A.; Abdul Kadir, A.B.; Saripan, M.I.; Alzimami, K.; Bradley, D.A.; Mhareb, M.H.A.

    2014-01-01

    Lithium potassium borate (LKB) glasses co-doped with TiO 2 and MgO were prepared using the melt quenching technique. The glasses were cut into transparent chips and exposed to gamma rays of 60 Co to study their thermoluminescence (TL) properties. The TL glow curve of the Ti-doped material featured a single prominent peak at 230 °C. Additional incorporation of MgO as a co-activator enhanced the TL intensity threefold. LKB:Ti,Mg is a low-Z material (Z eff =8.89) with slow signal fading. Its radiation sensitivity is 12 times lower that the sensitivity of TLD-100. The dose response is linear at doses up to 10 3 Gy. The trap parameters, such as the kinetics order, activation energy, and frequency factor, which are related to the glow peak, were determined using TolAnal software. - Highlights: • Lithium potassium borate glass doped with Ti and Mg was prepared. • The material is close to soft tissues in terms of Zeff. • The radiation sensitivity is about 12 times lower than that of TLD-100. • The signal fades about 8% in 10 days and 17% in 3 months

  6. Ion-conductivity of thin film Li-Borate glasses

    International Nuclear Information System (INIS)

    Abouzari, M.R.S.

    2007-01-01

    In this thesis, the specific conductivity of ion-sputtered lithium borate thin films is studied. To this end, lithium borate glasses of the composition yLi 2 O.(1-y)B 2 O 3 with y=0.15, 0.20, 0.25, and 0.35 were produced as sputter targets. Films with thicknesses between 7 nm and 700 nm are deposited on silicon substrate between two AlLi electrodes. Conductivity spectra have been taken over a frequency range of 5 Hz to 2 MHz. The measurements were performed at different temperatures between 40 C and 350 C depending on the thickness and the composition of the films. The following results are derived by studying the conductivities of the films: i) The specific dc conductivity of layers with thicknesses larger than 150 nm is independent of their thicknesses; we call these layers 'thick films' and consider their conductivity as the 'base conductivity'. ii) The specific dc conductivity of layers with thicknesses smaller than 150 nm, called 'thin films', depends on the layer thickness. A nontrivial enhancement of the specific dc conductivity about three orders of magnitude for y=0.15, 0.2, and 0.25 is observed. iii) The base conductivity depends on y and at 120 C it varies between 4 x 10 -10 Ω -1 cm -1 and 2.5 x 10 -6 Ω -1 cm -1 when y varies between 0.15 and 0.35, whereas the maximum value of the specific dc conductivity of extremely thin films (with a thickness of some nanometre) seems to be independent of y and equals to the specific dc conductivity of layers with y= 0.35. Furthermore, we found in this work a physical interpretation of the so-called 'Constant Phase Element' (CPE) which is widely used in equivalent circuits for ionic conductors. This element describes correctly the depressed impedance semicircles observed in impedance spectroscopy. So far, this effect is sometimes attributed to the surface roughness. We have shown not only the invalidity of this approach, but we have also found that the depression arises from the nature of ionic motions. The model

  7. Multimodal emissions from Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate glass: Upconversion, downshifting and quantum cutting

    Energy Technology Data Exchange (ETDEWEB)

    Bahadur, A.; Yadav, R.S.; Yadav, R.V.; Rai, S.B., E-mail: sbrai49@yahoo.co.in

    2017-02-15

    This paper reports the optical properties of Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method. The absorption spectrum of the Yb{sup 3+} doped LB glass contains intense NIR band centered at 976 nm due to {sup 2}F{sub 7/2}→{sup 2}F{sub 5/2} transition. The emission spectra of the prepared glasses have been monitored on excitation with 266, 355 and 976 nm. The Yb{sup 3+} doped glass emits a broad NIR band centered at 976 nm whereas the Tb{sup 3+} doped glass gives off visible bands on excitations with 266 and 355 nm. When the Tb{sup 3+} and Yb{sup 3+} ions are co-doped together, the emission intensity in the visible region decreases whereas it increases in the NIR region significantly. The increase in the emission intensity in the NIR region is due to efficient cooperative energy transfer (CET) from Tb{sup 3+} to Yb{sup 3+} ions. The quantum cutting efficiency for Tb{sup 3+}/Yb{sup 3+} co-doped glass has been calculated and compared for 266 and 355 nm excitations. The quantum cutting efficiency is larger for 355 nm excitation (137%). The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass also emits upconverted visible bands on excitation with 976 nm. The mechanisms involved in the energy transfer have been discussed using schematic energy level diagram. The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may be used in the optical devices and in solar cell for solar spectral conversion and behaves as a multi-modal photo-luminescent material. - Graphical abstract: The Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method emits upconverted visible emissions through upconversion CET from Yb{sup 3+} to Tb{sup 3+} ions and quantum cutting emissions through downconversion CET from Tb{sup 3+} to Yb{sup 3+} ions. Therefore, the Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may find applications in optical devices and solar cell and behaves as a multi-modal photo-luminescent material. - Highlights: • The Tb{sup 3+}/Yb{sup 3

  8. Preparation and elastic moduli of germanate glass containing lead and bismuth.

    Science.gov (United States)

    Sidek, Hj A A; Bahari, Hamid R; Halimah, Mohamed K; Yunus, Wan M M

    2012-01-01

    This paper reports the rapid melt quenching technique preparation for the new family of bismuth-lead germanate glass (BPG) systems in the form of (GeO(2))(60)-(PbO)(40-) (x)-(½Bi(2)O(3))(x) where x = 0 to 40 mol%. Their densities with respect of Bi(2)O(3) concentration were determined using Archimedes' method with acetone as a floatation medium. The current experimental data are compared with those of bismuth lead borate (B(2)O(3))(20)-(PbO)(80-) (x)-(Bi(2)O(3))(x). The elastic properties of BPG were studied using the ultrasonic pulse-echo technique where both longitudinal and transverse sound wave velocities have been measured in each glass samples at a frequency of 15 MHz and at room temperature. Experimental data shows that all the physical parameters of BPG including density and molar volume, both longitudinal and transverse velocities increase linearly with increasing of Bi(2)O(3) content in the germanate glass network. Their elastic moduli such as longitudinal, shear and Young's also increase linearly with addition of Bi(2)O(3) but the bulk modulus did not. The Poisson's ratio and fractal dimensionality are also found to vary linearly with the Bi(2)O(3) concentration.

  9. Preparation and Elastic Moduli of Germanate Glass Containing Lead and Bismuth

    Directory of Open Access Journals (Sweden)

    Wan M. M. Yunus

    2012-04-01

    Full Text Available This paper reports the rapid melt quenching technique preparation for the new family of bismuth-lead germanate glass (BPG systems in the form of (GeO260–(PbO40−x–(½Bi2O3x where x = 0 to 40 mol%. Their densities with respect of Bi2O3 concentration were determined using Archimedes’ method with acetone as a floatation medium. The current experimental data are compared with those of bismuth lead borate (B2O320–(PbO80−x–(Bi2O3x. The elastic properties of BPG were studied using the ultrasonic pulse-echo technique where both longitudinal and transverse sound wave velocities have been measured in each glass samples at a frequency of 15 MHz and at room temperature. Experimental data shows that all the physical parameters of BPG including density and molar volume, both longitudinal and transverse velocities increase linearly with increasing of Bi2O3 content in the germanate glass network. Their elastic moduli such as longitudinal, shear and Young’s also increase linearly with addition of Bi2O3 but the bulk modulus did not. The Poisson’s ratio and fractal dimensionality are also found to vary linearly with the Bi2O3 concentration.

  10. Structure and luminescence spectra of lutetium and yttrium borates synthesized from ammonium nitrate melt

    International Nuclear Information System (INIS)

    Klassen, Nikolay V.; Shmurak, Semion Z.; Shmyt'ko, Ivan M.; Strukova, Galina K.; Derenzo, Stephen E.; Weber, Marvin J.

    2005-01-01

    Lutetium and yttrium borates doped with europium, terbium, gadolinium, etc. have been synthesized by dissolving initial oxides and nitrates in ammonium nitrate melt and thermal decomposition of the solvent. Annealings in the range of 500-1100 deg. C modified the dimensions of the grains from 2 to 3 nm to more than 100 nm. Significant dependence of the structure of lutetium borate on slight doping with rare earth ions has been found: terbium makes high-temperature vaterite phase preferential at room temperature, whereas europium stabilizes low-temperature calcite phase. Influence of the structure of the borates on the pattern of the luminescence spectra of europium dopant was observed. Possibilities for manufacturing of scintillating lutetium borate ceramics by means of this method of synthesis are discussed

  11. Structure and luminescence spectra of lutetium and yttrium borates synthesized from ammonium nitrate melt

    Science.gov (United States)

    Klassen, Nikolay V.; Shmurak, Semion Z.; Shmyt'ko, Ivan M.; Strukova, Galina K.; Derenzo, Stephen E.; Weber, Marvin J.

    2005-01-01

    Lutetium and yttrium borates doped with europium, terbium, gadolinium, etc. have been synthesized by dissolving initial oxides and nitrates in ammonium nitrate melt and thermal decomposition of the solvent. Annealings in the range of 500-1100°C modified the dimensions of the grains from 2 to 3 nm to more than 100 nm. Significant dependence of the structure of lutetium borate on slight doping with rare earth ions has been found: terbium makes high-temperature vaterite phase preferential at room temperature, whereas europium stabilizes low-temperature calcite phase. Influence of the structure of the borates on the pattern of the luminescence spectra of europium dopant was observed. Possibilities for manufacturing of scintillating lutetium borate ceramics by means of this method of synthesis are discussed.

  12. In vitro bioactivity of soda lime borate glasses with substituted SrO in sodium phosphate solution

    Directory of Open Access Journals (Sweden)

    Mohamed A. Marzouk

    2014-09-01

    Full Text Available Borate glasses with the basic composition 0.6B2O3·0.2Na2O·0.2CaO and SrO progressively substituting CaO were prepared and characterized for their bone-bonding ability. The obtained glasses were thermally treated and converted to their glass-ceramic derivatives. In this study, FTIR spectral analyses were done for the prepared glasses and glass-ceramics before and after immersion in a sodium phosphate solution for extended times. The appearance of two IR bands within the spectral range 550–680 cm-1 after immersion confirms the formation of hydroxyapatite. X-ray diffraction studies and scanning electron microscope analysis supported the obtained infrared spectroscopy results. The solubility test (measurements of the weight loss in aqueous sodium phosphate solution was conducted for measuring the dissolution of both glassy and crystalline derivatives to find out the role of SrO. The corrosion behaviour of the glasses and glass-ceramics indicate the increase of weight loss with the increase of SrO content. Different suggested proposals were introduced to explain this abnormal behaviour.

  13. Optical and spectroscopic properties of neodymium doped cadmium-sodium borate glasses

    Science.gov (United States)

    Mohan, Shaweta; Thind, Kulwant Singh

    2017-10-01

    Neodymium doped cadmium sodium borate glasses having composition xCdO-(40-x) Na2CO3-59.5H3BO3-0.5Nd2O3; x = 10, 20 and 30 mol% were prepared by conventional melt-quenching technique. X-ray diffraction studies confirmed the amorphous nature of the prepared glasses. Conventional methods were used to determine the physical properties such as density, molar volume, refractive index, and rare earth ion concentration. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. The calculated intensity parameters were further used to predict the radiative transition probability (A), radiative lifetime (τR) and branching ratio (βR) for the various fluorescent levels of Nd3+ ion in the prepared glass series. The effect of the compositional changes on the spectroscopic characteristics of Nd3+ ions have been studied and reported. The value of Ω2 is found to decrease with the decrease in the sodium content and the corresponding increase in the cadmium content. This can be ascribed to the changes in the asymmetry of the ligand field at the rare earth ion site and the change in rare earth oxygen (RE-O) covalency. Florescence spectra has been used to determine the peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σp) for the 4F3/2 → 4I9/2,4I11/2,4I13/2 transitions of the Nd3+ ion. The reasonably higher values of branching ratios and stimulated emission cross-section for the prepared glasses points towards the efficacy of these glasses as laser host materials. However, the glass with more sodium content is found to show better lasing properties.

  14. Ion-conductivity of thin film Li-Borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Abouzari, M.R.S.

    2007-12-17

    In this thesis, the specific conductivity of ion-sputtered lithium borate thin films is studied. To this end, lithium borate glasses of the composition yLi{sub 2}O.(1-y)B{sub 2}O{sub 3} with y=0.15, 0.20, 0.25, and 0.35 were produced as sputter targets. Films with thicknesses between 7 nm and 700 nm are deposited on silicon substrate between two AlLi electrodes. Conductivity spectra have been taken over a frequency range of 5 Hz to 2 MHz. The measurements were performed at different temperatures between 40 C and 350 C depending on the thickness and the composition of the films. The following results are derived by studying the conductivities of the films: i) The specific dc conductivity of layers with thicknesses larger than 150 nm is independent of their thicknesses; we call these layers 'thick films' and consider their conductivity as the 'base conductivity'. ii) The specific dc conductivity of layers with thicknesses smaller than 150 nm, called 'thin films', depends on the layer thickness. A nontrivial enhancement of the specific dc conductivity about three orders of magnitude for y=0.15, 0.2, and 0.25 is observed. iii) The base conductivity depends on y and at 120 C it varies between 4 x 10{sup -10} {omega}{sup -1}cm{sup -1} and 2.5 x 10{sup -6} {omega}{sup -1}cm{sup -1} when y varies between 0.15 and 0.35, whereas the maximum value of the specific dc conductivity of extremely thin films (with a thickness of some nanometre) seems to be independent of y and equals to the specific dc conductivity of layers with y= 0.35. Furthermore, we found in this work a physical interpretation of the so-called 'Constant Phase Element' (CPE) which is widely used in equivalent circuits for ionic conductors. This element describes correctly the depressed impedance semicircles observed in impedance spectroscopy. So far, this effect is sometimes attributed to the surface roughness. We have shown not only the invalidity of this approach, but

  15. Synthesis and optical property of holmium doped Lithium lead borate glasses

    Science.gov (United States)

    Usharani, V. L.; Eraiah, B.

    2017-05-01

    The new glass system 60B2O3-30PbO-(10-x)Li2O-xHo2O3 (where x =0, 0.1, 0.3 and 0.5 mol%) were prepared by conventional melt quenching method. The XRD spectrum confirms the amorphous nature of the sample. The density of these glasses is measured by using Archimedes principle, the values range from 4.23 g/cm-3 to 4.34 g/cm-3 and the corresponding molar volumes are calculated. The optical absorbance studies were carried out on these glasses in the wavelength range of 200nm to 1100nm. The measured optical direct band gap energies were in the range of 3.072eV to 3.259eV and the optical indirect band gap energies in the range of 2.658eV to 2.846eV. The refractive indices of these glasses were measured by using Abbe refractometer and the corresponding polarizabilities of oxide ions are calculated by using Lorentz-Lorentz relations.

  16. Moessbauer effect study of oxidation and coordination states of iron in some sodium borate glasse:;

    International Nuclear Information System (INIS)

    Eissa, N.A.; Sanad, A.M.; Youssef, S.M.; El-Henawii, S.A.; Gomaa, S.Sh.; Mostafa, A.G.

    1980-01-01

    A structural study of some sodium borate glasses containing iron was carried out applying ME spectroscopy. Both oxidation and coordination states of iron were investigated under the effect of gradual replacing of sodium carbonate by sodium nitrate in the glass batches. The glasses were melted in porcelain crucibles using an electrically heated furnace at 1000+-10 deg C, then were quenched on a steel plate at room temperature (R.T.). The ME source was 20 mCi radioactive Co-57 in chromium. The obtained ME spectra indicated that at lower sodium nitrate content both Fe 2+ and Fe 3+ are present in these glasses. At moderate concentrations some Fe 3+ ions were separated in a crystalline phase and the rest of the iron ions appeared as ferric ions in glassy state. At high sodium nitrate content only Fe 3+ ions in glassy state were detected. The values of the ME parameters for all iron ions indicated that all of them are in the octahedral coordination state. The density measurements confirm the separation of a crystalline phase at moderate sodium nitrate content. (author)

  17. Viscosity properties of sodium borophosphate glasses

    International Nuclear Information System (INIS)

    Gaylord, S.; Tincher, B.; Petit, L.; Richardson, K.

    2009-01-01

    The viscosity behavior of (1 - x)NaPO 3 -xNa 2 B 4 O 7 glasses (x = 0.05-0.20) have been measured as a function of temperature using beam-bending and parallel-plate viscometry. The viscosity was found to shift to higher temperatures with increasing sodium borate content. The kinetic fragility parameter, m, estimated from the viscosity curve, decreases from 52 to 33 when x increases from 0.05 to 0.20 indicating that the glass network transforms from fragile to strong with the addition of Na 2 B 4 O 7 . The decrease in fragility with increasing x is due to the progressive depolymerization of the phosphate network by the preferred four-coordinated boron atoms present in the low alkali borate glasses. As confirmed by Raman spectroscopy increasing alkali borate leads to enhanced B-O-P linkages realized with the accompanying transition from solely four-coordinated boron (in BO 4 units) to mixed BO 4 /BO 3 structures. The glass viscosity characteristics of the investigated glasses were compared to those of P-SF67 and N-FK5 commercial glasses from SCHOTT. We showed that the dependence of the viscosity of P-SF67 was similar to the investigated glasses due to similar phosphate network organization confirmed by Raman spectroscopy, whereas N-FK5 exhibited a very different viscosity curve and fragility parameter due to its highly coordinated silicate network

  18. Spectroscopic investigation on europium doped heavy metal borate glasses for red luminescent application

    Energy Technology Data Exchange (ETDEWEB)

    Hegde, Vinod; Wagh, Akshatha; Kamath, Sudha D. [Manipal University, Department of Physics, Manipal Institute of Technology, Manipal (India); Hegde, Hemanth [Manipal University, Department of Chemistry, Manipal Institute of Technology, Manipal (India); Vishwanath, C.S.D. [Sri Venkateswara University, Department of Physics, Tirupati (India)

    2017-05-15

    The present study explores a new borate family glasses based on 10ZnO-5Na{sub 2}O-10Bi{sub 2}O{sub 3}-(75 - x) B{sub 2}O{sub 3}-xEu{sub 2}O{sub 3} (x = 0, 0.1, 0.5, 1, 1.5, 2, 3 mol%) composition, synthesized by rapid melt quench technique. Prepared glasses were subjected to the density and refractive index measurements and their values were used to calculate other physical properties of the glass matrix as a function of Eu{sup 3+} concentration. XRD confirmed amorphous nature of the glasses. FTIR spectra in the absorption mode were recorded in the 400-4000 cm{sup -1} region to identify different functional groups in the glass matrix. Deconvoluted FTIR spectra showed increase in BO{sub 4} units with rise in europium content which confirmed the 'network strengthener' role of europium ions by creating bridging oxygens (BOs). Optical properties were investigated for their luminescence behavior through various spectroscopic techniques such as UV-Vis-NIR absorption, excitation, emission, decay profiles, and color measurements at room temperature. Lasing properties of the glasses like total radiative life time, branching ratio, emission cross section, and optical gain were obtained from the calculated Judd-Ofelt (Ω{sub 2},Ω{sub 4}) intensity parameters. From the measured values of emission, cross sections, branching ratios, life times, strong photoluminescence features, and CIE chromaticity coordinates, 0.5 mol% of Eu{sup 3+} ions doped ZnNaBiB glasses showed optimum performance and are potential candidate for red light generation at 613 nm. (orig.)

  19. Processing and optical characterization of lead calcium titanate borosilicate glass doped with germanium

    Science.gov (United States)

    Gautam, C. R.; Das, Sangeeta; Gautam, S. S.; Madheshiya, Abhishek; Singh, Anod Kumar

    2018-04-01

    In this study, various compositions of lead calcium titanate borosilicate glass doped with a fixed amount of germanium were synthesized using the rapid melt quench technique. The amorphous nature of the synthesized glass was confirmed by X-ray diffraction and scanning electron microscopy analyses. The structural and optical properties were deduced using Raman, Fourier transform infrared (FTIR), and ultraviolet-visible (UV-Vis) spectroscopy. FTIR spectroscopy confirmed the presence of borate groups in triangular and tetrahedral coordination. Infrared and Raman analyses detected the vibrational bonds of Gesbnd Osbnd Ge, Bsbnd Osbnd Ge, Sisbnd Osbnd Ge, Sisbnd Osbnd Si, and Pbsbnd Osbnd Ge. The energy band gaps were evaluated for the prepared glass samples based on Tauc plots of the UV-Vis spectra. The calculated values of the optical band gap decreased from 2.91 to 2.85 eV as the PbO content increased from x = 0.0 to x = 0.7. Furthermore, the Urbach energy was studied based on the UV-Vis results to confirm the disordered structure of the glass. The calculated densities of the glass samples (1.5835 g/cm3 to 3.9184 g/cm3) increased as the concentration of PbO increased, whereas they decreased with the molar volume.

  20. Lead-iron phosophate glass

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.

    1988-01-01

    The lead-iron phosphate nuclear waste glasses (LIPNWG) are the subject of the present chapter. They were discovered in 1984 while the authors were attempting to find a sintering aid for certain types of crystalline monazite ceramic high-level nuclear waste forms. In the present chapter, the term waste glass is synonymous with nuclear waste glass (NWG), and the acronym LIP is often used for lead-iron phosphate. Lead-iron phosphate glasses, like many of the previously studied phosphate glasses, are corrosion resistant in aqueous solutions at temperatures below 100 degrees C, and they can be melted and poured at temperatures that are relatively low in comparison with the processing temperatures required for current silicate glass compositions. Unlike the phosphate glasses investigated previously, however, LIPNWGs do not suffer from alteration due to devitrification during realistic and readily, achievable cooling periods. Additionally, lead-iron phosphate glass melts are not nearly as corrosive as the sodium phosphate melts investigated during the 1960s; and, therefore, they can be melted and processed using crucibles made from a variety of materials

  1. Silver lead borate glasses doped with europium ions for phosphors ...

    Indian Academy of Sciences (India)

    2017-07-25

    Jul 25, 2017 ... C. The investigation of Fourier transformer infrared spectra shows the presence of ... around the ions, these kinds of Eu3+ doped glasses find wide range of ... is attributed to hydroxyl (OH) or water group [12]. The broad water ...

  2. lead glass brick

    CERN Multimedia

    When you look through the glass at a picture behind, the picture appears raised up because light is slowed down in the dense glass. It is this density (4.06 gcm-3) that makes lead glass attractive to physicists. The refractive index of the glass is 1.708 at 400nm (violet light), meaning that light travels in the glass at about 58% its normal speed. At CERN, the OPAL detector uses some 12000 blocks of glass like this to measure particle energies.

  3. Effect of CeO2 addition on electrical and optical properties of lithium borate glasses

    International Nuclear Information System (INIS)

    Gedam, R.S.; Ramteke, D.D.

    2011-01-01

    Rare earth (RE) ions play an important role in modern technology as an active ion in many optical materials. RE-doped glasses were used in many optical devices because of abundant number of the absorption and emission bands arising from the transitions between the RE elements energy levels. Among all rare earth, glasses containing CeO 2 are extensively studied for scintillating applications. Radiation length of CeO 2 containing lithium silicate glasses decreases and absorption edge in transmittance shift towards longer wavelength. In the present study an attempt has been made to verify similar results in borate containing glasses. Therefore glass series 15Li 2 O-xCeO 2 -(85''x)B 2 O 3 where x= 0.25, 0.5, 0.75, 1 mol% was prepared by conventional melt quench technique. Their electrical and optical properties have been investigated. It is observed that the conductivity of these glasses decreases while density, glass transition temperature and refractive index increases with the addition of CeO 2 . The conductivity of the glasses is mostly controlled by the activation energy. Since the lithium fraction in the present series is kept constant, the decrease in conductivity for glasses may be attributed to the reduction in the number of available vacant sites for the mobile lithium ions when boron is substituted with CeO 2 . The radiation length was determined using density values and it was found to decrease with the addition of CeO 2 . The absorption coefficient a were determined near the absorption edge of different photon energy for all glass samples and plot of (αhν) 1/2 Vs. hν (Tauc's plot) is shown. It is observed that the optical band gap energy (E g Opt ) decreases with the addition of CeO 2

  4. XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on LiNbO3 and LiNb3O8 nano-crystallite phases in lithium borate glass system.

    Science.gov (United States)

    Kashif, Ismail; Soliman, Ashia A; Sakr, Elham M; Ratep, Asmaa

    2013-09-01

    Glasses of various compositions in the system 90 Li2B4O7-10 Nb2O5 mixed with T.M ions (where T.M is the transition metal) were prepared by quenching technique. Heat-treatment of the parent glasses was performed at 540, 570 and 620 °C, for 5 and 16 h. The glass structure evolution during the controlled crystallization was examined by XRD and FT-IR spectroscopy analysis. The crystalline phases present in the glass ceramics were identified via X-ray diffraction as a function of heat treatment. The FT-IR data propose for these glasses and heat-treated glass network structures mainly built by: di-, tri-, tetra-, penta-and ortho-borate groups. It was found that the quantitative evolution of these various borate species in the glass structures is influenced by the transition metal. A detailed discussion relating to the N4 evolution with the T.M content was made. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Immobilization of gadolinium in iron borophosphate glasses and iron borophosphate based glass-ceramics: Implications for the immobilization of plutonium(Ⅲ)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fu, E-mail: wangfu@swust.edu.cn; Liao, Qilong, E-mail: liaoqilong@swust.edu.cn; Dai, Yunya; Zhu, Hanzhen

    2016-08-15

    Immobilization of gadolinium (Gd), a nonradioactive surrogate for Pu{sup 3+}, in iron borophosphate glasses/glass-ceramics (IBP glasses/glass-ceramics) has been investigated. The IBP glass containing 4 mol% Gd{sub 2}O{sub 3} is homogeneously amorphous. At higher Gd{sub 2}O{sub 3} concentrations, additional Gd is retained in the glasses as crystalline inclusions of monazite GdPO{sub 4} crystalline phase detected with X-ray diffraction. Moreover, Gd{sub 2}O{sub 3} addition increases the T{sub g} of the IBP glasses in glass formation range, which is consistent with the structural modification of the glasses. The structure of the Gd{sub 2}O{sub 3}-loaded IBP glasses/glass-ceramics is mainly based on pyrophosphate units. The chemical durability of Gd{sub 2}O{sub 3}-loaded IBP glasses/glass-ceramics is comparable to widely used borosilicate glass waste forms and the existence of monazite GdPO{sub 4} crystalline phase does not degrade the aqueous chemical durability of the IBP glasses/glass-ceramics. The Gd-loading results imply that the solubility should not be a limiting factor in processing nuclide Pu{sup 3+} if the formed crystalline phase(s) have high chemical durability. - Highlights: • Monazite GdPO{sub 4} are identified in the IBP glasses containing up to 6 mol% Gd{sub 2}O{sub 3}. • R{sub L} of the Gd{sub 2}O{sub 3}-loaded IBP glasses/glass-ceramics are about 10{sup −2} g m{sup −2} d{sup −1}. • Existence of GdPO{sub 4} does not degrade aqueous chemical durability of the IBP glass. • T{sub g} increases with increasing Gd{sub 2}O{sub 3} content in glass formation range. • IBP glasses are potential hosts for the immobilization of Pu{sup 3+} containing HLWs.

  6. Statistical approach to study of lithium magnesium metaborate glasses

    Directory of Open Access Journals (Sweden)

    Nedyalkova Miroslava

    2017-03-01

    Full Text Available Alkali borate glasses and alkaline earth borate glasses are commonly used materials in the field of optoelectronics. Infrared (FTIR and Raman spectroscopy are valuable tools for structural investigation of borate glass networks. The compositional and structural variety of lithium magnesium metaborate glasses is usually determined by traditional instrumental methods. In this study a data set is classified by structural and physicochemical parameters (FTIR, Raman spectra, glass transition temperature-Tg. Characterisation of magnesium containing metaborate glasses by multivariate statistics (hierarchical cluster analysis to reveal potential relationships (similarity or dissimilarity between the type of glasses included in the data set using specific structural features available in the literature is conducted. The clustering of the glass objects indicates a good separation of different magnesium containing borate glass compositions. The grouping of variables concerning Tg and structural data for BO3 and BO4 linkage confirms that BO4/BO3 ratios strongly affect Tg. Additionally, patterns of similarity could be detected not only between the glass composition but also between the features (variables describing the glasses. The proposed approach can be further used as an expert tool for glass properties prediction or fingerprinting (identification of unknown compositions.

  7. Investigation of Gamma and Neutron Shielding Parameters for Borate Glasses Containing NiO and PbO

    OpenAIRE

    Singh, Vishwanath P.; Badiger, N. M.

    2014-01-01

    The mass attenuation coefficients, μ/ρ, half-value layer, HVL, tenth-value layer, TVL, effective atomic numbers, ZPIeff, and effective electron densities, Ne,eff, of borate glass sample systems of (100-x-y) Na2B4O7 : xPbO : yNiO (where x and y=0, 2, 4, 6, 8, and 10 weight percentage) containing PbO and NiO, with potential gamma ray and neutron shielding applications, have been investigated. The gamma ray interaction parameters, μ/ρ, HVL, TVL, ZPIeff, and Ne,eff, were computed for photon energ...

  8. Dosimetric properties of germanium doped calcium borate glass subjected to 6 MV and 10 MV X-ray irradiations

    Science.gov (United States)

    Tengku Kamarul Bahri, T. N. H.; Wagiran, H.; Hussin, R.; Saeed, M. A.; Hossain, I.; Ali, H.

    2014-10-01

    Germanium doped calcium borate glasses are investigated in term of thermoluminescence properties to seek their possibility to use as glass radiation dosimeter. The samples were exposed to 6 MV, and 10 MV photon beams in a dose range of 0.5-4.0 Gy. There is a single and broad thermoluminescence glow curve that exhibits its maximum intensity at about 300 °C. Linear dose response behavior has been found in this dose range for the both photon energies. Effective atomic number, TL sensitivity, and reproducibility have also been studied. It is found that the sensitivity of germanium doped sample at 6 MV is only 1.28% and it is superior to the sensitivity at 10 MV. The reproducibility of germanium doped sample is good with a percentage of relative error less than 10%. The results indicate that this glass has a potential to be used as a radiation dosimetry, especially for application in radiotherapy.

  9. Study on borate glass system containing with Bi2O3 and BaO for gamma-rays shielding materials: Comparison with PbO

    International Nuclear Information System (INIS)

    Kaewkhao, J.; Pokaipisit, A.; Limsuwan, P.

    2010-01-01

    In this work, the mass attenuation coefficients and shielding parameters of borate glass matrices containing with Bi 2 O 3 and BaO have been investigated at 662 keV, and compare with PbO in same glass structure. The theoretical values were calculated by WinXCom software and compare with experiential data. The results found that the mass attenuation coefficients were increased with increasing of Bi 2 O 3 , BaO and PbO concentration, due to increase photoelectric absorption of all glass samples. However, Compton scattering gives dominant contribution to the total mass attenuation coefficients for studied glass samples. Moreover the half value layers (HVL) of glass samples were also better than ordinary concretes and commercial window glass. These results reflecting that the Bi-based glass can use replace Pb in radiation shielding glass. In the case of Ba, may be can use at appropriate energy such as X-rays or lower.

  10. Fluoride removal performance of glass derived hydroxyapatite

    International Nuclear Information System (INIS)

    Liang, Wen; Zhan, Lei; Piao, Longhua; Russel, Christian

    2011-01-01

    Research highlights: → Novel sodium calcium borate glass derived hydroxyapatite (G-HAP) is prepared. → Micro-G-HAP adsorbs F - ions in solutions more effectively than commercial nano-HAP. → The adsorption kinetics and isotherms are well fitted by a second order kinetic model and Freundlich isotherm model. -- Abstract: A novel sodium calcium borate glass derived hydroxyapatite (G-HAP) with different ranges of particle size was prepared by immersion sodium calcium borate glass in 0.1 M K 2 HPO 4 solution by the ratio of 50 g L -1 for 7 days. The unique advantage of G-HAP for the adsorption of fluoride ions in solutions was studied. The effects of size and quantity of particles, pH value and adsorption time on adsorption performance were investigated. The maximum adsorption capacity was 17.34 mg g -1 if 5 g L -1 , - in solution more effectively than commercial nano-HAP, which makes potential application of the G-HAP in removing the fluoride ions from wastewater. The adsorption kinetics and isotherms for F - could be well fitted by a second order kinetic model and Freundlich isotherm model respectively, which could be used to describe the adsorption behavior. The mechanism of G-HAP in immobilizing F - from aqueous solutions was investigated by the X-ray diffraction (XRD), infrared spectra (IR) and scanning electron microscopy (SEM).

  11. Physical, optical and structural studies of copper-doped lead ...

    Indian Academy of Sciences (India)

    2018-05-23

    May 23, 2018 ... Physical, optical and structural studies of copper-doped lead oxychloro ... to the borate glass system increases the Raman scattering cross-section by ..... equations (6) and (7), molar refraction and electronic polariz- ability are ...

  12. Method for ultimate disposition of borate containing radioactive wastes by vitrification

    International Nuclear Information System (INIS)

    Bege, D.; Faust, H.J.; Puthawala, A.; Stunkel, H.

    1984-01-01

    Method for the ultimate disposition of radioactive wastes by vitrification, in which weak to medium radioactive waste concentrates from borate-containing radioactive liquids are mixed with added glass-forming materials, maximally in a ratio of 1:3, and the mixture heated to obtain a glass-forming melt

  13. Spherical 2+p spin-glass model: An exactly solvable model for glass to spin-glass transition

    International Nuclear Information System (INIS)

    Crisanti, A.; Leuzzi, L.

    2004-01-01

    We present the full phase diagram of the spherical 2+p spin-glass model with p≥4. The main outcome is the presence of a phase with both properties of full replica symmetry breaking phases of discrete models, e.g., the Sherrington-Kirkpatrick model, and those of one replica symmetry breaking. This phase has a finite complexity which leads to different dynamic and static properties. The phase diagram is rich enough to allow the study of different kinds of glass to spin glass and spin glass to spin glass phase transitions

  14. Physical, structural and luminescence investigation of Eu3+-doped lithium-gadolinium bismuth-borate glasses for LEDs

    Science.gov (United States)

    Zaman, F.; Rooh, G.; Srisittipokakun, N.; Wongdeeying, C.; Kim, H. J.; Kaewkhao, J.

    2018-06-01

    The aim of the current report is to fabricate Eu3+-doped glasses with the chemical composition of 50Li2O-15Gd2O3-5Bi2O3-(30-x)B2O3-xEu2O3 (where x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol%), with the help of conventional melt quenching technique. The fabricated glasses have been studied with help of physical, structural and luminescence properties for application of LEDs. The structural properties were investigated by XRD and FTIR spectra. Physical properties have been measured. Direct and indirect optical energy band gap (Eg) have been calculated and found to be increasing with Eu2O3 concentration. Luminescence spectra have been observed from photo and radioluminescence spectra and found in good agreement with each other, however the concentration quenching was not determined for the samples. The high-covalence and asymmetric nature was confirmed from Photoluminescence emission and RL emission transition as well as from the higher values of luminescence intensity ratio. The JO parameters have been found for the better performance of lasing materials. The lifetime's data have been found to be decreasing from 1.64 to 1.50 ms, which is the confirmation of energy transfer in Eu3+ ions through cross relaxations. From the calculated properties it has been suggested that the present glass samples might be good for red-light emitting devices.

  15. Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Omar Rodriguez

    2016-12-01

    Full Text Available Silica-based and borate-based glass series, with increasing amounts of TiO2 incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion closer to the substrate’s (Ti6Al4V CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO2 in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO2 to the glass structure enhances its toughness, while decreasing its bulk hardness. Borate-based glass BRT3, with 15 mol % TiO2 incorporated, exhibits superior properties overall compared to the other proposed glasses in this work, as well as 45S5 Bioglass® and Pyrex.

  16. Dosimetric properties of germanium doped calcium borate glass subjected to 6 MV and 10 MV X-ray irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Tengku Kamarul Bahri, T.N.H., E-mail: tnhidayah2@gmail.com [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru (Malaysia); Wagiran, H.; Hussin, R.; Saeed, M.A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru (Malaysia); Hossain, I. [Department of Physics, College of Science and Arts, King Abdul Aziz University, 21911 Rabigh (Saudi Arabia); Ali, H. [Department of Radiotherapy and Oncology, Hospital Sultan Ismail, 81100 Johor Bahru (Malaysia)

    2014-10-01

    Highlights: •The TL properties of 29.9CaO–70B{sub 2}O{sub 3}: 0.1GeO{sub 2} glass has been investigated. •We exposed glass samples to 6 MV and 10 MV in a dose range of 0.5–4.0 Gy. •This glass has a potential material to be used for application in radiotherapy. -- Abstract: Germanium doped calcium borate glasses are investigated in term of thermoluminescence properties to seek their possibility to use as glass radiation dosimeter. The samples were exposed to 6 MV, and 10 MV photon beams in a dose range of 0.5–4.0 Gy. There is a single and broad thermoluminescence glow curve that exhibits its maximum intensity at about 300 °C. Linear dose response behavior has been found in this dose range for the both photon energies. Effective atomic number, TL sensitivity, and reproducibility have also been studied. It is found that the sensitivity of germanium doped sample at 6 MV is only 1.28% and it is superior to the sensitivity at 10 MV. The reproducibility of germanium doped sample is good with a percentage of relative error less than 10%. The results indicate that this glass has a potential to be used as a radiation dosimetry, especially for application in radiotherapy.

  17. Dosimetric properties of germanium doped calcium borate glass subjected to 6 MV and 10 MV X-ray irradiations

    International Nuclear Information System (INIS)

    Tengku Kamarul Bahri, T.N.H.; Wagiran, H.; Hussin, R.; Saeed, M.A.; Hossain, I.; Ali, H.

    2014-01-01

    Highlights: •The TL properties of 29.9CaO–70B 2 O 3 : 0.1GeO 2 glass has been investigated. •We exposed glass samples to 6 MV and 10 MV in a dose range of 0.5–4.0 Gy. •This glass has a potential material to be used for application in radiotherapy. -- Abstract: Germanium doped calcium borate glasses are investigated in term of thermoluminescence properties to seek their possibility to use as glass radiation dosimeter. The samples were exposed to 6 MV, and 10 MV photon beams in a dose range of 0.5–4.0 Gy. There is a single and broad thermoluminescence glow curve that exhibits its maximum intensity at about 300 °C. Linear dose response behavior has been found in this dose range for the both photon energies. Effective atomic number, TL sensitivity, and reproducibility have also been studied. It is found that the sensitivity of germanium doped sample at 6 MV is only 1.28% and it is superior to the sensitivity at 10 MV. The reproducibility of germanium doped sample is good with a percentage of relative error less than 10%. The results indicate that this glass has a potential to be used as a radiation dosimetry, especially for application in radiotherapy

  18. Diffusion and ionic conduction in oxide glasses

    International Nuclear Information System (INIS)

    Mehrer, H; Imre, A W; Tanguep-Nijokep, E

    2008-01-01

    The ion transport properties of soda-lime silicate and alkali borate glasses have been studied with complimentary tracer diffusion and impedance spectroscopy techniques in order to investigate the ion dynamics and mixed-alkali effect (MAE). In soda-lime silicate glasses the tracer diffusivity of 22 Na alkali ions is more than six orders of magnitude faster than the diffusivity of earth alkali 45 Ca ions. This observation is attributed to a stronger binding of bivalent earth alkali ions to the glass network as compared to that of alkali ions. The conductivity of the investigated standard soda-lime silicate glasses is mostly due to the high mobility of sodium ions and a temperature independent Haven ratio of about 0.45 is obtained. For single alkali sodium-borate glasses, the Haven ratio is also temperature independent, however, it is decreases with decreasing temperature for rubidium-borate glass. The MAE was investigated for Na-Rb borate glasses and it was observed that the tracer diffusivities of 22 Na and 86 Rb ions cross, when plotted as function of the relative alkali content. This crossover occurs near the Na/(Na+Rb) ratio of the conductivity minimum due to MAE. The authors suggest that this crossover and the trend of diffusion coefficients is the key to an understanding of the MAE

  19. The role of halides on a chromium ligand field in lead borate glasses

    Science.gov (United States)

    Sekhar, K. Chandra; Srinivas, B.; Narsimlu, N.; Narasimha Chary, M.; Shareefuddin, Md

    2017-10-01

    Glasses with a composition of PbX-PbO-B2O3 (X  =  F2, Cl2 and Br2) containing Cr3+ ions were prepared by a melt quenching technique and investigated by using x-ray diffraction (XRD), optical absorption and electron paramagnetic resonance (EPR) studies. X-ray diffractograms revealed the amorphous nature of the glasses. The density and molar volume were determined. Density values increased for the PFPBCR glass system and decreased for the PCPBCR and PBPBCR glass systems with the composition. Optical absorption spectra were recorded at room temperature (RT) to evaluate the optical band gap E opt and Urbach energies. All the spectra showed characteristic peaks at around 450 nm, 600 nm and 690 nm, and they are assigned to 4 A 2g  →  4 T 1g, 4 A 2g  →  4 T 2g, 4 A 2g  →  2 E transitions respectively. From the optical absorption spectral data, the crystal field (D q ) and Racah parameters (B and C) have been evaluated. Variations in optical band gaps were explained using the electro negativity of halide ions. Electron paramagnetic resonance (EPR) studies were carried out by introducing Cr3+ as the spin probe. The EPR spectra of all the glass samples were recorded at X-band frequencies. The EPR spectra exhibit two resonance signals with effective g values at g  ≈  4.82 and g  ≈  1.99 and are attributed to isolated Cr3+ ions and exchange coupled Cr3+ pairs respectively. The number of spins along with susceptibility are also calculated from the EPR spectra.

  20. Physical and optical studies in mixed alkali borate glasses with three types of alkali ions

    International Nuclear Information System (INIS)

    Samee, M.A.; Awasthi, A.M.; Shripathi, T.; Bale, Shashidhar; Srinivasu, Ch.; Rahman, Syed

    2011-01-01

    Research highlights: → We report, for the first time, the mixed alkali effect in the (40-x)Li 2 O-xNa 2 O-10K 2 O-50B 2 O 3 glasses through optical properties, density and modulated DSC studies. → Optical band gap (E opt ) and Urbach energy (ΔE) have been evaluated. → The values of E opt and ΔE show non-linear behavior with compositional parameter showing the mixed alkali effect. → The glass stability S is observed to be less which may be important for the present glasses as promising material for non-optical applications. - Abstract: So far only a handful of publications have been concerned with the study of the mixed alkali effect in borate glasses containing three types of alkali ions. In the present work, the mixed alkali effect (MAE) has been investigated in the glass system (40-x)Li 2 O-xNa 2 O-10K 2 O-50B 2 O 3 . (0 ≤ x ≤ 40 mol%) through density and modulated DSC studies. The density and glass transition temperature of the present glasses varies non-linearly exhibiting mixed alkali effect. The glass stability is observed to be less which may be important for the present glasses as promising material for non-optical applications. We report, for the first time, the mixed alkali effect in the present glasses through optical properties. From the absorption edge studies, the values of indirect optical band gap (E opt ), direct optical band gap and Urbach energy (ΔE) have been evaluated. The values of E opt and ΔE show non-linear behavior with compositional parameter showing the mixed alkali effect. The average electronic polarizability of oxide ions α O 2- , optical basicity Λ, and Yamashita-Kurosawa's interaction parameter A have been examined to check the correlations among them and bonding character. Based on good correlation among electronic polarizability of oxide ions, optical basicity and interaction parameter, the present Li 2 O-Na 2 O-K 2 O-B 2 O 3 glasses are classified as normal ionic (basic) oxides.

  1. Physical, thermal, structural and optical properties of Dy3+ doped lithium alumino-borate glasses for bright W-LED

    International Nuclear Information System (INIS)

    Pawar, P.P.; Munishwar, S.R.; Gautam, S.; Gedam, R.S.

    2017-01-01

    Rare earth (RE) doped glasses have potential applications due to their emission efficiencies of 4f–4 f and 4f–5d electronic transitions. Among all the rare earths, Dy 3+ doped glasses have drawn much interest among the researchers for their intense emission in the visible region from 470 to 500 nm and around 570 to 600 nm. The physical, thermal, structural and optical properties of Dy 3+ doped lithium alumino-borate glasses (LABD glasses) have been studied for white LED (W-LED) application. The glasses were synthesized by conventional melt quench technique. X-ray diffraction spectra revealed the amorphous nature of the glass sample. An FTIR spectrum was carried out to study the glass structure and various functional groups present in the LABD glasses. Optical absorption spectra were recorded by UV–vis-NIR spectrometer. Allowed direct and indirect band gaps were obtained by Tauc's plot. Thermal parameters like glass thermal stability (∆T), Hruby's parameter (K gl ), etc. were calculated by DTA graph. Photoluminescence excitation and emission spectra's were measured at room temperature. The emission spectra shows two intense emission bands at around 482 nm (blue) and 574 nm (yellow) corresponds to the 4 F 9/2 → 6 H 15/2 and 4 F 9/2 → 6 H 13/2 transitions respectively along with one feeble band at 662 nm (red) corresponds to 4 F 9/2 → 6 H 11/2 transition. The CIE chromaticity co-ordinates were calculated for all glass samples. CIE chromaticity diagram shows glass LABD-4 containing 0.5 mol% Dy 2 O 3 with colour co-ordinates X = 0.34 and Y = 0.38 have highest emission intensity. These glasses having emission in the white region and thus can be used for bright white LED.

  2. Effect of lead species on the durability of simulated nuclear waste glass

    International Nuclear Information System (INIS)

    Kuchinski, F.A.

    1987-01-01

    It has been shown that the incorporation of lead metal into the corrosion environment reduces the leaching rate of nuclear waste glasses. The present study evaluated the effects of lead metal, oxides, alloys, glasses and soluble species on the corrosion rate of a waste glass. The inherent durability of nuclear waste glasses comes from the about due to the insoluble surface film developed during corrosion. This surface film, enriched with iron, aluminum and calcium acts as a diffusion barrier to further corrosion. Except for PbO 2 , all lead species inhibited glass corrosion due to the formation of a surface film enriched in lead. No corroded glass layer was observed below the lead surface layer. Also, no glass corrosion products were found on the lead surface, except for small amounts of silicon. The transport and deposition of lead on the glass surface appears to be the key factors in preventing glass corrosion. At high glass surface area to volume ratios, the glass corroded considerably at short times since the dissolved lead source could not coat the entire glass surface rapidly enough to prevent continued corrosion. Also, experimental solution values did not agree with thermodynamics model predictions. This suggests that kinetic factors, namely diffusion barriers, are controlling the glass corrosion rate

  3. Spectroscopic properties of Yb3+ and Er3+ ions in heavy metal glasses

    International Nuclear Information System (INIS)

    Pisarski, Wojciech A.; Grobelny, Lukasz; Pisarska, Joanna; Lisiecki, Radoslaw; Ryba-Romanowski, Witold

    2011-01-01

    Highlights: → Heavy metal glasses doubly doped with Yb 3+ and Er 3+ were examined. → NIR luminescence at about 1530 nm and green and red up-conversion spectra were detected. → The unusual large spectral linewidth nearly close to 110 nm for 4 I 13/2 - 4 I 15/2 transition of Er 3+ ions in Yb-Er co-doped lead borate glass was obtained. → Long-lived NIR luminescence was detected in lead germanate glass. → The NIR luminescence and up-conversion phenomena strongly depend on stretching vibrations of glass host. - Abstract: Selected heavy metal glasses containing Yb 3+ and Er 3+ ions have been studied. Near-infrared luminescence spectra at 1.53 μm and up-conversion spectra of Er 3+ ions were registered under excitation of Yb 3+ ions by 975 nm diode laser line. The luminescence bands correspond to 4 I 13/2 - 4 I 15/2 (NIR), 4 S 3/2 - 4 I 15/2 (green) and 4 F 9/2 - 4 I 15/2 (red) transitions of Er 3+ , respectively. The optical transitions of rare earth ions have been examined as a function of glass host. The unusual large spectral linewidth nearly close to 110 nm for 4 I 13/2 - 4 I 15/2 transition of Er 3+ ions in Yb-Er co-doped lead borate glass was obtained, whereas long-lived NIR luminescence at 1.53 μm was detected in lead germanate glass. The NIR luminescence and up-conversion phenomena strongly depend on stretching vibrations of glass host, which was confirmed by FT-IR spectroscopy.

  4. Crystallization in lead tungsten fluorophosphate glasses

    International Nuclear Information System (INIS)

    Nardi, R.P.R.D.; Braz, C.E.; Cassanjes, F.C.; Poirier, G.

    2014-01-01

    The glass forming ability was investigated in the ternary system NaPO 3 -WO 3 -PbF 2 with a constant NaPO 3 /WO 3 ratio of 3/2 and increasing amounts of PbF 2 . It has been found that glass samples can be obtained from PbF 2 contents from 0 mole% to 60 mole%. The most lead fluoride concentrated samples (50% and 60%) were chosen for a crystallization study in order to investigate the possibility of obtaining glass-ceramics containing crystalline lead fluoride. DSC measurements allowed to determine the characteristic temperatures such as Tg, Tx, Tp and Tf. These glass samples were heat-treated near the crystallization peaks observed by thermal analysis. X-ray diffraction results of these heat-treated glasses pointed out that the dominant phase which precipitates from the glass sample containing 50% of PbF 2 is the lead fluorophosphates phase Pb 5 F(PO 4 ) 3 whereas the sample containing 60% of PbF 2 exhibits a preferential crystallization of cubic lead fluoride β-PbF 2 . (author)

  5. Composition-structure-property relation of oxide glasses

    DEFF Research Database (Denmark)

    Hermansen, Christian

    also increases such properties. Yet, these rules are not strictly followed even for the simplest binary oxide glasses, such as alkali silicates, borates and phosphates. In this thesis it is argued that the missing link between composition and properties is the glass structure. Structural models...... are proposed based on topological selection rules and experimentally verified. The relation between structure and properties is evaluated using topological constraint theory, which in its essence is a theory that quantifies the two intuitions of the glass scientist. The end result is a quantitative model...

  6. Titanium addition influences antibacterial activity of bioactive glass coatings on metallic implants.

    Science.gov (United States)

    Rodriguez, Omar; Stone, Wendy; Schemitsch, Emil H; Zalzal, Paul; Waldman, Stephen; Papini, Marcello; Towler, Mark R

    2017-10-01

    In an attempt to combat the possibility of bacterial infection and insufficient bone growth around metallic, surgical implants, bioactive glasses may be employed as coatings. In this work, silica-based and borate-based glass series were synthesized for this purpose and subsequently characterized in terms of antibacterial behavior, solubility and cytotoxicity. Borate-based glasses were found to exhibit significantly superior antibacterial properties and increased solubility compared to their silica-based counterparts, with BRT0 and BRT3 (borate-based glasses with 0 and 15 mol% of titanium dioxide incorporated, respectively) outperforming the remainder of the glasses, both borate and silicate based, in these respects. Atomic Absorption Spectroscopy confirmed the release of zinc ions (Zn 2+ ), which has been linked to the antibacterial abilities of glasses SRT0, BRT0 and BRT3, with inhibition effectively achieved at concentrations lower than 0.7 ppm. In vitro cytotoxicity studies using MC3T3-E1 osteoblasts confirmed that cell proliferation was affected by all glasses in this study, with decreased proliferation attributed to a faster release of sodium ions over calcium ions in both glass series, factor known to slow cell proliferation in vitro .

  7. Crystallization in lead tungsten fluorophosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Nardi, R.P.R.D.; Braz, C.E.; Cassanjes, F.C.; Poirier, G., E-mail: gael.poirier@unifal-mg.edu.br [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil). Instituto de Ciencia e Tecnologia

    2014-07-01

    The glass forming ability was investigated in the ternary system NaPO{sub 3}-WO{sub 3}-PbF{sub 2} with a constant NaPO{sub 3}/WO{sub 3} ratio of 3/2 and increasing amounts of PbF{sub 2}. It has been found that glass samples can be obtained from PbF{sub 2} contents from 0 mole% to 60 mole%. The most lead fluoride concentrated samples (50% and 60%) were chosen for a crystallization study in order to investigate the possibility of obtaining glass-ceramics containing crystalline lead fluoride. DSC measurements allowed to determine the characteristic temperatures such as Tg, Tx, Tp and Tf. These glass samples were heat-treated near the crystallization peaks observed by thermal analysis. X-ray diffraction results of these heat-treated glasses pointed out that the dominant phase which precipitates from the glass sample containing 50% of PbF{sub 2} is the lead fluorophosphates phase Pb{sub 5}F(PO{sub 4}){sub 3} whereas the sample containing 60% of PbF{sub 2} exhibits a preferential crystallization of cubic lead fluoride β-PbF{sub 2}. (author)

  8. Synthesis and characterization of cadmium doped lead–borate ...

    Indian Academy of Sciences (India)

    Unknown

    Mater. Sci., Vol. 29, No. 1, February 2006, pp. 55–58. © Indian Academy of Sciences. 55. Synthesis and characterization of cadmium doped lead–borate glasses. A A ALEMI*, H SEDGHI†, A R MIRMOHSENI and V GOLSANAMLU. Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.

  9. A model to calculate the burn of gadolinium in PWR

    International Nuclear Information System (INIS)

    Sannazzaro, L.R.

    1983-01-01

    A cell model to calculate the burnup of a PWR fuel element with gadolinium as a poison, projected by KWU, is presented. With the model proposed, the burn of the gadolinium isotopes is analyzed, as well as the effect of these isotopes in the fuel element behaviour. The results obtained with this cell model are compared with those obtained by a conventional cell model. (E.G.) [pt

  10. Radiation shielding application of lead glass

    International Nuclear Information System (INIS)

    Nathuram, R.

    2017-01-01

    Nuclear medicine and radiotherapy centers equipped with high intensity X-ray or teletherapy sources use lead glasses as viewing windows to protect personal from radiation exposure. Lead is the main component of glass which is responsible for shielding against photons. It is therefore essential to check the shielding efficiency before they are put in use. This can be done by studying photon transmission through the lead glasses. The study of photon transmission in shielding materials has been an important subject in medical physics and is potential useful in the development of radiation shielding materials

  11. Elastic properties and structural studies on some zinc-borate glasses derived from ultrasonic, FT-IR and X-ray techniques

    International Nuclear Information System (INIS)

    Gaafar, M.S.; El-Aal, N.S. Abd; Gerges, O.W.; El-Amir, G.

    2009-01-01

    Glasses in the system (1 - x) [29Na 2 O- 4Al 2 O 3 - 67B 2 O 3 ]- xZnO (0 ≤ x ≤ 35 mol%), have been prepared by the melt quenching technique. Elastic properties, X-ray and FT-IR spectroscopic studies have been employed to study the role of ZnO on the structure of the investigated glass system. Elastic properties and Debye temperature have been investigated using sound wave velocity measurements at 4 MHz at room temperature. The results showed that the density increases and the molar volume decreases while both sound velocities and the determined glass transition temperatures decrease with increase in x. X-ray and infrared spectra of the glasses reveal that the borate network consists of diborate units and is affected by the increase in the concentration of ZnO content. These results are interpreted in terms of the decrease in the N 4 values (fraction of tetrahedral coordinated boron atoms), and substitution of longer bond lengths of Zn-O in place of shorter B-O bond. The results indicate that Zinc ions have been substituted for boron ions as tetrahedral network former ions. The elastic moduli are observed to increase with the increase of ZnO content.

  12. Understanding the structural drivers governing glass-water interactions in borosilicate based model bioactive glasses.

    Science.gov (United States)

    Stone-Weiss, Nicholas; Pierce, Eric M; Youngman, Randall E; Gulbiten, Ozgur; Smith, Nicholas J; Du, Jincheng; Goel, Ashutosh

    2018-01-01

    The past decade has witnessed a significant upsurge in the development of borate and borosilicate based resorbable bioactive glasses owing to their faster degradation rate in comparison to their silicate counterparts. However, due to our lack of understanding about the fundamental science governing the aqueous corrosion of these glasses, most of the borate/borosilicate based bioactive glasses reported in the literature have been designed by "trial-and-error" approach. With an ever-increasing demand for their application in treating a broad spectrum of non-skeletal health problems, it is becoming increasingly difficult to design advanced glass formulations using the same conventional approach. Therefore, a paradigm shift from the "trial-and-error" approach to "materials-by-design" approach is required to develop new-generations of bioactive glasses with controlled release of functional ions tailored for specific patients and disease states, whereby material functions and properties can be predicted from first principles. Realizing this goal, however, requires a thorough understanding of the complex sequence of reactions that control the dissolution kinetics of bioactive glasses and the structural drivers that govern them. While there is a considerable amount of literature published on chemical dissolution behavior and apatite-forming ability of potentially bioactive glasses, the majority of this literature has been produced on silicate glass chemistries using different experimental and measurement protocols. It follows that inter-comparison of different datasets reveals inconsistencies between experimental groups. There are also some major experimental challenges or choices that need to be carefully navigated to unearth the mechanisms governing the chemical degradation behavior and kinetics of boron-containing bioactive glasses, and to accurately determine the composition-structure-property relationships. In order to address these challenges, a simplified

  13. Design of a lead-glass drift calorimeter with MWPC detection

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; del Guerra, A.; Mulera, T.; Hirayama, H.; Nelson, W.R.

    1983-02-01

    A drift collection calorimeter having a combined radiator and field-shaping structure made of lead-glass tubing is described. A high-resistance metallic layer is formed by reduction of the lead oxide at the surface of the glass and forms a continuous voltage divider for drift-field shaping. The energy resolution of such a calorimeter is modeled, for several configurations, by the Monte Carlo technique

  14. Fluoride removal performance of glass derived hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Wen, E-mail: wliang@ecust.edu.cn [Research Institute of Biomaterials, School of Materials Science and Engineering, East China University of Science and Technology (China); Zhan, Lei; Piao, Longhua [Research Institute of Biomaterials, School of Materials Science and Engineering, East China University of Science and Technology (China); Russel, Christian [Otto-Schott-Institut, Universitaet Jena, Jena (Germany)

    2011-02-15

    Research highlights: {yields} Novel sodium calcium borate glass derived hydroxyapatite (G-HAP) is prepared. {yields} Micro-G-HAP adsorbs F{sup -} ions in solutions more effectively than commercial nano-HAP. {yields} The adsorption kinetics and isotherms are well fitted by a second order kinetic model and Freundlich isotherm model. -- Abstract: A novel sodium calcium borate glass derived hydroxyapatite (G-HAP) with different ranges of particle size was prepared by immersion sodium calcium borate glass in 0.1 M K{sub 2}HPO{sub 4} solution by the ratio of 50 g L{sup -1} for 7 days. The unique advantage of G-HAP for the adsorption of fluoride ions in solutions was studied. The effects of size and quantity of particles, pH value and adsorption time on adsorption performance were investigated. The maximum adsorption capacity was 17.34 mg g{sup -1} if 5 g L{sup -1}, <100 {mu}m G-HAP was added to a solution with an initial pH value of 6.72 and the adsorption time was 12 h. The results showed that the micro-G-HAP could immobilize F{sup -} in solution more effectively than commercial nano-HAP, which makes potential application of the G-HAP in removing the fluoride ions from wastewater. The adsorption kinetics and isotherms for F{sup -} could be well fitted by a second order kinetic model and Freundlich isotherm model respectively, which could be used to describe the adsorption behavior. The mechanism of G-HAP in immobilizing F{sup -} from aqueous solutions was investigated by the X-ray diffraction (XRD), infrared spectra (IR) and scanning electron microscopy (SEM).

  15. Shielding effect of lead glasses on radiologists' eye lens exposure in interventional procedures

    International Nuclear Information System (INIS)

    Hu, Panpan; Kong, Yan; Chen, Bo; Liu, Qianqian; Zhuo, Weihai; Liu, Haikuan

    2017-01-01

    To study the shielding effect of radiologists' eye lens with lead glasses of different equivalent thicknesses and sizes in interventional radiology procedures. Using the human voxel phantom with a more accurate model of the eye and MCNPX software, eye lens doses of the radiologists who wearing different kinds of lead glasses were simulated, different beam projections were taken into consideration during the simulation. Measurements were also performed with the physical model to verify simulation results. Simulation results showed that the eye lens doses were reduced by a factor from 3 to 9 when wearing a 20 cm"2-sized lead glasses with the equivalent thickness ranging from 0.1 to 1.0 mm Pb. The increase of dose reduction factor (DRF) was not significant whenever increase the lead equivalent of glasses of which larger than 0.35 mm. Furthermore, the DRF was proportional to the size of glass lens from 6 to 30 cm"2 with the same lead equivalent. The simulation results were in well agreements with the measured ones. For more reasonable and effective protection of the eye lens of interventional radiologists, a pair of glasses with a lead equivalent of 0.5 mm Pb and large-sized (at least 27 cm"2 per glass) lens are recommended (authors)

  16. Effect of co-doped SnO{sub 2} nanoparticles on photoluminescence of cu-doped potassium lithium borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Namma, Haydar Aboud; Wagiran, H.; Hussin, R.; Ariwahjoedi, B. [Department of Physics, Universiti Teknologi Malaysia, Skudai 81310, Malaysia and Baghdad College of Economic Sciences University (Iraq); Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 31750 Tronoh (Malaysia)

    2012-09-26

    The SnO{sub 2} co-doped lithium potassium borate glasses doped with 0.05, 0.10, 0.25 and 0.50 mol% of Cu were synthesized by the melt quenching technique. The SnO{sub 2} co-dope was added to the compounds in the amounts of 0.05, 0.10, and 0.20 mol%. The photoluminescent spectrum for different concentrations of copper was studied. It was observed that the intensity of blue emission (450, 490 nm) varies with concentration mol%. In addition, with different concentration of SnO{sub 2} to 0.10 mol% Cu, the influence of the luminescence has been observed to enhance intensity and shifted to blue and red (490, 535 nm) emissions.

  17. Structure and Chemical Durability of Lead Crystal Glass.

    Science.gov (United States)

    Angeli, Frédéric; Jollivet, Patrick; Charpentier, Thibault; Fournier, Maxime; Gin, Stéphane

    2016-11-01

    Silicate glasses containing lead, also called lead crystal glasses, are commonly used as food product containers, in particular for alcoholic beverages. Lead's health hazards require major attention, which can first be investigated through the understanding of Pb release mechanisms in solution. The behavior of a commercial crystal glass containing 10.6 mol % of PbO (28.3 wt %) was studied in a reference solution of 4% acetic acid at 22, 40, and 70 °C at early and advanced stages of reaction. High-resolution solid-state 17 O and 29 Si NMR was used to probe the local structure of the pristine and, for the first time, of the altered lead crystal glass. Inserted into the vitreous structure between the network formers as Si-O-Pb bonds, Pb does not form Pb-O-Pb clusters which are expected to be more easily leached. A part of K is located near Pb, forming mixed Si-O-(Pb,K) near the nonbridging oxygens. Pb is always released into the solution following a diffusion-controlled dissolution over various periods of time, at a rate between 1 and 2 orders of magnitude lower than the alkalis (K and Na). The preferential release of alkalis is followed by an in situ repolymerization of the silicate network. Pb is only depleted in the outermost part of the alteration layer. In the remaining part, it stays mainly surrounded by Si in a stable structural configuration similar to that of the pristine glass. A simple model is proposed to estimate the Pb concentration as a function of glass surface, solution volume, temperature, and contact time.

  18. Dielectric and electrical properties of gadolinium-modified lead-zirconate-titanate system

    International Nuclear Information System (INIS)

    Panigrahi, S.C.; Das, Piyush R.; Parida, B.N.; Padhee, R.; Choudhary, R.N.P.

    2014-01-01

    Highlights: • Gadolinium modified PZT have very good dielectric and ferroelectric properties. • The impedance analysis of shows grain and grain boundary phenomena. • Electrical properties of the compounds show very good transport properties. • Piezoelectric coefficient of the samples have higher values. - Abstract: The gadolinium (Gd) modified lead zirconate titanate (PbZr,TiO 3 ) ceramics with Zr/Ti = 48/52 (i.e., near morphotropic phase boundary (MPB)) in a general chemical formula Pb 1−x Gd x (Zr 0.48 Ti 0.52 ) 1−x/4 O 3 (PGZT; x = 0, 0.07, 0.10 and 0.12) have been synthesized using a high-temperature solid-state reaction method. Preliminary structural analysis using X-ray powder diffraction (XRD) shows the formation of a single-phase tetragonal structure of the compounds. Detailed studies of dielectric parameters of PGZT exhibit the diffuse phase transition but non-relaxor characteristics in the material for the higher concentration of gadolinium. The ac conductivity spectra of PGZT are found to obey Jonscher’s universal power law. The electrical impedance parameters of PGZT (near MPB) were obtained in a wide range of temperature (25–500 °C) and frequency (1–1000 kHz) using complex impedance spectroscopy (CIS) technique. Detailed analysis of these parameters shows that bulk (grain) and grain boundary resistance have significant effect on the total impedance of the materials. Temperature dependence of hysteresis characteristics of PGZT confirms that the phase transition parameter of the material is strongly affected by the substitution of Gd at the Pb-sites

  19. Physical, thermal, structural and optical properties of Dy{sup 3+} doped lithium alumino-borate glasses for bright W-LED

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, P.P.; Munishwar, S.R.; Gautam, S.; Gedam, R.S., E-mail: rupesh_gedam@rediffmail.com

    2017-03-15

    Rare earth (RE) doped glasses have potential applications due to their emission efficiencies of 4f–4 f and 4f–5d electronic transitions. Among all the rare earths, Dy{sup 3+} doped glasses have drawn much interest among the researchers for their intense emission in the visible region from 470 to 500 nm and around 570 to 600 nm. The physical, thermal, structural and optical properties of Dy{sup 3+} doped lithium alumino-borate glasses (LABD glasses) have been studied for white LED (W-LED) application. The glasses were synthesized by conventional melt quench technique. X-ray diffraction spectra revealed the amorphous nature of the glass sample. An FTIR spectrum was carried out to study the glass structure and various functional groups present in the LABD glasses. Optical absorption spectra were recorded by UV–vis-NIR spectrometer. Allowed direct and indirect band gaps were obtained by Tauc's plot. Thermal parameters like glass thermal stability (∆T), Hruby's parameter (K{sub gl}), etc. were calculated by DTA graph. Photoluminescence excitation and emission spectra's were measured at room temperature. The emission spectra shows two intense emission bands at around 482 nm (blue) and 574 nm (yellow) corresponds to the {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} transitions respectively along with one feeble band at 662 nm (red) corresponds to {sup 4}F{sub 9/2}→{sup 6}H{sub 11/2} transition. The CIE chromaticity co-ordinates were calculated for all glass samples. CIE chromaticity diagram shows glass LABD-4 containing 0.5 mol% Dy{sub 2}O{sub 3} with colour co-ordinates X = 0.34 and Y = 0.38 have highest emission intensity. These glasses having emission in the white region and thus can be used for bright white LED.

  20. Nano crystalline Bi{sub 2}(VO{sub 5}) phases in lithium bismuth borate glasses containing mixed vanadium-nickel oxides

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Arti, E-mail: artidabhur@gmail.com; Khasa, S.; Dahiya, M. S. [Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India-131039 (India); Agarwal, A. [Department of Applied Physics, G. J. University of Science and Technology, Hisar, India-125001 (India)

    2016-05-23

    Glass composition 7V{sub 2}O{sub 5}·23Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} and x(2NiO·V{sub 2}O{sub 5})·(30-x)Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3}, x=0, 2, 5, 7 and 10, were produced by conventional melt quenching technique. The quenched amorphous glass samples were annealed at temperatures 400°C and 500°C for 6 hours. The Bi{sub 2}(VO{sub 5}) crystallite were grown in all prepared glass matrix. Tn vanadium lithium bismuth borate glass (annealed), the some phrase of V{sub 2}O{sub 5}-crystal were observed along with the nano crystalline Bi{sub 2}(VO{sub 5}) phase. The sharp peaks in FTTR spectra of all annealed compositions were also compatible with the XRD diffraction peaks of the system under investigation. Average crystalline size (D) of the Bi{sub 2}(VO{sub 5}) nano-crystallite was ~30 nm for samples annealed at 400°C and ~42 nm for samples annealed at 500°C. Lattice parameter and the lattice strain for all the samples was also calculated corresponding to the (113) plane of Bi{sub 2}(VO{sub 5}) crystallite.

  1. EPR investigation into the structure of boron-containing quartz glasses

    International Nuclear Information System (INIS)

    Amosov, A.V.; Bushmarin, D.B.; Prokhorova, T.I.; Yudin, D.M.

    1975-01-01

    Certain properties of boron-containing quartz glasses and the nature of occurrence of boron in the glass lattice are studied as functions of the method of alloying. The formation of three types of borate structural nodes (BO 4 , BO 3 and BO 4 -BO 3 ) in the lattice of quartz glasses is established. Alloying by boron oxide up to 3% (weight) increases the crystallization stability of quartz glasses, lowers down tsub(g) from 1220 to 950 deg C and does not affect the coefficient of thermal expansion. Low symmetry of borate structural nodes, following from the analysis of EPR spectra, confirms the literature data concerning the low symmetry of glass-forming polyhedrons in a quartz glass

  2. Lead isotope ratios of ancient Chinese and Japanese glasses

    International Nuclear Information System (INIS)

    Yamasaki, Kazuo; Murozumi, Masayo; Nakamura, Seiji; Yuasa, Mitsuaki; Watarai, Motohiko.

    1980-01-01

    Lead isotope ratios of 29 archaeological glass samples (5 samples excavated in China, 10 samples excavated in Japan, and 14 samples made in Japan) were determined by surface ionization mass spectrometry with a HITACHI RMU-6 spectrometer. Of these glass samples, 28 were made of high lead glass, and one, of alkali-lime glass. Glass samples were decomposed in a mixture of hydrofluoric and nitric acids, and lead was separated from other elements by extraction with dithizone-chloroform. The lead nitrate solution thus prepared (corresponding to 0.5 μg Pb) was loaded on the rhenium single filament. The coefficients of variation of the determined ratios, 207 Pb/ 206 Pb and 208 Pb/ 206 Pb, were 0.1 -- 0.3%. Among the glasses excavated in Japan, some samples of the Yayoi period (ca. 3 rd C. B.C. -- ca. 3 rd C. A.D.) contained a large amount of barium in addition to lead, and resembled closely Chinese pre-Han glasses not only in chemical compositions, but also in lead isotope ratios. This means that pre-Han glasses were brought to Japan and then re-cast into glass beads characteristic of Japan. The lead isotope ratios of the glasses were compared with those of Chinese (2 samples), Korean (2) and Japanese (17) galena orea, and it was found that 12 glass beads made in the 8th century at Nara and 2 fine glass tubes made at Saga in the 18 th -- 19 th centuries showed similar lead isotope ratios with those of the Japanese galena ores. Consequently it is considered that the Japanese galena ores were already used as one of raw materials at manufacturing of these glass beads in ancient centuries. (author)

  3. Synthesis and characterization of the lead borate Pb{sub 6}B{sub 12}O{sub 21}(OH){sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Schoenegger, Sandra; Ortner, Teresa S.; Wurst, Klaus; Heymann, Gunter; Huppertz, Hubert [Innsbruck Univ. (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie

    2016-11-01

    A lead borate with the composition Pb{sub 6}B{sub 12}O{sub 21}(OH){sub 6} was synthesized through a hydrothermal synthesis, using lead metaborate in combination with sodium nitrate and potassium nitrate. The compound crystallizes in the trigonal, non-centrosymmetric space group P3{sub 2} (no. 145) with the lattice parameters a = 1176.0(4), c = 1333.0(4) pm, and V = 0.1596(2) nm{sup 3}. Interestingly, the data of Pb{sub 6}B{sub 12}O{sub 21}(OH){sub 6} correct the structure of a literature known lead borate with the composition ''Pb{sub 6}B{sub 11}O{sub 18}(OH){sub 9}''. For the latter compound, nearly identical lattice parameters of a = 1176.91(7) and c = 1333.62(12) pm were reported, possessing a crystal structure, in which the localization and refinement of one boron atom was obviously overlooked. The structure of Pb{sub 6}B{sub 12}O{sub 21}(OH){sub 6} is built up from trigonal planar BO{sub 3} and tetrahedral BO{sub 4} groups forming complex chains. The Pb{sup 2+} cations are located between neighboring polyborate chains. The here reported compound Pb{sub 6}B{sub 12}O{sub 21}(OH){sub 6} and ''Pb{sub 6}B{sub 11}O{sub 18}(OH){sub 9}'' were, however, produced under different synthesis conditions. While ''Pb{sub 6}B{sub 11}O{sub 18}(OH){sub 9}'' was synthesized via a hydrothermal synthesis including ethylenediamine and acetic acid, the here reported lead borate Pb{sub 6}B{sub 12}O{sub 21}(OH){sub 6} could be obtained under moderate hydrothermal conditions (240 C) without the addition of organic reagents.

  4. Optical properties of lithium magnesium borate glasses doped with Dy3+ and Sm3+ ions

    International Nuclear Information System (INIS)

    Yasser Saleh Mustafa Alajerami; Suhairul Hashim; Wan Muhamad Saridan Wan Hassan; Ahmad Termizi Ramli; Azman Kasim

    2012-01-01

    Several studies showed the interesting properties of trivalent lanthanide ions when doped in various types of glasses. Optical and physical properties of lithium magnesium borate glasses doped with Dy 3+ then with Sm 3+ ions were determined by measuring their absorption and luminescence spectra in the visible region. The absorption spectra of Dy 3+ showed eight absorption bands with hypersensitive transition at 1265 nm ( 6 H 15/2 → 6 F 11/2 - 6 H 9/2 ) and three PL emission bands at 588 nm ( 4 F 9/2 → 6 H 15/2 ), 660 nm ( 4 F 9/2 → 6 H 13/2 ) and 775 nm ( 4 F 9/2 → 6 H 11/2 ). Regarding the Sm3 + , nine absorption bands were observed with hypersensitive transition at 1237 nm ( 6 H 5/2 - 6 F 7/2 ); the PL spectrum showed four prominent peaks at 4 G 5/2 → 6 H 5/2 (yellow color), 4 G 5/2 → 6 H 7/2 (bright orange color), 4 G 5/2 → 6 H 9/2 (orange reddish color) and 4 G 5/2 → 6 H 11/2 (red color), respectively. Finally, a series of physical parameters such as the oscillator strengths, refractive index, ions concentration, Polaron radius and other parameters were calculated for each dopant.

  5. Shielding Effect of Lead Glasses on Radiologists' Eye Lens Exposure in Interventional Procedures.

    Science.gov (United States)

    Hu, Panpan; Kong, Yan; Chen, Bo; Liu, Qianqian; Zhuo, Weihai; Liu, Haikuan

    2017-04-20

    To study the shielding effect of radiologists' eye lens with lead glasses of different equivalent thicknesses and sizes in interventional radiology procedures. Using the human voxel phantom with a more accurate model of the eye and MCNPX software, eye lens doses of the radiologists who wearing different kinds of lead glasses were simulated, different beam projections were taken into consideration during the simulation. Measurements were also performed with the physical model to verify simulation results. Simulation results showed that the eye lens doses were reduced by a factor from 3 to 9 when wearing a 20 cm2-sized lead glasses with the equivalent thickness ranging from 0.1 to 1.0 mm Pb. The increase of dose reduction factor (DRF) was not significant whenever increase the lead equivalent of glasses of which larger than 0.35 mm. Furthermore, the DRF was proportional to the size of glass lens from 6 to 30 cm2 with the same lead equivalent. The simulation results were in well agreements with the measured ones. For more reasonable and effective protection of the eye lens of interventional radiologists, a pair of glasses with a lead equivalent of 0.5 mm Pb and large-sized (at least 27 cm2 per glass) lens are recommended. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. OPAL Various Lead Glass Blocks

    CERN Multimedia

    These lead glass blocks were part of a CERN detector called OPAL (one of the four experiments at the LEP particle detector). OPAL uses some 12 000 blocks of glass like this to measure particle energies in the electromagnetic calorimeter. This detector measured the energy deposited when electrons and photons were slowed down and stopped.

  7. Effect of certain alkaline metals on Pr doped glasses to investigate spectroscopic studies

    Science.gov (United States)

    Lenkennavar Susheela, K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-02-01

    Incorporation of different Alkaline earth metal like Barium, Calcium and strontium in sodium lead borate glass doped with Pr3+ is studied. Physical parameters such as density, molar volume, molar refractivity etc have been evaluated. Effect of different atomic size of alkaline metal using optical and physical parameters is analysed. XRD and FTIR were carried out to know the structural behaviour of the glasses. Absorption and Emission spectra are recorded at room temperature and the results were discussed.

  8. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    ... devices; radiation shields, surgical lasers and their glass ceramic counter ... Alkaline earth oxides improve glass forming capability while heavy metal ... reports on optical properties of MO-B2O3 glasses containing alkaline earth oxides.

  9. The effect of Li2O and LiF on structural properties of cobalt doped borate glasses

    Directory of Open Access Journals (Sweden)

    A.M. Abdelghany

    2017-10-01

    Full Text Available Two glassy (LiF–B2O3 and (Li2O–B2O3 systems containing different content of CoO dopants (0.05, 0.1, 0.15, 0.2 wt% were prepared. UV/Vis optical absorption of base glasses reveals a strong UV absorption bands attributed to unavoidable contaminated trace iron impurities. CoO-doped glasses show extra three visible bands due to both octahedral and tetrahedral Co2+ ions related to the little variation between energies of ligand field stabilization between the two coordination states. Fluoride containing glasses show limited variations in the spectral properties due to the different ligand strength of the anions (F− and O2−. FTIR spectra display characteristic modes of vibrations due to triangular and tetrahedral borate groups. It is assumed that LiF acts as Li2O in promoting the formation of tetrahedral (BO3F units which possess the same wavenumber position for vibrations of (BO4 units in the range of 800–1200 cm−1. CoO causes no distinct variations in number or position of characteristic IR vibrational bands due to their low dopant level (0.05–0.2%. A new suggested trial has been utilized to calculate the percent of four coordinated borons from both optical and FTIR spectra to give more insight on the role of CoO as dopant on these spectral properties and on the calculated parameters.

  10. Gamma-ray attenuation coefficients in some heavy metal oxide borate glasses at 662 keV

    International Nuclear Information System (INIS)

    Khanna, A.; Bhatti, S.S.; Singh, K.J.; Thind, K.S.

    1996-01-01

    The linear attenuation coefficient (μ) and mass attenuation coefficients (μ/ρ) of glasses in three systems: xPbO(1-x)B 2 O 3 , 0.25PbO.xCdO(0.75-x)B 2 O 3 and xBi 2 O 3 (1-x)B 2 O 3 were measured at 662 keV. Appreciable variations were noted in the attenuation coefficients due to changes in the chemical composition of glasses. In addition to this, absorption cross-sections per atom were also calculated. A comparison of shielding properties of these glasses with standar d shielding materials like lead, lead glass and concrete has proven that these glasses have a potential application as transparent radiation shielding. (orig.)

  11. The thermal electrical properties of lithium sodium borate gasses

    International Nuclear Information System (INIS)

    Joshi, Anita R.; Bichile, G.K.

    2012-01-01

    Lithium sodium borate glasses with various composition have been prepared by melt quenching method. DSC studies were carried out. The glass transition temperature were found to decrease with alkali content in single alkali system and increase with second alkali content in mixed alkali system. The dc electrical conductivity has been measured as a function of temperature. The activation energy from the slope of the Arrhenius plots is calculated and it depends on the composition. In one set of single alkali glasses activation energies were found to increase with alkali content and in another set a single alkali system a transition from predominantly electronic to ionic conduction has been observed above 0.16 mol fraction of alkali content. The mixed alkali glasses have shown higher activation energies and lower conductivities. (author)

  12. XRD, lead equivalent and UV-VIS properties study of Ce and Pr lead silicate glasses

    International Nuclear Information System (INIS)

    Alias, Nor Hayati; Abdullah, Wan Shafie Wan; Isa, Norriza Mohd; Isa, Muhammad Jamal Md; Zali, Nurazila Mat; Abdullah, Nuhaslinda Ee; Muhammad, Azali

    2014-01-01

    In this work, Cerium (Ce) and Praseodymium (Pr) containing lead silicate glasses were produced with 2 different molar ratios low (0.2 wt%) and high (0.4wt%). These types of glasses can satisfy the characteristics required for radiation shielding glasses and minimize the lead composition in glass. The radiation shielding properties of the synthesized glasses is explained in the form of lead equivalent study. The XRD diffraction and UV-VIS analysis were performed to observe the structural changes of the synthesis glasses at 1.5 Gy gamma radiation exposures

  13. Radiation effects on lead silicate glass surfaces

    International Nuclear Information System (INIS)

    Wang, P.W.; Zhang, L.P.; Borgen, N.; Pannell, K.

    1996-01-01

    Radiation-induced changes in the microstructure of lead silicate glass were investigated in situ under Mg K α irradiation in an ultra-high vacuum (UHV) environment by X-ray photoelectron spectroscopy (XPS). Lead-oxygen bond breaking resulting in the formation of pure lead was observed. The segregation, growth kinetics and the structural relaxation of the lead, with corresponding changes in the oxygen and silicon on the glass surfaces were studied by measuring the time-dependent changes in concentration, binding energy shifts, and the full width at half maximum. A bimodal distribution of the oxygen XPS signal, caused by bridging and non-bridging oxygens, was found during the relaxation process. All experimental data indicate a reduction of the oxygen concentration, a phase separation of the lead from the glass matrix, and the metallization of the lead occurred during and after the X-ray irradiation. (author)

  14. Characterization and Exergy Analysis of Triphenyl Borate

    International Nuclear Information System (INIS)

    Acarali, N. B.

    2015-01-01

    In this study, unlike from the literature, boron oxide, borax decahydrate, boric acid and borax pentahydrate as boron sources were used to synthesize Triphenyl Borate (TPB). The reactions of TPB were carried out by using both phenol and various boron sources in inert water-immiscible organic solvent successfully. On the basis of analyzes (FT-IR, SEM, TGA/DSC) obtained, it was seen that phenol acted as a support to borate structure framework and thermal characterisation of the amorphous solid under determined conditions suggested that usage of different boron sources had effects for glass transition temperature in TPB production. The exergy analysis was performed to the TPB production to determine efficiency. The exergy analysis showed that the highest exergy efficiency was obtained by using boron oxide as a boron source. Consequently, all analyses results showed that TPB was produced successfully. Accordingly, characterization and exergy analysis supported each other. (author)

  15. Electrical and thermal properties of lead titanate glass ceramics

    International Nuclear Information System (INIS)

    Shankar, J.; Deshpande, V.K.

    2011-01-01

    Glass samples with composition of (50-X)PbO-(25+X)TiO 2 -25B 2 O 3 (where X=0, 5, 10 and 12.5 mol%) were prepared using conventional quenching technique. The glass transition temperature, T g and crystallization temperature T c were determined from the DTA. These glass samples were converted to glass ceramics by following two stage heat treatment schedule. The glass ceramic samples were characterized by XRD, SEM and dielectric constant measurements. The XRD results revealed the formation of ferroelectric lead titanate (PT) as a major crystalline phase in the glass ceramics. The density increases and the CTE decreases for all glass ceramics with increase in X (mol%). This may be attributed to increase in PT phase. The SEM results which show rounded crystallites of lead titanate, also supports other results. Hysteresis loops observed at room temperature confirms the ferroelectric nature of glass ceramics. The optimized glass ceramic sample exhibits high dielectric constant which is of technical importance. -- Research Highlights: →Lead titanate glass ceramics prepared by conventional quenching technique. →Lead titanate is a major crystalline phase in the glass ceramics. →The ferroelectric nature of glass ceramics is confirmed by the hysteresis study. →The high value of ε observed at room temperature is quite promising in the study.

  16. APPLICATION OF LASERS AND LASER-OPTICAL METHODS IN LIFE SCIENCES Spectroscopy of nanoparticles based on Gd14B6Ge2O34 polycrystals and La2O3 — B2O3 glasses, activated by Nd3+ ions, for cancer diagnostics

    Science.gov (United States)

    Popov, A. V.; Ryabova, A. V.; Komova, M. G.; Krut'ko, V. A.; Petrova, O. B.; Loshchenov, V. B.; Voronko, Yu K.

    2011-01-01

    Nanoparticles of gadolinium borate polycrystals and borate glasses, activated by Nd3+ ions, are obtained from macroscopic samples of the corresponding compositions by mechanical grinding and ultrasonic dispersion in water. A spectroscopic study of these nanoparticles in the near-IR region is performed to determine their potential as luminescence biosensors and radiopharmaceutical preparations for cancer diagnostics by radiosensitive methods. A twofold increase in the lifetime of the metastable 4F3/2 state of Nd3+ ions at the transition from submicron polycrystalline particles to nanoparticles is experimentally found. A study of the nanoparticle distribution over organs and tissues of laboratory animals, performed with a 810-nm laser for exciting luminescence and a multichannel fibre spectrometer for measuring fluorescence in the range of 0.8 — 1.2 mm, showed this technique to be sufficiently sensitive to reliably determine the nanoparticle concentration in biological tissues and the dynamics of its change.

  17. Preclinical studies on gadolinium neutron capture therapy

    International Nuclear Information System (INIS)

    Akine, Yasuyuki

    1994-01-01

    Gadolinium neutron capture therapy is based on radiations (photons and electrons) produced in the tumor by a nuclear reaction between gadolinium and lower-energy neutrons. Studies with Chinese hamster cells have shown that the radiation effect resulting from gadolinium neutron capture reactions is mostly of low LET and that released electrons are the significant component in the over-all dose. Biological dosimetry revealed that the dose does not seem to increase in proportion to the gadolinium concentration, leading to a conclusion that there is a range of gadolinium concentrations most efficient for gadolinium neutron capture therapy. The in vivo studies with transplantable tumors in mice and rabbits have revealed that close contact between gadolinium and the cell is not necessarily required for cell inactivation and that gadolinium delivery selective to tumors is crucial. The results show that the potential of gadolinium neutron capture therapy as a therapeutic modality appears very promising. (author)

  18. Glass microspheres for medical applications

    Science.gov (United States)

    Conzone, Samuel David

    Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in 100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass microspheres, composed of micron-sized, metallic rhenium particles dispersed within a magnesium alumino borate glass matrix were produced by sintering ReO2 powder and glass frit at 1050°C. A 50 mg injection of radioactive rhenium glass

  19. Lead-silicate glass optical microbubble resonator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pengfei, E-mail: pengfei.wang@dit.ie [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland); Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic [Light-Matter Interactions Unit, OIST Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 (Japan); Feng, Xian; Brambilla, Gilberto [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Farrell, Gerald [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland)

    2015-02-09

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 10{sup 5} (single-stem) and 7 × 10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  20. Gadolinium(III Ion-Selective Electrode Based on 3-Methyl-1H-1,2,4-triazole-5-thiol

    Directory of Open Access Journals (Sweden)

    Hassan Ali Zamani

    2012-01-01

    Full Text Available The 3-methyl-1H-1,2,4-triazole-5-thiol (MTH was used as a suitable ionophore for fabrication of a new gadolinium(III ion selective potentiometric sensor. Nitrobenzene (NB was used as plasticizing solvent mediator and sodium tetraphenyl borate (NaTPB as an anion excluder. It displays a Nernstian response (19.8± 0.4 mV/decade in the concentration range of 1.0×10-7 to 1.0×10-2 M with the detection limit of 7.3×10-8 M. The sensor has a very short response time (<10s and can be used the pH range of 2.9-8.4. electrode was successfully applied as an indicator for gadolinium determination in titration with EDTA.

  1. Rare earth separations by selective borate crystallization

    Science.gov (United States)

    Yin, Xuemiao; Wang, Yaxing; Bai, Xiaojing; Wang, Yumin; Chen, Lanhua; Xiao, Chengliang; Diwu, Juan; Du, Shiyu; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao

    2017-03-01

    Lanthanides possess similar chemical properties rendering their separation from one another a challenge of fundamental chemical and global importance given their incorporation into many advanced technologies. New separation strategies combining green chemistry with low cost and high efficiency remain highly desirable. We demonstrate that the subtle bonding differences among trivalent lanthanides can be amplified during the crystallization of borates, providing chemical recognition of specific lanthanides that originates from Ln3+ coordination alterations, borate polymerization diversity and soft ligand coordination selectivity. Six distinct phases are obtained under identical reaction conditions across lanthanide series, further leading to an efficient and cost-effective separation strategy via selective crystallization. As proof of concept, Nd/Sm and Nd/Dy are used as binary models to demonstrate solid/aqueous and solid/solid separation processes. Controlling the reaction kinetics gives rise to enhanced separation efficiency of Nd/Sm system and a one-step quantitative separation of Nd/Dy with the aid of selective density-based flotation.

  2. Physical and spectroscopic studies of Cr{sup 3+} doped mixed alkaline earth oxide borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Samdani, E-mail: samdanimohd82@gmail.com [Department of Engineering, Salalah College of Technology, Salalah (Oman); Ramadevudu, G. [Department of Physics, Vasavi College of Engineering, Ibrahimbagh, Hyderabad 500031, Telangana (India); Chary, M. Narasimha; Shareefuddin, Md. [Department of Physics, Osmania University, Hyderabad 500007, Telangana (India)

    2017-01-15

    A series of mixed alkaline earth oxide glasses xMgO-(30-x)BaO-69.8B{sub 2}O{sub 3}-0.2Cr{sub 2}O{sub 3} were prepared and studied using electron paramagnetic resonance (EPR), optical absorption, Raman spectroscopy and photoluminescence experimental techniques. The optical absorption spectra revealed the characteristic octahedral symmetry of Cr{sup 3+}ions through three broad band transitions {sup 4}A{sub 2g}(F)→ {sup 4}T{sub 2g}(F), {sup 4}A{sub 2g}(F)→ {sup 4}T{sub 1g}(F), and {sup 4}A{sub 2g}(F)→ {sup 2}T{sub 1g}(P). The crystal field (Dq) and Racah parameters (B and C), the optical band gap and Urbach energies of the glass samples were also reported along with the physical properties like density and molar volume. In the EPR spectra three resonance signals corresponding to Cr3+ ions were observed. A broad signal with g = 5.110 was observed which belongs to the isolated Cr3+ centers localized in the strongly distorted octahedral (rhombic) sites of the glass network, a narrow signal (g = 1.960) corresponding to the Cr{sup 3+} centers in the weekly distorted (cubic) sites of the glass network, and a third very broad signal (g = 2.210) was also observed corresponding to Cr{sup 3+}- Cr{sup 3+} paired centers coupled by magnetic dipolar interaction. Another resonance signal with effective value g ≈ 4.220 was attributed to Fe{sup 3+} ions impurity. The number of spins (N) participating in the resonance and susceptibility (χ) values at room temperature were reported and their values varied in a non-linear manner with the composition exhibiting mixed oxide effect. The estimated molecular bonding coefficients (α) values indicated stronger ionic contribution. The Raman spectral investigations were carried out. The Photoluminescence spectra bands near 690 and 750 nm correspond to the Cr{sup 3+} centers in high and low field sites respectively. - Highlights: • Spectroscopic studies were made on alkaline earth borate glasses. • Three resonance signals

  3. A 3000 element lead-glass electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Crittenden, R.R.; Dzierba, A.R.; Gunter, J.; Lindenbusch, R.; Rust, D.R.; Scott, E.; Smith, P.T.; Sulanke, T.; Teige, S.; Brabson, B.B.; Adams, T.; Bishop, J.M.; Cason, N.M.; LoSecco, J.M.; Manak, J.J.; Sanjari, A.H.; Shephard, W.D.; Steinike, D.L.; Taegar, S.A.; Thompson, D.R.; Chung, S.U.; Hackenburg, R.W.; Olchanski, C.; Weygand, D.P.; Willutzki, H.J.; Denisov, S.; Dushkin, A.; Kochetkov, V.; Lipaev, V.; Popov, A.; Shein, I.; Soldatov, A.; Bar-Yam, Z.; Cummings, J.P.; Dowd, J.P.; Eugenio, P.; Hayek, M.; Kern, W.; King, E.; Anoshina, E.V.; Bodyagin, V.A.; Demianov, A.I.; Gribushin, A.M.; Kodolova, O.L.; Korotkikh, V.L.; Kostin, M.A.; Ostrovidov, A.I.; Sarycheva, L.I.; Sinev, N.B.; Vardanyan, I.N.; Yershov, A.A.; Brown, D.S.; Pedlar, T.K.; Seth, K.K.; Wise, J.; Zhao, D.; Adams, G.S.; Napolitano, J.; Nozar, M.; Smith, J.A.; Witkowski, M.

    1997-01-01

    A 3045 element lead glass calorimeter and an associated fast trigger processor have been constructed, tested and implemented in BNL experiment E852 in conjunction with the multi-particle spectrometer (MPS). Approximately, 10 9 all-neutral and neutral plus charged triggers were recorded with this apparatus during data runs in 1994 and 1995. This paper reports on the construction, testing and performance of this lead glass calorimeter and the associated trigger processor. (orig.)

  4. Structural properties of alkaline sodium lead fluoride borate glasses incorporated with Praseodymium ion

    Science.gov (United States)

    Lenkennavar, Susheela K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-05-01

    The effect of different alkaline and Pr ions on the density and structure of Na2O-PbO-MO-B2O3 (M represents Ba/Ca/Sr) has been investigated using X-ray diffraction (XRD), infrared spectrophotometer (FTIR). The amorphous phase has been identified based on X-ray diffraction analysis. The Praseodymium oxide plays the role as a glass-modifier and influences on BO3↔BO4 conversion. The same effect is also observed in density and molar volume variation due to non bridging oxygen's (NBO) created when BO3 units are converted.

  5. Structural simulation and ionic conductivity mechanisms in lithium thio-borate based glasses

    International Nuclear Information System (INIS)

    Estournes, C.

    1992-04-01

    We propose in this work a structural study of B 2 S 3 -Li 2 S glass system through the use of neutron scattering, X-ray photo-electron spectroscopy and computerized simulation. We have got information on the order at low and short distance range of these glasses. This information has been correlated to changes in physical features like ionic conductivity, density and temperature of the vitreous transition according to their chemical compositions. The knowledge of the local order in the most modified binary glasses has allowed us to propose a model for ionic conduction similar to the model used for ionic crystals. This model has been validated: it yields an activation energy that agrees well with experimental data

  6. Characterisation of glass matrix composites reinforced with lead zirconate titanate particles

    International Nuclear Information System (INIS)

    Cannillo, Valeria; Manfredini, Tiziano; Montorsi, Monia; Tavoni, Francesca; Minay, Emma J.; Boccaccini, Aldo R.

    2005-01-01

    A new type of glass matrix composite reinforced with ferroelectric particulate secondary phase was investigated. Samples containing lead zirconate titanate (PZT) particles in a silicate lead glass were fabricated. Various sintering strategies were tested in order to optimise the processing route. The densest samples were obtained by hot-pressing. The composites were characterized by means of SEM observations, X-ray diffraction, differential thermal analysis and Vickers indentations. In order to get a deeper insight into the thermo-mechanical behaviour of the material, a FEM based numerical model was prepared and applied. In particular, the crack-particle interaction was assessed and thus possible toughening mechanisms were investigated. By means of the numerical modelling supported by SEM observations, traditional toughening mechanisms (e.g. crack deflection, particle debonding) were ruled out. Since the experimentally measured indentation fracture toughness of the composite is significantly higher than that of the unreinforced glass, the findings suggest that a new toughening mechanism may be active, based on the piezoelectric effect

  7. Array of lead-glass blocks from OPAL

    CERN Multimedia

    OPAL was one of the 4 experiments at CERN's Large Electron Positron collider (LEP) which ran from 1989 - 2000. This array of 96 lead glass bricks formed part of the OPAL electromagnetic calorimeter. In total, there were 9440 lead glass counters in the OPAL electromagnetic calorimeter, made of Schott type SF57 glass and each block weighs about 25 kg and consists of 76% PbO by weight. Each block has a Hamamatsu R2238 photomultiplier glued on to it. The complete detector was in the form of a cylinder 7m long and 6m in diameter. It was used to measure the energy of electrons and photons produced in LEP electron positron collisions.

  8. Fabrication of Radiation Shielding Glasses Based on Lead-free High Refractive Index Glasses Prepared from Local Sand

    International Nuclear Information System (INIS)

    Dararutana, Pisutti; Dutchaneepet, Jirapan; Sirikulrat, Narin

    2007-08-01

    Full text: Lead glasses that show high refractive index are the best know and most popular for radiation shielding. Due to harmful effects of lead and considering the health as well as the environmental issues, lead-free glasses were developed. In this work, content of Chumphon sand was fixed at 40 % (by weight) as a main composition but concentrations of BaCO3 were varied from 6 to 30 % (by weight). It was found that the absorption coefficient of the glass samples containing 30 % BaCO3 was 0.233 cm-1 for Ba-133. The density was also measured. It can be concluded that the prepared lead free glasses offered adequate shielding to gamma radiation in comparison with the lead ones. These glasses were one of the environmental friendly materials

  9. Ruby coloured lead glasses by generation of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gil, C. [Fundacion Centro Nacional del Vidrio, Pocillo, 1, 40100 La Granja de San Ildefonso (Segovia) (Spain); Villegas, M.A. [Centro Nacional de Investigaciones Metalurgicas (CENIM), Spanish Council for Scientific Research (CSIC), Avda. Gregorio del Amo, 8, 28040 Madrid (Spain)]. E-mail: mavillegas@cenim.csic.es

    2004-11-15

    Both yellow and red superficial ruby lead crystal glasses have been obtained by Ag{sup +} ion-exchange. For red ruby colouring lead glass substrates were previously doped with reducing oxides (arsenic, antimony, cerium and tin). The best experimental conditions for silver ion-exchange were determined. The optical absorption behaviour of the samples was studied to point out the influence of the parameters involved in the ion-exchange process. Moreover, other parameters affecting the final colouring of the glasses (kind of dopant, dopant concentration, etc.) were also analysed. The dopant percentage added to the lead crystal glass is the most important factor for developing superficial red ruby colouring. Antimony oxide doped lead glass ion-exchanged with silver showed the most intense red ruby colouring, even for a doping concentration lower than those of arsenic oxide doped samples able to enhance similar colour. Spectral saturation appeared for the highest doping concentration and for the most severe ion-exchange conditions. Chromatic coordinates were calculated from the corresponding transmission visible spectra. The colour purity showed by the samples obtained satisfies the ornamental requirements that motivated this research.

  10. Bioactive glass in tissue engineering

    Science.gov (United States)

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  11. Luminescent properties of fluorophosphate glasses with lead chalcogenides molecular clusters

    International Nuclear Information System (INIS)

    Kolobkova, E.V.; Kukushkin, D.S.; Nikonorov, N.V.; Shakhverdov, T.A.; Sidorov, A.I.; Vasiliev, V.N.

    2015-01-01

    Fluorophosphate glasses containing lead, selenium, and sulfur exhibit an intense luminescence in the 400–620 nm spectral region when excited by the 240–420 nm radiation. This luminescence is due to the presence of (PbSe) n and/or (PbS) n molecular clusters in the glasses, which appear in the as-prepared glasses before quantum dots formation. The thermal treatment at temperatures less than the glass transition temperature results in the red-shift of the luminescence bands and in an increase in the luminescence intensity. Heating the thermally treated glass samples leads to the reversible thermal quenching of the luminescence. - Highlights: • Fluorophosphate glasses with Pb, Se, and S ions contain (PbSe) n or (PbS) n molecular clusters. • (PbSe) n and (PbS) n molecular clusters possess luminescence in the visible with UV excitation. • Heating the glass leads to the reversible thermal quenching of the luminescence

  12. Modeling gadolinium-bearing fuel in Ringhals PWRs using CASMO/SIMULATE

    International Nuclear Information System (INIS)

    Kurcyusz, E.

    1993-01-01

    Ringhals units 2, 3, and 4 are Westinghouse three-loop, 157-assembly pressurized water reactors (PWRs) operated by Vattenfall. Originally, all three reactors were loaded in an out-in scheme using reload fuel without burnable poisons. In recent cycles, gadolinium-bearing fuel was introduced to enable a low-leakage loading pattern and minimize fuel cycle costs. This paper focuses on the Fragema 17 x 17 AFA design with peripheral gadolinium rods loaded in units 3 and 4. The Ringhals units are modeled using the Studsvik core management system, consisting of the CASMO-3 transport theory lattice physics code,and the SIMULATE-3 advanced nodal reactor analysis code. The results of the studies verifying the accuracy of CASMO-3/SIMULATE-3 on the assemblies with peripheral gadolinium rods are presented in this paper. The verification was carried out against CASMO-3 color-set calculations and measured reactor data

  13. Topological Principles of Borosilicate Glass Chemistry - An Invited Talk

    DEFF Research Database (Denmark)

    Mauro, J.C.; Smedskjær, Morten Mattrup; Youngman, R. E.

    Borosilicate glasses display a rich complexity of chemical behavior depending on the details of their composition and thermal history. We investigate the topological principles of borosilicate glass chemistry covering the extremes from pure borate to pure silicate end members. Based on NMR...

  14. Dysprosium lithium borate glass mircrospheres for radiation synovectomy: The in vitro and in vivo performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Di; Yu Jing [Institute of Bioengineering and Information Technology Materials, Center for Advanced Materials and Nano-Biomedicine, Tongji University, Shanghai, 200092 (China); Huang Wenhai, E-mail: whhuang@tongji.edu.cn [Institute of Bioengineering and Information Technology Materials, Center for Advanced Materials and Nano-Biomedicine, Tongji University, Shanghai, 200092 (China); Zhou Nai; Wang Deping [Institute of Bioengineering and Information Technology Materials, Center for Advanced Materials and Nano-Biomedicine, Tongji University, Shanghai, 200092 (China); Yin Wei [Institute of Isotope Research, Sinitic Academy of Atomic Energy, Beijing 102413 (China); Chen Yaqing [The Sixth People' s Hospital, Shanghai 200233 (China)

    2010-08-30

    The radioactive dysprosium lithium borate glass (DyLB) microspheres with different glass compositions were prepared for radiation synovectomy. The biodegradability and biocompatibility of these DyLB microspheres were evaluated in vitro and in vivo. The DyLB microspheres studied in this work were partially biodegradable in a simulated body fluid (SBF), with the final weight loss of the microspheres in the range of 24.6% and 55.0% (wt.%) after 8 days of immersion. The ICP results revealed that the dissolution of lithium significantly decreased from 100% to 53.7% with increasing content of Dy{sub 2}O{sub 3} in the microspheres from 18% to 22% (wt.%, from S-1 to S-3). However, for all of the three samples, nearly all of the dysprosium (> 99.997%, wt.%) remained in the microspheres, in the form of insoluble phosphates and carbonates, which was proved by the SEM and EDX analyses. The degradation of DyLB microspheres in SBF gradually decreased with immersion time and eventually reached equilibrium after 7 days of immersion. Compared to the other two samples, the S-3 sample with the lowest Dy{sup 3+} dissolution (about 0.002%) was considered more secure for clinical application. Furthermore, the S-3 DyLB microspheres exhibited good biocompatibility, since neither tissue damage nor inflammation was observed, after they were implanted in the liver of rat for two weeks. After neutron activation, the radionuclide purity of radioactive S-3 DyLB microspheres was 99.999%, which were suitable for radiation synovectomy.

  15. Physical, structural and optical characterizations of borate modified bismuth-silicate-tellurite glasses

    Science.gov (United States)

    Berwal, Neelam; Kundu, R. S.; Nanda, Kirti; Punia, R.; Kishore, N.

    2015-10-01

    Quaternary bismuthate glasses with compositions xB2O3-(80 - x) Bi2O3-15SiO2-5TeO2 have been prepared by melt-quench technique. X-ray diffraction studies were performed to ascertain the amorphous nature of samples. The density, molar volume and crystalline volume decrease with increase in B2O3 content whereas the glass transition temperature shows the reverse trend. The Raman and FTIR spectra of the studied glasses indicate that B2O3 has been found to exist in the form of BO3 trigonal and BO4 tetrahedral structural units and vibrations corresponding to these structural units increase with increase in B2O3 content. SiO2 is present in the form of SiO4 tetrahedral structural units and TeO2 in the form of TeO3 structural units. Bismuth plays the role of network modifier [BiO6 octahedra] as well as network former [BiO3 pyramids] for all the glass compositions. The optical band gap energy has been calculated from the fitting of both Mott and Davis's model and Hydrogenic excitonic model with the experimentally observed absorption spectra. A good fitting of experimental data with HEM indicates the excitonic formation in the studies glass system. The values of optical band gap energy show nonlinear behavior due to the structural changes that take place in the present glass samples. The Urbach energy calculated using Urbach empirical formula for studied glass samples suggest the possibility of reduction in defect concentrations. The metallization criterion of the presently studied samples suggests that the prepared glasses may be potential candidates for nonlinear optical applications.

  16. Enrichment of gadolinium-157 and gadolinium-155 by laser method

    International Nuclear Information System (INIS)

    Xinjun, Su; Xiaowei, Zhang; Zhiquan, Li

    2008-01-01

    Laser isotope separation experiments of gadolinium by atomic vapor method have been performed. Gadolinium-157 and gadolinium-155 were selectively photoionized by means of three linearly polarized dye lasers, the excitation process of which is based on the polarization selection rules. Gramme-magnitude of enriched gadolinium was obtained and the total abundance of gadolinium-157 and gadolinium-155 was in excess of 80%, and the product rating exceeded 200 mg/h. (author)

  17. The lead equivalence of plate glass for diagnostic x-rays

    International Nuclear Information System (INIS)

    Young, B.F.; Morris, N.D.

    1983-01-01

    The effectiveness of plate glass as a radiation protection barrier was determined. For x ray energies between 80 and 140 kVp, the lead equivalence of plate glass is energy independent, but below 80 kVp there is an apparent dependence. A thickness of plate glass of 25 mm for radiation energies between 80 and 140 kVp is equivalent to lead of .3mm thickness. There could be a limited application for the use of plate glass in viewing panels

  18. Relaxation and physical aging in network glasses: a review.

    Science.gov (United States)

    Micoulaut, Matthieu

    2016-06-01

    Recent progress in the description of glassy relaxation and aging are reviewed for the wide class of network-forming materials such as GeO2, Ge x Se1-x , silicates (SiO2-Na2O) or borates (B2O3-Li2O), all of which have an important usefulness in domestic, geological or optoelectronic applications. A brief introduction of the glass transition phenomenology is given, together with the salient features that are revealed both from theory and experiments. Standard experimental methods used for the characterization of the slowing down of the dynamics are reviewed. We then discuss the important role played by aspects of network topology and rigidity for the understanding of the relaxation of the glass transition, while also permitting analytical predictions of glass properties from simple and insightful models based on the network structure. We also emphasize the great utility of computer simulations which probe the dynamics at the molecular level, and permit the calculation of various structure-related functions in connection with glassy relaxation and the physics of aging which reveal the non-equilibrium nature of glasses. We discuss the notion of spatial variations of structure which leads to the concept of 'dynamic heterogeneities', and recent results in relation to this important topic for network glasses are also reviewed.

  19. Determination of major, minor and trace elements in rock samples by laser ablation inductively coupled plasma mass spectrometry: Progress in the utilization of borate glasses as targets

    International Nuclear Information System (INIS)

    Leite, Tacito Dantas F.; Escalfoni, Rainerio; Fonseca, Teresa Cristina O. da; Miekeley, Norbert

    2011-01-01

    The present work is a continuation of a research study performed at our laboratory aiming at the multielement analysis of rock samples (basalts and shale) by inductively coupled plasma mass spectrometry in combination with laser ablation using borate glasses as analytical targets. Argon, nitrogen-argon mixtures and helium were evaluated as cell gases, the latter confirming its better performance. Different operational parameters of the laser, such as gas flow, energy, focus, scanning speed and sampling frequency were optimized. External calibration was made with standards prepared by fusion of geological reference materials (basalts 688 and BCR-2, obsidian SRM 278, and shale SGR-1) of different mass fractions in the meta-tetra borate matrix. Coefficients of determination (R 2 ) were > 0.99 for 30 elements from o total of 40 determined. Method validation was then performed using additional certified reference materials (BHVO-2, BIR-1, SCo-1) produced as borate targets in a similar way. Accuracies were better than 10% for most of the elements studied and analytical precisions, calculated from the residual standard deviations of calibration curves were, typically, between 6% and 10%. Additionally, the semiquantitative TotalQuant (registered) technique was applied, which gave, within the expected uncertainty for this calibration technique, concordant results when compared to the quantitative external calibration procedure. Both methods were then used for the analysis of marine shale samples, which are of great geological interest in petroleum prospecting.

  20. Mixed alkali effect in borate glasses - electron paramagnetic resonance and optical absorption studies in Cu sup 2 sup + doped xNa sub 2 O- (30 - x)K sub 2 O- 70B sub 2 O sub 3 glasses

    CERN Document Server

    Chakradhar, R P S; Rao, J L; Ramakrishna, J

    2003-01-01

    The mixed alkali borate glasses xNa sub 2 O-(30 - x)K sub 2 O-70B sub 2 O sub 3 (5 sup sup 2 B sub 2 sub g) and a weak band on the higher energy side at 22 115 cm sup - sup 1 corresponding to the transition ( sup 2 B sub 1 sub g -> sup 2 E sub g). With x > 5, the higher energy band disappears and the lower energy band shifts slightly to the lower energy side. By correlating the EPR and optical absorption data, the molecular orbital coefficients alpha sup 2 and beta sub 1 sup 2 are evaluated for the different glasses investigated. The values indicate that the in-plane sigma bonding is moderately covalent while the in-plane pi bonding is significantly ionic in nature; these exhibit a minimum with x = 15, showing the MAE. The theoretical values of optical basicity of the glasses have also been evaluated. From optical absorption edges, the optical bandgap energies have been calculated and are found to lie in the range 3.00-3.40 eV. The physical properties of the glasses studied have also been evaluated with respe...

  1. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-01-01

    The lead-iron-phosphate nuclear waste glass developed at Oak Ridge National Laboratory (ORNL) was evaluated for its potential as an improvement over the current reference waste form, borosilicate glass. Vitreous lead-iron-phosphate glass appears to have substantially better chemical durability than borosilicate glass. However, severe crystallization leading to deteriorated chemical durability would result if this glass were poured into large canisters as is presently done with borosilicate glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from borosilicate glass. Therefore, in order to realize the performance advantages of the lead-iron-phosphate material in a nuclear waste form, it would be necessary to process it so that it is rapidly cooled, thus retaining its vitreous structure. 22 refs., 4 figs., 4 tabs

  2. Role of lead as modifier on the properties of lead iron phosphate nuclear waste glasses

    International Nuclear Information System (INIS)

    Hazra, G.; Mitra, P.; Das, T.

    2011-01-01

    Lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high level defence and high level commercial radioactive waste for long term disposal. Lead iron phosphate glasses have several advantages such as lower aqueous corrosion rate, lower processing temperature etc. (author)

  3. NMR studies of the structure of glasses

    International Nuclear Information System (INIS)

    Bray, P.J.; Gravina, S.J.; Stallworth, P.E.; Szu, S.P.; Jianhui Zhong

    1988-01-01

    Earlier continuous wave (CW) NMR studies of chemical bonding and structure in glasses are summarized. Examples are given of this use of the quadrupolar interaction and chemical shift to obtain structural information. New NMR data and analyses are presented for alkali borate and gallate glasses. Extensions to other elements (e.g. molybdenum, lanthanum) are suggested. 44 refs. (author)

  4. Structural properties of lithium borate glasses doped with rare earth ions

    Directory of Open Access Journals (Sweden)

    Thomazini D.

    2001-01-01

    Full Text Available This paper presents the study on lithium triborate glass (LBO in the system (1-x|3B2O3.Li2O| (xNb2O5 yPr3+ zYb3+ wNd3+ with 0 <= x <= 20 mol% (y, z and w in mol%. The samples were studied by Raman spectroscopy, infrared absorption and differential thermal analysis. Pr3+-doped LBO and Pr3+/Yb3+-doped LBO samples show an increase of the glass transition and crystallization temperatures and a decrease of the fusion temperature associated with the increase of the praseodymium concentration in the LBO matrix. For the Nd3+-doped LBO and Pr3+/Yb3+-doped (LBO+Nb2O5 samples, a decrease of the glass transition temperature of the samples was observed. The increase of the rare earth doping leads to an increase of the difference between the glass transition and the crystallization temperatures. From infrared analysis it was possible to identify all the modes associated to the B-O structure. The NbO6 octahedra was also identified by IR spectroscopy for samples with x=5, 10, 15 and 20 mol% and y=0.05, z=1.1 mol%. Raman spectroscopy shows the presence of boroxol rings, tetrahedral and triangular coordination for boron. For samples containing niobium, the Raman spectra show the vibrational mode associated with the Nb-O bond in the niobium octahedra (NbO6.

  5. Copper doped borate dosimeters revisited

    International Nuclear Information System (INIS)

    Alajerami, Y.S.M.; Hashim, S.; Ghoshal, S.K.; Bradley, D.A.; Mhareb, M.; Saleh, M.A.

    2014-01-01

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu + and Cu ++ ) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu + ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated technique in borate

  6. High-Level Waste Glass Formulation Model Sensitivity Study 2009 Glass Formulation Model Versus 1996 Glass Formulation Model

    International Nuclear Information System (INIS)

    Belsher, J.D.; Meinert, F.L.

    2009-01-01

    This document presents the differences between two HLW glass formulation models (GFM): The 1996 GFM and 2009 GFM. A glass formulation model is a collection of glass property correlations and associated limits, as well as model validity and solubility constraints; it uses the pretreated HLW feed composition to predict the amount and composition of glass forming additives necessary to produce acceptable HLW glass. The 2009 GFM presented in this report was constructed as a nonlinear optimization calculation based on updated glass property data and solubility limits described in PNNL-18501 (2009). Key mission drivers such as the total mass of HLW glass and waste oxide loading are compared between the two glass formulation models. In addition, a sensitivity study was performed within the 2009 GFM to determine the effect of relaxing various constraints on the predicted mass of the HLW glass.

  7. Optimization of gadolinium burnable poison loading by the conjugate gradients method

    International Nuclear Information System (INIS)

    Drumm, C.R.

    1984-01-01

    Improved use of burnable poison is suggested for pressurized water reactors (PWR's) to insure a sufficiently negative moderator temperature coefficient of reactivity for extended burnup cycles and low leakage refueling patterns. The use of gadolinium as a burnable poison can lead to large axial fluctuations in the power distribution through the cycle. The goal of this work is to determine the optimal axial distribution of gadolinium burnable poison in a PWR to overcome the axial fluctuations, yielding an improved power distribution. The conjugate gradients optimization method is used in this work because of the high degree of nonlinearity of the problem. The neutron diffusion and depletion equations are solved for a one-dimensional one-group core model. The state variables are the flux, the critical soluble boron concentration, and the burnup. The control variables are the number of gadolinium pins per assembly and the beginning-of-cycle gadolinium concentration, which determine the gadolinium cross section. Two separate objectives are considered: 1) to minimize the power peaking factor, which will minimize the capital cost of the plant; and 2) to maximize the cycle length, which will minimize the fuel cost for the plant. It is shown in this work that optimizing the gadolinium distribution can yield an improved power distribution

  8. Optical absorption, luminescence, and energy transfer processes studies for Dy3+/Tb3+-codoped borate glasses for solid-state lighting applications

    Science.gov (United States)

    Lakshminarayana, G.; Kaky, Kawa M.; Baki, S. O.; Lira, A.; Caldiño, U.; Kityk, I. V.; Mahdi, M. A.

    2017-10-01

    By using melt quenching technique, good optical quality singly doped Dy3+ or Tb3+ and Dy3+/Tb3+-codoped borate glasses were synthesized and studied by optical absorption, excitation, emission and decay lifetimes curve analysis. Following the absorption spectrum, the evaluated Judd-Ofelt (J-O) intensity parameters (Ωλ (λ = 2, 4 and 6)) were used to calculate the transition probability (AR), the branching ratio (βR), and the radiative lifetime (τR) for different luminescent transitions such as 4I15/2 → 6H15/2, 4F9/2 → 6H15/2, 4F9/2 → 6H13/2, 4F9/2 → 6H11/2 and 4F9/2 → 6H9/2,6F11/2 for the 0.5 mol % singly Dy3+-doped glass. The βR calculated (65%) indicates that for lasing applications, 4F9/2 → 6H13/2 emission transition is highly suitable. For all the Dy3+/Tb3+-codoped glasses, Tb3+: 5D3→7F6 emission decay lifetime curves are found to be non-exponential in nature for different concentrations of Dy3+ codoping. Using the Inokuti-Hirayama model, these nonexponential decay curves were analyzed to identify the nature of the energy transfer (ET) processes and here the electric dipole-dipole interaction is dominant for the ET. Based on the excitation and emission spectra and decay lifetimes curve analysis, the cross relaxation and ET processes between Dy3+ and Tb3+ were confirmed. For the 0.5 mol % Tb3+ and 2.0 mol % Dy3+-codoped glass, the evaluated Tb3+→Dy3+ ET efficiency (η) is found to be 45% under 369 nm excitation. Further, for Tb3+/Dy3+ -codoped glasses, an enhancement of Tb3+ green emission is observed up to 1.5 mol % Dy3+ codoping, and this is due to the non-radiative resonant ET from Dy3+ to Tb3+ upon 395 nm excitation. For singly 0.5 mol % Dy3+ or 0.5 mol % Tb3+-doped glass, the calculated color coordinates (x,y) and correlated color temperatures (CCT) represent the neutral white or warm white light regions, whereas Dy3+/Tb3+-codoped glasses (x,y) and CCT values fall in the yellowish green region with respect to the different Dy3

  9. Effect of irradiation on differential thermal properties and crystallization behavior of some lithium borate glasses

    International Nuclear Information System (INIS)

    El-Alaily, N.A.; Mohamed, R.M.

    2001-01-01

    Differential thermal properties and the crystallization behavior of binary system Li 2 O-B 2 O 3 glasses were investigated. The effects of the presence of oxides of aluminum, lead or one of the transition metals TiO 2 or V 2 O 5 or Fe 2 O 3 in the parent glass were also studied. The effects of three different heat treatments on the crystalline structure of all the studied glasses were also investigated. The results showed that all glass samples were amorphous before the heat treatment, with the most common formed phase being tetraborate Li 2 B 8 O 13 (Li 2 O-4B 2 O 3 ). The exposure of the glass samples to either gamma rays or fast neutrons resulted in considerable changes in their thermal behavior. The results also showed that T g increases for all studied glasses when subjected to irradiation either by fast neutron or gamma rays, while T c decreased only at higher doses

  10. Gadolinium-enhanced MR angiography (Gd-MRA) of thoracic vasculature in an animal model using double-dose gadolinium and quiet breathing

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, R.J.; Strouse, P.J. [Section of Pediatric Radiology, University of Michigan Health System, Ann Arbor (United States); Londy, F.J. [Dept. of Radiology, University of Michigan Hospitals, Ann Arbor, MI (United States); Wakefield, T.W. [Dept. of Surgery, Section of Vascular Surgery, University of Michigan Hospitals, Ann Arbor, MI (United States)

    2001-08-01

    Objective. To evaluate a gadolinium-enhanced MR angiography (Gd-MRA) imaging protocol for the assessment of thoracic vessels using double-dose gadolinium and quiet breathing. An animal model was used to simulate imaging in infants and young children. Material and methods. Six baboons (Papio anubis), mean weight 5.7 kg, were sedated and intubated. After the injection of double-dose Gd-DTPA (0.2 mmol/kg) through a peripheral vein, a coronal spoiled 3D gradient-echo volume acquisition was obtained during quiet breathing. Two radiologists reviewed the images for visualization of aortic arch, brachiocephalic vessel origins, pulmonary arteries (central, upper lobe and descending branches), and pulmonary veins (upper and lower). Results. Visualization was excellent for the aortic arch, brachiocephalic vessel origins, and pulmonary arteries, including the hilar branches. Visualization was excellent for the lower and right upper pulmonary veins and fair for the left upper pulmonary vein. There was excellent agreement between radiologists. Conclusion. Imaging of thoracic vessels with Gd-MRA using double gadolinium during quiet breathing was effective in our animal model. The advantages of this technique include a short imaging time and depiction of vascular segments - branches of pulmonary arteries and intraparenchymal segments of pulmonary veins - not optimally visualized with other non-invasive imaging techniques. (orig.)

  11. Gadolinium-enhanced MR angiography (Gd-MRA) of thoracic vasculature in an animal model using double-dose gadolinium and quiet breathing

    International Nuclear Information System (INIS)

    Hernandez, R.J.; Strouse, P.J.; Londy, F.J.; Wakefield, T.W.

    2001-01-01

    Objective. To evaluate a gadolinium-enhanced MR angiography (Gd-MRA) imaging protocol for the assessment of thoracic vessels using double-dose gadolinium and quiet breathing. An animal model was used to simulate imaging in infants and young children. Material and methods. Six baboons (Papio anubis), mean weight 5.7 kg, were sedated and intubated. After the injection of double-dose Gd-DTPA (0.2 mmol/kg) through a peripheral vein, a coronal spoiled 3D gradient-echo volume acquisition was obtained during quiet breathing. Two radiologists reviewed the images for visualization of aortic arch, brachiocephalic vessel origins, pulmonary arteries (central, upper lobe and descending branches), and pulmonary veins (upper and lower). Results. Visualization was excellent for the aortic arch, brachiocephalic vessel origins, and pulmonary arteries, including the hilar branches. Visualization was excellent for the lower and right upper pulmonary veins and fair for the left upper pulmonary vein. There was excellent agreement between radiologists. Conclusion. Imaging of thoracic vessels with Gd-MRA using double gadolinium during quiet breathing was effective in our animal model. The advantages of this technique include a short imaging time and depiction of vascular segments - branches of pulmonary arteries and intraparenchymal segments of pulmonary veins - not optimally visualized with other non-invasive imaging techniques. (orig.)

  12. The evaluation of the radiation shielding ability of lead glass

    International Nuclear Information System (INIS)

    Tsuda, Keisuke; Fukushi, Masahiro; Myojoyama, Atsushi; Kitamura, Hideaki; Nakaya, Giichiro; Hassan, Nabil; Inoue, Kazumasa; Kimura, Junichi; Sawaguchi, Masato; Kinase, Sakae; Saito, Kimiaki

    2008-01-01

    Positron emission tomography (PET) scanning with the tracer 2-[F-18] Fluoro-2deoxy-D-glucose (FDG) is widely used in the clinical PET. However, the photon energy used in the PET scans is considerably higher than that of the X-rays traditionally used in the diagnoses. The radiation protection in the PET institution, therefore, is the remaining problem. Meanwhile, lead glass has attracted considerable attention as a radiation-shielding material for the PET institution. The aim of the present study was to evaluate the radiation-shielding ability of the lead glass against the positron emitters. The shielding ability evaluations were done both in the actual experiments and in the Monte Carlo simulation. The lead glass, the object of evaluation in this study, proved to have sufficient protective effect. The development and the spread of a thinner and lighter lead glass with the same effective dose transmission factor should be expected in the near future. (author)

  13. Synthesis and optical properties of antimony oxide glasses doped with holmium trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Raghunatha, S.; Eraiah, B., E-mail: eraiah@rediffmail.com [Department of physics, Bangalore University, Bengaluru – 560 056. India (India)

    2016-05-06

    Holmium doped lithium-antimony-lead borate glasses having 1 mol% AgNO{sub 3} with composition 50B{sub 2}O{sub 3}-20PbO-25Sb{sub 2}O{sub 3}-5Li{sub 2}O have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses. The optical direct band gap energies were found to be in the range of 3.10 eV to 3.31 eV and indirect band gap energies were found to be in the range of 2.28 eV to 3.00 eV. The refractive indexes have been calculated by using Lorentz-Lorenz formula and the calculated values in the range of 2.31 to 2.37.

  14. Electrical conductivity improvement of strontium titanate doped lead vanadate glasses by nanocrystallization

    Energy Technology Data Exchange (ETDEWEB)

    El-Desoky, M.M., E-mail: mmdesoky@gmail.co [Physics Department, Faculty of Education, Suez Canal University, El-Arish (Egypt); Zayed, H.S.S.; Ibrahim, F.A.; Ragab, H.S. [Physics Department, Faculty of Education, Suez Canal University, El-Arish (Egypt)

    2009-11-15

    The structural and electrical conductivity (sigma) of annealed SrTiO{sub 3}-PbO{sub 2}-V{sub 2}O{sub 5} glasses were studied. The annealing of initially glass samples leads to formation of nanocrystalline grains embedded in the glassy matrix. XRD patterns of the glass-ceramic samples show that nanocrystals were embedded in the glassy matrix with an average grain size of 32 nm. The glass-ceramic nanocrystals obtained by annealing at temperatures close to the crystallization temperature T{sub c} exhibit enhancement of electrical conductivity up to four orders of magnitude than initially glasses. The enhancement of the electrical conductivity due to annealing was attributed to two interdependent factors: (i) an increase of concentration of V{sup 4+}-V{sup 5+} pairs; and (ii) formation of defective, well-conducting regions along the glass-crystallites interfaces. From the conductivity temperature relation, it was found that small polaron hopping model was applicable at temperature above theta{sub D}/2 (theta{sub D}, the Debye temperature). The electrical conduction at T >theta{sub D}/2 was due to non-adiabatic small polaron hopping (SPH) of electrons between vanadium ions. The parameters obtained from the fits of the experimental data to this model appear reasonable and are consistent with glass composition.

  15. Electrical conductivity improvement of strontium titanate doped lead vanadate glasses by nanocrystallization

    International Nuclear Information System (INIS)

    El-Desoky, M.M.; Zayed, H.S.S.; Ibrahim, F.A.; Ragab, H.S.

    2009-01-01

    The structural and electrical conductivity (σ) of annealed SrTiO 3 -PbO 2 -V 2 O 5 glasses were studied. The annealing of initially glass samples leads to formation of nanocrystalline grains embedded in the glassy matrix. XRD patterns of the glass-ceramic samples show that nanocrystals were embedded in the glassy matrix with an average grain size of 32 nm. The glass-ceramic nanocrystals obtained by annealing at temperatures close to the crystallization temperature T c exhibit enhancement of electrical conductivity up to four orders of magnitude than initially glasses. The enhancement of the electrical conductivity due to annealing was attributed to two interdependent factors: (i) an increase of concentration of V 4+ -V 5+ pairs; and (ii) formation of defective, well-conducting regions along the glass-crystallites interfaces. From the conductivity temperature relation, it was found that small polaron hopping model was applicable at temperature above θ D /2 (θ D , the Debye temperature). The electrical conduction at T >θ D /2 was due to non-adiabatic small polaron hopping (SPH) of electrons between vanadium ions. The parameters obtained from the fits of the experimental data to this model appear reasonable and are consistent with glass composition.

  16. Copper doped borate dosimeters revisited

    Energy Technology Data Exchange (ETDEWEB)

    Alajerami, Y.S.M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Department of Medical Radiography, Al-Azhar University, Gaza Strip, Palestine (Country Unknown); Hashim, S., E-mail: suhairul@utm.my [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Oncology Treatment Centre, Sultan Ismail Hospital, 81100 Johor Bahru (Malaysia); Ghoshal, S.K. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Bradley, D.A. [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mhareb, M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Saleh, M.A. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); National Atomic Energy Commission (NATEC), Sana' a (Yemen)

    2014-11-15

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu{sup +} and Cu{sup ++}) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu{sup +} ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated

  17. Lead recovery and glass microspheres synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced acid leaching process.

    Science.gov (United States)

    Mingfei, Xing; Yaping, Wang; Jun, Li; Hua, Xu

    2016-03-15

    In this study, a novel process for detoxification and reutilization of waste cathode ray tube (CRT) funnel glass was developed by carbon thermal reduction enhanced acid leaching process. The key to this process is removal of lead from the CRT funnel glass and synchronous preparation of glass microspheres. Carbon powder was used as an isolation agent and a reducing agent. Under the isolation of the carbon powder, the funnel glass powder was sintered into glass microspheres. In thermal reduction, PbO in the funnel glass was first reduced to elemental Pb by carbon monoxide and then located on the surface of glass microspheres which can be removed easily by acid leaching. Experimental results showed that temperature, carbon adding amount and holding time were the major parameters that controlled lead removal rate. The maximum lead removal rate was 94.80% and glass microspheres that measured 0.73-14.74μm were obtained successfully by setting the temperature, carbon adding amount and holding time at 1200°C, 10% and 30min, respectively. The prepared glass microspheres may be used as fillers in polymer materials and abrasive materials, among others. Accordingly, this study proposed a practical and economical process for detoxification and recycling of waste lead-containing glass. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Photon emission induced by brittle fracture of borosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Shiota, Tadashi, E-mail: tshiota@ceram.titech.ac.jp [Department of Metallurgy and Ceramic Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Sato, Yoshitaka [Department of Metallurgy and Ceramic Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Kishi, Tetsuo [Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Yasuda, Kouichi [Department of Metallurgy and Ceramic Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2016-05-15

    Photon emission (PE) at wavelength ranges of 430–490 nm (B-PE), 500–600 nm (G-PE) and 610–680 nm (R-PE) caused by brittle fracture was simultaneously measured in the nanosecond-to-microsecond and millisecond time domains for two types of borosilicate glasses: Pyrex-type Tempax glass and BK7 glass. The results were compared to those for silica and soda lime glasses. The time dependence of the PE of Tempax glass was similar to that of silica glass, while the PE intensity was lower. Because Tempax glass contains both silica-rich and borate-rich amorphous phases, the PE must be mainly produced by the fracture of the silica-rich phase. Moreover, the proportion of B-PE of Tempax glass was higher than that of silica glass. This suggests that the measured B-PE might also include very weak PE caused by the fracture of the borate-rich phase. The PE time dependence of BK7 glass was similar to that of soda lime glass, which was different from the case for Tempax glass. The PE intensity of BK7 glass was slightly higher than that of soda lime glass, but much lower than that of Tempax glass. The result indicates that non-bridging oxygen in the glasses affects crack propagation behavior and reduces the PE. - Highlights: • Photon emission (PE) upon brittle fracture of borosilicate glasses was measured. • Pyrex-type Tempax and BK7 glasses showed different PE characteristics. • The rupture of Si–O bonds produces much stronger PE than that of B–O bonds. • Non-bridging oxygen in glass affects crack propagation behavior and reduces the PE.

  19. Chemical compositions and lead isotope ratios of ancient lead-barium glasses found in Japan

    International Nuclear Information System (INIS)

    Yamasaki, Kazuo.

    1991-01-01

    Six lead-barium glasses found in the archaeological sites of the Yayoi period in the northern part of Kyushu, Japan were chemically analysed and their lead isotope ratios were determined. These data agreed with those of the glasses of the Pre-Han period found in China, suggesting the presence of possible trade between China in the Pre-Han Period (ca. fourth-third centuries B.C.) and Japan in the earlier Yayoi period (ca. first century B.C.). (author)

  20. Gadolinium(III) ion selective sensor using a new synthesized Schiff's base as a sensing material

    International Nuclear Information System (INIS)

    Zamani, Hassan Ali; Mohammadhosseini, Majid; Haji-Mohammadrezazadeh, Saeed; Faridbod, Farnoush; Ganjali, Mohammad Reza; Meghdadi, Soraia; Davoodnia, Abolghasem

    2012-01-01

    According to a solution study which showed a selective complexation between N,N′-bis(methylsalicylidene)-2-aminobenzylamine (MSAB) and gadolinium ions, MSAB was used as a sensing element in construction of a gadolinium(III) ion selective electrode. Acetophenon (AP) was used as solvent mediator and sodium tetraphenyl borate (NaTPB) as an anion excluder. The electrode showed a good selectivity towards Gd(III) ions over a wide variety of cations tested. The constructed sensor displayed a Nernstian behavior (19.7 ± 0.3 mV/decade) in the concentration range of 1.0 × 10 −6 to 1.0 × 10 −2 mol L −1 with detection limit of 5.0 × 10 −7 mol L −1 and a short response time ( 3+ –PVC membrane sensor based on an ion carrier as sensing material is introduced. ► This technique is very simple and it's not necessary to use sophisticated equipment. ► This sensor shows good selectivity against other metal ions.

  1. Luminescent hybrid materials based on (8-hydroxyquinoline)-substituted metal-organic complexes and lead-borate glasses

    Science.gov (United States)

    Petrova, Olga B.; Anurova, Maria O.; Akkuzina, Alina A.; Saifutyarov, Rasim R.; Ermolaeva, Ekaterina V.; Avetisov, Roman I.; Khomyakov, Andrew V.; Taydakov, Ilya V.; Avetissov, Igor Ch.

    2017-07-01

    Novel luminescent organic-inorganic hybrid materials based on 8-hydroxyquinoline metal complexes (Liq, Kq, Naq, Rbq, Mgq2, Srq2, Znq2, Scq3, Alq3, Gaq3, and Inq3) have been synthesized by a high temperature exchange reaction with 80PbF2-20B2O3 inorganic low-melting glass. The mechanical and optical properties, transmission spectra, emission an excitation photoluminescence, and luminescence kinetic of hybrid materials were studied. All hybrid materials showed a wide luminescence band in the range 400-700 nm.

  2. Effect of various lead species on the leaching behavior of borosilicate waste glass

    International Nuclear Information System (INIS)

    Lehman, R.L.; Kuchinski, F.A.

    1984-01-01

    A borosilicate nuclear waste glass was static leached in pure water, silicate water, and brine solution. Three different forms of lead were included in specified corrosion cells to assess the extent to which various lead species alter the leaching behavior of the glass. Weight loss data indicated that Pb/sub m/ amd PbO greatly reduce the weight loss of glass when leached in pure water, and similar effects were noted in silicate and brine. Si concentrations, which were substantial in the glass-alone leachate, were reduced to below detection limits in all pure water cells containing a lead form. Lead concentration levels in the leachate were controlled by lead form solubility and appeared to be a significant factor in influencing apparent leaching behavior. Surface analysis revealed surface crystals, which probably formed when soluble lead in the leachate reacted with dissolved or activated silica at the glass surface. The net effect was to reduce the lease of some glass constituents to the leachate, although it was not clear whether the actual corrosion of the glass surface was reduced. Significantly different corrosion inhibiting effects were noted among lead metal and two forms of lead oxide. 9 refs., 7 figs., 3 tabs

  3. Evaluation of neutron shielding properties of lead glass using bubble detector

    International Nuclear Information System (INIS)

    Viswanathan, S.; Vishwa Prasad, K.; Srinivasan, T.K.; Ponraju, D.

    1999-01-01

    Neutron shielding properties of lead glass had been studied using a 241 Am-Be neutron source. Indigenously developed bubble detector was used as neutron detector. Attenuation curves were determined experimentally for the lead glass under the conditions of broad beam geometry. Theoretical calculations were made using Monte Carlo code MCNP3. Measurements were made for polyethylene and concrete to serve as reference. The measured and calculated neutron removal cross sections of lead glass, polyethylene and concrete are reported in this paper. Good agreement is observed between the experimental results and theoretical calculations. (author)

  4. Investigation of lead-iron-phosphate glass for SRP waste

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1986-10-01

    The search for a host solid for the immobilization of nuclear waste has focused on various vitreous waste forms. Recently, lead-iron-phosphate (LIP) glasses have been proposed for solidification of all types of HLLW. Investigation of this glass for vitrification of SRP waste demonstrated that the phosphate glass is incompatible with the current borosilicate glass technology. The durability of LIP glasses in deionized water was comparable to current borosilicate waste glass formulations, and the LIP glass has a low melt temperature. However, many of the defense waste constituents have low solubility in the phosphate melt, producing an inhomogeneous product. Also, the LIP melt is highly corrosive which prevents the use of current melter materials, in particular Inconel 690, and thus requires more exotic materials of construction such as platinum

  5. Effect of Dy{sub 2}O{sub 3} impurities on the physical, optical and thermoluminescence properties of lithium borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Mhareb, M.H.A., E-mail: mmhareb@hotmail.com [Radiation Protection Directorate, Energy and Minerals Regulatory Commission, Amman 11821 (Jordan); Hashim, S. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Ghoshal, S.K., E-mail: lordshib@gmail.com [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Alajerami, Y.S.M. [Department of Medical Radiography, Al-Azhar University, Gaza Strip, Palestine (Country Unknown); Bqoor, M.J.; Hamdan, A.I. [Radiation Protection Directorate, Energy and Minerals Regulatory Commission, Amman 11821 (Jordan); Saleh, M.A. [Nuclear Engineering Programme, Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Karim, M.K.B. Abdul [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2016-09-15

    Dysprosium (Dy) doped lithium borate glass (LBG) is prepared using conventional melting-quenching technique with varying Dy concentration in the range of 0 to 1.0 mol%. Prepared glass samples are characterized via X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR), UV–vis–IR, Photoluminescence (PL), Thermoluminescence (TL) spectroscopy and Differential Thermal Analysis (DTA). The physical parameters such as the density, optical energy band gap, oscillator strength, refractive index, ion concentration, Polaron radius, molar volume and inter-nuclear distance are determined. UV–vis–IR spectra revealed seven prominent bands centered at 448, 749, 796, 899, 1085, 1265 and 1679 nm corresponding to the transition from the Dy{sup 3+} ion's ground state ({sup 6}H{sub 15/2}) to the excited states ({sup 4}I{sub 15/2},{sup 6}F{sub 3/2}, {sup 6}F{sub 5/2}, {sup 6}H{sub 5/2}, {sup 6}F{sub 9/2}, {sup 6}H{sub 9/2} and {sup 6}H{sub 11/2}). The room temperature photoluminescence (PL) spectra of the glass series at 350 nm excitation displayed two peaks centered at 481 nm and 573 nm, which are assigned to the transitions of ({sup 4}F{sub 9/2}→{sup 6}H{sub 15/2}) and ({sup 4}F{sub 9/2}→{sup 6}H{sub 13/2}), respectively. The TL spectra of gamma-irradiated samples are measured, which showed Dy{sup 3+} content dependent simple glow peak at 190 °C. Dysprosium ion is found to play an important role in the TL and PL intensity enhancement of LB phosphor.

  6. Glasses impregnated with lead for radiation shielding

    International Nuclear Information System (INIS)

    Abd El Monem, A.M.; Kansouh, W.A.; Megahid, R.M.; Ismail, A.L.; Awad, E.M.

    2005-01-01

    The attenuation properties of glasses with different concentration of lead have been investigated for the attenuation of gamma-rays from cesium-137 and for total gamma rays using a beam of neutrons and gamma rays emitted from californium-252 source. Measurements have been performed using a gamma-ray spectrometer with Nal(T1) detector for gamma-rays emitted from 137 Cs and a neutron/gamma spectrometer with stilbene scintillator for measurement of total gamma-rays from 252 Cf neutron source. The latter applied the pulse shape discrimination technique to distinguish between recoil proton and recoil electron pulses. The obtained results given the form displayed pulse height spectra and attenuation relations which were used to derive the linear attenuation coefficient (μ), and the mass attenuation coefficient (mu/p) of the investigated glasses. In addition, calculations were performed to determine the attenuation properties of glass shields under investigation using XCOM code given by the others. A comparison of the shielding properties of these glasses with some standard shielding materials indicated that, the investigated glasses process the shielding advantages required for different nuclear technology applications

  7. Topological Principles of Borosilicate Glass Chemistry

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Mauro, J. C.; Youngman, R. E.

    2011-01-01

    and laboratory glassware to high-tech applications such as liquid crystal displays. In this paper, we investigate the topological principles of borosilicate glass chemistry covering the extremes from pure borate to pure silicate end members. Based on NMR measurements, we present a two-state statistical...

  8. Spectroscopic properties of highly Nd-doped lead phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Novais, A.L.F. [Instituto de Física, Universidade Federal de Alagoas, Grupo de Fotônica e Fluidos Complexos, 57072-970 Maceió, AL (Brazil); Dantas, N.O. [Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Guedes, I. [Departamento de Física, Universidade Federal do Ceará, Campus do PICI, Caixa Postal 6030, 60455-760 Fortaleza, CE (Brazil); Vermelho, M.V.D., E-mail: vermelho@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, Grupo de Fotônica e Fluidos Complexos, 57072-970 Maceió, AL (Brazil)

    2015-11-05

    The spectroscopic characteristics of highly Nd{sup 3+}-doped lead phosphate glasses (xNd:Pb{sub 3}(PO{sub 4}){sub 2}) have been investigated. The X-ray spectra show that the matrices are glassy up to 25 wt% of Nd{sup 3+} doping. From the Judd–Ofelt analysis we observe that while the Ω{sub (2)} parameter remains constant indicating that the 4f{sup N} and 4f{sup N−1}5 d{sup 1} configurations are not affected by the Nd{sup 3+} doping, the behavior of both Ω{sub (4)} and Ω{sub (6)} changes for 15 wt% of Nd{sup 3+} doping. The reduction of the Ω{sub (6)} parameter is related to the increase of the covalence bonding between the ligands and the Nd{sup 3+} ions. At this particular concentration, the radiative lifetime has a four-fold enhancement. Such behaviors are likely to be related to a modification in the glass structure for high Nd{sup 3+} concentrations. - Graphical abstract: Highly doped lead-phosphate glass matrix, with nominal concentration of up to 25 wt%, maintain the spectroscopic properties without deterioration. The analysis concerning the point of view of Nd{sup 3+} ions showed that high concentrations only affects the rare earth electronic charge density distribution. - Highlights: • Spectroscopic characterization of Nd{sub 2}O{sub 3} highly doped lead phosphate glasses. • Phosphate glass doped with Nd{sup 3+} for applications in photonic devices. • Judd–Ofelt analysis in phosphate glasses doped with Neodymium.

  9. Understanding the origin of the fracture toughness evolution of nuclear glasses under irradiation

    International Nuclear Information System (INIS)

    Kieu, L.-H.

    2011-01-01

    In the nuclear industry, complex borosilicate glasses are used for the confinement of fission products and long-life minor actinides. Under irradiations, the structure and the mechanical properties of these glasses evolve. In this work, atomistic and multi-scale simulations of three simplified borosilicate glasses were run to understand the origin of their fracture behavior change under irradiation. Under the radiation effects, elasticity decreases and plasticity increases. Fracture happens due to the formation and coalescence of nano-cavities. The structural modifications under the radiation effects lead to a delay of the coalescence and of the irradiated glass rupture. Several phenomena overlay to explain this behavior, especially the cavities distribution modifications, the sodium mobility, and the borate and silicate entities organization in the glassy network. Depending on the nature of the more important mechanism, the fracture toughness can increase or decrease under radiation. (author) [fr

  10. Third-order nonlinearity of Er3+-doped lead phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Santos, C. C. [Universidade Federal do Ceara, Ceara, Brazil; Guedes Da Silva, Ilde [ORNL; Siqueira, J. P. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Misoguti, L. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Zilio, S. C. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Boatner, Lynn A [ORNL

    2010-01-01

    The third-order optical susceptibility and dispersion of the linear refractive index of Er3+-doped lead phosphate glass were measured in the wavelength range between 400 and 1940 nm by using the spectrally resolved femtosecond Maker fringes technique. The nonlinear refractive index obtained from the third-order susceptibility was found to be five times higher than that of silica, indicating that Er3+-doped lead phosphate glass is a potential candidate to be used as the base component for the fabrication of photonic devices. For comparison purposes, the Z-scan technique was also employed to obtain the values of the nonlinear refractive index of E-doped lead phosphate glass at several wavelengths, and the values obtained using the two techniques agree to within 15%.

  11. Charge trapping and dielectric breakdown in lead silicate glasses

    International Nuclear Information System (INIS)

    Weeks, R.A.; Kinser, D.L.; Lee, J.M.

    1976-01-01

    When irradiated with beams of energetic electrons or gamma rays, many insulating glasses and plastics exhibit a spontaneous electrical discharge producing permanent patterns in the materials (Lichtenberg figures). In the case of inorganic glasses, this effect is not observed in pure silicate, germanate, or phosphate glasses nor in their crystalline forms and has only been reported in mixed-oxide glasses with low alkali content. In a series of lead silicate glasses of composition [PbO]/sub (x)/[SiO 2 ]/sub [1-(x)]/, the effect is observed only for 0 less than x less than or equal to 0.40. Changes in electrical properties are related to structural changes in these glasses. Electron microscopy of these glasses confirms the existence of microphase separation in the range 0.2 less than or equal to x less than or equal to 0.5

  12. New gadolinium based glasses for gamma-rays shielding materials

    International Nuclear Information System (INIS)

    Kaewjang, S.; Maghanemi, U.; Kothan, S.; Kim, H.J.; Limkitjaroenporn, P.; Kaewkhao, J.

    2014-01-01

    Highlights: • Gd 2 O 3 based glasses have been fabricated and investigated radiation shielding properties between 223 and 662 keV. • Density of the glass increases with increasing of Gd 2 O 3. • All the glasses of Gd 2 O 3 compositions studied had been shown lower HVL than X-rays shielding window. • Prepared glasses to be utilized as radiation shielding material with Pb-free advantage. • This work is the first to reports on radiation shielding properties of Gd 2 O 3 based glass matrices. - Abstract: In this work, Gd 2 O 3 based glasses in compositions (80−x)B 2 O 3 -10SiO 2 -10CaO-xGd 2 O 3 (where x = 15, 20, 25, 30 and 35 mol%) have been fabricated and investigated for their radiation shielding, physical and optical properties. The density of the glass was found to increase with the increasing of Gd 2 O 3 concentration. The experimental values of mass attenuation coefficients (μ m ), effective atomic number (Z eff ) and effective electron densities (N e ) of the glasses were found to increase with the increasing of Gd 2 O 3 concentration and also with the decreasing of photon energy from 223 to 662 keV. The glasses of all Gd 2 O 3 compositions studied have been shown with lower HVL values in comparison to an X-rays shielding window, ordinary concrete and commercial window; indicating their potential as radiation shielding materials with Pb-free advantage. Optical spectra of the glasses in the present study had been shown with light transparency; an advantage when used as radiation shielding materials

  13. Study of radiation effects on some glasses and their applications in radiation dosimetry

    International Nuclear Information System (INIS)

    Mohammad, A.El.

    2008-01-01

    This thesis comprises a study of the X-ray diffraction, thermal, electrical, ESR and optical properties of lead lithium tetra borate glass. The objective of this thesis is to prepare glass dosimeter and study the effect of several gamma-irradiation doses on Lead lithium tetra borate glasses doped with Cu O. The two glasses were prepared from chemical reagents; Li 2 B 4 O 7 from ready package, lead and copper oxide were added in fixed Proportions. The glass melting was made in porcelain crucibles, using electrically heated furnace at temperature of 1000 -1100 degree C. The melts rapidly quenched in air by pressing between two stainless-steel plates mould kept at room temperature. The resultant glasses were colorless for LPTB and transparent greenish sheet of LPTB Cu glass about 0.8 mm thick and where polished to meet the requirements for optical and electrical measurements. The obtained results can be summarized as follows:- Density It is observed that, for unirradiated samples, the addition of copper to LPTB leads to the increase of the number of ions in the sample which decreases the inter-ionic distance. As a result, the molar volume of LPTB Cu decreased and consequently its density increased in the range of 10 ± 1 %. Irradiation with gamma rays is assumed to create displacements, electronic defects and /or breaks in the network bonds. Irradiation can cause the compaction of B 2 O 3 by breaking of the bonds between trigonal elements, allowing the formation of different configuration. Irradiating the LPTB glass with growing gamma doses up to 25 kGy decreased its molar volume with in 4.07 % and consequently increased the density with the same percentage. For the glass LPTB Cu, the effect of gamma rays appeared as a decrease in the molar volume and increase in density with the same percentage (12.9%). The addition traces of copper (0.01 weight %) to LPTB enhanced the effect of gamma radiation on it. Crystallization Behavior: - X-ray diffraction The results show

  14. New gadolinium based glasses for gamma-rays shielding materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaewjang, S.; Maghanemi, U.; Kothan, S. [Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chang Mai University, Chang Mai 50200 (Thailand); Kim, H.J. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Limkitjaroenporn, P. [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand); Kaewkhao, J., E-mail: mink110@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand)

    2014-12-15

    Highlights: • Gd{sub 2}O{sub 3} based glasses have been fabricated and investigated radiation shielding properties between 223 and 662 keV. • Density of the glass increases with increasing of Gd{sub 2}O{sub 3.} • All the glasses of Gd{sub 2}O{sub 3} compositions studied had been shown lower HVL than X-rays shielding window. • Prepared glasses to be utilized as radiation shielding material with Pb-free advantage. • This work is the first to reports on radiation shielding properties of Gd{sub 2}O{sub 3} based glass matrices. - Abstract: In this work, Gd{sub 2}O{sub 3} based glasses in compositions (80−x)B{sub 2}O{sub 3}-10SiO{sub 2}-10CaO-xGd{sub 2}O{sub 3} (where x = 15, 20, 25, 30 and 35 mol%) have been fabricated and investigated for their radiation shielding, physical and optical properties. The density of the glass was found to increase with the increasing of Gd{sub 2}O{sub 3} concentration. The experimental values of mass attenuation coefficients (μ{sub m}), effective atomic number (Z{sub eff}) and effective electron densities (N{sub e}) of the glasses were found to increase with the increasing of Gd{sub 2}O{sub 3} concentration and also with the decreasing of photon energy from 223 to 662 keV. The glasses of all Gd{sub 2}O{sub 3} compositions studied have been shown with lower HVL values in comparison to an X-rays shielding window, ordinary concrete and commercial window; indicating their potential as radiation shielding materials with Pb-free advantage. Optical spectra of the glasses in the present study had been shown with light transparency; an advantage when used as radiation shielding materials.

  15. Structure and spectroscopy of rare earth – Doped lead phosphate glasses

    International Nuclear Information System (INIS)

    Pisarski, Wojciech A.; Żur, Lidia; Goryczka, Tomasz; Sołtys, Marta; Pisarska, Joanna

    2014-01-01

    Highlights: • Lead phosphate glasses doped with rare earth ions were prepared. • The local structure was examined using X-ray diffraction and spectroscopic methods. • Different structural phosphate groups are present in lead phosphate glasses. • The electron–phonon coupling strength and phonon energy of the glass host was determined. • Several observed emission bands are due to 4f–4f electronic transitions of rare earth ions. -- Abstract: Lead–gallium phosphate glasses doped with rare the earth ions (Eu 3+ , Dy 3+ , Tb 3+ , Er 3+ ) were synthesized. The structure of obtained glasses was examined by means of use: X-ray diffraction (XRD), nuclear magnetic resonance ( 207 Pb and 31 P NMR), fourier transform infrared (FT-IR) and Raman spectroscopy. In contrast to fully amorphous Ln-doped samples (Ln = Eu, Dy, Tb), in Er-doped sample the GaPO 4 crystalline phase was identified. It was found from the NMR, FT-IR and Raman spectroscopic techniques that, different structural phosphate groups were present in lead phosphate glasses. Based on absorption measurements, the UV–VIS cut-off wavelength for lead phosphate glass was determined and its value is close to 305 nm. Excitation and emission spectra of rare earths were also detected. From excitation spectra of Eu 3+ the electron–phonon coupling strength and phonon energy of the glass host were determined. Due to 4f 6 –4f 6 (Eu 3+ ), 4f 8 –4f 8 (Tb 3+ ), 4f 9 –4f 9 (Dy 3+ ) and 4f 11 –4f 11 (Er 3+ ) electronic transitions of trivalent rare earth ions several luminescence bands were stated

  16. Polarized localization and borate-dependent degradation of the Arabidopsis borate transporter BOR1 in tobacco BY-2 cells.

    Science.gov (United States)

    Yamauchi, Noboru; Gosho, Tadashi; Asatuma, Satoru; Toyooka, Kiminori; Fujiwara, Toru; Matsuoka, Ken

    2013-01-01

    In Arabidopsis the borate transporter BOR1, which is located in the plasma membrane, is degraded in the presence of excess boron by an endocytosis-mediated mechanism. A similar mechanism was suggested in rice as excess boron decreased rice borate transporter levels, although in this case whether the decrease was dependent on an increase in degradation or a decrease in protein synthesis was not elucidated. To address whether the borate-dependent degradation mechanism is conserved among plant cells, we analyzed the fate of GFP-tagged BOR1 (BOR1-GFP) in transformed tobacco BY-2 cells. Cells expressing BOR1-GFP displayed GFP fluorescence at the plasma membrane, especially at the membrane between two attached cells. The plasma membrane signal was abolished when cells were incubated in medium with a high concentration of borate (3 to 5 mM). This decrease in BOR1-GFP signal was mediated by a specific degradation of the protein after internalization by endocytosis from the plasma membrane. Pharmacological analysis indicated that the decrease in BOR1-GFP largely depends on the increase in degradation rate and that the degradation was mediated by a tyrosine-motif and the actin cytoskeleton. Tyr mutants of BOR1-GFP, which has been shown to inhibit borate-dependent degradation in Arabidopsis root cells, did not show borate-dependent endocytosis in tobacco BY-2 cells. These findings indicate that the borate-dependent degradation machinery of the borate transporter is conserved among plant species.

  17. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-01-01

    The lead-iron-phosphate (Pb-Fe-P) nuclear waste glass developed at Oak Ridge National Laboratory (ORNL) was evaluated for its potential as an improvement over the current reference waste form, borosilicate (B-Si) glass. Vitreous Pb-Fe-P glass appears to have substantially better chemical durability than B-Si glass. However, severe crystallization leading to deteriorated chemical durability would result if this glass were poured into large canisters, as is presently done with B-Si glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from B-Si glass. Therefore, to realize the performance advantages of the Pb-Fe-P material in a nuclear waste form, it would be necessary to process it so that it is cooled rapidly, thus retaining its vitreous structure

  18. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1989-01-01

    This patent describes lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 0 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms

  19. Models of agglomeration and glass transition

    CERN Document Server

    Kerner, Richard

    2007-01-01

    This book is for any physicist interested in new vistas in the domain of non-crystalline condensed matter, aperiodic and quasi-crystalline networks and especially glass physics and chemistry. Students with an elementary background in thermodynamics and statistical physics will find the book accessible. The physics of glasses is extensively covered, focusing on their thermal and mechanical properties, as well as various models leading to the formation of the glassy states of matter from overcooled liquids. The models of agglomeration and growth are also applied to describe the formation of quasicrystals, fullerenes and, in biology, to describe virus assembly pathways.

  20. Ultrasonic and structural features of some borosilicate glasses ...

    Indian Academy of Sciences (India)

    2017-06-09

    Jun 9, 2017 ... transform infrared spectroscopy, density and ultrasonic techniques to debate the issue of the role ... in the fields of electronics [3], optical lenses with high refrac- ..... of the borate glass will be close packed through the polymer-.

  1. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, S. Sreehari, E-mail: sreeharisastry@yahoo.com [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Rao, B. Rupa Venkateswara [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Department of Physics, V.R. Siddhartha Engineering College, Vijayawada 52007 (India)

    2014-02-01

    In this paper spectroscopic investigation of Cu{sup 2+} doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu{sup 2+} state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu{sup 2+} is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds.

  2. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    International Nuclear Information System (INIS)

    Sastry, S. Sreehari; Rao, B. Rupa Venkateswara

    2014-01-01

    In this paper spectroscopic investigation of Cu 2+ doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu 2+ state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu 2+ is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds

  3. Copper oxide content dependence of crystallization behavior, glass forming ability, glass stability and fragility of lithium borate glasses

    International Nuclear Information System (INIS)

    Soliman, A.A.; Kashif, I.

    2010-01-01

    Differential thermal analysis (DTA) and X-ray diffraction (XRD) have been employed to investigate the copper oxide content dependence of the glass transition temperatures data, activation energy for the glass transition E t , glass stability GS, fragility index Fi, the glass-forming ability (GFA) and crystallization behavior of {(100-x) mol% Li 2 B 4 O 7 -x mol% CuO} glass samples, where x=0-40 mol% CuO. From the dependence of the glass transition temperature T g on the heating rate β, the fragility, F i , and the activation energy, E t , have been calculated. It is seen that F i and E t are attained their minimum values at 0 x -T g , SCL region and the GS. The GFA has been investigated on the basis of Hruby parameter K H , which is a strong indicator of GFA, and the relaxation time. Results of GFA are in good agreement with the fragility index, F i , calculations indicating that {90Li 2 B 4 O 7 .10CuO} is the best glass former. The stronger glass forming ability has decreasing the fragility index. XRD result indicates that no fully amorphous samples but a mixture of crystalline and amorphous phases are formed in the samples containing x>25 mol% CuO and below it composed of glassy phase. Increasing the CuO content above 25 mol% helps the crystallization process, and thus promotes a distinct SCL region. XRD suggests the presence of micro-crystallites of remaining residual amorphous matrix by increasing the CuO content.

  4. Chemical durability of lead borosilicate glass matrix under simulated geological conditions

    International Nuclear Information System (INIS)

    Yalmali, Vrunda S.; Deshingkar, D.S.; Wattal, P.K.

    2002-03-01

    The lead borosilicate glass has been developed for vitrification of High Level Waste (HLW) stored at Trombay. This waste is contains especially high contents of sodium, uranium sulphate and iron. The glasses containing HLW are to be ultimately disposed into deep geological repositories. Long term leach rates under simulated geological conditions need to be evaluated for glass matrix. Studies were taken up to estimate the lead borosilicate glass WTR-62 matrix for chemical durability in presence of synthetic ground water. The leachant selected was based on composition of ground water sample near proposed repository site. In the first phase of these tests, the experiments were conducted for short duration of one and half month. The leaching experiments were conducted in presence of a) distilled water b) synthetic ground water c) synthetic ground water containing granite, bentonite and ferric oxide and d) synthetic ground water containing humic acid at 100 0 C. The leachate samples were analysed by pHmetry , ion chromatography and UV -VIS spectrophotometry. The normalised leach rates for lead borosilicate WTR- 62 glass matrix based on silica, boron and sulphate analyses of leachates were of the order of 10 -3 to 10 -5 gms/cm 2 /day for 45 days test period in presence of synthetic ground water as well as in presence of other materials likely to be present along with synthetic ground water. These rates are comparable to those of sodium borsilicate glass matrices reported in literature. It is known that the leach rates of glass matrix decrease with longer test durations due to formation of leached layer on its surface. The observed leach rates of lead borosilicate WTR- 62 glass matrix for 45 day tests under simulated geological conditions were found to be sufficiently encouraging to take up long term tests for evaluating its performances under repository conditions. (author)

  5. Ballistic transport of spin waves incident from cobalt leads across cobalt–gadolinium alloy nanojunctions

    International Nuclear Information System (INIS)

    Ashokan, V.; Abou Ghantous, M.; Ghader, D.; Khater, A.

    2014-01-01

    Calculations are presented for the scattering and ballistic transport of spin waves (SW) incident from cobalt leads, on ultrathin ferrimagnetic cobalt–gadolinium ‥Co][Co (1−c) Gd (c) ] ℓ [Co‥ nanojunction systems. The nanojunction [Co (1−c) Gd (c) ] ℓ itself is a randomly disordered alloy of thickness ℓ hcp lattice planes between matching hcp planes of the Co leads, at known stable concentrations c≤0.5 for this alloy system. To compute the spin dynamics, and the SW scattering and ballistic transport, this alloy nanojunction is modeled in the virtual crystal approximation (VCA), valid in particular at the length scale of the nanojunction for submicroscopic SW wavelengths. The phase field matching theory (PFMT) is applied to compute the localized and resonant magnons on the nanojunction. These magnons, characteristic of the embedded nanostructure, propagate in its symmetry plane with spin precession amplitudes that decay or match the spin wave states in the semi-infinite leads. The eigenvectors of these magnon modes are calculated for certain cases to illustrate the spin precession configurations on the nanojunction. The VCA-PFMT approach is also used to calculate the reflection and transmission spectra for the spin waves incident from the Co leads on the nanojunction. The results demonstrate resonance assisted maxima for the ballistic SW transmission spectra due to interactions between the incident spin waves and the nanojunction magnon modes. These properties are general for variable nanojunction thicknesses and alloy stable concentrations c≤0.5. In particular, the positions of the resonance assisted maxima of spin wave transmission can be modified with nanojunction thickness and alloy concentration. - Highlights: • Model is presented for spin wave scattering at CoGd disordered alloy nanojunctions. • Computations yield the localized and resonant magnon modes on the nanojunctions. • The spin waves ballistic reflection and transmission

  6. NMR study of glasses in the PbO-B/sub 2/O/sub 3/-PbF/sub 2/-AlF/sub 3/ system

    Energy Technology Data Exchange (ETDEWEB)

    Vopilov, V.A.; Bogdanov, V.L.; Buznik, V.M.; Karapetyan, A.K.; Matsulev, A.N.

    1986-01-01

    The NMR method has been successfully used in the study of the structure of oxide glasses and in lithium glasses. Using steady-state and pulse methods of B-11 and F-19 NMR, the authors have studied borate glasses in the PbO-B/sub 2/O/sub 3/-PbF/sub 2/-AlF/sub 3/ system. Lead fluoride was added to the composition of the experimental glasses. A small amount of PbF2 has a weak effect on the electrical conductivity, and it is only in the specimen with the maximum values of the PbF/sub 2/ concentration that conductivity becomes significant. In glasses of the PbO X B/sub 2/O/sub 3/ X AlF/sub 3/ compositions, there is an exchange of the oxygen and fluoride modifier anions and as a result the F ions are incorporated into the first coordination sphere of the lead cations.

  7. Glass viscosity calculation based on a global statistical modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Fluegel, Alex

    2007-02-01

    A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurement and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.

  8. Mineralogical and geochemical studies on borate deposits from the Shahr- e - Babak playa (Khatoonabad and Robat - Marvast, Kerman province - Iran

    Directory of Open Access Journals (Sweden)

    Atefeh Ghaedi

    2017-11-01

    Full Text Available Introduction Borate deposits are often important constituents of economic non - marine evaporates. They produce under arid climatic conditions in playa lakes (Floyd et al., 1998. In the south – western parts of the Kerman province, such as the Khatoonabad area (east of the city of Shahr –e –Babak and Robat – Marvast basin (west of Shahr – e – Babak, there are several borate deposits. They can be seen mainly in Sanandaj – Sirjan depressions and they occur as borate bearing nodules beneath a thin layer of soil. In general, boron considerably reduces the thermal expansion of glass, provides good resistance to vibration, high temperatures and thermal shock, and improves its toughness, strength, chemical resistance and durability. It also greatly reduces the viscosity of the glass melt. These features, and others, allow it to form superior glass for many industrial and specialty applications (Garrett, 1998. In the past, the ancient residents used them as co-melting matters. Ulexite which is frequently found in the Khatoonabad playa (at 30 km South East of Shahr Babak have Jewel properties (Ghaedi et al., 2014. Materials and methods After reviewing and Library Studies, geological field studies on the borate deposits were carried out from Shahr – e – Babak Playa. In order to take better samples, several pits were excavated with a depth of 30 cm to 1 meter so that borate minerals became apparent. X-ray diffraction analysis (IMIDRO, Karaj, and ICP AES (ALS CHEMEX, Canada methods were carried out on representative samples taken from the studied area. Discussion Field observations show that in the studied areas, borate bearing basins are fed by rivers which have originated from Sanandaj – Sirjan metamorphic rocks, Nain – Baft colored mélanges and igneous rocks of Urumieh – Dokhtar magmatic belt. Borate minerals also occur in fibrous aggregates and massive forms. Mineralogy XRD results show that the studied borate minerals mainly

  9. The Synthesis and Physical Properties of Magnesium Borate Mineral of Admontite Synthesized from Sodium Borates

    Directory of Open Access Journals (Sweden)

    Azmi Seyhun Kipcak

    2014-01-01

    Full Text Available Magnesium borates are significant compounds due to their advanced mechanical and thermal durability properties. This group of minerals can be used in ceramic industry, in detergent industry, and as neutron shielding material, phosphor of thermoluminescence by dint of their extraordinary specialties. In the present study, the synthesis of magnesium borate via hydrothermal method from sodium borates and physical properties of synthesized magnesium borate minerals were investigated. The characterization of the products was carried out by X-ray diffraction (XRD, Fourier transform infrared (FT-IR and Raman spectroscopies, and differential thermal analysis and thermal gravimetry (DTA/TG. The surface morphology was examined by scanning electron microscopy (SEM. B2O3 content was determined through titration. The electrical resistivity/conductivity properties of products were measured by Picoammeter Voltage Source. UV-vis spectrometer was used to investigate optical absorption characteristics of synthesized minerals in the range 200–1000 nm at room temperature. XRD results identified the synthesized borate minerals as admontite [MgO(B2O33·7(H2O] with code number “01-076-0540” and mcallisterite [Mg2(B6O7(OH62·9(H2O] with code number “01-070-1902.” The FT-IR and Raman spectra of the obtained samples were similar with characteristic magnesium borate bands. The investigation of the SEM images remarked that both nano- and microscale minerals were produced. The reaction yields were between 75.1 and 98.7%.

  10. Gadolinium neutron capture therapy

    International Nuclear Information System (INIS)

    Akine, Yasuyuki; Tokita, Nobuhiko; Tokuuye, Koichi; Satoh, Michinao; Churei, Hisahiko

    1993-01-01

    Gadolinium neutron capture therapy makes use of photons and electrons produced by nuclear reactions between gadolinium and lower-energy neutrons which occur within the tumor. The results of our studies have shown that its radiation effect is mostly of low LET and that the electrons are the significant component in the over-all dose. The dose from gadolinium neutron capture reactions does not seem to increase in proportion to the gadolinium concentration, and the Gd-157 concentration of about 100 μg/ml appears most optimal for therapy. Close contact between gadolinium and the cell is not necessarily required for cell inactivation, however, the effect of electrons released from intracellular gadolinium may be significant. Experimental studies on tumor-bearing mice and rabbits have shown that this is a very promising modality though further improvements in gadolinium delivery to tumors are needed. (author)

  11. Effect of mixed transition metal ions on DC conductivity in lithium bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Khasa, S.; Yadav, Arti, E-mail: artidabhur@gmail.com; Dahiya, M. S.; Seema,; Ashima [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal-131039 (India); Agarwal, A. [Physics Department, G.J. University of science and technology, Hisar-125001 (India)

    2015-06-24

    The DC conductivities of glasses having composition x(2NiO·V{sub 2}O{sub 5})·(30-x)Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} (with x=0, 2, 5, 7 and 10, i.e. NVLBB glasses) and glass samples having composition 7NiO·23 Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} and 7V{sub 2}O{sub 5}·23Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} (NLBB and VLBB respectively) are investigated as a function of temperature. Conductivity for glasses containing higher percentage of lithium ions is predominantly ionic and in glasses containing higher percentage of transition metal (TM) ions is predominantly electronic. The observed increase in conductivity with x and peak-like behavior at x=7 in NVLBB glasses due to competitive transport of small polaron contributing to a significant structural change in NVLBB glasses. Variation of molar volume and density was also observed with x. In NVLBB glasses, as x increases density increases except a slight decrease at x=7. Also density increases in NLBB whereas in case of VLBB it decreases in comparison to NVLBB1 glass composition. Mott’s small polaron hopping (SPH) model has been applied to analyze the high temperature conductivity data and activation energy.

  12. Structural and luminescence properties of Mn2+ ions doped calcium zinc borophosphate glasses

    International Nuclear Information System (INIS)

    Wan, Ming Hua; Wong, Poh Sum; Hussin, Rosli; Lintang, Hendrik O.; Endud, Salasiah

    2014-01-01

    Highlights: • FT-IR revealed that the network structures are from borate and phosphate network. • The PL spectrum exhibits a green emission band at 582 nm ( 4 T 1g → 6 A 1g ). • As the concentration of Mn 2+ ions is increased, the emission band had been red shifted. • These glasses are found to have potential applications as luminescent optical materials. - Abstract: Calcium zinc borophosphate glasses (CaZnBP) doped with various concentrations of Mn 2+ ions and borate and phosphate as variable were prepared using conventional melt quenching technique. The structure of obtained glasses were examined by means of use: X-ray diffraction (XRD) and fourier transform infrared (FT-IR). XRD analysis confirmed amorphous nature of glass samples. The FT-IR spectra reveals the presence of both borate and phosphate vibrational modes in the prepared glasses. The doping of Mn 2+ ions (2–10 mol%) shows no significant changes in the main IR vibrational bands. Optical properties were studied by measuring the near infrared photoluminescence (PL) spectra. CaZnBP glasses exhibited intense green emission peak (582 nm) (tetrahedral symmetry), which is assigned to a transition from the upper 4 T 1g → 6 A 1g ground state of Mn 2+ ions. As the concentration of Mn 2+ ions increases, the emission band increases from 582 nm to 650 nm and exhibited a red light emission (octahedral symmetry). The decay curves of 4 T 1g level were examined for all concentrations and the measured lifetimes are found to depend strongly on Mn 2+ concentrations. From the emission characteristic parameters of 6 A 1g (S) level, it shows that the CaZnBP glasses could have potential applications as luminescent optical materials, visible lasers and fluorescent display devices

  13. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    Science.gov (United States)

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  14. Magnetic properties and morphology of manganese ferrite nanoparticles in glasses

    International Nuclear Information System (INIS)

    Edelman, I; Ivanova, O; Ivantsov, I; Velikanov, D; Petrakovskaja, E; Artemenko, A; Curély, J; Kliava, J; Zaikovskiy, V; Stepanov, S

    2011-01-01

    Static magnetization (SM), magnetic circular dichroism (MCD) and electron magnetic resonance (EMR) studies are reported of borate glasses 22.5 K 2 O-22.5 Al 2 O 3 -55 B 2 O 3 co-doped with iron and manganese oxides. In as-prepared glasses the paramagnetic ions usually are in diluted state; however, if the ratio of the iron and manganese oxides in the charge is 3/2, magnetic nanoparticles are found already in as-prepared glass. After additional thermal treatment all glasses show magnetic behaviour, MCD and EMR due to the presence of magnetic nanoparticles with characteristics close to those of manganese ferrite. By computer simulating the EMR spectra at variable temperatures, their morphological characteristics are deduced: relatively broad size and shape distribution with average diameter of ca. 3-4 nm. The characteristic temperature-dependent shift of the apparent resonance field is explained by a strong temperature dependence of the magnetocrystalline anisotropy in the nanoparticles. The potassium-alumina-borate glasses containing magnetic nanoparticles represent a novel class of materials: t ransparent magnets . Indeed, they remain transparent in a part of visible and near infrared spectral range while showing magnetic and magneto-optical properties characteristic of magnetically ordered materials.

  15. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-09-01

    The lead-iron-phosphate (Pb-Fe-P) glass developed at Oak Ridge National Laboratory was evaluated for its potential as an improvement over the current reference nuclear waste form, borosilicate (B-Si) glass. The evaluation was conducted as part of the Second Generation HLW Technology Subtask of the Nuclear Waste Treatment Program at Pacific Northwest Laboratory. The purpose of this work was to investigate possible alternatives to B-Si glass as second-generation waste forms. While vitreous Pb-Fe-P glass appears to have substantially better chemical durability than B-Si glass, severe crystallization or devitrification leading to deteriorated chemical durability would result if this glass were poured into large canisters as is the procedure with B-Si glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from B-Si glass. Therefore, to realize the potential performance advantages of the Pb-Fe-P material in a nuclear waste form, the processing method would have to cool the material rapidly to retain its vitreous structure

  16. Intermediate-range order in lead metasilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Suzuya, Kentaro [Japan Atomic Energy Research Inst., Ako, Hyogo (Japan)]|[Argonne National Lab., IL (United States). Materials Science Div.; Price, D.L.; Saboungi, M.L. [Argonne National Lab., IL (United States). Materials Science Div.; Ohno, Hideo [Japan Atomic Energy Research Inst., Ako, Hyogo (Japan)

    1997-03-01

    The complementarity of anomalous X-ray scattering (AXS) and neutron diffraction (ND) techniques is used here to investigate the nature and origin of intermediate-range order in lead metasilicate glass. Both X-ray and neutron source factors reveal small peaks at low wave vector which are shown to be associated with intermediate-range order of the Pb-O network. The combination of AXS and ND is shown to be a powerful tool to correlate contributions from the different atom pairs to such a peak. The information thus derived is compared with results from alkali germanate glasses and with structural data on corresponding crystalline compounds.

  17. Lead recovery and high silica glass powder synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced glass phase separation process

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Mingfei [Henan Key Laboratory Cultivation Base of Mine Environmental Protection and Ecological Remediation, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Fu, Zegang [Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Wang, Yaping, E-mail: wangyp326@163.com [School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan China (China); Wang, Jingyu [Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Zhang, Zhiyuan [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2017-01-15

    Highlights: • CRT funnel glass was remelted with B{sub 2}O{sub 3} in reducing atmosphere. • A part of PbO was reduced into Pb and detached from the glass phase. • The rest of PbO and other metal oxides were mainly concentrated in the B{sub 2}O{sub 3} phase. • PbO enriched in the interconnected B{sub 2}O{sub 3} phase can be completely leached out by HNO{sub 3}. • High silica glass powder(SiO{sub 2} purity >95%) was obtained after the leaching process. - Abstract: In this study, a novel process for the removal of toxic lead from the CRT funnel glass and synchronous preparation of high silica glass powder was developed by a carbon-thermal reduction enhanced glass phase separation process. CRT funnel glass was remelted with B{sub 2}O{sub 3} in reducing atmosphere. In the thermal process, a part of PbO contained in the funnel glass was reduced into metallic Pb and detached from the glass phase. The rest of PbO and other metal oxides (including Na{sub 2}O, K{sub 2}O, Al{sub 2}O{sub 3,} BaO and CaO) were mainly concentrated in the boric oxide phase. The metallic Pb phase and boric oxide phase were completely leached out by 5 mol/L HNO{sub 3}. The lead removal rate was 99.80% and high silica glass powder (SiO{sub 2} purity >95 wt%) was obtained by setting the temperature, B{sub 2}O{sub 3} added amount and holding time at 1000 °C, 20% and 30 mins, respectively. The prepared high silicate glass powders can be used as catalyst carrier, semipermeable membranes, adsorbents or be remelted into high silicate glass as an ideal substitute for quartz glass. Thus this study proposed an eco-friendly and economical process for recycling Pb-rich electronic glass waste.

  18. The influence of p H and UV visible absorption on hydrolysis stage and gel behavior of glasses synthesized by sol-gel

    International Nuclear Information System (INIS)

    Khosravi Saghezchi, M.; Sarpoolaky, H.; Heshmatpour, F.

    2008-01-01

    Lead-containing glass borosilicate was synthesized by Sol-gel technique using metal alkoxide such as tetra ethyleorthosilicate, Al-sec-butoxide and trimethyl borate. The sol containing tetra ethyle ortho silicate converts to gel during drop wise addition of Al-alkoxide while inorganic lead salt was added in the last stage of gelation to prepare the alcogels. The specimens were dried at room temperature to set then heated at 600 d eg C quickly to avoid crystallization preparing a glass containing 63 weight percent lead oxide. The influence of p H on absorption behavior of the sols studied by UV visible technique so the characteristic of the gel, alcogel and xerogel were studied in the different acidic concentrations. The UV spectrums show that the higher the acidity of the hydrolysis stages, the higher the absorbance. The results showed the sample with 63 weight percent lead was found fully amorphous. Microstructure and phase analysis of the glass powders were investigated by X-ray diffraction, X-ray fluorescence and scanning electron microscopy equipped with energy dispersive spectroscopy analysis

  19. Lead and copper removal from aqueous solutions by porous glass derived calcium hydroxyapatite

    International Nuclear Information System (INIS)

    Liang Wen; Zhan Lei; Piao Longhua; Ruessel, Christian

    2011-01-01

    Graphical abstract: . Adsorption of Pb 2+ increases with the increase in NaCl volume percentage (1:0%, 2:30%, 3:40%, 4:40%) of the Glass Derived Hydroxyapatite and reaches equilibrium after 24 h. Highlights: → Novel porous glass derived hydroxyapatite matrix is prepared. → Glass derived hydroxyapatite matrix adsorbs lead and copper ions in solutions effectively. → Two adsorption mechanisms including ion exchange theory and the dissolution and precipitation theory are involved in removal of the heavy metal ions from the solutions. - Abstract: A porous glass was prepared by sintering Na 2 O-CaO-B 2 O 3 glass powder with powdered sodium chloride. Subsequently, the sodium chloride was dissolved in water resulting in a highly porous material. A sample was prepared consisting of 60 vol% glass and 40 vol% salt which both had particle sizes 2 HPO 4 solutions at room temperature for 1 day. The porous glass derived hydroxyapatite matrix was then processed for removing lead and copper ions from aqueous solutions. The results showed that the glass derived calcium hydroxyapatite matrix effectively immobilizes lead and copper ions in solution. The adsorption mechanism was investigated by the X-ray Diffraction (XRD) and Scanning Electron Microscopy including Energy Dispersive X-Ray Spectrometry (SEM-EDX).

  20. Preparation of lead oxide nanoparticles from cathode-ray tube funnel glass by self-propagating method.

    Science.gov (United States)

    Wang, Yu; Zhu, Jianxin

    2012-05-15

    This paper presents a novel process of extracting lead oxide nanoparticles from cathode-ray tube (CRT) funnel glass using self-propagating high-temperature synthesis (SHS) method. The impacts of added amount of funnel glass on the extraction ratio of lead, the lead extraction velocity and the micromorphology, as well as particle size of extracted nanoparticles were investigated. We found that self-propagating reaction in the presence of Mg and Fe(2)O(3) could separate lead preferentially and superfine lead oxide nanoparticles were obtained from a collecting chamber. The separation ratio was related closely to the amount of funnel glass added in the original mixture. At funnel glass addition of no more than 40wt.%, over 90wt.% of lead was recovered from funnel glass. High extraction yield reveals that the network structure of funnel glass was fractured due to the dramatic energy generated during the SHS melting process. The PbO nanoparticles collected show good dispersion and morphology with a mean grain size of 40-50nm. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Lead-iron phosphate glass: a stable storage medium for high-level nuclear waste

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.

    1984-01-01

    Results are presented which show that lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high-level defense and high-level commercial radioactive waste. Relative to the borosilicate nuclear waste glasses that are currently the ''reference'' waste form for the long-term disposal of nuclear waste, lead-iron phosphate glasses have several distinct advantages: (1) an aqueous corrosion rate that is about 1000 times lower, (2) a processing temperature that is 100 0 to 250 0 C lower and, (3) a much lower melt viscosity in the temperature range from 800 0 to 1000 0 C. Most significantly, the lead-iron phosphate waste form can be processed using a technology similar to that developed for borosilicate nuclear waste glasses

  2. Structural studies of glasses by transmission electron microscopy and electron diffraction

    International Nuclear Information System (INIS)

    Kashchieva, E.P.

    1997-01-01

    The purpose of this work is to present information about the applications of transmission electron microscopy (TEM) and electron diffraction (ED) for structural investigations of glasses. TEM investigations have been carried out on some binary and on a large number of ternary borate-telluride systems where glass-forming oxides, oxides of transitional elements and modified oxides of elements from I, II and III groups in the periodic table, are used as third component. The large experimental data given by TEM method allows the fine classification of the micro-heterogeneities. A special case of micro-heterogeneous structure with technological origin occurs near the boundary between the 2 immiscible liquids obtained at macro-phase separation. TEM was also used for the direct observation of the glass structure and we have studied the nano-scale structure of borate glasses obtained at slow and fast cooling of the melts. The ED possesses advantages for analysis of amorphous thin films or micro-pastilles and it is a very useful technique for study in materials containing simultaneously light and heavy elements. A comparison between the possibilities of the 3 diffraction techniques (X-ray diffraction, neutron diffraction and ED) is presented

  3. Comparative study of radiation shielding parameters for bismuth borate glasses

    International Nuclear Information System (INIS)

    Kaundal, Rajinder Singh

    2016-01-01

    Melt and quench technique was used for the preparation of glassy samples of the composition x Bi 2 O 3- (1-x) B 2 O 3 where x= .05 to .040. XCOM computer program is used for the evaluation of gamma-ray shielding parameters of the prepared glass samples. Further the values of mass attenuation coefficients, effective atomic number and half value layer for the glassy samples have been calculated in the energy range from 1KeV to 100GeV. Rigidity of the glass samples have been analyzed by molar volume of the prepared glass samples. (author)

  4. Comparative study of radiation shielding parameters for bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kaundal, Rajinder Singh, E-mail: rajinder_apd@yahoo.com [Department of Physics, School of Physical Sciences, Lovely Professional University, Phagwara, Punjab (India)

    2016-07-15

    Melt and quench technique was used for the preparation of glassy samples of the composition x Bi{sub 2}O{sub 3-}(1-x) B{sub 2}O{sub 3} where x= .05 to .040. XCOM computer program is used for the evaluation of gamma-ray shielding parameters of the prepared glass samples. Further the values of mass attenuation coefficients, effective atomic number and half value layer for the glassy samples have been calculated in the energy range from 1KeV to 100GeV. Rigidity of the glass samples have been analyzed by molar volume of the prepared glass samples. (author)

  5. Gadolinium(III) ion selective sensor using a new synthesized Schiff's base as a sensing material

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Hassan Ali, E-mail: haszamani@yahoo.com [Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Mohammadhosseini, Majid [Department of Chemistry, Faculty of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood (Iran, Islamic Republic of); Haji-Mohammadrezazadeh, Saeed [Department of Chemistry, Payame Noor University, Ardakan (Iran, Islamic Republic of); Faridbod, Farnoush [Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ganjali, Mohammad Reza [Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Meghdadi, Soraia [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Davoodnia, Abolghasem [Department of Chemistry, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of)

    2012-05-01

    According to a solution study which showed a selective complexation between N,N Prime -bis(methylsalicylidene)-2-aminobenzylamine (MSAB) and gadolinium ions, MSAB was used as a sensing element in construction of a gadolinium(III) ion selective electrode. Acetophenon (AP) was used as solvent mediator and sodium tetraphenyl borate (NaTPB) as an anion excluder. The electrode showed a good selectivity towards Gd(III) ions over a wide variety of cations tested. The constructed sensor displayed a Nernstian behavior (19.7 {+-} 0.3 mV/decade) in the concentration range of 1.0 Multiplication-Sign 10{sup -6} to 1.0 Multiplication-Sign 10{sup -2} mol L{sup -1} with detection limit of 5.0 Multiplication-Sign 10{sup -7} mol L{sup -1} and a short response time (< 10 s). The working pH range of the electrode was 3.5-10.1 and lifetime of the sensor was at least 10 weeks. Analysis of certified reference materials confirmed the accuracy of the proposed sensor. The electrode was successfully applied as an indicator electrode in gadolinium titration with EDTA. - Highlights: Black-Right-Pointing-Pointer A Gd{sup 3+}-PVC membrane sensor based on an ion carrier as sensing material is introduced. Black-Right-Pointing-Pointer This technique is very simple and it's not necessary to use sophisticated equipment. Black-Right-Pointing-Pointer This sensor shows good selectivity against other metal ions.

  6. Properties and osteoblast cytocompatibility of self-curing acrylic cements modified by glass fillers.

    Science.gov (United States)

    Lopes, P; Garcia, M P; Fernandes, M H; Fernandes, M H V

    2013-11-01

    Materials filled with a silicate glass (MSi) and a borate glass (MB) were developed and compared in terms of their in vitro behavior. The effect of filler composition and concentration (0, 30, 40 and 50 wt%) on the curing parameters, residual monomer, water uptake, weight loss, bioactivity, mechanical properties (bending and compression) and osteoblast cytocompatibility was evaluated. The addition of bioactive glass filler significantly improved the cements curing parameters and the mechanical properties. The most relevant results were obtained for the lower filler concentration (30 t%) a maximum flexural strength of 40.4 Pa for MB3 and a maximum compressive strength of 95.7 MPa for MSi3. In vitro bioactivity in acellular media was enhanced by the higher glass contents in the cements. Regarding the biological assessment, the incorporation of the silicate glass significantly improved osteoblast cytocompatibility, whereas the presence of the borate glass resulted in a poor cell response. Nevertheless it was shown that the surviving cells on the MB surface were in a more differentiated stage compared to those growing over non-filled poly(methyl methacrylate). Results suggest that the developed formulations offer a high range of properties that might be interesting for their use as self-curing cements.

  7. Indentation size effect and the plastic compressibility of glass

    Energy Technology Data Exchange (ETDEWEB)

    Smedskjaer, Morten M., E-mail: mos@bio.aau.dk [Section of Chemistry, Aalborg University, 9000 Aalborg (Denmark)

    2014-06-23

    Oxide glasses exhibit significant densification under an applied isostatic pressure at the glass transition temperature. The glass compressibility is correlated with the chemical composition and atomic packing density, e.g., borate glasses with planar triangular BO{sub 3} units are more disposed for densification than silicate glasses with tetrahedral units. We here show that there is a direct relation between the plastic compressibility following hot isostatic compression and the extent of the indentation size effect (ISE), which is the decrease of hardness with indentation load exhibited by most materials. This could suggest that the ISE is correlated with indentation-induced shear bands, which should form in greater density when the glass network is more adaptable to volume changes through structural and topological rearrangements under an applied pressure.

  8. Lead-glass wall addition to the SPEAR Mark 1 magnetic detector

    International Nuclear Information System (INIS)

    Feller, J.M.; Barbaro-Galtieri, A.; Dorfan, J.M.; Ely, R.; Feldman, G.J.; Fong, A.; Gobbi, B.; Hanson, G.; Heile, F.B.; Jaros, J.A.; Kwan, B.P.; Lecomte, P.; Litke, A.M.; Luke, D.; Madaras, R.J.; Martin, J.B.

    1978-01-01

    A ''Lead-Glass Wall,'' consisting of 318 lead-glass Cherenkov shower counters and three wire spark chambers, has been added to one octant of the SPEAR Mark I Magnetic Detector. The wall covers a solid angle of approximately 6% of 4π steradians and has been used to identify and measure the energies of electrons and photons produced in electron-positron collisions. The design, calibration, gain-monitoring, and performance of the system are described. 3 refs

  9. Comparison of lead removal behaviors and generation of water-soluble sodium compounds in molten lead glass under a reductive atmosphere

    Science.gov (United States)

    Okada, Takashi; Nishimura, Fumihiro; Xu, Zhanglian; Yonezawa, Susumu

    2018-06-01

    We propose a method of reduction-melting at 1000 °C, using a sodium-based flux, to recover lead from cathode-ray tube funnel glass. To recover the added sodium from the treated glass, we combined a reduction-melting process with a subsequent annealing step at 700 °C, generating water-soluble sodium compounds in the molten glass. Using this combined process, this study compares lead removal behavior and the generation of water-soluble sodium compounds (sodium silicates and carbonates) in order to gain fundamental information to enhance the recovery of both lead and sodium. We find that lead removal increases with increasing melting time, whereas the generation efficiency of water-soluble sodium increases and decreases periodically. In particular, near 90% lead removal, the generation of water-soluble sodium compounds decreased sharply, increasing again with the prolongation of melting time. This is due to the different crystallization and phase separation efficiencies of water-soluble sodium in molten glass, whose structure continuously changes with lead removal. Previous studies used a melting time of 60 min in the processes. However, in this study, we observe that a melting time of 180 min enhances the water-soluble sodium generation efficiency.

  10. Optical waveguides in fluoride lead silicate glasses fabricated by carbon ion implantation

    Science.gov (United States)

    Shen, Xiao-liang; Wang, Yue; Zhu, Qi-feng; Lü, Peng; Li, Wei-nan; Liu, Chun-xiao

    2018-03-01

    The carbon ion implantation with energy of 4.0 MeV and a dose of 4.0×1014 ions/cm2 is employed for fabricating the optical waveguide in fluoride lead silicate glasses. The optical modes as well as the effective refractive indices are measured by the prism coupling method. The refractive index distribution in the fluoride lead silicate glass waveguide is simulated by the reflectivity calculation method (RCM). The light intensity profile and the energy losses are calculated by the finite-difference beam propagation method (FD-BPM) and the program of stopping and range of ions in matter (SRIM), respectively. The propagation properties indicate that the C2+ ion-implanted fluoride lead silicate glass waveguide is a candidate for fabricating optical devices.

  11. GLASS COMPOSITION-TCLP RESPONSE MODEL FOR WASTE GLASSES

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Vienna, John D.

    2004-01-01

    A first-order property model for normalized Toxicity Characteristic Leaching Procedure (TCLP) release as a function of glass composition was developed using data collected from various studies. The normalized boron release is used to estimate the release of toxic elements based on the observation that the boron release represents the conservative release for those constituents of interest. The current TCLP model has two targeted application areas: (1) delisting of waste-glass product as radioactive (not mixed) waste and (2) designating the glass wastes generated from waste-glass research activities as hazardous or non-hazardous. This paper describes the data collection and model development for TCLP releases and discusses the issues related to the application of the model

  12. Investigation of local environment around rare earths (La and Eu) by fluorescence line narrowing during borosilicate glass alteration

    Energy Technology Data Exchange (ETDEWEB)

    Molières, Estelle [CEA – DEN-DTCD-LCV-SECM Laboratoire d' études du Comportement à Long Terme, 30207 Bagnols-sur-Cèze (France); Panczer, Gérard; Guyot, Yannick [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France); Jollivet, Patrick [CEA – DEN-DTCD-LCV-SECM Laboratoire d' études du Comportement à Long Terme, 30207 Bagnols-sur-Cèze (France); Majérus, Odile; Aschehoug, Patrick; Barboux, Philippe [Laboratoire de Chimie de la Matière Condensée de Paris, UMR-CNRS 7574, École Nationale Supérieure de Chimie de Paris (ENSCP Chimie-ParisTech), 11 rue Pierre et Marie Curie, 75231 Paris (France); Gin, Stéphane [CEA – DEN-DTCD-LCV-SECM Laboratoire d' études du Comportement à Long Terme, 30207 Bagnols-sur-Cèze (France); Angeli, Frédéric, E-mail: frederic.angeli@cea.fr [CEA – DEN-DTCD-LCV-SECM Laboratoire d' études du Comportement à Long Terme, 30207 Bagnols-sur-Cèze (France)

    2014-01-15

    The local environment of europium in soda-lime borosilicate glasses with a range of La{sub 2}O{sub 3} content was probed by continuous luminescence and Fluorescence Line Narrowing (FLN) to investigate the local environment of rare earth elements in pristine and leached glass. After aqueous leaching at 90 °C at pH 7 and 9.5, rare earths were fully retained and homogeneously distributed in the amorphous alteration layer (commonly called gel). Two separate silicate environments were observed in pristine and leached glasses regardless of the lanthanum content and the leaching conditions. A borate environment surrounding europium was not observed in pristine and leached glasses. During glass alteration, OH groups were located around the europium environment, which became more organized (higher symmetry) in the first coordination shell. -- Highlights: • No borate environment surrounding europium was detected in pristine borosilicate glasses. • Up to 12 mol% of REE2O3 in glass, local environment of europium does not significantly change. • Europium environment becomes more ordered and symmetric in gels than in pristine glasses. • Two distinct silicate sites were observed, as well in pristine glass as in gels (leached glasses). • In altered glasses, OH groups were located around europium.

  13. Investigation of local environment around rare earths (La and Eu) by fluorescence line narrowing during borosilicate glass alteration

    International Nuclear Information System (INIS)

    Molières, Estelle; Panczer, Gérard; Guyot, Yannick; Jollivet, Patrick; Majérus, Odile; Aschehoug, Patrick; Barboux, Philippe; Gin, Stéphane; Angeli, Frédéric

    2014-01-01

    The local environment of europium in soda-lime borosilicate glasses with a range of La 2 O 3 content was probed by continuous luminescence and Fluorescence Line Narrowing (FLN) to investigate the local environment of rare earth elements in pristine and leached glass. After aqueous leaching at 90 °C at pH 7 and 9.5, rare earths were fully retained and homogeneously distributed in the amorphous alteration layer (commonly called gel). Two separate silicate environments were observed in pristine and leached glasses regardless of the lanthanum content and the leaching conditions. A borate environment surrounding europium was not observed in pristine and leached glasses. During glass alteration, OH groups were located around the europium environment, which became more organized (higher symmetry) in the first coordination shell. -- Highlights: • No borate environment surrounding europium was detected in pristine borosilicate glasses. • Up to 12 mol% of REE2O3 in glass, local environment of europium does not significantly change. • Europium environment becomes more ordered and symmetric in gels than in pristine glasses. • Two distinct silicate sites were observed, as well in pristine glass as in gels (leached glasses). • In altered glasses, OH groups were located around europium

  14. Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements

    OpenAIRE

    Edelman , Irina; Ivanova , Oxana; Ivantsov , Ruslan; Velikanov , D.; Zabluda , V.; Zubavichus , Y.; Veligzhanin , A.; Zaikovskiy , V.; Stepanov , S.; Artemenko , Alla; Curély , Jacques; Kliava , Janis

    2012-01-01

    International audience; A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge struct...

  15. Role of MnO in manganese–borate binary glass systems

    Indian Academy of Sciences (India)

    Structural and thermal properties of x MnO−( 100 − x )B 2 O 3 (where x = 40 , 50 and 60 mol%) glass samples have been investigated with the employment of various techniques. Fourier transform infrared spectroscopy results revealed the influence of MnO on glass matrix. Decrease of B–O bond-related band intensities has ...

  16. Synthesis and Structural Studies of Er3+ Containing Lead Cadmium Fluoroborate Glasses and Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Silva Maurício A.P.

    2002-01-01

    Full Text Available The vitreous domain was established in the PbF2-CdF2-B2O 3 system from melting and quenching experiments. Er3+ containing glasses were prepared and glass ceramics were obtained by selected heat-treatments. Lead fluoride was identified (beta-PbF2 as the crystalline phase. Structural studies were performed in some glassy and partially crystallized samples by means of X-ray Diffraction (XRD and Extended X-ray Absorption Fine Structure (EXAFS measurements. The role of Cd2+ and Pb2+ atoms on the glass network formation and also on the crystallization behavior was put forward by these techniques. After crystallization Er3+ atoms segregated in the crystal phase.

  17. Investigations on the passivity of iron in borate and phosphate buffers, pH 8.4

    International Nuclear Information System (INIS)

    Sieber, I.V.; Hildebrand, H.; Virtanen, S.; Schmuki, P.

    2006-01-01

    In the present work surface analytical experiments (XPS and AES) on the passive film on iron formed in borate and phosphate buffers (pH 8.4) have been carried out. In the passive film formed in phosphate buffer a significant amount of phosphates is found in the outer part of the film. Boron species are not significantly incorporated in the passive film formed in borate buffer. The mechanism of the reduction of the passive film depends strongly on the electrolyte composition. In borate buffer, cathodic polarization leads to reductive dissolution of the passive film whereas in phosphate buffer the passive film is converted into metallic iron without dissolution but via laterally inhomogeneously formation of an intermediate Fe(II) phosphate layer

  18. Reliability of Monte Carlo simulations in modeling neutron yields from a shielded fission source

    Energy Technology Data Exchange (ETDEWEB)

    McArthur, Matthew S., E-mail: matthew.s.mcarthur@gmail.com; Rees, Lawrence B., E-mail: Lawrence_Rees@byu.edu; Czirr, J. Bart, E-mail: czirr@juno.com

    2016-08-11

    Using the combination of a neutron-sensitive {sup 6}Li glass scintillator detector with a neutron-insensitive {sup 7}Li glass scintillator detector, we are able to make an accurate measurement of the capture rate of fission neutrons on {sup 6}Li. We used this detector with a {sup 252}Cf neutron source to measure the effects of both non-borated polyethylene and 5% borated polyethylene shielding on detection rates over a range of shielding thicknesses. Both of these measurements were compared with MCNP calculations to determine how well the calculations reproduced the measurements. When the source is highly shielded, the number of interactions experienced by each neutron prior to arriving at the detector is large, so it is important to compare Monte Carlo modeling with actual experimental measurements. MCNP reproduces the data fairly well, but it does generally underestimate detector efficiency both with and without polyethylene shielding. For non-borated polyethylene it underestimates the measured value by an average of 8%. This increases to an average of 11% for borated polyethylene.

  19. Effect of RE (Nd3+, Sm3+) oxide on structural, optical properties of Na2O-Li2O-ZnO-B2O3 glass system

    Science.gov (United States)

    Hivrekar, Mahesh M.; Bhoyar, D. N.; Mande, V. K.; Dhole, V. V.; Solunke, M. B.; Jadhav, K. M.

    2018-05-01

    Zinc borate glass activated with rare earth oxide (Nd2O3, Sm2O3) of Na2O-Li2O-ZnO-B2O3 quaternary system has been prepared successfully by melt quenching method. The nucleation and growth of RE oxide were controlled temperature range 950-1000° C and rapid cooling at room temperature. The physical, structural and optical properties were characterized by using X-ray diffraction (XRD), SEM, Ultraviolet-visible spectroscopy (UV-Vis). XRD and SEM studies confirmed the amorphous nature, surface morphology of prepared zinc borate glass. The physical parameters like density, molar volume, molar mass of Nd3+, Sm3+ doped borate glass are summarized in the present article. The optical absorption spectra along with tauc's plot are presented. The optical energy band gap increases due to the addition of rare earth oxide confirming the role of network modifier.

  20. A comparison of the COG and MCNP codes in computational neutron capture therapy modeling, Part II: gadolinium neutron capture therapy models and therapeutic effects.

    Science.gov (United States)

    Wangerin, K; Culbertson, C N; Jevremovic, T

    2005-08-01

    The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for gadolinium neutron capture therapy (GdNCT) related modeling. The validity of COG NCT model has been established for this model, and here the calculation was extended to analyze the effect of various gadolinium concentrations on dose distribution and cell-kill effect of the GdNCT modality and to determine the optimum therapeutic conditions for treating brain cancers. The computational results were compared with the widely used MCNP code. The differences between the COG and MCNP predictions were generally small and suggest that the COG code can be applied to similar research problems in NCT. Results for this study also showed that a concentration of 100 ppm gadolinium in the tumor was most beneficial when using an epithermal neutron beam.

  1. Phase separation of cesium from lead borosilicate glass by heat treatment under a reducing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhanglian; Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp; Nishimura, Fumihiro; Yonezawa, Susumu

    2016-11-05

    Highlights: • Cesium was phase separated from lead borosilicate glass under a reductive atmosphere. • The phase separation occurred on the glass surface that was in contact with the gas. • The leachability of cesium was enhanced by the phase separation. • The degree of such enhancement varied depending on the heat treatment conditions. - Abstract: A phase-separation technique for removing sodium from glass using a heat-treatment method under a reducing atmosphere was previously developed for sodium recovery from waste glass. In this study, this technique was applied to cesium-containing lead borosilicate glass to concentrate the cesium in phase-separated sodium-rich materials for efficient cesium extraction. The theoretical phase-separation temperature of the sodium-rich phase was simulated by thermodynamic equilibrium calculations and was predicted to occur below 700 °C for lead borosilicate glass. Experimentally, a simulated lead borosilicate glass was melted at 1000 °C and subsequently annealed below 700 °C under a CO-containing reducing atmosphere. The phase separation of cesium was found to occur with sodium enrichment on the glass surface that was in contact with the gas phase, promoting cesium extraction from the treated glass using water. The cesium extraction efficiency was affected by the surface area of the treated glass that was in contact with water, and under the examined conditions, the cesium extraction efficiency was up to 66%. Phase separation using reductive heat treatment, combined with a water leaching technique, is suggested to be effective for extracting cesium incorporated in borosilicate glass waste.

  2. Physical, thermal, infrared and optical properties of Nd3+ doped lithium–lead-germanate glasses

    International Nuclear Information System (INIS)

    Veeranna Gowda, V.C.

    2015-01-01

    The structure–property relationships of neodymium doped lithium–lead-germanate glasses were investigated. The density was found to increase with the increase of Nd 2 O 3 concentration and its variation is explained in terms of its molecular mass, structural transformation and packing density. Addition of modifier oxide to lead-germanate glass suggests a decreased free space within the glass matrix, resulting in the formation of stiff network. The increase in glass transition temperature specifies strengthening of glass by forming bridging oxygens. The optical properties of glass were measured employing UV–visible spectroscopy. The refractive index values varied nonlinearly with Nd 2 O 3 concentration and were speculated to depend on the electronic polarizability of oxide glasses. The frequencies of the infrared absorption bands were affected marginally and the absorption peaks revealed that the glass matrix consists of [GeO 4/2 ], [GeO 6/2 ] and [PbO 4/2 ] structural units

  3. Elastic properties of Na2 O–ZnO–ZnF2 –B2 O3 oxyfluoride glasses

    Indian Academy of Sciences (India)

    Administrator

    Elastic properties of borate glasses through ultrasound velocity measurements is one of the important techniques to elucidate the structure of glasses, since their properties have direct bearing on the bonding and interatomic forces. Sound velocity measurement at ultrasonic fre- quencies is used to determine the mechanical ...

  4. Structural and luminescence properties of Mn{sup 2+} ions doped calcium zinc borophosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Ming Hua, E-mail: wanminghua819@gmail.com [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Wong, Poh Sum, E-mail: pohsumwong@gmail.com [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Hussin, Rosli, E-mail: roslihussin@utm.my [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Lintang, Hendrik O., E-mail: hendrik@ibnusina.utm.my [Catalytic Science and Technology (CST) Research Group, Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Endud, Salasiah, E-mail: salasiah@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2014-05-15

    Highlights: • FT-IR revealed that the network structures are from borate and phosphate network. • The PL spectrum exhibits a green emission band at 582 nm ({sup 4}T{sub 1g} → {sup 6}A{sub 1g}). • As the concentration of Mn{sup 2+} ions is increased, the emission band had been red shifted. • These glasses are found to have potential applications as luminescent optical materials. - Abstract: Calcium zinc borophosphate glasses (CaZnBP) doped with various concentrations of Mn{sup 2+} ions and borate and phosphate as variable were prepared using conventional melt quenching technique. The structure of obtained glasses were examined by means of use: X-ray diffraction (XRD) and fourier transform infrared (FT-IR). XRD analysis confirmed amorphous nature of glass samples. The FT-IR spectra reveals the presence of both borate and phosphate vibrational modes in the prepared glasses. The doping of Mn{sup 2+} ions (2–10 mol%) shows no significant changes in the main IR vibrational bands. Optical properties were studied by measuring the near infrared photoluminescence (PL) spectra. CaZnBP glasses exhibited intense green emission peak (582 nm) (tetrahedral symmetry), which is assigned to a transition from the upper {sup 4}T{sub 1g} → {sup 6}A{sub 1g} ground state of Mn{sup 2+} ions. As the concentration of Mn{sup 2+} ions increases, the emission band increases from 582 nm to 650 nm and exhibited a red light emission (octahedral symmetry). The decay curves of {sup 4}T{sub 1g} level were examined for all concentrations and the measured lifetimes are found to depend strongly on Mn{sup 2+} concentrations. From the emission characteristic parameters of {sup 6}A{sub 1g} (S) level, it shows that the CaZnBP glasses could have potential applications as luminescent optical materials, visible lasers and fluorescent display devices.

  5. Structure and Properties of Compressed Borate Glasses

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Bauer, U.; Behrens, H.

    While the influence of thermal history on the structure and properties of glasses has been thoroughly studied in the past century, the influence of pressure history has received considerably less attention. In this study, we investigate the pressure-induced changes in structure and properties in ......, hardness and crack formation from nanoindentation experiments, and overshoot in isobaric heat capacity from DSC experiments at ambient pressure. The influence of the initial boron speciation on the degree of changes in structure and properties will also be discussed....

  6. Subcellular SIMS imaging of gadolinium isotopes in human glioblastoma cells treated with a gadolinium containing MRI agent

    Science.gov (United States)

    Smith, Duane R.; Lorey, Daniel R.; Chandra, Subhash

    2004-06-01

    Neutron capture therapy is an experimental binary radiotherapeutic modality for the treatment of brain tumors such as glioblastoma multiforme. Recently, neutron capture therapy with gadolinium-157 has gained attention, and techniques for studying the subcellular distribution of gadolinium-157 are needed. In this preliminary study, we have been able to image the subcellular distribution of gadolinium-157, as well as the other six naturally abundant isotopes of gadolinium, with SIMS ion microscopy. T98G human glioblastoma cells were treated for 24 h with 25 mg/ml of the metal ion complex diethylenetriaminepentaacetic acid Gd(III) dihydrogen salt hydrate (Gd-DTPA). Gd-DTPA is a contrast enhancing agent used for MRI of brain tumors, blood-brain barrier impairment, diseases of the central nervous system, etc. A highly heterogeneous subcellular distribution was observed for gadolinium-157. The nuclei in each cell were distinctly lower in gadolinium-157 than in the cytoplasm. Even within the cytoplasm the gadolinium-157 was heterogeneously distributed. The other six naturally abundant isotopes of gadolinium were imaged from the same cells and exhibited a subcellular distribution consistent with that observed for gadolinium-157. These observations indicate that SIMS ion microscopy may be a viable approach for subcellular studies of gadolinium containing neutron capture therapy drugs and may even play a major role in the development and validation of new gadolinium contrast enhancing agents for diagnostic MRI applications.

  7. Protection against ionizing radiation by leaded glass googles during interventional cardiology

    International Nuclear Information System (INIS)

    Zett-Lobos, Claudio; Vera Munoz, Felipe; Arriola Alvarez, Katerina; Diaz Ramos, Oscar; Gamarra, Jorge; Fernandez Palomo, Cristian; Merello, Lorenzo; Mora D, Alex; Gutierrez, Alejandro; Catalan Reyes, Monica; Ramos Avasola, Sergio

    2013-01-01

    Background: It is not known whether leaded glass goggles with 0.25 mm Pb equivalency, used in interventional cardiology procedures, attenuate radiation below the levels established by the latest recommendation of the International Commission on Radiological Protection (ICRP). Aim: To assess if the degree of attenuation of the secondary ionizing radiation achieved by the use of 0.25 mm Pb leaded glass goggles, in occupationally exposed workers in interventional cardiology procedures, meets the latest ICRP recommendations. Material and Methods : A prospective investigation was carried out to compare the eye exposure to secondary ionizing radiation received by occupationally exposed personnel in a 9 months period. A set of two thermo luminescent dosimeters was arranged in the front and back of leaded glass goggles in a cohort of seven members of an interventional cardiology service, exposed to 1057 consecutive procedures. Results:The monthly dose equivalent measurement performed in front of the goggles ranged between 1.1 and 6.5 mSv,for paramedics and interventional cardiologists. The radiation measured in the back of the glass varied between 0.66 and 2.75 mSv,respectively.The degree of attenuation of the dose at eye level ranged from 40% to 57.7%,respectively. The projected annual exposure would reach 33 mSv for the interventional cardiologist. Conclusions: With a similar load of work and wearing 0.25 mm Pb equivalent glass goggles, interventional cardiologists will exceed the crystalline equivalent dose limit recommended by the ICRP (20 mSv/year averaged over the past 5 years)

  8. Interaction of natural borates with potassium hydroxide solution

    International Nuclear Information System (INIS)

    Azarova, L.A.; Vinogradov, E.E.; Kudinov, I.B.; Panasyuk, G.P.; Danilov, V.P.

    2000-01-01

    Interaction of natural borates - inyoite, ulexite and hydroboracite MgCa[B 3 O 4 (OH) 3 ] 2 ·3H 2 O with KOH solution is studied at 50 Deg C by the methods of chemical, x- ray phase, differential thermal analyses and IR spectroscopy. IR spectra points out on island character of forming borates and confirms the data of x-ray phase and chemical analyses about presence of asharite and calcium hydrous borate in resulting products. Hydroboracite (chain structure) under the action of potassium hydroxide passes into borates of magnesium and calcium with island structure and in this case boron transforms partially into liquid phase. When potassium hydroxide interacts with inyoite and ulexite calcium hydroxide and roentgenoamorphous boron-containing product precipitate [ru

  9. Infrared Spectroscopic Study For Structural Investigation Of Lithium Lead Silicate Glasses

    International Nuclear Information System (INIS)

    Ahlawat, Navneet; Aghamkar, Praveen; Ahlawat, Neetu; Agarwal, Ashish; Monica

    2011-01-01

    Lithium lead silicate glasses with composition 30Li 2 O·(70-x)PbO·xSiO 2 (where, x = 10, 20, 30, 40, 50 mol %)(LPS glasses) were prepared by normal melt quench technique at 1373 K for half an hour in air to understand their structure. Compositional dependence of density, molar volume and glass transition temperature of these glasses indicates more compactness of the glass structure with increasing SiO 2 content. Fourier transform infrared (FTIR) spectroscopic data obtained for these glasses was used to investigate the changes induced in the local structure of samples as the ratio between PbO and SiO 2 content changes from 6.0 to 0.4. The observed absorption band around 450-510 cm -1 in IR spectra of these glasses indicates the presence of network forming PbO 4 tetrahedral units in glass structure. The increase in intensity with increasing SiO 2 content (upto x = 30 mol %) suggests superposition of Pb-O and Si-O bond vibrations in absorption band around 450-510 cm -1 . The values of optical basicity in these glasses were found to be dependent directly on PbO/SiO 2 ratio.

  10. Investigation into the Effect of Sulfate and Borate Incorporation on the Structure and Properties of SrFeO3-δ

    Directory of Open Access Journals (Sweden)

    Abbey Jarvis

    2017-06-01

    Full Text Available In this paper, we demonstrate the successful incorporation of sulfate and borate into SrFeO3-δ, and characterise the effect on the structure and conductivity, with a view to possible utilisation as a cathode material in Solid Oxide Fuel Cells. The incorporation of low levels of sulfate/borate is sufficient to cause a change from a tetragonal to a cubic cell. Moreover, whereas heat treatment of undoped SrFeO3-δ under N2 leads to a transformation to brownmillerite Sr2Fe2O5 with oxygen vacancy ordering, the sulfate/borate-doped samples remain cubic under the same conditions. Thus, sulfate/borate doping appears to be successful in introducing oxide ion vacancy disorder in this system.

  11. Effect of borate concentration on solidification of radioactive wastes by different cements

    International Nuclear Information System (INIS)

    Sun Qina; Li Junfeng; Wang Jianlong

    2011-01-01

    Highlights: → The effect of borate on cementation of radioactive borate evaporator concentrates by sulfoaluminate cement (SAC) and Portland cement (PC) was compared. → The X-ray diffraction (XRD) revealed that borate did not interfere with the formation of main hydration products of SAC and PC. → Borate, in the form of B(OH) 4- , incorporated in ettringite as solid solution phase. - Abstract: To investigate the effect of borate on the cementation of radioactive evaporator concentrates, and to provide more data for solidification formula optimization, the simulated borate evaporator concentrates with different borate concentrations (as B) and Na/B ratio (molar ratio) were solidified by sulfoaluminate cement (SAC) and Portland cement (PC), with addition of Ca(OH) 2 , zeolite and accelerator or water reducer. The hydration products of solidified matrices were characterized by X-ray diffraction (XRD). The experimental results showed that borate retarded the cement setting for both SAC and PC formulas, and the final setting time prolonged with decrease of Na/B ratio. Borate could enhance the fluidity of the cement mixture. The 28 d compressive strengths of the solidified matrices for both SAC and PC formulas decreased with increase of borate concentration. The XRD patterns suggested that, in the matrices maintained for 28 d, borate did not interfere with the formation of main hydration products of SAC and PC. Borate, in the form of B(OH) 4- , incorporated in ettringite (3CaO.Al 2 O 3 .3CaSO 4 .32H 2 O) as solid solution phase. The formula of SAC and PC developed in this study was effective for cementation of the simulated borate evaporator concentrates. However further optimization was required to reduce retarding effect of higher borate concentrations and to extend the practical feasibility for actual evaporator concentrates.

  12. Structure and lattice dynamics in non-centrosymmetric borates

    International Nuclear Information System (INIS)

    Stein, W.D.R.

    2007-01-01

    was investigated to a maximum energy of 10 THz. For experimental phonon dispersion several lattice dynamical models are discussed. A shell model with angular forces and additional force constants could describe the phonon dispersion with an averaged deviation of 0.234 THz. The crystal structure of the tetraborates was investigated at room temperature and in addition for the barium and lead compound at 100 K. The comparison of the structure of the isostructural compounds SrB 4 O 7 and PbB 4 O 7 shows a noticeable shift of the lead against the strontium position, which as a result of the similar ion radii of the two ions could be assigned to the lone electron pair at the lead atom. The comparison of the crystal structure at low temperature shows similar to bismuth triborate an increase of the influence of the lone electron pair at lower temperatures. In barium tetraborate two different bond valence sums of the two crystallographic different barium positions are observed. As its origin the strong internal stresses are discussed. (orig.)

  13. Extraction of lead from waste CRT funnel glass by generating lead sulfide - An approach for electronic waste management.

    Science.gov (United States)

    Hu, Biao; Hui, Wenlong

    2017-09-01

    Waste cathode ray tube (CRT) funnel glass is the key and difficult points in waste electrical and electronic equipment (WEEE) disposal. In this paper, a novel and effective process for the detoxification and reutilization of waste CRT funnel glass was developed by generating lead sulfide precipitate via a high-temperature melting process. The central function in this process was the generation of lead sulfide, which gathered at the bottom of the crucible and was then separated from the slag. Sodium carbonate was used as a flux and reaction agent, and sodium sulfide was used as a precipitating agent. The experimental results revealed that the lead sulfide recovery rate initially increased with an increase in the amount of added sodium carbonate, the amount of sodium sulfide, the temperature, and the holding time and then reached an equilibrium value. The maximum lead sulfide recovery rate was approximately 93%, at the optimum sodium carbonate level, sodium sulfide level, temperature, and holding time of 25%, 8%, 1200°C, and 2h, respectively. The glass slag can be made into sodium and potassium silicate by hydrolysis in an environmental and economical process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Transverse Ising spin-glass model

    International Nuclear Information System (INIS)

    Santos, Raimundo R. dos; Santos, R.M.Z. dos.

    1984-01-01

    The zero temperature behavior of the Transverse Ising spin-glass (+-J 0 ) model is discussed. The d-dimensional quantum model is shown to be equivalent to a classical (d + 1)- dimensional Ising spin-glass with correlated disorder. An exact Renormalization Group treatment of the one-dimensional quantum model indicates the existence of a spin-glass phase. The Migdal-Kadanoff approximation is used to obtain the phase diagram of the quantum spin-glass in two-dimensions. (Author) [pt

  15. Candidate Low-Temperature Glass Waste Forms for Technetium-99 Recovered from Hanford Effluent Management Facility Evaporator Concentrate

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Mei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tang, Ming [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rim, Jung Ho [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chamberlin, Rebecca M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-24

    Alternative treatment and disposition options may exist for technetium-99 (99Tc) in secondary liquid waste from the Hanford Direct-Feed Low-Activity Waste (DFLAW) process. One approach includes development of an alternate glass waste form that is suitable for on-site disposition of technetium, including salts and other species recovered by ion exchange or precipitation from the EMF evaporator concentrate. By recovering the Tc content from the stream, and not recycling the treated concentrate, the DFLAW process can potentially be operated in a more efficient manner that lowers the cost to the Department of Energy. This report provides a survey of candidate glass formulations and glass-making processes that can potentially incorporate technetium at temperatures <700 °C to avoid volatilization. Three candidate technetium feed streams are considered: (1) dilute sodium pertechnetate loaded on a non-elutable ion exchange resin; (2) dilute sodium-bearing aqueous eluent from ion exchange recovery of pertechnetate, or (3) technetium(IV) oxide precipitate containing Sn and Cr solids in an aqueous slurry. From the technical literature, promising candidate glasses are identified based on their processing temperatures and chemical durability data. The suitability and technical risk of three low-temperature glass processing routes (vitrification, encapsulation by sintering into a glass composite material, and sol-gel chemical condensation) for the three waste streams was assessed, based on available low-temperature glass data. For a subset of candidate glasses, their long-term thermodynamic behavior with exposure to water and oxygen was modeled using Geochemist’s Workbench, with and without addition of reducing stannous ion. For further evaluation and development, encapsulation of precipitated TcO2/Sn/Cr in a glass composite material based on lead-free sealing glasses is recommended as a high priority. Vitrification of pertechnetate in aqueous anion exchange eluent solution

  16. Formation of nanoclusters of gadolinium atoms in silicon

    International Nuclear Information System (INIS)

    Iliev, Kh.M.; Saparniyazova, Z.M.; Ismajlov, K.A.; Madzhitov, M.Kh.

    2011-01-01

    A technology of stage wise low temperature diffusion of gadolinium into silicon that makes it possible to form nanoclusters of impurity atoms with a significant magnetic moment distributed throughout the volume of the material has been developed. It is shown that, unlike the samples obtained by high temperature diffusion doping, the samples prepared by the new technology do not have surface erosion, and alloys and silicides are not formed in the near surface region. Nanoclusters of impurity atoms of gadolinium in the volume of the crystal lattice of the silicon are studied using an MIK-5 infrared microscope. It is found that, in the stage wise low temperature diffusion, the temperature and time of the diffusion have an effect not only on the depth of penetration of the impurities but also on the sizes of the resulting clusters; these factors can also prevent the formation of clusters. The study of the effect of low temperature treatments on the size and distribution of clusters shows that, upon annealing in the temperature range of 500-700 degrees Celsius, the ordering of the clusters of gadolinium impurity atoms is observed. A further increase in the annealing temperature leads to the destruction of gadolinium clusters in the silicon bulk. (authors)

  17. Liquid-Liquid Phase Separation in Model Nuclear Waste Glasses: A Solid-State Double-Resonance NMR Study

    Energy Technology Data Exchange (ETDEWEB)

    Martineau, Ch.; Michaelis, V.K.; Kroeker, S. [Univ Manitoba, Dept Chem, Winnipeg, MB R3T 2N2 (Canada); Schuller, S. [CEA Valrho Marcoule, LDMC, SECM, DTCD, DEN, F-30207 Bagnols Sur Ceze (France)

    2010-07-01

    Double-resonance nuclear magnetic resonance (NMR) techniques are used in addition to single-resonance NMR experiments to probe the degree of mixing between network-forming cations Si and B, along with the modifier cations Cs{sup +} and Na{sup +} in two molybdenum-bearing model nuclear waste glasses. The double-resonance experiments involving {sup 29}Si in natural abundance are made possible by the implementation of a CPMG pulse-train during the acquisition period of the usual REDOR experiments. For the glass with lower Mo content, the NMR results show a high degree of Si-B mixing, as well as an homogeneous distribution of the cations within the borosilicate network, characteristic of a non-phase-separated glass. For the higher-Mo glass, a decrease of B-Si(Q{sup 4}) mixing is observed, indicating phase separation. {sup 23}Na and {sup 133}Cs NMR results show that although the Cs{sup +} cations, which do not seem to be influenced by the molybdenum content, are spread within the borate network, there is a clustering of the Na{sup +} cations, very likely around the molybdate units. The segregation of a Mo-rich region with Na{sup +} cations appears to shift the bulk borosilicate glass composition toward the metastable liquid liquid immiscibility region and induce additional phase separation. Although no crystallization is observed in the present case, this liquid liquid phase separation is likely to be the first stage of crystallization that can occur at higher Mo loadings or be driven by heat treatment. From this study emerges a consistent picture of the nature and extent of such phase separation phenomena in Mo-bearing glasses, and demonstrates the potential of double-resonance NMR methods for the investigation of phase separation in amorphous materials. (authors)

  18. Database and Interim Glass Property Models for Hanford HLW Glasses

    International Nuclear Information System (INIS)

    Hrma, Pavel R; Piepel, Gregory F; Vienna, John D; Cooley, Scott K; Kim, Dong-Sang; Russell, Renee L

    2001-01-01

    The purpose of this report is to provide a methodology for an increase in the efficiency and a decrease in the cost of vitrifying high-level waste (HLW) by optimizing HLW glass formulation. This methodology consists in collecting and generating a database of glass properties that determine HLW glass processability and acceptability and relating these properties to glass composition. The report explains how the property-composition models are developed, fitted to data, used for glass formulation optimization, and continuously updated in response to changes in HLW composition estimates and changes in glass processing technology. Further, the report reviews the glass property-composition literature data and presents their preliminary critical evaluation and screening. Finally the report provides interim property-composition models for melt viscosity, for liquidus temperature (with spinel and zircon primary crystalline phases), and for the product consistency test normalized releases of B, Na, and Li. Models were fitted to a subset of the screened database deemed most relevant for the current HLW composition region

  19. Integrating amplifiers for PHENIX lead-glass and lead-scintillator calorimeters

    International Nuclear Information System (INIS)

    Wintenberg, A.L.; Simpson, M.L.; Britton, C.L. Jr.; Palmer, R.L.; Jackson, R.G.

    1995-01-01

    Two types of integrating amplifier systems have been developed for use with lead-glass and lead-scintillator calorimeters with photomultiplier tube readout. Requirements for the amplifier system include termination of the line from the photomultiplier, compact size and low power dissipation to allow multiple channels per chip, dual range outputs producing 10-bit accuracy over a 14-bit dynamic range, rms noise levels of one LSB or less, and compatibility with timing filter amplifiers, tower sum circuits for triggering and calibration circuits to be built on the same integrated circuit (IC). Advantages and disadvantages of an active integrator system are compared and contrasted to those of a passive integrator-based system. In addition, details of the designs and results from prototype devices including an 8-channel active integrator IC fabricated in 1.2 microm Orbit CMOS are presented

  20. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-10-05

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  1. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    International Nuclear Information System (INIS)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-01-01

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  2. Comparative Study of Radiation Shielding Parameters for Bismuth Borate Glasses

    OpenAIRE

    Kaundal, Rajinder Singh

    2016-01-01

    Melt and quench technique was used for the preparation of glassy samples of the composition x Bi2O3-(1-x) B2O3 where x= .05 to .040. XCOM computer program is used for the evaluation of gamma-ray shielding parameters of the prepared glass samples. Further the values of mass attenuation coefficients, effective atomic number and half value layer for the glassy samples have been calculated in the energy range from 1KeV to 100GeV. Rigidity of the glass samples have been analyzed by molar volume of...

  3. Crystal growth and optical properties of CdS-doped lead silicate glass

    International Nuclear Information System (INIS)

    Liu Hao; Liu Qiming; Zhao Xiujian

    2007-01-01

    The crystal growth and optical properties of CdS microcrystallite-doped lead silicate glass is investigated in this paper. The existence of CdS nanocrystals was confirmed via X-ray diffraction (XRD) and transmission electron microscopy (TEM). Results reveal that a two-stage heat-treat procedure can produce a better size distribution of CdS nanocrystals than a one-stage heat-treat procedure in glasses. The second harmonic generation (SHG) from the base glass and CdS microcrystallite doped glasses was observed, and the effects of the heat treatments and the thermal poling temperature on the crystallization of CdS and second-order harmonic (SH) intensity were discussed, respectively. It is indicated that samples doped with CdS microcrystallite showed larger SH intensity than that of the base glass. Use of a higher thermal poling temperature than the glass transformation temperature does not result in a good SH intensity in glasses

  4. Borated aluminum alloy manufacturing technology

    International Nuclear Information System (INIS)

    Shimojo, Jun; Taniuchi, Hiroaki; Kajihara, Katsura; Aruga, Yasuhiro

    2003-01-01

    Borated aluminum alloy is used as the basket material of cask because of its light weight, thermal conductivity and superior neutron absorbing abilities. Kobe Steel has developed a unique manufacturing process for borated aluminum alloy using a vacuum induction melting method. In this process, aluminum alloy is melted and agitated at higher temperatures than common aluminum alloy fabrication methods. It is then cast into a mold in a vacuum atmosphere. The result is a high quality aluminum alloy which has a uniform boron distribution and no impurities. (author)

  5. CREEP BEHAVIOR OF BORATE-TREATED STRANDBOARD: EFFECT OF ZINC BORATE RETENTION, WOOD SPECIES, AND LOAD LEVEL

    OpenAIRE

    Wu,Qinglin; Lee,Ong N; Cai,Zhiyong; Zhou,Dingguo

    2009-01-01

    Creep performance of zinc borate-treated strandboard from southern pine (Pinus taeda L.) and red oak (Quercus falcata) was investigated at 25(0)C temperature and 65% relative humidity. It was shown that the borate treatment had some significant effect on creep deflection of the test panels, and the effect varied with wood species. There was no significant effect of creep loading on residual bending properties of treated strandboard under the stress levels used. The four element spring-dashpot...

  6. Early Gadolinium Enhancement for Determination of Area at Risk

    DEFF Research Database (Denmark)

    Hammer-Hansen, Sophia; Leung, Steve W; Hsu, Li-Yueh

    2017-01-01

    OBJECTIVES: The aim of this study was to determine whether early gadolinium enhancement (EGE) by cardiac magnetic resonance (CMR) in a canine model of reperfused myocardial infarction depicts the area at risk (AAR) as determined by microsphere blood flow analysis. BACKGROUND: It remains controver......OBJECTIVES: The aim of this study was to determine whether early gadolinium enhancement (EGE) by cardiac magnetic resonance (CMR) in a canine model of reperfused myocardial infarction depicts the area at risk (AAR) as determined by microsphere blood flow analysis. BACKGROUND: It remains...... requires pathological validation. METHODS: Eleven dogs underwent 2 h of coronary artery occlusion and 48 h of reperfusion before imaging at 1.5-T. EGE imaging was performed 3 min after contrast administration with coverage of the entire left ventricle. Late gadolinium enhancement imaging was performed...... on native T1 and T2 maps. The size of EGE was significantly greater than the infarct by triphenyltetrazolium chloride (44.1 ± 15.8% vs. 20.7 ± 14.4%; p gadolinium enhancement (44.1 ± 15.8% vs. 23.5 ± 12.7%; p

  7. Lithium conducting ionic liquids based on lithium borate salts

    Energy Technology Data Exchange (ETDEWEB)

    Zygadlo-Monikowska, E.; Florjanczyk, Z.; Sluzewska, K.; Ostrowska, J.; Langwald, N.; Tomaszewska, A. [Warsaw University of Technology, Faculty of Chemistry, ul. Noakowskiego 3, 00-664 Warsaw (Poland)

    2010-09-15

    The simple reaction of trialkoxyborates with butyllithium resulted in the obtaining of new lithium borate salts: Li{l_brace}[CH{sub 3}(OCH{sub 2}CH{sub 2}){sub n}O]{sub 3}BC{sub 4}H{sub 9}{r_brace}, containing oxyethylene substituents (EO) of n=1, 2, 3 and 7. Salts of n {>=} 2 show properties of room temperature ionic liquid (RTIL) of low glass transition temperature, T{sub g} of the order from -70 to -80 C. The ionic conductivity of the salts depends on the number of EO units, the highest conductivity is shown by the salt with n = 3; in bulk its ambient temperature conductivity is 2 x 10{sup -5} S cm{sup -1} and in solution in cyclic propylene sulfite or EC/PC mixture, conductivity increases by an order of magnitude. Solid polymer electrolytes with borate salts over a wide concentration range, from 10 to 90 mol.% were obtained and characterized. Three types of polymeric matrices: poly(ethylene oxide) (PEO), poly(trimethylene carbonate) (PTMC) and two copolymers of acrylonitrile and butyl acrylate p(AN-BuA) were used in them as polymer matrices. It has been found that for systems of low salt concentration (10 mol.%) the best conducting properties were shown by solid polymer electrolytes with PEO, whereas for systems of high salt concentration, of the polymer-in-salt type, good results were achieved for PTMC as polymer matrix. (author)

  8. Fusion welding of borated stainless steels

    International Nuclear Information System (INIS)

    Robino, C.V.; Cieslak, M.J.

    1993-01-01

    Borated austenitic stainless steels have been developed for use in the nuclear industry where storage, transport, and reprocessing of nuclear materials are required. The objective of this work is to develop appropriate joining technology for borated stainless steels based upon understanding the response of these materials to thermal processing involving melting. This understanding is being developed through the application of physical metallurgy techniques to determine the evolution of microstructure and mechanical properties within the various regions of the HAZ. Initial investigations include development of the kinetics of boride coarsening in the solid-state region of HAZ and the effect of boride coarsening on the impact properties of this region of the weld zone. Microstructures of the borated stainless steels, their response to high temperature isothermal heat treatments, and the implications of these heat treatments with respect to welding behavior will be presented

  9. Overview of ultraviolet and infrared spectroscopic properties of Yb3+ doped borate and oxy-borates compounds

    International Nuclear Information System (INIS)

    Sablayrolles, J.

    2006-12-01

    The trivalent ytterbium ion can give rise to two emissions with different spectroscopic properties: the first one, with a short lifetime, in the ultraviolet (charge transfer emission) is used in detectors such as scintillators, and the other one, with a long lifetime, in the infrared (4f-4f emission) for laser applications. The strong link between material structure and properties is illustrated through ytterbium luminescence study, in the ultraviolet and infrared, inserted in the borate Li 6 Y(BO 3 ) 3 and two oxy-borates: LiY 6 O 5 (BO 3 ) 3 and Y 17,33 B 8 O 38 . For the first time an ytterbium charge transfer emission in oxy-borates has been observed. The calculation of the single configurational coordinate diagram, as well as the thermal quenching, has been conducted under a fundamental approach on the ytterbium - oxygen bond. The study of the ytterbium infrared spectroscopy in these compounds has been realised and an energy level attribution is proposed in the particular case of the borate Li 6 Y(BO 3 ) 3 : Yb 3+ . An original approach is introduced with the study of the charge transfer states for the three compounds by looking at the infrared emission. The first laser performances in three operating modes (continuous wave, Q-switch and mode locking) of a Li 6 Y(BO 3 ) 3 : Yb 3+ crystal are reported. (author)

  10. Three-Dimensional Numerical Modeling of Acoustic Trapping in Glass Capillaries

    DEFF Research Database (Denmark)

    Ley, Mikkel Wennemoes Hvitfeld; Bruus, Henrik

    2017-01-01

    Acoustic traps are used to capture and handle suspended microparticles and cells in microfluidic applications. A particular simple and much-used acoustic trap consists of a commercially available, millimeter-sized, liquid-filled straight glass capillary actuated by a piezoelectric transducer. Here......, we present a three-dimensional numerical model of the acoustic pressure field in the liquid coupled to the displacement field of the glass wall, taking into account mixed standing and traveling waves as well as absorption. The model explains the dynamical mechanism that leads to the formation...

  11. Modeling systemic and renal gadolinium chelate transport with MRI

    Energy Technology Data Exchange (ETDEWEB)

    Votaw, John R.; Martin, Diego [Emory University Hospital, Department of Radiology, Atlanta, GA (United States)

    2008-01-15

    The advent of modern MRI scanners and computer equipment permits the rapid sequential collection of images of gadolinium chelate (Gd) transit through the kidney. The excellent spatial and temporal (0.9 s) resolution permits analyzing the shape of the recovered curves with a sophisticated model that includes both space and time. The purpose of this manuscript is to present such a mathematical model. By building into the model significant physical processes that contribute to the shape of the measured curve, quantitative values can be assigned to important parameters. In this work, quantitative values are determined for blood dispersion through the cardio-pulmonary system, systemic clearance rate of Gd, blood flow into each kidney, blood transit time in each kidney, the extraction rate of Gd across the capillary membrane, interstitial distribution volume, and the GFR for each kidney. (orig.)

  12. Growth, characterization and dielectric studies of gadolinium ...

    Indian Academy of Sciences (India)

    nitrogen atmosphere leads to the formation of gadolinium oxide as the final product. ... from Chengdu Haoxuan Technology Co. Ltd, China ..... by metal cations. A band centered at 1534.78 cm. −1 is due to asymmetric stretching of coordinated carboxylate group vas(COO. −. ). Another absorption band at 1398.38 cm. −1 is.

  13. Quasi-realistic distribution of interaction fields leading to a variant of Ising spin glass model

    International Nuclear Information System (INIS)

    Tanasa, Radu; Enachescu, Cristian; Stancu, Alexandru; Linares, Jorge; Varret, Francois

    2004-01-01

    The distribution of interaction fields of an Ising-like system, obtained by Monte Carlo entropic sampling is used for modeling the hysteretic behavior of patterned media made of magnetic particles with a common anisotropy axis; a variant of the canonical Edwards-Anderson Ising spin glass model is introduced

  14. Lead extraction from Cathode Ray Tube (CRT) funnel glass: Reaction mechanisms in thermal reduction with addition of carbon (C).

    Science.gov (United States)

    Lu, Xingwen; Ning, Xun-An; Chen, Da; Chuang, Kui-Hao; Shih, Kaimin; Wang, Fei

    2018-06-01

    This study quantitatively determined the extraction of lead from CRT funnel glass and examined the mechanisms of thermally reducing lead in the products of sintering Pb-glass with carbon in the pre-heated furnace. The experimentally derived results indicate that a 90.3 wt% lead extraction efficiency can be achieved with 20 wt% of C addition at 950 °C for 3 min under air. The formation of viscous semi-liquid glass blocked the oxygen supply between the interaction of C and Pb-glass, and was highly effective for the extraction of metallic Pb. A maximum of 87.3% lead recover was obtained with a C to Na 2 CO 3 ratio of 1/3 at 1200 °C. The decrease of C/Na 2 CO 3 ratio enhanced the metallic lead recovery by increasing the glass viscosity for effective sedimentation of metallic lead in the bottom. However, with the further increase of temperature and treatment time, re-vitrification of lead back to silicate-glass matrix was detected in both Pb-glass/C and Pb-glass/C/Na 2 CO 3 systems. The findings indicated that with proper controls, using C as an inexpensive reagent can effectively reduce treatment time and energy, which is crucial to a waste-to-resource technology for economically recovering lead from the waste CRT glass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Critical review of glass performance modeling

    International Nuclear Information System (INIS)

    Bourcier, W.L.

    1994-07-01

    Borosilicate glass is to be used for permanent disposal of high-level nuclear waste in a geologic repository. Mechanistic chemical models are used to predict the rate at which radionuclides will be released from the glass under repository conditions. The most successful and useful of these models link reaction path geochemical modeling programs with a glass dissolution rate law that is consistent with transition state theory. These models have been used to simulate several types of short-term laboratory tests of glass dissolution and to predict the long-term performance of the glass in a repository. Although mechanistically based, the current models are limited by a lack of unambiguous experimental support for some of their assumptions. The most severe problem of this type is the lack of an existing validated mechanism that controls long-term glass dissolution rates. Current models can be improved by performing carefully designed experiments and using the experimental results to validate the rate-controlling mechanisms implicit in the models. These models should be supported with long-term experiments to be used for model validation. The mechanistic basis of the models should be explored by using modern molecular simulations such as molecular orbital and molecular dynamics to investigate both the glass structure and its dissolution process

  16. Critical review of glass performance modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, W.L. [Lawrence Livermore National Lab., CA (United States)

    1994-07-01

    Borosilicate glass is to be used for permanent disposal of high-level nuclear waste in a geologic repository. Mechanistic chemical models are used to predict the rate at which radionuclides will be released from the glass under repository conditions. The most successful and useful of these models link reaction path geochemical modeling programs with a glass dissolution rate law that is consistent with transition state theory. These models have been used to simulate several types of short-term laboratory tests of glass dissolution and to predict the long-term performance of the glass in a repository. Although mechanistically based, the current models are limited by a lack of unambiguous experimental support for some of their assumptions. The most severe problem of this type is the lack of an existing validated mechanism that controls long-term glass dissolution rates. Current models can be improved by performing carefully designed experiments and using the experimental results to validate the rate-controlling mechanisms implicit in the models. These models should be supported with long-term experiments to be used for model validation. The mechanistic basis of the models should be explored by using modern molecular simulations such as molecular orbital and molecular dynamics to investigate both the glass structure and its dissolution process.

  17. Conditioning highly concentrated borate solutions with calcium sulfo-aluminate cement

    International Nuclear Information System (INIS)

    Champenois, J.B.; Cau dit Coumes, C.; Poulesquen, A.; Le Bescop, P.; Damidot, D.

    2012-01-01

    The early age hydration by borate solution of 3 calcium sulfo-aluminate cements (CSA), containing respectively 0%, 10% and 20% of gypsum by weight of cement was studied using isothermal calorimetry and dynamic mode rheo-metry. XRD and TGA analysis were carried out on pastes with increasing hydration degrees (up to 90 days) to specify the mineralogy and to figure out the mechanisms of borate immobilisation. It has been shown that the retarding effect of borate anions is due to the precipitation of the amorphous calcium borate C 2 B 3 H 8 ; borate anions were then incorporated in Aft-type phases. The macroscopic properties of hydrated binders (compressive strength, length change) were also followed during 180 days. It appears that the mechanical strength continuously increases with the hydration degree. Length changes under wet-curing and sealed bag remain moderate and seem to be stabilized after 180 days

  18. Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Refeat, Riham Mahmoud [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Safety Engineering Dept.

    2015-12-15

    A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO{sub 2} fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

  19. Magnesium Borate Synthesis by Microwave Energy: A New Method

    Directory of Open Access Journals (Sweden)

    Azmi Seyhun Kipcak

    2013-01-01

    Full Text Available Magnesium borates are one of the major groups of boron minerals that have important properties such as high heat and corrosion resistances and high coefficients of elasticity. In this study, magnesium borate minerals are synthesized using boric acid and magnesium oxide with a new method of microwave, and the synthesized minerals are characterized by various analysis techniques. The results show that pure, “magnesium borate hydrate” minerals are obtained at the end of various steps. The characterization of the products is determined with the techniques of X-Ray Diffraction (XRD, Fourier Transform Infrared Spectroscopy (FT-IR, Raman Spectroscopy, and Scanning Electron Microscopy (SEM. Additionally, overall “magnesium borate hydrate” yields are calculated and found about 67% at 270 W, 8 minutes and 360 W, 3 minutes of reaction times, respectively.

  20. Conductivity in alkali doped CoO-B2O3 glasses

    International Nuclear Information System (INIS)

    Nagaraja, N; Sankarappa, T; Santoshkumar; Sadashivaiah, P J; Yenkayya

    2009-01-01

    Two series of cobalt-borate glasses doped with Li 2 O and K 2 O in single and mixed proportions have been synthesized by melt quenching method and investigated for ac conductivity in the frequency range of 50Hz to 5MHz and temperature range of 310K to 610K. From the measured total conductivity, the pure ac component and its frequency exponent, s were determined. In the single alkali doped glasses, for all the frequencies, the conductivity increased with increase of Li 2 O up to 0.4 mole fractions and decreased for further increase of Li 2 O. The temperature dependence of conductivity has been analyzed using Mott's small polaron hopping model and activation energy for ac conduction has been determined. Based on conductivity and activation behaviors, in single alkali glasses, a change over of conduction mechanism predominantly from ionic to electronic has been predicted. In mixed alkali doped glasses, the conductivity passed through minimum and activation energy passed through maximum for second alkali (K 2 O) content of 0.2 mole fractions. This result revealed the mixed alkali effect to be occurring at 0.2 mole fractions of K 2 O. The frequency exponent, s, was compared with theoretical models such as Quantum Mechanical Tunneling and Correlated Barrier Hopping models and found them to be inadequate to explain the experimental observations. Time-temperature superposition principle has been verified in both the sets of glasses.

  1. Mechanical Properties of a High Lead Glass Used in the Mars Organic Molecule Analyzer

    Science.gov (United States)

    Salem, Jonathan A.; Smith, Nathan A.; Ersahin, Akif

    2015-01-01

    The elastic constants, strength, fracture toughness, slow crack growth parameters, and mirror constant of a high lead glass supplied as tubes and funnels were measured using ASTM International (formerly ASTM, American Society for Testing and Materials) methods and modifications thereof. The material exhibits lower Young's modulus and slow crack growth exponent as compared to soda-lime silica glass. Highly modified glasses exhibit lower fracture toughness and slow crack growth exponent than high purity glasses such as fused silica.

  2. Chemical stability of soda-alumina-zirconia-silica glasses to Na, Na2S4, and S

    International Nuclear Information System (INIS)

    Bloom, S.I.; Bradley, J.; Nelson, P.A.; Roche, M.F.

    1985-01-01

    Twenty-two glasses with a broad range of compositions, spanning the quaternary soda-alumina-zirconia-silica system, have been prepared to allow characterization of the various properties of the system. The glasses were characterized by their resistivities, energies of activation for conduction, and glass transition temperatures. The glasses were screened for compositions of especially high chemical stability of static corrosion tests in Na, S, and Na 2 S 4 for 1000h at 400 0 C. Among the glasses tested, the high soda glasses showed the smallest weight change after exposure to the three media. The weight change observed was comparable to that seen in the Dow borate glass and beta'' alumina

  3. Behavior of gadolinium-based diagnostics in water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cyris, Maike

    2013-04-25

    determined, however, it is strongly assumed that the anthropogenic gadolinium fraction is present as chelate. Adsorption characteristics were evaluated by bottle point isotherm experiments on different activated carbon types and activated polymer based sorbents. The Freundlich coefficients vary between 0.013 and 2.83 (μmol kg{sup -1})(L μmol{sup -1}){sup 1/n} for Gd-BT-DO3A, on Chemviron RD 90 {sup registered} and on the best synthetic adsorbent, respectively. Lab scale experiments with small adsorber columns in a drinking water matrix gave insight in the behavior during fixed-bed adsorption processes. The breakthrough was described successfully by the Linear Driving Force model. Modeling has shown that a description of experimental results is only possible by including dissolved organic carbon isotherm results from drinking water in the model, to describe an additional competitive adsorption effect within the fixed-bed adsorber, different from direct competition. First investigations in a wastewater treatment plant proved a poor adsorption of gadolinium similar to iodinated X-ray contrast media such as iopamidole. Therefore, gadolinium will hardly be removed from wastewater by implementation of a further adsorptive treatment step. However, gadolinium may be utilized as indicator substance for breakthrough. Rate constants of the chelates with ozone and hydroxyl radicals have been determined under pseudo-first-order conditions. Rate constants for the ozone reaction were determined to be < 50 M{sup -1}s{sup -1} for all tested chelates. Hence, the chelates may be considered ozone refractory. For determination of hydroxyl radical rate constants different methods were applied. Radicals were generated either by pulse radiolysis, in this case rate constant were determined directly and by competition with thiocyanate, or by the peroxone process, where only competition kinetics were applied (para-chlorobenzoic acid and tert-butanol as competitors). From pulse radiolysis

  4. Behavior of gadolinium-based diagnostics in water treatment

    International Nuclear Information System (INIS)

    Cyris, Maike

    2013-01-01

    , however, it is strongly assumed that the anthropogenic gadolinium fraction is present as chelate. Adsorption characteristics were evaluated by bottle point isotherm experiments on different activated carbon types and activated polymer based sorbents. The Freundlich coefficients vary between 0.013 and 2.83 (μmol kg -1 )(L μmol -1 ) 1/n for Gd-BT-DO3A, on Chemviron RD 90 registered and on the best synthetic adsorbent, respectively. Lab scale experiments with small adsorber columns in a drinking water matrix gave insight in the behavior during fixed-bed adsorption processes. The breakthrough was described successfully by the Linear Driving Force model. Modeling has shown that a description of experimental results is only possible by including dissolved organic carbon isotherm results from drinking water in the model, to describe an additional competitive adsorption effect within the fixed-bed adsorber, different from direct competition. First investigations in a wastewater treatment plant proved a poor adsorption of gadolinium similar to iodinated X-ray contrast media such as iopamidole. Therefore, gadolinium will hardly be removed from wastewater by implementation of a further adsorptive treatment step. However, gadolinium may be utilized as indicator substance for breakthrough. Rate constants of the chelates with ozone and hydroxyl radicals have been determined under pseudo-first-order conditions. Rate constants for the ozone reaction were determined to be < 50 M -1 s -1 for all tested chelates. Hence, the chelates may be considered ozone refractory. For determination of hydroxyl radical rate constants different methods were applied. Radicals were generated either by pulse radiolysis, in this case rate constant were determined directly and by competition with thiocyanate, or by the peroxone process, where only competition kinetics were applied (para-chlorobenzoic acid and tert-butanol as competitors). From pulse radiolysis determinations (rate constants > 10 9 M -1 s -1

  5. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    Science.gov (United States)

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  6. Corrosion studies of titanium in borated water for TPX

    International Nuclear Information System (INIS)

    Wilson, D.F.; Pawel, S.J.; DeVan, J.H.; Cole, M.J.; Nelson, B.E.

    1995-01-01

    Corrosion testing was performed to demonstrate the compatibility of the titanium vacuum vessel with borated water. Borated water is proposed to fill the annulus of the double wall vacuum vessel to provide effective radiation shielding. Borating the water with 110 grams of boric acid per liter is sufficient to reduce the nuclear heating in the Toroidal Field Coil set and limit the activation of components external to the vacuum vessel. Constant extension rate tensile (CERT) and electrochemical potentiodynamic tests were performed. Results of the CERT tests confirm that stress corrosion cracking is not significant for Ti-6Al4V or Ti-3AI-2.5V. Welded and unwelded specimens were tested in air and in borated water at 150 degree C. Strength, elongation, and time to failure were nearly identical for all test conditions, and all the samples exhibited ductile failure. Potentiodynamic tests on Ti-6A1-4V and Ti in borated water as a function of temperature showed low corrosion rates over a wide passive potential range. Further, this passivity appeared stable to anodic potentials substantially greater than those expected from MHD effects

  7. Glass Transition Temperature- and Specific Volume- Composition Models for Tellurite Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-01

    This report provides models for predicting composition-properties for tellurite glasses, namely specific gravity and glass transition temperature. Included are the partial specific coefficients for each model, the component validity ranges, and model fit parameters.

  8. First experimental tests of a lead glass drift calorimeter

    International Nuclear Information System (INIS)

    Guerra, A.D.; Bellazzini, R.; Conti, M.; Massai, M.M.; Schwartz, G.; Habel, R.; Mulera, T.; Perez-Mendez, V.

    1985-10-01

    We are building a drift collection calorimeter, which has a combined radiator and electric field shaping structure made of fused lead glass tubing, treated in a H 2 reducing atmosphere. We describe the construction detail of the calorimeter and the experimental measurements on several prototypes with radioative sources and minimum ionizing particles. 9 refs., 11 figs

  9. Validation of gadolinium burnout using PWR benchmark specification

    Energy Technology Data Exchange (ETDEWEB)

    Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl

    2014-07-01

    Graphical abstract: - Highlights: • We present methodology for validation of gadolinium burnout in PWR. • We model 17 × 17 PWR fuel assembly using MCB code. • We demonstrate C/E ratios of measured and calculated concentrations of Gd isotopes. • The C/E for Gd154, Gd156, Gd157, Gd158 and Gd160 shows good agreement of ±10%. • The C/E for Gd152 and Gd155 shows poor agreement below ±10%. - Abstract: The paper presents comparative analysis of measured and calculated concentrations of gadolinium isotopes in spent nuclear fuel from the Japanese Ohi-2 PWR. The irradiation of the 17 × 17 fuel assembly containing pure uranium and gadolinia bearing fuel pins was numerically reconstructed using the Monte Carlo Continuous Energy Burnup Code – MCB. The reference concentrations of gadolinium isotopes were measured in early 1990s at Japan Atomic Energy Research Institute. It seems that the measured concentrations were never used for validation of gadolinium burnout. In our study we fill this gap and assess quality of both: applied numerical methodology and experimental data. Additionally we show time evolutions of infinite neutron multiplication factor K{sub inf}, FIMA burnup, U235 and Gd155–Gd158. Gadolinium-based materials are commonly used in thermal reactors as burnable absorbers due to large neutron absorption cross-section of Gd155 and Gd157.

  10. Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents - current status

    Energy Technology Data Exchange (ETDEWEB)

    Stojanov, Dragan [University of Nis, Faculty of Medicine, Nis (Serbia); Center for Radiology, Nis (Serbia); Aracki-Trenkic, Aleksandra [Center for Radiology, Nis (Serbia); Benedeto-Stojanov, Daniela [University of Nis, Faculty of Medicine, Nis (Serbia)

    2016-05-15

    Gadolinium-based contrast agents (GBCAs) have been used clinically since 1988 for contrast-enhanced magnetic resonance imaging (CE-MRI). Generally, GBCAs are considered to have an excellent safety profile. However, GBCA administration has been associated with increased occurrence of nephrogenic systemic fibrosis (NSF) in patients with severely compromised renal function, and several studies have shown evidence of gadolinium deposition in specific brain structures, the globus pallidus and dentate nucleus, in patients with normal renal function. Gadolinium deposition in the brain following repeated CE-MRI scans has been demonstrated in patients using T1-weighted unenhanced MRI and inductively coupled plasma mass spectroscopy. Additionally, rodent studies with controlled GBCA administration also resulted in neural gadolinium deposits. Repeated GBCA use is associated with gadolinium deposition in the brain. This is especially true with the use of less-stable, linear GBCAs. In spite of increasing evidence of gadolinium deposits in the brains of patients after multiple GBCA administrations, the clinical significance of these deposits continues to be unclear. Here, we discuss the current state of scientific evidence surrounding gadolinium deposition in the brain following GBCA use, and the potential clinical significance of gadolinium deposition. There is considerable need for further research, both to understand the mechanism by which gadolinium deposition in the brain occurs and how it affects the patients in which it occurs. (orig.)

  11. Zirconolite glass-ceramics for plutonium immobilization: The effects of processing redox conditions on charge compensation and durability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingjie, E-mail: yzx@ansto.gov.au; Gregg, Daniel J.; Kong, Linggen; Jovanovich, Miodrag; Triani, Gerry

    2017-07-15

    Zirconolite glass-ceramic samples doped with plutonium have been prepared via hot isostatic pressing. The effects of processing redox and plutonium loadings on plutonium valences, the presence of cation vacancies, zirconolite phase compositions, microstructures and durability have been investigated. Either tetravalent or trivalent plutonium ions may be incorporated on the Ca-site of CaZrTi{sub 2}O{sub 7} zirconolite with the Ca-site cation vacancies and the incorporation of Al{sup 3+} ions on the Ti-site for charge compensation. Plutonium and gadolinium (as a neutron absorber) are predominantly partitioned in zirconolite phases leading to the formation of chemically durable glass-ceramics suitable for the immobilization of impure plutonium wastes arising from the nuclear fuel cycle. - Highlights: •Plutonium validations of zirconolite glass-ceramics. •Effects of processing redox and plutonium loading. •Zirconolite phase compositions and plutonium valences. •Cation vacancies and chemical durability.

  12. Modeling of evaporation processes in glass melting furnaces

    NARCIS (Netherlands)

    Limpt, van J.A.C.

    2007-01-01

    The majority of glass furnaces worldwide, apply fossil fuel combustion to transfer heat directly by radiation from the combustion processes to the melting batch and glass melt. During these high temperature melting processes, some glass components, such as: sodium, potassium, boron and lead species

  13. Construction of lead glass tubing matrices for applications in medical physics and high energy physics

    International Nuclear Information System (INIS)

    Schwartz, G.; Conti, M.; Del Guerra, A.; Cinti, M.; Di Fino, M.; Habel, R.

    1985-01-01

    Honeycomb matrices which act both as gamma ray converter/radiator and electron drift structures have been manufactured from lead glass tubing of high density (5-6 g/cm 3 ). Baking the tubing in a reducing atmosphere produces a resistive metallic layer which can be used as a continuous voltage divider for drift field shaping. The application of a multiwire proportional chamber/converter detector to positron emission tomography is described; arrays of lead glass capillaries ( < 1.0 mm inner diameter) are used as converter for the 511 keV annihilation photons. Another application is under study in high energy physics, a high density projection chamber in electromagnetic calorimetry. The various phases of the construction of these lead glass matrices for both applications are described in detail

  14. Advances in understanding the structure of borosilicate glasses: A Raman spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Manara, D.; Grandjean, A. [CEA Marcoule, Serv Confinement Deches and Vitrificat, DTCD, DEN - 30 (France); Neuville, D.R. [Institut Physique Globe, Physique des Mineraux et Magmas, CNRS, F-75252 Paris 05 (France)

    2009-05-15

    This study is focused on the behavior of ternary SiO{sub 2}-Na{sub 2}O-B{sub 2}O{sub 3} borosilicate glasses at temperatures between 298 and 1800 K. Unpolarized Raman spectra were measured up to high temperature. SiO{sub 2}-Na{sub 2}O-B{sub 2}O{sub 3} glass samples were prepared with different values of the ratio R [Na{sub 2}O]/[B{sub 2}O{sub 3}], while the ratio K = [SiO{sub 2}]/[B{sub 2}O{sub 3}] was kept constant and equal 2.12. Spectra were measured at room temperature in samples with 0.43 {<=} R {<=} 1.68, and the effect of the modifier content was clearly observed in these glasses, only in partial agreement with previous literature results. In particular, the formation in the glass of sodium-danburite units Na{sub 2}O-B{sub 2}O{sub 3}-2SiO{sub 2} was postulated. This feature led to a new assessment of R{sup *}, the critical value of R above which every new alkali atom added to the system breaks a Fo-O-Fo (Fo=glass former) bridge causing depolymerization of the glass. A revised formula is proposed to obtain the value of R{sup *} as a function of K. Raman spectra measured at high temperature yielded important information about the temperature-dependent evolution of the borosilicate system. In particular, borate and borosilicate units including tetra-coordinated boron seem to be unstable at high temperature, where the formation of metaborate chains or rings is fostered. Above 1500 degrees C, evaporation of borate compounds is clearly observed, stemming from the small sample size. (authors)

  15. Laser-excited fluorescence spectroscopy of oxide glasses

    International Nuclear Information System (INIS)

    Weber, M.J.

    1977-01-01

    Laser-induced fluorescence line narrowing was applied to investigate the local fields and interactions of paramagnetic ions in oxide glasses. Studies included the site dependence of energy levels, radiative and nonradiative transition probabilities, homogeneous line broadening, and ion--ion energy transfer of rare earth ions. These results and the experimental techniques are reviewed briefly; the use of paramagnetic ions other than the rare earths is also considered. Recently, laser-excited fluorescence spectroscopy was used to investigate modifications in the local structure of lithium borate glass caused by compositional changes and phase separation and the site dependence of nonradiative relaxation of paramagnetic ions by multiphonon processes. These results and their implications are discussed. 6 figures

  16. Green colorants based on energetic azole borates.

    Science.gov (United States)

    Glück, Johann; Klapötke, Thomas M; Rusan, Magdalena; Stierstorfer, Jörg

    2014-11-24

    The investigation of green-burning boron-based compounds as colorants in pyrotechnic formulations as alternative for barium nitrate, which is a hazard to health and to the environment, is reported. Metal-free and nitrogen-rich dihydrobis(5-aminotetrazolyl)borate salts and dihydrobis(1,3,4-triazolyl)borate salts have been synthesized and characterized by NMR spectroscopy, elemental analysis, mass spectrometry, and vibrational spectroscopy. Their thermal and energetic properties have been determined as well. Several pyrotechnic compositions using selected azolyl borate salts as green colorants were investigated. Formulations with ammonium dinitramide and ammonium nitrate as oxidizers and boron and magnesium as fuels were tested. The burn time, dominant wavelength, spectral purity, luminous intensity, and luminous efficiency as well as the thermal and energetic properties of these compositions were measured. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Allyl borates: a novel class of polyhomologation initiators

    KAUST Repository

    Wang, De

    2016-12-24

    Allyl borates, a new class of monofunctional polyhomologation initiators, are reported. These monofunctional initiators are less sensitive and more effective towards polymethylene-based architectures. As an example, the synthesis of α-vinyl-ω-hydroxypolymethylenes is given. By designing/synthesizing different allylic borate initiators, and using 1H and 11B NMR spectroscopy, the initiation mechanism was elucidated.

  18. Structural and Optical Properties of Lead-Boro-Tellurrite Glasses Induced by Gamma-Ray

    Directory of Open Access Journals (Sweden)

    Azhar Abdul Rahman

    2013-02-01

    Full Text Available Spectrophotometric studies of lead borotellurite glasses were carried out before and after gamma irradiation exposure. The increasing peak on the TeO4 bi-pyramidal arrangement and TeO3+1 (or distorted TeO4 is due to augmentation of irradiation dose which is attributed to an increase in degree of disorder of the amorphous phase. The structures of lead tellurate contain Pb3TeO6 consisting of TeO3 trigonal pyramid connected by PbO4 tetragonal forming a three-dimensional network. The decrease of glass rigidity is due to irradiation process which is supported by the XRD diffractograms results. The decreasing values of absorption edge indicate that red shift effect occur after irradiation processes. A shift in the optical absorption edge attributed to an increase of the conjugation length. The values of optical band gap, Eopt were calculated and found to be dependent on the glass composition and radiation exposure. Generally, an increase and decrease in Urbach’s energy can be considered as being due to an increase in defects within glass network.

  19. Structural and optical properties of lead-boro-tellurrite glasses induced by gamma-ray.

    Science.gov (United States)

    Mustafa, Iskandar Shahrim; Kamari, Halimah Mohamed; Yusoff, Wan Mohd Daud Wan; Aziz, Sidek Abdul; Rahman, Azhar Abdul

    2013-02-04

    Spectrophotometric studies of lead borotellurite glasses were carried out before and after gamma irradiation exposure. The increasing peak on the TeO(4) bi-pyramidal arrangement and TeO(3+1) (or distorted TeO(4)) is due to augmentation of irradiation dose which is attributed to an increase in degree of disorder of the amorphous phase. The structures of lead tellurate contain Pb(3)TeO(6) consisting of TeO(3) trigonal pyramid connected by PbO(4) tetragonal forming a three-dimensional network. The decrease of glass rigidity is due to irradiation process which is supported by the XRD diffractograms results. The decreasing values of absorption edge indicate that red shift effect occur after irradiation processes. A shift in the optical absorption edge attributed to an increase of the conjugation length. The values of optical band gap, E(opt) were calculated and found to be dependent on the glass composition and radiation exposure. Generally, an increase and decrease in Urbach's energy can be considered as being due to an increase in defects within glass network.

  20. Performance of Large Neutron Detectors Containing Lithium-Gadolinium-Borate Scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Slaughter, David M.; Stuart, Cory R.; Klaass, R. Fred; Merrill, David B. [MSI/Photogenics Division, Orem, Utah (United States)

    2015-07-01

    This paper describes the development and testing of a neutron counter, spectrometer, and dosimeter that is compact, efficient, and accurate. A self-contained neutron detection instrument has wide applications in health physics, scientific research, and programs to detect, monitor, and control strategic nuclear materials (SNM). The 1.3 liter detector head for this instrument is a composite detector with an organic scintillator containing uniformly distributed {sup 6}Li{sub 6}{sup nat}Gd{sup 10}B{sub 3}O{sub 9}:Ce (LGB:Ce) microcrystals. The plastic scintillator acts to slow impinging neutrons and emits light proportional to the energy lost by the neutrons as they moderate in the detector body. Moderating neutrons that have slowed sufficiently capture in one of the Lithium-6, Boron-10, or Gadolinium-157 atoms in the LGB:Ce scintillator, which then releases the capture energy in a characteristic cerium emission pulse. The measured captured pulses indicate the presence of neutrons. When a scintillating fluor is present in the plastic, the light pulse resulting from the neutron moderating in the plastic is paired with the LGB:Ce capture pulse to identify the energy of the neutron. About 2% of the impinging neutrons lose all of their energy in a single collision with the detector. There is a linear relationship between the pulse areas of this group of neutrons and energy. The other 98% of neutrons have a wide range of collision histories within the detector body. When these neutrons are 'binned' into energy groups, each group contains a distribution of pulse areas. This data was used to assist in the unfolding of the neutron spectra. The unfolded spectra were then validated with known spectra, at both neutron emitting isotopes and fission/accelerator facilities. Having validated spectra, the dose equivalent and dose rate are determined by applying standard, regulatory damage coefficients to the measured neutron counts for each energy bin of the spectra. Testing

  1. A curious relationship between Potts glass models

    Science.gov (United States)

    Yamaguchi, Chiaki

    2015-08-01

    A Potts glass model proposed by Nishimori and Stephen [H. Nishimori, M.J. Stephen, Phys. Rev. B 27, 5644 (1983)] is analyzed by means of the replica mean field theory. This model is a discrete model, has a gauge symmetry, and is called the Potts gauge glass model. By comparing the present results with the results of the conventional Potts glass model, we find the coincidences and differences between the models. We find a coincidence that the property for the Potts glass phase in this model is coincident with that in the conventional model at the mean field level. We find a difference that, unlike in the case of the conventional p-state Potts glass model, this system for large p does not become ferromagnetic at low temperature under a concentration of ferromagnetic interaction. The present results support the act of numerically investigating the present model for study of the Potts glass phase in finite dimensions.

  2. Characterization and optical properties of Pr2O3-doped ...

    Indian Academy of Sciences (India)

    2017-06-09

    Jun 9, 2017 ... Pr3+ doped molybdenum lead-borate glasses with the chemical ... Thermal, optical and structural analyses are carried out using DSC, UV and FTIR spectra. ... energy band gap (Egopt), of these glasses have been determined.

  3. Lead extraction from waste funnel cathode-ray tubes glasses by reaction with silicon carbide and titanium nitride

    International Nuclear Information System (INIS)

    Yot, Pascal G.; Mear, Francois O.

    2009-01-01

    As a possibility to clean waste CRT glass, treatment of lead-containing glass with a reducing agent, SiC or TiN, leads to a porous material containing metallic lead, Pb(0), located on the surface of the pore, and unreduced lead, Pb(II). The influences of reducing agent content, of the time, and at last of the temperature on lead reduction were analysed. Our investigations have pointed out significant differences as a function of the used reducing agent. CRT glass heat treated with SiC lead to less Pb(0), compared to TiN as shown by X-ray diffraction, and differential scanning calorimetry (DSC). It has been also evidenced that lead reduction occurs on randomized zones inside the sample leading to macroscopic lead beads inside glassy samples. XPS and XAS measurements were also carried out to investigate the local structure of lead and have evidenced a change of role of lead inside the glassy framework in function of the used conditions.

  4. Sonochemical-assisted magnesium borate synthesis from different boron sources

    Directory of Open Access Journals (Sweden)

    Yildirim Meral

    2017-03-01

    Full Text Available In this study, sonochemical-assisted magnesium borate synthesis is studied from different boron sources. Various reaction parameters are successfully applied by a simple and green method. X-ray diffraction (XRD, Fourier transform infrared (FT-IR and Raman spectroscopies are used to characterize the synthesized magnesium borates on the other hand surface morphologies are investigated by using scanning electron microscope (SEM. The XRD analyses showed that the products were admontite [MgO(B2O33 · 7(H2O] with JCPDS (Joint Committee on Powder Diffraction Standards no. of 01-076-0540 and mcallisterite [Mg2(B6O7(OH62 · 9(H2O] with JCPDS no. of 01-070-1902. The results that found in the spectroscopic studies were in a good agreement with characteristic magnesium borate bands in both regions of infra-red and visible. According to SEM results, obtained borates were in micro and sub-micro scales. By the use of ultrasonication, reaction yields were found between 84.2 and 97.9%. As a result, it is concluded that the sonochemical approach is a practicable synthesis method to get high efficiency and high crystallinity in the synthesis magnesium borate compounds.

  5. Luminescence properties of erbium doped sodium barium borate glass with silver nanoparticles

    Science.gov (United States)

    Rajeshree Patwari, D.; Eraiah, B.

    2018-02-01

    Alteration in the absorption features of rare earth (RE) doped glasses with silver nanoparticles is ever-challenging in photonics. Erbium (Er3+) doped glasses with composition (60-x-y)B2O3-30Na2CO3-10BaO-xEr2O3-yAgCl where (x=0.5, 1.0 and y=1.0 mol %) are synthesized using melt-quenching method. The density is determined by Archimedes principle and molar volumes are calculated. Glass samples were characterized by XRD and UV-Visible spectroscopy. UV-Visible spectra shows eleven prominent absorption peaks centred around 366, 378, 408, 442, 452, 489, 521, 547, 652, 800 and 977 nm equivalent to the rare earth (Er3+) ion transitions. The sample without rare earth shows no peaks which specifies that rare earth ion plays a spirited role in the glass matrix. The glass samples with silver and without rare earth ion shows plasmon peak on heat treatment. The energy band gap values calculated for direct and indirect transitions are in the range of 3.126-3.440eV and 2.58-3.177eV respectively. The refractive indices and Urbach energies are also determined. Photoluminescence spectra are recorded and studied for excitation of the most intense peaks of wavelengths 378 and 521nm. The luminescence of erbium ion is enhanced by the presence of silver when the concentration of rare earth ion is less than that of silver.

  6. Modeling of critical experiments employing Raschig rings in uranyl nitrate solution

    International Nuclear Information System (INIS)

    Tanner, J.E.

    1989-01-01

    Four critical experiments employing borated glass rings in concentrated uranyl nitrate solution yielded k eff higher by 0. 04 when modeled with a flux-weighted, homogenized cross section set than when modeled with discrete rings. k eff varied by 0.014 for a 10% boron uncertainty and by up to 0.04 for a 10% packing fraction uncertainty

  7. Investigation of gadolinium monophosphide at high temperatures

    International Nuclear Information System (INIS)

    Gordienko, S.P.; Gol'nik, V.F.; Mironov, K.E.

    1982-01-01

    Gadolinium monophosphide has been studied in vacuum at high temperatures using mass-spectrometric, chemical, X-ray phase and derivatographical analyses. It is established that gadolinium monophosphide at 2080-2465 K dissociates into atomic gadolinium, phosphorus and, P 2 molecules. According to Vant-Hoff and Gibbs-Helmholtz equations standard enthalpy of atomization ΔHsub(at) deg (298)=1027.3 kJ/mol and of formation ΔHsub(f) deg (298)=313.8 kJ/mol of gadolinium monophosphide are determined

  8. Toward a consistent model for glass dissolution

    International Nuclear Information System (INIS)

    Strachan, D.M.; McGrail, B.P.; Bourcier, W.L.

    1994-01-01

    Understanding the process of glass dissolution in aqueous media has advanced significantly over the last 10 years through the efforts of many scientists around the world. Mathematical models describing the glass dissolution process have also advanced from simple empirical functions to structured models based on fundamental principles of physics, chemistry, and thermodynamics. Although borosilicate glass has been selected as the waste form for disposal of high-level wastes in at least 5 countries, there is no international consensus on the fundamental methodology for modeling glass dissolution that could be used in assessing the long term performance of waste glasses in a geologic repository setting. Each repository program is developing their own model and supporting experimental data. In this paper, we critically evaluate a selected set of these structured models and show that a consistent methodology for modeling glass dissolution processes is available. We also propose a strategy for a future coordinated effort to obtain the model input parameters that are needed for long-term performance assessments of glass in a geologic repository. (author) 4 figs., tabs., 75 refs

  9. Effect of co-doping of sodium on the thermoluminescence dosimetry properties of copper-doped zinc lithium borate glass system

    International Nuclear Information System (INIS)

    Saidu, A.; Wagiran, H.; Saeed, M.A.; Alajerami, Y.S.M.; Kadir, A.B.A.

    2016-01-01

    The effect of sodium as a co-dopant on the thermoluminescence (TL) properties of copper-doped zinc lithium borate (ZLB: Cu) subjected to Co-60 gamma radiation is reported in this study. TL intensity is enhanced with the introduction of sodium in ZLB: Cu. The obtained glow curve is simple with a single peak. The annealing procedure and the best heating rate for the proposed thermoluminescent dosimeter (TLD) are established, and the phosphor is reusable. The TL response within the dose range of 0.5–1000 Gy is investigated. The results show that the thermal fading behaviour is improved significantly. - Highlights: • Dosimetry properties of an improved TL dosimeter. • The dosimeter is made of lithium borate, modified with ZnO, doped with CuO and co-doped with Na 2 O. • With addition of Na to Cu in the ZLB host, TL yield and sensitivity has significantly enhanced. • The fading behaviour has also been minimized significantly. • The new material is also characterized with the linear dose response, and good reproducibility behaviour.

  10. Tensile behavior of borated stainless steels

    International Nuclear Information System (INIS)

    Stephens, J.J. Jr.; Sorenson, K.B.

    1991-01-01

    Borated stainless steel tensile testing is being conducted at Sandia National Laboratories (SNL). The goal of the test program is to provide data to support a code case inquiry to the ASME Boiler and Pressure Vessel Code, Section III. The adoption by ASME facilitates a material's qualification for structural use in transport cask applications. For transport cask basket applications, the potential advantage to using borated stainless steel arises from the fact that the structural and criticality control functions can be combined into one material. This can result in a decrease in net section thickness of the basket web (increased payload capacity) and eliminates the fabrication process and cost of attaching a discrete boron poison material to the basket web. In addition, adding borate stainless steel to the inventory of acceptable structural material provides the Department of Energy (DOE) and its cask contractors an alternative to current proposed materials which have not been qualified for structural service. The test program at SNL involves procuring material, machining test specimens, and conducting the tensile tests. From test measurements obtained so far, general trends indicate that tensile properties (yield strength and ultimate strength) increase with boron content and are in all cases superior to the minimum required properties established in A-240, Type 304, a typical grade of austenitic stainless steel. Therefore, in a designed basket, web thicknesses using borated stainless steel would be comparable to or thinner tan an equivalent basket manufactured from a typical stainless steel without boron additions. General trends from test results indicate that ductilities decrease with increasing boron content

  11. Characterization of composite metal-ceramic of nickel-oxide cerium doped gadolinium

    International Nuclear Information System (INIS)

    Silva, M.L.A. da; Varela, M.C.R.S.

    2016-01-01

    Composite nickel doped cerium oxide are used in SOFC anode materials. In this study we evaluated the effect of the presence of gadolinium on the properties of composite nickel and ceria and. The supports were synthesized by sol-gel method. The impregnation with nickel nitrate was taken sequentially, followed by calcination. The materials were characterized by X-ray diffraction, measurement of specific surface area, temperature programmed reduction, Raman spectroscopy. The presence of gadolinium retained the fluorite structure of ceria by forming a solid solution, also not influencing significantly on the specific surface area of the support. On the other hand, there was a decrease in the area catalysts, which can be attributed to sintering of nickel. Furthermore, addition of gadolinium favored the formation of intrinsic and extrinsic vacancies in cerium oxide, which leads to an increase in the ionic conductivity of the solid, desirable property for an SOFC anode catalyst. (author)

  12. Polarized localization and borate-dependent degradation of the Arabidopsis borate transporter BOR1 in tobacco BY-2 cells [v1; ref status: indexed, http://f1000r.es/kv

    Directory of Open Access Journals (Sweden)

    Noboru Yamauchi

    2013-09-01

    Full Text Available In Arabidopsis the borate transporter BOR1, which is located in the plasma membrane, is degraded in the presence of excess boron by an endocytosis-mediated mechanism. A similar mechanism was suggested in rice as excess boron decreased rice borate transporter levels, although in this case whether the decrease was dependent on an increase in degradation or a decrease in protein synthesis was not elucidated. To address whether the borate-dependent degradation mechanism is conserved among plant cells, we analyzed the fate of GFP-tagged BOR1 (BOR1-GFP in transformed tobacco BY-2 cells. Cells expressing BOR1-GFP displayed GFP fluorescence at the plasma membrane, especially at the membrane between two attached cells. The plasma membrane signal was abolished when cells were incubated in medium with a high concentration of borate (3 to 5 mM. This decrease in BOR1-GFP signal was mediated by a specific degradation of the protein after internalization by endocytosis from the plasma membrane. Pharmacological analysis indicated that the decrease in BOR1-GFP largely depends on the increase in degradation rate and that the degradation was mediated by a tyrosine-motif and the actin cytoskeleton. Tyr mutants of BOR1-GFP, which has been shown to inhibit borate-dependent degradation in Arabidopsis root cells, did not show borate-dependent endocytosis in tobacco BY-2 cells. These findings indicate that the borate-dependent degradation machinery of the borate transporter is conserved among plant species.

  13. The ameliorative effect of grape seed extract(GSE) on sodium borate-inducing kidney injury of male albino rats

    International Nuclear Information System (INIS)

    Ayad, S.K.Y.

    2013-01-01

    Borax (sod-borate) is a toxic compound that is implicated daily to environmental pollutant, so occupational exposure leading to adverse effects on functions of some organs causing their damage as nephrotoxicity, neurotoxicity, hepatotoxicity and testicular atrophy . In particularly, kidney is the most organ that is affected by borax exposure due to continuous exposure with slow rate of excretion leading to accumulation in the renal tissue. Supplementation with high potent antioxidant grape seed extract may alleviate the worse damage effects induced in the kidney as a result of continual exposure of borax in our daily life. The current study aimed to evaluate the ameliorative effect of grape seed extract on renal injury of male albino rats intoxicated with sod-borate. Twenty eight male albino rats were classified to 4 groups(GI and II and III and IV).GI served as a control, group GII was a group intoxicated with sod-borate for 45 days, where as rats in GIII supplemented with GSE beside sod-borate for 45 days , GIV was a group supplemented with GSE only. Serum and kidney samples were collected for biochemical, histopathological and DNA examinations. Significant elevation in the levels of blood urea and creatinine in GII were observed when compared to control group(GI). Significant decline were prominent in biochemical kidney functions when intoxicated group supplemented with GSE(GIII) , where as non significant changes were observed between control group and group supplemented with GSE only (GIV). Significant increase in both cytokines TNF-α and IL-6 was observed in group intoxicated with sod-borate(GII) when compared to control rats(GI). Oral supplementation with high potent antioxidant GSE (GIII) caused alleviation in the kidney injury leading to the reduction of both pro-inflammatory mediator cytokines TNF-α and IL-6. DNA% fragment migration showed that worse significant migration of DNA fragements were observed in toxicated group(GII) followed by increase in

  14. Use of gadolinium-based magnetic resonance imaging contrast agents and awareness of brain gadolinium deposition among pediatric providers in North America

    International Nuclear Information System (INIS)

    Mithal, Leena B.; Patel, Payal S.; Mithal, Divakar; Palac, Hannah L.; Rozenfeld, Michael N.

    2017-01-01

    Numerous recent articles have reported brain gadolinium deposition when using linear but not macrocyclic gadolinium-based contrast agents (GBCAs). To determine the current landscape of gadolinium use among pediatric institutions and the knowledge base of radiologists and referring providers with regard to GBCAs and brain gadolinium deposition. We e-mailed voluntary closed surveys to 5,390 physicians in various pediatric professional societies between January 2016 and March 2016. We used chi-square and Fisher exact tests to compare response distributions among specialties. We found that 80% of surveyed pediatric hospitals use macrocyclic contrast agents. In the last year, 58% switched their agent, most commonly to gadoterate meglumine, with the most common reason being brain gadolinium deposition. Furthermore, surveys indicated that 23% of hospitals are considering switching, and, of these, 83% would switch to gadoterate meglumine; the most common reasons were brain gadolinium deposition and safety. Radiologists were more aware of brain gadolinium deposition than non-radiologist physicians (87% vs. 26%; P<0.0001). Radiologists and referring providers expressed similar levels of concern (95% and 89%). Twelve percent of radiologists and 2% of referring providers reported patients asking about brain gadolinium deposition. Radiologists were significantly more comfortable addressing patient inquiries than referring pediatric physicians (48% vs. 6%; P<0.0001). The number of MRIs requested by referring pediatric physicians correlated with their knowledge of brain gadolinium deposition, contrast agent used by their hospital, and comfort discussing brain gadolinium deposition with patients (P<0.0001). Since the discovery of brain gadolinium deposition, many pediatric hospitals have switched to or plan to switch to a more stable macrocyclic MR contrast agent, most commonly gadoterate meglumine. Despite this, there is need for substantial further education of radiologists and

  15. Use of gadolinium-based magnetic resonance imaging contrast agents and awareness of brain gadolinium deposition among pediatric providers in North America

    Energy Technology Data Exchange (ETDEWEB)

    Mithal, Leena B. [Northwestern University, Feinberg School of Medicine, Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Patel, Payal S. [University of Arizona College of Medicine, Department of Pediatrics, Phoenix, AZ (United States); Mithal, Divakar [Northwestern University, Feinberg School of Medicine, Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Pediatric Neurology, Chicago, IL (United States); Palac, Hannah L. [Northwestern University, Biostatistics, Feinberg School of Medicine, Ann and Robert H. Lurie Children' s Hospital of Chicago, Chicago, IL (United States); Rozenfeld, Michael N. [University of Arizona College of Medicine, Department of Radiology, Phoenix, AZ (United States)

    2017-05-15

    Numerous recent articles have reported brain gadolinium deposition when using linear but not macrocyclic gadolinium-based contrast agents (GBCAs). To determine the current landscape of gadolinium use among pediatric institutions and the knowledge base of radiologists and referring providers with regard to GBCAs and brain gadolinium deposition. We e-mailed voluntary closed surveys to 5,390 physicians in various pediatric professional societies between January 2016 and March 2016. We used chi-square and Fisher exact tests to compare response distributions among specialties. We found that 80% of surveyed pediatric hospitals use macrocyclic contrast agents. In the last year, 58% switched their agent, most commonly to gadoterate meglumine, with the most common reason being brain gadolinium deposition. Furthermore, surveys indicated that 23% of hospitals are considering switching, and, of these, 83% would switch to gadoterate meglumine; the most common reasons were brain gadolinium deposition and safety. Radiologists were more aware of brain gadolinium deposition than non-radiologist physicians (87% vs. 26%; P<0.0001). Radiologists and referring providers expressed similar levels of concern (95% and 89%). Twelve percent of radiologists and 2% of referring providers reported patients asking about brain gadolinium deposition. Radiologists were significantly more comfortable addressing patient inquiries than referring pediatric physicians (48% vs. 6%; P<0.0001). The number of MRIs requested by referring pediatric physicians correlated with their knowledge of brain gadolinium deposition, contrast agent used by their hospital, and comfort discussing brain gadolinium deposition with patients (P<0.0001). Since the discovery of brain gadolinium deposition, many pediatric hospitals have switched to or plan to switch to a more stable macrocyclic MR contrast agent, most commonly gadoterate meglumine. Despite this, there is need for substantial further education of radiologists and

  16. Separation of cesium from aqueous solutions using alkylated tetraaryl borates

    International Nuclear Information System (INIS)

    Feldmaier, F.

    1991-01-01

    The water solubility of cesium tetraaryl borates was lowered by introducing hydrophobic aliphatic side chains into corresponding acid-resistant fluorosubstituted tetraaryl borates. This improved cesium spearability both in precipitation and in extraction from aqueous solutions. (orig.) [de

  17. Development of an eco-friendly material recycling process for spent lead glass using a mechanochemical process and Na2EDTA reagent.

    Science.gov (United States)

    Sasai, Ryo; Kubo, Hisashi; Kamiya, Masahiro; Itoh, Hideaki

    2008-06-01

    To develop a novel nonheating method with lower energy consumption and higher efficiency for recovering both lead and SiO2 glass matrix from spent lead-glass powder, we attempted to treat the spent lead glass by the mechanochemical method using the metal chelate reagent, sodium ethylenediaminetetraacetate (Na2EDTA). As a result of the wet ball-milling treatment of spent lead-glass powder sealed in a polypropylene bottle with zirconia balls, Na2EDTA, and water at room temperature, we found that more than 99 mass % of lead contained in the spentlead-glass powder was extracted as a lead-EDTA species from the solid silica glass network matrix. This separation phenomenon was accelerated by the enlargement of the solid-liquid interface area due to ball-milling atomization and by the high stability constant of lead-EDTA. High extraction yield suggests that Pb-O-Pb bonds in lead glass are weakened or are broken down by the wet ball-milling treatment, i.e., the strong mechanical energy such as the potential and/ or friction energy provided by ball-milling may be high enough to elute lead ions from silica matrix. Moreover, we succeeded in recovering both lead ions as lead sulfate, which is the main compound of anglesite, and the EDTA as sodium-EDTA, which is reusable as the metal chelate reagent in wet chemical process using the ferric sulfate.

  18. Assessment of lead tellurite glass for immobilizing electrochemical salt wastes from used nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.; Pierce, David A.; Ebert, William L.; Williams, Benjamin D.; Snyder, Michelle M. V.; Frank, Steven M.; George, Jaime L.; Kruska, Karen

    2017-11-01

    This paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersive X-ray spectroscopy. These glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability. (C) 2017 Published by Elsevier B.V.

  19. Synthesis, characterization, bioactivity and antibacterial studies of silver doped calcium borosilicate glass-ceramics

    Science.gov (United States)

    Kumar, Alesh; Mariappan, C. R.

    2018-04-01

    Bioactive glass-ceramics 45.8 mol% SiO- 45.8 CaO - 8.4 B2O3 doped with Ag2O were synthesized by sol-gel method. The glass-ceramic nature of samples was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. Fourier transform infrared (FT-IR) spectra reveal the probable stretching and bending vibration modes of silicate and borate groups. UV-Visible spectra reveal the presence of Ag+ ions and metallic Ag in the glass matrix for Ag2O doped ceramic sample. Biocompatibility of the glass nature of samples was studied by soaking of samples in Dulbecco's Modified Eagle's Medium (DMEM) with subsequent XRD studies. It was found that bone-like apatite formation on the glasses after soaked in DMEM. Antibacterial studies of glass ceramics powder against gram positive and negative microorganisms were carried out.

  20. Lasing transition at 1.06 μm emission in Nd3+ -doped borate-based tellurium calcium zinc niobium oxide glasses for high-power solid-state lasers.

    Science.gov (United States)

    Ravi, O; Prasad, K; Jain, Rajiv; Venkataswamy, M; Chaurasia, Shivanand; Deva Prasad Raju, B

    2017-08-01

    The spectroscopic properties of Tellurium Calcium Zinc Niobium oxide Borate (TCZNB) glasses of composition (in mol%) 10TeO 2  + 15CaO + 5ZnO + 10 Nb 2 O 5  + (60 - x)B 2 O 3  + Nd 2 O 3 (x = 0.1, 0.5, 1.0 or 1.5 mol%) have been investigated experimentally. The three phenomenological intensity parameters Ω 2 , Ω 4, Ω 6 have been calculated using the Judd-Ofelt theory and in turn radiative properties such as radiative transition probabilities, emission cross-sections, branching ratios and radiative lifetimes have been estimated. The trend found in the JO intensity parameter is Ω 2  > Ω 6  > Ω 4 If Ω 6  > Ω 4 , the glass system is favourable for the laser emission 4 F 3 /2  →  4 I 11 /2 in the infrared (IR) wavelength. The experimental values of branching ratio of 4 F 3 /2  →  4 I 11 /2 transition indicate favourable lasing action with low threshold power. The evaluated total radiative transition probabilities (A T ), stimulated emission cross-section (σ e ) and gain bandwidth parameters (σ e  × Δλ p ) were compared with earlier reports. An energy level analysis has been carried out considering the experimental energy positions of the absorption and emission bands. Copyright © 2016 John Wiley & Sons, Ltd.

  1. The effect of demagnetization on the magnetocaloric properties of gadolinium

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Nielsen, Kaspar Kirstein

    2009-01-01

    of gadolinium. The adiabatic temperature change DeltaTad of gadolinium sheets upon application of a magnetic field has been measured at a range of applied magnetic fields and sample orientations. A significant dependence of DeltaTad on the sample orientation is observed. This can be accounted...... for by the demagnetization factor. Also, the temperature dependence of DeltaTad has been measured experimentally and modeled by mean field theory. Corrections to mean field theory modeling due to the demagnetization field are proposed and discussed. ©2009 American Institute of Physics...

  2. performance calculations of gadolinium oxide and boron nitride coated fuel

    International Nuclear Information System (INIS)

    Tanker, E.; Uslu, I.; Disbudak, H.; Guenduez, G.

    1997-01-01

    A comparative study was performed on the behaviour of natural uranium dioxide-gadolinium oxide mixture fuel and boron nitride coated low enriched fuel in a pressurized water reactor. A fuel element containing one burnable poison fuel pins was modeled with the computer code WIMS, and burn-up dependent critically, fissile isotope inventory and two dimensional power distribution were obtained. Calculations were performed for burnable poison fuels containing 5% and 10% gadolinium oxide and for those coated with 1μ,5μ and 10μ of boron nitride. Boron nitride coating was found superior to gadolinium oxide on account of its smoother criticality curve, lower power peaks and insignificant change in fissile isotope content

  3. Structural study and DC conductivity of vanadyl doped zinc lithium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Seema [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal-131039 (India); Physics Department, Baba Mast Nath University, Asthal Bohr, Rohtak-124001 (India); Khasa, S., E-mail: skhasa@rediff.com; Dahiya, M. S.; Yadav, Arti [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal-131039 (India); Agarwal, A. [Applied Physics Department, Guru Jambheshwar University of Science & Technology, Hisar-125001 (India); Dahiya, S. [Physics Department, Baba Mast Nath University, Asthal Bohr, Rohtak-124001 (India)

    2015-06-24

    Glasses with composition xZnO⋅(30 − x)⋅Li{sub 2}O⋅70B{sub 2}O{sub 3} containing 2 mol% of V{sub 2}O{sub 5} (x = 0, 2, 5, 7 and 10) were prepared by standard melt-quench technique. The amorphous nature of the glass samples was confirmed by using x-ray diffraction. The structural changes in these glasses have been investigated by employing IR spectroscopy in the mid-IR range. The infrared spectroscopic analysis confirms the presence of both triangular and tetraheldral coordinated boron units and absence of boroxol ring. It also shows that metal-oxide vibrations are present which are due to the bonding of lithium and zinc ions with oxygen. The dc conductivity was measured in the temperature range 353-523 K. The dc conductivity results show that conductivity decreases and activation energy increases when Li{sub 2}O is replaced by ZnO, keeping the concentration of B{sub 2}O{sub 3} constant. Decrease in conductivity and increase in activation energy shows that addition of ZnO to the glass matrix shows a “blocking effect” on the overall mobility of alkali ions, but at higher concentration the hopping effect was also observed.

  4. Corrosion behaviour of borated aluminium used as neutron absorber

    Energy Technology Data Exchange (ETDEWEB)

    Emmerich, R. [EaglePicher Technologies GmbH, Oehringen (Germany); Ensinger, W.; Enders, B. [Philipps-Univ. of Marburg, Dept. of Chemistry, Material Science Centre (Germany)

    2004-07-01

    The electrochemical behaviour of pure and borated aluminium was examined. Measurements were performed in two different electrolytes at 90 C containing different trace-amounts of chloride. For borated aluminium current transients, i.e. metastable depassivation events were found. It is suggested to attribute these transients to less stable passivation layers in comparison to pure aluminium.

  5. SUMMARY OF 2010 DOE EM INTERNATIONAL PROGRAM STUDIES OF WASTE GLASS STRUCTURE AND PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Choi, A.; Marra, J.; Billings, A.

    2011-02-07

    Collaborative work between the Savannah River National Laboratory (SRNL) and SIA Radon in Russia was divided among three tasks for calendar year 2010. The first task focused on the study of simplified high level waste glass compositions with the objective of identifying the compositional drivers that lead to crystallization and poor chemical durability. The second task focused on detailed characterization of more complex waste glass compositions with unexpectedly poor chemical durabilities. The third task focused on determining the structure of select high level waste glasses made with varying frit compositions in order to improve models under development for predicting the melt rate of the Defense Waste Processing Facility (DWPF) glasses. The majority of these tasks were carried out at SIA Radon. Selection and fabrication of the glass compositions, along with chemical composition measurements and evaluations of durability were carried out at SRNL and are described in this report. SIA Radon provided three summary reports based on the outcome of the three tasks. These reports are included as appendices to this document. Briefly, the result of characterization of the Task 1 glasses may indicate that glass compositions where iron is predominantly tetrahedrally coordinated have more of a tendency to crystallize nepheline or nepheline-like phases. For the Task 2 glasses, the results suggested that the relatively low fraction of tetrahedrally coordinated boron and the relatively low concentrations of Al{sub 2}O{sub 3} available to form [BO{sub 4/2}]{sup -}Me{sup +} and [AlO{sub 4/2}]{sup -}Me{sup +} tetrahedral units are not sufficient to consume all of the alkali ions, and thus these alkali ions are easily leached from the glasses. All of the twelve Task 3 glass compositions were determined to be mainly amorphous, with some minor spinel phases. Several key structural units such as metasilicate chains and rings were identified, which confirms the current modeling

  6. Energy transfer and colour tunability in UV light induced Tm3+/Tb3+/Eu3+: ZnB glasses generating white light emission.

    Science.gov (United States)

    Naresh, V; Gupta, Kiran; Parthasaradhi Reddy, C; Ham, Byoung S

    2017-03-15

    A promising energy transfer (Tm 3+ →Tb 3+ →Eu 3+ ) approach is brought forward to generate white light emission under ultraviolet (UV) light excitation for solid state lightening. Tm 3+ /Tb 3+ /Eu 3+ ions are combinedly doped in zinc borate glass system in view of understanding energy transfer process resulting in white light emission. Zinc borate (host) glass displayed optical and luminescence properties due to formation of Zn(II) x -[O(-II)] y centres in the ZnB glass matrix. At 360nm (UV) excitation, triply doped Tm 3+ /Tb 3+ /Eu 3+ : ZnB glasses simultaneously shown their characteristic emission bands in blue (454nm: 1 D 2 → 3 F 4 ), green (547nm: 5 D 4 → 7 F 5 ) and red (616nm: 5 D 0 → 7 F 2 ) regions. In triple ions doped glasses, energy transfer dynamics is discussed in terms of Forster-Dexter theory, excitation & emission profiles, lifetime curves and from partial energy level diagram of three ions. The role of Tb 3+ in ET from Tm 3+ →Eu 3+ was discussed using branch model. From emission decay analysis, energy transfer probability (P) and efficiency (η) were evaluated. Colour tunability from blue to white on varying (Tb 3+ , Eu 3+ ) content is demonstrated from Commission Internationale de L'Eclairage (CIE) chromaticity coordinates. Based on chromaticity coordinates, other colour related parameters like correlated colour temperature (CCT) and colour purity are also computed for the studied glass samples. An appropriate blending of such combination of rare earth ions could show better suitability as potential candidates in achieving multi-colour and warm/cold white light emission for white LEDs application in the field of solid state lightening. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Comment on 'Spherical 2+p spin-glass model: An analytically solvable model with a glass-to-glass transition'

    International Nuclear Information System (INIS)

    Krakoviack, V.

    2007-01-01

    Guided by old results on simple mode-coupling models displaying glass-glass transitions, we demonstrate, through a crude analysis of the solution with one step of replica symmetry breaking (1RSB) derived by Crisanti and Leuzzi for the spherical s+p mean-field spin glass [Phys. Rev. B 73, 014412 (2006)], that the phase behavior of these systems is not yet fully understood when s and p are well separated. First, there seems to be a possibility of glass-glass transition scenarios in these systems. Second, we find clear indications that the 1RSB solution cannot be correct in the full glassy phase. Therefore, while the proposed analysis is clearly naive and probably inexact, it definitely calls for a reassessment of the physics of these systems, with the promise of potentially interesting developments in the theory of disordered and complex systems

  8. Prize for a Faculty Member for Research in an Undergraduate Institution Lecture: Studies of the Structure and Properties of Oxide Glasses with Applications

    Science.gov (United States)

    Affatigato, Mario

    2013-03-01

    This presentation will summarize the research work carried out by Prof. Affatigato and his undergraduate students over the past eighteen years. It will focus on some highlighted projects, namely: the determination of glass structure using laser ionization time of flight mass spectrometry; studies of glass modification by laser irradiation; bactericidal glass; and, most recently, glass manufacturing by aerolevitation and glasses for particle detection. The work on mass spectrometry will cover a broad range of oxide glass systems, including the borates, borosilicates, germanate, and gallate families. It has provided novel insights into the structure of glasses at intermediate length scales, measurements that are hard to obtain by any other techniques. The studies of glass structure modification will primarily center on vanadate glasses, which also form the basis for more recent electronic conductivity work at the heart of new particle calorimeter detectors. This project shows the power of serendipity and the strong capabilities of undergraduate students involved in advanced work and state of the art instrumentation. Bactericidal glass illustrates a nice collaborative project that involved simple borate glasses and helped pioneer their use in the human body--work that has led to significant medical developments by other colleagues and researchers. Finally, the aerolevitation project gives new insight into the crystallization and property behavior of glasses and melts at very high temperatures (from 2000 °C to 3000 °C). The work by Prof. Affatigato and his students has been supported by grants from the Research Corporation, the Petroleum Research Fund, and, primarily, by the U.S. National Science Foundation.

  9. Positron annihilation in some barium borate glasses containing transition metal oxides

    International Nuclear Information System (INIS)

    Usmar, S.G.; Rawson, H.; West, R.N.

    1982-01-01

    Results of positron lifetime and angular correlation measurements for the glass series xMsub(s)Osub(r):(1-x)(0.4BaO:0.6B 2 O 3 ) are presented (Msub(s)Osub(r) equivalent to V 2 O 5 ;Fe 2 O 3 and CuO). All glasses exhibit two or three component lifetime spectra, tau 1 approximately 200 ps; tau 2 approximately 300-400 ps and tau 3 approximately 780 ps. tau 1 is attributed to a mixture of pPs and bulk state annihilation, tau 2 to a trapped or bound state and tau 3 to oPs pick-off. Supporting evidence for these assignments is found in the angular correlation results. (Auth.)

  10. Experimental comparison of gamma attenuations by glasses, lead, iron and concretes

    International Nuclear Information System (INIS)

    Charamathieu, Andre; Papot, Lucien

    1964-08-01

    The authors report the experimental determination, for lead glasses of density 3.3, 4.2, 5.2 and 6.2, of thicknesses equivalent to thicknesses given for lead, iron, ordinary concrete and barite concrete for Cobalt 60 and Caesium 137 radiations. Results are presented under the form of curves. Attenuation measurements made on this opportunity and those made on various hot cells have been compared with theoretical attenuation curves produced in another CEA document [fr

  11. Influence of fast neutrons on thermophysical properties of pure and borated low density polyethylene

    International Nuclear Information System (INIS)

    El-Khatib, A. M.; Kassem, M.

    1990-01-01

    The impact of radiation crosslinking on the mechanical, thermomechanical and electrical conductivity properties of LDPE and borated polyethylene have been studied and evaluated. The 8% borated polyethylene samples have added a new advantage where the tensile strength has increased to the maximum and then it became constant at higher crosslink density. Moreover, the electrical conductivity of 8% borated polyethylene is much higher than pure and 4% borated polyethylene. (author). 16 refs., 8 figs

  12. Short range structural models of the glass transition temperatures and densities of 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] mixed glass former glasses.

    Science.gov (United States)

    Bischoff, Christian; Schuller, Katherine; Martin, Steve W

    2014-04-03

    The 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] mixed glass former (MGF) glass system exhibits a nonlinear and nonadditive negative change in the Na(+) ion conductivity as one glass former, PS5/2, is exchanged for the other, GeS2. This behavior, known as the mixed glass former effect (MGFE), is also manifest in a negative deviation from the linear interpolation of the glass transition temperatures (T(g)) of the binary end-member glasses, x = 0 and x = 1. Interestingly, the composition dependence of the densities of these ternary MGF glasses reveals a slightly positive MGFE deviation from a linear interpolation of the densities of the binary end-member glasses, x = 0 and x = 1. From our previous studies of the structures of these glasses using IR, Raman, and NMR spectroscopies, we find that a disproportionation reaction occurs between PS7/2(4-) and GeS3(2-) units into PS4(3-) and GeS5/2(1-) units. This disproportionation combined with the formation of Ge4S10(4-) anions from GeS5/2(1-) groups leads to the negative MGFE in T(g). A best-fit model of the T(g)s of these glasses was developed to quantify the amount of GeS5/2(1-) units that form Ge4S10(4-) molecular anions in the ternary glasses (∼ 5-10%). This refined structural model was used to develop a short-range structural model of the molar volumes, which shows that the slight densification of the ternary glasses is due to the improved packing efficiency of the germanium sulfide species.

  13. Radiation shielding and effective atomic number studies in different types of shielding concretes, lead base and non-lead base glass systems for total electron interaction: A comparative study

    International Nuclear Information System (INIS)

    Kurudirek, Murat

    2014-01-01

    Highlights: • Radiation shielding calculations for concretes and glass systems. • Assigning effective atomic number for the given materials for total electron interaction. • Glass systems generally have better shielding ability than concretes. - Abstract: Concrete has been widely used as a radiation shielding material due to its extremely low cost. On the other hand, glass systems, which make everything inside visible to observers, are considered as promising shielding materials as well. In the present work, the effective atomic numbers, Z eff of some concretes and glass systems (industrial waste containing glass, Pb base glass and non-Pb base glass) have been calculated for total electron interaction in the energy region of 10 keV–1 GeV. Also, the continuous slowing down approximation (CSDA) ranges for the given materials have been calculated in the wide energy region to show the shielding effectiveness of the given materials. The glass systems are not only compared to different types of concretes but also compared to the lead base glass systems in terms of shielding. Moreover, the obtained results for total electron interaction have been compared to the results for total photon interaction wherever possible. In general, it has been observed that the glass systems have superior properties than most of the concretes over the high-energy region with respect to the electron interaction. Also, glass systems without lead show better electron stopping than lead base glasses at some energy regions as well. Along with the photon attenuation capability, it is seen that Fly Ash base glass systems have not only greater electron stopping capability but also have greater photon attenuation especially in high energy region when compared with standard shielding concretes

  14. Radiation shielding and effective atomic number studies in different types of shielding concretes, lead base and non-lead base glass systems for total electron interaction: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Kurudirek, Murat, E-mail: mkurudirek@gmail.com

    2014-12-15

    Highlights: • Radiation shielding calculations for concretes and glass systems. • Assigning effective atomic number for the given materials for total electron interaction. • Glass systems generally have better shielding ability than concretes. - Abstract: Concrete has been widely used as a radiation shielding material due to its extremely low cost. On the other hand, glass systems, which make everything inside visible to observers, are considered as promising shielding materials as well. In the present work, the effective atomic numbers, Z{sub eff} of some concretes and glass systems (industrial waste containing glass, Pb base glass and non-Pb base glass) have been calculated for total electron interaction in the energy region of 10 keV–1 GeV. Also, the continuous slowing down approximation (CSDA) ranges for the given materials have been calculated in the wide energy region to show the shielding effectiveness of the given materials. The glass systems are not only compared to different types of concretes but also compared to the lead base glass systems in terms of shielding. Moreover, the obtained results for total electron interaction have been compared to the results for total photon interaction wherever possible. In general, it has been observed that the glass systems have superior properties than most of the concretes over the high-energy region with respect to the electron interaction. Also, glass systems without lead show better electron stopping than lead base glasses at some energy regions as well. Along with the photon attenuation capability, it is seen that Fly Ash base glass systems have not only greater electron stopping capability but also have greater photon attenuation especially in high energy region when compared with standard shielding concretes.

  15. Amount of leachant and water absorption levels of wood treated with borates and water repellents.

    Science.gov (United States)

    Baysal, Ergun; Sonmez, Abdullah; Colak, Mehmet; Toker, Hilmi

    2006-12-01

    Wood protection efficacy of borates against biological agents, flame retardancy, and suitability to the environment is well known. Since borates can be applied to timber as water based solutions, they are preferred economically as well. Even though they are highly mobile in wood, boron compounds are widely used in timber preservation. Borates migrate in liquid and increase the hygroscopicity of wood in damp conditions. This study deals with the physical restriction of water access in wood by impregnating water repellent agents into wood to limit amount of leachant and water absorption levels of wood after boron treatment. Borates were incorporated with polyethylene glycol-400 (PEG-400) their bulking effect in wood was considered. Results indicated that the amount of leachates from wood treated with borates in PEG-400 was remarkably higher compared to those of wood treated with the aqueous solutions of borates. Water absorption (WA) levels of wood treated with aqueous solutions of borates were higher than those of their treated samples with the solutions in PEG-400. Secondary treatments of wood with the water repellent (WR) chemicals following borate impregnation reduced the leaching of chemicals from wood in water and also WA of the specimens were less than those of the wood treated with only borates from aqueous and PEG solutions. Styrene (St) was the most effective monomer among the other agents used in terms of immobility effect on borates and WA.

  16. Studying the shielding properties of lead glass composites using neutrons and gamma rays

    International Nuclear Information System (INIS)

    Osman, A.M.; El-Sarraf, M.A.; Abdel-Monem, A.M.; El-Sayed Abdo, A.

    2015-01-01

    Highlights: • Samples of sodalime silica glass loaded with different ratios of PbO were prepared. • Leaded glass composites were investigated for radiation shielding. • Experimental and theoretical attenuation parameters were studied. • Experimental and theoretical (MCNP5) results were in good agreement. - Abstract: The present work deals with the shielding properties of lead glass composites to find out its integrity for practical shielding applications and radiological safety. Composites of different lead oxide ratios (x = 0, 5, 10, 15 and 25 wt.%) have been prepared by the Nasser Glass and Crystal Company (Egypt). Attenuation measurements have been carried out using a collimated emitted beam from a fission 252 Cf (100 μg) neutron source, and the neutron–gamma spectrometer with stilbene scintillator. The pulse shape discriminating (P.S.D.) technique based on the zero cross-over method was used to discriminate between neutron and gamma-ray pulses. Thermal neutron fluxes were measured using the BF3 detector and thermal neutron detection system. The attenuation relations were used to evaluate fast neutron macroscopic effective removal cross-section Σ R-Meas (cm −1 ), gamma rays total attenuation coefficient μ (cm −1 ) and thermal neutron macroscopic cross-section Σ Meas (cm −1 ). Theoretical calculations have been achieved using MCNP5 code to calculate the same two parameters. Also, MERCSF-N program was used to calculate fast neutron macroscopic removal cross-section Σ R-MER (cm −1 ). Measured and MCNP5 calculated results have been compared and were found to be in reasonable agreement

  17. Nephrogenic systemic fibrosis and gadolinium-based contrast media

    DEFF Research Database (Denmark)

    Thomsen, Henrik S; Morcos, Sameh K; Almén, Torsten

    2012-01-01

    PURPOSE: To update the guidelines of the Contrast Media Safety Committee (CMSC) of the European Society of Urogenital Radiology (ESUR) on nephrogenic systemic fibrosis and gadolinium-based contrast media. AREAS COVERED: Topics reviewed include the history, clinical features and prevalence of neph...... guidelines regarding gadolinium contrast agents minimises the risk of NSF • Potential long-term harm from gadolinium accumulation in the body is discussed.......PURPOSE: To update the guidelines of the Contrast Media Safety Committee (CMSC) of the European Society of Urogenital Radiology (ESUR) on nephrogenic systemic fibrosis and gadolinium-based contrast media. AREAS COVERED: Topics reviewed include the history, clinical features and prevalence...... of nephrogenic systemic fibrosis and the current understanding of its pathophysiology. The risk factors for NSF are discussed and prophylactic measures are recommended. The stability of the different gadolinium-based contrast media and the potential long-term effects of gadolinium in the body have also been...

  18. Quantification of trace amounts of rare earth elements in high purity gadolinium oxide by sector field inductively coupled plasma mass spectrometry (ICP-MS)

    International Nuclear Information System (INIS)

    Pedreira, W.R.; Silva Queiroz, C.A. da; Abrao, A.; Pimentel, M.M.

    2004-01-01

    In recent years, rare earth elements (REEs) have received much attention in the fields of geochemistry and industry. Gadolinium oxide is used for many different high technology applications such as infrared absorbing automotive glass, petroleum cracking catalyst, gadolinium-yttrium garnets, microwave applications, and color TV tube phosphors. It can also be used in optical glass manufacturing and in the electronic industry. Rapid and accurate determinations of the rare earth elements are increasingly required as industrial demands expand. In general, the inductively coupled plasma mass spectrometry (ICP-MS) presents some advantages for trace element analysis, due to high sensitivity and resolution, when compared with other analytical techniques. In this work, sector field inductively coupled plasma mass spectrometry was used. Sixteen elements (Sc, Y, and 14 lanthanides) were determined selectively with the ICP-MS system using a concentration gradient method. The detection limits with the ICP-MS system were about 0.2-8 pg ml -1 . The recovery percentage ranged from 95 to 100% for different rare earth elements. The %R.S.D. of the methods varying between 1.5 and 2.5% for a set of five (n=5) replicates was found for the IPEN's material and for the certificate reference sample. Determination of trace REEs in two high pure gadolinium oxides samples (IPEN and JMC) was performed. IPEN's material is highly pure (>99.99%) and was successfully analyzed without spectral interference

  19. Lead removal from cathode ray tube glass by the action of calcium hydroxide and poly(vinyl chloride)

    International Nuclear Information System (INIS)

    Grause, Guido; Takahashi, Kenshi; Kameda, Tomohito; Yoshioka, Toshiaki

    2014-01-01

    Highlights: • About 99.9% of lead is removed from CRT glass by PbCl 2 volatilization. • PVC is used as chlorination agent with the aid of Ca(OH) 2 as HCl absorbing material. • The residual calcium silicate has a lead content as low as 140 mg kg −1 . • Lead leaching from the residue was below the detection limit. - Abstract: With the development of flat screen technology, the cathode ray tubes (CRTs) used in TV sets became obsolete, leaving huge amounts of lead-containing CRT glass for disposal. We developed a novel lead volatilization process in which PbCl 2 was generated in the presence of poly(vinyl chloride) (PVC) as a chlorination agent and Ca(OH) 2 as an HCl absorber. PVC was incinerated in air atmosphere and the resulting HCl was captured by Ca(OH) 2 before exiting the reactor with the air flow. CaCl 2 and Ca(OH) 2 reacted with the lead glass forming volatile PbCl 2 and crystalline Ca-silicates. Since the reactivity of lead glass with gaseous HCl is negligible, the presence of Ca(OH) 2 was essential for the success of this method. At a temperature of 1000 °C, a molar Cl/Pb ratio of 16, and a molar Ca/Si ratio of about 2, approximately 99.9% of the lead was volatilized, leaving a residue with a lead content of 140 mg kg −1 . The residual calcium silicate, with its low lead level, has the potential to be repurposed for other uses

  20. Moessbauer study in the glass system PbO. 2B/sub 2/O/sub 3/. Fe/sub 2/O/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Sekhon, S S; Kamal, R [Punjabi Univ., Patiala (India). Dept. of Physics

    1978-05-01

    The Moessbauer technique has been employed to study the structure and crystallite formation in the glass system PbO.2B/sub 2/O/sub 3/ containing upto 30 wt% Fe/sub 2/O/sub 3/. Like alkali borate glasses, this glass system also exhibits a broadened quadrupole doublet and iron ions are present in Fe/sup 3 +/ state. Above about 20 wt%, the crystallites of magnetically ordered states have been identified. Susceptibility variation with concentration suggests the formation of a superparamagnetic state.

  1. Waste glass corrosion modeling: Comparison with experimental results

    International Nuclear Information System (INIS)

    Bourcier, W.L.

    1993-11-01

    A chemical model of glass corrosion will be used to predict the rates of release of radionuclides from borosilicate glass waste forms in high-level waste repositories. The model will be used both to calculate the rate of degradation of the glass, and also to predict the effects of chemical interactions between the glass and repository materials such as spent fuel, canister and container materials, backfill, cements, grouts, and others. Coupling between the degradation processes affecting all these materials is expected. Models for borosilicate glass dissolution must account for the processes of (1) kinetically-controlled network dissolution, (2) precipitation of secondary phases, (3) ion exchange, (4) rate-limiting diffusive transport of silica through a hydrous surface reaction layer, and (5) specific glass surface interactions with dissolved cations and anions. Current long-term corrosion models for borosilicate glass employ a rate equation consistent with transition state theory embodied in a geochemical reaction-path modeling program that calculates aqueous phase speciation and mineral precipitation/dissolution. These models are currently under development. Future experimental and modeling work to better quantify the rate-controlling processes and validate these models are necessary before the models can be used in repository performance assessment calculations

  2. Modelling aqueous corrosion of nuclear waste phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Poluektov, Pavel P.; Schmidt, Olga V.; Kascheev, Vladimir A. [Bochvar All-Russian Scientific Research Institute for Inorganic Materials (VNIINM), Moscow (Russian Federation); Ojovan, Michael I., E-mail: m.ojovan@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2017-02-15

    A model is presented on nuclear sodium alumina phosphate (NAP) glass aqueous corrosion accounting for dissolution of radioactive glass and formation of corrosion products surface layer on the glass contacting ground water of a disposal environment. Modelling is used to process available experimental data demonstrating the generic inhibiting role of corrosion products on the NAP glass surface. - Highlights: • The radionuclides yield is determined by the transport from the glass through the surface corrosion layer. • Formation of the surface layer is due to the dissolution of the glass network and the formation of insoluble compounds. • The model proposed accounts for glass dissolution, formation of corrosion layer, specie diffusion and chemical reactions. • Analytical solutions are found for corrosion layer growth rate and glass components component leaching rates.

  3. Glass Durability Modeling, Activated Complex Theory (ACT)

    International Nuclear Information System (INIS)

    CAROL, JANTZEN

    2005-01-01

    The most important requirement for high-level waste glass acceptance for disposal in a geological repository is the chemical durability, expressed as a glass dissolution rate. During the early stages of glass dissolution in near static conditions that represent a repository disposal environment, a gel layer resembling a membrane forms on the glass surface through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer has been found to age into either clay mineral assemblages or zeolite mineral assemblages. The formation of one phase preferentially over the other has been experimentally related to changes in the pH of the leachant and related to the relative amounts of Al +3 and Fe +3 in a glass. The formation of clay mineral assemblages on the leached glass surface layers ,lower pH and Fe +3 rich glasses, causes the dissolution rate to slow to a long-term steady state rate. The formation of zeolite mineral assemblages ,higher pH and Al +3 rich glasses, on leached glass surface layers causes the dissolution rate to increase and return to the initial high forward rate. The return to the forward dissolution rate is undesirable for long-term performance of glass in a disposal environment. An investigation into the role of glass stoichiometry, in terms of the quasi-crystalline mineral species in a glass, has shown that the chemistry and structure in the parent glass appear to control the activated surface complexes that form in the leached layers, and these mineral complexes ,some Fe +3 rich and some Al +3 rich, play a role in whether or not clays or zeolites are the dominant species formed on the leached glass surface. The chemistry and structure, in terms of Q distributions of the parent glass, are well represented by the atomic ratios of the glass forming components. Thus, glass dissolution modeling using simple

  4. Studies on gadolinium precipitation in moderator system of nuclear reactor

    International Nuclear Information System (INIS)

    Joshi, Akhilesh C.; Rajesh, Puspalata; Rufus, A.L.; Velmurugan, S.

    2015-01-01

    Gadolinium is used in the moderator system of many Pressurised Heavy Water Reactors (PHWRs) for start-up, shut-down and reactivity control during operation. It is very much essential to maintain gadolinium concentration in the system as desired. It has been reported that gadolinium gets precipitated in as oxalate in carbonated water under the influence of γ-radiation. Hence, studies were carried out to investigate the effect of dose, presence of other metal ions and metal surfaces on the precipitation of gadolinium. The results showed that the amount of carboxylic acids viz., formic acid and oxalic acid, formed due to radiolysis is dependent on the dose and that the curve passes though a maxima. Gadolinium is added in higher concentration in Advanced Heavy Water Reactor. So, experiments with high concentration of gadolinium were also carried out. Ultra pure water saturated with high purity CO 2 containing gadolinium and desired ion/surface was irradiated with γ-radiation from 60 Co source at 25°C to doses ranging from 2.5-16.6 Mrad. At lower doses, formation of carboxylic acids takes place but as the dose increases, decomposition of these acids starts and hence the concentration Vs dose passes through a maximum. It was found that precipitation of gadolinium as oxalate occurred at lower doses. At higher doses, it was seen that pH of the solution decreases and hence solubility of gadolinium oxalate increases. It was also observed that the amount of gadolinium precipitated varied linearly with the initial concentration of gadolinium varying from 2 ppm to 20 ppm. While for gadolinium concentration from 20 ppm to 400 ppm, gadolinium in particulate form was observed. The amount of carboxylic acids formed depends on the nature of cations present in solution. It was found that the amount of oxalic acid formed in the case of gadolinium was more than that formed in the case of sodium. Presence of metal oxides such as ZrO 2 formed over zircoloy surfaces was found to

  5. Granular packing as model glass formers

    International Nuclear Information System (INIS)

    Wang Yujie

    2017-01-01

    Static granular packings are model hard-sphere glass formers. The nature of glass transition has remained a hotly debated issue. We review recent experimental progresses in using granular materials to study glass transitions. We focus on the growth of glass order with five-fold symmetry in granular packings and relate the findings to both geometric frustration and random first-order phase transition theories. (paper)

  6. Kinetic parameters and TL mechanism in cadmium tetra borate phosphor

    International Nuclear Information System (INIS)

    Annalakshmi, O.; Jose, M.T.; Sridevi, J.; Venkatraman, B.; Amarendra, G.; Mandal, A.B.

    2014-01-01

    Polycrystalline powder samples of cadmium tetra borate were synthesized by a simple solid state sintering technique and gamma irradiated sample showed a simple Thermoluminescence (TL) glow peak around 460 K. The TL kinetic parameters of gamma irradiated phosphor were determined by initial rise (IR), isothermal decay (ID), peak shape (PS), variable heating rate (VHR) and glow curve de-convolution method. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics (b) were calculated by IR, ID, PS and VHR methods are in the order of ∼1.05 eV, 10 9 –10 12 s −1 and 1.58, respectively. From the results of TL and PL emission studies carried out on the phosphor revealed that the defect centers related to TL is different from that for PL. EPR measurements were carried out to identify the defect centers formed in cadmium tetra borate phosphor on gamma irradiation. Based on EPR studies the mechanism for TL process in cadmium tetra borate is proposed in this paper -- Highlights: • Polycrystalline powder samples of undoped cadmium tetra borate synthesized. • Cadmium tetra borate phosphor exhibits a dosimetric peak at 458 K. • Kinetic parameters of the trap responsible for TL evaluated. • TL mechanism is proposed from TL to EPR correlation studies

  7. Kinetic parameters and TL mechanism in cadmium tetra borate phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Annalakshmi, O. [Radiological Safety Division, Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Jose, M.T., E-mail: mtj@igcar.gov.in [Radiological Safety Division, Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Sridevi, J. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai 600 020, Tamilnadhu (India); Venkatraman, B. [Radiological Safety Division, Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Amarendra, G. [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Mandal, A.B. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai 600 020, Tamilnadhu (India)

    2014-03-15

    Polycrystalline powder samples of cadmium tetra borate were synthesized by a simple solid state sintering technique and gamma irradiated sample showed a simple Thermoluminescence (TL) glow peak around 460 K. The TL kinetic parameters of gamma irradiated phosphor were determined by initial rise (IR), isothermal decay (ID), peak shape (PS), variable heating rate (VHR) and glow curve de-convolution method. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics (b) were calculated by IR, ID, PS and VHR methods are in the order of ∼1.05 eV, 10{sup 9}–10{sup 12} s{sup −1} and 1.58, respectively. From the results of TL and PL emission studies carried out on the phosphor revealed that the defect centers related to TL is different from that for PL. EPR measurements were carried out to identify the defect centers formed in cadmium tetra borate phosphor on gamma irradiation. Based on EPR studies the mechanism for TL process in cadmium tetra borate is proposed in this paper -- Highlights: • Polycrystalline powder samples of undoped cadmium tetra borate synthesized. • Cadmium tetra borate phosphor exhibits a dosimetric peak at 458 K. • Kinetic parameters of the trap responsible for TL evaluated. • TL mechanism is proposed from TL to EPR correlation studies.

  8. Comprehension and modelling of chromia-forming alloys corrosion mechanisms in nuclear glasses

    International Nuclear Information System (INIS)

    Schmucker, Eric

    2016-01-01

    Nuclear wastes management consists in the confinement of the radioactive wastes in a glass matrix. This is made by inductive melting in a hot crucible at an operating temperature around 1150 C. These crucibles are constituted of nickel based superalloys with high chromium content. They are submitted to a harsh corrosion by the molten glass, eventually leading to their replacement. The protection of the crucible against corrosion is best provided by the establishment of a protective chromium oxide layer at the surface of the alloy. A binary chromia-forming alloy (Ni-30Cr) is studied in this work. Three different binary and ternary glass compositions are chosen in order to understand the influence of the glass basicity and glass viscosity on the corrosion kinetics. Besides, the de-correlation of the formation and dissolution kinetics of the oxide layer allows the modelling of the overall oxide growth in the molten glass. For that purpose, the oxide formation kinetics in molten glass media is assimilated to the oxidation kinetics of the alloy in gaseous media with oxygen partial pressure that are representative of the redox properties of the glasses. Studies of the oxidation kinetics and of the diffusion mechanisms have shown that the oxidation kinetics is independent on the oxygen pressure in the range of 10"-"1"3 up to 10"-"3 atm O_2 at 1150 C. The present work has shown that the dissolution kinetics of the oxide layer is governed by the diffusion of Cr(III) in the glass melt. This dissolution kinetics has been evaluated from the diffusion coefficient and the solubility limit of Cr(III) in the glass. Finally, the overall growth kinetics of the Cr_2O_3 layer in the glass has been successfully modelled for each glass, thanks to the knowledge of (i) the solubility limit of Cr(III), (ii) its diffusion coefficient in the glasses and (iii) the oxidation kinetics of the alloy. The presented model also allows quantifying the influence of each of these parameters on the

  9. Glass Property Models and Constraints for Estimating the Glass to be Produced at Hanford by Implementing Current Advanced Glass Formulation Efforts

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Dong-Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skorski, Daniel C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Matyas, Josef [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-07-01

    Recent glass formulation and melter testing data have suggested that significant increases in waste loading in HLW and LAW glasses are possible over current system planning estimates. The data (although limited in some cases) were evaluated to determine a set of constraints and models that could be used to estimate the maximum loading of specific waste compositions in glass. It is recommended that these models and constraints be used to estimate the likely HLW and LAW glass volumes that would result if the current glass formulation studies are successfully completed. It is recognized that some of the models are preliminary in nature and will change in the coming years. Plus the models do not currently address the prediction uncertainties that would be needed before they could be used in plant operations. The models and constraints are only meant to give an indication of rough glass volumes and are not intended to be used in plant operation or waste form qualification activities. A current research program is in place to develop the data, models, and uncertainty descriptions for that purpose. A fundamental tenet underlying the research reported in this document is to try to be less conservative than previous studies when developing constraints for estimating the glass to be produced by implementing current advanced glass formulation efforts. The less conservative approach documented herein should allow for the estimate of glass masses that may be realized if the current efforts in advanced glass formulations are completed over the coming years and are as successful as early indications suggest they may be. Because of this approach there is an unquantifiable uncertainty in the ultimate glass volume projections due to model prediction uncertainties that has to be considered along with other system uncertainties such as waste compositions and amounts to be immobilized, split factors between LAW and HLW, etc.

  10. Thermal diffusivity of samarium-gadolinium zirconate solid solutions

    International Nuclear Information System (INIS)

    Pan, W.; Wan, C.L.; Xu, Q.; Wang, J.D.; Qu, Z.X.

    2007-01-01

    We synthesized samarium-gadolinium zirconate solid solutions and determined their thermal diffusivities, Young's moduli and thermal expansion coefficients, which are very important for their application in thermal barrier coatings. Samarium-gadolinium zirconate solid solutions have extremely low thermal diffusivity between 20 and 600 deg. C. The solid solutions have lower Young's moduli and higher thermal expansion coefficients than those of pure samarium and gadolinium zirconates. This combination of characteristics is promising for the application of samarium and gadolinium zirconates in gas turbines. The mechanism of phonon scattering by point defects is discussed

  11. Comparison of a model vapor deposited glass films to equilibrium glass films

    Science.gov (United States)

    Flenner, Elijah; Berthier, Ludovic; Charbonneau, Patrick; Zamponi, Francesco

    Vapor deposition of particles onto a substrate held at around 85% of the glass transition temperature can create glasses with increased density, enthalpy, kinetic stability, and mechanical stability compared to an ordinary glass created by cooling. It is estimated that an ordinary glass would need to age thousands of years to reach the kinetic stability of a vapor deposited glass, and a natural question is how close to the equilibrium is the vapor deposited glass. To understand the process, algorithms akin to vapor deposition are used to create simulated glasses that have a higher kinetic stability than their annealed counterpart, although these glasses may not be well equilibrated either. Here we use novel models optimized for a swap Monte Carlo algorithm in order to create equilibrium glass films and compare their properties with those of glasses obtained from vapor deposition algorithms. This approach allows us to directly assess the non-equilibrium nature of vapor-deposited ultrastable glasses. Simons Collaboration on Cracking the Glass Problem and NSF Grant No. DMR 1608086.

  12. Glass transition and crystallization kinetics of a barium borosilicate glass by a non-isothermal method

    International Nuclear Information System (INIS)

    Lopes, Andreia A. S.; Soares, Roque S.; Lima, Maria M. A.; Monteiro, Regina C. C.

    2014-01-01

    The glass transition and crystallization kinetics of a glass with a molar composition 60BaO-30B 2 O 3 -10SiO 2 were investigated by differential scanning calorimetry (DSC) under non-isothermal conditions. DSC curves exhibited an endothermic peak associated with the glass transition and two partially overlapped exothermic peaks associated with the crystallization of the glass. The dependence of the glass transition temperature (T g ) and of the maximum crystallization temperature (T p ) on the heating rate was used to determine the activation energy associated with the glass transition (E g ), the activation energy for crystallization (E c ), and the Avrami exponent (n). X-ray diffraction (XRD) revealed that barium borate (β-BaB 2 O 4 ) was the first crystalline phase to be formed followed by the formation of barium silicate (Ba 5 Si 8 O 21 ). The variations of activation energy for crystallization and of Avrami exponent with the fraction of crystallization (χ) were also examined. When the crystallization fraction (χ) increased from 0.1 to 0.9, the value of local activation energy (E c (χ)) decreased from 554 to 458 kJ/mol for the first exothermic peak and from 1104 to 831 kJ/mol for the second exothermic peak. The value determined for the Avrami exponent was near 2 indicating a similar one-dimensional crystallization mechanism for both crystalline phases. This was confirmed by the morphological studies performed by scanning electron microscopy (SEM) on glass samples heat-treated at the first and at the second crystallization temperatures

  13. Three-Dimensional Modeling of Glass Lens Molding

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard

    2015-01-01

    The required accuracy for the final dimensions of the molded lenses in wafer-based precision glass molding as well as the need for elimination of costly experimental trial and error calls for numerical simulations. This study deals with 3D thermo-mechanical modeling of the wafer-based precision...... glass lens molding process. First, a comprehensive 3D thermo-mechanical model of glass is implemented into a FORTRAN user subroutine (UMAT) in the FE program ABAQUS, and the developed FE model is validated with both a well-known sandwich seal test and experimental results of precision molding of several...... glass rings. Afterward, 3D thermo-mechanical modeling of the wafer-based glass lens manufacturing is performed to suggest a proper molding program (i.e., the proper set of process parameters including preset force-time and temperature-time histories) for molding a wafer to a desired dimension...

  14. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  15. An empirical modeling tool and glass property database in development of US-DOE radioactive waste glasses

    International Nuclear Information System (INIS)

    Muller, I.; Gan, H.

    1997-01-01

    An integrated glass database has been developed at the Vitreous State Laboratory of Catholic University of America. The major objective of this tool was to support glass formulation using the MAWS approach (Minimum Additives Waste Stabilization). An empirical modeling capability, based on the properties of over 1000 glasses in the database, was also developed to help formulate glasses from waste streams under multiple user-imposed constraints. The use of this modeling capability, the performance of resulting models in predicting properties of waste glasses, and the correlation of simple structural theories to glass properties are the subjects of this paper. (authors)

  16. Evaluation of the gamma radiation shielding parameters of bismuth modified quaternary glass system

    Science.gov (United States)

    Kaur, Parminder; Singh, K. J.; Thakur, Sonika

    2018-05-01

    Glasses modified with heavy metal oxides (HMO) are an interesting area of research in the field of gamma-ray shielding. Bismuth modified lithium-zinc-borate glasses have been studied whereby bismuth oxide is added from 0 to 50 mol%. The gamma ray shielding properties of the glasses were evaluated at photon energy 662 keV with the help of XMuDat computer program by using the Hubbell and Seltzer database. Various gamma ray shielding parameters such as attenuation coefficient, shield thickness in terms of half and tenth value layer, effective atomic number have been studied in this work. A useful comparison of this glass system has been made with standard radiation shielding concretes viz. ordinary, barite and iron concrete. The glass samples containing 20 to 50 mol% bismuth oxide have shown better gamma ray shielding properties and hence have the potential to become good radiation absorbers.

  17. Microwave and optical diagnostics in a gadolinium plasma; Diagnostics hyperfrequence et optique dans un plasma magnetise de gadolinium

    Energy Technology Data Exchange (ETDEWEB)

    Larousse, B. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Procedes d`Enrichissement]|[Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)

    1997-12-31

    The optimization of the separation process of the gadolinium isotopes by Ion Cyclotron Resonance requires a precise knowledge of the physical characteristics of the plasma. Thus, two kinds of diagnostics have been developed: the first one to estimate the microwave power inside the source and the second one to measure the density of atomic and ionic of the gadolinium inside the plasma source and in front of the collector. Microwave diagnostic: A microstrip antenna has been designed and developed in order to characterize the microwave at 36 GHz frequency in the plasma source. The experimental results for different plasma regimes are presented. The measurements inside the plasma source show a maximum of microwave absorption for an argon pressure of 10{sup -4} mb (93% of absorption of the incident wave in the conditions of isotope separation). Laser absorption diagnostic: The theory of laser absorption in presence of a magnetic field is recalled and the first results are presented. In the spectral range between 560 and 620 nm, corresponding to high energy levels of gadolinium, no signal is obtained so that the density is below the detection limit 10{sup 10} cm{sup -3}. In the spectral range between 380 and 400 nm, two lines are observed, issue from the fundamental and metastable (633 cm{sup -1}) levels. The density of metastable level of gadolinium ions is about 10{sup 10} cm{sup -3} with a relative precision of 15 % and its variation is studied as a function of argon pressure, at different sections of the plasma column (source, collector). The achieved set of measurements has been performed in order to check the theoretical models. (author) 32 refs.

  18. Study on cementation of simulated radioactive borated liquid wastes

    International Nuclear Information System (INIS)

    Sun Qina; Li Junfeng; Wang Jianlong

    2010-01-01

    To compare sulfoaluminate cement with ordinary Portland cement on their cementation of radioactive borated liquid waste and to provide more data for formula optimization, simulated radioactive borated liquid waste were solidified by the two cements. 28 d compressive strength and strength losses after water/freezing/irradiation resistance tests were investigated. Leaching test and X-ray diffraction analysis were also conducted. The results show that it is feasible to solidify borated liquid wastes with sulfoaluminate cement and ordinary Portland cement with formulas used in the study. The 28 d compressive strengths, strength losses after tests and simulated nuclides leaching rates of the solidified waste forms meet the demand of GB 14569.1-93. The sulfoaluminate cement formula show better retention of Cs + than ordinary Portland cement formula. Boron, in form of B (OH) 4 - , incorporate in ettringite as solid solutions. (authors)

  19. Mg- and K-bearing borates and associated evaporites at Eagle Borax spring, Death Valley, California: A spectroscopic exploration

    Science.gov (United States)

    Crowley, J.K.

    1996-01-01

    Efflorescent crusts at the Eagle Borax spring in Death Valley, California, contain an array of rare Mg and K borate minerals, several of which are only known from one or two other localities. The Mg- and/or K-bearing borates include aristarainite, hydroboracite, kaliborite, mcallisterite, pinnoite, rivadavite, and santite. Ulexite and probertite also occur in the area, although their distribution is different from that of the Mg and K borates. Other evaporite minerals in the spring vicinity include halite, thenardite, eugsterite, gypsum-anhydrite, hexahydrite, and bloedite. Whereas the first five of these minerals are found throughout Death Valley, the last two Mg sulfates are more restricted in occurrence and are indicative of Mg-enriched ground water. Mineral associations observed at the Eagle Borax spring, and at many other borate deposits worldwide, can be explained by the chemical fractionation of borate-precipitating waters during the course of evaporative concentration. The Mg sulfate and Mg borate minerals in the Eagle Borax efflorescent crusts point to the fractionation of Ca by the operation of a chemical divide involving Ca carbonate and Na-Ca borate precipitation in the subsurface sediments. At many other borate mining localities, the occurrence of ulexite in both Na borate (borax-kernite) and Ca borate (ulexite-colemanite) deposits similarly reflects ulexite's coprecipitation with Ca carbonate at an early concentration stage. Such ulexite may perhaps be converted to colemanite by later reaction with the coexisting Ca carbonate - the latter providing the additional Ca2+ ions needed for the conversion. Mg and Ca-Mg borates are the expected late-stage concentration products of waters forming ulexite-colemanite deposits and are therefore most likely to occur in the marginal zones or nearby mud facies of ulexite-colemanite orebodies. Under some circumstances, Mg and Ca-Mg borates might provide a useful prospecting guide for ulexite-colemanite deposits

  20. Evaluation of models of waste glass durability

    International Nuclear Information System (INIS)

    Ellison, A.

    1995-01-01

    The main variable under the control of the waste glass producer is the composition of the glass; thus a need exists to establish functional relationships between the composition of a waste glass and measures of processability, product consistency, and durability. Many years of research show that the structure and properties of a glass depend on its composition, so it seems reasonable to assume that there also is relationship between the composition of a waste glass and its resistance to attack by an aqueous solution. Several models have been developed to describe this dependence, and an evaluation their predictive capabilities is the subject of this paper. The objective is to determine whether any of these models describe the ''correct'' functional relationship between composition and corrosion rate. A more thorough treatment of the relationships between glass composition and durability has been presented elsewhere, and the reader is encouraged to consult it for a more detailed discussion. The models examined in this study are the free energy of hydration model, developed at the Savannah River Laboratory, the structural bond strength model, developed at the Vitreous State Laboratory at the Catholic University of America, and the Composition Variation Study, developed at Pacific Northwest Laboratory

  1. A structural bond strength model for glass durability

    International Nuclear Information System (INIS)

    Feng, Xiangdong; Metzger, T.B.

    1996-01-01

    A glass durability model, structural bond strength (SBS) model was developed to correlate glass durability with its composition. This model assumes that the strengths of the bonds between cations and oxygens and the structural roles of the individual elements in the glass arc the predominant factors controlling the composition dependence of the chemical durability of glasses. The structural roles of oxides in glass are classified as network formers, network breakers, and intermediates. The structural roles of the oxides depend upon glass composition and the redox state of oxides. Al 2 O 3 , ZrO 2 , Fe 2 O 3 , and B 2 O 3 are assigned as network formers only when there are sufficient alkalis to bind with these oxides. CaO can also improve durability by sharing non-bridging oxygen with alkalis, relieving SiO 2 from alkalis. The percolation phenomenon in glass is also taken into account. The SBS model is applied to correlate the 7-day product consistency test durability of 42 low-level waste glasses with their composition with an R 2 of 0.87, which is better than 0.81 obtained with an eight-coefficient empirical first-order mixture model on the same data set

  2. X-ray irradiation induced reduction and nanoclustering of lead in borosilicate glass

    NARCIS (Netherlands)

    Stanley, H.B.; Banerjee, D.; Breemen, van L.C.A.; Ciston, J.; Liebscher, C.H.; Martis, V.; Merino, D.H.; Longo, A.; Pattison, P.; Peters, G.W.M.; Portale, G.; Sen, Sabyasachi; Bras, W.

    2014-01-01

    We have studied the formation of nanoparticles in lead sulfide (PbS)-doped borosilicate glass subjected to a two-step nucleation and growth heat treatment using in situ small-angle X-ray scattering (SAXS). The microstructure produced was subsequently characterized using X-ray powder diffraction

  3. Clinical application of gadolinium-enhanced three-dimensional pulmonary MR angiography

    International Nuclear Information System (INIS)

    Takano, Katsuyuki

    1999-01-01

    Twenty-nine patients with suspected pulmonary lesions, and three normal volunteers, underwent gadolinium-enhanced three-dimensional (3D) pulmonary MR angiography (MRA). The MRA were obtained during intravenous administration of gadolinium-based contrast material, in a single breath-hold. Conspicuity of the normal pulmonary segmental arteries was estimated on the MRA. Abnormal findings such as ''vascular involvement'', ''abnormal connection'', stenosis'', or ''dilatation'' on the MRA were compared with those on conventional angiography or CT. Normal pulmonary segmental arteries, except for A 4,5,6,8and9 of the left pulmonary artery, could be clearly visualized. Blind reading of four different findings lead to characteristic findings for each pulmonary disease that can be aid in their differential diagnoses. This technique shows promise as a noninvasive diagnosis of lung diseases. (author)

  4. An interaction of the functionalized closo-borates with albumins: The protein fluorescence quenching and calorimetry study

    International Nuclear Information System (INIS)

    Losytskyy, Mykhaylo Yu.; Kovalska, Vladyslava B.; Varzatskii, Oleg A.; Kuperman, Marina V.; Potocki, Slawomir; Gumienna-Kontecka, Elzbieta; Zhdanov, Andrey P.; Yarmoluk, Sergiy M.; Voloshin, Yan Z.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolai T.; Elskaya, Anna V.

    2016-01-01

    An interaction of the boron clusters closo-borates K 2 [B 10 H 10 ], K 2 [B 12 H 12 ] and their functionalized derivatives with serum proteins human (HSA) and bovine (BSA) albumins and immonoglobulin IgG as well as globular proteins β-lactoglobulin and lysozyme was characterized. The steady state and time resolved protein fluorescence quenching studies point on the binding of the closo-borate arylamine derivatives to serum albumins and discrimination of other proteins. The mechanism of the albumin fluorescence quenching by the closo-borate arylamine derivatives was proposed. The complex formation between albumin and the closo-borate molecules has been confirmed by isothermal titration calorimetry (ITC). The compound (K 2 [B 10 H 10 ]) and its arylamine derivative both interact with HSA, have close values of K a (1.4 and 1.2×10 3 M −1 respectively) and Gibbs energy (−17.9 and −17.5 kJ/mol respectively). However, the arylamine derivative forms complex with the higher guest/host binding ratio (4:1) comparing to the parent closo-borate (2:1). - Highlights: • Complex formation between boron clusters closo-borates and albumins was confirmed. • Functional substituent of closo-borate strongly affects its complex with albumins. • Binding of arylamine closo-borates essentially quench the albumin fluorescence. • Mechanism of tryptophan emission quenching by arylamine closo-borates was proposed.

  5. Effective binding of perhalogenated closo-borates to serum albumins revealed by spectroscopic and ITC studies

    Science.gov (United States)

    Kuperman, Marina V.; Losytskyy, Mykhaylo Yu.; Bykov, Alexander Yu.; Yarmoluk, Sergiy M.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolay T.; Varzatskii, Oleg A.; Gumienna-Kontecka, Elzbieta; Kovalska, Vladyslava B.

    2017-08-01

    The interactions of boron cluster compounds closo-borates with biomolecules are widely studied due to their efficiency as agents for boron neutron capture therapy of cancer. In present work the binding abilities of anionic halogen closo-borates [B10Hal10]2- (Hal = Cl, Br, I) and [B12Hal12]2- (Hal = Cl, I) towards bovine and human serum albumins were investigated by spectroscopic and isothermal titration calorimetry (ITC) methods. The protein fluorescence quenching method and ITC studies confirmed the complex formation. The degree of protein fluorescence quenching increased from chlorine to iodine boron derivatives that is attributed to external heavy atom effect. The ITC data point on the existence in the protein structure of two types of binding sites: with higher and lower affinity to closo-borates. Albumin-closo-borate complex binding ratio, n (4-5 anions per protein molecule) is higher than for the parent hydrogen closo-borates (2 anions per protein molecule). Binding constants estimated by fluorescent and ITC methods indicate higher affinity of halogen closo-borates to albumins (K in the range of 104-106 M-1) comparing to that of the hydrogen closo-borate (K about 103 M-1). Due to their high affinity and high binding ratio to albumins halogen closo-borates are proposed for further studies as agents for boron neutron capture therapy.

  6. A lattice-gas model of the ion current across the solid interface: fast-ion conductor - intercalate

    International Nuclear Information System (INIS)

    Nachev, I.; Balkanski, M.

    1994-12-01

    The transport of Lithium ions across the material interface: fast-ion conducting glass - intercalate is simulated by a non-trivial lattice-gas model. The model takes explicitly into account the influence of the Coulomb correlations, the site-blocking effect and the boundary conditions on the ion kinetics. Potential device applications of the model are pointed out by computing the current density of Lithium ions for material parameters of the real interface: doped ternary borate glass - Indium Selenide, which constitute the electrolyte and the cathode, respectively, of a thin-film microbattery with improved performance. (author). 10 refs, 4 figs

  7. Outlooks for mathematical modelling of the glass melting process

    Energy Technology Data Exchange (ETDEWEB)

    Waal, H. de [TNO Institute of Applied Physics, Delft (Netherlands)

    1997-12-31

    Mathematical modelling is nowadays a standard tool for major producers of float glass, T.V. glass and fiberglass. Also for container glass furnaces, glass tank modelling proves to be a valuable method to optimize process conditions. Mathematical modelling is no longer just a way to visualize the flow patterns and to provide data on heat transfer. It can also predict glass quality in relation to process parameters, because all chemical and physical phenomena are included in the latest generation of models, based on experimental and theoretical research on these phenomena.

  8. Evaluation of stress-corrosion cracking of sensitized 304SS in low-temperature borated water

    International Nuclear Information System (INIS)

    Jones, R.H.; Johnson, A.B. Jr.; Bruemmer, S.M.

    1981-05-01

    Intergranular stress corrosion cracking has been observed in constant extension rate tests, CERT and constant load tests of 304SS tested at 32 0 C in borated water plus 15 ppM C1 - . Evidence of IGSCC was obtained in CERT tests of welded pipe samples only when the original inner diameter surface was intact and with 15 ppM C1 - added to the borated water while IGSCC occurred in a furnace sensitized pipe sample after 500 h at a constant stress of 340 MPa in borated water containing 15 ppM C1 - . These results indicate that surface features associated with weld preparation grinding contributed to the susceptibility of sensitized 304SS to IGSCC in low temperature borated water; however, the constant load test indicates that such surface defects are not necessary for IGSCC in low temperature borated water

  9. Indentation Behavior of Permanently Densified Oxide Glasses

    DEFF Research Database (Denmark)

    Bechgaard, Tobias Kjær; Januchta, Kacper; Kapoor, Saurabh

    -induced changes in density, structure, and indentation behavior of a range of oxide glasses, including silicates, borates, and phosphates. The effect of compression on the structure is analyzed through both Raman and NMR spectroscopy, while the mechanical properties are investigated using Vickers micro......Hot isostatic compression can be used as a post treatment method to tune the properties of glass materials as well as to obtain improved understanding of the pressure-induced structural changes and densification mechanisms, e.g., during sharp contact loading. Here, we review the pressure......-indentation. The magnitude of the changes in all macroscopic properties (e.g., density, hardness, and crack resistance) is found to correlate well with the magnitude and type of structural change induced by hot compression. We show that the structural changes depend largely on the type of network former, the coordination...

  10. Optical and EPR studies of barium alumino borate glasses containing Cu2+ ions

    Science.gov (United States)

    Ahmed, Mohamad Raheem; Phani, A. V. Lalitha; Narsimha Chary, M.; Shareefuddin, Md.

    2018-05-01

    Glass containing Cu2+ ions in (30-x) BaO-xAl2O3-69.5B2O3-0.5CuO (0 ≤ x ≤ 15 mol %) were prepared by the conventional melt quenching technique. Peak free X-ray diffractograms confirmed the amorphous nature of the glass samples. Spectroscopic studies such as optical absorption, EPR were studied to understand the effect of modifier oxide and CuO dopant. From EPR spectra the spin-Hamiltonian parameter were evaluated. The ground state of Cu2+ is dx2-y2 (2B1g state) and the site symmetry around Cu2+ is tetragonally distorted octahedral. A broad optical absorption band was observed for all the glasses containing Cu2+ ions corresponding to the 2B1g → 2B2g transition. The optical band gap and Urbach energy values are calculated.

  11. Optical properties of zinc lead tellurite glasses

    Directory of Open Access Journals (Sweden)

    Salah Hassan Alazoumi

    2018-06-01

    Full Text Available Tellurite glass systems in the form of [ZnO]x [(TeO20.7-(PbO0.3]1-x with x = 0.15, 0.17, 0.20, 0.22 and 0.25 mol% were prepared using the melt quenching technique. XRD of the prepared samples have been measured for all samples. Both FTIR (280–4000 cm−1 and UV-Vis (200–800 nm spectra have been measured. Optical band gap and refractive index were calculated for every glass sample. Density of glass, molar volume and oxygen packing density (OPD were obtained. Values of the direct, indirect band gap ranged were found in the range 3.41–3.94 eV and 2.40–2.63 eV with increasing of ZnO concentration. Refractive index 2.58 and dielectric constant 6.66 were heigh at 17 ZnO mol% concentration. Molar polarizability, metallization criterion, polaron radius have been calculated for every glass composition. Keywords: Tellurite, Glass, Optical band gap, Refractive index

  12. Optical and Physical Investigations of Lanthanum Bismuth Borate glasses doped with Ho2O3

    Science.gov (United States)

    Ramesh, P.; Jagannath, G.; Eraiah, B.; Kokila, M. K.

    2018-02-01

    Holmium doped 10La2O3-15Bi2O3-(75-x) B2O3 (Ho3+: LBB) glasses have been prepared by melt quench technique and the impact of holmium ions concentration on optical and physical properties of present glasses have been examined. Ho3+ dependent density, molar volume, refractive index, rare earth ion concentration, polaron radius, inter ionic distance, field strength and energy band gap are calculated and tabulated. Amorphous nature of the all glasses has been confirmed by XRD patterns. The room temperature (RT) Uv-Vis absorption spectrum doped with 1 mol% of Ho2O3 exhibit eight prominent bands centred at 895, 641, 537, 486, 472, 467, 451 and 416 due to transition between ground state to various excited states. The results show that, the density is increases and molar volume of the glasses is decreases with an increase in Ho2O3 concentration and consequently generate more non-bridging oxygen (NBOs) in the glass matrix. The Urbach energy is increases with holmium concentration which exemplifies the degree of disorder present in the LBB glasses. The considerable increase in field strength observed in present glasses is attributed to occurrence of strong bridge between Ho3+ and B- ions and this strong bridge is possibly due to the displacement between Ho3+ and oxygen atoms which are generated from the conversion BO3-BO4 units.

  13. Lipophilic polyelectrolyte gel derived from phosphonium borate can absorb a wide range of organic solvents.

    Science.gov (United States)

    Sunaga, Sokuro; Kokado, Kenta; Sada, Kazuki

    2018-01-24

    Herein, we demonstrate a polyelectrolyte gel which can absorb a wide range of organic solvents from dimethylsulfoxide (DMSO, permittivity: ε = 47.0) to tetrahydrofuran (ε = 5.6). The gel consists of polystyrene chains with small amounts (∼5 mol%) of lipophilic electrolytes derived from triphenylphosphonium tetraaryl borate. The swelling ability of the polyelectrolyte gel was higher than that of the alkyl ammonium tetraaryl borate previously reported by us, and this is attributed to the higher compatibility with organic solvents, as well as the higher dissociating ability, of the triphenyl phosphonium salt. The role of the ionic moieties was additionally confirmed by post modification of the polyelectrolyte gel via a conventional Wittig reaction, resulting in a nonionic gel. Our findings introduced here will lead to a clear-cut molecular design for polyelectrolyte gels which absorb all solvents.

  14. Ongoing Model Development Analyzing Glass Fracture

    DEFF Research Database (Denmark)

    Molnar, G.; Bojtar, I.; Nielsen, Jens Henrik

    2013-01-01

    Present subject deals with an ongoing experimental and numerical analysis of inplane loaded glass plates. The main goal of the investigation is to develop a hybrid – discrete and finite element – model which could follow the fracture process in annealed and in tempered glass. Measurements of the ...... an overview of the structure of the research and a summary of current status archived so far.......Present subject deals with an ongoing experimental and numerical analysis of inplane loaded glass plates. The main goal of the investigation is to develop a hybrid – discrete and finite element – model which could follow the fracture process in annealed and in tempered glass. Measurements...... of the residual stress state before failure and high-speed camera recordings of the failure are being performed in order to verify the numerical model. The primary goal of this research is to follow the overall fracture of a structural element – e.g. beam – loaded inplane. Present paper would like to give...

  15. Glass and vitrification

    International Nuclear Information System (INIS)

    Barton, J.L.; Vacher, R.; Moncouyoux, J.P.; Vernaz, E.

    1997-01-01

    Most glasses used as materials are oxides glasses that are produced by a quick quench of a liquid. Glasses are characterized by the absence of periodicity in the atomic arrangements, they do not have symmetries and do not present order over a long distance. This series of 4 short articles present: 1) the properties of glass and its industrial story, 2) the glass structure, 3) a forty years long story of glass as dies used to confine wastes and 4) the methodology used to study the behaviour of glass over very long periods of time. This methodology is based on 5 steps: 1) define and specify the material to study (the prediction of long term alteration of a material is nonsense unless you know well its initial properties), 2) identify all the alteration processes that are likely to happen, determine their kinetics and the influence of environmental parameters, 3) develop mathematical models in order to simulate long-term behaviour of glasses, 4) determine the release rates of the radionuclides confined in the glass, and 5) validate data and models, it is not possible to expect a complete validation of a model that will be extrapolated over tens of thousands of years, nevertheless some ways of validation can lead to a satisfactory level of confidence taking into account reasonable uncertainties. (A.C.)

  16. Gadolinium atom on neutron capture therapy

    International Nuclear Information System (INIS)

    Oda, Y.; Takagaki, M.; Miyatake, S.; Kikuchi, H.

    1994-01-01

    This report describes our measurements of gadolinium concentrations in several brain tumors obtained from fresh surgical specimens, as compared with corresponding concentrations in the blood. Moreover we tried to find out if the gadolinium concentration is high enough to use this compound in the treatment of brain tumors by neutron capture therapy. (J.P.N.)

  17. An interaction of the functionalized closo-borates with albumins: The protein fluorescence quenching and calorimetry study

    Energy Technology Data Exchange (ETDEWEB)

    Losytskyy, Mykhaylo Yu., E-mail: mlosytskyy@gmail.com [Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo Street, 03143 Kyiv (Ukraine); Kovalska, Vladyslava B. [Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo Street, 03143 Kyiv (Ukraine); Varzatskii, Oleg A. [V. I. Vernadsky Institute of General and Inorganic Chemistry, 32/34 Palladin Avenue, 03080 Kyiv (Ukraine); Kuperman, Marina V. [Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo Street, 03143 Kyiv (Ukraine); Potocki, Slawomir; Gumienna-Kontecka, Elzbieta [Faculty of Chemistry, Wroclaw University, 14F. Joliot-Curie Street, 50-383 Wroclaw (Poland); Zhdanov, Andrey P. [Kurnakov Institute of General and Inorganic Chemistry, 31 Leninskii Avenue, 119991 Moscow (Russian Federation); Yarmoluk, Sergiy M. [Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo Street, 03143 Kyiv (Ukraine); Voloshin, Yan Z. [Nesmeyanov Institute of Organoelement Compounds, 28 Vavilova Street, 119991 Moscow (Russian Federation); Zhizhin, Konstantin Yu.; Kuznetsov, Nikolai T. [Kurnakov Institute of General and Inorganic Chemistry, 31 Leninskii Avenue, 119991 Moscow (Russian Federation); Elskaya, Anna V. [Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo Street, 03143 Kyiv (Ukraine)

    2016-01-15

    An interaction of the boron clusters closo-borates K{sub 2}[B{sub 10}H{sub 10}], K{sub 2}[B{sub 12}H{sub 12}] and their functionalized derivatives with serum proteins human (HSA) and bovine (BSA) albumins and immonoglobulin IgG as well as globular proteins β-lactoglobulin and lysozyme was characterized. The steady state and time resolved protein fluorescence quenching studies point on the binding of the closo-borate arylamine derivatives to serum albumins and discrimination of other proteins. The mechanism of the albumin fluorescence quenching by the closo-borate arylamine derivatives was proposed. The complex formation between albumin and the closo-borate molecules has been confirmed by isothermal titration calorimetry (ITC). The compound (K{sub 2}[B{sub 10}H{sub 10}]) and its arylamine derivative both interact with HSA, have close values of K{sub a} (1.4 and 1.2×10{sup 3} M{sup −1} respectively) and Gibbs energy (−17.9 and −17.5 kJ/mol respectively). However, the arylamine derivative forms complex with the higher guest/host binding ratio (4:1) comparing to the parent closo-borate (2:1). - Highlights: • Complex formation between boron clusters closo-borates and albumins was confirmed. • Functional substituent of closo-borate strongly affects its complex with albumins. • Binding of arylamine closo-borates essentially quench the albumin fluorescence. • Mechanism of tryptophan emission quenching by arylamine closo-borates was proposed.

  18. Magnesium borate radiothermoluminescent detectors

    International Nuclear Information System (INIS)

    Kazanskaya, V.A.; Kuzmin, V.V.; Minaeva, E.E.; Sokolov, A.D.

    1974-01-01

    In the report the technology of obtaining polycrystalline magnesium borate activated by dysprosium is described briefly and the method of preparing the tabletted detectors from it is presented. The dependence of the light sum of the samples on the proportion of the components and on the sintering regime has shown that the most sensitive material is obtained at the proportion of boric anhydride and magnesium oxide 2.2-2.4 and at the dysprosium concentration about 1 milligram-atom per gram molecule of the base. The glow curve of such a material has a simple form with one peak the maximum of which is located at 190-200 0 C. The measurement of the main dosimetric characteristics of the magnesium borate tabletted detectors and the comparison with similar parmaeters of the lithium fluoride tabletted detectors have shown that at practically identical effective number the former detectors have the following substantial advantages: the sensitivity is ten-twenty times as large, they are substantially more technological on synthesis of the radiothermoluminophor and during the production of the tabletted detectors, they have a simple glow curve, they do not require the utilization of the thermocycling during the use. (author)

  19. EPR and impedance spectroscopic investigations on lithium bismuth borate glasses containing nickel and vanadium ions

    Science.gov (United States)

    Yadav, Arti; Khasa, Satish; Hooda, Ashima; Dahiya, Manjeet S.; Agarwal, Ashish; Chand, Prem

    2016-03-01

    Glasses having composition 7NiO • 23Li2O • 20Bi2O3 • 50B2O3, 7V2O5 • 23Li2O • 20Bi2O3 • 50B2O3 and x(2NiO • V2O5) • (30 - x)Li2O • 50B2O3 • 20Bi2O3 (with x = 0, 2, 5, 7 & 10 mol%) prepared through melt-quench route are explored by analyzing density, impedance spectroscopy and electron paramagnetic resonance (EPR). It is found that both density and molar volume increase with an increase in substitution of 2NiO • V2O5 in the base glass matrix. Different dielectric parameters viz. dielectric loss (ε), electrical modulus (M), loss tangent (tanδ) etc. are evaluated and their variations with frequency and temperature are analyzed which reveals that these glasses exhibit a non-Debye relaxation behavior. A phenomenal description of the capacitive behavior is obtained by considering the circuitry as a parallel combination of bulk resistance (Rb) and constant phase element (CPE). The conduction mechanism is found to follow Quantum Mechanical Tunneling (QMT) model. Spin Hamiltonian Parameters (SHPs) and covalency rates are calculated from the EPR spectra of vanadyl ion. The observed EPR spectra confirmed that V4 + ion exists as vanadyl ion in the octahedral coordination with tetragonal compression.

  20. Present status of PIK gadolinium control

    International Nuclear Information System (INIS)

    Petrov, Yu.V.; Garusov, E.A.; Shustov, V.A.

    1994-01-01

    A liquid control element (LCE) containing a water solution of gadolinium nitrate Gd(NO 3 ) 3 was originally planned for use at the PIK reactor for partial compensation of poisoning and fuel burnup [1-3]. However, a further analysis has shown that quick forcing-out, boiling up or flowing-out of the absorbing solution (though of low probability) can lead to the dangerous prompt overcriticality of the reactor. The results of the analysis are presented as well as the upper limit of the reactivity, quick insertion of which still is safe for the reactor (J.P.N.)

  1. Development of tellurium oxide and lead-bismuth oxide glasses for mid-wave infra-red transmission optics

    Science.gov (United States)

    Zhou, Beiming; Rapp, Charles F.; Driver, John K.; Myers, Michael J.; Myers, John D.; Goldstein, Jonathan; Utano, Rich; Gupta, Shantanu

    2013-03-01

    Heavy metal oxide glasses exhibiting high transmission in the Mid-Wave Infra-Red (MWIR) spectrum are often difficult to manufacture in large sizes with optimized physical and optical properties. In this work, we researched and developed improved tellurium-zinc-barium and lead-bismuth-gallium heavy metal oxide glasses for use in the manufacture of fiber optics, optical components and laser gain materials. Two glass families were investigated, one based upon tellurium and another based on lead-bismuth. Glass compositions were optimized for stability and high transmission in the MWIR. Targeted glass specifications included low hydroxyl concentration, extended MWIR transmission window, and high resistance against devitrification upon heating. Work included the processing of high purity raw materials, melting under controlled dry Redox balanced atmosphere, finning, casting and annealing. Batch melts as large as 4 kilograms were sprue cast into aluminum and stainless steel molds or temperature controlled bronze tube with mechanical bait. Small (100g) test melts were typically processed in-situ in a 5%Au°/95%Pt° crucible. Our group manufactured and evaluated over 100 different experimental heavy metal glass compositions during a two year period. A wide range of glass melting, fining, casting techniques and experimental protocols were employed. MWIR glass applications include remote sensing, directional infrared counter measures, detection of explosives and chemical warfare agents, laser detection tracking and ranging, range gated imaging and spectroscopy. Enhanced long range mid-infrared sensor performance is optimized when operating in the atmospheric windows from ~ 2.0 to 2.4μm, ~ 3.5 to 4.3μm and ~ 4.5 to 5.0μm.

  2. Barium and calcium borate glasses as shielding materials for x rays and gamma rays

    DEFF Research Database (Denmark)

    Singh, H.; Singh, K.; Sharma, G.

    2003-01-01

    Values of the gamma-ray, mass attenuation coefficient and the effective atomic number have been determined experimentally for xBaO.(1-x) B2O3 (x=0.24, 0.30, 0.34,0.40 and 0.44) and xCaO. (I-x)B2O3 (x=0.30 and 0.40) glasses at photon energies 356, 511, 662, 1173, and 1332 keV It is pointed out tha...... that these glasses are potential radiation shielding materials. The specific volume of the glasses has been derived from density measurements and studied as a function of composition.......Values of the gamma-ray, mass attenuation coefficient and the effective atomic number have been determined experimentally for xBaO.(1-x) B2O3 (x=0.24, 0.30, 0.34,0.40 and 0.44) and xCaO. (I-x)B2O3 (x=0.30 and 0.40) glasses at photon energies 356, 511, 662, 1173, and 1332 keV It is pointed out...

  3. Unusual stoichiometry control in the atomic layer deposition of manganese borate films from manganese bis(tris(pyrazolyl)borate) and ozone

    International Nuclear Information System (INIS)

    Klesko, Joseph P.; Bellow, James A.; Saly, Mark J.; Winter, Charles H.; Julin, Jaakko; Sajavaara, Timo

    2016-01-01

    The atomic layer deposition (ALD) of films with the approximate compositions Mn 3 (BO 3 ) 2 and CoB 2 O 4 is described using MnTp 2 or CoTp 2 [Tp = tris(pyrazolyl)borate] with ozone. The solid state decomposition temperatures of MnTp 2 and CoTp 2 are ∼370 and ∼340 °C, respectively. Preparative-scale sublimations of MnTp 2 and CoTp 2 at 210 °C/0.05 Torr afforded >99% recoveries with <0.1% nonvolatile residues. Self-limited ALD growth was demonstrated at 325 °C for MnTp 2 or CoTp 2 with ozone as the coreactant. The growth rate for the manganese borate process was 0.19 Å/cycle within the ALD window of 300–350 °C. The growth rate for the cobalt borate process was 0.39–0.42 Å/cycle at 325 °C. X-ray diffraction of the as-deposited films indicated that they were amorphous. Atomic force microscopy of 35–36 nm thick manganese borate films grown within the 300–350 °C ALD window showed root mean square surface roughnesses of 0.4–0.6 nm. Film stoichiometries were assessed by x-ray photoelectron spectroscopy and time of flight-elastic recoil detection analysis. The differing film stoichiometries obtained from the very similar precursors MnTp 2 and CoTp 2 are proposed to arise from the oxidizing ability of the intermediate high valent manganese oxide layers and lack thereof for cobalt.

  4. Modelling of the glass fiber length and the glass fiber length distribution in the compounding of short glass fiber-reinforced thermoplastics

    Science.gov (United States)

    Kloke, P.; Herken, T.; Schöppner, V.; Rudloff, J.; Kretschmer, K.; Heidemeyer, P.; Bastian, M.; Walther, Dridger, A.

    2014-05-01

    The use of short glass fiber-reinforced thermoplastics for the production of highly stressed parts in the plastics processing industry has experienced an enormous boom in the last few years. The reasons for this are primarily the improvements to the stiffness and strength properties brought about by fiber reinforcement. These positive characteristics of glass fiber-reinforced polymers are governed predominantly by the mean glass fiber length and the glass fiber length distribution. It is not enough to describe the properties of a plastics component solely as a function of the mean glass fiber length [1]. For this reason, a mathematical-physical model has been developed for describing the glass fiber length distribution in compounding. With this model, it is possible on the one hand to optimize processes for the production of short glass fiber-reinforced thermoplastics, and, on the other, to obtain information on the final distribution, on the basis of which much more detailed statements can be made about the subsequent properties of the molded part. Based on experimental tests, it was shown that this model is able to accurately describe the change in glass fiber length distribution in compounding.

  5. Spectroscopic and thermal properties of Sm3+ doped iron lead bismuthate glasses

    Science.gov (United States)

    Narwal, P.; Yadav, A.; Dahiya, M. S.; Vishal, Rohit, Agarwal, A.; Khasa, S.

    2018-05-01

    The results of the structural, physical, thermal and electrical properties of the glass compositions xFe2O3•(100-x)(3Bi2O3•PbO)• Sm2O3(1 mol%) where x=0, 1, 5, 10, 12, 15 mol% prepared via melt quench technique were studied. The synthesized compositions were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and differential thermal analysis (DTA). The IR study reveals that present system is build up with lead in tetrahedral coordination and bismuth in trigonal as well as octahedral coordination. Density and molar volume have been calculated using Archimedes principle, and the variation in their values has been correlated with structural changes in the glass matrix based on the IR study. The variation in the characteristic temperatures (glass transition temperature Tg, crystallization temperature Tp and melting temperature Tm) with different heating rate and change in the composition of iron oxide were analyzed and reported in the present study.

  6. Water leaching of borosilicate glasses: experiments, modeling and Monte Carlo simulations

    International Nuclear Information System (INIS)

    Ledieu, A.

    2004-10-01

    This work is concerned with the corrosion of borosilicate glasses with variable oxide contents. The originality of this study is the complementary use of experiments and numerical simulations. This study is expected to contribute to a better understanding of the corrosion of nuclear waste confinement glasses. First, the corrosion of glasses containing only silicon, boron and sodium oxides has been studied. The kinetics of leaching show that the rate of leaching and the final degree of corrosion sharply depend on the boron content through a percolation mechanism. For some glass contents and some conditions of leaching, the layer which appears at the glass surface stops the release of soluble species (boron and sodium). This altered layer (also called the gel layer) has been characterized with nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. Second, additional elements have been included in the glass composition. It appears that calcium, zirconium or aluminum oxides strongly modify the final degree of corrosion so that the percolation properties of the boron sub-network is no more a sufficient explanation to account for the behavior of these glasses. Meanwhile, we have developed a theoretical model, based on the dissolution and the reprecipitation of the silicon. Kinetic Monte Carlo simulations have been used in order to test several concepts such as the boron percolation, the local reactivity of weakly soluble elements and the restructuring of the gel layer. This model has been fully validated by comparison with the results on the three oxide glasses. Then, it has been used as a comprehensive tool to investigate the paradoxical behavior of the aluminum and zirconium glasses: although these elements slow down the corrosion kinetics, they lead to a deeper final degree of corrosion. The main contribution of this work is that the final degree of corrosion of borosilicate glasses results from the competition of two opposite mechanisms

  7. Aqueous corrosion of borosilicate glasses: experiments, modeling and Monte-Carlo simulations

    International Nuclear Information System (INIS)

    Ledieu, A.

    2004-10-01

    This work is concerned with the corrosion of borosilicate glasses with variable oxide contents. The originality of this study is the complementary use of experiments and numerical simulations. This study is expected to contribute to a better understanding of the corrosion of nuclear waste confinement glasses. First, the corrosion of glasses containing only silicon, boron and sodium oxides has been studied. The kinetics of leaching show that the rate of leaching and the final degree of corrosion sharply depend on the boron content through a percolation mechanism. For some glass contents and some conditions of leaching, the layer which appears at the glass surface stops the release of soluble species (boron and sodium). This altered layer (also called the gel layer) has been characterized with nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. Second, additional elements have been included in the glass composition. It appears that calcium, zirconium or aluminum oxides strongly modify the final degree of corrosion so that the percolation properties of the boron sub-network is no more a sufficient explanation to account for the behavior of these glasses. Meanwhile, we have developed a theoretical model, based on the dissolution and the reprecipitation of the silicon. Kinetic Monte Carlo simulations have been used in order to test several concepts such as the boron percolation, the local reactivity of weakly soluble elements and the restructuring of the gel layer. This model has been fully validated by comparison with the results on the three oxide glasses. Then, it has been used as a comprehensive tool to investigate the paradoxical behavior of the aluminum and zirconium glasses: although these elements slow down the corrosion kinetics, they lead to a deeper final degree of corrosion. The main contribution of this work is that the final degree of corrosion of borosilicate glasses results from the competition of two opposite mechanisms

  8. Stainless-Steel-Gadolinium Alloys; Alliages Acier Inoxydable-Gadolinium; Splavy iz nerzhaveyushchej stali i gadoliniya; Aleaciones de Acero Inoxidable-Gadolinio

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, M.; Kato, H. [Albany Metallurgy Research Center, Bureau Of Mines, United States Department of the Interior, Albany, OR (United States)

    1964-06-15

    Because of the excellent corrosion resistance of stainless steels and the interest in gadolinium as a poison material, alloys of the two compounds were studied.Gadolinium was alloyed with AISE 304-type and chromium-type stainless steels; and then phase relationships, fabricability and properties were studied. The melting points of minor phases in alloys containing low percentages of gadolinium were noted to have a large effect on the structures resulting from equilibrating treatments and fabricability of the steels. When gadolinium was alloyed with the chromium-nickel-type steel, two minor phases, Fe{sub 9}Gd and Ni{sub 7}Gd, were observed to melt at 1080 Degree-Sign C, which limited the heat treatment and fabrication temperatures. Alloys with up to 5 wt.% gadolinium were successfully fabricated, and mechanical and corrosion properties were determined. No changes in the mechanical properties or resistance to hot-water corrosion of the steel were observed on alloying with up to about 3 wt.% gadolinium. Because of fabrication temperature limitations placed on chromium-nickel steels by the melting point of the minor phases, the effects of gadolinium on chromium steels were studied. Only one minor phase that melted at 1320 Degree-Sign C was noted on investigation of the 10 wt. % gadolinium isopleth in the chromium-iron-gadolinium alloy system. This property would enable one to equilibrate and fabricate these gadolinium steels at normally used temperatures. (author) [French] Les auteurs ont etudie des alliages d'acier inoxydable et de gadolinium en raison de l'excellente resistance a la corrosion des aciers inoxydables et de l 'interet que presente le gadolinium comme poison. Ils ont allie du gadolinium a des aciers inoxydables AISI de nuance 304 et des aciers au chrome et ils ont etudie le diagramme des phases, les possibilites de transformation et les proprietes de ces alliages. Dans les alliages d'une faible teneur en gadolinium, les points de fusion des phases

  9. Gladstone-Dale rule and its applicability to natural calcium borates

    International Nuclear Information System (INIS)

    Gode, G.K.; Spritse, D.P.

    1987-01-01

    Applicability of Gladstone-Dale rule, relating a dependence between the values of refractive index, density and chemical composition of the liquids, to 25 natural crystalline calcium borates (minerals) is determined. The given rule is stated to be applicable to 21 of them. Only for 4 borates with unclear chemical composition and inaccurate data on the density and refractive indices Gladstone-Dale rule variations are expressed by more significant values

  10. START - glass model of PWR

    International Nuclear Information System (INIS)

    Marn, J.; Ramsak, M.

    1998-01-01

    Recognizing the importance of nuclear engineering in the area of process engineering the University of Maribor, Faculty of Mechanical Engineering has invested in procuring and erecting glass model of pressurized water reactor. This paper deals with description of the model, its capabilities, and plans for its use within nuclear engineering community of Slovenia. The model, made primarily of glass, serves three purposes: educational, professional development and research. As an example, medium break loss of coolant accident is presented in the paper. Temperatures within primary and secondary side, and pressure on primary side of reactor coolant system are followed. The characteristic points are emphasized, and commented.(author)

  11. Performance and characteristics of a new scintillator

    CERN Document Server

    Czirr, J B; MacGillivray, R R; Seddon, P J

    1999-01-01

    A new class of scintillators for neutron imaging, based upon lithium gadolinium borate, is described. These scintillators offer the ability to tailor their response to the neutron spectrum by varying the relative absorption of neutrons by the key constituents (lithium, gadolinium and boron). The isotopic compositions of each constituent can be varied in order to change the spectral response.

  12. Gadolinium depletion event in a CANDU® moderator - causes and recovery

    Energy Technology Data Exchange (ETDEWEB)

    Evans, D.W.; Price, J.; Swami, D.; Fracalanza, E.; Brett, M.E.; Puzzuoli, F.V.; Garg, A. [Ontario Power Generation, Pickering, Ontario (Canada); Herrmann, O.; Rudolph, A. [Kinectrics Inc., Toronto, Ontario (Canada); Stuart, C.; Glowa, G. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Smee, J. [Niagara Technical Consultants, St. Catharines, Ontario (Canada)

    2010-07-01

    Gadolinium nitrate is added to the moderator of CANDU units to maintain the reactor in a guaranteed shutdown state (GSS). In April 2008, after being in stable GSS for over 30 hours, one of Ontario Power Generation's Pickering-B units showed a gradual depletion of the dissolved gadolinium, despite purification being isolated. Further additions of gadolinium stabilized the moderator gadolinium concentration, however, since the root cause of the depletion was not immediately identified, the unit was placed in the drained shutdown state, per established procedures. The cumulative gadolinium depletion amounted to about 3200 grams, the equivalent of about 12 ppm. Analysis showed the presence of oxalate in the moderator water. It is well-known that gadolinium forms a very insoluble oxalate (log K{sub sp} = -29.1). Although sub-micron filtration of water samples did not show the presence of gadolinium particulate, the measured levels of oxalate, 1.2 to 2 ppm, were sufficient to react with 1.4 to 2.4 ppm of gadolinium. The source of oxalate was traced to radiolysis of dissolved CO{sub 2} species. This unit had been experiencing chronic low-level ingress of CO{sub 2} from the Annulus Gas System. Free oxalate ion is normally susceptible to radiolytic breakdown back to CO{sub 2}, but Gd{sup 3+} provides a stable sink for radiogenic oxalate, 2 Gd{sup 3+} + 3 C{sub 2}O{sub 4}{sup 2-} → Gd{sub 2}(C{sub 2}O{sub 4}){sub 3}. Subsequent testing confirmed that gadolinium oxalate is quite stable with respect to gamma irradiation. Inspections showed well-crystallized gadolinium oxalate deposited on moderator system surfaces. Estimates indicated that about 1200 grams of gadolinium could have deposited on in-core surfaces, including the outside of the calandria tubes. That amount of negative reactivity was a concern, since it would prevent re-start of the unit. OPG, with support from AECL-Chalk River and Kinectrics, embarked on a two-pronged chemistry recovery program aimed at 1

  13. Preparation of hollow hydroxyapatite microspheres by the conversion of borate glass at near room temperature

    International Nuclear Information System (INIS)

    Yao, Aihua; Ai, Fanrong; Liu, Xin; Wang, Deping; Huang, Wenhai; Xu, Wei

    2010-01-01

    Hollow hydroxyapatite microspheres, consisting of a hollow core and a porous shell, were prepared by converting Li 2 O-CaO-B 2 O 3 glass microspheres in dilute phosphate solution at 37 o C. The results confirmed that Li 2 O-CaO-B 2 O 3 glass was transformed to hydroxyapatite without changing the external shape and dimension of the original glass object. Scanning electron microscopy images showed the shell wall of the microsphere was built from hydroxyapatite particles, and these particles spontaneously align with one another to form a porous sphere with an interior cavity. Increase in phosphate concentration resulted in an increase in the reaction rate, which in turn had an effect on shell wall structure of the hollow hydroxyapatite microsphere. For the Li 2 O-CaO-B 2 O 3 glass microspheres reacted in low-concentration K 2 HPO 4 solution, lower reaction rate and a multilayered microstructure were observed. On the other hand, the glass microspheres reacted in higher phosphate solution converted more rapidly and produced a single hydroxyapatite layer. Furthermore, the mechanism of forming hydroxyapatite hollow microsphere was described.

  14. Enhancing mechanical properties of ceramic papers loaded with zeolites using borate compounds as binders

    OpenAIRE

    Juan P. Cecchini; Ramiro M. Serra; María A. Ulla; Miguel A. Zanuttini; Viviana G. Milt

    2013-01-01

    NaY zeolite-containing ceramic papers were prepared by a papermaking technique with a dual polyelectrolyte retention system that implied the use of cationic and anionic polymers. To improve their mechanical properties, we found that some borate compounds could be successfully used as ceramic binders. Three types of sodium and/or calcium borates were tested as binders: colemanite, nobleite, and anhydrous ulexite. The improvement in the mechanical properties depends both on the borate used and ...

  15. Characterization of gadolinium-doped ZrO2 films exposed to ultraviolet light

    International Nuclear Information System (INIS)

    Sanchez R, A.; Azorin, J.; Rivera, T.

    2003-01-01

    This paper presents the results of characterizing gadolinium-doped ZrO 2 (ZrO 2 : Gd) films, both morphological and respect to their optical and thermoluminescent properties after irradiation with ultraviolet (UV) light. ZrO 2 presented crystalline structure in monoclinic phase; its absorption spectrum exhibited a peak at 274 and 277 nm for films deposited on glass and quartz substrates respectively. The optimum concentration of the dopant was found to be 12%. ZrO 2 : Gd presents its maximum Tl response when it is exposed to lJV light of wavelength in the range from 240 to 245 nm; its glow curve shows apparently one peak, which probably is the overlapping of various peaks. (Author)

  16. Optical properties of zinc lead tellurite glasses

    Science.gov (United States)

    Alazoumi, Salah Hassan; Aziz, Sidek Abdul; El-Mallawany, R.; Aliyu, Umar Sa'ad; Kamari, Halimah Mohamed; Zaid, Mohd Hafiz Mohd Mohd; Matori, Khamirul Amin; Ushah, Abdulbaset

    2018-06-01

    Tellurite glass systems in the form of [ZnO]x [(TeO2)0.7-(PbO)0.3]1-x with x = 0.15, 0.17, 0.20, 0.22 and 0.25 mol% were prepared using the melt quenching technique. XRD of the prepared samples have been measured for all samples. Both FTIR (280-4000 cm-1) and UV-Vis (200-800 nm) spectra have been measured. Optical band gap and refractive index were calculated for every glass sample. Density of glass, molar volume and oxygen packing density (OPD) were obtained. Values of the direct, indirect band gap ranged were found in the range 3.41-3.94 eV and 2.40-2.63 eV with increasing of ZnO concentration. Refractive index 2.58 and dielectric constant 6.66 were heigh at 17 ZnO mol% concentration. Molar polarizability, metallization criterion, polaron radius have been calculated for every glass composition.

  17. Bioactivity studies on TiO2-bearing Na2O–CaO–SiO2–B2O3 glasses

    International Nuclear Information System (INIS)

    Jagan Mohini, G.; Sahaya Baskaran, G.; Ravi Kumar, V.; Piasecki, M.; Veeraiah, N.

    2015-01-01

    Soda lime silica borate glasses mixed with different concentrations of TiO 2 are synthesized by the melt-quenching technique. As a part of study on bioactivity of these glasses, the samples were immersed in simulated body fluid (SBF) solution for prolonged times (~ 21 days) during which weight loss along with pH measurements is carried out at specific intervals of time. The XRD and SEM analyses of post-immersed samples confirm the formation of crystalline hydroxyapatite layer (HA) on the surface of the samples. To assess the role of TiO 2 on the formation of HA layer and degradability of the samples the spectroscopic studies viz. optical absorption and IR spectral studies on post- and pre-immersed samples have been carried out. The analysis of the results of degradability together with spectroscopic studies as a function of TiO 2 concentration indicated that about 6.0 mol% of TiO 2 is the optimal concentration for achieving better bioactivity of these glasses. The presence of the maximal concentration octahedral titanium ions in this glass that facilitates the formation of HA layer is found to be the reason for such a higher bioactivity. - Highlights: • Soda lime silica borate glasses mixed with TiO 2 are synthesized. • Bioactivity of the glasses is studied by immersing them in SBF solution. • XRD and SEM studies indicated the formation of hydroxyapatite layer on the surface. • Quantum of degradability is the highest in the glasses mixed with 6.0 mol% of TiO 2. • The results are analyzed using IR and optical absorption studies

  18. Cost and availability of gadolinium for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Klepper, O.H.

    1985-06-01

    Gadolinium is currently planned for use as a soluble neutron poison in nuclear fuel reprocessing plants to prevent criticality of solutions of spent fuel. Gadolinium is relatively rare and expensive. The present study was undertaken therefore to estimate whether this material is likely to be available in quantities sufficient for fuel reprocessing and at reasonable prices. It was found that gadolinium, one of 16 rare earth elements, appears in the marketplace as a by-product and that its present supply is a function of the production rate of other more prevalent rare earths. The potential demand for gadolinium in a fuel reprocessing facility serving a future fast reactor industry amounts to only a small fraction of the supply. At the present rate of consumption, domestic supplies of rare earths containing gadolinium are adequate to meet national needs (including fuel reprocessing) for over 100 years. With access to foreign sources, US demands can be met well beyond the 21st century. It is concluded therefore that the supply of gadolinium will quite likely be more than adequate for reprocessing spent fuel for the early generation of fast reactors. The current price of 99.99% pure gadolinium oxide lies in the range $50/lb to $65/lb (1984 dollars). By the year 2020, in time for reprocessing spent fuel from an early generation of large fast reactors, the corresponding values are expected to lie in the $60/lb to $75/lb (1984 dollars) price range. This increase is modest and its economic impact on nuclear fuel reprocessing would be minor. The economic potential for recovering gadolinium from the wastes of nuclear fuel reprocessing plants (which use gadolinium neutron poison) was also investigated. The cost of recycled gadolinium was estimated at over twelve times the cost of fresh gadolinium, and thus recycle using current recovery technology is not economical. 15 refs., 4 figs., 11 tabs

  19. Unusual stoichiometry control in the atomic layer deposition of manganese borate films from manganese bis(tris(pyrazolyl)borate) and ozone

    Energy Technology Data Exchange (ETDEWEB)

    Klesko, Joseph P.; Bellow, James A.; Saly, Mark J.; Winter, Charles H., E-mail: chw@chem.wayne.edu [Department of Chemistry, Wayne State University, Detroit, Michigan 48202 (United States); Julin, Jaakko; Sajavaara, Timo [Department of Physics, University of Jyväskylä, 40014 Jyväskylä (Finland)

    2016-09-15

    The atomic layer deposition (ALD) of films with the approximate compositions Mn{sub 3}(BO{sub 3}){sub 2} and CoB{sub 2}O{sub 4} is described using MnTp{sub 2} or CoTp{sub 2} [Tp = tris(pyrazolyl)borate] with ozone. The solid state decomposition temperatures of MnTp{sub 2} and CoTp{sub 2} are ∼370 and ∼340 °C, respectively. Preparative-scale sublimations of MnTp{sub 2} and CoTp{sub 2} at 210 °C/0.05 Torr afforded >99% recoveries with <0.1% nonvolatile residues. Self-limited ALD growth was demonstrated at 325 °C for MnTp{sub 2} or CoTp{sub 2} with ozone as the coreactant. The growth rate for the manganese borate process was 0.19 Å/cycle within the ALD window of 300–350 °C. The growth rate for the cobalt borate process was 0.39–0.42 Å/cycle at 325 °C. X-ray diffraction of the as-deposited films indicated that they were amorphous. Atomic force microscopy of 35–36 nm thick manganese borate films grown within the 300–350 °C ALD window showed root mean square surface roughnesses of 0.4–0.6 nm. Film stoichiometries were assessed by x-ray photoelectron spectroscopy and time of flight-elastic recoil detection analysis. The differing film stoichiometries obtained from the very similar precursors MnTp{sub 2} and CoTp{sub 2} are proposed to arise from the oxidizing ability of the intermediate high valent manganese oxide layers and lack thereof for cobalt.

  20. Ion beam assisted synthesis of nano-crystals in glasses (silver and lead chalcogenides)

    International Nuclear Information System (INIS)

    Espiau de Lamaestre, R.

    2005-04-01

    This work deals with the interest in ion beams for controlling nano-crystals synthesis in glasses. We show two different ways to reach this aim, insisting on importance of redox phenomena induced by the penetration and implantation of ions in glasses. We first show that we can use the great energy density deposited by the ions to tailor reducing conditions, favorable to metallic nano-crystal precipitation. In particular, we show that microscopic mechanism of radiation induced silver precipitation in glasses are analogous to the ones of classical photography. Ion beams can also be used to overcome supersaturation of elements in a given matrix. In this work, we synthesized lead chalcogenide nano-crystals (PbS, PbSe, PbTe) whose optical properties are interesting for telecommunication applications. We demonstrate the influence of complex chalcogenide chemistry in oxide glasses, and its relationship with the observed loss of growth control when nano-crystals are synthesized by sequential implantation of Pb and S in pure silica. As a consequence of this understanding, we demonstrate a novel and controlled synthesis of PbS nano-crystals, consisting in implanting sulfur into a Pb-containing glass, before annealing. Choice of glass composition provides a better control of precipitation physico-chemistry, whereas the use of implantation allows high nano-crystal volume fractions to be reached. Our study of IR emission properties of these nano-crystals shows a very high excitation cross section, and evidence for a 'dark exciton' emitting level. (author)

  1. Could borate have played a role in the RNA World?

    Science.gov (United States)

    Grew, E. S.; Bada, J. L.; Hazen, R. M.

    2012-12-01

    Two scenarios have been proposed for boron to play a critical role in the stabilization of ribose and other sugars in the ribonucleic acid (RNA) World, >3.8 Ga ago. One scenario envisages oligomeric RNA being synthesized in subaerial intermountane desert valleys in which groundwater was enriched in borate from breakdown of tourmaline (Benner et al. 2012 doi: 10.1021/ar200332w). In the alternative scenario, borates are enriched in hydrothermal environments (3.8 Ma as they are today and (2) plate tectonics was the prevailing regime. The postulated non-marine borate deposits would have been associated with continental collision and subduction with volcanism releasing B, whereas in the second scenario, ocean floor caught up in an early phase of subduction is considered a favorable site for borate formation. Because borate deposits are typically ephemeral and poorly preserved, the lack of evidence in the geologic record for these scenarios does not invalidate them. For example, the oldest reported non-marine borate deposits analogous to the type postulated in first scenario are only 20 Ma, but metamorphosed borates of Precambrian age have been interpreted to have non-marine evaporite precursors, the oldest being 2.4-2.1 Ga in the Liaoning-Jilin area, China. The first B minerals so far reported in the geologic record are metamorphic dravite-schorl tourmalines in the 3.7-3.8 Ga Isua supracrustal belt (southern West Greenland), where there is good evidence for seafloor spreading and subduction. The precursors to the Isua tourmalines are reported to include B-bearing marine clay minerals and detrital tourmaline. The relatively high Li contents in zircon from Jack Hills, Australia, have been cited as evidence for the presence of granitic (s. l.) "protocontinental" crust by 4.3 Ga (Ushikuba et al. 2008 doi:10.1016/j.epsl.2008.05.032; Valley et al. 2010 Rec Geol Surv W Aust, 5-7), but the existence of conventional plate tectonics prior to 3.8 Ga remains controversial

  2. Gadolinium recovery from aqueous pharmaceutical residuals by pulsed electrical discharge; Rueckgewinnung von Gadolinium aus pharmazeutischen Abwaessern mittels gepulster elektrischer Entladung

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Tom; Froehlich, Peter [TU Bergakademie Freiberg (Germany); Seifert, Martin; Jacob-Seifert, Karin [FNE Entsorgungsdienste GmbH, Freiberg (Germany)

    2017-02-15

    Advanced oxidation process (AOP) is an oxidation step releasing reactive oxygen species by pulsed electrical discharge in aqueous systems. In contrast to processes generating ozone by external UV radiation this method is feasible for turbid liquids with solid particles. This method is currently used in particular in the field of purification of chemically polluted waste waters. In the present application AOP is applied for partial degradation of the organic ligand system of a gadolinium X-ray contrast agent to separate gadolinium subsequently by adding caustic soda to precipitate > 99% of gadolinium.

  3. Room temperature ferromagnetic gadolinium silicide nanoparticles

    Science.gov (United States)

    Hadimani, Magundappa Ravi L.; Gupta, Shalabh; Harstad, Shane; Pecharsky, Vitalij; Jiles, David C.

    2018-03-06

    A particle usable as T1 and T2 contrast agents is provided. The particle is a gadolinium silicide (Gd5Si4) particle that is ferromagnetic at temperatures up to 290 K and is less than 2 .mu.m in diameter. An MRI contrast agent that includes a plurality of gadolinium silicide (Gd.sub.5Si.sub.4) particles that are less than 1 .mu.m in diameter is also provided. A method for creating gadolinium silicide (Gd5Si4) particles is also provided. The method includes the steps of providing a Gd5Si4 bulk alloy; grinding the Gd5Si4 bulk alloy into a powder; and milling the Gd5Si4 bulk alloy powder for a time of approximately 20 minutes or less.

  4. Production and characterization of H3BO3-Li2CO3-K2CO3-MgO for dosimetry

    International Nuclear Information System (INIS)

    Marini, Andrea; Ciolini, Riccardo; Souza, Susana O.; Valenca, Joao V.B.; Oliveira, Raquel A.P.; D'Enrrico, Francesco

    2014-01-01

    This work examines a borate glass produced with oxides of potassium and lithium, known as LKB. The suitability of borate glasses for thermoluminescent (TL) dosimetry has been reported in previous studies. In particular, borate glasses doped with different elements showed good characteristics in terms of linearity, sensitivity and effective atomic number. However, borate glasses are also known to have high hygroscopicity, which can reduce the sensitivity of a dosimeter. Contrary to previous studies, in this work, Mg was used as one of the main components of the glass composition. Mg is known to improve the stability of the glass, since it reduces the mobility of the alkali ions and can thus reduce the hygroscopicity of the LKB glass. Three compositions containing 0, 5 and 11 mol% of magnesium oxide were examined in order to determine the effect of magnesium specifically on luminescence, high-temperature resistance and hygroscopicity of LKB glass. The LKB glass with 11 mol% of Mg showed favorable characteristics for the production of dosimeters

  5. Recent advances in rare earth doped alkali-alkaline earth borates for solid state lighting applications

    Science.gov (United States)

    Verma, Shefali; Verma, Kartikey; Kumar, Deepak; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    As a novel class of inorganic phosphor, the alkali-alkaline earth borate phosphors have gained huge attention due to their charming applications in solid-state lighting (SSL) and display devices. The current research drive shows that phosphors based on the alkali-alkaline earth borates have transformed the science and technology due to their high transparency over a broad spectral range, their flexibility in structure and durability for mechanical and high-laser applications. Recent advances in various aspects of rare-earth (RE) doped borate based phosphors and their utilizations in SSL and light emitting diodes are summarized in this review article. Moreover, the present status and upcoming scenario of RE-doped borate phosphors were reviewed in general along with the proper credential from the existing literature. It is believed that this review is a sole compilation of crucial information about the RE-doped borate phosphors in a single platform.

  6. Geochemical characteristics of The Emet (Espey-Hisarcik) borate deposits, Kütahya, Turkey

    Science.gov (United States)

    Koçak, İ.; Koç, Ş.

    2018-06-01

    Nearly 72% world's borate reserves are in western part of Turkey. The Emet (Kütahya) deposit is one of these deposits. The Emet borate deposit, like other deposits in western Anatolia, was deposited in Miocene lacustrine environment whose formation coincides with volcanic activity started in Paleogene and lasted to the beginning of Quaternary. The borate ore displaying lenticular structure is alternated with claystone, marl, tuff and thin bedded limestone. The mineral paragenesis is composed of colemanite, hydroboracite, Veatchite, dolomite, calcite, montmorillonite and illite. The Emet borate deposit has been the subject of various geologic and mineralogical studies. In the present study major and trace element contents of 60 borate samples from this deposit are discussed. Among the trace elements, significant enrichment was found in As, Se, Sr, Cs, Sb and Li. Element correlations indicate volcanic source for boron (exhalations and hydrothermal solutions) whilst other elements are found to be derived from a terrestrial source. According to REE data, high Ce concentrations and anomalies are generally indicative of oxygenated depositional environment whilst low Ce contents facilitated the lake waters to be low oxygenated as a result of H2S-rich hydrothermal solutions. The weak negative anomaly detected only in the Hisarcık region is attributed to lacking of Eu contribution to the lake due to insufficient alteration on the continent.

  7. Gadolinium photoionization process

    Science.gov (United States)

    Paisner, Jeffrey A.; Comaskey, Brian J.; Haynam, Christopher A.; Eggert, Jon H.

    1993-01-01

    A method is provided for selective photoionization of the odd-numbered atomic mass gadolinium isotopes 155 and 157. The selective photoionization is accomplished by circular or linear parallel polarized laser beam energy effecting a three-step photoionization pathway.

  8. Neutron diffraction from lead germanate glasses

    International Nuclear Information System (INIS)

    Umesaki, Norimasa; Brunier, T.M.; Wright, A.C.; Hannon, A.C.; Scinclair, R.N.

    1993-01-01

    High resolution neutron diffraction data have been collected on the PbO-GeO 2 glasses and on GeO 2 for comparison. These neutron data have revealed the existence of 6-fold coordinated germanium (GeO 6 octahedra) by virtue of the shift in the first peak in the obtained total correlation function T(r) and increase in the coordination. The neutron results also indicate that PbO exits as PbO 4 pyramids, as found in the orthorhombic form of PbO crystal, in the studied PbO-GeO 2 glasses. (author)

  9. Contrast opacification for CT from iodine, gadolinium and ytterbium

    International Nuclear Information System (INIS)

    Zwicker, C.; Langer, M.; Ullrich, V.; Felix, R.

    1993-01-01

    The absorption of the elements iodine, gadolinium und ytterbium in various dilutions was studied in relation to CT. Regression analysis and specific CT density measurements showed that absorption decreases from gadolinium to ytterbium and iodine. These results were confirmed by experiments using ten dogs. Boli of 0.5 molar gadolinium used for angio-CT without table movement showed the largest increase in density in the aorta and liver with an average of 190 HU and 21 HU respectively compared with iodine which gave 157 HU and 12 HU respectively. The animal experimental studies suggest that gadolinium and ytterbium are suitable contrast media for dynamic CT investigations. (orig.) [de

  10. Physical and optical property studies on Bi3+ ion containing vanadium sodium borate glasses

    Science.gov (United States)

    Venkatesh, G.; Meera, B. N.; Eraiah, B.

    2018-04-01

    xBi2O3-(15-x)V2O5-45B2O3-40Na2O glasses have been prepared using melt quenching technique. Amorphous nature of the glasses is verified using powder XRD. Densities and molar volume have been determined as a function of bismuth content and interestingly both increases as a function of bismuth content. Further oxygen packing density (OPD) is found to decrease with bismuth content. The increase in the molar volume as a function of bismuth content may be due to structural changes in the glass network. The optical properties performed from the optical absorption spectra were recorded in the wavelength range 200-1100 nm using UV-Visible spectrophotometer. The theoretical optical basicity of the oxides have also been estimated. The calculated energy band gap values increases with increase in Bi2O3 content.

  11. Calculation qualification of gadolinium burnable poisons in water reactors

    International Nuclear Information System (INIS)

    Chaucheprat, P.

    1988-01-01

    The work presented in this thesis constitutes the qualification on the one end of Appolo-Neptune scheme for the gadolinium burnable poison in a pressurized water reactor, and on the other end of basis nuclear data on natural gadolinium. This study has permitted to reduce by a factor 3 the actual incertitude on the gadolinium poison comparatively at precisions cited in international benchmarks calculations [fr

  12. Thermal lens study of thermo-optical properties and concentration quenching of Er3+-doped lead pyrophosphate based glasses

    Energy Technology Data Exchange (ETDEWEB)

    Santos, C. C. [Universidade Federal do Ceara, Ceara, Brazil; Rocha, U. [Grupo de Fotônica e Fluidos Complexos, Instituto de Física, Brazil; Guedes, Ilde [Universidade Federal do Ceara, Ceara, Brazil; Vermelho, M. V. D. [Instituto de Fisica, Universidade Federal de Alagoas, Brazil; Boatner, Lynn A [ORNL; Jacinto, C. [Instituto de Fisica, Universidade Federal de Alagoas, Brazil

    2012-01-01

    In this work, we have used the thermal lens technique combined with conventional spectroscopy to characterize the thermo-optical properties of Er3+-doped lead pyrophosphate-based glasses. More precisely, we have investigated and quantified experimentally the fluorescence quantum efficiencies of the Er3+ levels, and we describe the role of concentration quenching effects. The fluorescence quantum efficiency of the 4I13/2 level is very high when compared to other phosphate glasses, while that of the green-coupled levels is very small. Other important photonic materials parameters, such as the thermal diffusivity and temperature coefficient of the optical path length change, were obtained and compared with those of other glass systems. The cumulative results obtained here for the Er-doped lead pyrophosphate glass show that this material is a good candidate for photonic applications with a characteristic Er3+ infrared emission around 1550 nm.

  13. Gadolinium-enhanced magnetic resonance imaging in acute myocardial infarction

    International Nuclear Information System (INIS)

    Dijkman, P.R.M. van; Wall, E.E. van der; Roos, A. de; Doornbos, J.; Laarse, A. van der; Voorthuisen, A.E. van; Bruschke, A.V.G.; Rossum, A.C. van

    1990-01-01

    To evaluate he usefulness of the paramagnetic contrast agent Gadolinium-DTPA (diethylenetriaminepentaacetic acid) in Magnetic Resonance. Imaging of acute myocardial infarction, we studied a total of 45 patients with a first acute myocardial infarction by ECG-gated magnetic resonance imaging before and after intravenous administration of 0.1 mmol/kg Gadolinium-DTPA. All patients received thrombolytic treatment by intravenous streptokinase. The magnetic resonance imaging studies were preformed after a meam of 88 h (range 15-241) after the acute onset of acute myocardial infarction. Five patients without evidence of cardiac disease served as controls. Spin-echo measurements (TE 30 ms) were made using a Philips Gyroscan (0.5 Tesla) or a Teslacon II (0.6 Tesla). The 45 patients were divided into four groups of patients. In Group I( patients) Gadolinium-DTPA improved the detection of myocardial infarction by Gadolinium-DTPA. In Group II (20 patients) the magnetic resonance imaging procedure was repeated every 10 min for up to 40 min following administration of Gadolinium-DTPA. Optimal contrast enhancement was obtained 20-25 min after Gadolinium-DTPA. In Group III (27 patients) signal intensities were significantly higher in the patients who underwent the magnetic resonance imaging study more than 72 h (mean 120) after the acute event, suggesting increased acculumation of Gadolinium-DTPA in a more advanced stage of the infarction process. In Group IV (45 patients) Gadolinium-DTPA was administered in an attempt to distinguish between reperfused and nonreperfused myocardial areas after thrombolytic treatment for acute myocardial infarction. The signal intensities did not differ, but reperfused areas showed a more homogeneous aspect whereas nonreperfused areas were visualized as a more heterogeneous contrast enhancement. It is concluded that magnetic resonance imaging using the contrast agent Gadolinium-DTPA significantly improves the detection of infarcted myocardial areas

  14. Structure and lattice dynamics in non-centrosymmetric borates; Struktur und Gitterdynamik in azentrischen Boraten

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W.D.R.

    2007-04-23

    directions the dispersion was investigated to a maximum energy of 10 THz. For experimental phonon dispersion several lattice dynamical models are discussed. A shell model with angular forces and additional force constants could describe the phonon dispersion with an averaged deviation of 0.234 THz. The crystal structure of the tetraborates was investigated at room temperature and in addition for the barium and lead compound at 100 K. The comparison of the structure of the isostructural compounds SrB{sub 4}O{sub 7} and PbB{sub 4}O{sub 7} shows a noticeable shift of the lead against the strontium position, which as a result of the similar ion radii of the two ions could be assigned to the lone electron pair at the lead atom. The comparison of the crystal structure at low temperature shows similar to bismuth triborate an increase of the influence of the lone electron pair at lower temperatures. In barium tetraborate two different bond valence sums of the two crystallographic different barium positions are observed. As its origin the strong internal stresses are discussed. (orig.)

  15. Neutron shielding and constructional characteristics of a new type concrete and from borated clinker

    International Nuclear Information System (INIS)

    Cakaloz, T.

    1979-07-01

    A boron containing cement, which can be used as nuclear shielding material, is produced at pilot plant scale applying two different methods. In the first method, the raw mixture of a normal portland cement is mixed with pre-calcined colemanite, a calcium borate mineral, and clinkerized in a rotary kiln (borated-clinker). In the second method, the colemanite is mixed with an admixture, which contains mainly limestone and marl, and burnt in the rotary kiln to obtain a borated-lime composite. The borated-lime composite is then added to the normal portland cement clinker up to 2% B 2 O 3 content for shielding purpose. The results have shown that the borated-clinker contained untolerable amount of free lime resulting in a decrease in compressive strength. The addition of the borated-lime composite to the normal portland cement clinker up to 1% B 2 O 3 content did not alter the setting time and the volume expansion properties. The reduction in the compressive strength was found to be tolerable, however, the decrease in the bending strength was 20% lower than that of permissible value. On the other hand, the increase in B 2 O 3 content of the mixture improved the neutron absorptivity resulting in an increase in total cross-section about 7 times for 1% B 2 O 3 without changing the gamma absorption value

  16. Microwave and optical diagnostics in a gadolinium plasma

    International Nuclear Information System (INIS)

    Larousse, B.

    1997-01-01

    The optimization of the separation process of the gadolinium isotopes by Ion Cyclotron Resonance requires a precise knowledge of the physical characteristics of the plasma. Thus, two kinds of diagnostics have been developed: the first one to estimate the microwave power inside the source and the second one to measure the density of atomic and ionic of the gadolinium inside the plasma source and in front of the collector. Microwave diagnostic: A microstrip antenna has been designed and developed in order to characterize the microwave at 36 GHz frequency in the plasma source. The experimental results for different plasma regimes are presented. The measurements inside the plasma source show a maximum of microwave absorption for an argon pressure of 10 -4 mb (93% of absorption of the incident wave in the conditions of isotope separation). Laser absorption diagnostic: The theory of laser absorption in presence of a magnetic field is recalled and the first results are presented. In the spectral range between 560 and 620 nm, corresponding to high energy levels of gadolinium, no signal is obtained so that the density is below the detection limit 10 10 cm -3 . In the spectral range between 380 and 400 nm, two lines are observed, issue from the fundamental and metastable (633 cm -1 ) levels. The density of metastable level of gadolinium ions is about 10 10 cm -3 with a relative precision of 15 % and its variation is studied as a function of argon pressure, at different sections of the plasma column (source, collector). The achieved set of measurements has been performed in order to check the theoretical models. (author)

  17. Shielding effect of clinical x-ray protector and lead glass against annihilation radiation and gamma rays of 99mTc

    International Nuclear Information System (INIS)

    Fukuda, Atsushi; Takahashi, Masaaki; Kitabayashi, Keitarou; Koshida, Kichiro; Matsubara, Kousuke; Noto, Kimiya; Nakagawa, Hiroto; Kawabata, Chikako

    2004-01-01

    Various pharmaceutical companies in Japan are making radioactive drugs available for positron emission tomography (PET) in hospitals without a cyclotron. With the distribution of these drugs to hospitals, medical check-ups and examinations using PET are expected to increase. However, the safety guidelines for radiation in the new deployment of PET have not been adequately improved. Therefore, we measured the shielding effect of a clinical X-ray protector and lead glass against annihilation radiation and gamma rays of 99m Tc. We then calculated the shielding effect of a 0.25 mm lead protector, 1 mm lead, and lead glass using the EGS4 (Electron Gamma Shower Version 4) code. The shielding effects of 22-mm lead glass against annihilation radiation and gamma rays of 99m Tc were approximately 31.5% and 93.3%, respectively. The clinical X-ray protector against annihilation radiation approximately doubled the skin-absorbed dose. (author)

  18. [Shielding effect of clinical X-ray protector and lead glass against annihilation radiation and gamma rays of 99mTc].

    Science.gov (United States)

    Fukuda, Atsushi; Koshida, Kichiro; Yamaguchi, Ichiro; Takahashi, Masaaki; Kitabayashi, Keitarou; Matsubara, Kousuke; Noto, Kimiya; Kawabata, Chikako; Nakagawa, Hiroto

    2004-12-01

    Various pharmaceutical companies in Japan are making radioactive drugs available for positron emission tomography (PET) in hospitals without a cyclotron. With the distribution of these drugs to hospitals, medical check-ups and examinations using PET are expected to increase. However, the safety guidelines for radiation in the new deployment of PET have not been adequately improved. Therefore, we measured the shielding effect of a clinical X-ray protector and lead glass against annihilation radiation and gamma rays of (99m)Tc. We then calculated the shielding effect of a 0.25 mm lead protector, 1 mm lead, and lead glass using the EGS4 (Electron Gamma Shower Version 4) code. The shielding effects of 22-mm lead glass against annihilation radiation and gamma rays of (99m)Tc were approximately 31.5% and 93.3%, respectively. The clinical X-ray protector against annihilation radiation approximately doubled the skin-absorbed dose.

  19. Waste glass corrosion modeling: Comparison with experimental results

    International Nuclear Information System (INIS)

    Bourcier, W.L.

    1994-01-01

    Models for borosilicate glass dissolution must account for the processes of (1) kinetically-controlled network dissolution, (2) precipitation of secondary phases, (3) ion exchange, (4) rate-limiting diffusive transport of silica through a hydrous surface reaction layer, and (5) specific glass surface interactions with dissolved cations and anions. Current long-term corrosion models for borosilicate glass employ a rate equation consistent with transition state theory embodied in a geochemical reaction-path modeling program that calculates aqueous phase speciation and mineral precipitation/dissolution. These models are currently under development. Future experimental and modeling work to better quantify the rate-controlling processes and validate these models are necessary before the models can be used in repository performance assessment calculations

  20. Light deflection in gadolinium molybdate ferroelastic crystals

    International Nuclear Information System (INIS)

    Staniorowski, Piotr; Bornarel, Jean

    2000-01-01

    The deflection of a He-Ne light beam by polydomain gadolinium molybdate (GMO) crystals has been studied with respect to incidence angle α i on the sample at room temperature. The A and B deflected beams do not cross each other during the α i variation, in contrast to results and calculations previously published. The model using the Fresnel equation confirms this result. The model presented is more accurate for numerical calculation than that using the Huygens construction. (author)

  1. GEOLOGICAL FEATURES OF NEOGENE BASINS HOSTING BORATE DEPOSITS: AN OVERVIEW OF DEPOSITS AND FUTURE FORECAST, TURKEY

    Directory of Open Access Journals (Sweden)

    Cahit HELVACI

    2015-12-01

    Full Text Available The geometry, stratigraphy, tectonics and volcanic components of the borate bearing Neogene basins in western Anatolia offer some important insights into on the relationship between basin evolution, borate formation and mode of extension in western Anatolia. Some of the borate deposits in NE-SW trending basins developed along the İzmir-Balıkesir Transfer Zone (İBTZ (e.g. Bigadiç, Sultançayır and Kestelek basins, and other deposits in the NE-SW trending basins which occur on the northern side of the Menderes Core Complex (MCC are the Selendi and Emet basins. The Kırka borate deposit occurs further to the east and is located in a completely different geological setting and volcanostratigraphic succession. Boron is widely distributed; including in soil and water, plants and animals. The element boron does not exist freely by itself in nature, but rather it occurs in combination with oxygen and other elements in salts, commonly known as borates. Approximately 280 boron-bearing minerals have been identified, the most common being sodium, calcium and magnesium salts. Four main continental metallogenic borate provinces are recognized at a global scale. They are located in Anatolia (Turkey, California (USA, Central Andes (South America and Tibet (Central Asia. The origin of borate deposits is related to Cenozoic volcanism, thermal spring activity, closed basins and arid climate. Borax is the major commercial source of boron, with major supplies coming from Turkey, USA and Argentina. Colemanite is the main calcium borate and large scale production is restricted to Turkey. Datolite and szaibelyite are confined to Russia and Chinese sources. Four Main borax (tincal deposits are present in Anatolia (Kırka, California (Boron, and two in the Andes (Tincalayu and Loma Blanca. Kırka, Boron and Loma Blanca have similarities with regard to their chemical and mineralogical composition of the borate minerals. Colemanite deposits with/without probertite and

  2. Development of basic data for modelling the residual alteration rate in aqueous media of AVM nuclear glasses

    International Nuclear Information System (INIS)

    Thien, B.

    2010-01-01

    During their aqueous alteration, AVM French nuclear glasses exhibit a large range of behaviour, in spite of a small range of composition. AVM glasses alteration rates are controlled by two phenomena: (i) precipitation of secondary phases, mostly aluminous hectorites, and (ii) diffusion of water across a more or less protective gel. The magnesium contained in these glasses increases the precipitation of these secondary phases, leading to a partial or total dissolution of the gel layer. This dissolution increases the glass alteration rates. On the other hand, Mg also incorporates in the gel, increasing his passivation properties. The predominance of one of these two phenomena depends on the initial composition of the glass, the pH of the solution, and the alteration conditions. In presence of Bure geological disposal site water (Mg and Ca rich), AVM glasses undergo less alteration than in initially pure water, in spite of larger amounts of secondary phase precipitates. This results from incorporation of calcium in the gel instead of sodium and magnesium, improving its passivating properties. We have adapted the geochemical GRAAL model for AVM glasses. In spite of its limitations, this model allows us to describe the differences of behaviour between these glasses, in function of their composition. Moreover, GRAAL can be proposed as a basis of a future operational model for predicting the alteration of AVM glasses. (author) [fr

  3. Precision charge amplification and digitization system for a scintillating and lead glass array

    Energy Technology Data Exchange (ETDEWEB)

    Delchamps, S.W.; Rameika, R.; Arenton, M.; Chen, T.Y.; Conetti, S.; Cox, B.; Etemadi, B.; Fortney, L.; Guffey, K.; Haire, M.

    1989-01-01

    A 544-channel low-noise, high-rate, precision charge amplification and ADC system was constructed for the Fermilab Experiment 705 electromagnetic calorimeter, which employs SCG1-C scintillating glass and SF5 lead glass instrumented with photo-multiplier tubes. A general discussion of the system is given, and the charge amplification, fast trigger pulse generation, and analog to digital conversion aspects of the system are presented in more detail. Performance is evaluated using data from Experiment 705 and from off-line tests. Short and long term pedestal stability, baseline recovery and rate capability, linearity of response, and crosstalk between channels are discussed. 8 refs., 2 tabs.

  4. Precision charge amplification and digitization system for a scintillating and lead glass array

    International Nuclear Information System (INIS)

    Delchamps, S.W.; Rameika, R.; Arenton, M.

    1989-01-01

    A 544-channel low-noise, high-rate, precision charge amplification and ADC system was constructed for the Fermilab Experiment 705 electromagnetic calorimeter, which employs SCG1-C scintillating glass and SF5 lead glass instrumented with photo-multiplier tubes. A general discussion of the system is given, and the charge amplification, fast trigger pulse generation, and analog to digital conversion aspects of the system are presented in more detail. Performance is evaluated using data from Experiment 705 and from off-line tests. Short and long term pedestal stability, baseline recovery and rate capability, linearity of response, and crosstalk between channels are discussed. 8 refs., 2 tabs

  5. Thermal conductivities of some lead and bismuth glasses

    NARCIS (Netherlands)

    Velden, P.F. van

    1965-01-01

    Thermal conductivities have been measured, mainly at 40°C, of glasses within the systems PbO-Bi2O3-SiO2, PbO-Bi2O3-Al2O3-SiO2, and BaO- (Bi2O3 or PbO) -SiO2. Aiming at lowest thermal conductivity, preference was given to glasses of low silica and low alumina contents. Glass formation persists at

  6. Overview of chemical modeling of nuclear waste glass dissolution

    International Nuclear Information System (INIS)

    Bourcier, W.L.

    1991-02-01

    Glass dissolution takes place through metal leaching and hydration of the glass surface accompanied by development of alternation layers of varying crystallinity. The reaction which controls the long-term glass dissolution rate appears to be surface layer dissolution. This reaction is reversible because the buildup of dissolved species in solution slows the dissolution rate due to a decreased dissolution affinity. Glass dissolution rates are therefore highly dependent on silica concentrations in solution because silica is the major component of the alteration layer. Chemical modeling of glass dissolution using reaction path computer codes has successfully been applied to short term experimental tests and used to predict long-term repository performance. Current problems and limitations of the models include a poorly defined long-term glass dissolution mechanism, the use of model parameters determined from the same experiments that the model is used to predict, and the lack of sufficient validation of key assumptions in the modeling approach. Work is in progress that addresses these issues. 41 refs., 7 figs., 2 tabs

  7. Model based energy benchmarking for glass furnace

    International Nuclear Information System (INIS)

    Sardeshpande, Vishal; Gaitonde, U.N.; Banerjee, Rangan

    2007-01-01

    Energy benchmarking of processes is important for setting energy efficiency targets and planning energy management strategies. Most approaches used for energy benchmarking are based on statistical methods by comparing with a sample of existing plants. This paper presents a model based approach for benchmarking of energy intensive industrial processes and illustrates this approach for industrial glass furnaces. A simulation model for a glass furnace is developed using mass and energy balances, and heat loss equations for the different zones and empirical equations based on operating practices. The model is checked with field data from end fired industrial glass furnaces in India. The simulation model enables calculation of the energy performance of a given furnace design. The model results show the potential for improvement and the impact of different operating and design preferences on specific energy consumption. A case study for a 100 TPD end fired furnace is presented. An achievable minimum energy consumption of about 3830 kJ/kg is estimated for this furnace. The useful heat carried by glass is about 53% of the heat supplied by the fuel. Actual furnaces operating at these production scales have a potential for reduction in energy consumption of about 20-25%

  8. Spectroscopic and visible luminescence properties of rare earth ions in lead fluoroborate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Anjaiah, G. [Department of Physics, Osmania University, Hyderabad 500007 (India); Nayab Rasool, SK. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Kistaiah, P., E-mail: pkistaiah@yahoo.com [Department of Physics, Osmania University, Hyderabad 500007 (India)

    2015-03-15

    The lanthanide doped lead lithium calcium zinc fluoroborate glasses (LLCZFB:Ln) of composition 20PbF{sub 2}+10Li{sub 2}O+5Cao+5ZnO+59B{sub 2}O{sub 3}+1Ln{sub 2}O{sub 3} (where Ln=Sm, Eu and Dy in mol%) were prepared by conventional melt quench technique. The amorphous nature of these glasses was confirmed by X-ray diffraction studies. The glass transition temperatures (T{sub g}) were studied by DSC analysis. The glass structure and spectroscopic properties were investigated using optical absorption, vibrational and fluorescence spectra. The FT-IR spectra and Raman spectra reveal the presence of BO{sub 3}, BO{sub 4} and non-bridging oxygen's. The Judd–Ofelt intensity parameters Ω{sub λ} (λ=2, 4, 6) were determined from the spectral intensities of absorption bands. These parameters were used to calculate the radiative parameters such as radiative transition probability (A{sub R}), radiative life time (τ{sub R}) and branching ratio (β{sub r}) for various excited luminescent states of rare earth ions. The visible emission spectra for different rare earth ions were recorded by exciting the samples at different wavelengths and the decay rates for the different rare earth ions were measured. Using the emission spectra, full width half maxima (FWFM), stimulated emission cross section (σ{sup E}{sub p}) were evaluated. The nature of decay profiles of {sup 4}F{sub 9/2}, {sup 4}G{sub 5/2} and {sup 5}D{sub 0} states of Dy, Sm and Eu ions respectively are analyzed. Comparison of luminescence features of these glasses and also with those reported for different glass hosts indicates that the LLCZFB:Dy glass has strong luminescence in the visible region. - Highlights: • LLCZFB:Ln glasses are prepared with Ln: Sm, Eu and Dy. • Glasses are characterized by XRD, FTIR, Raman, absorption and emission spectra. • J–O theory is used to calculate different radiative properties. • Green, yellow and red emissions are observed. • Glasses are useful for the development

  9. Effect of substituting iron on structural, thermal and dielectric properties of lithium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Dalal, Seema [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal 131039 (India); Physics Department, Baba Mast Nath University, Asthal Bohr 124001 (India); Khasa, S., E-mail: skhasa@yahoo.com [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal 131039 (India); Dahiya, M.S. [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal 131039 (India); Agarwal, A. [Applied Physics Department, Guru Jambheshwar University of Science and Technology, Hisar 125001 (India); Yadav, Arti [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal 131039 (India); Seth, V.P. [Retd Professor, Physics Department, Maharshi Dayanand University Rohtak 124001 (India); Dahiya, S. [Physics Department, Baba Mast Nath University, Asthal Bohr 124001 (India)

    2015-10-15

    Highlights: • There is increase in NBOs with iron content. • FTIR spectra supported the results predicted by density. • Glass stability has been examined. • Iron shows “blocking effect” on migration of mobile ions. • Internal Circuit varies with temperature and composition. - Abstract: Glasses with composition xFe{sub 2}O{sub 3}·(30 − x)Li{sub 2}O·70B{sub 2}O{sub 3} (x = 0, 2, 5, 7 and 10 mol%) were prepared via melt-quenching technique and their physical, thermal and dielectric properties are discussed. XRD was carried out to confirm the amorphous nature of prepared glasses. Density (ρ) and molar volume (V{sub m}) were found to increase with increase in Fe{sub 2}O{sub 3} content. Infrared absorption spectra depicted that Fe{sub 2}O{sub 3} is acting as a network modifier. DTA has been carried out to determine glass transition temperature (T{sub g}) and crystallization temperature (T{sub x}). Electrical properties have been studied using impedance spectroscopy and dc conductivity. The dc conductivity decreases and activation energy increases on replacing Li{sup +} ions with Fe{sup 3+}. The impedance measurements reveal that the total conductivity obeys Jonscher’s power law. Study of the equivalent circuit analysis up to a temperature of 523 K shows a significant change in the equivalent circuitry with change in temperature and composition.

  10. Crystallo-chemistry of boric anhydride and of anhydrous borates

    International Nuclear Information System (INIS)

    Bernardin, Jacques

    1968-01-01

    After an overview of various aspects related to the atomic structure of boron and of its three-bind and four-bind compounds, this report briefly presents the different forms of boric anhydride (in solid, liquid, glassy and gaseous state), presents and comments the structure of these different forms, and addresses the molten boric anhydride which is used as oxide solvent. The next part addresses the structure of anhydrous borates. It presents some generalities on their structure, and describes examples of known structures: dimers, trimers, polymers with a degree higher than three like calcium metaborate, caesium tri-borate, lithium tetraborate, or potassium pentaborate

  11. The Kerr nonlinearity of the beta-barium borate crystal

    DEFF Research Database (Denmark)

    Bache, Morten; Guo, Hairun; Zhou, Binbin

    2013-01-01

    A popular crystal for ultrafast cascading experiments is beta-barium-borate (β-BaB2O4, BBO). It has a decent quadratic nonlinear coefficient, and because the crystal is anisotropie it can be birefringence phase-matched for type I (oo → e) second-harmonic generation (SHG). For femtosecond experime......A popular crystal for ultrafast cascading experiments is beta-barium-borate (β-BaB2O4, BBO). It has a decent quadratic nonlinear coefficient, and because the crystal is anisotropie it can be birefringence phase-matched for type I (oo → e) second-harmonic generation (SHG). For femtosecond...

  12. Vibrational spectroscopy of the borate mineral kotoite Mg₃(BO₃)₂.

    Science.gov (United States)

    Frost, Ray L; Xi, Yunfei

    2013-02-15

    Vibrational spectroscopy has been used to assess the structure of kotoite a borate mineral of magnesium which is isostructural with jimboite. The mineral is orthorhombic with point group: 2/m 2/m 2/m. The mineral has the potential as a new memory insulator material. The mineral has been characterised by a combination of Raman and infrared spectroscopy. The Raman spectrum is dominated by a very intense band at 835 cm(-1), assigned to the symmetric stretching mode of tetrahedral boron. Raman bands at 919, 985 and 1015 cm(-1) are attributed to the antisymmetric stretching modes of tetrahedral boron. Kotoite is strictly an hydrous borate mineral. An intense Raman band observed at 3559 cm(-1) is attributed to the stretching vibration of hydroxyl units, more likely to be associated with the borate mineral hydroxyborate. The lack of observation of water bending modes proves the absence of water in the kotoite structure. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Effects of glass composition on the residual rate of alteration and modelling parameters

    International Nuclear Information System (INIS)

    Fleury, Benjamin

    2013-01-01

    This PhD thesis deals with the long-term behavior of the French nuclear glasses R7T7. An experiment plan (based on 27 glass compositions) is developed for studying the effect of glass composition on the residual rate of alteration. The impact of Mg-phase precipitation on glass alteration is also studied and several modelling exercises are performed. There is one order of magnitude between the different measurements (rate or pH...) associated with the different glass compositions. The statistical treatment of these measurements results in predictive equations and several observable trends are valid for all materials with a composition complying with the experiment plan conditions. The effect of Si, Na, B and Al on alteration (.i.e, gel and secondary phase's formation, pH) is confirmed, the influence of Zn, Zr and Ni-Co is evidenced. The role of Cr has to be clarified. Experiments show that glass alteration rate in underground water, which contains high level of Ca and Mg, is one order of magnitude higher than in the case of pure water. The glass composition plays the same role for the alteration in the two types of solution. During alteration, the late addition of Mg introduces a time lag in the resumption response because silicon is first provided from partial dissolution of the previously-formed alteration gel. The nucleation process does not limit Mg-silicate precipitation whereas a pH above 8-8.5 is necessary for Mg-silicate precipitation. The glass alteration rate can be a limiting factor if the quantity of Mg supplied to the reaction is enough. The Mg silicate phase seems to have systematically a molar ratio Mg/Si between 0.2 and 0.4. It is also shown that the air tightness of the reactor influences the rate of dissolution of CO 2 in the solution leading to a decrease of pH. Finally, modelling exercises with GRAAL show promising results. Such modelling is required in order to extend the prediction of the long-term alteration behavior to different glass

  14. Determination of gadolinium by the method of derivative spectrophotometry

    International Nuclear Information System (INIS)

    Aleksandrova, N.N.; Mishchenko, V.T.; Poluehktov, N.S.; Mukomel', V.L.

    1988-01-01

    Technique for gadolinium determination at the presence of interfering rare earth elements, which is based on the derivative spectrophotometry method, is suggested. The technique is of increased selectivity and allows to determine gadolinium in the mixtures with elements, which presence in solution makes impossible to determine gadolinium directly. At binary mixtures analysis Sr relative standard deviation does not exceed 0.03, while at the analysis of more complex mixtures Sr increases up to 0.06

  15. Validation Assessment of a Glass-to-Metal Seal Finite-Element Model

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Emery, John M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Vicente J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Arthur [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element model of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.

  16. Engineering Glass Passivation Layers -Model Results

    Energy Technology Data Exchange (ETDEWEB)

    Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.; Lepry, William C.

    2011-08-08

    The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting that the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and we plan

  17. Influence of europium (Eu ) ions on the optical properties of silver ...

    Indian Academy of Sciences (India)

    Administrator

    2014-11-20

    Nov 20, 2014 ... Lead borate glasses are important and promising materi- als for optical fibre, ... groups and increases the number of non-bridging oxygen. (NBO), which ... photonic and communication applications.10–13 Among the other RE ...

  18. Critical properties of a simple spin glass model

    International Nuclear Information System (INIS)

    Aharony, A.; Imry, Y.

    1976-01-01

    The Mattis spin glass model is described as following from a particular quenched random solid solution picture, and its zero-field properties are discussed. The random field model is reviewed. The application to the spin glass problem is made and the more general scaling theory presented, and the limitations of the model are discussed

  19. Nuclear orientation experiments on the magnetic moments of europium and gadolinium nuclei

    International Nuclear Information System (INIS)

    Berg, F.G. van den.

    1984-01-01

    In this thesis, experimental results on the ground state nuclear magnetic moments of europium and gadolinium isotopes are presented. The nuclear orientation experiments were performed on europium and gadolinium nuclei embedded in several host lattices. Attention is paid to the hyperfine interactions of the ions. Nuclear moments are discussed in the context of nuclear shell model. The theoretical framework is described for nuclear structure and low temperature nuclear orientation. Furthermore, the experimental techniques, the technical arrangement of the orientation apparatus, the methods for radiative detection and the use of nuclear orientation thermometry are described. (Auth.)

  20. Assessing the Validity of the Simplified Potential Energy Clock Model for Modeling Glass-Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grillet, Anne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Strong, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dai, Steve Xunhu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Glass-ceramic seals may be the future of hermetic connectors at Sandia National Laboratories. They have been shown capable of surviving higher temperatures and pressures than amorphous glass seals. More advanced finite-element material models are required to enable model-based design and provide evidence that the hermetic connectors can meet design requirements. Glass-ceramics are composite materials with both crystalline and amorphous phases. The latter gives rise to (non-linearly) viscoelastic behavior. Given their complex microstructures, glass-ceramics may be thermorheologically complex, a behavior outside the scope of currently implemented constitutive models at Sandia. However, it was desired to assess if the Simplified Potential Energy Clock (SPEC) model is capable of capturing the material response. Available data for SL 16.8 glass-ceramic was used to calibrate the SPEC model. Model accuracy was assessed by comparing model predictions with shear moduli temperature dependence and high temperature 3-point bend creep data. It is shown that the model can predict the temperature dependence of the shear moduli and 3- point bend creep data. Analysis of the results is presented. Suggestions for future experiments and model development are presented. Though further calibration is likely necessary, SPEC has been shown capable of modeling glass-ceramic behavior in the glass transition region but requires further analysis below the transition region.