WorldWideScience

Sample records for modeling existing observations

  1. LDEF data: Comparisons with existing models

    Science.gov (United States)

    Coombs, Cassandra R.; Watts, Alan J.; Wagner, John D.; Atkinson, Dale R.

    1993-04-01

    The relationship between the observed cratering impact damage on the Long Duration Exposure Facility (LDEF) versus the existing models for both the natural environment of micrometeoroids and the man-made debris was investigated. Experimental data was provided by several LDEF Principal Investigators, Meteoroid and Debris Special Investigation Group (M&D SIG) members, and by the Kennedy Space Center Analysis Team (KSC A-Team) members. These data were collected from various aluminum materials around the LDEF satellite. A PC (personal computer) computer program, SPENV, was written which incorporates the existing models of the Low Earth Orbit (LEO) environment. This program calculates the expected number of impacts per unit area as functions of altitude, orbital inclination, time in orbit, and direction of the spacecraft surface relative to the velocity vector, for both micrometeoroids and man-made debris. Since both particle models are couched in terms of impact fluxes versus impactor particle size, and much of the LDEF data is in the form of crater production rates, scaling laws have been used to relate the two. Also many hydrodynamic impact computer simulations were conducted, using CTH, of various impact events, that identified certain modes of response, including simple metallic target cratering, perforations and delamination effects of coatings.

  2. Observational constraints on the possible existence of cosmological cosmic rays

    International Nuclear Information System (INIS)

    Montmerle, T.

    1977-01-01

    The possibility that cosmological cosmic rays (''CCR'': protons and α particles) may have existed in the post recombination era of the early universe (z approximately 100) is examined. In this context, the CCR interact with the ambient gaseous medium. High energy collisions ( (>=) 1 GeV/n ) give rise to diffuse background γ-rays via π deg decay, and low energy collisions (approximately 10-100 MeV/n) give rise to light nuclei: 6 Li, 7 Li and 7 Be (via the α + α sion and ionization losses into account, a system of coupled time-dependent transport equations is solved in the case of a CCR burst. The 1-100 MeV γ-ray background spectrum and the light element abundances are then taken as observational constraints on the CCR hypothesis. It is found that, in this framework, it is possible to account simultaneously for the γ-ray background spectrum and for the otherwise unexplained 7 Li/H ratio, but there are some difficulties with the 7 Li/ 6 Li ratio. To avoid these, it is possible, because of the spread in the γ-ray data, to lower the CCR flux, so that the CCR hypothesis cannot be ruled out on this basis at present. (author)

  3. Bibliography - Existing Guidance for External Hazard Modelling

    International Nuclear Information System (INIS)

    Decker, Kurt

    2015-01-01

    The bibliography of deliverable D21.1 includes existing international and national guidance documents and standards on external hazard assessment together with a selection of recent scientific papers, which are regarded to provide useful information on the state of the art of external event modelling. The literature database is subdivided into International Standards, National Standards, and Science Papers. The deliverable is treated as a 'living document' which is regularly updated as necessary during the lifetime of ASAMPSA-E. The current content of the database is about 140 papers. Most of the articles are available as full-text versions in PDF format. The deliverable is available as an EndNote X4 database and as text files. The database includes the following information: Reference, Key words, Abstract (if available), PDF file of the original paper (if available), Notes (comments by the ASAMPSA-E consortium if available) The database is stored at the ASAMPSA-E FTP server hosted by IRSN. PDF files of original papers are accessible through the EndNote software

  4. COMPARATIVE ANALYSIS OF SOME EXISTING KINETIC MODELS ...

    African Journals Online (AJOL)

    The biosorption of three heavy metal ions namely; Zn2+, Cu2+ and Mn2+ using five microorganisms namely; Bacillus circulans, Pseudomonas aeruginosa, Staphylococcus xylosus, Streptomyces rimosus and Yeast (Saccharomyces sp.) were studied. In this paper, the effectiveness of six existing and two proposed kinetic ...

  5. Existing and Emerging Best Practices for Ocean Observation

    Science.gov (United States)

    Pearlman, J.; Buttigieg, P. L.; Simpson, P.; Arko, R. A.; Garello, R.; Pissierssens, P.

    2016-12-01

    Best practices emerge from experience, usually at the local level - in universities, private and public research institutions and other organizations. Large programs such as the European FixO3 for fixed mooring observations or IOOS in the USA for data management may document best practices and urge propagation of techniques. Sometimes communities come together under projects such as the Ocean Data Interoperability Project (ODIP), AtlantOS or international organizations such as the UNESCO IODE or GOOS to create a forum for discussing, recommending and documenting observation and data practices. On the whole the process is fragmented and results are difficult to sustain. From this perspective, several projects and organizations such as ODIP, IODE and AtlantOS are working in collaboration with Ocean Networks Canada, IOOS and selected European projects to address means of improved access to documented best practices and a way to provide the observing community with a compendium that can be sustained for use in training new oceanographers and data scientists and also providing references for experts that are working across disciplines. Where practical, a solution should reach across science communities and networks to support multi-disciplinary applications The initial challenge is to create a base for efficient discovery of documented best practices and getting sufficient documentation in the first place. Working across disciplines, this becomes both a question of appropriate vocabularies and some means for a scientist to understand the background, provenance (including any certification) and value of a best practice. New approaches to semantics and Linked Data, and increasing use of persistent identifiers such as Open Researcher and Contributor IDs (ORCIDs) and International Geo Sample Numbers (IGSNs), will facilitate distributed search across repositories. The approach must be scalable and easy for users to engage so provision of best practice documentation has a low

  6. Review of existing landfill leachate production models

    International Nuclear Information System (INIS)

    Khan, T.A.

    2000-01-01

    The protection of water resources is a fundamental consideration in managing landfill operations. Landfill sites should be designed and operated so as to control leachate production and hence minimize the risk of surface and ground water pollution. A further important development is the use of computer models to estimate the production of leachate from landfill sites. It is revealed from the literature that a number of landfill leachate management model lave been development in recent years. These models allow different engineering schemes to be evaluated and are essential tools for design and operation managements of modern landfills. This paper describes a review of such models mainly focused on their theory, practicability, data requirements, suitability to real situation and usefulness. An evaluation of these models identifies. (author)

  7. Modelling the feasibility of retrofitting hydropower to existing South ...

    African Journals Online (AJOL)

    An investigation was carried out with the primary objective of ascertaining whether it is possible to develop a model for determining the feasibility of retrofitting hydropower to existing dams in South Africa. The need for such a model is primarily due to the growing importance of small-scale hydropower projects resulting from ...

  8. A coupled chemotaxis-fluid model: Global existence

    KAUST Repository

    Liu, Jian-Guo; Lorz, Alexander

    2011-01-01

    We consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis-Navier- Stokes system in two space dimensions, we obtain global existence for large data. In three space dimensions, we prove global existence of weak solutions for the chemotaxis-Stokes system with nonlinear diffusion for the cell density.© 2011 Elsevier Masson SAS. All rights reserved.

  9. A coupled chemotaxis-fluid model: Global existence

    KAUST Repository

    Liu, Jian-Guo

    2011-09-01

    We consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis-Navier- Stokes system in two space dimensions, we obtain global existence for large data. In three space dimensions, we prove global existence of weak solutions for the chemotaxis-Stokes system with nonlinear diffusion for the cell density.© 2011 Elsevier Masson SAS. All rights reserved.

  10. Business-as-Unusual: Existing policies in energy model baselines

    International Nuclear Information System (INIS)

    Strachan, Neil

    2011-01-01

    Baselines are generally accepted as a key input assumption in long-term energy modelling, but energy models have traditionally been poor on identifying baselines assumptions. Notably, transparency on the current policy content of model baselines is now especially critical as long-term climate mitigation policies have been underway for a number of years. This paper argues that the range of existing energy and emissions policies are an integral part of any long-term baseline, and hence already represent a 'with-policy' baseline, termed here a Business-as-Unusual (BAuU). Crucially, existing energy policies are not a sunk effort; as impacts of existing policy initiatives are targeted at future years, they may be revised through iterative policy making, and their quantitative effectiveness requires ex-post verification. To assess the long-term role of existing policies in energy modelling, currently identified UK policies are explicitly stripped out of the UK MARKAL Elastic Demand (MED) optimisation energy system model, to generate a BAuU (with-policy) and a REF (without policy) baseline. In terms of long-term mitigation costs, policy-baseline assumptions are comparable to another key exogenous modelling assumption - that of global fossil fuel prices. Therefore, best practice in energy modelling would be to have both a no-policy reference baseline, and a current policy reference baseline (BAuU). At a minimum, energy modelling studies should have a transparent assessment of the current policy contained within the baseline. Clearly identifying and comparing policy-baseline assumptions are required for cost effective and objective policy making, otherwise energy models will underestimate the true cost of long-term emissions reductions.

  11. Existence of global attractor for the Trojan Y Chromosome model

    Directory of Open Access Journals (Sweden)

    Xiaopeng Zhao

    2012-04-01

    Full Text Available This paper is concerned with the long time behavior of solution for the equation derived by the Trojan Y Chromosome (TYC model with spatial spread. Based on the regularity estimates for the semigroups and the classical existence theorem of global attractors, we prove that this equations possesses a global attractor in $H^k(\\Omega^4$ $(k\\geq 0$ space.

  12. How Can Blockchain Technology Disrupt the Existing Business Models?

    OpenAIRE

    Witold Nowiński; Miklós Kozma

    2017-01-01

    Objective: The main purpose of the paper is to show that blockchain technology may disrupt the existing business models and to explore how this may occur. Research Design & Methods: This is a theory development paper which relies on a literature review and desk re-search. The discussion of the reviewed sources leads to the formulation of three re-search propositions. Findings: The paper provides a short overview of key literature on business models and business model innovation, indic...

  13. Pharmacokinetic modeling of gentamicin in treatment of infective endocarditis: Model development and validation of existing models

    Science.gov (United States)

    van der Wijk, Lars; Proost, Johannes H.; Sinha, Bhanu; Touw, Daan J.

    2017-01-01

    Gentamicin shows large variations in half-life and volume of distribution (Vd) within and between individuals. Thus, monitoring and accurately predicting serum levels are required to optimize effectiveness and minimize toxicity. Currently, two population pharmacokinetic models are applied for predicting gentamicin doses in adults. For endocarditis patients the optimal model is unknown. We aimed at: 1) creating an optimal model for endocarditis patients; and 2) assessing whether the endocarditis and existing models can accurately predict serum levels. We performed a retrospective observational two-cohort study: one cohort to parameterize the endocarditis model by iterative two-stage Bayesian analysis, and a second cohort to validate and compare all three models. The Akaike Information Criterion and the weighted sum of squares of the residuals divided by the degrees of freedom were used to select the endocarditis model. Median Prediction Error (MDPE) and Median Absolute Prediction Error (MDAPE) were used to test all models with the validation dataset. We built the endocarditis model based on data from the modeling cohort (65 patients) with a fixed 0.277 L/h/70kg metabolic clearance, 0.698 (±0.358) renal clearance as fraction of creatinine clearance, and Vd 0.312 (±0.076) L/kg corrected lean body mass. External validation with data from 14 validation cohort patients showed a similar predictive power of the endocarditis model (MDPE -1.77%, MDAPE 4.68%) as compared to the intensive-care (MDPE -1.33%, MDAPE 4.37%) and standard (MDPE -0.90%, MDAPE 4.82%) models. All models acceptably predicted pharmacokinetic parameters for gentamicin in endocarditis patients. However, these patients appear to have an increased Vd, similar to intensive care patients. Vd mainly determines the height of peak serum levels, which in turn correlate with bactericidal activity. In order to maintain simplicity, we advise to use the existing intensive-care model in clinical practice to avoid

  14. Pharmacokinetic modeling of gentamicin in treatment of infective endocarditis: Model development and validation of existing models.

    Directory of Open Access Journals (Sweden)

    Anna Gomes

    Full Text Available Gentamicin shows large variations in half-life and volume of distribution (Vd within and between individuals. Thus, monitoring and accurately predicting serum levels are required to optimize effectiveness and minimize toxicity. Currently, two population pharmacokinetic models are applied for predicting gentamicin doses in adults. For endocarditis patients the optimal model is unknown. We aimed at: 1 creating an optimal model for endocarditis patients; and 2 assessing whether the endocarditis and existing models can accurately predict serum levels. We performed a retrospective observational two-cohort study: one cohort to parameterize the endocarditis model by iterative two-stage Bayesian analysis, and a second cohort to validate and compare all three models. The Akaike Information Criterion and the weighted sum of squares of the residuals divided by the degrees of freedom were used to select the endocarditis model. Median Prediction Error (MDPE and Median Absolute Prediction Error (MDAPE were used to test all models with the validation dataset. We built the endocarditis model based on data from the modeling cohort (65 patients with a fixed 0.277 L/h/70kg metabolic clearance, 0.698 (±0.358 renal clearance as fraction of creatinine clearance, and Vd 0.312 (±0.076 L/kg corrected lean body mass. External validation with data from 14 validation cohort patients showed a similar predictive power of the endocarditis model (MDPE -1.77%, MDAPE 4.68% as compared to the intensive-care (MDPE -1.33%, MDAPE 4.37% and standard (MDPE -0.90%, MDAPE 4.82% models. All models acceptably predicted pharmacokinetic parameters for gentamicin in endocarditis patients. However, these patients appear to have an increased Vd, similar to intensive care patients. Vd mainly determines the height of peak serum levels, which in turn correlate with bactericidal activity. In order to maintain simplicity, we advise to use the existing intensive-care model in clinical practice to

  15. Shelter models and observations

    DEFF Research Database (Denmark)

    Peña, Alfredo; Bechmann, Andreas; Conti, Davide

    This report documents part of the work performed by work package (WP) 3 of the ‘Online WAsP’ project funded by the Danish Energy Technology and Demonstration Program (EUDP). WP3 initially identified the shortcomings of the current WAsP engine for small and medium wind turbines (Peña et al., 2014b......), adapted the WAsP engine to OnlineWAsP (www.wasponline.dk), and made an effort to quantify the error and the uncertainty, first of the obstacle model in WAsP and later ofthe WAsP model chain. This report documents the work done for the obstacle model. In addition, EUDP supports the IEA task 27 on ‘small...... in the wake of a fence. The experiment is the basis of the study of the error and uncertainty of the obstacle models....

  16. Percolation Model for the Existence of a Mitochondrial Eve

    CERN Document Server

    Neves, A G M

    2005-01-01

    We look at the process of inheritance of mitochondrial DNA as a percolation model on trees equivalent to the Galton-Watson process. The model is exactly solvable for its percolation threshold $p_c$ and percolation probability critical exponent. In the approximation of small percolation probability, and assuming limited progeny number, we are also able to find the maximum and minimum percolation probabilities over all probability distributions for the progeny number constrained to a given $p_c$. As a consequence, we can relate existence of a mitochondrial Eve to quantitative knowledge about demographic evolution of early mankind. In particular, we show that a mitochondrial Eve may exist even in an exponentially growing population, provided that the average number of children per individual is constrained to a small range depending on the probability $p$ that a newborn child is a female.

  17. A review on existing OSSEs and their implications on European marine observation requirements

    Science.gov (United States)

    She, Jun

    2017-04-01

    Marine observations are essential for understanding marine processes and improving the forecast quality, they are also expensive. It has always been an important issue to optimize sampling schemes of marine observational networks so that the value of marine observations can be maximized and the cost can be lowered. Ocean System Simulation Experiment (OSSE) is an efficient tool in assessing impacts of proposed future sampling schemes on reconstructing and forecasting the ocean and ecosystem conditions. In this study existing OSSE research results from EU projects (such as JERICO, OPEC, SANGOMA, E-AIMS and AtlantOS), institutional studies and review papers are collected and analyzed, according to regions (Arctic, Baltic, N. Atlantic, Mediterranean Sea and Black Sea) and instruments/variables. The preliminary results show that significant gaps for OSSEs in regions and instruments. Among the existing OSSEs, Argo (Bio-Argo and Deep See Argo), gliders and ferrybox are the most often investigated instruments. Although many of the OSSEs are dedicated for very specific monitoring strategies and not sufficiently comprehensive for making solid recommendations for optimizing the existing networks, the detailed findings for future marine observation requirements from the OSSEs will be summarized in the presentation. Recommendations for systematic OSSEs for optimizing European marine observation networks are also given.

  18. Modeling and validation of existing VAV system components

    Energy Technology Data Exchange (ETDEWEB)

    Nassif, N.; Kajl, S.; Sabourin, R. [Ecole de Technologie Superieure, Montreal, PQ (Canada)

    2004-07-01

    The optimization of supervisory control strategies and local-loop controllers can improve the performance of HVAC (heating, ventilating, air-conditioning) systems. In this study, the component model of the fan, the damper and the cooling coil were developed and validated against monitored data of an existing variable air volume (VAV) system installed at Montreal's Ecole de Technologie Superieure. The measured variables that influence energy use in individual HVAC models included: (1) outdoor and return air temperature and relative humidity, (2) supply air and water temperatures, (3) zone airflow rates, (4) supply duct, outlet fan, mixing plenum static pressures, (5) fan speed, and (6) minimum and principal damper and cooling and heating coil valve positions. The additional variables that were considered, but not measured were: (1) fan and outdoor airflow rate, (2) inlet and outlet cooling coil relative humidity, and (3) liquid flow rate through the heating or cooling coils. The paper demonstrates the challenges of the validation process when monitored data of existing VAV systems are used. 7 refs., 11 figs.

  19. THE FLAT TAX - A COMPARATIVE STUDY OF THE EXISTING MODELS

    Directory of Open Access Journals (Sweden)

    Schiau (Macavei Laura - Liana

    2011-07-01

    Full Text Available In the two last decades the flat tax systems have spread all around the globe from East and Central Europe to Asia and Central America. Many specialists consider this phenomenon a real fiscal revolution, but others see it as a mistake as long as the new systems are just a feint of the true flat tax designed by the famous Stanford University professors Robert Hall and Alvin Rabushka. In this context this paper tries to determine which of the existing flat tax systems resemble the true flat tax model by comparing and contrasting their main characteristics with the features of the model proposed by Hall and Rabushka. The research also underlines the common features and the differences between the existing models. The idea of this kind of study is not really new, others have done it but the comparison was limited to one country. For example Emil Kalchev from New Bulgarian University has asses the Bulgarian income system, by comparing it with the flat tax and concluding that taxation in Bulgaria is not simple, neutral and non-distortive. Our research is based on several case studies and on compare and contrast qualitative and quantitative methods. The study starts form the fiscal design drawn by the two American professors in the book The Flat Tax. Four main characteristics of the flat tax system were chosen in order to build the comparison: fiscal design, simplicity, avoidance of double taxation and uniformity of the tax rates. The jurisdictions chosen for the case study are countries all around the globe with fiscal systems which are considered flat tax systems. The results obtained show that the fiscal design of Hong Kong is the only flat tax model which is built following an economic logic and not a legal sense, being in the same time a simple and transparent system. Others countries as Slovakia, Albania, Macedonia in Central and Eastern Europe fulfill the requirement regarding the uniformity of taxation. Other jurisdictions avoid the double

  20. Observation models in radiocarbon calibration

    International Nuclear Information System (INIS)

    Jones, M.D.; Nicholls, G.K.

    2001-01-01

    The observation model underlying any calibration process dictates the precise mathematical details of the calibration calculations. Accordingly it is important that an appropriate observation model is used. Here this is illustrated with reference to the use of reservoir offsets where the standard calibration approach is based on a different model to that which the practitioners clearly believe is being applied. This sort of error can give rise to significantly erroneous calibration results. (author). 12 refs., 1 fig

  1. Trends in observable passive solar design strategies for existing homes in the U.S

    International Nuclear Information System (INIS)

    Kruzner, Kelly; Cox, Kristin; Machmer, Brian; Klotz, Leidy

    2013-01-01

    Passive design strategies are among the most cost-effective methods to reduce energy consumption in buildings. However, the prevalence of these strategies in existing U.S. homes is not well understood. To help address this issue, this research evaluated a nationally-representative sample of 1000 existing homes distributed geographically across the U.S. Using satellite images, each building was evaluated for three passive design strategies: orientation, roof color, and level of shading. Several statistically significant regional trends were identified. For example, existing homes in the High Plains, Ohio Valley, Northwest, and Southern regions show a statistically significant trend towards orientation in the East–West direction, an effective passive design strategy. Less intuitively, in terms of what would seem to be optimal passive design, buildings in the High Plains and Ohio Valley generally have lighter roof colors than buildings in the warmer Southwest region. At the national level, no statistically significant trends were found towards the passive design strategies evaluated. These trends give us no reason to believe they were a major consideration in the design of existing homes. Policy measures and education may be required to take advantage of the opportunity for cost-effective energy savings through more widespread passive solar design. - Highlights: ► GoogleMaps to examine implementation of cost-effective, observable passive solar strategies in U.S. houses. ► No national trends toward passive solar design in U.S.—a missed opportunity. ► Some regional passive solar trends in U.S. for house orientation, roof color

  2. Observable cosmology and cosmological models

    International Nuclear Information System (INIS)

    Kardashev, N.S.; Lukash, V.N.; Novikov, I.D.

    1987-01-01

    Modern state of observation cosmology is briefly discussed. Among other things, a problem, related to Hibble constant and slowdown constant determining is considered. Within ''pancake'' theory hot (neutrino) cosmological model explains well the large-scale structure of the Universe, but does not explain the galaxy formation. A cold cosmological model explains well light object formation, but contradicts data on large-scale structure

  3. Observations involving broadband impedance modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J S [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impedance. This paper discusses three aspects of broadband impedance modelling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f. cavity. The last is a discussion of requirements for the mathematical form of an impedance which follow from the general properties of impedances. (author)

  4. Observations involving broadband impedance modelling

    International Nuclear Information System (INIS)

    Berg, J.S.

    1995-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impendance. This paper discusses three aspects of broadband impendance modeling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f cavity. The last is a discussion of requirements for the mathematical form of an impendance which follow from the general properties of impendances

  5. Greening Existing Buildings in Contemporary Iraqi Urban Reality/ Virtual Model

    Directory of Open Access Journals (Sweden)

    Saba Jabar Neama Al-Khafaji

    2015-11-01

    Full Text Available The approach of greening existing buildings, is an urgent necessity, because the greening operation provides the speed and optimal efficiency in the environmental performance, as well as keeping up with the global green architecture revolution. Therefore, greening existing buildings in Iraq is important for trends towards renewable energies, because of what the country went through economic conditions and crises and wars which kept the country away from what took place globally in this issue. The research problem is: insufficient knowledge about the importance and the mechanism of the greening of existing buildings, including its environmental and economic dimensions, by rationalization of energy consumption and preserving the environment. The research objective is: clarifying the importance of greening existing buildings environmentally and economically, providing a virtual experience for greening the presidency building of Baghdad University, through advanced computer program. The main conclusions is: there is difference representing by reducing the disbursed thermal loads amount for cooling in summer and heating in winter through the use of computerized program (DesignBuilder and that after the implementation of greening operations on the building envelope, which confirms its effectiveness in raising the energy performance efficiency inside the building. Hence, the importance of the application of greening existing buildings approach in Iraq, to bring back Iraqi architecture to environmental and local track proper.

  6. Personnel shift assignment: Existence conditions and network models

    NARCIS (Netherlands)

    van den Berg, Jeroen P.; van den Berg, J.P.; Panton, David M.

    1994-01-01

    The personnel scheduling problem is known to be a five-stage process in which the final stage involves the assignment of shifts to the days worked in the schedule. This paper discusses the existence conditions for both continuous and forward rotating shift assignments and heuristic network

  7. Observational modeling of topological spaces

    International Nuclear Information System (INIS)

    Molaei, M.R.

    2009-01-01

    In this paper a model for a multi-dimensional observer by using of the fuzzy theory is presented. Relative form of Tychonoff theorem is proved. The notion of topological entropy is extended. The persistence of relative topological entropy under relative conjugate relation is proved.

  8. Global existence result for the generalized Peterlin viscoelastic model

    Czech Academy of Sciences Publication Activity Database

    Lukáčová-Medviďová, M.; Mizerová, H.; Nečasová, Šárka; Renardy, M.

    2017-01-01

    Roč. 49, č. 4 (2017), s. 2950-2964 ISSN 0036-1410 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Peterlin viscoelastic equations * global existence * weak solutions Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.648, year: 2016 http://epubs.siam.org/doi/abs/10.1137/16M1068505

  9. Clinical prediction in defined populations: a simulation study investigating when and how to aggregate existing models

    Directory of Open Access Journals (Sweden)

    Glen P. Martin

    2017-01-01

    Full Text Available Abstract Background Clinical prediction models (CPMs are increasingly deployed to support healthcare decisions but they are derived inconsistently, in part due to limited data. An emerging alternative is to aggregate existing CPMs developed for similar settings and outcomes. This simulation study aimed to investigate the impact of between-population-heterogeneity and sample size on aggregating existing CPMs in a defined population, compared with developing a model de novo. Methods Simulations were designed to mimic a scenario in which multiple CPMs for a binary outcome had been derived in distinct, heterogeneous populations, with potentially different predictors available in each. We then generated a new ‘local’ population and compared the performance of CPMs developed for this population by aggregation, using stacked regression, principal component analysis or partial least squares, with redevelopment from scratch using backwards selection and penalised regression. Results While redevelopment approaches resulted in models that were miscalibrated for local datasets of less than 500 observations, model aggregation methods were well calibrated across all simulation scenarios. When the size of local data was less than 1000 observations and between-population-heterogeneity was small, aggregating existing CPMs gave better discrimination and had the lowest mean square error in the predicted risks compared with deriving a new model. Conversely, given greater than 1000 observations and significant between-population-heterogeneity, then redevelopment outperformed the aggregation approaches. In all other scenarios, both aggregation and de novo derivation resulted in similar predictive performance. Conclusion This study demonstrates a pragmatic approach to contextualising CPMs to defined populations. When aiming to develop models in defined populations, modellers should consider existing CPMs, with aggregation approaches being a suitable modelling

  10. Managing Tensions Between New and Existing Business Models

    DEFF Research Database (Denmark)

    Sund, Kristian J.; Bogers, Marcel; Villarroel Fernandez, Juan Andrei

    2016-01-01

    Exploring new business models may be a good way to stay competitive, but doing so can create tensions internally, in areas such as organizational structure and competition for resources. Companies exploring business model innovation may not recognize the inevitability of these tensions and thus b...... be poorly prepared to manage them. But understanding these issues may lessen some of the organizational challenges associated with business model innovation....

  11. INTERVAL OBSERVER FOR A BIOLOGICAL REACTOR MODEL

    Directory of Open Access Journals (Sweden)

    T. A. Kharkovskaia

    2014-05-01

    Full Text Available The method of an interval observer design for nonlinear systems with parametric uncertainties is considered. The interval observer synthesis problem for systems with varying parameters consists in the following. If there is the uncertainty restraint for the state values of the system, limiting the initial conditions of the system and the set of admissible values for the vector of unknown parameters and inputs, the interval existence condition for the estimations of the system state variables, containing the actual state at a given time, needs to be held valid over the whole considered time segment as well. Conditions of the interval observers design for the considered class of systems are shown. They are: limitation of the input and state, the existence of a majorizing function defining the uncertainty vector for the system, Lipschitz continuity or finiteness of this function, the existence of an observer gain with the suitable Lyapunov matrix. The main condition for design of such a device is cooperativity of the interval estimation error dynamics. An individual observer gain matrix selection problem is considered. In order to ensure the property of cooperativity for interval estimation error dynamics, a static transformation of coordinates is proposed. The proposed algorithm is demonstrated by computer modeling of the biological reactor. Possible applications of these interval estimation systems are the spheres of robust control, where the presence of various types of uncertainties in the system dynamics is assumed, biotechnology and environmental systems and processes, mechatronics and robotics, etc.

  12. comparative analysis of some existing kinetic models with proposed

    African Journals Online (AJOL)

    IGNATIUS NWIDI

    two statistical parameters namely; linear regression coefficient of correlation (R2) and ... Keynotes: Heavy metals, Biosorption, Kinetics Models, Comparative analysis, Average Relative Error. 1. ... If the flow rate is low, a simple manual batch.

  13. How Can Blockchain Technology Disrupt the Existing Business Models?

    Directory of Open Access Journals (Sweden)

    Witold Nowiński

    2017-09-01

    Contribution & Value Added: This study provides an analysis of the possible impact of blockchain technology on business model innovation. Blockchain technology is gaining momentum with more and more diverse applications, as well as increasing numbers of actors involved in its applications. This paper contributes to our understanding of the possible applications of blockchain technology to businesses, and in particular to its impact on business models.

  14. Trampoline Effect: Observations and Modeling

    Science.gov (United States)

    Guyer, R.; Larmat, C. S.; Ulrich, T. J.

    2009-12-01

    The Iwate-Miyagi earthquake at site IWTH25 (14 June 2008) had large, asymmetric at surface vertical accelerations prompting the sobriquet trampoline effect (Aoi et. al. 2008). In addition the surface acceleration record showed long-short waiting time correlations and vertical-horizontal acceleration correlations. A lumped element model, deduced from the equations of continuum elasticity, is employed to describe the behavior at this site in terms of a surface layer and substrate. Important ingredients in the model are the nonlinear vertical coupling between the surface layer and the substrate and the nonlinear horizontal frictional coupling between the surface layer and the substrate. The model produces results in qualitative accord with observations: acceleration asymmetry, Fourier spectrum, waiting time correlations and vertical acceleration-horizontal acceleration correlations. [We gratefully acknowledge the support of the U. S. Department of Energy through the LANL/LDRD Program for this work].

  15. Hyperbolic Plykin attractor can exist in neuron models

    DEFF Research Database (Denmark)

    Belykh, V.; Belykh, I.; Mosekilde, Erik

    2005-01-01

    Strange hyperbolic attractors are hard to find in real physical systems. This paper provides the first example of a realistic system, a canonical three-dimensional (3D) model of bursting neurons, that is likely to have a strange hyperbolic attractor. Using a geometrical approach to the study...... of the neuron model, we derive a flow-defined Poincare map giving ail accurate account of the system's dynamics. In a parameter region where the neuron system undergoes bifurcations causing transitions between tonic spiking and bursting, this two-dimensional map becomes a map of a disk with several periodic...... holes. A particular case is the map of a disk with three holes, matching the Plykin example of a planar hyperbolic attractor. The corresponding attractor of the 3D neuron model appears to be hyperbolic (this property is not verified in the present paper) and arises as a result of a two-loop (secondary...

  16. Summary session B: more observations at existing accelerators and concerns for future machines

    International Nuclear Information System (INIS)

    Harkay, K.

    2004-01-01

    Beginning with the International Workshop on Multibunch Instabilities in Tsukuba (KEK, 1997) (1), and continuing with special Electron Cloud workshops in Santa Fe (LANL/ANL, 2000) (2), Tsukuba (KEK, 2001) (3), Geneva (CERN, 2002) (4) and the present workshop, it is remarkable that new observations of electron cloud effects continue to be reported, spreading from proton rings to positron and electron rings to heavy-ion linacs and rings. This paper summarizes a rich collection of recent observations, as well as issues for future machines, presented in Session B. An attempt is also made to summarize conclusions and questions raised by the presenters. Efforts at several proton, positron, electron (colliders), and ion rings and linacs continue to characterize and finetune our understanding of electron cloud effects and the generation and suppression of electron clouds. An incomplete outline of the topics presented and related machines follows: (1) EC suppression - (a) Scrubbing (SPS, RHIC); (b) Solenoid (PEPII, KEKB, KEK-PS, RHIC, PSR); (c) TiN, NEG (PEPII, PSR, RHIC, SPS, others); and (d) EC Collectors (HCX, KEK-PS); (2) EC vs. pressure (RHIC, SPS, KEKB, PEPII); (3) Bunch length effect (SPS, RHIC); (4) Memory effect and EC lifetime (PSR, KEKB, KEKPS, SPS); and (5) New EC diagnostics - (a) RFA in quads (SPS, PSR (planned)); (b) EC sweeper (PSR, KEK-PS); (c) HCX GESD: electron and gas emission rates; (d) Microwave TE (more work needed). Significant progress has been made in identifying and quantifying those surface parameters most critical in the accurate prediction of electron cloud effects. A strong focus of experimental efforts is in benchmarking analytical and numerical modeling with measured data, and some consistency is emerging, although work remains to be done.

  17. Comparative analysis of existing models for power-grid synchronization

    International Nuclear Information System (INIS)

    Nishikawa, Takashi; Motter, Adilson E

    2015-01-01

    The dynamics of power-grid networks is becoming an increasingly active area of research within the physics and network science communities. The results from such studies are typically insightful and illustrative, but are often based on simplifying assumptions that can be either difficult to assess or not fully justified for realistic applications. Here we perform a comprehensive comparative analysis of three leading models recently used to study synchronization dynamics in power-grid networks—a fundamental problem of practical significance given that frequency synchronization of all power generators in the same interconnection is a necessary condition for a power grid to operate. We show that each of these models can be derived from first principles within a common framework based on the classical model of a generator, thereby clarifying all assumptions involved. This framework allows us to view power grids as complex networks of coupled second-order phase oscillators with both forcing and damping terms. Using simple illustrative examples, test systems, and real power-grid datasets, we study the inherent frequencies of the oscillators as well as their coupling structure, comparing across the different models. We demonstrate, in particular, that if the network structure is not homogeneous, generators with identical parameters need to be modeled as non-identical oscillators in general. We also discuss an approach to estimate the required (dynamical) system parameters that are unavailable in typical power-grid datasets, their use for computing the constants of each of the three models, and an open-source MATLAB toolbox that we provide for these computations. (paper)

  18. Exploring Higher Education Business Models ("If Such a Thing Exists")

    Science.gov (United States)

    Harney, John O.

    2013-01-01

    The global economic recession has caused students, parents, and policymakers to reevaluate personal and societal investments in higher education--and has prompted the realization that traditional higher ed "business models" may be unsustainable. Predicting a shakeout, most presidents expressed confidence for their own school's ability to…

  19. Multi-criteria decision model for retrofitting existing buildings

    Directory of Open Access Journals (Sweden)

    M. D. Bostenaru Dan

    2004-01-01

    Full Text Available Decision is an element in the risk management process. In this paper the way how science can help in decision making and implementation for retrofitting buildings in earthquake prone urban areas is investigated. In such interventions actors from various spheres are involved. Their interests range among minimising the intervention for maximal preservation or increasing it for seismic safety. Research was conducted to see how to facilitate collaboration between these actors. A particular attention was given to the role of time in actors' preferences. For this reason, on decision level, both the processural and the personal dimension of risk management, the later seen as a task, were considered. A systematic approach was employed to determine the functional structure of a participative decision model. Three layers on which actors implied in this multi-criteria decision problem interact were identified: town, building and element. So-called 'retrofit elements' are characteristic bearers in the architectural survey, engineering simulations, costs estimation and define the realms perceived by the inhabitants. This way they represent an interaction basis for the interest groups considered in a deeper study. Such orientation means for actors' interaction were designed on other levels of intervention as well. Finally, an 'experiment' for the implementation of the decision model is presented: a strategic plan for an urban intervention towards reduction of earthquake hazard impact through retrofitting. A systematic approach proves thus to be a very good communication basis among the participants in the seismic risk management process. Nevertheless, it can only be applied in later phases (decision, implementation, control only, since it serves verifying and improving solution and not developing the concept. The 'retrofit elements' are a typical example of the detailing degree reached in the retrofit design plans in these phases.

  20. Multi-criteria decision model for retrofitting existing buildings

    Science.gov (United States)

    Bostenaru Dan, M. D.

    2004-08-01

    Decision is an element in the risk management process. In this paper the way how science can help in decision making and implementation for retrofitting buildings in earthquake prone urban areas is investigated. In such interventions actors from various spheres are involved. Their interests range among minimising the intervention for maximal preservation or increasing it for seismic safety. Research was conducted to see how to facilitate collaboration between these actors. A particular attention was given to the role of time in actors' preferences. For this reason, on decision level, both the processural and the personal dimension of risk management, the later seen as a task, were considered. A systematic approach was employed to determine the functional structure of a participative decision model. Three layers on which actors implied in this multi-criteria decision problem interact were identified: town, building and element. So-called 'retrofit elements' are characteristic bearers in the architectural survey, engineering simulations, costs estimation and define the realms perceived by the inhabitants. This way they represent an interaction basis for the interest groups considered in a deeper study. Such orientation means for actors' interaction were designed on other levels of intervention as well. Finally, an 'experiment' for the implementation of the decision model is presented: a strategic plan for an urban intervention towards reduction of earthquake hazard impact through retrofitting. A systematic approach proves thus to be a very good communication basis among the participants in the seismic risk management process. Nevertheless, it can only be applied in later phases (decision, implementation, control) only, since it serves verifying and improving solution and not developing the concept. The 'retrofit elements' are a typical example of the detailing degree reached in the retrofit design plans in these phases.

  1. Dark energy observational evidence and theoretical models

    CERN Document Server

    Novosyadlyj, B; Shtanov, Yu; Zhuk, A

    2013-01-01

    The book elucidates the current state of the dark energy problem and presents the results of the authors, who work in this area. It describes the observational evidence for the existence of dark energy, the methods and results of constraining of its parameters, modeling of dark energy by scalar fields, the space-times with extra spatial dimensions, especially Kaluza---Klein models, the braneworld models with a single extra dimension as well as the problems of positive definition of gravitational energy in General Relativity, energy conditions and consequences of their violation in the presence of dark energy. This monograph is intended for science professionals, educators and graduate students, specializing in general relativity, cosmology, field theory and particle physics.

  2. Martian Ionospheric Observation and Modeling

    Science.gov (United States)

    González-Galindo, Francisco

    2018-02-01

    measurements by different space missions. Numerical simulations by computational models able to simulate the processes that shape the ionosphere have also been commonly employed to obtain information about this region, to provide an interpretation of the observations and to fill their gaps. As a result, the Martian ionosphere is today the best known one after that of the Earth. However, there are still areas for which our knowledge is far from being complete. Examples are the details and balance of the mechanisms populating the nightside ionosphere, or a good understanding of the meteoric ionospheric layer and its variability.

  3. Modernization of existing power plants. Progress in automation and process control/observation

    International Nuclear Information System (INIS)

    Hanna, I.

    1996-01-01

    Numerous power plants are now getting on in years, and their owners have to face the question 'New plant or upgrade job ?'. Experience in the past few years has shown that in many cases modernization/upgrading of existing plants is a more favorable option than building a complete new power plant. Advantages like lower capital investment costs and avoidance of licensing risks for new plants constitute important motives for choosing the upgrade option in numerous power plants modernization projects. The defined objective here is to ensure the units' operating capability for another 20 to 25 years, sometimes supplemented by meticulous compliance with current environmental impact legislation. Another cogent argument emerges from automation engineering advances in modern-day control systems which make an effective contribution to meeting upgrading objective like: equipment/material -friendly operation, extended useful lifetime, enhanced plant reliability, enhanced plant availability, improved plant efficiency, optimized staffing levels, enhanced cost-effectiveness, compliance with today's international standards. In this context special attention is paid to the economical aspects and to the increase of plant availability. (author). 6 figs

  4. Development of an Experimental Model of Diabetes Co-Existing with Metabolic Syndrome in Rats

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar Suman

    2016-01-01

    Full Text Available Background. The incidence of metabolic syndrome co-existing with diabetes mellitus is on the rise globally. Objective. The present study was designed to develop a unique animal model that will mimic the pathological features seen in individuals with diabetes and metabolic syndrome, suitable for pharmacological screening of drugs. Materials and Methods. A combination of High-Fat Diet (HFD and low dose of streptozotocin (STZ at 30, 35, and 40 mg/kg was used to induce metabolic syndrome in the setting of diabetes mellitus in Wistar rats. Results. The 40 mg/kg STZ produced sustained hyperglycemia and the dose was thus selected for the study to induce diabetes mellitus. Various components of metabolic syndrome such as dyslipidemia (increased triglyceride, total cholesterol, LDL cholesterol, and decreased HDL cholesterol, diabetes mellitus (blood glucose, HbA1c, serum insulin, and C-peptide, and hypertension {systolic blood pressure} were mimicked in the developed model of metabolic syndrome co-existing with diabetes mellitus. In addition to significant cardiac injury, atherogenic index, inflammation (hs-CRP, decline in hepatic and renal function were observed in the HF-DC group when compared to NC group rats. The histopathological assessment confirmed presence of edema, necrosis, and inflammation in heart, pancreas, liver, and kidney of HF-DC group as compared to NC. Conclusion. The present study has developed a unique rodent model of metabolic syndrome, with diabetes as an essential component.

  5. Development of an Experimental Model of Diabetes Co-Existing with Metabolic Syndrome in Rats.

    Science.gov (United States)

    Suman, Rajesh Kumar; Ray Mohanty, Ipseeta; Borde, Manjusha K; Maheshwari, Ujwala; Deshmukh, Y A

    2016-01-01

    Background. The incidence of metabolic syndrome co-existing with diabetes mellitus is on the rise globally. Objective. The present study was designed to develop a unique animal model that will mimic the pathological features seen in individuals with diabetes and metabolic syndrome, suitable for pharmacological screening of drugs. Materials and Methods. A combination of High-Fat Diet (HFD) and low dose of streptozotocin (STZ) at 30, 35, and 40 mg/kg was used to induce metabolic syndrome in the setting of diabetes mellitus in Wistar rats. Results. The 40 mg/kg STZ produced sustained hyperglycemia and the dose was thus selected for the study to induce diabetes mellitus. Various components of metabolic syndrome such as dyslipidemia {(increased triglyceride, total cholesterol, LDL cholesterol, and decreased HDL cholesterol)}, diabetes mellitus (blood glucose, HbA1c, serum insulin, and C-peptide), and hypertension {systolic blood pressure} were mimicked in the developed model of metabolic syndrome co-existing with diabetes mellitus. In addition to significant cardiac injury, atherogenic index, inflammation (hs-CRP), decline in hepatic and renal function were observed in the HF-DC group when compared to NC group rats. The histopathological assessment confirmed presence of edema, necrosis, and inflammation in heart, pancreas, liver, and kidney of HF-DC group as compared to NC. Conclusion. The present study has developed a unique rodent model of metabolic syndrome, with diabetes as an essential component.

  6. On the existence of optimal contract mechanisms for incomplete information principal-agent models

    NARCIS (Netherlands)

    Balder, E.J.

    1997-01-01

    Two abstract results are given for the existence of optimal contract selection mechanisms in principal-agent models; by a suitable reformulation of the (almost) incentive compatibility constraint, they deal with both single- and multi-agent models. In particular, it is shown that the existence

  7. Pharmacokinetic modeling of gentamicin in treatment of infective endocarditis : Model development and validation of existing models

    NARCIS (Netherlands)

    Gomes, Anna; van der Wijk, Lars; Proost, Johannes H; Sinha, Bhanu; Touw, Daan J

    2017-01-01

    Gentamicin shows large variations in half-life and volume of distribution (Vd) within and between individuals. Thus, monitoring and accurately predicting serum levels are required to optimize effectiveness and minimize toxicity. Currently, two population pharmacokinetic models are applied for

  8. Existence and non-existence for the full thermomechanical Souza–Auricchio model of shape memory wires

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Stefanelli, U.

    2011-01-01

    Roč. 16, č. 4 (2011), s. 349-365 ISSN 1081-2865 R&D Projects: GA ČR GAP201/10/2315 Institutional research plan: CEZ:AV0Z10190503 Keywords : shape memory alloys * thermomechanics * existence result * blowup in finite time Subject RIV: BA - General Mathematics Impact factor: 1.012, year: 2011 http://mms.sagepub.com/content/early/2011/03/11/1081286510386935.abstract

  9. Existence and non-existence for the full thermomechanical Souza–Auricchio model of shape memory wires

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Stefanelli, U.

    2011-01-01

    Roč. 16, č. 4 (2011), s. 349-365 ISSN 1081-2865 R&D Projects: GA ČR GAP201/10/2315 Institutional research plan: CEZ:AV0Z10190503 Keywords : shape memory alloys * thermomechanics * existence result * blowup in finite time Subject RIV: BA - General Mathematics Impact factor: 1.012, year: 2011 http:// mms .sagepub.com/content/early/2011/03/11/1081286510386935.abstract

  10. A Note on the Observational Evidence for the Existence of Event Horizons in Astrophysical Black Hole Candidates

    Directory of Open Access Journals (Sweden)

    Cosimo Bambi

    2013-01-01

    Full Text Available Black holes have the peculiar and intriguing property of having an event horizon, a one-way membrane causally separating their internal region from the rest of the Universe. Today, astrophysical observations provide some evidence for the existence of event horizons in astrophysical black hole candidates. In this short paper, I compare the constraint we can infer from the nonobservation of electromagnetic radiation from the putative surface of these objects with the bound coming from the ergoregion instability, pointing out the respective assumptions and limitations.

  11. A note on the observational evidence for the existence of event horizons in astrophysical black hole candidates.

    Science.gov (United States)

    Bambi, Cosimo

    2013-01-01

    Black holes have the peculiar and intriguing property of having an event horizon, a one-way membrane causally separating their internal region from the rest of the Universe. Today, astrophysical observations provide some evidence for the existence of event horizons in astrophysical black hole candidates. In this short paper, I compare the constraint we can infer from the nonobservation of electromagnetic radiation from the putative surface of these objects with the bound coming from the ergoregion instability, pointing out the respective assumptions and limitations.

  12. Modelling a New Product Model on the Basis of an Existing STEP Application Protocol

    Directory of Open Access Journals (Sweden)

    B.-R. Hoehn

    2005-01-01

    Full Text Available During the last years a great range of computer aided tools has been generated to support the development process of various products. The goal of a continuous data flow, needed for high efficiency, requires powerful standards for the data exchange. At the FZG (Gear Research Centre of the Technical University of Munich there was a need for a common gear data format for data exchange between gear calculation programs. The STEP standard ISO 10303 was developed for this type of purpose, but a suitable definition of gear data was still missing, even in the Application Protocol AP 214, developed for the design process in the automotive industry. The creation of a new STEP Application Protocol or the extension of existing protocol would be a very time consumpting normative process. So a new method was introduced by FZG. Some very general definitions of an Application Protocol (here AP 214 were used to determine rules for an exact specification of the required kind of data. In this case a product model for gear units was defined based on elements of the AP 214. Therefore no change of the Application Protocol is necessary. Meanwhile the product model for gear units has been published as a VDMA paper and successfully introduced for data exchange within the German gear industry associated with FVA (German Research Organisation for Gears and Transmissions. This method can also be adopted for other applications not yet sufficiently defined by STEP. 

  13. A practical model for pressure probe system response estimation (with review of existing models)

    Science.gov (United States)

    Hall, B. F.; Povey, T.

    2018-04-01

    The accurate estimation of the unsteady response (bandwidth) of pneumatic pressure probe systems (probe, line and transducer volume) is a common practical problem encountered in the design of aerodynamic experiments. Understanding the bandwidth of the probe system is necessary to capture unsteady flow features accurately. Where traversing probes are used, the desired traverse speed and spatial gradients in the flow dictate the minimum probe system bandwidth required to resolve the flow. Existing approaches for bandwidth estimation are either complex or inaccurate in implementation, so probes are often designed based on experience. Where probe system bandwidth is characterized, it is often done experimentally, requiring careful experimental set-up and analysis. There is a need for a relatively simple but accurate model for estimation of probe system bandwidth. A new model is presented for the accurate estimation of pressure probe bandwidth for simple probes commonly used in wind tunnel environments; experimental validation is provided. An additional, simple graphical method for air is included for convenience.

  14. The landscape of existing models for high-throughput exposure assessment

    DEFF Research Database (Denmark)

    Jolliet, O.; Fantke, Peter; Huang, L.

    2017-01-01

    and ability to easily handle large datasets. For building materials a series of diffusion-based models have been developed to predict the chemicals emissions from building materials to indoor air, but existing models require complex analytical or numerical solutions, which are not suitable for LCA or HTS...... applications. Thus, existing model solutions needed to be simplified for application in LCA and HTS, and a parsimonious model has been developed by Huang et al. (2017) to address this need. For SVOCs, simplified solutions do exist, assuming constant SVOC concentrations in building materials and steadystate...... for skin permeation and volatilization as competing processes and that requires a limited number of readily available physiochemical properties would be suitable for LCA and HTS purposes. Thus, the multi-pathway exposure model for chemicals in cosmetics developed by Ernstoff et al.constitutes a suitable...

  15. Incorporation of Markov reliability models for digital instrumentation and control systems into existing PRAs

    International Nuclear Information System (INIS)

    Bucci, P.; Mangan, L. A.; Kirschenbaum, J.; Mandelli, D.; Aldemir, T.; Arndt, S. A.

    2006-01-01

    Markov models have the ability to capture the statistical dependence between failure events that can arise in the presence of complex dynamic interactions between components of digital instrumentation and control systems. One obstacle to the use of such models in an existing probabilistic risk assessment (PRA) is that most of the currently available PRA software is based on the static event-tree/fault-tree methodology which often cannot represent such interactions. We present an approach to the integration of Markov reliability models into existing PRAs by describing the Markov model of a digital steam generator feedwater level control system, how dynamic event trees (DETs) can be generated from the model, and how the DETs can be incorporated into an existing PRA with the SAPHIRE software. (authors)

  16. A Result on the Existence and Uniqueness of Stationary Solutions for a Bioconvective Flow Model

    Directory of Open Access Journals (Sweden)

    Aníbal Coronel

    2018-01-01

    Full Text Available In this note, we prove the existence and uniqueness of weak solutions for the boundary value problem modelling the stationary case of the bioconvective flow problem. The bioconvective model is a boundary value problem for a system of four equations: the nonlinear Stokes equation, the incompressibility equation, and two transport equations. The unknowns of the model are the velocity of the fluid, the pressure of the fluid, the local concentration of microorganisms, and the oxygen concentration. We derive some appropriate a priori estimates for the weak solution, which implies the existence, by application of Gossez theorem, and the uniqueness by standard methodology of comparison of two arbitrary solutions.

  17. Rupture of the atherosclerotic plaque: does a good animal model exist?

    NARCIS (Netherlands)

    Cullen, Paul; Baetta, Roberta; Bellosta, Stefano; Bernini, Franco; Chinetti, Giulia; Cignarella, Andrea; von Eckardstein, Arnold; Exley, Andrew; Goddard, Martin; Hofker, Marten; Hurt-Camejo, Eva; Kanters, Edwin; Kovanen, Petri; Lorkowski, Stefan; McPheat, William; Pentikäinen, Markku; Rauterberg, Jürgen; Ritchie, Andrew; Staels, Bart; Weitkamp, Benedikt; de Winther, Menno

    2003-01-01

    By its very nature, rupture of the atherosclerotic plaque is difficult to study directly in humans. A good animal model would help us not only to understand how rupture occurs but also to design and test treatments to prevent it from happening. However, several difficulties surround existing models

  18. Existence and uniqueness of solution for a model problem of transonic flow

    International Nuclear Information System (INIS)

    Tangmanee, S.

    1985-11-01

    A model problem of transonic flow ''the Tricomi equation'' bounded by the rectangular-curve boundary is studied. We transform the model problem into a symmetric positive system and an admissible boundary condition is posed. We show that with some conditions the existence and uniqueness of the solution are guaranteed. (author)

  19. Observability and synchronization of neuron models

    Science.gov (United States)

    Aguirre, Luis A.; Portes, Leonardo L.; Letellier, Christophe

    2017-10-01

    Observability is the property that enables recovering the state of a dynamical system from a reduced number of measured variables. In high-dimensional systems, it is therefore important to make sure that the variable recorded to perform the analysis conveys good observability of the system dynamics. The observability of a network of neuron models depends nontrivially on the observability of the node dynamics and on the topology of the network. The aim of this paper is twofold. First, to perform a study of observability using four well-known neuron models by computing three different observability coefficients. This not only clarifies observability properties of the models but also shows the limitations of applicability of each type of coefficients in the context of such models. Second, to study the emergence of phase synchronization in networks composed of neuron models. This is done performing multivariate singular spectrum analysis which, to the best of the authors' knowledge, has not been used in the context of networks of neuron models. It is shown that it is possible to detect phase synchronization: (i) without having to measure all the state variables, but only one (that provides greatest observability) from each node and (ii) without having to estimate the phase.

  20. Observational test for the existence of a rotating black hole in Cyg X-1. [Gravitatinal effects, polarization properties

    Energy Technology Data Exchange (ETDEWEB)

    Stark, R F; Connors, P A [Oxford Univ. (UK). Dept. of Astrophysics

    1977-03-31

    It is stated that the degree and plane of linear polarisation of the radiation from Cyg X-1 are being investigated by X-ray satellite experiments. This radiation can be explained as coming from an accretion disk around a black hole, the polarisation of the X-rays being due to electron scattering in the hotter inner regions of the disk. Existing predictions of the polarisation properties, as a function of energy, have been based on a Newtonian approximation, thus neglecting gravitational effects on the rays as they propagate from the surface of the disk to an observer at infinity. Preliminary results are here given of a full general relativistic calculation that shows that gravitational effects completely alter the polarisation properties, and provide a sensitive test of the existence of a black hole. It is found that for a rapidly rotating black hole the general relativistic effects on the polarisation properties are an order of magnitude greater than for a slowly rotating black hole, or for a neutron star. The degree of linear polarisation of the rays as they leave the disk will also differ from the Newtonian value, and gravitational bending of the light will alter the angle at which a ray leaves the surface of the disk. The large general relativistic variation of the polarisation plane with energy is illustrated graphically. The very large general relativistic rotations in the plane of polarisation provide an opportunity for testing the black hole hypothesis for Cyg X-1. In order to observe these effects X-ray satellite experiments will be required with more sensitive polarimetry across a wider energy range than is available at present.

  1. Dwarf novae in outburst: modelling the observations

    International Nuclear Information System (INIS)

    Pringle, J.E.; Verbunt, F.

    1986-01-01

    Time-dependent accretion-disc models are constructed and used to calculate theoretical spectra in order to try to fit the ultraviolet and optical observations of outbursts of the two dwarf novae VW Hydri and CN Orionis. It is found that the behaviour on the rise to outburst is the strongest discriminator between theoretical models. The mass-transfer burst model is able to fit the spectral behaviour for both objects. The disc-instability model is unable to fit the rise to outburst in VW Hydri, and gives a poor fit to the observations of CN Orionis. (author)

  2. Static Universe model existing due to the matter-dark energy coupling

    International Nuclear Information System (INIS)

    Cabo Bizet, A.; Cabo Montes de Oca, A.

    2007-08-01

    The work investigates a static, isotropic and almost homogeneous Universe containing a real scalar field modeling the Dark-Energy (quintaessence) interacting with pressureless matter. It is argued that the interaction between matter and the Dark Energy, is essential for the very existence of the considered solution. Assuming the possibility that Dark-Energy can be furnished by the Dilaton (a scalar field reflecting the condensation of string states with zero angular momentum) we fix the value of scalar field at the origin to the Planck scale. It became possible to fix the ratio of the amount of Dark Energy to matter energy, in the currently estimated value (0.7)/0.3 and also the observed magnitude of the Hubble constant. The small value of the mass for the scalar field chosen for fixing the above ratio and Hubble effect strength, results to be of the order of 10 -29 cm -1 , a small value which seems to be compatible with the zero mass of the Dilaton in the lowest approximations. (author)

  3. Observations and Modeling of Atmospheric Radiance Structure

    National Research Council Canada - National Science Library

    Wintersteiner, Peter

    2001-01-01

    The overall purpose of the work that we have undertaken is to provide new capabilities for observing and modeling structured radiance in the atmosphere, particularly the non-LTE regions of the atmosphere...

  4. Thermodynamic Modeling of a Solid Oxide Fuel Cell to Couple with an Existing Gas Turbine Engine Model

    Science.gov (United States)

    Brinson, Thomas E.; Kopasakis, George

    2004-01-01

    The Controls and Dynamics Technology Branch at NASA Glenn Research Center are interested in combining a solid oxide fuel cell (SOFC) to operate in conjunction with a gas turbine engine. A detailed engine model currently exists in the Matlab/Simulink environment. The idea is to incorporate a SOFC model within the turbine engine simulation and observe the hybrid system's performance. The fuel cell will be heated to its appropriate operating condition by the engine s combustor. Once the fuel cell is operating at its steady-state temperature, the gas burner will back down slowly until the engine is fully operating on the hot gases exhausted from the SOFC. The SOFC code is based on a steady-state model developed by The U.S. Department of Energy (DOE). In its current form, the DOE SOFC model exists in Microsoft Excel and uses Visual Basics to create an I-V (current-voltage) profile. For the project's application, the main issue with this model is that the gas path flow and fuel flow temperatures are used as input parameters instead of outputs. The objective is to create a SOFC model based on the DOE model that inputs the fuel cells flow rates and outputs temperature of the flow streams; therefore, creating a temperature profile as a function of fuel flow rate. This will be done by applying the First Law of Thermodynamics for a flow system to the fuel cell. Validation of this model will be done in two procedures. First, for a given flow rate the exit stream temperature will be calculated and compared to DOE SOFC temperature as a point comparison. Next, an I-V curve and temperature curve will be generated where the I-V curve will be compared with the DOE SOFC I-V curve. Matching I-V curves will suggest validation of the temperature curve because voltage is a function of temperature. Once the temperature profile is created and validated, the model will then be placed into the turbine engine simulation for system analysis.

  5. Model for behavior observation training programs

    International Nuclear Information System (INIS)

    Berghausen, P.E. Jr.

    1987-01-01

    Continued behavior observation is mandated by ANSI/ANS 3.3. This paper presents a model for behavior observation training that is in accordance with this standard and the recommendations contained in US NRC publications. The model includes seventeen major topics or activities. Ten of these are discussed: Pretesting of supervisor's knowledge of behavior observation requirements, explanation of the goals of behavior observation programs, why behavior observation training programs are needed (legal and psychological issues), early indicators of emotional instability, use of videotaped interviews to demonstrate significant psychopathology, practice recording behaviors, what to do when unusual behaviors are observed, supervisor rationalizations for noncompliance, when to be especially vigilant, and prevention of emotional instability

  6. A validation study for the gas migration modelling of the compacted bentonite using existing experiment data

    International Nuclear Information System (INIS)

    Tawara, Y.; Mori, K.; Tada, K.; Shimura, T.; Sato, S.; Yamamoto, S.; Hayashi, H.

    2010-01-01

    Document available in extended abstract form only. After the field-scaled Gas Migration Test (GMT) was carried out at Grimsel Test Site (GTS) in Switzerland from 1997 through 2005, a study on advanced gas migration modelling has been conducted as a part of R and D programs of the RWMC (Radioactive Waste Management funding and Research Center) to evaluate long-term behaviour of the Engineered Barrier System (EBS) for the TRU waste disposal system in Japan. One of main objectives of this modelling study is to provide the qualified models and parameters in order to predict long-term gas migration behaviour in compacted bentonite. In addition, from a perspective of coupled THMC (Thermal, Hydrological, Mechanical and Chemical) processes, the specific processes which may have considerable impact to the gas migration behaviour are discussed by means of scoping calculations. Literature survey was conducted to collect experimental data related to gas migration in compacted bentonite in order to discuss an applicability of the existing gas migration models in the bentonite. The well-known flow rate controlled-gas injection experiment by Horseman, et al. and the pressure-controlled-gas injection test using several data with wide range of clay density and water content by Graham, et al, were selected. These literatures show the following characteristic behaviour of gas migration in high compacted and water-saturated bentonite. The observed gas flow rate from the outlet in the experiment by Horseman et al. was numerically reproduced by using the different conceptual models and computer codes, and then an applicability of the models and the identified key parameters such as relative permeability and capillary pressure were discussed. Helium gas was repeatedly injected into fully water-saturated and isotropically consolidated MX-80 bentonite (dry density: 1.6 Mg/m 3 ) in the experiment. One of the most important conclusions from this experiment is that it's impossible for

  7. Global existence and uniqueness result for the diffusive Peterlin viscoelastic model

    Czech Academy of Sciences Publication Activity Database

    Medviďová-Lukáčová, M.; Mizerová, H.; Nečasová, Šárka

    2015-01-01

    Roč. 120, June (2015), s. 154-170 ISSN 0362-546X R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Peterlin viscoelastic model * existence * uniqueness Subject RIV: BA - General Mathematics Impact factor: 1.125, year: 2015 http://www.sciencedirect.com/science/article/pii/S0362546X1500070X

  8. The existence of a stable noncollinear phase in a Heisenberg model with complex structure

    Energy Technology Data Exchange (ETDEWEB)

    Shopova, Diana V.; Boyadjiev, Todor L

    2003-05-19

    We have analyzed the properties of a noncollinear magnetic phase obtained in the mean-field analysis of the model of two coupled Heisenberg subsystems. The domain of its existence and stability is narrow and depends on the ratio between the averaged over nearest neighbours microscopic exchange parameters.

  9. On the Existence and Uniqueness of JML Estimates for the Partial Credit Model

    Science.gov (United States)

    Bertoli-Barsotti, Lucio

    2005-01-01

    A necessary and sufficient condition is given in this paper for the existence and uniqueness of the maximum likelihood (the so-called joint maximum likelihood) estimate of the parameters of the Partial Credit Model. This condition is stated in terms of a structural property of the pattern of the data matrix that can be easily verified on the basis…

  10. A Propagative Model of Simultaneous Impact: Existence, Uniqueness, and Design Consequences

    OpenAIRE

    Seghete, Vlad; Murphey, Todd

    2017-01-01

    This paper presents existence and uniqueness results for a propagative model of simultaneous impacts that is guaranteed to conserve energy and momentum in the case of elastic impacts with extensions to perfectly plastic and inelastic impacts. A corresponding time-stepping algorithm that guarantees conservation of continuous energy and discrete momentum is developed, also with extensions to plastic and inelastic impacts. The model is illustrated in simulation using billiard balls and a two-dim...

  11. Mentoring for junior medical faculty: Existing models and suggestions for low-resource settings.

    Science.gov (United States)

    Menon, Vikas; Muraleedharan, Aparna; Bhat, Ballambhattu Vishnu

    2016-02-01

    Globally, there is increasing recognition about the positive benefits and impact of mentoring on faculty retention rates, career satisfaction and scholarly output. However, emphasis on research and practice of mentoring is comparatively meagre in low and middle income countries. In this commentary, we critically examine two existing models of mentorship for medical faculty and offer few suggestions for an integrated hybrid model that can be adapted for use in low resource settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Using Mathematical Modeling and Set-Based Design Principles to Recommend an Existing CVL Design

    Science.gov (United States)

    2017-09-01

    MATHEMATICAL MODELING AND SET-BASED DESIGN PRINCIPLES TO RECOMMEND AN EXISTING CVL DESIGN by William H. Ehlies September 2017 Thesis Advisor...Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE...September 2017 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE USING MATHEMATICAL MODELING AND SET-BASED DESIGN PRINCIPLES

  13. The Earth Observing System (EOS) Ground System: Leveraging an Existing Operational Ground System Infrastructure to Support New Missions

    Science.gov (United States)

    Hardison, David; Medina, Johnny; Dell, Greg

    2016-01-01

    The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.

  14. Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models

    International Nuclear Information System (INIS)

    Hsu, Cheng-Hsiung; Yang, Tzi-Sheng

    2013-01-01

    The purpose of this work is to investigate the existence, uniqueness, monotonicity and asymptotic behaviour of travelling wave solutions for a general epidemic model arising from the spread of an epidemic by oral–faecal transmission. First, we apply Schauder's fixed point theorem combining with a supersolution and subsolution pair to derive the existence of positive monotone monostable travelling wave solutions. Then, applying the Ikehara's theorem, we determine the exponential rates of travelling wave solutions which converge to two different equilibria as the moving coordinate tends to positive infinity and negative infinity, respectively. Finally, using the sliding method, we prove the uniqueness result provided the travelling wave solutions satisfy some boundedness conditions. (paper)

  15. Existence of Torsional Solitons in a Beam Model of Suspension Bridge

    Science.gov (United States)

    Benci, Vieri; Fortunato, Donato; Gazzola, Filippo

    2017-11-01

    This paper studies the existence of solitons, namely stable solitary waves, in an idealized suspension bridge. The bridge is modeled as an unbounded degenerate plate, that is, a central beam with cross sections, and displays two degrees of freedom: the vertical displacement of the beam and the torsional angles of the cross sections. Under fairly general assumptions, we prove the existence of solitons. Under the additional assumption of large tension in the sustaining cables, we prove that these solitons have a nontrivial torsional component. This appears relevant for security since several suspension bridges collapsed due to torsional oscillations.

  16. Identifying best existing practice for characterization modeling in life cycle impact assessment

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Goedkoop, Mark; Guinée, Jeroen

    2013-01-01

    Purpose: Life cycle impact assessment (LCIA) is a field of active development. The last decade has seen prolific publication of new impact assessment methods covering many different impact categories and providing characterization factors that often deviate from each other for the same substance...... and impact. The LCA standard ISO 14044 is rather general and unspecific in its requirements and offers little help to the LCA practitioner who needs to make a choice. With the aim to identify the best among existing characterization models and provide recommendations to the LCA practitioner, a study...... was performed for the Joint Research Centre of the European Commission (JRC). Methods Existing LCIA methods were collected and their individual characterization models identified at both midpoint and endpoint levels and supplemented with other environmental models of potential use for LCIA. No new developments...

  17. Experimental investigation of debris effects on pump operation and comparison with existing wear models

    International Nuclear Information System (INIS)

    Lewis, D.

    2010-01-01

    composition and a low concentration level led to polishing of the pump internals resulting in very slightly improved performance. Most of the change in the developed head occurred at the higher flow rates with little impact at flow rates below 50% of the best efficiency point (BEP). The power curve for the various runs increased in some cases and decreased in others. The experimental results would seem to indicate that the fine grain particles were polishing the internals and improving the flow greater than the losses due to increased clearances while the coarser grain debris was not polishing and mainly increasing clearances. The wear rates observed during the various runs were compared to the existing models for erosive wear in pumps used in nuclear power plants. Significant differences were found between the existing models and the measurements. Efforts continue to improve the predictive capability of the analytical models. (authors)

  18. Existence of Periodic Solutions and Stability of Zero Solution of a Mathematical Model of Schistosomiasis

    Directory of Open Access Journals (Sweden)

    Lin Li

    2014-01-01

    Full Text Available A mathematical model on schistosomiasis governed by periodic differential equations with a time delay was studied. By discussing boundedness of the solutions of this model and construction of a monotonic sequence, the existence of positive periodic solution was shown. The conditions under which the model admits a periodic solution and the conditions under which the zero solution is globally stable are given, respectively. Some numerical analyses show the conditional coexistence of locally stable zero solution and periodic solutions and that it is an effective treatment by simply reducing the population of snails and enlarging the death ratio of snails for the control of schistosomiasis.

  19. A Community Data Model for Hydrologic Observations

    Science.gov (United States)

    Tarboton, D. G.; Horsburgh, J. S.; Zaslavsky, I.; Maidment, D. R.; Valentine, D.; Jennings, B.

    2006-12-01

    The CUAHSI Hydrologic Information System project is developing information technology infrastructure to support hydrologic science. Hydrologic information science involves the description of hydrologic environments in a consistent way, using data models for information integration. This includes a hydrologic observations data model for the storage and retrieval of hydrologic observations in a relational database designed to facilitate data retrieval for integrated analysis of information collected by multiple investigators. It is intended to provide a standard format to facilitate the effective sharing of information between investigators and to facilitate analysis of information within a single study area or hydrologic observatory, or across hydrologic observatories and regions. The observations data model is designed to store hydrologic observations and sufficient ancillary information (metadata) about the observations to allow them to be unambiguously interpreted and used and provide traceable heritage from raw measurements to usable information. The design is based on the premise that a relational database at the single observation level is most effective for providing querying capability and cross dimension data retrieval and analysis. This premise is being tested through the implementation of a prototype hydrologic observations database, and the development of web services for the retrieval of data from and ingestion of data into the database. These web services hosted by the San Diego Supercomputer center make data in the database accessible both through a Hydrologic Data Access System portal and directly from applications software such as Excel, Matlab and ArcGIS that have Standard Object Access Protocol (SOAP) capability. This paper will (1) describe the data model; (2) demonstrate the capability for representing diverse data in the same database; (3) demonstrate the use of the database from applications software for the performance of hydrologic analysis

  20. Modeling the Static Force of a Festo Pneumatic Muscle Actuator: A New Approach and a Comparison to Existing Models

    Directory of Open Access Journals (Sweden)

    Mirco Martens

    2017-11-01

    Full Text Available In this paper, a new approach for modeling the static force characteristic of Festo pneumatic muscle actuators (PMAs will be presented. The model is physically motivated and therefore gives a deeper understanding of the Festo PMA. After introducing the new model, it will be validated through a comparison to a measured force map of a Festo DMSP-10-250 and a DMSP-20-300, respectively. It will be shown that the error between the new model and the measured data is below 4.4% for the DMSP-10-250 and below 2.35% for the DMSP-20-300. In addition, the quality of the presented model will be compared to the quality of existing models by comparing the maximum error. It can be seen that the newly introduced model is closer to the measured force characteristic of a Festo PMA than any existing model.

  1. Abstract on the Effective validation of both new and existing methods for the observation and forecasting of volcanic emissions

    Science.gov (United States)

    Sathnur, Ashwini

    2017-04-01

    " positives. Cost - free data made available. Minimum band - width problem. Rapid communication system. Validation and Requirements of the New products of the Remote Sensing instruments The qualities of the existing products would be present in the new products also. Along with these qualities, newly devised additional qualities are also required in order to build an advanced remote sensing instrument. The new additional requirements are mentioned below:- Review Comment Number 1 Enlarging the spatial resolution so that the volcanic plumes erupting from the early volcanic eruption is captured by the remote sensing instrument. This spatial resolution data capture would involve better video and camera facilities on the remote sensing instrument. Review Comment Number 2 Capturing the traces of carbon, carbonic acid and water vapour, along with the existing product's capture of sulphur dioxide and volcanic Ash. Review Comment Number 3 Creating an additional module in the instrument to derive the functionality of forecasting a volcanic eruption. This new forecast model should be able to predict the occurrences of volcanic eruption several months in advance. This is basically to create mechanisms for providing early solutions to the problems of mitigation of volcanic hazards. Review Comment Number 4 Creating additional features in the remote sensing instrument to enable the automatic transfer of forecasted eruptions of volcanoes, to the disaster relief operations team. This transfer of information is to be performed automatically, without any request raised from the relief operations team, for the predicted forecast information. This is for the purpose of receiving the information at the right - time, thus eliminating any possibility of occurrences of errors during hazard management.

  2. Preliminary evaluation of the importance of existing hydraulic-head observation locations to advective-transport predictions, Death Valley regional flow system, California and Nevada

    International Nuclear Information System (INIS)

    Hill, M.C.; Ely, D.M.; Tiedeman, C.R.; O'Brien, G.M.; D'Agnese, F.A.; Faunt, C.C.

    2001-01-01

    When a model is calibrated by nonlinear regression, calculated diagnostic statistics and measures of uncertainty provide a wealth of information about many aspects of the system. This report presents a method of ranking the likely importance of existing observation locations using measures of prediction uncertainty. It is suggested that continued monitoring is warranted at more important locations, and unwarranted or less warranted at less important locations. The report develops the methodology and then demonstrates it using the hydraulic-head observation locations of a three-layer model of the Death Valley regional flow system (DVRFS). The predictions of interest are subsurface transport from beneath Yucca Mountain and 14 underground Test Area (UGTA) sites. The advective component of transport is considered because it is the component most affected by the system dynamics represented by the regional-scale model being used. The problem is addressed using the capabilities of the U.S. Geological Survey computer program MODFLOW-2000, with its ADVective-Travel Observation (ADV) Package, and an additional computer program developed for this work

  3. Coalescence model of two collinear cracks existing in steam generator tubes

    International Nuclear Information System (INIS)

    Moon, S.-I.; Chang, Y.-S.; Kim, Y.-J.; Park, Y.-W.; Song, M.-H.; Choi, Y.-H.; Lee, J.-H.

    2005-01-01

    The 40% of wall thickness criterion has been used as a plugging rule of steam generator tubes but it can be applicable just to a single-cracked tubes. In the previous studies preformed by the authors, a total of 10 local failure prediction models were introduced to estimate the coalescence load of two adjacent collinear through-wall cracks existing in thin plates, and the reaction force model and plastic zone contact model were selected as optimum models among them. The objective of this study is to verify the applicability of the proposed optimum local failure prediction models to the tubes with two collinear through-wall cracks. For this, a series of plastic collapse tests and finite element analyses were carried out using the tubes containing two collinear through-wall cracks. It has been shown that the proposed optimum failure models can predict the local failure behavior of two collinear through-wall cracks existing in tubes well. And a coalescence evaluation diagram was developed which can be used to determine whether the adjacent cracks detected by NED coalsece or not. (authors)

  4. PERCEPTION AND BEHAVIOR ANALYSIS OF COMMUNITY TO THE EXISTENCE OF POIGAR PFMU MODEL

    Directory of Open Access Journals (Sweden)

    Arif Irawan

    2017-04-01

    Full Text Available Implementation of community empowerment scheme in the Poigar Production Forest Management Unit (PFMU Model area needs to take into account on community perception and behavior. This study aimed to determine the level of perception and behavior of the community towards the existence Poigar PFMU Model and to recommend the appropriate community empowerment scheme. To find out the perceptios and behavior of the Lolan Village community towards Poigar PFMU Model was by using Likert Scale. Furthermore, to determine the factors that influence people's behavior, then Spearman rank (Rs correlation test was used. The results showed that the level of perception of Lolan village communities to the existence of the Poigar PFMU Model was in good category, while the society behavior was in the less category. A good public perception of the Poigar PFMU Model area, did not have significant influence on its behavior. Community social characteristics that correlate with the behavior of the community were among others: education, level of income sourced from outside the area and level of interaction with the forest. Based on this, community empowerment strategy that is most likely to do in Poigar PFMU Model is through the Forestry Partnership Scheme.

  5. Comparative Application of Capacity Models for Seismic Vulnerability Evaluation of Existing RC Structures

    International Nuclear Information System (INIS)

    Faella, C.; Lima, C.; Martinelli, E.; Nigro, E.

    2008-01-01

    Seismic vulnerability assessment of existing buildings is one of the most common tasks in which Structural Engineers are currently engaged. Since, its is often a preliminary step to approach the issue of how to retrofit non-seismic designed and detailed structures, it plays a key role in the successful choice of the most suitable strengthening technique. In this framework, the basic information for both seismic assessment and retrofitting is related to the formulation of capacity models for structural members. Plenty of proposals, often contradictory under the quantitative standpoint, are currently available within the technical and scientific literature for defining the structural capacity in terms of force and displacements, possibly with reference to different parameters representing the seismic response. The present paper shortly reviews some of the models for capacity of RC members and compare them with reference to two case studies assumed as representative of a wide class of existing buildings

  6. Existence theory for a Poisson-Nernst-Planck model of electrophoresis

    OpenAIRE

    Bedin, Luciano; Thompson, Mark

    2011-01-01

    A system modeling the electrophoretic motion of a charged rigid macromolecule immersed in a incompressible ionized fluid is considered. The ionic concentration is governing by the Nernst-Planck equation coupled with the Poisson equation for the electrostatic potential, Navier-Stokes and Newtonian equations for the fluid and the macromolecule dynamics, respectively. A local in time existence result for suitable weak solutions is established, following the approach of Desjardins and Esteban [Co...

  7. Stratospheric dryness: model simulations and satellite observations

    Directory of Open Access Journals (Sweden)

    J. Lelieveld

    2007-01-01

    Full Text Available The mechanisms responsible for the extreme dryness of the stratosphere have been debated for decades. A key difficulty has been the lack of comprehensive models which are able to reproduce the observations. Here we examine results from the coupled lower-middle atmosphere chemistry general circulation model ECHAM5/MESSy1 together with satellite observations. Our model results match observed temperatures in the tropical lower stratosphere and realistically represent the seasonal and inter-annual variability of water vapor. The model reproduces the very low water vapor mixing ratios (below 2 ppmv periodically observed at the tropical tropopause near 100 hPa, as well as the characteristic tape recorder signal up to about 10 hPa, providing evidence that the dehydration mechanism is well-captured. Our results confirm that the entry of tropospheric air into the tropical stratosphere is forced by large-scale wave dynamics, whereas radiative cooling regionally decelerates upwelling and can even cause downwelling. Thin cirrus forms in the cold air above cumulonimbus clouds, and the associated sedimentation of ice particles between 100 and 200 hPa reduces water mass fluxes by nearly two orders of magnitude compared to air mass fluxes. Transport into the stratosphere is supported by regional net radiative heating, to a large extent in the outer tropics. During summer very deep monsoon convection over Southeast Asia, centered over Tibet, moistens the stratosphere.

  8. Observations and NLTE modeling of Ellerman bombs

    Science.gov (United States)

    Berlicki, A.; Heinzel, P.

    2014-07-01

    Context. Ellerman bombs (EBs) are short-lived, compact, and spatially well localized emission structures that are observed well in the wings of the hydrogen Hα line. EBs are also observed in the chromospheric CaII lines and in UV continua as bright points located within active regions. Hα line profiles of EBs show a deep absorption at the line center and enhanced emission in the line wings with maxima around ±1 Å from the line center. Similar shapes of the line profiles are observed for the CaII IR line at 8542 Å. In CaII H and K lines the emission peaks are much stronger, and EBs emission is also enhanced in the line center. Aims: It is generally accepted that EBs may be considered as compact microflares located in lower solar atmosphere that contribute to the heating of these low-lying regions, close to the temperature minimum of the atmosphere. However, it is still not clear where exactly the emission of EBs is formed in the solar atmosphere. High-resolution spectrophotometric observations of EBs were used for determining of their physical parameters and construction of semi-empirical models. Obtained models allow us to determine the position of EBs in the solar atmosphere, as well as the vertical structure of the activated EB atmosphere Methods: In our analysis we used observations of EBs obtained in the Hα and CaII H lines with the Dutch Open Telescope (DOT). These one-hour long simultaneous sequences obtained with high temporal and spatial resolution were used to determine the line emissions. To analyze them, we used NLTE numerical codes for the construction of grids of 243 semi-empirical models simulating EBs structures. In this way, the observed emission could be compared with the synthetic line spectra calculated for all such models. Results: For a specific model we found reasonable agreement between the observed and theoretical emission and thus we consider such model as a good approximation to EBs atmospheres. This model is characterized by an

  9. Global existence of solutions to a tear film model with locally elevated evaporation rates

    Science.gov (United States)

    Gao, Yuan; Ji, Hangjie; Liu, Jian-Guo; Witelski, Thomas P.

    2017-07-01

    Motivated by a model proposed by Peng et al. (2014) for break-up of tear films on human eyes, we study the dynamics of a generalized thin film model. The governing equations form a fourth-order coupled system of nonlinear parabolic PDEs for the film thickness and salt concentration subject to non-conservative effects representing evaporation. We analytically prove the global existence of solutions to this model with mobility exponents in several different ranges and present numerical simulations that are in agreement with the analytic results. We also numerically capture other interesting dynamics of the model, including finite-time rupture-shock phenomenon due to the instabilities caused by locally elevated evaporation rates, convergence to equilibrium and infinite-time thinning.

  10. Observations in particle physics: from two neutrinos to standard model

    International Nuclear Information System (INIS)

    Lederman, L.M.

    1990-01-01

    Experiments, which have made their contribution to creation of the standard model, are discussed. Results of observations on the following concepts: long-lived neutral V-particles, violation of preservation of parity and charge invariance in meson decays, reaction with high-energy neutrino and existence of neutrino of two types, partons and dynamic quarks, dimuon resonance at 9.5 GeV in 400 GeV-proton-nucleus collisions, are considered

  11. Post-hoc pattern-oriented testing and tuning of an existing large model: lessons from the field vole.

    Directory of Open Access Journals (Sweden)

    Christopher J Topping

    Full Text Available Pattern-oriented modeling (POM is a general strategy for modeling complex systems. In POM, multiple patterns observed at different scales and hierarchical levels are used to optimize model structure, to test and select sub-models of key processes, and for calibration. So far, POM has been used for developing new models and for models of low to moderate complexity. It remains unclear, though, whether the basic idea of POM to utilize multiple patterns, could also be used to test and possibly develop existing and established models of high complexity. Here, we use POM to test, calibrate, and further develop an existing agent-based model of the field vole (Microtus agrestis, which was developed and tested within the ALMaSS framework. This framework is complex because it includes a high-resolution representation of the landscape and its dynamics, of the individual's behavior, and of the interaction between landscape and individual behavior. Results of fitting to the range of patterns chosen were generally very good, but the procedure required to achieve this was long and complicated. To obtain good correspondence between model and the real world it was often necessary to model the real world environment closely. We therefore conclude that post-hoc POM is a useful and viable way to test a highly complex simulation model, but also warn against the dangers of over-fitting to real world patterns that lack details in their explanatory driving factors. To overcome some of these obstacles we suggest the adoption of open-science and open-source approaches to ecological simulation modeling.

  12. Properties predictive modeling through the concept of a hybrid interphase existing between phases in contact

    Science.gov (United States)

    Portan, D. V.; Papanicolaou, G. C.

    2018-02-01

    From practical point of view, predictive modeling based on the physics of composite material behavior is wealth generating; by guiding material system selection and process choices, by cutting down on experimentation and associated costs; and by speeding up the time frame from the research stage to the market place. The presence of areas with different properties and the existence of an interphase between them have a pronounced influence on the behavior of a composite system. The Viscoelastic Hybrid Interphase Model (VHIM), considers the existence of a non-homogeneous viscoelastic and anisotropic interphase having properties depended on the degree of adhesion between the two phases in contact. The model applies for any physical/mechanical property (e.g. mechanical, thermal, electrical and/or biomechanical). Knowing the interphasial variation of a specific property one can predict the corresponding macroscopic behavior of the composite. Moreover, the model acts as an algorithm and a two-way approach can be used: (i) phases in contact may be chosen to get the desired properties of the final composite system or (ii) the initial phases in contact determine the final behavior of the composite system, that can be approximately predicted. The VHIM has been proven, amongst others, to be extremely useful in biomaterial designing for improved contact with human tissues.

  13. Thai student existing understanding about the solar system model and the motion of the stars

    Science.gov (United States)

    Anantasook, Sakanan; Yuenyong, Chokchai

    2018-01-01

    The paper examined Thai student existing understanding about the solar system model and the motion of the stars. The participants included 141 Grade 9 students in four different schools of the Surin province, Thailand. Methodology regarded interpretive paradigm. The tool of interpretation included the Student Celestial Motion Conception Questionnaire (SCMCQ) and informal interview. Given understandings in the SCMCQ were read through and categorized according to students' understandings. Then, students were further probed as informal interview. Students' understandings in each category were counted and percentages computed. Finally, students' understandings across four different schools were compared and contrasted using the percentage of student responses in each category. The findings revealed that most students understand about Sun-Moon-Earth (SME) system and solar system model as well, they can use scientific explanations to explain the celestial objects in solar system and how they orbiting. Unfortunately, most of students (more than 70%) never know about the Polaris, the North Star, and 90.1% of them never know about the ecliptic, and probably also the 12 zodiac constellations. These existing understanding suggested some ideas of teaching and learning about solar system model and the motion of the stars. The paper, then, discussed some learning activities to enhance students to further construct meaning about solar system model and the motion of the stars.

  14. Observational tests of FRW world models

    International Nuclear Information System (INIS)

    Lahav, Ofer

    2002-01-01

    Observational tests for the cosmological principle are reviewed. Assuming the FRW metric we then summarize estimates of cosmological parameters from various datasets, in particular the cosmic microwave background and the 2dF galaxy redshift survey. These and other analyses suggest a best-fit Λ-cold dark matter model with Ω m = 1 - Ω l ∼ 0.3 and H 0 ∼ 70 km s -1 Mpc -1 . It is remarkable that different measurements converge to this 'concordance model', although it remains to be seen if the two main components of this model, the dark matter and the dark energy, are real entities or just 'epicycles'. We point out some open questions related to this fashionable model

  15. Measuring and Managing Value Co-Creation Process: Overview of Existing Theoretical Models

    Directory of Open Access Journals (Sweden)

    Monika Skaržauskaitė

    2013-08-01

    Full Text Available Purpose — the article is to provide a holistic view on concept of value co-creation and existing models for measuring and managing it by conducting theoretical analysis of scientific literature sources targeting the integration of various approaches. Most important and relevant results of the literature study are presented with a focus on changed roles of organizations and consumers. This article aims at contributing theoretically to the research stream of measuring co-creation of value in order to gain knowledge for improvement of organizational performance and enabling new and innovative means of value creation. Design/methodology/approach. The nature of this research is exploratory – theoretical analysis and synthesis of scientific literature sources targeting the integration of various approaches was performed. This approach was chosen due to the absence of established theory on models of co-creation, possible uses in organizations and systematic overview of tools measuring/suggesting how to measure co-creation. Findings. While the principles of managing and measuring co-creation in regards of consumer motivation and involvement are widely researched, little attempt has been made to identify critical factors and create models dealing with organizational capabilities and managerial implications of value co-creation. Systematic analysis of literature revealed a gap not only in empirical research concerning organization’s role in co-creation process, but in theoretical and conceptual levels, too. Research limitations/implications. The limitations of this work as a literature review lies in its nature – the complete reliance on previously published research papers and the availability of these studies. For a deeper understanding of co-creation management and for developing models that can be used in real-life organizations, a broader theoretical, as well as empirical, research is necessary. Practical implications. Analysis of the

  16. Observational Constraints for Modeling Diffuse Molecular Clouds

    Science.gov (United States)

    Federman, S. R.

    2014-02-01

    Ground-based and space-borne observations of diffuse molecular clouds suggest a number of areas where further improvements to modeling efforts is warranted. I will highlight those that have the widest applicability. The range in CO fractionation caused by selective isotope photodissociation, in particular the large 12C16O/13C16O ratios observed toward stars in Ophiuchus, is not reproduced well by current models. Our ongoing laboratory measurements of oscillator strengths and predissociation rates for Rydberg transitions in CO isotopologues may help clarify the situtation. The CH+ abundance continues to draw attention. Small scale structure seen toward ζ Per may provide additional constraints on the possible synthesis routes. The connection between results from optical transitions and those from radio and sub-millimeter wave transitions requires further effort. A study of OH+ and OH toward background stars reveals that these species favor different environments. This brings to focus the need to model each cloud along the line of sight separately, and to allow the physical conditions to vary within an individual cloud, in order to gain further insight into the chemistry. Now that an extensive set of data on molecular excitation is available, the models should seek to reproduce these data to place further constraints on the modeling results.

  17. Extending existing structural identifiability analysis methods to mixed-effects models.

    Science.gov (United States)

    Janzén, David L I; Jirstrand, Mats; Chappell, Michael J; Evans, Neil D

    2018-01-01

    The concept of structural identifiability for state-space models is expanded to cover mixed-effects state-space models. Two methods applicable for the analytical study of the structural identifiability of mixed-effects models are presented. The two methods are based on previously established techniques for non-mixed-effects models; namely the Taylor series expansion and the input-output form approach. By generating an exhaustive summary, and by assuming an infinite number of subjects, functions of random variables can be derived which in turn determine the distribution of the system's observation function(s). By considering the uniqueness of the analytical statistical moments of the derived functions of the random variables, the structural identifiability of the corresponding mixed-effects model can be determined. The two methods are applied to a set of examples of mixed-effects models to illustrate how they work in practice. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Existence and characterization of optimal control in mathematics model of diabetics population

    Science.gov (United States)

    Permatasari, A. H.; Tjahjana, R. H.; Udjiani, T.

    2018-03-01

    Diabetes is a chronic disease with a huge burden affecting individuals and the whole society. In this paper, we constructed the optimal control mathematical model by applying a strategy to control the development of diabetic population. The constructed mathematical model considers the dynamics of disabled people due to diabetes. Moreover, an optimal control approach is proposed in order to reduce the burden of pre-diabetes. Implementation of control is done by preventing the pre-diabetes develop into diabetics with and without complications. The existence of optimal control and characterization of optimal control is discussed in this paper. Optimal control is characterized by applying the Pontryagin minimum principle. The results indicate that there is an optimal control in optimization problem in mathematics model of diabetic population. The effect of the optimal control variable (prevention) is strongly affected by the number of healthy people.

  19. Evaluation of CNN as anthropomorphic model observer

    Science.gov (United States)

    Massanes, Francesc; Brankov, Jovan G.

    2017-03-01

    Model observers (MO) are widely used in medical imaging to act as surrogates of human observers in task-based image quality evaluation, frequently towards optimization of reconstruction algorithms. In this paper, we explore the use of convolutional neural networks (CNN) to be used as MO. We will compare CNN MO to alternative MO currently being proposed and used such as the relevance vector machine based MO and channelized Hotelling observer (CHO). As the success of the CNN, and other deep learning approaches, is rooted in large data sets availability, which is rarely the case in medical imaging systems task-performance evaluation, we will evaluate CNN performance on both large and small training data sets.

  20. Modeling and interpretation of line observations*

    Directory of Open Access Journals (Sweden)

    Kamp Inga

    2015-01-01

    Full Text Available Models for the interpretation of line observations from protoplanetary disks are summarized. The spectrum ranges from 1D LTE slab models to 2D thermo-chemical radiative transfer models and their use depends largely on the type/nature of observational data that is analyzed. I discuss the various types of observational data and their interpretation in the context of disk physical and chemical properties. The most simple spatially and spectral unresolved data are line fluxes, which can be interpreted using so-called Boltzmann diagrams. The interpretation is often tricky due to optical depth and non-LTE effects and requires care. Line profiles contain kinematic information and thus indirectly the spatial origin of the emission. Using series of line profiles, we can for example deduce radial temperature gradients in disks (CO pure rotational ladder. Spectro-astrometry of e.g. CO ro-vibrational line profiles probes the disk structure in the 1–30 AU region, where planet formation through core accretion should be most efficient. Spatially and spectrally resolved line images from (submm interferometers are the richest datasets we have to date and they enable us to unravel exciting details of the radial and vertical disk structure such as winds and asymmetries.

  1. Non-existence of Steady State Equilibrium in the Neoclassical Growth Model with a Longevity Trend

    DEFF Research Database (Denmark)

    Hermansen, Mikkel Nørlem

    of steady state equilibrium when considering the empirically observed trend in longevity. We extend a standard continuous time overlapping generations model by a longevity trend and are thereby able to study the properties of mortality-driven population growth. This turns out to be exceedingly complicated...

  2. Research Opportunities from Emerging Atmospheric Observing and Modeling Capabilities.

    Science.gov (United States)

    Dabberdt, Walter F.; Schlatter, Thomas W.

    1996-02-01

    The Second Prospectus Development Team (PDT-2) of the U.S. Weather Research Program was charged with identifying research opportunities that are best matched to emerging operational and experimental measurement and modeling methods. The overarching recommendation of PDT-2 is that inputs for weather forecast models can best be obtained through the use of composite observing systems together with adaptive (or targeted) observing strategies employing both in situ and remote sensing. Optimal observing systems and strategies are best determined through a three-part process: observing system simulation experiments, pilot field measurement programs, and model-assisted data sensitivity experiments. Furthermore, the mesoscale research community needs easy and timely access to the new operational and research datasets in a form that can readily be reformatted into existing software packages for analysis and display. The value of these data is diminished to the extent that they remain inaccessible.The composite observing system of the future must combine synoptic observations, routine mobile observations, and targeted observations, as the current or forecast situation dictates. High costs demand fuller exploitation of commercial aircraft, meteorological and navigation [Global Positioning System (GPS)] satellites, and Doppler radar. Single observing systems must be assessed in the context of a composite system that provides complementary information. Maintenance of the current North American rawinsonde network is critical for progress in both research-oriented and operational weather forecasting.Adaptive sampling strategies are designed to improve large-scale and regional weather prediction but they will also improve diagnosis and prediction of flash flooding, air pollution, forest fire management, and other environmental emergencies. Adaptive measurements can be made by piloted or unpiloted aircraft. Rawinsondes can be launched and satellites can be programmed to make

  3. Two phase modeling of nanofluid flow in existence of melting heat transfer by means of HAM

    Science.gov (United States)

    Sheikholeslami, M.; Jafaryar, M.; Bateni, K.; Ganji, D. D.

    2018-02-01

    In this article, Buongiorno Model is applied for investigation of nanofluid flow over a stretching plate in existence of magnetic field. Radiation and Melting heat transfer are taken into account. Homotopy analysis method (HAM) is selected to solve ODEs which are obtained from similarity transformation. Roles of Brownian motion, thermophoretic parameter, Hartmann number, porosity parameter, Melting parameter and Eckert number are presented graphically. Results indicate that nanofluid velocity and concentration enhance with rise of melting parameter. Nusselt number reduces with increase of porosity and melting parameters.

  4. Global existence of periodic solutions on a simplified BAM neural network model with delays

    International Nuclear Information System (INIS)

    Zheng Baodong; Zhang Yazhuo; Zhang Chunrui

    2008-01-01

    A simplified n-dimensional BAM neural network model with delays is considered. Some results of Hopf bifurcations occurring at the zero equilibrium as the delay increases are exhibited. Global existence of periodic solutions are established using a global Hopf bifurcation result of Wu [Wu J. Symmetric functional-differential equations and neural networks with memory. Trans Am Math Soc 1998;350:4799-838], and a Bendixson criterion for higher dimensional ordinary differential equations due to Li and Muldowney [Li MY, Muldowney J. On Bendixson's criterion. J Differ Equations 1994;106:27-39]. Finally, computer simulations are performed to illustrate the analytical results found

  5. Type I supernova models vs observations

    International Nuclear Information System (INIS)

    Weaver, T.A.; Axelrod, T.S.; Woosley, S.E.

    1980-01-01

    This paper explores tHe observational consequences of models for Type I supernovae based on the detonation (or deflagration) of the degenerate cores of white dwarfs or intermediate mass (approx. = 9 M/sub sun/) stars. Such nuclear burning can be initiated either at the center of the core or near its edge. The model examined in most detail is that of a 0.5M/sub sun/ C/O white dwarf which undergoes an edge-lit He/C/O detonation after accreting 0.62 M/sub sun/ of he at 10 -8 M/sub sun//yr. The light curve resulting from this model is found to be in excellent agreement with those observed for Type I supernovae, particularly those in the fast subclass. The physical processes involved in the detailed numerical calculations which lead to this conclusion are quantitatively elucidated by simple analytic models, and effects of uncertainties in the input physics are explored

  6. A universe model confronted to observations

    International Nuclear Information System (INIS)

    Souriau, J.M.

    1982-09-01

    Present work is a detailed study of a Universe model elaborated in several steps, and some of its consequences. Absence zone in quasar spatial distribution is first described; demonstration is made it is sufficient to determine a cosmological model. Each following paragraph is concerned with a type of observation, which is confronted with the model. Universe age and density, redshift-luminosity relation for galaxies and quasars, diameter-redshift relation for radiosources, radiation isotropy at 3 0 K, matter-antimatter contact zone physics. An eventual stratification of universe parallel to this zone is more peculiarly studied; absorption lines in quasar spectra are in way interpreted, just as local super-cluster and local group of galaxies, galaxy HI region orientation, and at last neighbouring galaxy kinematics [fr

  7. Canards Existence in FitzHugh-Nagumo and Hodgkin-Huxley Neuronal Models

    Directory of Open Access Journals (Sweden)

    Jean-Marc Ginoux

    2015-01-01

    Full Text Available In a previous paper we have proposed a new method for proving the existence of “canard solutions” for three- and four-dimensional singularly perturbed systems with only one fast variable which improves the methods used until now. The aim of this work is to extend this method to the case of four-dimensional singularly perturbed systems with two slow and two fast variables. This method enables stating a unique generic condition for the existence of “canard solutions” for such four-dimensional singularly perturbed systems which is based on the stability of folded singularities (pseudo singular points in this case of the normalized slow dynamics deduced from a well-known property of linear algebra. This unique generic condition is identical to that provided in previous works. Application of this method to the famous coupled FitzHugh-Nagumo equations and to the Hodgkin-Huxley model enables showing the existence of “canard solutions” in such systems.

  8. Observations and Modelling of the Zodiacal Light

    Science.gov (United States)

    Kelsall, T.

    1994-12-01

    The DIRBE instrument on the COBE satellite performed a full-sky survey in ten bands covering the spectral range from 1.25 to 240 microns, and made measurements of the polarization from 1.25 to 3.5 microns. These observations provide a wealth of data on the radiations from the interplanetary dust cloud (IPD). The presentation covers the observations, the model-independent findings, and the results from the extensive efforts of the DIRBE team to model the IPD. Emphasis is placed on describing the importance of correctly accounting for the IPD contribution to the observed-sky signal for the purpose of detecting the cosmic infrared background. (*) The NASA/Goddard Space Flight Center (GSFC) is responsible for the design, development, and operation of the COBE mission. GSFC is also responsible for the development of the analysis software and for the production of the mission data sets. Scientific guidance is provided by the COBE Science Working Group. The COBE program is supported by the Astrophysics Division of NASA's Office of Space Science.

  9. Load-Flow in Multiphase Distribution Networks: Existence, Uniqueness, Non-Singularity, and Linear Models

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Andrey [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Cong [Ecole Polytechnique Federale de Lausanne (EPFL); Le Boudec, Jean-Yves [Ecole Polytechnique Federale de Lausanne (EPFL)

    2018-04-06

    This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for the non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.

  10. Towards a systems approach for understanding honeybee decline: a stocktaking and synthesis of existing models.

    Science.gov (United States)

    Becher, Matthias A; Osborne, Juliet L; Thorbek, Pernille; Kennedy, Peter J; Grimm, Volker

    2013-08-01

    The health of managed and wild honeybee colonies appears to have declined substantially in Europe and the United States over the last decade. Sustainability of honeybee colonies is important not only for honey production, but also for pollination of crops and wild plants alongside other insect pollinators. A combination of causal factors, including parasites, pathogens, land use changes and pesticide usage, are cited as responsible for the increased colony mortality.However, despite detailed knowledge of the behaviour of honeybees and their colonies, there are no suitable tools to explore the resilience mechanisms of this complex system under stress. Empirically testing all combinations of stressors in a systematic fashion is not feasible. We therefore suggest a cross-level systems approach, based on mechanistic modelling, to investigate the impacts of (and interactions between) colony and land management.We review existing honeybee models that are relevant to examining the effects of different stressors on colony growth and survival. Most of these models describe honeybee colony dynamics, foraging behaviour or honeybee - varroa mite - virus interactions.We found that many, but not all, processes within honeybee colonies, epidemiology and foraging are well understood and described in the models, but there is no model that couples in-hive dynamics and pathology with foraging dynamics in realistic landscapes. Synthesis and applications . We describe how a new integrated model could be built to simulate multifactorial impacts on the honeybee colony system, using building blocks from the reviewed models. The development of such a tool would not only highlight empirical research priorities but also provide an important forecasting tool for policy makers and beekeepers, and we list examples of relevant applications to bee disease and landscape management decisions.

  11. Endoscopic skull base training using 3D printed models with pre-existing pathology.

    Science.gov (United States)

    Narayanan, Vairavan; Narayanan, Prepageran; Rajagopalan, Raman; Karuppiah, Ravindran; Rahman, Zainal Ariff Abdul; Wormald, Peter-John; Van Hasselt, Charles Andrew; Waran, Vicknes

    2015-03-01

    Endoscopic base of skull surgery has been growing in acceptance in the recent past due to improvements in visualisation and micro instrumentation as well as the surgical maturing of early endoscopic skull base practitioners. Unfortunately, these demanding procedures have a steep learning curve. A physical simulation that is able to reproduce the complex anatomy of the anterior skull base provides very useful means of learning the necessary skills in a safe and effective environment. This paper aims to assess the ease of learning endoscopic skull base exposure and drilling techniques using an anatomically accurate physical model with a pre-existing pathology (i.e., basilar invagination) created from actual patient data. Five models of a patient with platy-basia and basilar invagination were created from the original MRI and CT imaging data of a patient. The models were used as part of a training workshop for ENT surgeons with varying degrees of experience in endoscopic base of skull surgery, from trainees to experienced consultants. The surgeons were given a list of key steps to achieve in exposing and drilling the skull base using the simulation model. They were then asked to list the level of difficulty of learning these steps using the model. The participants found the models suitable for learning registration, navigation and skull base drilling techniques. All participants also found the deep structures to be accurately represented spatially as confirmed by the navigation system. These models allow structured simulation to be conducted in a workshop environment where surgeons and trainees can practice to perform complex procedures in a controlled fashion under the supervision of experts.

  12. Building entity models through observation and learning

    Science.gov (United States)

    Garcia, Richard; Kania, Robert; Fields, MaryAnne; Barnes, Laura

    2011-05-01

    To support the missions and tasks of mixed robotic/human teams, future robotic systems will need to adapt to the dynamic behavior of both teammates and opponents. One of the basic elements of this adaptation is the ability to exploit both long and short-term temporal data. This adaptation allows robotic systems to predict/anticipate, as well as influence, future behavior for both opponents and teammates and will afford the system the ability to adjust its own behavior in order to optimize its ability to achieve the mission goals. This work is a preliminary step in the effort to develop online entity behavior models through a combination of learning techniques and observations. As knowledge is extracted from the system through sensor and temporal feedback, agents within the multi-agent system attempt to develop and exploit a basic movement model of an opponent. For the purpose of this work, extraction and exploitation is performed through the use of a discretized two-dimensional game. The game consists of a predetermined number of sentries attempting to keep an unknown intruder agent from penetrating their territory. The sentries utilize temporal data coupled with past opponent observations to hypothesize the probable locations of the opponent and thus optimize their guarding locations.

  13. A Holoinformational Model of the Physical Observer

    Science.gov (United States)

    di Biase, Francisco

    2013-09-01

    The author proposes a holoinformational view of the observer based, on the holonomic theory of brain/mind function and quantum brain dynamics developed by Karl Pribram, Sir John Eccles, R.L. Amoroso, Hameroff, Jibu and Yasue, and in the quantumholographic and holomovement theory of David Bohm. This conceptual framework is integrated with nonlocal information properties of the Quantum Field Theory of Umesawa, with the concept of negentropy, order, and organization developed by Shannon, Wiener, Szilard and Brillouin, and to the theories of self-organization and complexity of Prigogine, Atlan, Jantsch and Kauffman. Wheeler's "it from bit" concept of a participatory universe, and the developments of the physics of information made by Zureck and others with the concepts of statistical entropy and algorithmic entropy, related to the number of bits being processed in the mind of the observer are also considered. This new synthesis gives a self-organizing quantum nonlocal informational basis for a new model of awareness in a participatory universe. In this synthesis, awareness is conceived as meaningful quantum nonlocal information interconnecting the brain and the cosmos, by a holoinformational unified field (integrating nonlocal holistic (quantum) and local (Newtonian). We propose that the cosmology of the physical observer is this unified nonlocal quantum-holographic cosmos manifesting itself through awareness, interconnected in a participatory holistic and indivisible way the human mind-brain to all levels of the self-organizing holographic anthropic multiverse.

  14. Lagrangian Observations and Modeling of Marine Larvae

    Science.gov (United States)

    Paris, Claire B.; Irisson, Jean-Olivier

    2017-04-01

    Just within the past two decades, studies on the early-life history stages of marine organisms have led to new paradigms in population dynamics. Unlike passive plant seeds that are transported by the wind or by animals, marine larvae have motor and sensory capabilities. As a result, marine larvae have a tremendous capacity to actively influence their dispersal. This is continuously revealed as we develop new techniques to observe larvae in their natural environment and begin to understand their ability to detect cues throughout ontogeny, process the information, and use it to ride ocean currents and navigate their way back home, or to a place like home. We present innovative in situ and numerical modeling approaches developed to understand the underlying mechanisms of larval transport in the ocean. We describe a novel concept of a Lagrangian platform, the Drifting In Situ Chamber (DISC), designed to observe and quantify complex larval behaviors and their interactions with the pelagic environment. We give a brief history of larval ecology research with the DISC, showing that swimming is directional in most species, guided by cues as diverse as the position of the sun or the underwater soundscape, and even that (unlike humans!) larvae orient better and swim faster when moving as a group. The observed Lagrangian behavior of individual larvae are directly implemented in the Connectivity Modeling System (CMS), an open source Lagrangian tracking application. Simulations help demonstrate the impact that larval behavior has compared to passive Lagrangian trajectories. These methodologies are already the base of exciting findings and are promising tools for documenting and simulating the behavior of other small pelagic organisms, forecasting their migration in a changing ocean.

  15. Conversion of IVA Human Computer Model to EVA Use and Evaluation and Comparison of the Result to Existing EVA Models

    Science.gov (United States)

    Hamilton, George S.; Williams, Jermaine C.

    1998-01-01

    This paper describes the methods, rationale, and comparative results of the conversion of an intravehicular (IVA) 3D human computer model (HCM) to extravehicular (EVA) use and compares the converted model to an existing model on another computer platform. The task of accurately modeling a spacesuited human figure in software is daunting: the suit restricts the human's joint range of motion (ROM) and does not have joints collocated with human joints. The modeling of the variety of materials needed to construct a space suit (e. g. metal bearings, rigid fiberglass torso, flexible cloth limbs and rubber coated gloves) attached to a human figure is currently out of reach of desktop computer hardware and software. Therefore a simplified approach was taken. The HCM's body parts were enlarged and the joint ROM was restricted to match the existing spacesuit model. This basic approach could be used to model other restrictive environments in industry such as chemical or fire protective clothing. In summary, the approach provides a moderate fidelity, usable tool which will run on current notebook computers.

  16. Financial Viability of Emergency Department Observation Unit Billing Models.

    Science.gov (United States)

    Baugh, Christopher W; Suri, Pawan; Caspers, Christopher G; Granovsky, Michael A; Neal, Keith; Ross, Michael A

    2018-05-16

    Outpatients receive observation services to determine the need for inpatient admission. These services are usually provided without the use of condition-specific protocols and in an unstructured manner, scattered throughout a hospital in areas typically designated for inpatient care. Emergency department observation units (EDOUs) use protocolized care to offer an efficient alternative with shorter lengths of stay, lower costs and higher patient satisfaction. EDOU growth is limited by existing policy barriers that prevent a "two-service" model of separate professional billing for both emergency and observation services. The majority of EDOUs use the "one-service" model, where a single composite professional fee is billed for both emergency and observation services. The financial implications of these models are not well understood. We created a Monte Carlo simulation by building a model that reflects current clinical practice in the United States and uses inputs gathered from the most recently available peer-reviewed literature, national survey and payer data. Using this simulation, we modeled annual staffing costs and payments for professional services under two common models of care in an EDOU. We also modeled cash flows over a continuous range of daily EDOU patient encounters to illustrate the dynamic relationship between costs and revenue over various staffing levels. We estimate the mean (±SD) annual net cash flow to be a net loss of $315,382 ±$89,635 in the one-service model and a net profit of $37,569 ±$359,583 in the two-service model. The two-service model is financially sustainable at daily billable encounters above 20 while in the one-service model, costs exceed revenue regardless of encounter count. Physician cost per hour and daily patient encounters had the most significant impact on model estimates. In the one-service model, EDOU staffing costs exceed payments at all levels of patient encounters, making a hospital subsidy necessary to create a

  17. Ancient Chinese Observations and Modern Cometary Models

    Science.gov (United States)

    Yeomans, D. K.

    1995-12-01

    Ancient astronomical observations by Chinese, Japanese, and Korean observers represent the only data source for discerning the long-term behavior of comets. The primary source material is derived from Chinese astrologers who kept a vigilant celestial watch in an effort to issue up-to-date astrological forecasts for the reigning emperors. Surprisingly accurate records were kept on cometary apparitions with careful notes being made of an object's position, motion, size, color, and tail length. For comets Halley, Swift-Tuttle, and Tempel-Tuttle, Chinese observations have been used to model their motions over two millennia and to infer their photometric histories. One general result is that active comets must achieve an apparent magnitude of 3.5 or brighter before they become obvious naked-eye objects. For both comets Halley and Swift-Tuttle, their absolute magnitudes and hence their outgassing rates, have remained relatively constant for two millennia. Comet Halley's rocket-like outgassing has consistently delayed the comet's return to perihelion by 4 days so that the comet's spin axis must have remained stable for at least two millennia. Although its outgassing is at nearly the same rate as Halley's, comet Swift-Tuttle's motion has been unaffected by outgassing forces; this comet is likely to be ten times more massive than Halley and hence far more difficult for rocket-like forces to push it around. Although the earliest definite observations of comet Tempel-Tuttle were in 1366, the associated Leonid meteor showers have been identified as early as A.D. 902. The circumstance for each historical meteor shower and storm have been used to guide predictions for the upcoming 1998-1999 Leonid meteor displays.

  18. Frequency domain modeling and dynamic characteristics evaluation of existing wind turbine systems

    Science.gov (United States)

    Chiang, Chih-Hung; Yu, Chih-Peng

    2016-04-01

    It is quite well accepted that frequency domain procedures are suitable for the design and dynamic analysis of wind turbine structures, especially for floating offshore wind turbines, since random wind loads and wave induced motions are most likely simulated in the frequency domain. This paper presents specific applications of an effective frequency domain scheme to the linear analysis of wind turbine structures in which a 1-D spectral element was developed based on the axially-loaded member. The solution schemes are summarized for the spectral analyses of the tower, the blades, and the combined system with selected frequency-dependent coupling effect from foundation-structure interactions. Numerical examples demonstrate that the modal frequencies obtained using spectral-element models are in good agreement with those found in the literature. A 5-element mono-pile model results in less than 0.3% deviation from an existing 160-element model. It is preliminarily concluded that the proposed scheme is relatively efficient in performing quick verification for test data obtained from the on-site vibration measurement using the microwave interferometer.

  19. The relevance of existing health communication models in the email age: An

    Science.gov (United States)

    Fage-Butler, Antoinette Mary; Jensen, Matilde Nisbeth

    2015-01-01

    Email communication is being integrated relatively slowly into doctor–patient communication. Patients have expressed enthusiasm for the medium, while doctors are generally more reluctant. As existing health communication models have characteristically assumed the co-presence of doctor and patient and primarily reflect medical practitioners’ perspectives, their suitability in relation to email communication and patients’ perspectives warrants further investigation. Following a two-step process and using the methodology of the integrative literature review, 29 articles from 2004–2014 are analysed with the aim of investigating the advantages and disadvantages of the medium of email from the patient’s perspective. The findings are compared to the health communication models of biomedicine, patient-centeredness, patient education and patient empowerment to investigate these models’ relevance for doctor–patient email communication. Results show that patients identify numerous advantages with email communication, including improved convenience and access, more detailed informational exchanges, greater reflection opportunities, freedom from the medical gaze and the potential to level out power imbalances, as well as a number of primarily medium-related disadvantages. The findings indicate that email can counteract some of the communicative problems associated with biomedicine and suggest the ongoing relevance of aspects of the models of patient empowerment, patient-centeredness and patient education for email communication.

  20. Psychological Contract Development: An Integration of Existing Knowledge to Form a Temporal Model

    Directory of Open Access Journals (Sweden)

    Kelly Windle

    2014-07-01

    Full Text Available The psychological contract has received substantial theoretical attention over the past two decades as a popular framework within which to examine contemporary employment relationships. Previous research mostly examines breach and violation of the psychological contract and its impact on employee organization outcomes. Few studies have employed longitudinal, prospective research designs to investigate the psychological contract and as a result, psychological contract content and formation are incompletely understood. It is argued that employment relationships may be better proactively managed with greater understanding of formation and changes in the psychological contract. We examine existing psychological contract literature to identify five key factors proposed to contribute to the formation of psychological contracts. We extend the current research by integrating these factors for the first time into a temporal model of psychological contract development.

  1. Functional Coverage of the Human Genome by Existing Structures, Structural Genomics Targets, and Homology Models.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The bias in protein structure and function space resulting from experimental limitations and targeting of particular functional classes of proteins by structural biologists has long been recognized, but never continuously quantified. Using the Enzyme Commission and the Gene Ontology classifications as a reference frame, and integrating structure data from the Protein Data Bank (PDB, target sequences from the structural genomics projects, structure homology derived from the SUPERFAMILY database, and genome annotations from Ensembl and NCBI, we provide a quantified view, both at the domain and whole-protein levels, of the current and projected coverage of protein structure and function space relative to the human genome. Protein structures currently provide at least one domain that covers 37% of the functional classes identified in the genome; whole structure coverage exists for 25% of the genome. If all the structural genomics targets were solved (twice the current number of structures in the PDB, it is estimated that structures of one domain would cover 69% of the functional classes identified and complete structure coverage would be 44%. Homology models from existing experimental structures extend the 37% coverage to 56% of the genome as single domains and 25% to 31% for complete structures. Coverage from homology models is not evenly distributed by protein family, reflecting differing degrees of sequence and structure divergence within families. While these data provide coverage, conversely, they also systematically highlight functional classes of proteins for which structures should be determined. Current key functional families without structure representation are highlighted here; updated information on the "most wanted list" that should be solved is available on a weekly basis from http://function.rcsb.org:8080/pdb/function_distribution/index.html.

  2. Models and observations of Arctic melt ponds

    Science.gov (United States)

    Golden, K. M.

    2016-12-01

    During the Arctic melt season, the sea ice surface undergoes a striking transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is largely determined by the complex evolution of melt pond configurations. In fact, ice-albedo feedback has played a significant role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a challenge to improving climate projections. It has been found that as the ponds grow and coalesce, the fractal dimension of their boundaries undergoes a transition from 1 to about 2, around a critical length scale of 100 square meters in area. As the ponds evolve they take complex, self-similar shapes with boundaries resembling space-filling curves. I will outline how mathematical models of composite materials and statistical physics, such as percolation and Ising models, are being used to describe this evolution and predict key geometrical parameters that agree very closely with observations.

  3. Observational constraints on Visser's cosmological model

    International Nuclear Information System (INIS)

    Alves, M. E. S.; Araujo, J. C. N. de; Miranda, O. D.; Wuensche, C. A.; Carvalho, F. C.; Santos, E. M.

    2010-01-01

    Theories of gravity for which gravitons can be treated as massive particles have presently been studied as realistic modifications of general relativity, and can be tested with cosmological observations. In this work, we study the ability of a recently proposed theory with massive gravitons, the so-called Visser theory, to explain the measurements of luminosity distance from the Union2 compilation, the most recent Type-Ia Supernovae (SNe Ia) data set, adopting the current ratio of the total density of nonrelativistic matter to the critical density (Ω m ) as a free parameter. We also combine the SNe Ia data with constraints from baryon acoustic oscillations (BAO) and cosmic microwave background (CMB) measurements. We find that, for the allowed interval of values for Ω m , a model based on Visser's theory can produce an accelerated expansion period without any dark energy component, but the combined analysis (SNe Ia+BAO+CMB) shows that the model is disfavored when compared with the ΛCDM model.

  4. Ratchetting deformation behavior of modified 9Cr-1Mo steel and applicability of existing constitutive models

    International Nuclear Information System (INIS)

    Yaguchi, Masatsugu; Takahashi, Yukio

    2001-01-01

    A series of ratchetting deformation tests was conducted on modified 9Cr-1Mo steel at 550degC under uniaxial and multiaxial stress conditions. Ratchetting behavior depended on various parameters such as mean stress, stress/strain rate and those range, hold time and prior cyclic deformation. Under uniaxial conditions, untraditional ratchetting behavior was observed; the ratchetting deformation rate was the fastest when the stress ratio was equal to -1, while no ratchetting deformation was predicted by conventional constitutive models. In order to discuss the reason for this untraditional ratchetting behavior, a lot of monotonic compression tests were conducted and compared with tension data. The material showed a difference of deformation resistance of about 30 MPa between tension and compression at high strain rates. Furthermore, the authors' previous model and Ohno-Wang model were applied to the test conditions to evaluate their description capability for ratchetting behavior of the material. It was shown that the authors' model has a tendency to overestimate the ratchetting deformation and that the Ohno-Wang model has a tendency to underestimate the uniaxial ratchetting deformation at small stress rates. (author)

  5. Observations and Modeling of Merging Galaxy Clusters

    Science.gov (United States)

    Golovich, Nathan Ryan

    Context: Galaxy clusters grow hierarchically with continuous accretion bookended by major merging events that release immense gravitational potential energy (as much as ˜1065 erg). This energy creates an environment for rich astrophysics. Precise measurements of the dark matter halo, intracluster medium, and galaxy population have resulted in a number of important results including dark matter constraints and explanations of the generation of cosmic rays. However, since the timescale of major mergers (˜several Gyr) relegates observations of individual systems to mere snapshots, these results are difficult to understand under a consistent dynamical framework. While computationally expensive simulations are vital in this regard, the vastness of parameter space has necessitated simulations of idealized mergers that are unlikely to capture the full richness. Merger speeds, geometries, and timescales each have a profound consequential effect, but even these simple dynamical properties of the mergers are often poorly understood. A method to identify and constrain the best systems for probing the rich astrophysics of merging clusters is needed. Such a method could then be utilized to prioritize observational follow up and best inform proper exploration of dynamical phase space. Task: In order to identify and model a large number of systems, in this dissertation, we compile an ensemble of major mergers each containing radio relics. We then complete a pan-chromatic study of these 29 systems including wide field optical photometry, targeted optical spectroscopy of member galaxies, radio, and X-ray observations. We use the optical observations to model the galaxy substructure and estimate line of sight motion. In conjunction with the radio and X-ray data, these substructure models helped elucidate the most likely merger scenario for each system and further constrain the dynamical properties of each system. We demonstrate the power of this technique through detailed analyses

  6. Some safe and sensible shortcuts for efficiently upscaled updates of existing elevation models.

    Science.gov (United States)

    Knudsen, Thomas; Aasbjerg Nielsen, Allan

    2013-04-01

    through the processor, individually contributing to the nearest grid posts in a memory mapped grid file. Algorithmically this is very efficient, but it would be even more efficient if we did not have to handle so much data. Another of our recent case studies focuses on this. The basic idea is to ignore data that does not tell us anything new. We do this by looking at anomalies between the current height model and the new point cloud, then computing a correction grid for the current model. Points with insignificant anomalies are simply removed from the point cloud, and the correction grid is computed using the remaining point anomalies only. Hence, we only compute updates in areas of significant change, speeding up the process, and giving us new insight of the precision of the current model which in turn results in improved metadata for both the current and the new model. Currently we focus on simple approaches for creating a smooth update process for integration of heterogeneous data sets. On the other hand, as years go by and multiple generations of data become available, more advanced approaches will probably become necessary (e.g. a multi campaign bundle adjustment, improving the oldest data using cross-over adjustment with newer campaigns). But to prepare for such approaches, it is important already now to organize and evaluate the ancillary (GPS, INS) and engineering level data for the current data sets. This is essential if future generations of DEM users should be able to benefit from future conceptions of "some safe and sensible shortcuts for efficiently upscaled updates of existing elevation models".

  7. Evaluation of the existing triple point path models with new experimental data: proposal of an original empirical formulation

    Science.gov (United States)

    Boutillier, J.; Ehrhardt, L.; De Mezzo, S.; Deck, C.; Magnan, P.; Naz, P.; Willinger, R.

    2018-03-01

    With the increasing use of improvised explosive devices (IEDs), the need for better mitigation, either for building integrity or for personal security, increases in importance. Before focusing on the interaction of the shock wave with a target and the potential associated damage, knowledge must be acquired regarding the nature of the blast threat, i.e., the pressure-time history. This requirement motivates gaining further insight into the triple point (TP) path, in order to know precisely which regime the target will encounter (simple reflection or Mach reflection). Within this context, the purpose of this study is to evaluate three existing TP path empirical models, which in turn are used in other empirical models for the determination of the pressure profile. These three TP models are the empirical function of Kinney, the Unified Facilities Criteria (UFC) curves, and the model of the Natural Resources Defense Council (NRDC). As discrepancies are observed between these models, new experimental data were obtained to test their reliability and a new promising formulation is proposed for scaled heights of burst ranging from 24.6-172.9 cm/kg^{1/3}.

  8. Intercomparison of middle-atmospheric wind in observations and models

    Directory of Open Access Journals (Sweden)

    R. Rüfenacht

    2018-04-01

    Full Text Available Wind profile information throughout the entire upper stratosphere and lower mesosphere (USLM is important for the understanding of atmospheric dynamics but became available only recently, thanks to developments in remote sensing techniques and modelling approaches. However, as wind measurements from these altitudes are rare, such products have generally not yet been validated with (other observations. This paper presents the first long-term intercomparison of wind observations in the USLM by co-located microwave radiometer and lidar instruments at Andenes, Norway (69.3° N, 16.0° E. Good correspondence has been found at all altitudes for both horizontal wind components for nighttime as well as daylight conditions. Biases are mostly within the random errors and do not exceed 5–10 m s−1, which is less than 10 % of the typically encountered wind speeds. Moreover, comparisons of the observations with the major reanalyses and models covering this altitude range are shown, in particular with the recently released ERA5, ECMWF's first reanalysis to cover the whole USLM region. The agreement between models and observations is very good in general, but temporally limited occurrences of pronounced discrepancies (up to 40 m s−1 exist. In the article's Appendix the possibility of obtaining nighttime wind information about the mesopause region by means of microwave radiometry is investigated.

  9. Modeling Boston: A workflow for the efficient generation and maintenance of urban building energy models from existing geospatial datasets

    International Nuclear Information System (INIS)

    Cerezo Davila, Carlos; Reinhart, Christoph F.; Bemis, Jamie L.

    2016-01-01

    City governments and energy utilities are increasingly focusing on the development of energy efficiency strategies for buildings as a key component in emission reduction plans and energy supply strategies. To support these diverse needs, a new generation of Urban Building Energy Models (UBEM) is currently being developed and validated to estimate citywide hourly energy demands at the building level. However, in order for cities to rely on UBEMs, effective model generation and maintenance workflows are needed based on existing urban data structures. Within this context, the authors collaborated with the Boston Redevelopment Authority to develop a citywide UBEM based on official GIS datasets and a custom building archetype library. Energy models for 83,541 buildings were generated and assigned one of 52 use/age archetypes, within the CAD modelling environment Rhinoceros3D. The buildings were then simulated using the US DOE EnergyPlus simulation program, and results for buildings of the same archetype were crosschecked against data from the US national energy consumption surveys. A district-level intervention combining photovoltaics with demand side management is presented to demonstrate the ability of UBEM to provide actionable information. Lack of widely available archetype templates and metered energy data, were identified as key barriers within existing workflows that may impede cities from effectively applying UBEM to guide energy policy. - Highlights: • Data requirements for Urban Building Energy Models are reviewed. • A workflow for UBEM generation from available GIS datasets is developed. • A citywide demand simulation model for Boston is generated and tested. • Limitations for UBEM in current urban data systems are identified and discussed. • Model application for energy management policy is shown in an urban PV scenario.

  10. Stability in a fiber bundle model: Existence of strong links and the effect of disorder

    Science.gov (United States)

    Roy, Subhadeep

    2018-05-01

    The present paper deals with a fiber bundle model which consists of a fraction α of infinitely strong fibers. The inclusion of such an unbreakable fraction has been proven to affect the failure process in early studies, especially around a critical value αc. The present work has a twofold purpose: (i) a study of failure abruptness, mainly the brittle to quasibrittle transition point with varying α and (ii) variation of αc as we change the strength of disorder introduced in the model. The brittle to quasibrittle transition is confirmed from the failure abruptness. On the other hand, the αc is obtained from the knowledge of failure abruptness as well as the statistics of avalanches. It is observed that the brittle to quasibrittle transition point scales to lower values, suggesting more quasi-brittle-like continuous failure when α is increased. At the same time, the bundle becomes stronger as there are larger numbers of strong links to support the external stress. High α in a highly disordered bundle leads to an ideal situation where the bundle strength, as well as the predictability in failure process is very high. Also, the critical fraction αc, required to make the model deviate from the conventional results, increases with decreasing strength of disorder. The analytical expression for αc shows good agreement with the numerical results. Finally, the findings in the paper are compared with previous results and real-life applications of composite materials.

  11. On the redistribution of existing inputs using the spherical frontier dea model

    Directory of Open Access Journals (Sweden)

    José Virgilio Guedes de Avellar

    2010-04-01

    Full Text Available The Spherical Frontier DEA Model (SFM (Avellar et al., 2007 was developed to be used when one wants to fairly distribute a new and fixed input to a group of Decision Making Units (DMU's. SFM's basic idea is to distribute this new and fixed input in such a way that every DMU will be placed on an efficiency frontier with a spherical shape. We use SFM to analyze the problems that appear when one wants to redistribute an already existing input to a group of DMU's such that the total sum of this input will remain constant. We also analyze the case in which this total sum may vary.O Modelo de Fronteira Esférica (MFE (Avellar et al., 2007 foi desenvolvido para ser usado quando se deseja distribuir de maneira justa um novo insumo a um conjunto de unidades tomadoras de decisão (DMU's, da sigla em inglês, Decision Making Units. A ideia básica do MFE é a de distribuir esse novo insumo de maneira que todas as DMU's sejam colocadas numa fronteira de eficiência com um formato esférico. Neste artigo, usamos MFE para analisar o problema que surge quando se deseja redistribuir um insumo já existente para um grupo de DMU's de tal forma que a soma desse insumo para todas as DMU's se mantenha constante. Também analisamos o caso em que essa soma possa variar.

  12. Common data model for natural language processing based on two existing standard information models: CDA+GrAF.

    Science.gov (United States)

    Meystre, Stéphane M; Lee, Sanghoon; Jung, Chai Young; Chevrier, Raphaël D

    2012-08-01

    An increasing need for collaboration and resources sharing in the Natural Language Processing (NLP) research and development community motivates efforts to create and share a common data model and a common terminology for all information annotated and extracted from clinical text. We have combined two existing standards: the HL7 Clinical Document Architecture (CDA), and the ISO Graph Annotation Format (GrAF; in development), to develop such a data model entitled "CDA+GrAF". We experimented with several methods to combine these existing standards, and eventually selected a method wrapping separate CDA and GrAF parts in a common standoff annotation (i.e., separate from the annotated text) XML document. Two use cases, clinical document sections, and the 2010 i2b2/VA NLP Challenge (i.e., problems, tests, and treatments, with their assertions and relations), were used to create examples of such standoff annotation documents, and were successfully validated with the XML schemata provided with both standards. We developed a tool to automatically translate annotation documents from the 2010 i2b2/VA NLP Challenge format to GrAF, and automatically generated 50 annotation documents using this tool, all successfully validated. Finally, we adapted the XSL stylesheet provided with HL7 CDA to allow viewing annotation XML documents in a web browser, and plan to adapt existing tools for translating annotation documents between CDA+GrAF and the UIMA and GATE frameworks. This common data model may ease directly comparing NLP tools and applications, combining their output, transforming and "translating" annotations between different NLP applications, and eventually "plug-and-play" of different modules in NLP applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. The existence of fertile hybrids of closely related model earthworm species, Eisenia andrei and E. fetida.

    Directory of Open Access Journals (Sweden)

    Barbara Plytycz

    Full Text Available Lumbricid earthworms Eisenia andrei (Ea and E. fetida (Ef are simultaneous hermaphrodites with reciprocal insemination capable of self-fertilization while the existence of hybridization of these two species was still debatable. During the present investigation fertile hybrids of Ea and Ef were detected. Virgin specimens of Ea and Ef were laboratory crossed (Ea+Ef and their progeny was doubly identified. 1 -identified by species-specific maternally derived haploid mitochondrial DNA sequences of the COI gene being either 'a' for worms hatched from Ea ova or 'f' for worms hatched from Ef ova. 2 -identified by the diploid maternal/paternal nuclear DNA sequences of 28s rRNA gene being either 'AA' for Ea, 'FF' for Ef, or AF/FA for their hybrids derived either from the 'aA' or 'fF' ova, respectively. Among offspring of Ea+Ef pairs in F1 generation there were mainly aAA and fFF earthworms resulted from the facilitated self-fertilization and some aAF hybrids from aA ova but none fFA hybrids from fF ova. In F2 generation resulting from aAF hybrids mated with aAA a new generations of aAA and aAF hybrids were noticed, while aAF hybrids mated with fFF gave fFF and both aAF and fFA hybrids. Hybrids intercrossed together produced plenty of cocoons but no hatchlings independently whether aAF+aAF or aAF+fFA were mated. These results indicated that Ea and Ef species, easy to maintain in laboratory and commonly used as convenient models in biomedicine and ecotoxicology, may also serve in studies on molecular basis of interspecific barriers and mechanisms of introgression and speciation. Hypothetically, their asymmetrical hybridization can be modified by some external factors.

  14. Should we trust models or observations

    International Nuclear Information System (INIS)

    Ellsaesser, H.W.

    1982-01-01

    Scientists and laymen alike already trust observational data more than theories-this is made explicit in all formalizations of the scientific method. It was demonstrated again during the Supersonic Transport (SST) controversy by the continued efforts to reconcile the computed effect of the 1961-62 nuclear test series on the ozone layer with the observational record. Scientists, caught in the focus of the political limelight, sometimes, demonstrated their faith in the primacy of observations by studiously ignoring or dismissing as erroneous data at variance with the prevailing theoretical consensus-thereby stalling the theoretical modifications required to accommodate the observations. (author)

  15. Formation of calcareous nodules in loess-paleosol sequences: Reviews of existing models with a proposed new "per evapotranspiration model"

    Science.gov (United States)

    Li, Yanrong; Zhang, Weiwei; Aydin, Adnan; Deng, Xiaohong

    2018-04-01

    Loess is a product of aeolian deposition during Quaternary glaciation cycles. Loess-paleosol sequences are rich in calcareous nodules (CNs). In the literature, two models are widely cited for the formation of CNs, namely "per descendum" and "per ascendum". However, there has been no direct testing or monitoring to support either of these contradictory models. This paper reviews a large number of multidisciplinary literature to evaluate the consistency, reliability and rationality of these two models. Three main conclusions are drawn: (1) the causative factors (variation of pH value along loess-paleosol sequence, decrease of CO2 partial pressure, and reduction of solvent water) that are used to support the per descendum model do not completely explain the supersaturation of infiltration solution with CaCO3, thereby making this model questionable; (2) the per ascendum model explains the formation of CNs along narrow horizons through upward evaporation; however, it fails to produce sporadic distributions and irregular shapes of nodules on loess slope faces and the frequent appearance of nodules around plant roots. In order to reconcile these deficiencies, we conducted an extensive field survey in various parts of Shanxi province. Based on this new set of observations, it was concluded that the "per ascendum" model can be extended to explain all occurrences of CNs. This extended model is called "per evapotranspiration".

  16. Existing and potential infection risk zones of yellow fever worldwide: a modelling analysis.

    Science.gov (United States)

    Shearer, Freya M; Longbottom, Joshua; Browne, Annie J; Pigott, David M; Brady, Oliver J; Kraemer, Moritz U G; Marinho, Fatima; Yactayo, Sergio; de Araújo, Valdelaine E M; da Nóbrega, Aglaêr A; Fullman, Nancy; Ray, Sarah E; Mosser, Jonathan F; Stanaway, Jeffrey D; Lim, Stephen S; Reiner, Robert C; Moyes, Catherine L; Hay, Simon I; Golding, Nick

    2018-03-01

    Yellow fever cases are under-reported and the exact distribution of the disease is unknown. An effective vaccine is available but more information is needed about which populations within risk zones should be targeted to implement interventions. Substantial outbreaks of yellow fever in Angola, Democratic Republic of the Congo, and Brazil, coupled with the global expansion of the range of its main urban vector, Aedes aegypti, suggest that yellow fever has the propensity to spread further internationally. The aim of this study was to estimate the disease's contemporary distribution and potential for spread into new areas to help inform optimal control and prevention strategies. We assembled 1155 geographical records of yellow fever virus infection in people from 1970 to 2016. We used a Poisson point process boosted regression tree model that explicitly incorporated environmental and biological explanatory covariates, vaccination coverage, and spatial variability in disease reporting rates to predict the relative risk of apparent yellow fever virus infection at a 5 × 5 km resolution across all risk zones (47 countries across the Americas and Africa). We also used the fitted model to predict the receptivity of areas outside at-risk zones to the introduction or reintroduction of yellow fever transmission. By use of previously published estimates of annual national case numbers, we used the model to map subnational variation in incidence of yellow fever across at-risk countries and to estimate the number of cases averted by vaccination worldwide. Substantial international and subnational spatial variation exists in relative risk and incidence of yellow fever as well as varied success of vaccination in reducing incidence in several high-risk regions, including Brazil, Cameroon, and Togo. Areas with the highest predicted average annual case numbers include large parts of Nigeria, the Democratic Republic of the Congo, and South Sudan, where vaccination coverage in 2016

  17. Existing and potential infection risk zones of yellow fever worldwide: a modelling analysis

    Directory of Open Access Journals (Sweden)

    Freya M Shearer, BSc

    2018-03-01

    Full Text Available Summary: Background: Yellow fever cases are under-reported and the exact distribution of the disease is unknown. An effective vaccine is available but more information is needed about which populations within risk zones should be targeted to implement interventions. Substantial outbreaks of yellow fever in Angola, Democratic Republic of the Congo, and Brazil, coupled with the global expansion of the range of its main urban vector, Aedes aegypti, suggest that yellow fever has the propensity to spread further internationally. The aim of this study was to estimate the disease's contemporary distribution and potential for spread into new areas to help inform optimal control and prevention strategies. Methods: We assembled 1155 geographical records of yellow fever virus infection in people from 1970 to 2016. We used a Poisson point process boosted regression tree model that explicitly incorporated environmental and biological explanatory covariates, vaccination coverage, and spatial variability in disease reporting rates to predict the relative risk of apparent yellow fever virus infection at a 5 × 5 km resolution across all risk zones (47 countries across the Americas and Africa. We also used the fitted model to predict the receptivity of areas outside at-risk zones to the introduction or reintroduction of yellow fever transmission. By use of previously published estimates of annual national case numbers, we used the model to map subnational variation in incidence of yellow fever across at-risk countries and to estimate the number of cases averted by vaccination worldwide. Findings: Substantial international and subnational spatial variation exists in relative risk and incidence of yellow fever as well as varied success of vaccination in reducing incidence in several high-risk regions, including Brazil, Cameroon, and Togo. Areas with the highest predicted average annual case numbers include large parts of Nigeria, the Democratic Republic of the

  18. A comparative analysis of reactor lower head debris cooling models employed in the existing severe accident analysis codes

    International Nuclear Information System (INIS)

    Ahn, K.I.; Kim, D.H.; Kim, S.B.; Kim, H.D.

    1998-08-01

    MELCOR and MAAP4 are the representative severe accident analysis codes which have been developed for the integral analysis of the phenomenological reactor lower head corium cooling behavior. Main objectives of the present study is to identify merits and disadvantages of each relevant model through the comparative analysis of the lower plenum corium cooling models employed in these two codes. The final results will be utilized for the development of LILAC phenomenological models and for the continuous improvement of the existing MELCOR reactor lower head models, which are currently being performed at the KAERI. For these purposes, first, nine reference models are selected featuring the lower head corium behavior based on the existing experimental evidences and related models. Then main features of the selected models have been critically analyzed, and finally merits and disadvantages of each corresponding model have been summarized in the view point of realistic corium behavior and reasonable modeling. Being on these evidences, summarized and presented the potential improvements for developing more advanced models. The present study has been focused on the qualitative comparison of each model and so more detailed quantitative analysis is strongly required to obtain the final conclusions for their merits and disadvantages. In addition, in order to compensate the limitations of the current model, required further studies relating closely the detailed mechanistic models with the molten material movement and heat transfer based on phase-change in the porous medium, to the existing simple models. (author). 36 refs

  19. On observational foundations of models with a wave spiral structure

    International Nuclear Information System (INIS)

    Suchkov, A.A.

    1978-01-01

    The validity of the density wave models of the spiral structure is considered. It is shown that the density wave in the Galaxy is doverned by its flat subsystem only, whereas the disk and the halo do not contribute significantly into the wave. It is found that the density wave model of the spiral structure of the Galaxy is confirmed by the value of the pattern speed derived from observational data (Ω = 20-25 km s -1 kpc -1 ). The position and the properties of the outer Lindblad resonance are confirmed by the existence and position of gas ring features in outer regions of our Galaxy and external galaxies. The corotation region in the Galaxy is situated at R=10/12 kpc. Near the corotation region the galactic shock wave is not expected to develop. The observed rapid decrease in the number of H2 regions while moving from R=5 kpc to R=10 kpc confirms this conclusion. The similar consistency between the positions of corotation region and outer resonance and the observed properties of H2 and H1 distribution has also been found for a number of extermal galaxies

  20. Modeling and forecasting the supply of oil and gas: a survey of existing approaches

    International Nuclear Information System (INIS)

    Walls, M.A.

    1992-01-01

    This paper surveys the literature on empirical oil and gas supply modeling. The models fall into two broad categories: geologic/engineering and econometric. Two types of geologic/engineering models are surveyed - play analysis, or simulation models and discovery process models. A third category of supply models, 'hybrids', which contain features of both econometric and discovery process models are also discussed. Particular attention is paid to whether or not the models have linkages between a dynamic model of producer optimizing behaviour and the factors governing supply of the resource; whether or not expectations of future prices, costs, and other stochastic variables are incorporated; whether the physical characteristics of non-renewable resources are captured; and how well the models perform. The paper concludes that the best path for future research efforts is a hybrid approach where the econometric component is derived from a stochastic dynamic optimization model of exploration behaviour. 51 refs., 3 figs., 1 tab

  1. Existence and uniqueness of positive solutions for a nonlocal dispersal population model

    Directory of Open Access Journals (Sweden)

    Jian-Wen Sun

    2014-06-01

    Full Text Available In this article, we study the solutions of a nonlocal dispersal equation with a spatial weight representing competitions and aggregation. To overcome the limitations of comparison principles, we introduce new definitions of upper-lower solutions. The proof of existence and uniqueness of positive solutions is based on the method of monotone iteration sequences.

  2. A Key Challenge in Global HRM: Adding New Insights to Existing Expatriate Spouse Adjustment Models

    Science.gov (United States)

    Gupta, Ritu; Banerjee, Pratyush; Gaur, Jighyasu

    2012-01-01

    This study is an attempt to strengthen the existing knowledge about factors affecting the adjustment process of the trailing expatriate spouse and the subsequent impact of any maladjustment or expatriate failure. We conducted a qualitative enquiry using grounded theory methodology with 26 Indian spouses who had to deal with their partner's…

  3. A Review of the Appropriateness of Existing Micro- and Meso-level Models of Athlete Development within Equestrian Sport

    NARCIS (Netherlands)

    de Haan, D.M.

    2017-01-01

    The aim of this paper was to use a case study approach to review the appropriateness of existing micro- and meso-level models of athlete development within the sport specific context of equestrianism. At a micro-level the Long Term Athlete Development (LTAD) model was chosen. At a meso-level, the

  4. 3D Centrifuge Modeling of the Effect of Twin Tunneling to an Existing Pile Group

    Directory of Open Access Journals (Sweden)

    M. A. Soomr

    2017-10-01

    Full Text Available In densely built urban areas, it is inevitable that tunnels will be constructed near existing pile groups. The bearing capacity of a pile group depends on shear stress along the soil-pile interface and normal stress underneath the pile toe while the two would be adversely affected by the unloading process of tunneling. Although extensive studies have been conducted to investigate the effects of tunnel construction on existing single piles, the influence of twin tunnel advancement on an existing pile group is merely reported in the literature. In this study, a series of three-dimensional centrifuge tests were carried out to investigate the response of an existing pile group under working load subjected to twin tunneling at various locations in dry Toyoura sand. In each twin tunneling test, the first tunnel is constructed near the mid-depth of the pile shaft, while the second tunnel is subsequently constructed either next to, below or right underneath the pile toe (Tests G_ST, G_SB and G_SU, respectively. Among the three tests, the 2nd tunnel excavated near the pile toe (Test G_ST results in the smallest settlement but the largest transverse tilting (0.2% of pile group. Significant bending moment was induced at the pile head (1.4 times of its bending moment capacity due to the 2nd tunnel T. On the contrary, tunneling right underneath the toe of pile (i.e., Test G_SU results in the smallest tilting but largest settlement of the pile group (4.6% of pile diameter and incremental mobilisation of shaft resistance (13%. Due to stress release by the twin tunneling, the axial force taken by the front piles close to tunnels was reduced and partially transferred to the rear piles. This load transfer can increase the axial force in rear piles by 24%.

  5. Existence and stability of periodic solutions for a delayed prey-predator model with diffusion effects

    Directory of Open Access Journals (Sweden)

    Hongwei Liang

    2016-01-01

    Full Text Available Existence and stability of spatially periodic solutions for a delay prey-predator diffusion system are concerned in this work. We obtain that the system can generate the spatially nonhomogeneous periodic solutions when the diffusive rates are suitably small. This result demonstrates that the diffusion plays an important role on deriving the complex spatiotemporal dynamics. Meanwhile, the stability of the spatially periodic solutions is also studied. Finally, in order to verify our theoretical results, some numerical simulations are also included.

  6. Television Advertising and Children's Observational Modeling.

    Science.gov (United States)

    Atkin, Charles K.

    This paper assesses advertising effects on children and adolescents from a social learning theory perspective, emphasizing imitative performance of vicariously reinforced consumption stimuli. The basic elements of social psychologist Albert Bandura's modeling theory are outlined. Then specific derivations from the theory are applied to the problem…

  7. Evaluation of pre-existing neuropathy and bortezomib retreatment as risk factors to develop severe neuropathy in a mouse model.

    Science.gov (United States)

    Bruna, Jordi; Alé, Albert; Velasco, Roser; Jaramillo, Jessica; Navarro, Xavier; Udina, Esther

    2011-09-01

    Pre-existing neuropathy, a not uncommon feature in oncologic patients, is a potential but non-confirmed risk factor to develop early or severe chemotherapy-induced neuropathy. The main goal of this study is to evaluate the role of pre-existing neuropathy induced by vincristine (VNC) or bortezomib (BTZ) as a risk factor to develop more severe BTZ-induced neuropathy in a mouse model. VNC, at doses of 1 and 1.5 mg/kg given twice per week for 4 weeks, induced a moderate and severe sensory-motor neuropathy, primarily axonal, with predominant involvement of myelinated sensory axons. The neuropathy induced by BTZ at dose of 1 mg/kg given twice per week for 6 weeks was a mild axonal sensory neuropathy involving myelinated and unmyelinated fibers. The neuropathy in mice previously treated and retreated with the same schedule of BTZ after 4 weeks of washout period was similar in profile and severity to the one observed after the first treatment. When basal neuropathy was classified as moderate (most of BTZ-treated animals) or severe (all VNC-treated animals and two BTZ-treated animals), there was a more marked decline in sensory nerve function during BTZ retreatment in the group with basal severe neuropathy (-86%) than in the groups with basal mild (-57%) or without neuropathy (-52%; p < 0.001). Histopathological findings supported the functional results. Therefore, this study shows that the presence of a severe neuropathy previous to treatment with an antitumoral agent, such as BTZ, results in a more marked involvement of peripheral nerves. © 2011 Peripheral Nerve Society.

  8. Post-Hoc Pattern-Oriented Testing and Tuning of an Existing Large Model: Lessons from the Field Vole

    DEFF Research Database (Denmark)

    Topping, Christopher John; Dalkvist, Trine; Grimm, Volker

    2012-01-01

    Pattern-oriented modeling (POM) is a general strategy for modeling complex systems. In POM, multiple patterns observed at different scales and hierarchical levels are used to optimize model structure, to test and select sub-models of key processes, and for calibration. So far, POM has been used f...

  9. Shape Optimization for Navier-Stokes Equations with Algebraic Turbulence Model: Existence Analysis

    International Nuclear Information System (INIS)

    Bulicek, Miroslav; Haslinger, Jaroslav; Malek, Josef; Stebel, Jan

    2009-01-01

    We study a shape optimization problem for the paper machine headbox which distributes a mixture of water and wood fibers in the paper making process. The aim is to find a shape which a priori ensures the given velocity profile on the outlet part. The mathematical formulation leads to an optimal control problem in which the control variable is the shape of the domain representing the header, the state problem is represented by a generalized stationary Navier-Stokes system with nontrivial mixed boundary conditions. In this paper we prove the existence of solutions both to the generalized Navier-Stokes system and to the shape optimization problem

  10. Meteor head echoes - observations and models

    Directory of Open Access Journals (Sweden)

    A. Pellinen-Wannberg

    2005-01-01

    Full Text Available Meteor head echoes - instantaneous echoes moving with the velocities of the meteors - have been recorded since 1947. Despite many attempts, this phenomenon did not receive a comprehensive theory for over 4 decades. The High Power and Large Aperture (HPLA features, combined with present signal processing and data storage capabilities of incoherent scatter radars, may give an explanation for the old riddle. The meteoroid passage through the radar beam can be followed with simultaneous spatial-time resolution of about 100m-ms class. The current views of the meteor head echo process will be presented and discussed. These will be related to various EISCAT observations, such as dual-frequency target sizes, altitude distributions and vector velocities.

  11. Spectrophotometric Modeling of MAHLI Goniometer Observations

    Science.gov (United States)

    Liang, W.; Johnson, J. R.; Hayes, A.; Lemmon, M. T.; Bell, J. F., III; Grundy, W. M.; Deen, R. G.

    2017-12-01

    The Mars Hand Lends Imager (MAHLI) on the Curiosity rover's robotic arm was used as a goniometer to acquire a multiple-viewpoint data set on sol 544 [1]. Images were acquired at 20 arm positions, all centered at the same location and from a near-constant distance of 1.0 m from the surface. Although this sequence was acquired at only one time of day ( 13:30 LTST), it provided phase angle coverage from 0-110°. Images were converted to radiance from calibrated PDS files (DRXX) using radiance scaling factors and MAHLI focus position counts in an algorithm that rescaled the data to match the Mastcam M-34 calibration via comparison of sky images acquired during the mission. Converted MAHLI radiance values from an image of the Mastcam calibration target compared favorably in the red, green, and blue Bayer filters to M-34 radiance values from an image of the same target taken minutes afterwards. The 20 MAHLI images allowed construction of a digital terrain model (DTM), although images with shadows cast by the rover arm were more challenging to include. Their current absence restricts the lowest phase angles available to about 17°. The DTM enables calculation of surface normals that can be used with sky models to correct for diffuse reflectance on surface facets prior to Hapke modeling [cf. 2-6]. Regions of interest (ROIs) were extracted using one of the low emission-angle images as a template. ROI unit types included soils, light-toned surfaces (5 cm felsic rock "Nita"), dark-toned rocks with variable textures and dust cover, and larger areas representative of the average surface (see attached figure). These ROIs were translated from the template image to the other images through a matching of DTM three-dimensional coordinates. Preliminary phase curves (prior to atmospheric correction) show that soil-dominated surfaces are most backscattering, whereas rocks are least backscattering, and light-toned surfaces exhibit wavelength-dependent scattering. Future work will

  12. Existence and uniqueness of the maximum likelihood estimator for models with a Kronecker product covariance structure

    NARCIS (Netherlands)

    Ros, B.P.; Bijma, F.; de Munck, J.C.; de Gunst, M.C.M.

    2016-01-01

    This paper deals with multivariate Gaussian models for which the covariance matrix is a Kronecker product of two matrices. We consider maximum likelihood estimation of the model parameters, in particular of the covariance matrix. There is no explicit expression for the maximum likelihood estimator

  13. Influence of osmotic pressure changes on the opening of existing cracks in 2 intervertebral disc models

    NARCIS (Netherlands)

    Wognum, Silvia; Huyghe, Jacques M.; Baaijens, Frank P. T.

    2006-01-01

    An experimental hydrogel model and a numerical mixture model were used to investigate why the disc herniates while osmotic pressure is decreasing. To investigate the influence of decreasing osmotic pressure on the opening of cracks in the disc. In the degeneration process, the disc changes structure

  14. Delectability of low contrast in CT. Comparison between human observes and observer model

    International Nuclear Information System (INIS)

    Hernandez-Giron, I.; Geleijins, J.; Calzado, A.; Joemai, R. M. S.; Veldkamp, W. J. H.

    2013-01-01

    The objective of this work is to study the real images of TC and other simulated LCD with white noise through a model of observer. The results are compared with those obtained in a similar experiment by human observers. (Author)

  15. Embodied Agents, E-SQ and Stickiness: Improving Existing Cognitive and Affective Models

    Science.gov (United States)

    de Diesbach, Pablo Brice

    This paper synthesizes results from two previous studies of embodied virtual agents on commercial websites. We analyze and criticize the proposed models and discuss the limits of the experimental findings. Results from other important research in the literature are integrated. We also integrate concepts from profound, more business-related, analysis that deepens on the mechanisms of rhetoric in marketing and communication, and the possible role of E-SQ in man-agent interaction. We finally suggest a refined model for the impacts of these agents on web site users, and limits of the improved model are commented.

  16. Two-current nucleon observables in Skyrme model

    International Nuclear Information System (INIS)

    Chemtob, M.

    1987-01-01

    Three independent two-current nucleon observables are studied within the two-flavor Skyrme model for the πρω system. The effecive lagrangian is that of the gauged chiral symmetry approach, consistent with the vector meson dominance, in the linear realization (for the vector mesons) of the global chiral symmetry. The first application deals with the nucleon electric polarizability and magnetic susceptibility. Both seagull and dispersive contributions appear and we evaluate the latter in terms of the sums over intermediate states. The results are compared with existing quark model results as well as with empirical determinations. The second application concerns the zero-point quantum correction to the skyrmion mass. We apply a chiral perturbation theory approach to evaluate the ion loop contribution to the nucleon mass. The comparison with the conventional Skyrme model result reveals an important sensitivity to the stabilization mechanism. The third application is to lepton-nucleon deep inelastic scattering in the Bjorken scaling limit. The structure tensor is calculated in terms of the representation as a commutator product of two currents. Numerical results are presented for the scaling function F 2 (x). An essential use is made of the large N c (number of colors) approximation in all these applications. In the numerical computations we ignore the distortion effects, relative to the free plane wave limit, on the pionic fluctuations. (orig.)

  17. Observational constraints on successful model of quintessential Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Chao-Qiang [Chongqing University of Posts and Telecommunications, Chongqing, 400065 (China); Lee, Chung-Chi [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Sami, M. [Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi 110025 (India); Saridakis, Emmanuel N. [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Starobinsky, Alexei A., E-mail: geng@phys.nthu.edu.tw, E-mail: lee.chungchi16@gmail.com, E-mail: sami@iucaa.ernet.in, E-mail: Emmanuel_Saridakis@baylor.edu, E-mail: alstar@landau.ac.ru [L. D. Landau Institute for Theoretical Physics RAS, Moscow 119334 (Russian Federation)

    2017-06-01

    We study quintessential inflation using a generalized exponential potential V (φ)∝ exp(−λ φ {sup n} / M {sub Pl} {sup n} ), n >1, the model admits slow-roll inflation at early times and leads to close-to-scaling behaviour in the post inflationary era with an exit to dark energy at late times. We present detailed investigations of the inflationary stage in the light of the Planck 2015 results, study post-inflationary dynamics and analytically confirm the existence of an approximately scaling solution. Additionally, assuming that standard massive neutrinos are non-minimally coupled, makes the field φ dominant once again at late times giving rise to present accelerated expansion of the Universe. We derive observational constraints on the field and time-dependent neutrino masses. In particular, for n =6 (8), the parameter λ is constrained to be, log λ > −7.29 (−11.7); the model produces the spectral index of the power spectrum of primordial scalar (matter density) perturbations as n {sub s} = 0.959 ± 0.001 (0.961 ± 0.001) and tiny tensor-to-scalar ratio, r <1.72 × 10{sup −2} (2.32 × 10{sup −2}) respectively. Consequently, the upper bound on possible values of the sum of neutrino masses Σ m {sub ν} ∼< 2.5 eV significantly enhances compared to that in the standard ΛCDM model.

  18. Observational constraints on successful model of quintessential Inflation

    International Nuclear Information System (INIS)

    Geng, Chao-Qiang; Lee, Chung-Chi; Sami, M.; Saridakis, Emmanuel N.; Starobinsky, Alexei A.

    2017-01-01

    We study quintessential inflation using a generalized exponential potential V (φ)∝ exp(−λ φ n / M Pl n ), n >1, the model admits slow-roll inflation at early times and leads to close-to-scaling behaviour in the post inflationary era with an exit to dark energy at late times. We present detailed investigations of the inflationary stage in the light of the Planck 2015 results, study post-inflationary dynamics and analytically confirm the existence of an approximately scaling solution. Additionally, assuming that standard massive neutrinos are non-minimally coupled, makes the field φ dominant once again at late times giving rise to present accelerated expansion of the Universe. We derive observational constraints on the field and time-dependent neutrino masses. In particular, for n =6 (8), the parameter λ is constrained to be, log λ > −7.29 (−11.7); the model produces the spectral index of the power spectrum of primordial scalar (matter density) perturbations as n s = 0.959 ± 0.001 (0.961 ± 0.001) and tiny tensor-to-scalar ratio, r <1.72 × 10 −2 (2.32 × 10 −2 ) respectively. Consequently, the upper bound on possible values of the sum of neutrino masses Σ m ν ∼< 2.5 eV significantly enhances compared to that in the standard ΛCDM model.

  19. Establishing the existence of a distance-based upper bound for a fuzzy DEA model using duality

    International Nuclear Information System (INIS)

    Soleimani-damaneh, M.

    2009-01-01

    In a recent paper [Soleimani-damaneh M. Fuzzy upper bounds and their applications. Chaos, Solitons and Fractals 2008;36:217-25.], I established the existence of a distance-based fuzzy upper bound for the objective function of a fuzzy DEA model, using the properties of a discussed signed distance, and provided an effective approach to solve that model. In this paper a new dual-based proof for the existence of the above-mentioned upper bound is provided which gives a useful insight into the theory of fuzzy DEA.

  20. Comparison of existing models to simulate anaerobic digestion of lipid-rich waste.

    Science.gov (United States)

    Béline, F; Rodriguez-Mendez, R; Girault, R; Bihan, Y Le; Lessard, P

    2017-02-01

    Models for anaerobic digestion of lipid-rich waste taking inhibition into account were reviewed and, if necessary, adjusted to the ADM1 model framework in order to compare them. Experimental data from anaerobic digestion of slaughterhouse waste at an organic loading rate (OLR) ranging from 0.3 to 1.9kgVSm -3 d -1 were used to compare and evaluate models. Experimental data obtained at low OLRs were accurately modeled whatever the model thereby validating the stoichiometric parameters used and influent fractionation. However, at higher OLRs, although inhibition parameters were optimized to reduce differences between experimental and simulated data, no model was able to accurately simulate accumulation of substrates and intermediates, mainly due to the wrong simulation of pH. A simulation using pH based on experimental data showed that acetogenesis and methanogenesis were the most sensitive steps to LCFA inhibition and enabled identification of the inhibition parameters of both steps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Peru 2007 tsunami runup observations and modeling

    Science.gov (United States)

    Fritz, H. M.; Kalligeris, N.; Borrero, J. C.

    2008-05-01

    On 15 August 2007 an earthquake with moment magnitude (Mw) of 8.0 centered off the coast of central Peru, generated a tsunami with locally focused runup heights of up to 10 m. A reconnaissance team was deployed in the immediate aftermath and investigated the tsunami effects at 51 sites. The largest runup heights were measured in a sparsely populated desert area south of the Paracas Peninsula resulting in only 3 tsunami fatalities. Numerical modeling of the earthquake source and tsunami suggest that a region of high slip near the coastline was primarily responsible for the extreme runup heights. The town of Pisco was spared by the presence of the Paracas Peninsula, which blocked tsunami waves from propagating northward from the high slip region. The coast of Peru has experienced numerous deadly and destructive tsunamis throughout history, which highlights the importance of ongoing tsunami awareness and education efforts in the region. The Peru tsunami is compared against recent mega-disasters such as the 2004 Indian Ocean tsunami and Hurricane Katrina.

  2. Modelling CEC variations versus structural iron reduction levels in dioctahedral smectites. Existing approaches, new data and model refinements.

    Science.gov (United States)

    Hadi, Jebril; Tournassat, Christophe; Ignatiadis, Ioannis; Greneche, Jean Marc; Charlet, Laurent

    2013-10-01

    A model was developed to describe how the 2:1 layer excess negative charge induced by the reduction of Fe(III) to Fe(II) by sodium dithionite buffered with citrate-bicarbonate is balanced and applied to nontronites. This model is based on new experimental data and extends structural interpretation introduced by a former model [36-38]. The 2:1 layer negative charge increase due to Fe(III) to Fe(II) reduction is balanced by an excess adsorption of cations in the clay interlayers and a specific sorption of H(+) from solution. Prevalence of one compensating mechanism over the other is related to the growing lattice distortion induced by structural Fe(III) reduction. At low reduction levels, cation adsorption dominates and some of the incorporated protons react with structural OH groups, leading to a dehydroxylation of the structure. Starting from a moderate reduction level, other structural changes occur, leading to a reorganisation of the octahedral and tetrahedral lattice: migration or release of cations, intense dehydroxylation and bonding of protons to undersaturated oxygen atoms. Experimental data highlight some particular properties of ferruginous smectites regarding chemical reduction. Contrary to previous assumptions, the negative layer charge of nontronites does not only increase towards a plateau value upon reduction. A peak is observed in the reduction domain. After this peak, the negative layer charge decreases upon extended reduction (>30%). The decrease is so dramatic that the layer charge of highly reduced nontronites can fall below that of its fully oxidised counterpart. Furthermore, the presence of a large amount of tetrahedral Fe seems to promote intense clay structural changes and Fe reducibility. Our newly acquired data clearly show that models currently available in the literature cannot be applied to the whole reduction range of clay structural Fe. Moreover, changes in the model normalising procedure clearly demonstrate that the investigated low

  3. Influence of f(R) models on the existence of anisotropic self-gravitating systems

    Energy Technology Data Exchange (ETDEWEB)

    Yousaf, Z.; Sharif, M.; Bhatti, M.Z. [University of the Punjab, Department of Mathematics, Lahore (Pakistan); Ilyas, M. [University of the Punjab, Centre for High Energy Physics, Lahore (Pakistan)

    2017-10-15

    This paper aims to explore some realistic configurations of anisotropic spherical structures in the background of metric f(R) gravity, where R is the Ricci scalar. The solutions obtained by Krori and Barua are used to examine the nature of particular compact stars with three different modified gravity models. The behavior of material variables is analyzed through plots and the physical viability of compact stars is investigated through energy conditions. We also discuss the behavior of different forces, equation of state parameter, measure of anisotropy and Tolman-Oppenheimer-Volkoff equation in the modeling of stellar structures. The comparison from our graphical representations may provide evidence for the realistic and viable f(R) gravity models at both theoretical and the astrophysical scale. (orig.)

  4. Existing Whole-House Solutions Case Study: Community-Scale Energy Modeling - Southeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-12-01

    Community-scale energy modeling and testing are useful for determining energy conservation measures that will effectively reduce energy use. To that end, IBACOS analyzed pre-retrofit daily utility data to sort homes by energy consumption, allowing for better targeting of homes for physical audits. Following ASHRAE Guideline 14 normalization procedures, electricity consumption of 1,166 all-electric, production-built homes was modeled. The homes were in two communities: one built in the 1970s and the other in the mid-2000s.

  5. Existence and uniqueness of Gibbs states for a statistical mechanical polyacetylene model

    International Nuclear Information System (INIS)

    Park, Y.M.

    1987-01-01

    One-dimensional polyacetylene is studied as a model of statistical mechanics. In a semiclassical approximation the system is equivalent to a quantum XY model interacting with unbounded classical spins in one-dimensional lattice space Z. By establishing uniform estimates, an infinite-volume-limit Hilbert space, a strongly continuous time evolution group of unitary operators, and an invariant vector are constructed. Moreover, it is proven that any infinite-limit state satisfies Gibbs conditions. Finally, a modification of Araki's relative entropy method is used to establish the uniqueness of Gibbs states

  6. The existence of negative absolute temperatures in Axelrod’s social influence model

    Science.gov (United States)

    Villegas-Febres, J. C.; Olivares-Rivas, W.

    2008-06-01

    We introduce the concept of temperature as an order parameter in the standard Axelrod’s social influence model. It is defined as the relation between suitably defined entropy and energy functions, T=(. We show that at the critical point, where the order/disorder transition occurs, this absolute temperature changes in sign. At this point, which corresponds to the transition homogeneous/heterogeneous culture, the entropy of the system shows a maximum. We discuss the relationship between the temperature and other properties of the model in terms of cultural traits.

  7. Modeling of existing cooling towers in ASPEN PLUS using an equilibrium stage method

    International Nuclear Information System (INIS)

    Queiroz, João A.; Rodrigues, Vitor M.S.; Matos, Henrique A.; Martins, F.G.

    2012-01-01

    Highlights: ► Simulation of cooling tower performance under different operating conditions. ► Cooling tower performance is simulated using ASPEN PLUS. ► Levenberg–Marquardt method used to adjust model parameters. ► Air and water outlet temperatures are in good accordance with experimental data. - Abstract: Simulation of cooling tower performance considering operating conditions away from design is typically based on the geometrical parameters provided by the cooling tower vendor, which are often unavailable or outdated. In this paper a different approach for cooling tower modeling based on equilibrium stages and Murphree efficiencies to describe heat and mass transfer is presented. This approach is validated with published data and with data collected from an industrial application. Cooling tower performance is simulated using ASPEN PLUS. Murphree stage efficiency values for the process simulator model were optimized by minimizing the squared difference between the experimental and calculated data using the Levenberg–Marquardt method. The minimization algorithm was implemented in Microsoft Excel with Visual Basic for Applications, integrated with the process simulator (ASPEN PLUS) using Aspen Simulation Workbook. The simulated cooling tower air and water outlet temperatures are in good accordance with experimental data when applying only the outlet water temperature to calibrate the model. The methodology is accurate for simulating cooling towers at different operational conditions.

  8. Three-Dimensional Model Test Study on the Existing Caisson Breakwater at Port of Castellon, Spain

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke

    This report present the results of 3-D physical model tests (length scale 1:60) carried out in a wave basin at Department of Civil Engineering, Aalborg University (AAU) on behalf of the client; BP OIL ESPAÑA. Associate Prof. Thomas Lykke Andersen and M.Sc. Jørgen Quvang Harck Nørgaard were in cha...

  9. Shape Optimization for Navier-Stokes Equations with Algebraic Turbulence Model: Existence Analysis

    Czech Academy of Sciences Publication Activity Database

    Bulíček, M.; Haslinger, J.; Málek, J.; Stebel, Jan

    2009-01-01

    Roč. 60, č. 2 (2009), s. 185-212 ISSN 0095-4616 R&D Projects: GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : optimal shape design * paper machine headbox * incompressible non-Newtonian fluid * algebraic turbulence model * outflow boundary condition Subject RIV: BA - General Mathematics Impact factor: 0.757, year: 2009

  10. Europlanet/IDIS: Combining Diverse Planetary Observations and Models

    Science.gov (United States)

    Schmidt, Walter; Capria, Maria Teresa; Chanteur, Gerard

    2013-04-01

    Planetary research involves a diversity of research fields from astrophysics and plasma physics to atmospheric physics, climatology, spectroscopy and surface imaging. Data from all these disciplines are collected from various space-borne platforms or telescopes, supported by modelling teams and laboratory work. In order to interpret one set of data often supporting data from different disciplines and other missions are needed while the scientist does not always have the detailed expertise to access and utilize these observations. The Integrated and Distributed Information System (IDIS) [1], developed in the framework of the Europlanet-RI project, implements a Virtual Observatory approach ([2] and [3]), where different data sets, stored in archives around the world and in different formats, are accessed, re-formatted and combined to meet the user's requirements without the need of familiarizing oneself with the different technical details. While observational astrophysical data from different observatories could already earlier be accessed via Virtual Observatories, this concept is now extended to diverse planetary data and related model data sets, spectral data bases etc. A dedicated XML-based Europlanet Data Model (EPN-DM) [4] was developed based on data models from the planetary science community and the Virtual Observatory approach. A dedicated editor simplifies the registration of new resources. As the EPN-DM is a super-set of existing data models existing archives as well as new spectroscopic or chemical data bases for the interpretation of atmospheric or surface observations, or even modeling facilities at research institutes in Europe or Russia can be easily integrated and accessed via a Table Access Protocol (EPN-TAP) [5] adapted from the corresponding protocol of the International Virtual Observatory Alliance [6] (IVOA-TAP). EPN-TAP allows to search catalogues, retrieve data and make them available through standard IVOA tools if the access to the archive

  11. Observations and modeling of seismic background noise

    Science.gov (United States)

    Peterson, Jon R.

    1993-01-01

    The preparation of this report had two purposes. One was to present a catalog of seismic background noise spectra obtained from a worldwide network of seismograph stations. The other purpose was to refine and document models of seismic background noise that have been in use for several years. The second objective was, in fact, the principal reason that this study was initiated and influenced the procedures used in collecting and processing the data.With a single exception, all of the data used in this study were extracted from the digital data archive at the U.S. Geological Survey's Albuquerque Seismological Laboratory (ASL). This archive dates from 1972 when ASL first began deploying digital seismograph systems and collecting and distributing digital data under the sponsorship of the Defense Advanced Research Projects Agency (DARPA). There have been many changes and additions to the global seismograph networks during the past twenty years, but perhaps none as significant as the current deployment of very broadband seismographs by the U.S. Geological Survey (USGS) and the University of California San Diego (UCSD) under the scientific direction of the IRIS consortium. The new data acquisition systems have extended the bandwidth and resolution of seismic recording, and they utilize high-density recording media that permit the continuous recording of broadband data. The data improvements and continuous recording greatly benefit and simplify surveys of seismic background noise.Although there are many other sources of digital data, the ASL archive data were used almost exclusively because of accessibility and because the data systems and their calibration are well documented for the most part. Fortunately, the ASL archive contains high-quality data from other stations in addition to those deployed by the USGS. Included are data from UCSD IRIS/IDA stations, the Regional Seismic Test Network (RSTN) deployed by Sandia National Laboratories (SNL), and the TERRAscope network

  12. Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise

    Science.gov (United States)

    The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible un...

  13. Predicting the distribution of four species of raptors (Aves: Accipitridae) in southern Spain: statistical models work better than existing maps

    OpenAIRE

    Bustamante, Javier; Seoane, Javier

    2004-01-01

    Aim To test the effectiveness of statistical models based on explanatory environmental variables vs. existing distribution information (maps and breeding atlas), for predicting the distribution of four species of raptors (family Accipitridae): common buzzard Buteo buteo (Linnaeus, 1758), short-toed eagle Circaetus gallicus (Gmelin, 1788), booted eagle Hieraaetus pennatus (Gmelin, 1788) and black kite Milvus migrans (Boddaert, 1783). Location Andalusia, southe...

  14. Prediction of power ramp defects - development of a physically based model and evaluation of existing criteria

    International Nuclear Information System (INIS)

    Notley, M.J.F.; Kohn, E.

    2001-01-01

    Power-ramp induced fuel failure is not a problem in the present CANDU reactors. The current empirical correlations that define probability of failure do not agree one-with-another and do not allow extrapolation outside the database. A new methodology, based on physical processes, is presented and compared to data. The methodology calculates the pre-ramp sheath stress and the incremental stress during the ramp, and whether or not there is a defect is predicted based on a failure threshold stress. The proposed model confirms the deductions made by daSilva from an empirical 'fit' to data from the 1988 PNGS power ramp failure incident. It is recommended that daSilvas' correlation be used as reference for OPG (Ontario Power Generation) power reactor fuel, and that extrapolation be performed using the new model. (author)

  15. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior

    KAUST Repository

    Markowich, Peter; Lorz, Alexander; Francesco, Marco

    2010-01-01

    We study the system ct + u · ∇c = ∇c -nf(c) nt + u · ∇n = ∇n m - ∇ · (n×(c) ∇c) ut + u·∇u + ∇P - η∇u + n∇φ/ = 0 ∇·u = 0. arising in the modelling of the motion of swimming bacteria under the effect of diffusion, oxygen-taxis and transport through

  16. Universality in invariant random-matrix models: Existence near the soft edge

    International Nuclear Information System (INIS)

    Kanzieper, E.; Freilikher, V.

    1997-01-01

    We consider two non-Gaussian ensembles of large Hermitian random matrices with strong level confinement and show that near the soft edge of the spectrum both scaled density of states and eigenvalue correlations follow so-called Airy laws inherent in the Gaussian unitary ensemble. This suggests that the invariant one-matrix models should display universal eigenvalue correlations in the soft-edge scaling limit. copyright 1997 The American Physical Society

  17. The introspective may achieve more: Enhancing existing Geoscientific models with native-language emulated structural reflection

    Science.gov (United States)

    Ji, Xinye; Shen, Chaopeng

    2018-01-01

    Geoscientific models manage myriad and increasingly complex data structures as trans-disciplinary models are integrated. They often incur significant redundancy with cross-cutting tasks. Reflection, the ability of a program to inspect and modify its structure and behavior at runtime, is known as a powerful tool to improve code reusability, abstraction, and separation of concerns. Reflection is rarely adopted in high-performance Geoscientific models, especially with Fortran, where it was previously deemed implausible. Practical constraints of language and legacy often limit us to feather-weight, native-language solutions. We demonstrate the usefulness of a structural-reflection-emulating, dynamically-linked metaObjects, gd. We show real-world examples including data structure self-assembly, effortless input/output (IO) and upgrade to parallel I/O, recursive actions and batch operations. We share gd and a derived module that reproduces MATLAB-like structure in Fortran and C++. We suggest that both a gd representation and a Fortran-native representation are maintained to access the data, each for separate purposes. Embracing emulated reflection allows generically-written codes that are highly re-usable across projects.

  18. Improved modelling of thermal energy savings potential in the existing residential stock using a newly available data source

    International Nuclear Information System (INIS)

    Dineen, D.; Rogan, F.; Ó Gallachóir, B.P.

    2015-01-01

    This paper presents a novel bottom up approach to modelling the energy savings potential of energy efficiency improvement measures to be applied through retrofit of the existing dwelling stock. It takes advantage of a newly available, rich dataset on the construction characteristics of the 2011 housing stock in Ireland. The methodological innovation centres on the use of wall construction type in the modelling and analysis. While Ireland is the focus, this approach is applicable to any EU member state for which data on dwelling characteristics exists from surveys carried as part of Energy Performance Certificate calculations. The model is calibrated to the national energy balance for 2011 by varying the internal temperature assumptions. Sensitivity analysis is performed on the effects of internal temperature and rebound. The paper also highlights some limitations posed by data availability on the accuracy and sophistication of models that can currently be developed, specifically in the Irish case. - Highlights: • Archetype model of energy savings potential from retrofit of existing dwelling stock. • Takes advantage of rich dataset on the construction characteristics of the Irish housing stock. • Innovative use of wall construction types in archetype definition possible due to improved data. • Results calibrated to top down estimate of heating demand by adjusting internal temperature. • Highlights limitations on the accuracy and sophistication of models posed by data availability.

  19. Correlation between human observer performance and model observer performance in differential phase contrast CT

    International Nuclear Information System (INIS)

    Li, Ke; Garrett, John; Chen, Guang-Hong

    2013-01-01

    Purpose: With the recently expanding interest and developments in x-ray differential phase contrast CT (DPC-CT), the evaluation of its task-specific detection performance and comparison with the corresponding absorption CT under a given radiation dose constraint become increasingly important. Mathematical model observers are often used to quantify the performance of imaging systems, but their correlations with actual human observers need to be confirmed for each new imaging method. This work is an investigation of the effects of stochastic DPC-CT noise on the correlation of detection performance between model and human observers with signal-known-exactly (SKE) detection tasks.Methods: The detectabilities of different objects (five disks with different diameters and two breast lesion masses) embedded in an experimental DPC-CT noise background were assessed using both model and human observers. The detectability of the disk and lesion signals was then measured using five types of model observers including the prewhitening ideal observer, the nonprewhitening (NPW) observer, the nonprewhitening observer with eye filter and internal noise (NPWEi), the prewhitening observer with eye filter and internal noise (PWEi), and the channelized Hotelling observer (CHO). The same objects were also evaluated by four human observers using the two-alternative forced choice method. The results from the model observer experiment were quantitatively compared to the human observer results to assess the correlation between the two techniques.Results: The contrast-to-detail (CD) curve generated by the human observers for the disk-detection experiments shows that the required contrast to detect a disk is inversely proportional to the square root of the disk size. Based on the CD curves, the ideal and NPW observers tend to systematically overestimate the performance of the human observers. The NPWEi and PWEi observers did not predict human performance well either, as the slopes of their CD

  20. Rapid energy modeling for existing buildings: Testing the business and environmental potential through an experiment at Autodesk

    Energy Technology Data Exchange (ETDEWEB)

    Deodhar, Aniruddha; Stewart, Emma; Young, Rahul; Khan, Haider

    2010-09-15

    Retrofits of existing buildings represent a huge, growing market and an opportunity to achieve some of the most sizable and cost-effective carbon reductions in any sector of the economy. More 'zero energy' and 'carbon neutral' buildings are being conceived daily by combining energy efficiency measures with renewable energy technologies. However, for all the progress, the building industry faces technical and cost challenges in identifying the highest potential retrofit candidates. This presentation investigates one potential solution, a technology driven workflow called rapid energy modeling, to accelerate and scale the process of analyzing performance for existing buildings in prioritizing improvements.

  1. Implementation of partnership management model of SMK (Vocational High School) with existing industries in mechanical engineering expertise in Central Java

    Science.gov (United States)

    Sumbodo, Wirawan; Pardjono, Samsudi, Rahadjo, Winarno Dwi

    2018-03-01

    This study aims to determine the existing conditions of implementation of partnership management model of SMK with the industry on the mechanical engineering expertise in Central Java. The method used is descriptive analysis. The research result shows that the implementation of partnership management model of SMK based on new existing industry produces ready graduates of 62.5% which belongs to low category, although the partnership program of SMK with the industry is done well with the average score of 3.17. As many as 37.5% of SMK graduates of Mechanical Engineering Expertise Program choose to continue their studies or to be an entrepreneur. It is expected that the partnership model of SMK with the industry can be developed into a reference for government policy in developing SMK that is able to produce graduates who are ready to work according to the needs of partner industry.

  2. EXISTENCE THEOREM FOR THE PRICES FIXED POINT PROBLEM OF THE OVERLAPPING GENERATIONS MODEL, VIA METRIC SPACES ENDOWED WITH A GRAPH

    Directory of Open Access Journals (Sweden)

    Magnolia Tilca

    2014-10-01

    Full Text Available The aim of this paper is to study the existence of the solution for the overlapping generations model, using fixed point theorems in metric spaces endowed with a graph. The overlapping generations model has been introduced and developed by Maurice Allais (1947, Paul Samuelson (1958, Peter Diamond (1965 and so on. The present paper treats the case presented by Edmond (2008 in (Edmond, 2008 for a continuous time. The theorem of existence of the solution for the prices fixed point problem derived from the overlapping generations model gives an approximation of the solution via the graph theory. The tools employed in this study are based on applications of the Jachymski fixed point theorem on metric spaces endowed with a graph (Jachymski, 2008

  3. Does a General Temperature-Dependent Q10 Model of Soil Respiration Exist at Biome and Global Scale?

    Institute of Scientific and Technical Information of China (English)

    Hua CHEN; Han-Qin TIAN

    2005-01-01

    Soil respiration (SR) is commonly modeled by a Q10 (an indicator of temperature sensitivity)function in ecosystem models. Q10is usually treated as a constant of 2 in these models, although Q10 value of SR often decreases with increasing temperatures. It remains unclear whether a general temperaturedependent Q10 model of SR exists at biome and global scale. In this paper, we have compiled the long-term Q10 data of 38 SR studies ranging from the Boreal, Temperate, to Tropical/Subtropical biome on four continents.Our analysis indicated that the general temperature-dependent biome Q10 models of SR existed, especially in the Boreal and Temperate biomes. A single-exponential model was better than a simple linear model in fitting the average Q10 values at the biome scale. Average soil temperature is a better predictor of Q10 value than average air temperature in these models, especially in the Boreal biome. Soil temperature alone could explain about 50% of the Q10 variations in both the Boreal and Temperate biome single-exponential Q10 model. Q10 value of SR decreased with increasing soil temperature but at quite different rates among the three biome Q10 models. The k values (Q10 decay rate constants) were 0.09, 0.07, and 0.02/℃ in the Boreal, Temperate, and Tropical/Subtropical biome, respectively, suggesting that Q10 value is the most sensitive to soil temperature change in the Boreal biome, the second in the Temperate biome, and the least sensitive in the Tropical/Subtropical biome. This also indirectly confirms that acclimation of SR in many soil warming experiments probably occurs. The k value in the "global" single-exponential Q10 model which combined both the Boreal and Temperate biome data set was 0.08/℃. However, the global general temperature-dependent Q10model developed using the data sets of the three biomes is not adequate for predicting Q10 values of SR globally.The existence of the general temperature-dependent Q10 models of SR in the Boreal and

  4. Testing the efficacy of existing force-endurance models to account for the prevalence of obesity in the workforce.

    Science.gov (United States)

    Pajoutan, Mojdeh; Cavuoto, Lora A; Mehta, Ranjana K

    2017-10-01

    This study evaluates whether the existing force-endurance relationship models are predictive of endurance time for overweight and obese individuals, and if not, provide revised models that can be applied for ergonomics practice. Data was collected from 141 participants (49 normal weight, 50 overweight, 42 obese) who each performed isometric endurance tasks of hand grip, shoulder flexion, and trunk extension at four levels of relative workload. Subject-specific fatigue rates and a general model of the force-endurance relationship were determined and compared to two fatigue models from the literature. There was a lack of fit between previous models and the current data for the grip (ICC = 0.8), with a shift toward lower endurance times for the new data. Application of the revised models can facilitate improved workplace design and job evaluation to accommodate the capacities of the current workforce.

  5. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior

    KAUST Repository

    Markowich, Peter

    2010-06-01

    We study the system ct + u · ∇c = ∇c -nf(c) nt + u · ∇n = ∇n m - ∇ · (n×(c) ∇c) ut + u·∇u + ∇P - η∇u + n∇φ/ = 0 ∇·u = 0. arising in the modelling of the motion of swimming bacteria under the effect of diffusion, oxygen-taxis and transport through an incompressible fluid. The novelty with respect to previous papers in the literature lies in the presence of nonlinear porous-medium-like diffusion in the equation for the density n of the bacteria, motivated by a finite size effect. We prove that, under the constraint m ε (3/2, 2] for the adiabatic exponent, such system features global in time solutions in two space dimensions for large data. Moreover, in the case m = 2 we prove that solutions converge to constant states in the large-time limit. The proofs rely on standard energy methods and on a basic entropy estimate which cannot be achieved in the case m = 1. The case m = 2 is very special as we can provide a Lyapounov functional. We generalize our results to the three-dimensional case and obtain a smaller range of exponents m ε (m*, 2] with m* > 3/2, due to the use of classical Sobolev inequalities.

  6. Little Evidence Exists To Support The Expectation That Providers Would Consolidate To Enter New Payment Models.

    Science.gov (United States)

    Neprash, Hannah T; Chernew, Michael E; McWilliams, J Michael

    2017-02-01

    Provider consolidation has been associated with higher health care prices and spending. The prevailing wisdom is that payment reform will accelerate consolidation, especially between physicians and hospitals and among physician groups, as providers position themselves to bear financial risk for the full continuum of patient care. Drawing on data from a number of sources from 2008 onward, we examined the relationship between Medicare's accountable care organization (ACO) programs and provider consolidation. We found that consolidation was under way in the period 2008-10, before the Affordable Care Act (ACA) established the ACO programs. While the number of hospital mergers and the size of specialty-oriented physician groups increased after the ACA was passed, we found minimal evidence that consolidation was associated with ACO penetration at the market level or with physicians' participation in ACOs within markets. We conclude that payment reform has been associated with little acceleration in consolidation in addition to trends already under way, but there is evidence of potential defensive consolidation in response to new payment models. Project HOPE—The People-to-People Health Foundation, Inc.

  7. Evaluation of Multiclass Model Observers in PET LROC Studies

    Science.gov (United States)

    Gifford, H. C.; Kinahan, P. E.; Lartizien, C.; King, M. A.

    2007-02-01

    A localization ROC (LROC) study was conducted to evaluate nonprewhitening matched-filter (NPW) and channelized NPW (CNPW) versions of a multiclass model observer as predictors of human tumor-detection performance with PET images. Target localization is explicitly performed by these model observers. Tumors were placed in the liver, lungs, and background soft tissue of a mathematical phantom, and the data simulation modeled a full-3D acquisition mode. Reconstructions were performed with the FORE+AWOSEM algorithm. The LROC study measured observer performance with 2D images consisting of either coronal, sagittal, or transverse views of the same set of cases. Versions of the CNPW observer based on two previously published difference-of-Gaussian channel models demonstrated good quantitative agreement with human observers. One interpretation of these results treats the CNPW observer as a channelized Hotelling observer with implicit internal noise

  8. Improving Education in Medical Statistics: Implementing a Blended Learning Model in the Existing Curriculum.

    Science.gov (United States)

    Milic, Natasa M; Trajkovic, Goran Z; Bukumiric, Zoran M; Cirkovic, Andja; Nikolic, Ivan M; Milin, Jelena S; Milic, Nikola V; Savic, Marko D; Corac, Aleksandar M; Marinkovic, Jelena M; Stanisavljevic, Dejana M

    2016-01-01

    Although recent studies report on the benefits of blended learning in improving medical student education, there is still no empirical evidence on the relative effectiveness of blended over traditional learning approaches in medical statistics. We implemented blended along with on-site (i.e. face-to-face) learning to further assess the potential value of web-based learning in medical statistics. This was a prospective study conducted with third year medical undergraduate students attending the Faculty of Medicine, University of Belgrade, who passed (440 of 545) the final exam of the obligatory introductory statistics course during 2013-14. Student statistics achievements were stratified based on the two methods of education delivery: blended learning and on-site learning. Blended learning included a combination of face-to-face and distance learning methodologies integrated into a single course. Mean exam scores for the blended learning student group were higher than for the on-site student group for both final statistics score (89.36±6.60 vs. 86.06±8.48; p = 0.001) and knowledge test score (7.88±1.30 vs. 7.51±1.36; p = 0.023) with a medium effect size. There were no differences in sex or study duration between the groups. Current grade point average (GPA) was higher in the blended group. In a multivariable regression model, current GPA and knowledge test scores were associated with the final statistics score after adjusting for study duration and learning modality (pstatistics to undergraduate medical students. Blended and on-site training formats led to similar knowledge acquisition; however, students with higher GPA preferred the technology assisted learning format. Implementation of blended learning approaches can be considered an attractive, cost-effective, and efficient alternative to traditional classroom training in medical statistics.

  9. Improving Education in Medical Statistics: Implementing a Blended Learning Model in the Existing Curriculum

    Science.gov (United States)

    Milic, Natasa M.; Trajkovic, Goran Z.; Bukumiric, Zoran M.; Cirkovic, Andja; Nikolic, Ivan M.; Milin, Jelena S.; Milic, Nikola V.; Savic, Marko D.; Corac, Aleksandar M.; Marinkovic, Jelena M.; Stanisavljevic, Dejana M.

    2016-01-01

    Background Although recent studies report on the benefits of blended learning in improving medical student education, there is still no empirical evidence on the relative effectiveness of blended over traditional learning approaches in medical statistics. We implemented blended along with on-site (i.e. face-to-face) learning to further assess the potential value of web-based learning in medical statistics. Methods This was a prospective study conducted with third year medical undergraduate students attending the Faculty of Medicine, University of Belgrade, who passed (440 of 545) the final exam of the obligatory introductory statistics course during 2013–14. Student statistics achievements were stratified based on the two methods of education delivery: blended learning and on-site learning. Blended learning included a combination of face-to-face and distance learning methodologies integrated into a single course. Results Mean exam scores for the blended learning student group were higher than for the on-site student group for both final statistics score (89.36±6.60 vs. 86.06±8.48; p = 0.001) and knowledge test score (7.88±1.30 vs. 7.51±1.36; p = 0.023) with a medium effect size. There were no differences in sex or study duration between the groups. Current grade point average (GPA) was higher in the blended group. In a multivariable regression model, current GPA and knowledge test scores were associated with the final statistics score after adjusting for study duration and learning modality (plearning environments for teaching medical statistics to undergraduate medical students. Blended and on-site training formats led to similar knowledge acquisition; however, students with higher GPA preferred the technology assisted learning format. Implementation of blended learning approaches can be considered an attractive, cost-effective, and efficient alternative to traditional classroom training in medical statistics. PMID:26859832

  10. Observation-Based Modeling for Model-Based Testing

    NARCIS (Netherlands)

    Kanstrén, T.; Piel, E.; Gross, H.G.

    2009-01-01

    One of the single most important reasons that modeling and modelbased testing are not yet common practice in industry is the perceived difficulty of making the models up to the level of detail and quality required for their automated processing. Models unleash their full potential only through

  11. Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible

    International Nuclear Information System (INIS)

    Connolly, D.; Leahy, M.; Lund, H.; Mathiesen, B.V.

    2010-01-01

    In this study a model of the Irish energy-system was developed using EnergyPLAN based on the year 2007, which was then used for three investigations. The first compares the model results with actual values from 2007 to validate its accuracy. The second illustrates the exposure of the existing Irish energy-system to future energy costs by considering future fuel prices, CO 2 prices, and different interest rates. The final investigation identifies the maximum wind penetration feasible on the 2007 Irish energy-system from a technical and economic perspective, as wind is the most promising fluctuating renewable resource available in Ireland. It is concluded that the reference model simulates the Irish energy-system accurately, the annual fuel costs for Ireland's energy could increase by approximately 58% from 2007 to 2020 if a business-as-usual scenario is followed, and the optimum wind penetration for the existing Irish energy-system is approximately 30% from both a technical and economic perspective based on 2020 energy prices. Future studies will use the model developed in this study to show that higher wind penetrations can be achieved if the existing energy-system is modified correctly. Finally, these results are not only applicable to Ireland, but also represent the issues facing many other countries. (author)

  12. What sea-ice biogeochemical modellers need from observers

    OpenAIRE

    Steiner, Nadja; Deal, Clara; Lannuzel, Delphine; Lavoie, Diane; Massonnet, François; Miller, Lisa A.; Moreau, Sebastien; Popova, Ekaterina; Stefels, Jacqueline; Tedesco, Letizia

    2016-01-01

    Abstract Numerical models can be a powerful tool helping to understand the role biogeochemical processes play in local and global systems and how this role may be altered in a changing climate. With respect to sea-ice biogeochemical models, our knowledge is severely limited by our poor confidence in numerical model parameterisations representing those processes. Improving model parameterisations requires communication between observers and modellers to guide model development and improve the ...

  13. Improving Education in Medical Statistics: Implementing a Blended Learning Model in the Existing Curriculum.

    Directory of Open Access Journals (Sweden)

    Natasa M Milic

    Full Text Available Although recent studies report on the benefits of blended learning in improving medical student education, there is still no empirical evidence on the relative effectiveness of blended over traditional learning approaches in medical statistics. We implemented blended along with on-site (i.e. face-to-face learning to further assess the potential value of web-based learning in medical statistics.This was a prospective study conducted with third year medical undergraduate students attending the Faculty of Medicine, University of Belgrade, who passed (440 of 545 the final exam of the obligatory introductory statistics course during 2013-14. Student statistics achievements were stratified based on the two methods of education delivery: blended learning and on-site learning. Blended learning included a combination of face-to-face and distance learning methodologies integrated into a single course.Mean exam scores for the blended learning student group were higher than for the on-site student group for both final statistics score (89.36±6.60 vs. 86.06±8.48; p = 0.001 and knowledge test score (7.88±1.30 vs. 7.51±1.36; p = 0.023 with a medium effect size. There were no differences in sex or study duration between the groups. Current grade point average (GPA was higher in the blended group. In a multivariable regression model, current GPA and knowledge test scores were associated with the final statistics score after adjusting for study duration and learning modality (p<0.001.This study provides empirical evidence to support educator decisions to implement different learning environments for teaching medical statistics to undergraduate medical students. Blended and on-site training formats led to similar knowledge acquisition; however, students with higher GPA preferred the technology assisted learning format. Implementation of blended learning approaches can be considered an attractive, cost-effective, and efficient alternative to traditional

  14. Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible

    DEFF Research Database (Denmark)

    Connolly, D.; Lund, Henrik; Mathiesen, Brian Vad

    2010-01-01

    energy- system to future energy costs by considering future fuel prices, CO2 prices, and different interest rates. The final investigation identifies the maximum wind penetration feasible on the 2007 Irish energy- system from a technical and economic perspective, as wind is the most promising fluctuating...... for the existing Irish energy-system is approximately 30% from both a technical and economic perspective based on 2020 energy prices. Future studies will use the model developed in this study to show that higher wind penetrations can be achieved if the existing energy-system is modified correctly. Finally...... renewable resource available in Ireland. It is concluded that the reference model simulates the Irish energy-system accurately, the annual fuel costs for Ireland’s energy could increase by approximately 58% from 2007 to 2020 if a business-as-usual scenario is followed, and the optimum wind penetration...

  15. A construction of observables for AKSZ sigma models

    OpenAIRE

    Mnev, Pavel

    2012-01-01

    A construction of gauge-invariant observables is suggested for a class of topological field theories, the AKSZ sigma-models. The observables are associated to extensions of the target Q-manifold of the sigma model to a Q-bundle over it with additional Hamiltonian structure in fibers.

  16. Is the island universe model consistent with observations?

    OpenAIRE

    Piao, Yun-Song

    2005-01-01

    We study the island universe model, in which initially the universe is in a cosmological constant sea, then the local quantum fluctuations violating the null energy condition create the islands of matter, some of which might corresponds to our observable universe. We examine the possibility that the island universe model is regarded as an alternative scenario of the origin of observable universe.

  17. Evaluation of Modeled and Measured Energy Savings in Existing All Electric Public Housing in the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Andrew [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Lubliner, Michael [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Howard, Luke [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Kunkle, Rick [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Salzberg, Emily [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2014-04-01

    This project analyzes the cost effectiveness of energy savings measures installed by a large public housing authority in Salishan, a community in Tacoma Washington. Research focuses on the modeled and measured energy usage of the first six phases of construction, and compares the energy usage of those phases to phase 7. Market-ready energy solutions were also evaluated to improve the efficiency of affordable housing for new and existing (built since 2001) affordable housing in the marine climate of Washington State.

  18. A toy model to investigate the existence of excitons in the ground state of strongly-correlated semiconductor

    Science.gov (United States)

    Karima, H. R.; Majidi, M. A.

    2018-04-01

    Excitons, quasiparticles associated with bound states between an electron and a hole and are typically created when photons with a suitable energy are absorbed in a solid-state material. We propose to study a possible emergence of excitons, created not by photon absorption but the effect of strong electronic correlations. This study is motivated by a recent experimental study of a substrate material SrTiO3 (STO) that reveals strong exitonic signals in its optical conductivity. Here we conjecture that some excitons may already exist in the ground state as a result of the electronic correlations before the additional excitons being created later by photon absorption. To investigate the existence of excitons in the ground state, we propose to study a simple 4-energy-level model that mimics a situation in strongly-correlated semiconductors. The four levels are divided into two groups, lower and upper groups separated by an energy gap, Eg , mimicking the valence and the conduction bands, respectively. Further, we incorporate repulsive Coulomb interactions between the electrons. The model is then solved by exact diagonalization method. Our result shows that the toy model can demonstrate band gap widening or narrowing and the existence of exciton in the ground state depending on interaction parameter values.

  19. Fuzzy model-based observers for fault detection in CSTR.

    Science.gov (United States)

    Ballesteros-Moncada, Hazael; Herrera-López, Enrique J; Anzurez-Marín, Juan

    2015-11-01

    Under the vast variety of fuzzy model-based observers reported in the literature, what would be the properone to be used for fault detection in a class of chemical reactor? In this study four fuzzy model-based observers for sensor fault detection of a Continuous Stirred Tank Reactor were designed and compared. The designs include (i) a Luenberger fuzzy observer, (ii) a Luenberger fuzzy observer with sliding modes, (iii) a Walcott-Zak fuzzy observer, and (iv) an Utkin fuzzy observer. A negative, an oscillating fault signal, and a bounded random noise signal with a maximum value of ±0.4 were used to evaluate and compare the performance of the fuzzy observers. The Utkin fuzzy observer showed the best performance under the tested conditions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Assimilation of Aircraft Observations in High-Resolution Mesoscale Modeling

    Directory of Open Access Journals (Sweden)

    Brian P. Reen

    2018-01-01

    Full Text Available Aircraft-based observations are a promising source of above-surface observations for assimilation into mesoscale model simulations. The Tropospheric Airborne Meteorological Data Reporting (TAMDAR observations have potential advantages over some other aircraft observations including the presence of water vapor observations. The impact of assimilating TAMDAR observations via observation nudging in 1 km horizontal grid spacing Weather Research and Forecasting model simulations is evaluated using five cases centered over California. Overall, the impact of assimilating the observations is mixed, with the layer with the greatest benefit being above the surface in the lowest 1000 m above ground level and the variable showing the most consistent benefit being temperature. Varying the nudging configuration demonstrates the sensitivity of the results to details of the assimilation, but does not clearly demonstrate the superiority of a specific configuration.

  1. The quest for stable circumbinary companions to post-common envelope sdB eclipsing binaries. Does the observational evidence support their existence?

    Science.gov (United States)

    Pulley, D.; Faillace, G.; Smith, D.; Watkins, A.; von Harrach, S.

    2018-03-01

    Context. Period variations have been detected in a number of eclipsing close compact binary subdwarf B stars (sdBs) and these have often been interpreted as being caused by circumbinary massive planets or brown dwarfs. According to canonical binary models, the majority of sdB systems are produced from low mass stars with degenerate cores where helium is ignited in flashes. Various evolutionary scenarios have been proposed for these stars, but a definite mechanism remains to be established. Equally puzzling is the formation of these putative circumbinary objects which must have formed from the remaining post-common envelope circumbinary disk or survived its evolution. Aim. In this paper we review the eclipse time variations (ETVs) exhibited by seven such systems (EC 10246-2707, HS 0705+6700, HS 2231+2441, J08205+0008, NSVS 07826147, NSVS 14256825, and NY Vir) and explore whether there is conclusive evidence that the ETVs observed over the last two decades can reliably predict the presence of one or more circumbinary bodies. Methods: We report 246 new observations of the seven sdB systems made between 2013 September and 2017 July using a worldwide network of telescopes. We combined our new data with previously published measurements to analyse the ETVs of these systems. Results: Our data show that period variations cannot be modelled simply on the basis of circumbinary objects. This implies that more complex processes may be taking place in these systems. These difficulties are compounded by the secondary star not being spectroscopically visible. From ETVs, it has historically been suggested that five of the seven binary systems reported here had circumbinary objects. Based on our recent observations and analysis, only three systems remain serious contenders. We find agreement with other observers that at least a decade of observations is required to establish reliable ephemerides. With longer observational baselines it is quite conceivable that the data will support

  2. Correlation between model observer and human observer performance in CT imaging when lesion location is uncertain

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Shuai; Yu, Lifeng; Zhang, Yi; McCollough, Cynthia H. [Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota 55905 (United States); Carter, Rickey [Department of Biostatistics, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota 55905 (United States); Toledano, Alicia Y. [Biostatistics Consulting, LLC, 10606 Wheatley Street, Kensington, Maryland 20895 (United States)

    2013-08-15

    Purpose: The purpose of this study was to investigate the correlation between model observer and human observer performance in CT imaging for the task of lesion detection and localization when the lesion location is uncertain.Methods: Two cylindrical rods (3-mm and 5-mm diameters) were placed in a 35 × 26 cm torso-shaped water phantom to simulate lesions with −15 HU contrast at 120 kV. The phantom was scanned 100 times on a 128-slice CT scanner at each of four dose levels (CTDIvol = 5.7, 11.4, 17.1, and 22.8 mGy). Regions of interest (ROIs) around each lesion were extracted to generate images with signal-present, with each ROI containing 128 × 128 pixels. Corresponding ROIs of signal-absent images were generated from images without lesion mimicking rods. The location of the lesion (rod) in each ROI was randomly distributed by moving the ROIs around each lesion. Human observer studies were performed by having three trained observers identify the presence or absence of lesions, indicating the lesion location in each image and scoring confidence for the detection task on a 6-point scale. The same image data were analyzed using a channelized Hotelling model observer (CHO) with Gabor channels. Internal noise was added to the decision variables for the model observer study. Area under the curve (AUC) of ROC and localization ROC (LROC) curves were calculated using a nonparametric approach. The Spearman's rank order correlation between the average performance of the human observers and the model observer performance was calculated for the AUC of both ROC and LROC curves for both the 3- and 5-mm diameter lesions.Results: In both ROC and LROC analyses, AUC values for the model observer agreed well with the average values across the three human observers. The Spearman's rank order correlation values for both ROC and LROC analyses for both the 3- and 5-mm diameter lesions were all 1.0, indicating perfect rank ordering agreement of the figures of merit (AUC

  3. Existence and regularity of solutions of a phase field model for solidification with convection of pure materials in two dimensions

    Directory of Open Access Journals (Sweden)

    Jose Luiz Boldrini

    2003-11-01

    Full Text Available We study the existence and regularity of weak solutions of a phase field type model for pure material solidification in presence of natural convection. We assume that the non-stationary solidification process occurs in a two dimensional bounded domain. The governing equations of the model are the phase field equation coupled with a nonlinear heat equation and a modified Navier-Stokes equation. These equations include buoyancy forces modelled by Boussinesq approximation and a Carman-Koseny term to model the flow in mushy regions. Since these modified Navier-Stokes equations only hold in the non-solid regions, which are not known a priori, we have a free boundary-value problem.

  4. A Unimodal Model for Double Observer Distance Sampling Surveys.

    Directory of Open Access Journals (Sweden)

    Earl F Becker

    Full Text Available Distance sampling is a widely used method to estimate animal population size. Most distance sampling models utilize a monotonically decreasing detection function such as a half-normal. Recent advances in distance sampling modeling allow for the incorporation of covariates into the distance model, and the elimination of the assumption of perfect detection at some fixed distance (usually the transect line with the use of double-observer models. The assumption of full observer independence in the double-observer model is problematic, but can be addressed by using the point independence assumption which assumes there is one distance, the apex of the detection function, where the 2 observers are assumed independent. Aerially collected distance sampling data can have a unimodal shape and have been successfully modeled with a gamma detection function. Covariates in gamma detection models cause the apex of detection to shift depending upon covariate levels, making this model incompatible with the point independence assumption when using double-observer data. This paper reports a unimodal detection model based on a two-piece normal distribution that allows covariates, has only one apex, and is consistent with the point independence assumption when double-observer data are utilized. An aerial line-transect survey of black bears in Alaska illustrate how this method can be applied.

  5. A Practical, Robust Methodology for Acquiring New Observation Data Using Computationally Expensive Groundwater Models

    Science.gov (United States)

    Siade, Adam J.; Hall, Joel; Karelse, Robert N.

    2017-11-01

    Regional groundwater flow models play an important role in decision making regarding water resources; however, the uncertainty embedded in model parameters and model assumptions can significantly hinder the reliability of model predictions. One way to reduce this uncertainty is to collect new observation data from the field. However, determining where and when to obtain such data is not straightforward. There exist a number of data-worth and experimental design strategies developed for this purpose. However, these studies often ignore issues related to real-world groundwater models such as computational expense, existing observation data, high-parameter dimension, etc. In this study, we propose a methodology, based on existing methods and software, to efficiently conduct such analyses for large-scale, complex regional groundwater flow systems for which there is a wealth of available observation data. The method utilizes the well-established d-optimality criterion, and the minimax criterion for robust sampling strategies. The so-called Null-Space Monte Carlo method is used to reduce the computational burden associated with uncertainty quantification. And, a heuristic methodology, based on the concept of the greedy algorithm, is proposed for developing robust designs with subsets of the posterior parameter samples. The proposed methodology is tested on a synthetic regional groundwater model, and subsequently applied to an existing, complex, regional groundwater system in the Perth region of Western Australia. The results indicate that robust designs can be obtained efficiently, within reasonable computational resources, for making regional decisions regarding groundwater level sampling.

  6. Cosmic microwave background observables of small field models of inflation

    International Nuclear Information System (INIS)

    Ben-Dayan, Ido; Brustein, Ram

    2010-01-01

    We construct a class of single small field models of inflation that can predict, contrary to popular wisdom, an observable gravitational wave signal in the cosmic microwave background anisotropies. The spectral index, its running, the tensor to scalar ratio and the number of e-folds can cover all the parameter space currently allowed by cosmological observations. A unique feature of models in this class is their ability to predict a negative spectral index running in accordance with recent cosmic microwave background observations. We discuss the new class of models from an effective field theory perspective and show that if the dimensionless trilinear coupling is small, as required for consistency, then the observed spectral index running implies a high scale of inflation and hence an observable gravitational wave signal. All the models share a distinct prediction of higher power at smaller scales, making them easy targets for detection

  7. Assimilating uncertain, dynamic and intermittent streamflow observations in hydrological models

    Science.gov (United States)

    Mazzoleni, Maurizio; Alfonso, Leonardo; Chacon-Hurtado, Juan; Solomatine, Dimitri

    2015-09-01

    Catastrophic floods cause significant socio-economical losses. Non-structural measures, such as real-time flood forecasting, can potentially reduce flood risk. To this end, data assimilation methods have been used to improve flood forecasts by integrating static ground observations, and in some cases also remote sensing observations, within water models. Current hydrologic and hydraulic research works consider assimilation of observations coming from traditional, static sensors. At the same time, low-cost, mobile sensors and mobile communication devices are becoming also increasingly available. The main goal and innovation of this study is to demonstrate the usefulness of assimilating uncertain streamflow observations that are dynamic in space and intermittent in time in the context of two different semi-distributed hydrological model structures. The developed method is applied to the Brue basin, where the dynamic observations are imitated by the synthetic observations of discharge. The results of this study show how model structures and sensors locations affect in different ways the assimilation of streamflow observations. In addition, it proves how assimilation of such uncertain observations from dynamic sensors can provide model improvements similar to those of streamflow observations coming from a non-optimal network of static physical sensors. This can be a potential application of recent efforts to build citizen observatories of water, which can make the citizens an active part in information capturing, evaluation and communication, helping simultaneously to improvement of model-based flood forecasting.

  8. Evaluation of internal noise methods for Hotelling observer models

    International Nuclear Information System (INIS)

    Zhang Yani; Pham, Binh T.; Eckstein, Miguel P.

    2007-01-01

    The inclusion of internal noise in model observers is a common method to allow for quantitative comparisons between human and model observer performance in visual detection tasks. In this article, we studied two different strategies for inserting internal noise into Hotelling model observers. In the first strategy, internal noise was added to the output of individual channels: (a) Independent nonuniform channel noise, (b) independent uniform channel noise. In the second strategy, internal noise was added to the decision variable arising from the combination of channel responses. The standard deviation of the zero mean internal noise was either constant or proportional to: (a) the decision variable's standard deviation due to the external noise, (b) the decision variable's variance caused by the external noise, (c) the decision variable magnitude on a trial to trial basis. We tested three model observers: square window Hotelling observer (HO), channelized Hotelling observer (CHO), and Laguerre-Gauss Hotelling observer (LGHO) using a four alternative forced choice (4AFC) signal known exactly but variable task with a simulated signal embedded in real x-ray coronary angiogram backgrounds. The results showed that the internal noise method that led to the best prediction of human performance differed across the studied model observers. The CHO model best predicted human observer performance with the channel internal noise. The HO and LGHO best predicted human observer performance with the decision variable internal noise. The present results might guide researchers with the choice of methods to include internal noise into Hotelling model observers when evaluating and optimizing medical image quality

  9. Predicting the future completing models of observed complex systems

    CERN Document Server

    Abarbanel, Henry

    2013-01-01

    Predicting the Future: Completing Models of Observed Complex Systems provides a general framework for the discussion of model building and validation across a broad spectrum of disciplines. This is accomplished through the development of an exact path integral for use in transferring information from observations to a model of the observed system. Through many illustrative examples drawn from models in neuroscience, fluid dynamics, geosciences, and nonlinear electrical circuits, the concepts are exemplified in detail. Practical numerical methods for approximate evaluations of the path integral are explored, and their use in designing experiments and determining a model's consistency with observations is investigated. Using highly instructive examples, the problems of data assimilation and the means to treat them are clearly illustrated. This book will be useful for students and practitioners of physics, neuroscience, regulatory networks, meteorology and climate science, network dynamics, fluid dynamics, and o...

  10. The role of pre-existing disturbances in the effect of marine reserves on coastal ecosystems: a modelling approach.

    Directory of Open Access Journals (Sweden)

    Marie Savina

    Full Text Available We have used an end-to-end ecosystem model to explore responses over 30 years to coastal no-take reserves covering up to 6% of the fifty thousand square kilometres of continental shelf and slope off the coast of New South Wales (Australia. The model is based on the Atlantis framework, which includes a deterministic, spatially resolved three-dimensional biophysical model that tracks nutrient flows through key biological groups, as well as extraction by a range of fisheries. The model results support previous empirical studies in finding clear benefits of reserves to top predators such as sharks and rays throughout the region, while also showing how many of their major prey groups (including commercial species experienced significant declines. It was found that the net impact of marine reserves was dependent on the pre-existing levels of disturbance (i.e. fishing pressure, and to a lesser extent on the size of the marine reserves. The high fishing scenario resulted in a strongly perturbed system, where the introduction of marine reserves had clear and mostly direct effects on biomass and functional biodiversity. However, under the lower fishing pressure scenario, the introduction of marine reserves caused both direct positive effects, mainly on shark groups, and indirect negative effects through trophic cascades. Our study illustrates the need to carefully align the design and implementation of marine reserves with policy and management objectives. Trade-offs may exist not only between fisheries and conservation objectives, but also among conservation objectives.

  11. Supporting the Constructive Use of Existing Hydrological Models in Participatory Settings: a Set of "Rules of the Game"

    Directory of Open Access Journals (Sweden)

    Pieter W. G. Bots

    2011-06-01

    Full Text Available When hydrological models are used in support of water management decisions, stakeholders often contest these models because they perceive certain aspects to be inadequately addressed. A strongly contested model may be abandoned completely, even when stakeholders could potentially agree on the validity of part of the information it can produce. The development of a new model is costly, and the results may be contested again. We consider how existing hydrological models can be used in a policy process so as to benefit from both hydrological knowledge and the perspectives and local knowledge of stakeholders. We define a code of conduct as a set of "rules of the game" that we base on a case study of developing a water management plan for a Natura 2000 site in the Netherlands. We propose general rules for agenda management and information sharing, and more specific rules for model use and option development. These rules structure the interactions among actors, help them to explicitly acknowledge uncertainties, and prevent expertise from being neglected or overlooked. We designed the rules to favor openness, protection of core stakeholder values, the use of relevant substantive knowledge, and the momentum of the process. We expect that these rules, although developed on the basis of a water-management issue, can also be applied to support the use of existing computer models in other policy domains. As rules will shape actions only when they are constantly affirmed by actors, we expect that the rules will become less useful in an "unruly" social environment where stakeholders constantly challenge the proceedings.

  12. Influence of weathering and pre-existing large scale fractures on gravitational slope failure: insights from 3-D physical modelling

    Directory of Open Access Journals (Sweden)

    D. Bachmann

    2004-01-01

    Full Text Available Using a new 3-D physical modelling technique we investigated the initiation and evolution of large scale landslides in presence of pre-existing large scale fractures and taking into account the slope material weakening due to the alteration/weathering. The modelling technique is based on the specially developed properly scaled analogue materials, as well as on the original vertical accelerator device enabling increases in the 'gravity acceleration' up to a factor 50. The weathering primarily affects the uppermost layers through the water circulation. We simulated the effect of this process by making models of two parts. The shallower one represents the zone subject to homogeneous weathering and is made of low strength material of compressive strength σl. The deeper (core part of the model is stronger and simulates intact rocks. Deformation of such a model subjected to the gravity force occurred only in its upper (low strength layer. In another set of experiments, low strength (σw narrow planar zones sub-parallel to the slope surface (σwl were introduced into the model's superficial low strength layer to simulate localized highly weathered zones. In this configuration landslides were initiated much easier (at lower 'gravity force', were shallower and had smaller horizontal size largely defined by the weak zone size. Pre-existing fractures were introduced into the model by cutting it along a given plan. They have proved to be of small influence on the slope stability, except when they were associated to highly weathered zones. In this latter case the fractures laterally limited the slides. Deep seated rockslides initiation is thus directly defined by the mechanical structure of the hillslope's uppermost levels and especially by the presence of the weak zones due to the weathering. The large scale fractures play a more passive role and can only influence the shape and the volume of the sliding units.

  13. Bifurcation Analysis of an Existing Mathematical Model Reveals Novel Treatment Strategies and Suggests Potential Cure for Type 1 Diabetes

    DEFF Research Database (Denmark)

    Nielsen, Kenneth Hagde Mandrup; Ottesen, Johnny T.; Pociot, Flemming

    2014-01-01

    Type 1 diabetes is a disease with serious personal and socioeconomic consequences that has attracted the attention of modellers recently. But as models of this disease tend to be complicated, there has been only limited mathematical analysis to date. Here we address this problem by providing...... a bifurcation analysis of a previously published mathematical model for the early stages of type 1 diabetes in diabetes-prone NOD mice, which is based on the data available in the literature. We also show positivity and the existence of a family of attracting trapping regions in the positive 5D cone, converging...... or activated macrophages, increasing the phagocytic ability of resting and activated macrophages simultaneously and lastly, adding additional macrophages to the site of inflammation. The latter seems counter-intuitive at first glance, but nevertheless it appears to be the most promising, as evidenced by recent...

  14. Fast neutrons and the optical model: some observations

    International Nuclear Information System (INIS)

    Smith, A.B.; Lawson, R.D.; Guenther, P.T.

    1985-01-01

    The optical model of fast-neutron-induced phenomena is considered from the observational viewpoint. Experimental characteristics governing the reliability of the modeling are outlined with attention to implications on model parameters and their uncertainties. The physical characteristics of experimentally-deduced ''regional'' and ''specific'' model parameters are examined including: parameter trends with mass and energy, implications of collective effects, and fundamental relations between real and imaginary potentials. These physical properties are illustrated by studies in the A=60 and 90 regions. General trends are identified and outstanding issues cited. Throughout, the approach is that of observational interpretation for basic and applied purposes. 20 refs., 11 figs., 2 tabs

  15. COCOA code for creating mock observations of star cluster models

    Science.gov (United States)

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Dalessandro, Emanuele

    2018-04-01

    We introduce and present results from the COCOA (Cluster simulatiOn Comparison with ObservAtions) code that has been developed to create idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or N-body codes in a way that is useful for direct comparison with photometric observations. In this paper, we describe the COCOA code and demonstrate its different applications by utilizing globular cluster (GC) models simulated with the MOCCA (MOnte Carlo Cluster simulAtor) code. COCOA is used to synthetically observe these different GC models with optical telescopes, perform point spread function photometry, and subsequently produce observed colour-magnitude diagrams. We also use COCOA to compare the results from synthetic observations of a cluster model that has the same age and metallicity as the Galactic GC NGC 2808 with observations of the same cluster carried out with a 2.2 m optical telescope. We find that COCOA can effectively simulate realistic observations and recover photometric data. COCOA has numerous scientific applications that maybe be helpful for both theoreticians and observers that work on star clusters. Plans for further improving and developing the code are also discussed in this paper.

  16. Cost-Effectiveness of HBV and HCV Screening Strategies – A Systematic Review of Existing Modelling Techniques

    Science.gov (United States)

    Geue, Claudia; Wu, Olivia; Xin, Yiqiao; Heggie, Robert; Hutchinson, Sharon; Martin, Natasha K.; Fenwick, Elisabeth; Goldberg, David

    2015-01-01

    Introduction Studies evaluating the cost-effectiveness of screening for Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) are generally heterogeneous in terms of risk groups, settings, screening intervention, outcomes and the economic modelling framework. It is therefore difficult to compare cost-effectiveness results between studies. This systematic review aims to summarise and critically assess existing economic models for HBV and HCV in order to identify the main methodological differences in modelling approaches. Methods A structured search strategy was developed and a systematic review carried out. A critical assessment of the decision-analytic models was carried out according to the guidelines and framework developed for assessment of decision-analytic models in Health Technology Assessment of health care interventions. Results The overall approach to analysing the cost-effectiveness of screening strategies was found to be broadly consistent for HBV and HCV. However, modelling parameters and related structure differed between models, producing different results. More recent publications performed better against a performance matrix, evaluating model components and methodology. Conclusion When assessing screening strategies for HBV and HCV infection, the focus should be on more recent studies, which applied the latest treatment regimes, test methods and had better and more complete data on which to base their models. In addition to parameter selection and associated assumptions, careful consideration of dynamic versus static modelling is recommended. Future research may want to focus on these methodological issues. In addition, the ability to evaluate screening strategies for multiple infectious diseases, (HCV and HIV at the same time) might prove important for decision makers. PMID:26689908

  17. Southeast Atmosphere Studies: learning from model-observation syntheses

    Data.gov (United States)

    U.S. Environmental Protection Agency — Observed and modeled data shown in figure 2b-c. This dataset is associated with the following publication: Mao, J., A. Carlton, R. Cohen, W. Brune, S. Brown, G....

  18. An Observation Capability Metadata Model for EO Sensor Discovery in Sensor Web Enablement Environments

    Directory of Open Access Journals (Sweden)

    Chuli Hu

    2014-10-01

    Full Text Available Accurate and fine-grained discovery by diverse Earth observation (EO sensors ensures a comprehensive response to collaborative observation-required emergency tasks. This discovery remains a challenge in an EO sensor web environment. In this study, we propose an EO sensor observation capability metadata model that reuses and extends the existing sensor observation-related metadata standards to enable the accurate and fine-grained discovery of EO sensors. The proposed model is composed of five sub-modules, namely, ObservationBreadth, ObservationDepth, ObservationFrequency, ObservationQuality and ObservationData. The model is applied to different types of EO sensors and is formalized by the Open Geospatial Consortium Sensor Model Language 1.0. The GeosensorQuery prototype retrieves the qualified EO sensors based on the provided geo-event. An actual application to flood emergency observation in the Yangtze River Basin in China is conducted, and the results indicate that sensor inquiry can accurately achieve fine-grained discovery of qualified EO sensors and obtain enriched observation capability information. In summary, the proposed model enables an efficient encoding system that ensures minimum unification to represent the observation capabilities of EO sensors. The model functions as a foundation for the efficient discovery of EO sensors. In addition, the definition and development of this proposed EO sensor observation capability metadata model is a helpful step in extending the Sensor Model Language (SensorML 2.0 Profile for the description of the observation capabilities of EO sensors.

  19. FREQUENCY CATASTROPHE AND CO-EXISTING ATTRACTORS IN A CELL Ca2+ NONLINEAR OSCILLATION MODEL WITH TIME DELAY*

    Institute of Scientific and Technical Information of China (English)

    应阳君; 黄祖洽

    2001-01-01

    Frequency catastrophe is found in a cell Ca2+ nonlinear oscillation model with time delay. The relation of the frequency transition to the time delay is studied by numerical simulations and theoretical analysis. There is a range of parameters in which two kinds of attractors with great frequency differences co-exist in the system. Along with parameter changes, a critical phenomenon occurs and the oscillation frequency changes greatly. This mechanism helps us to deepen the understanding of the complex dynamics of delay systems, and might be of some meaning in cell signalling.

  20. Global existence of periodic solutions in a simplified four-neuron BAM neural network model with multiple delays

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We consider a simplified bidirectional associated memory (BAM neural network model with four neurons and multiple time delays. The global existence of periodic solutions bifurcating from Hopf bifurcations is investigated by applying the global Hopf bifurcation theorem due to Wu and Bendixson's criterion for high-dimensional ordinary differential equations due to Li and Muldowney. It is shown that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of the sum of two delays. Numerical simulations supporting the theoretical analysis are also included.

  1. Meridional Flow Observations: Implications for the current Flux Transport Models

    International Nuclear Information System (INIS)

    Gonzalez Hernandez, Irene; Komm, Rudolf; Kholikov, Shukur; Howe, Rachel; Hill, Frank

    2011-01-01

    Meridional circulation has become a key element in the solar dynamo flux transport models. Available helioseismic observations from several instruments, Taiwan Oscillation Network (TON), Global Oscillation Network Group (GONG) and Michelson Doppler Imager (MDI), have made possible a continuous monitoring of the solar meridional flow in the subphotospheric layers for the last solar cycle, including the recent extended minimum. Here we review some of the meridional circulation observations using local helioseismology techniques and relate them to magnetic flux transport models.

  2. Perfect fluid models in noncomoving observational spherical coordinates

    International Nuclear Information System (INIS)

    Ishak, Mustapha

    2004-01-01

    We use null spherical (observational) coordinates to describe a class of inhomogeneous cosmological models. The proposed cosmological construction is based on the observer past null cone. A known difficulty in using inhomogeneous models is that the null geodesic equation is not integrable in general. Our choice of null coordinates solves the radial ingoing null geodesic by construction. Furthermore, we use an approach where the velocity field is uniquely calculated from the metric rather than put in by hand. Conveniently, this allows us to explore models in a noncomoving frame of reference. In this frame, we find that the velocity field has shear, acceleration, and expansion rate in general. We show that a comoving frame is not compatible with expanding perfect fluid models in the coordinates proposed and dust models are simply not possible. We describe the models in a noncomoving frame. We use the dust models in a noncomoving frame to outline a fitting procedure

  3. Technical Note: Calibration and validation of geophysical observation models

    NARCIS (Netherlands)

    Salama, M.S.; van der Velde, R.; van der Woerd, H.J.; Kromkamp, J.C.; Philippart, C.J.M.; Joseph, A.T.; O'Neill, P.E.; Lang, R.H.; Gish, T.; Werdell, P.J.; Su, Z.

    2012-01-01

    We present a method to calibrate and validate observational models that interrelate remotely sensed energy fluxes to geophysical variables of land and water surfaces. Coincident sets of remote sensing observation of visible and microwave radiations and geophysical data are assembled and subdivided

  4. A time-symmetric Universe model and its observational implication

    International Nuclear Information System (INIS)

    Futamase, T.; Matsuda, T.

    1987-01-01

    A time-symmetric closed-universe model is discussed in terms of the radiation arrow of time. The time symmetry requires the occurrence of advanced waves in the recontracting phase of the Universe. The observational consequences of such advanced waves are considered, and it is shown that a test observer in the expanding phase can observe a time-reversed image of a source of radiation in the future recontracting phase

  5. Time-symmetric universe model and its observational implication

    Energy Technology Data Exchange (ETDEWEB)

    Futamase, T.; Matsuda, T.

    1987-08-01

    A time-symmetric closed-universe model is discussed in terms of the radiation arrow of time. The time symmetry requires the occurrence of advanced waves in the recontracting phase of the Universe. We consider the observational consequences of such advanced waves, and it is shown that a test observer in the expanding phase can observe a time-reversed image of a source of radiation in the future recontracting phase.

  6. Cosmological observables in the quasi-spherical Szekeres model

    Science.gov (United States)

    Buckley, Robert G.

    2014-10-01

    The standard model of cosmology presents a homogeneous universe, and we interpret cosmological data through this framework. However, structure growth creates nonlinear inhomogeneities that may affect observations, and even larger structures may be hidden by our limited vantage point and small number of independent observations. As we determine the universe's parameters with increasing precision, the accuracy is contingent on our understanding of the effects of such structures. For instance, giant void models can explain some observations without dark energy. Because perturbation theory cannot adequately describe nonlinear inhomogeneities, exact solutions to the equations of general relativity are important for these questions. The most general known solution capable of describing inhomogeneous matter distributions is the Szekeres class of models. In this work, we study the quasi-spherical subclass of these models, using numerical simulations to calculate the inhomogeneities' effects on observations. We calculate the large-angle CMB in giant void models and compare with simpler, symmetric void models that have previously been found inadequate to matchobservations. We extend this by considering models with early-time inhomogeneities as well. Then, we study distance observations, including selection effects, in models which are homogeneous on scales around 100 Mpc---consistent with standard cosmology---but inhomogeneous on smaller scales. Finally, we consider photon polarizations, and show that they are not directly affected by inhomogeneities. Overall, we find that while Szekeres models have some advantages over simpler models, they are still seriously limited in their ability to alter our parameter estimation while remaining within the bounds of current observations.

  7. A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth

    Science.gov (United States)

    Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai

    2017-01-01

    State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM) acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA) is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control systems for modern

  8. A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth

    Directory of Open Access Journals (Sweden)

    Quan Qiu

    2017-08-01

    Full Text Available State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control

  9. A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth.

    Science.gov (United States)

    Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai

    2017-01-01

    State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM) acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA) is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control systems for modern

  10. Existence and Uniqueness of Positive Periodic Solutions for a Delayed Predator-Prey Model with Dispersion and Impulses

    Directory of Open Access Journals (Sweden)

    Zhenguo Luo

    2014-01-01

    Full Text Available An impulsive Lotka-Volterra type predator-prey model with prey dispersal in two-patch environments and time delays is investigated, where we assume the model of patches with a barrier only as far as the prey population is concerned, whereas the predator population has no barriers between patches. By applying the continuation theorem of coincidence degree theory and by means of a suitable Lyapunov functional, a set of easily verifiable sufficient conditions are obtained to guarantee the existence, uniqueness, and global stability of positive periodic solutions of the system. Some known results subject to the underlying systems without impulses are improved and generalized. As an application, we also give two examples to illustrate the feasibility of our main results.

  11. From Point Clouds to Building Information Models: 3D Semi-Automatic Reconstruction of Indoors of Existing Buildings

    Directory of Open Access Journals (Sweden)

    Hélène Macher

    2017-10-01

    Full Text Available The creation of as-built Building Information Models requires the acquisition of the as-is state of existing buildings. Laser scanners are widely used to achieve this goal since they permit to collect information about object geometry in form of point clouds and provide a large amount of accurate data in a very fast way and with a high level of details. Unfortunately, the scan-to-BIM (Building Information Model process remains currently largely a manual process which is time consuming and error-prone. In this paper, a semi-automatic approach is presented for the 3D reconstruction of indoors of existing buildings from point clouds. Several segmentations are performed so that point clouds corresponding to grounds, ceilings and walls are extracted. Based on these point clouds, walls and slabs of buildings are reconstructed and described in the IFC format in order to be integrated into BIM software. The assessment of the approach is proposed thanks to two datasets. The evaluation items are the degree of automation, the transferability of the approach and the geometric quality of results of the 3D reconstruction. Additionally, quality indexes are introduced to inspect the results in order to be able to detect potential errors of reconstruction.

  12. Global existence and asymptotic behavior of a model for biological control of invasive species via supermale introduction

    KAUST Repository

    Parshad, Rana

    2013-01-01

    The purpose of this manuscript is to propose a model for the biological control of invasive species, via introduction of phenotypically modified organisms into a target population. We are inspired by the earlier Trojan Y Chromosome model [J.B. Gutierrez, J.L. Teem, J. Theo. Bio., 241(22), 333-341, 2006]. However, in the current work, we remove the assumption of logisticgrowth rate, and do not consider the addition of sex-reversed supermales. Also the constant birth and death coefficients, considered earlier, are replaced by functionally dependent ones. In this case the nonlinearities present serious difficulties since they change sign, and the components of the solution are not a priori bounded, in some Lp-space for p large, to permit theapplication of the well known regularizing effect principle. Thus functional methods to deducethe global existence in time, for the system in question, are not applicable. Our techniques are based on the Lyapunov functional method. We prove global existence of solutions, as well asexistence of a finite dimensional global attractor, that supports states of extinction. Our analytical finding are in accordance with numerical simulations, which we also present. © 2013 International Press.

  13. Asymptotic behavior of observables in the asymmetric quantum Rabi model

    Science.gov (United States)

    Semple, J.; Kollar, M.

    2018-01-01

    The asymmetric quantum Rabi model with broken parity invariance shows spectral degeneracies in the integer case, that is when the asymmetry parameter equals an integer multiple of half the oscillator frequency, thus hinting at a hidden symmetry and accompanying integrability of the model. We study the expectation values of spin observables for each eigenstate and observe characteristic differences between the integer and noninteger cases for the asymptotics in the deep strong coupling regime, which can be understood from a perturbative expansion in the qubit splitting. We also construct a parent Hamiltonian whose exact eigenstates possess the same symmetries as the perturbative eigenstates of the asymmetric quantum Rabi model in the integer case.

  14. Tests of Financial Models in the Presence of Overlapping Observations.

    OpenAIRE

    Richardson, Matthew; Smith, Tom

    1991-01-01

    A general approach to testing serial dependence restrictions implied from financial models is developed. In particular, we discuss joint serial dependence restrictions imposed by random walk, market microstructure, and rational expectations models recently examined in the literature. This approach incorporates more information from the data by explicitly modeling dependencies induced by the use of overlapping observations. Because the estimation problem is sufficiently simple in this framewor...

  15. Foundation observation of teaching project--a developmental model of peer observation of teaching.

    Science.gov (United States)

    Pattison, Andrew Timothy; Sherwood, Morgan; Lumsden, Colin James; Gale, Alison; Markides, Maria

    2012-01-01

    Peer observation of teaching is important in the development of educators. The foundation curriculum specifies teaching competencies that must be attained. We created a developmental model of peer observation of teaching to help our foundation doctors achieve these competencies and develop as educators. A process for peer observation was created based on key features of faculty development. The project consisted of a pre-observation meeting, the observation, a post-observation debrief, writing of reflective reports and group feedback sessions. The project was evaluated by completion of questionnaires and focus groups held with both foundation doctors and the students they taught to achieve triangulation. Twenty-one foundation doctors took part. All completed reflective reports on their teaching. Participants described the process as useful in their development as educators, citing specific examples of changes to their teaching practice. Medical students rated the sessions as better or much better quality as their usual teaching. The study highlights the benefits of the project to individual foundation doctors, undergraduate medical students and faculty. It acknowledges potential anxieties involved in having teaching observed. A structured programme of observation of teaching can deliver specific teaching competencies required by foundation doctors and provides additional benefits.

  16. Designing a Qualitative Data Collection Strategy (QDCS) for Africa - Phase 1: A Gap Analysis of Existing Models, Simulations, and Tools Relating to Africa

    Science.gov (United States)

    2012-06-01

    QDCS) for Africa – Phase I: A Gap Analysis of Existing Models, Simulations, and Tools Relating to Africa Ashley N. Bybee , Project Leader Dominick E...Strategy (QDCS) for Africa – Phase I: A Gap Analysis of Existing Models, Simulations, and Tools Relating to Africa Ashley N. Bybee , Project Leader...Africa Phase I: A Gap Analysis of Existing Models, Simulations, and Tools Relating to Africa June 2012 Authors: Dr. Ashley Bybee , Project Lead Dr

  17. Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling

    Directory of Open Access Journals (Sweden)

    R. Baatz

    2018-05-01

    Full Text Available Advancing our understanding of Earth system dynamics (ESD depends on the development of models and other analytical tools that apply physical, biological, and chemical data. This ambition to increase understanding and develop models of ESD based on site observations was the stimulus for creating the networks of Long-Term Ecological Research (LTER, Critical Zone Observatories (CZOs, and others. We organized a survey, the results of which identified pressing gaps in data availability from these networks, in particular for the future development and evaluation of models that represent ESD processes, and provide insights for improvement in both data collection and model integration. From this survey overview of data applications in the context of LTER and CZO research, we identified three challenges: (1 widen application of terrestrial observation network data in Earth system modelling, (2 develop integrated Earth system models that incorporate process representation and data of multiple disciplines, and (3 identify complementarity in measured variables and spatial extent, and promoting synergies in the existing observational networks. These challenges lead to perspectives and recommendations for an improved dialogue between the observation networks and the ESD modelling community, including co-location of sites in the existing networks and further formalizing these recommendations among these communities. Developing these synergies will enable cross-site and cross-network comparison and synthesis studies, which will help produce insights around organizing principles, classifications, and general rules of coupling processes with environmental conditions.

  18. Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling

    Science.gov (United States)

    Baatz, Roland; Sullivan, Pamela L.; Li, Li; Weintraub, Samantha R.; Loescher, Henry W.; Mirtl, Michael; Groffman, Peter M.; Wall, Diana H.; Young, Michael; White, Tim; Wen, Hang; Zacharias, Steffen; Kühn, Ingolf; Tang, Jianwu; Gaillardet, Jérôme; Braud, Isabelle; Flores, Alejandro N.; Kumar, Praveen; Lin, Henry; Ghezzehei, Teamrat; Jones, Julia; Gholz, Henry L.; Vereecken, Harry; Van Looy, Kris

    2018-05-01

    Advancing our understanding of Earth system dynamics (ESD) depends on the development of models and other analytical tools that apply physical, biological, and chemical data. This ambition to increase understanding and develop models of ESD based on site observations was the stimulus for creating the networks of Long-Term Ecological Research (LTER), Critical Zone Observatories (CZOs), and others. We organized a survey, the results of which identified pressing gaps in data availability from these networks, in particular for the future development and evaluation of models that represent ESD processes, and provide insights for improvement in both data collection and model integration. From this survey overview of data applications in the context of LTER and CZO research, we identified three challenges: (1) widen application of terrestrial observation network data in Earth system modelling, (2) develop integrated Earth system models that incorporate process representation and data of multiple disciplines, and (3) identify complementarity in measured variables and spatial extent, and promoting synergies in the existing observational networks. These challenges lead to perspectives and recommendations for an improved dialogue between the observation networks and the ESD modelling community, including co-location of sites in the existing networks and further formalizing these recommendations among these communities. Developing these synergies will enable cross-site and cross-network comparison and synthesis studies, which will help produce insights around organizing principles, classifications, and general rules of coupling processes with environmental conditions.

  19. Operational Efficiency Forecasting Model of an Existing Underground Mine Using Grey System Theory and Stochastic Diffusion Processes

    Directory of Open Access Journals (Sweden)

    Svetlana Strbac Savic

    2015-01-01

    Full Text Available Forecasting the operational efficiency of an existing underground mine plays an important role in strategic planning of production. Degree of Operating Leverage (DOL is used to express the operational efficiency of production. The forecasting model should be able to involve common time horizon, taking the characteristics of the input variables that directly affect the value of DOL. Changes in the magnitude of any input variable change the value of DOL. To establish the relationship describing the way of changing we applied multivariable grey modeling. Established time sequence multivariable response formula is also used to forecast the future values of operating leverage. Operational efficiency of production is often associated with diverse sources of uncertainties. Incorporation of these uncertainties into multivariable forecasting model enables mining company to survive in today’s competitive environment. Simulation of mean reversion process and geometric Brownian motion is used to describe the stochastic diffusion nature of metal price, as a key element of revenues, and production costs, respectively. By simulating a forecasting model, we imitate its action in order to measure its response to different inputs. The final result of simulation process is the expected value of DOL for every year of defined time horizon.

  20. Decision support model for establishing the optimal energy retrofit strategy for existing multi-family housing complexes

    International Nuclear Information System (INIS)

    Hong, Taehoon; Koo, Choongwan; Kim, Hyunjoong; Seon Park, Hyo

    2014-01-01

    The number of multi-family housing complexes (MFHCs) over 15 yr old in South Korea is expected to exceed 5 million by 2015. Accordingly, the demand for energy retrofit in the deteriorating MFHCs is rapidly increasing. This study aimed to develop a decision support model for establishing the optimal energy retrofit strategy for existing MFHCs. It can provide clear criteria for establishing the carbon emissions reduction target (CERT) and allow efficient budget allocation for conducting the energy retrofit. The CERT for “S” MFHC, one of MFHCs located in Seoul, as a case study, was set at 23.0% (electricity) and 27.9% (gas energy). In the economic and environmental assessment, it was determined that scenario #12 was the optimal scenario (ranked second with regard to NPV 40 (net present value at year 40) and third with regard to SIR 40 (saving to investment ratio at year 40). The proposed model could be useful for owners, construction managers, or policymakers in charge of establishing energy retrofit strategy for existing MFHCs. It could allow contractors in a competitive bidding process to rationally establish the CERT and select the optimal energy retrofit strategy. It can be also applied to any other country or sector in a global environment. - Highlights: • The proposed model was developed to establish the optimal energy retrofit strategy. • Advanced case-based reasoning was applied to establish the community-based CERT. • Energy simulation was conducted to analyze the effects of energy retrofit strategy. • The optimal strategy can be finally selected based on the LCC and LCCO 2 analysis. • It could be extended to any other country or sector in the global environment

  1. Experimental model considerations for the study of protein-energy malnutrition co-existing with ischemic brain injury.

    Science.gov (United States)

    Prosser-Loose, Erin J; Smith, Shari E; Paterson, Phyllis G

    2011-05-01

    Protein-energy malnutrition (PEM) affects ~16% of patients at admission for stroke. We previously modeled this in a gerbil global cerebral ischemia model and found that PEM impairs functional outcome and influences mechanisms of ischemic brain injury and recovery. Since this model is no longer reliable, we investigated the utility of the rat 2-vessel occlusion (2-VO) with hypotension model of global ischemia for further study of this clinical problem. Male, Sprague-Dawley rats were exposed to either control diet (18% protein) or PEM induced by feeding a low protein diet (2% protein) for 7d prior to either global ischemia or sham surgery. PEM did not significantly alter the hippocampal CA1 neuron death (p = 0.195 by 2-factor ANOVA) or the increase in dendritic injury caused by exposure to global ischemia. Unexpectedly, however, a strong trend was evident for PEM to decrease the consistency of hippocampal damage, as shown by an increased incidence of unilateral or no hippocampal damage (p=0.069 by chi-square analysis). Although PEM caused significant changes to baseline arterial blood pH, pO(2), pCO(2), and fasting glucose (p0.269). Intra-ischemic tympanic temperature and blood pressure were strictly and equally controlled between ischemic groups. We conclude that co-existing PEM confounded the consistency of hippocampal injury in the 2-VO model. Although the mechanisms responsible were not identified, this model of brain ischemia should not be used for studying this co-morbidity factor. © 2011 Bentham Science Publishers Ltd.

  2. Influence of rainfall observation network on model calibration and application

    Directory of Open Access Journals (Sweden)

    A. Bárdossy

    2008-01-01

    Full Text Available The objective in this study is to investigate the influence of the spatial resolution of the rainfall input on the model calibration and application. The analysis is carried out by varying the distribution of the raingauge network. A meso-scale catchment located in southwest Germany has been selected for this study. First, the semi-distributed HBV model is calibrated with the precipitation interpolated from the available observed rainfall of the different raingauge networks. An automatic calibration method based on the combinatorial optimization algorithm simulated annealing is applied. The performance of the hydrological model is analyzed as a function of the raingauge density. Secondly, the calibrated model is validated using interpolated precipitation from the same raingauge density used for the calibration as well as interpolated precipitation based on networks of reduced and increased raingauge density. Lastly, the effect of missing rainfall data is investigated by using a multiple linear regression approach for filling in the missing measurements. The model, calibrated with the complete set of observed data, is then run in the validation period using the above described precipitation field. The simulated hydrographs obtained in the above described three sets of experiments are analyzed through the comparisons of the computed Nash-Sutcliffe coefficient and several goodness-of-fit indexes. The results show that the model using different raingauge networks might need re-calibration of the model parameters, specifically model calibrated on relatively sparse precipitation information might perform well on dense precipitation information while model calibrated on dense precipitation information fails on sparse precipitation information. Also, the model calibrated with the complete set of observed precipitation and run with incomplete observed data associated with the data estimated using multiple linear regressions, at the locations treated as

  3. Tropical convection regimes in climate models: evaluation with satellite observations

    Science.gov (United States)

    Steiner, Andrea K.; Lackner, Bettina C.; Ringer, Mark A.

    2018-04-01

    High-quality observations are powerful tools for the evaluation of climate models towards improvement and reduction of uncertainty. Particularly at low latitudes, the most uncertain aspect lies in the representation of moist convection and interaction with dynamics, where rising motion is tied to deep convection and sinking motion to dry regimes. Since humidity is closely coupled with temperature feedbacks in the tropical troposphere, a proper representation of this region is essential. Here we demonstrate the evaluation of atmospheric climate models with satellite-based observations from Global Positioning System (GPS) radio occultation (RO), which feature high vertical resolution and accuracy in the troposphere to lower stratosphere. We focus on the representation of the vertical atmospheric structure in tropical convection regimes, defined by high updraft velocity over warm surfaces, and investigate atmospheric temperature and humidity profiles. Results reveal that some models do not fully capture convection regions, particularly over land, and only partly represent strong vertical wind classes. Models show large biases in tropical mean temperature of more than 4 K in the tropopause region and the lower stratosphere. Reasonable agreement with observations is given in mean specific humidity in the lower to mid-troposphere. In moist convection regions, models tend to underestimate moisture by 10 to 40 % over oceans, whereas in dry downdraft regions they overestimate moisture by 100 %. Our findings provide evidence that RO observations are a unique source of information, with a range of further atmospheric variables to be exploited, for the evaluation and advancement of next-generation climate models.

  4. Modelling the potential to achieve deep carbon emission cuts in existing UK social housing: The case of Peabody

    International Nuclear Information System (INIS)

    Reeves, Andrew; Taylor, Simon; Fleming, Paul

    2010-01-01

    As part of the UK's effort to combat climate change, deep cuts in carbon emissions will be required from existing housing over the coming decades. The viability of achieving such emission cuts for the UK social housing sector has been explored through a case study of Peabody, a housing association operating in London. Various approaches to stock refurbishment were modelled for Peabody's existing stock up to the year 2030, incorporating insulation, communal heating and micro-generation technologies. Outputs were evaluated under four future socio-economic scenarios. The results indicate that the Greater London Authority's target of a 60% carbon emission cut by 2025 can be achieved if extensive stock refurbishment is coupled with a background of wider societal efforts to reduce carbon emissions. The two key external requirements identified are a significant reduction in the carbon intensity of grid electricity and a stabilisation or reduction in householder demand for energy. A target of achieving zero net carbon emissions across Peabody stock by 2030 can only be achieved if grid electricity becomes available from entirely zero-carbon sources. These results imply that stronger action is needed from both social landlords and Government to enable deep emission cuts to be achieved in UK social housing.

  5. Assessment of hospital performance with a case-mix standardized mortality model using an existing administrative database in Japan

    Directory of Open Access Journals (Sweden)

    Fushimi Kiyohide

    2010-05-01

    Full Text Available Abstract Background Few studies have examined whether risk adjustment is evenly applicable to hospitals with various characteristics and case-mix. In this study, we applied a generic prediction model to nationwide discharge data from hospitals with various characteristics. Method We used standardized data of 1,878,767 discharged patients provided by 469 hospitals from July 1 to October 31, 2006. We generated and validated a case-mix in-hospital mortality prediction model using 50/50 split sample validation. We classified hospitals into two groups based on c-index value (hospitals with c-index ≥ 0.8; hospitals with c-index Results The model demonstrated excellent discrimination as indicated by the high average c-index and small standard deviation (c-index = 0.88 ± 0.04. Expected mortality rate of each hospital was highly correlated with observed mortality rate (r = 0.693, p Conclusion The model fits well to a group of hospitals with a wide variety of acute care events, though model fit is less satisfactory for specialized hospitals and those with convalescent wards. Further sophistication of the generic prediction model would be recommended to obtain optimal indices to region specific conditions.

  6. An animal model of co-existing sarcopenia and osteoporotic fracture in senescence accelerated mouse prone 8 (SAMP8).

    Science.gov (United States)

    Zhang, Ning; Chow, Simon Kwoon Ho; Leung, Kwok Sui; Lee, Ho Hin; Cheung, Wing Hoi

    2017-10-15

    Sarcopenia and osteoporotic fracture are common aging-related musculoskeletal problems. Recent evidences report that osteoporotic fracture patients showed high prevalence of sarcopenia; however, current clinical practice basically does not consider sarcopenia in the treatment or rehabilitation of osteoporotic fracture. There is almost no report studying the relationship of the co-existing of sarcopenia and osteoporotic fracture healing. In this study, we validated aged senescence accelerated mouse prone 8 (SAMP8) and senescence accelerated mouse resistant 1 (SAMR1) as animal models of senile osteoporosis with/without sarcopenia. Bone mineral density (BMD) at the 5th lumbar and muscle testing of the two animal strains were measured to confirm the status of osteoporosis and sarcopenia, respectively. Closed fracture was created on the right femur of 8-month-old animals. Radiographs were taken weekly post-fracture. MicroCT and histology of the fractured femur were performed at week 2, 4 and 6 post-fracture, while mechanical test of both femora at week 4 and 6 post-fracture. Results showed that the callus of SAMR1 was significantly larger at week 2 but smaller at week 6 post-fracture than SAMP8. Mechanical properties were significantly better at week 4 post-fracture in SAMR1 than SAMP8, indicating osteoporotic fracture healing was delayed in sarcopenic SAMP8. This study validated an animal model of co-existing sarcopenia and osteoporotic fracture, where a delayed fracture healing might be resulted in the presence of sarcopenia. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Use of an Existing Airborne Radon Data Base in the Verification of the NASA/AEAP Core Model

    Science.gov (United States)

    Kritz, Mark A.

    1998-01-01

    The primary objective of this project was to apply the tropospheric atmospheric radon (Rn222) measurements to the development and verification of the global 3-D atmospheric chemical transport model under development by NASA's Atmospheric Effects of Aviation Project (AEAP). The AEAP project had two principal components: (1) a modeling effort, whose goal was to create, test and apply an elaborate three-dimensional atmospheric chemical transport model (the NASA/AEAP Core model to an evaluation of the possible short and long-term effects of aircraft emissions on atmospheric chemistry and climate--and (2) a measurement effort, whose goal was to obtain a focused set of atmospheric measurements that would provide some of the observational data used in the modeling effort. My activity in this project was confined to the first of these components. Both atmospheric transport and atmospheric chemical reactions (as well the input and removal of chemical species) are accounted for in the NASA/AEAP Core model. Thus, for example, in assessing the effect of aircraft effluents on the chemistry of a given region of the upper troposphere, the model must keep track not only of the chemical reactions of the effluent species emitted by aircraft flying in this region, but also of the transport into the region of these (and other) species from other, remote sources--for example, via the vertical convection of boundary layer air to the upper troposphere. Radon, because of its known surface source and known radioactive half-life, and freedom from chemical production or loss, and from removal from the atmosphere by physical scavenging, is a recognized and valuable tool for testing the transport components of global transport and circulation models.

  8. EXIST Perspective for SFXTs

    Science.gov (United States)

    Ubertini, Pietro; Sidoli, L.; Sguera, V.; Bazzano, A.

    2009-12-01

    Supergiant Fast X-ray Transients (SFXTs) are one of the most interesting (and unexpected) results of the INTEGRAL mission. They are a new class of HMXBs displaying short hard X-ray outbursts (duration less tha a day) characterized by fast flares (few hours timescale) and large dinamic range (10E3-10E4). The physical mechanism driving their peculiar behaviour is still unclear and highly debated: some models involve the structure of the supergiant companion donor wind (likely clumpy, in a spherical or non spherical geometry) and the orbital properties (wide separation with eccentric or circular orbit), while others involve the properties of the neutron star compact object and invoke very low magnetic field values (B 1E14 G, magnetars). The picture is still highly unclear from the observational point of view as well: no cyclotron lines have been detected in the spectra, thus the strength of the neutron star magnetic field is unknown. Orbital periods have been measured in only 4 systems, spanning from 3.3 days to 165 days. Even the duty cycle seems to be quite different from source to source. The Energetic X-ray Imaging Survey Telescope (EXIST), with its hard X-ray all-sky survey and large improved limiting sensitivity, will allow us to get a clearer picture of SFXTs. A complete census of their number is essential to enlarge the sample. A long term and continuous as possible X-ray monitoring is crucial to -(1) obtain the duty cycle, -(2 )investigate their unknown orbital properties (separation, orbital period, eccentricity),- (3) to completely cover the whole outburst activity, (4)-to search for cyclotron lines in the high energy spectra. EXIST observations will provide crucial informations to test the different models and shed light on the peculiar behaviour of SFXTs.

  9. On prognostic models, artificial intelligence and censored observations.

    Science.gov (United States)

    Anand, S S; Hamilton, P W; Hughes, J G; Bell, D A

    2001-03-01

    The development of prognostic models for assisting medical practitioners with decision making is not a trivial task. Models need to possess a number of desirable characteristics and few, if any, current modelling approaches based on statistical or artificial intelligence can produce models that display all these characteristics. The inability of modelling techniques to provide truly useful models has led to interest in these models being purely academic in nature. This in turn has resulted in only a very small percentage of models that have been developed being deployed in practice. On the other hand, new modelling paradigms are being proposed continuously within the machine learning and statistical community and claims, often based on inadequate evaluation, being made on their superiority over traditional modelling methods. We believe that for new modelling approaches to deliver true net benefits over traditional techniques, an evaluation centric approach to their development is essential. In this paper we present such an evaluation centric approach to developing extensions to the basic k-nearest neighbour (k-NN) paradigm. We use standard statistical techniques to enhance the distance metric used and a framework based on evidence theory to obtain a prediction for the target example from the outcome of the retrieved exemplars. We refer to this new k-NN algorithm as Censored k-NN (Ck-NN). This reflects the enhancements made to k-NN that are aimed at providing a means for handling censored observations within k-NN.

  10. Do relationships exist between the scope and intensity of quality improvement activities and hospital operation performance? A 10-year observation in Taiwan.

    Science.gov (United States)

    Chung, Kuo-Piao; Yu, Tsung-Hsien

    2015-08-14

    The relationship between the scope and intensity of quality improvement (QI) activities and hospital performance remains unclear. This study investigated the relationship between performance, external environment, and the scope and intensity of QI activities in hospitals. The study used a longitudinal observation. Data regarding the scope and intensity of QI activities were collected using a questionnaire survey among the administrative deputy superintendents / directors of quality management center in 139 hospitals. Hospital performance indicators were abstracted from the 2000-2009 national hospitals profiles. We adopted year 2000 as the baseline, and divided the study period into three 3-year periods. The Generalized Estimating Equations (GEE) model was used for the statistical analysis. Seventy-two hospitals responded to the survey, giving a response rate of 52%. The results showed a significant increase in the scope and intensity of QI activities between 2000 and 2009. The results also showed that the scope and intensity of a hospital's QI activities were associated with the scope and intensity of its competitors' QI activities in the previous period and its own prior performance. The scope of QI activities in the previous period was not significantly related to the selected hospital performance measures. However, the intensity of QI activities in the previous period showed a significant and positive relationship with the number of inpatients and the turnover of beds. The study demonstrates that the intensity of QI activities is associated with the external environment and the hospital's own performance in the previous period. Furthermore, some performance measures are associated with the intensity of the QI activities in the previous period.

  11. Linking Geomechanical Models with Observations of Microseismicity during CCS Operations

    Science.gov (United States)

    Verdon, J.; Kendall, J.; White, D.

    2012-12-01

    During CO2 injection for the purposes of carbon capture and storage (CCS), injection-induced fracturing of the overburden represents a key risk to storage integrity. Fractures in a caprock provide a pathway along which buoyant CO2 can rise and escape the storage zone. Therefore the ability to link field-scale geomechanical models with field geophysical observations is of paramount importance to guarantee secure CO2 storage. Accurate location of microseismic events identifies where brittle failure has occurred on fracture planes. This is a manifestation of the deformation induced by CO2 injection. As the pore pressure is increased during injection, effective stress is decreased, leading to inflation of the reservoir and deformation of surrounding rocks, which creates microseismicity. The deformation induced by injection can be simulated using finite-element mechanical models. Such a model can be used to predict when and where microseismicity is expected to occur. However, typical elements in a field scale mechanical models have decameter scales, while the rupture size for microseismic events are typically of the order of 1 square meter. This means that mapping modeled stress changes to predictions of microseismic activity can be challenging. Where larger scale faults have been identified, they can be included explicitly in the geomechanical model. Where movement is simulated along these discrete features, it can be assumed that microseismicity will occur. However, microseismic events typically occur on fracture networks that are too small to be simulated explicitly in a field-scale model. Therefore, the likelihood of microseismicity occurring must be estimated within a finite element that does not contain explicitly modeled discontinuities. This can be done in a number of ways, including the utilization of measures such as closeness on the stress state to predetermined failure criteria, either for planes with a defined orientation (the Mohr-Coulomb criteria) for

  12. Interpretation of TOMS Observations of Tropical Tropospheric Ozone with a Global Model and In Situ Observations

    Science.gov (United States)

    Martin, Randall V.; Jacob, Daniel J.; Logan, Jennifer A.; Bey, Isabelle; Yantosca, Robert M.; Staudt, Amanda C.; Fiore, Arlene M.; Duncan, Bryan N.; Liu, Hongyu; Ginoux, Paul

    2004-01-01

    We interpret the distribution of tropical tropospheric ozone columns (TTOCs) from the Total Ozone Mapping Spectrometer (TOMS) by using a global three-dimensional model of tropospheric chemistry (GEOS-CHEM) and additional information from in situ observations. The GEOS-CHEM TTOCs capture 44% of the variance of monthly mean TOMS TTOCs from the convective cloud differential method (CCD) with no global bias. Major discrepancies are found over northern Africa and south Asia where the TOMS TTOCs do not capture the seasonal enhancements from biomass burning found in the model and in aircraft observations. A characteristic feature of these northern topical enhancements, in contrast to southern tropical enhancements, is that they are driven by the lower troposphere where the sensitivity of TOMS is poor due to Rayleigh scattering. We develop an efficiency correction to the TOMS retrieval algorithm that accounts for the variability of ozone in the lower troposphere. This efficiency correction increases TTOC's over biomass burning regions by 3-5 Dobson units (DU) and decreases them by 2-5 DU over oceanic regions, improving the agreement between CCD TTOCs and in situ observations. Applying the correction to CCD TTOCs reduces by approximately DU the magnitude of the "tropical Atlantic paradox" [Thompson et al, 2000], i.e. the presence of a TTOC enhancement over the southern tropical Atlantic during the northern African biomass burning season in December-February. We reproduce the remainder of the paradox in the model and explain it by the combination of upper tropospheric ozone production from lightning NOx, peristent subsidence over the southern tropical Atlantic as part of the Walker circulation, and cross-equatorial transport of upper tropospheric ozone from northern midlatitudes in the African "westerly duct." These processes in the model can also account for the observed 13-17 DU persistent wave-1 pattern in TTOCs with a maximum above the tropical Atlantic and a minimum

  13. Global existence and asymptotic behavior of a model for biological control of invasive species via supermale introduction

    KAUST Repository

    Parshad, Rana; Kouachi, Saï d; Gutié rrez, Juan B.

    2013-01-01

    theapplication of the well known regularizing effect principle. Thus functional methods to deducethe global existence in time, for the system in question, are not applicable. Our techniques are based on the Lyapunov functional method. We prove global existence

  14. Multi-epitope Models Explain How Pre-existing Antibodies Affect the Generation of Broadly Protective Responses to Influenza.

    Directory of Open Access Journals (Sweden)

    Veronika I Zarnitsyna

    2016-06-01

    Full Text Available The development of next-generation influenza vaccines that elicit strain-transcendent immunity against both seasonal and pandemic viruses is a key public health goal. Targeting the evolutionarily conserved epitopes on the stem of influenza's major surface molecule, hemagglutinin, is an appealing prospect, and novel vaccine formulations show promising results in animal model systems. However, studies in humans indicate that natural infection and vaccination result in limited boosting of antibodies to the stem of HA, and the level of stem-specific antibody elicited is insufficient to provide broad strain-transcendent immunity. Here, we use mathematical models of the humoral immune response to explore how pre-existing immunity affects the ability of vaccines to boost antibodies to the head and stem of HA in humans, and, in particular, how it leads to the apparent lack of boosting of broadly cross-reactive antibodies to the stem epitopes. We consider hypotheses where binding of antibody to an epitope: (i results in more rapid clearance of the antigen; (ii leads to the formation of antigen-antibody complexes which inhibit B cell activation through Fcγ receptor-mediated mechanism; and (iii masks the epitope and prevents the stimulation and proliferation of specific B cells. We find that only epitope masking but not the former two mechanisms to be key in recapitulating patterns in data. We discuss the ramifications of our findings for the development of vaccines against both seasonal and pandemic influenza.

  15. Life Cycle Assessment Modelling of Greenhouse Gas Emissions from Existing and Proposed Municipal Solid Waste Management System of Lahore, Pakistan

    Directory of Open Access Journals (Sweden)

    Adila Batool Syeda

    2017-12-01

    Full Text Available Open Dumping of indiscriminate municipal solid waste (MSW remarkably contributes to global warming (GW. Life Cycle Assessment modelling may be a useful tool for assessing the best waste management option regarding GW potential. The current study evaluates the contribution of an existing MSW management (MSWM system to greenhouse gases in Gulberg Town, Lahore, Pakistan. This research also presents a comparison of scenarios with different waste management options. Life Cycle Assessment methodology has been used to conduct the study. EASETECH has been used for modelling. The short-term scenarios (STSs have been developed to promote the thinking of integration of treatment technologies in the current waste management system within a few months. The results show that the major contribution to the total emissions comes from the anaerobic digestion of organic material from open waste dumps. Currently, recycling is the best treatment option for reducing the CO2-eq values in the study area. It was clarified that recycling is the best option for reducing the CO2-eq values, whereas biogasification comes in second in terms of savings and reduction. The integration of recycling and biogasification techniques would be a good solution.

  16. S-AMP for non-linear observation models

    DEFF Research Database (Denmark)

    Cakmak, Burak; Winther, Ole; Fleury, Bernard H.

    2015-01-01

    Recently we presented the S-AMP approach, an extension of approximate message passing (AMP), to be able to handle general invariant matrix ensembles. In this contribution we extend S-AMP to non-linear observation models. We obtain generalized AMP (GAMP) as the special case when the measurement...

  17. A Network Model of Observation and Imitation of Speech

    Science.gov (United States)

    Mashal, Nira; Solodkin, Ana; Dick, Anthony Steven; Chen, E. Elinor; Small, Steven L.

    2012-01-01

    Much evidence has now accumulated demonstrating and quantifying the extent of shared regional brain activation for observation and execution of speech. However, the nature of the actual networks that implement these functions, i.e., both the brain regions and the connections among them, and the similarities and differences across these networks has not been elucidated. The current study aims to characterize formally a network for observation and imitation of syllables in the healthy adult brain and to compare their structure and effective connectivity. Eleven healthy participants observed or imitated audiovisual syllables spoken by a human actor. We constructed four structural equation models to characterize the networks for observation and imitation in each of the two hemispheres. Our results show that the network models for observation and imitation comprise the same essential structure but differ in important ways from each other (in both hemispheres) based on connectivity. In particular, our results show that the connections from posterior superior temporal gyrus and sulcus to ventral premotor, ventral premotor to dorsal premotor, and dorsal premotor to primary motor cortex in the left hemisphere are stronger during imitation than during observation. The first two connections are implicated in a putative dorsal stream of speech perception, thought to involve translating auditory speech signals into motor representations. Thus, the current results suggest that flow of information during imitation, starting at the posterior superior temporal cortex and ending in the motor cortex, enhances input to the motor cortex in the service of speech execution. PMID:22470360

  18. A study to modify, extend, and verify, an existing model of interactive-constructivist school science teaching

    Science.gov (United States)

    Numedahl, Paul Joseph

    The purpose of this study was to gain an understanding of the effects an interactive-constructive teaching and learning approach, the use of children's literature in science teaching and parental involvement in elementary school science had on student achievement in and attitudes toward science. The study was done in the context of Science PALS, a professional development program for inservice teachers. An existing model for interactive-constructive elementary science was modified to include five model variables; student achievement, student attitudes, teacher perceptions, teacher performance, and student perceptions. Data were collected from a sample of 12 teachers and 260 third and fourth grade students. Data analysis included two components, (1) the examination of relationships between teacher performance, teacher perceptions, student achievement and attitudes, and (2) the verification of a model using path analysis. Results showed a significant correlation between teacher perceptions and student attitude. However, only one model path was significant; thus, the model could not be verified. Further examination of the significant model path was completed. Study findings included: (1) Constructivist notions of teaching and learning may cause changes in the traditional role relationship between teachers and students leading to negative student attitudes. (2) Children who perceive parental interest toward science education are likely to have a positive attitude toward science learning, increased self-confidence in science and possess accurate ideas concerning the nature of science. (3) Students who perceive science instruction as relevant are likely to possess a positive attitude toward science learning, increased self-confidence in science, and possess accurate ideas concerning the nature of science. (4) Students who perceive their classroom as aligning with constructivist principles are likely to possess a positive attitude toward science, an increased self

  19. Deployment and Evaluation of an Observations Data Model

    Science.gov (United States)

    Horsburgh, J. S.; Tarboton, D. G.; Zaslavsky, I.; Maidment, D. R.; Valentine, D.

    2007-12-01

    Environmental observations are fundamental to hydrology and water resources, and the way these data are organized and manipulated either enables or inhibits the analyses that can be performed. The CUAHSI Hydrologic Information System project is developing information technology infrastructure to support hydrologic science. This includes an Observations Data Model (ODM) that provides a new and consistent format for the storage and retrieval of environmental observations in a relational database designed to facilitate integrated analysis of large datasets collected by multiple investigators. Within this data model, observations are stored with sufficient ancillary information (metadata) about the observations to allow them to be unambiguously interpreted and used, and to provide traceable heritage from raw measurements to useable information. The design is based upon a relational database model that exposes each single observation as a record, taking advantage of the capability in relational database systems for querying based upon data values and enabling cross dimension data retrieval and analysis. This data model has been deployed, as part of the HIS Server, at the WATERS Network test bed observatories across the U.S where it serves as a repository for real time data in the observatory information system. The ODM holds the data that is then made available to investigators and the public through web services and the Data Access System for Hydrology (DASH) map based interface. In the WATERS Network test bed settings the ODM has been used to ingest, analyze and publish data from a variety of sources and disciplines. This paper will present an evaluation of the effectiveness of this initial deployment and the revisions that are being instituted to address shortcomings. The ODM represents a new, systematic way for hydrologists, scientists, and engineers to organize and share their data and thereby facilitate a fuller integrated understanding of water resources based on

  20. Linear system identification via backward-time observer models

    Science.gov (United States)

    Juang, Jer-Nan; Phan, Minh

    1993-01-01

    This paper presents an algorithm to identify a state-space model of a linear system using a backward-time approach. The procedure consists of three basic steps. First, the Markov parameters of a backward-time observer are computed from experimental input-output data. Second, the backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) from which a backward-time state-space model is realized using the Eigensystem Realization Algorithm. Third, the obtained backward-time state space model is converted to the usual forward-time representation. Stochastic properties of this approach will be discussed. Experimental results are given to illustrate when and to what extent this concept works.

  1. Comparing soil moisture memory in satellite observations and models

    Science.gov (United States)

    Stacke, Tobias; Hagemann, Stefan; Loew, Alexander

    2013-04-01

    A major obstacle to a correct parametrization of soil processes in large scale global land surface models is the lack of long term soil moisture observations for large parts of the globe. Currently, a compilation of soil moisture data derived from a range of satellites is released by the ESA Climate Change Initiative (ECV_SM). Comprising the period from 1978 until 2010, it provides the opportunity to compute climatological relevant statistics on a quasi-global scale and to compare these to the output of climate models. Our study is focused on the investigation of soil moisture memory in satellite observations and models. As a proxy for memory we compute the autocorrelation length (ACL) of the available satellite data and the uppermost soil layer of the models. Additional to the ECV_SM data, AMSR-E soil moisture is used as observational estimate. Simulated soil moisture fields are taken from ERA-Interim reanalysis and generated with the land surface model JSBACH, which was driven with quasi-observational meteorological forcing data. The satellite data show ACLs between one week and one month for the greater part of the land surface while the models simulate a longer memory of up to two months. Some pattern are similar in models and observations, e.g. a longer memory in the Sahel Zone and the Arabian Peninsula, but the models are not able to reproduce regions with a very short ACL of just a few days. If the long term seasonality is subtracted from the data the memory is strongly shortened, indicating the importance of seasonal variations for the memory in most regions. Furthermore, we analyze the change of soil moisture memory in the different soil layers of the models to investigate to which extent the surface soil moisture includes information about the whole soil column. A first analysis reveals that the ACL is increasing for deeper layers. However, its increase is stronger in the soil moisture anomaly than in its absolute values and the first even exceeds the

  2. Tropical convection regimes in climate models: evaluation with satellite observations

    Directory of Open Access Journals (Sweden)

    A. K. Steiner

    2018-04-01

    Full Text Available High-quality observations are powerful tools for the evaluation of climate models towards improvement and reduction of uncertainty. Particularly at low latitudes, the most uncertain aspect lies in the representation of moist convection and interaction with dynamics, where rising motion is tied to deep convection and sinking motion to dry regimes. Since humidity is closely coupled with temperature feedbacks in the tropical troposphere, a proper representation of this region is essential. Here we demonstrate the evaluation of atmospheric climate models with satellite-based observations from Global Positioning System (GPS radio occultation (RO, which feature high vertical resolution and accuracy in the troposphere to lower stratosphere. We focus on the representation of the vertical atmospheric structure in tropical convection regimes, defined by high updraft velocity over warm surfaces, and investigate atmospheric temperature and humidity profiles. Results reveal that some models do not fully capture convection regions, particularly over land, and only partly represent strong vertical wind classes. Models show large biases in tropical mean temperature of more than 4 K in the tropopause region and the lower stratosphere. Reasonable agreement with observations is given in mean specific humidity in the lower to mid-troposphere. In moist convection regions, models tend to underestimate moisture by 10 to 40 % over oceans, whereas in dry downdraft regions they overestimate moisture by 100 %. Our findings provide evidence that RO observations are a unique source of information, with a range of further atmospheric variables to be exploited, for the evaluation and advancement of next-generation climate models.

  3. Filtering a statistically exactly solvable test model for turbulent tracers from partial observations

    International Nuclear Information System (INIS)

    Gershgorin, B.; Majda, A.J.

    2011-01-01

    A statistically exactly solvable model for passive tracers is introduced as a test model for the authors' Nonlinear Extended Kalman Filter (NEKF) as well as other filtering algorithms. The model involves a Gaussian velocity field and a passive tracer governed by the advection-diffusion equation with an imposed mean gradient. The model has direct relevance to engineering problems such as the spread of pollutants in the air or contaminants in the water as well as climate change problems concerning the transport of greenhouse gases such as carbon dioxide with strongly intermittent probability distributions consistent with the actual observations of the atmosphere. One of the attractive properties of the model is the existence of the exact statistical solution. In particular, this unique feature of the model provides an opportunity to design and test fast and efficient algorithms for real-time data assimilation based on rigorous mathematical theory for a turbulence model problem with many active spatiotemporal scales. Here, we extensively study the performance of the NEKF which uses the exact first and second order nonlinear statistics without any approximations due to linearization. The role of partial and sparse observations, the frequency of observations and the observation noise strength in recovering the true signal, its spectrum, and fat tail probability distribution are the central issues discussed here. The results of our study provide useful guidelines for filtering realistic turbulent systems with passive tracers through partial observations.

  4. Observing the observer (I): meta-bayesian models of learning and decision-making.

    Science.gov (United States)

    Daunizeau, Jean; den Ouden, Hanneke E M; Pessiglione, Matthias; Kiebel, Stefan J; Stephan, Klaas E; Friston, Karl J

    2010-12-14

    In this paper, we present a generic approach that can be used to infer how subjects make optimal decisions under uncertainty. This approach induces a distinction between a subject's perceptual model, which underlies the representation of a hidden "state of affairs" and a response model, which predicts the ensuing behavioural (or neurophysiological) responses to those inputs. We start with the premise that subjects continuously update a probabilistic representation of the causes of their sensory inputs to optimise their behaviour. In addition, subjects have preferences or goals that guide decisions about actions given the above uncertain representation of these hidden causes or state of affairs. From a Bayesian decision theoretic perspective, uncertain representations are so-called "posterior" beliefs, which are influenced by subjective "prior" beliefs. Preferences and goals are encoded through a "loss" (or "utility") function, which measures the cost incurred by making any admissible decision for any given (hidden) state of affair. By assuming that subjects make optimal decisions on the basis of updated (posterior) beliefs and utility (loss) functions, one can evaluate the likelihood of observed behaviour. Critically, this enables one to "observe the observer", i.e. identify (context- or subject-dependent) prior beliefs and utility-functions using psychophysical or neurophysiological measures. In this paper, we describe the main theoretical components of this meta-Bayesian approach (i.e. a Bayesian treatment of Bayesian decision theoretic predictions). In a companion paper ('Observing the observer (II): deciding when to decide'), we describe a concrete implementation of it and demonstrate its utility by applying it to simulated and real reaction time data from an associative learning task.

  5. Observing the observer (I: meta-bayesian models of learning and decision-making.

    Directory of Open Access Journals (Sweden)

    Jean Daunizeau

    2010-12-01

    Full Text Available In this paper, we present a generic approach that can be used to infer how subjects make optimal decisions under uncertainty. This approach induces a distinction between a subject's perceptual model, which underlies the representation of a hidden "state of affairs" and a response model, which predicts the ensuing behavioural (or neurophysiological responses to those inputs. We start with the premise that subjects continuously update a probabilistic representation of the causes of their sensory inputs to optimise their behaviour. In addition, subjects have preferences or goals that guide decisions about actions given the above uncertain representation of these hidden causes or state of affairs. From a Bayesian decision theoretic perspective, uncertain representations are so-called "posterior" beliefs, which are influenced by subjective "prior" beliefs. Preferences and goals are encoded through a "loss" (or "utility" function, which measures the cost incurred by making any admissible decision for any given (hidden state of affair. By assuming that subjects make optimal decisions on the basis of updated (posterior beliefs and utility (loss functions, one can evaluate the likelihood of observed behaviour. Critically, this enables one to "observe the observer", i.e. identify (context- or subject-dependent prior beliefs and utility-functions using psychophysical or neurophysiological measures. In this paper, we describe the main theoretical components of this meta-Bayesian approach (i.e. a Bayesian treatment of Bayesian decision theoretic predictions. In a companion paper ('Observing the observer (II: deciding when to decide', we describe a concrete implementation of it and demonstrate its utility by applying it to simulated and real reaction time data from an associative learning task.

  6. Obs4MIPS: Satellite Observations for Model Evaluation

    Science.gov (United States)

    Ferraro, R.; Waliser, D. E.; Gleckler, P. J.

    2017-12-01

    This poster will review the current status of the obs4MIPs project, whose purpose is to provide a limited collection of well-established and documented datasets for comparison with Earth system models (https://www.earthsystemcog.org/projects/obs4mips/). These datasets have been reformatted to correspond with the CMIP5 model output requirements, and include technical documentation specifically targeted for their use in model output evaluation. The project holdings now exceed 120 datasets with observations that directly correspond to CMIP5 model output variables, with new additions in response to the CMIP6 experiments. With the growth in climate model output data volume, it is increasing more difficult to bring the model output and the observations together to do evaluations. The positioning of the obs4MIPs datasets within the Earth System Grid Federation (ESGF) allows for the use of currently available and planned online tools within the ESGF to perform analysis using model output and observational datasets without necessarily downloading everything to a local workstation. This past year, obs4MIPs has updated its submission guidelines to closely align with changes in the CMIP6 experiments, and is implementing additional indicators and ancillary data to allow users to more easily determine the efficacy of an obs4MIPs dataset for specific evaluation purposes. This poster will present the new guidelines and indicators, and update the list of current obs4MIPs holdings and their connection to the ESGF evaluation and analysis tools currently available, and being developed for the CMIP6 experiments.

  7. Southeast Atmosphere Studies: learning from model-observation syntheses

    Directory of Open Access Journals (Sweden)

    J. Mao

    2018-02-01

    Full Text Available Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales.This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and

  8. Southeast Atmosphere Studies: learning from model-observation syntheses

    Science.gov (United States)

    Mao, Jingqiu; Carlton, Annmarie; Cohen, Ronald C.; Brune, William H.; Brown, Steven S.; Wolfe, Glenn M.; Jimenez, Jose L.; Pye, Havala O. T.; Ng, Nga Lee; Xu, Lu; McNeill, V. Faye; Tsigaridis, Kostas; McDonald, Brian C.; Warneke, Carsten; Guenther, Alex; Alvarado, Matthew J.; de Gouw, Joost; Mickley, Loretta J.; Leibensperger, Eric M.; Mathur, Rohit; Nolte, Christopher G.; Portmann, Robert W.; Unger, Nadine; Tosca, Mika; Horowitz, Larry W.

    2018-02-01

    Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales.This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we

  9. Modelling and observing urban climate in the Netherlands

    International Nuclear Information System (INIS)

    Van Hove, B.; Steeneveld, G.J.; Heusinkveld, B.; Holtslag, B.; Jacobs, C.; Ter Maat, H.; Elbers, J.; Moors, E.

    2011-06-01

    The main aims of the present study are: (1) to evaluate the performance of two well-known mesoscale NWP (numerical weather prediction) models coupled to a UCM (Urban Canopy Models), and (2) to develop a proper measurement strategy for obtaining meteorological data that can be used in model evaluation studies. We choose the mesoscale models WRF (Weather Research and Forecasting Model) and RAMS (Regional Atmospheric Modeling System), respectively, because the partners in the present project have a large expertise with respect to these models. In addition WRF and RAMS have been successfully used in the meteorology and climate research communities for various purposes, including weather prediction and land-atmosphere interaction research. Recently, state-of-the-art UCM's were embedded within the land surface scheme of the respective models, in order to better represent the exchange of heat, momentum, and water vapour in the urban environment. Key questions addressed here are: What is the general model performance with respect to the urban environment?; How can useful and observational data be obtained that allow sensible validation and further parameterization of the models?; and Can the models be easily modified to simulate the urban climate under Dutch climatic conditions, urban configuration and morphology? Chapter 2 reviews the available Urban Canopy Models; we discuss their theoretical basis, the different representations of the urban environment, the required input and the output. Much of the information was obtained from the Urban Surface Energy Balance: Land Surface Scheme Comparison project (PILPS URBAN, PILPS stands for Project for Inter-comparison of Land-Surface Parameterization Schemes). This project started in March 2008 and was coordinated by the Department of Geography, King's College London. In order to test the performance of our models we participated in this project. Chapter 3 discusses the main results of the first phase of PILPS URBAN. A first

  10. Modelling a model?!! Prediction of observed and calculated daily pan evaporation in New Mexico, U.S.A.

    Science.gov (United States)

    Beriro, D. J.; Abrahart, R. J.; Nathanail, C. P.

    2012-04-01

    Data-driven modelling is most commonly used to develop predictive models that will simulate natural processes. This paper, in contrast, uses Gene Expression Programming (GEP) to construct two alternative models of different pan evaporation estimations by means of symbolic regression: a simulator, a model of a real-world process developed on observed records, and an emulator, an imitator of some other model developed on predicted outputs calculated by that source model. The solutions are compared and contrasted for the purposes of determining whether any substantial differences exist between either option. This analysis will address recent arguments over the impact of using downloaded hydrological modelling datasets originating from different initial sources i.e. observed or calculated. These differences can be easily be overlooked by modellers, resulting in a model of a model developed on estimations derived from deterministic empirical equations and producing exceptionally high goodness-of-fit. This paper uses different lines-of-evidence to evaluate model output and in so doing paves the way for a new protocol in machine learning applications. Transparent modelling tools such as symbolic regression offer huge potential for explaining stochastic processes, however, the basic tenets of data quality and recourse to first principles with regard to problem understanding should not be trivialised. GEP is found to be an effective tool for the prediction of observed and calculated pan evaporation, with results supported by an understanding of the records, and of the natural processes concerned, evaluated using one-at-a-time response function sensitivity analysis. The results show that both architectures and response functions are very similar, implying that previously observed differences in goodness-of-fit can be explained by whether models are applied to observed or calculated data.

  11. CrowdWater - Can people observe what models need?

    Science.gov (United States)

    van Meerveld, I. H. J.; Seibert, J.; Vis, M.; Etter, S.; Strobl, B.

    2017-12-01

    CrowdWater (www.crowdwater.ch) is a citizen science project that explores the usefulness of crowd-sourced data for hydrological model calibration and prediction. Hydrological models are usually calibrated based on observed streamflow data but it is likely easier for people to estimate relative stream water levels, such as the water level above or below a rock, than streamflow. Relative stream water levels may, therefore, be a more suitable variable for citizen science projects than streamflow. In order to test this assumption, we held surveys near seven different sized rivers in Switzerland and asked more than 450 volunteers to estimate the water level class based on a picture with a virtual staff gauge. The results show that people can generally estimate the relative water level well, although there were also a few outliers. We also asked the volunteers to estimate streamflow based on the stick method. The median estimated streamflow was close to the observed streamflow but the spread in the streamflow estimates was large and there were very large outliers, suggesting that crowd-based streamflow data is highly uncertain. In order to determine the potential value of water level class data for model calibration, we converted streamflow time series for 100 catchments in the US to stream level class time series and used these to calibrate the HBV model. The model was then validated using the streamflow data. The results of this modeling exercise show that stream level class data are useful for constraining a simple runoff model. Time series of only two stream level classes, e.g. above or below a rock in the stream, were already informative, especially when the class boundary was chosen towards the highest stream levels. There was hardly any improvement in model performance when more than five water level classes were used. This suggests that if crowd-sourced stream level observations are available for otherwise ungauged catchments, these data can be used to constrain

  12. Observational constraints from models of close binary evolution

    International Nuclear Information System (INIS)

    Greve, J.P. de; Packet, W.

    1984-01-01

    The evolution of a system of 9 solar masses + 5.4 solar masses is computed from Zero Age Main Sequence through an early case B of mass exchange, up to the second phase of mass transfer after core helium burning. Both components are calculated simultaneously. The evolution is divided into several physically different phases. The characteristics of the models in each of these phases are transformed into corresponding 'observable' quantities. The outlook of the system for photometric observations is discussed, for an idealized case. The influence of the mass of the loser and the initial mass ratio is considered. (Auth.)

  13. Observations and Models of Highly Intermittent Phytoplankton Distributions

    Science.gov (United States)

    Mandal, Sandip; Locke, Christopher; Tanaka, Mamoru; Yamazaki, Hidekatsu

    2014-01-01

    The measurement of phytoplankton distributions in ocean ecosystems provides the basis for elucidating the influences of physical processes on plankton dynamics. Technological advances allow for measurement of phytoplankton data to greater resolution, displaying high spatial variability. In conventional mathematical models, the mean value of the measured variable is approximated to compare with the model output, which may misinterpret the reality of planktonic ecosystems, especially at the microscale level. To consider intermittency of variables, in this work, a new modelling approach to the planktonic ecosystem is applied, called the closure approach. Using this approach for a simple nutrient-phytoplankton model, we have shown how consideration of the fluctuating parts of model variables can affect system dynamics. Also, we have found a critical value of variance of overall fluctuating terms below which the conventional non-closure model and the mean value from the closure model exhibit the same result. This analysis gives an idea about the importance of the fluctuating parts of model variables and about when to use the closure approach. Comparisons of plot of mean versus standard deviation of phytoplankton at different depths, obtained using this new approach with real observations, give this approach good conformity. PMID:24787740

  14. Modeling active region transient brightenings observed with X-ray telescope as multi-stranded loops

    Energy Technology Data Exchange (ETDEWEB)

    Kobelski, Adam R.; McKenzie, David E. [Department of Physics, P.O. Box 173840, Montana State University, Bozeman, MT 59717-3840 (United States); Donachie, Martin, E-mail: kobelski@solar.physics.montana.edu [University of Glasgow, Glasgow, G128QQ, Scotland (United Kingdom)

    2014-05-10

    Strong evidence exists that coronal loops as observed in extreme ultraviolet and soft X-rays may not be monolithic isotropic structures, but can often be more accurately modeled as bundles of independent strands. Modeling the observed active region transient brightenings (ARTBs) within this framework allows for the exploration of the energetic ramifications and characteristics of these stratified structures. Here we present a simple method of detecting and modeling ARTBs observed with the Hinode X-Ray Telescope (XRT) as groups of zero-dimensional strands, which allows us to probe parameter space to better understand the spatial and temporal dependence of strand heating in impulsively heated loops. This partially automated method can be used to analyze a large number of observations to gain a statistical insight into the parameters of coronal structures, including the number of heating events required in a given model to fit the observations. In this article, we present the methodology and demonstrate its use in detecting and modeling ARTBs in a sample data set from Hinode/XRT. These initial results show that, in general, multiple heating events are necessary to reproduce observed ARTBs, but the spatial dependence of these heating events cannot yet be established.

  15. Modeling active region transient brightenings observed with X-ray telescope as multi-stranded loops

    International Nuclear Information System (INIS)

    Kobelski, Adam R.; McKenzie, David E.; Donachie, Martin

    2014-01-01

    Strong evidence exists that coronal loops as observed in extreme ultraviolet and soft X-rays may not be monolithic isotropic structures, but can often be more accurately modeled as bundles of independent strands. Modeling the observed active region transient brightenings (ARTBs) within this framework allows for the exploration of the energetic ramifications and characteristics of these stratified structures. Here we present a simple method of detecting and modeling ARTBs observed with the Hinode X-Ray Telescope (XRT) as groups of zero-dimensional strands, which allows us to probe parameter space to better understand the spatial and temporal dependence of strand heating in impulsively heated loops. This partially automated method can be used to analyze a large number of observations to gain a statistical insight into the parameters of coronal structures, including the number of heating events required in a given model to fit the observations. In this article, we present the methodology and demonstrate its use in detecting and modeling ARTBs in a sample data set from Hinode/XRT. These initial results show that, in general, multiple heating events are necessary to reproduce observed ARTBs, but the spatial dependence of these heating events cannot yet be established.

  16. A Thermo-Hydro-Mechanical coupled Numerical modeling of Injection-induced seismicity on a pre-existing fault

    Science.gov (United States)

    Kim, Jongchan; Archer, Rosalind

    2017-04-01

    In terms of energy development (oil, gas and geothermal field) and environmental improvement (carbon dioxide sequestration), fluid injection into subsurface has been dramatically increased. As a side effect of these operations, a number of injection-induced seismic activities have also significantly risen. It is known that the main causes of induced seismicity are changes in local shear and normal stresses and pore pressure as well. This mechanism leads to increase in the probability of earthquake occurrence on permeable pre-existing fault zones predominantly. In this 2D fully coupled THM geothermal reservoir numerical simulation of injection-induced seismicity, we investigate the thermal, hydraulic and mechanical behavior of the fracture zone, considering a variety of 1) fault permeability, 2) injection rate and 3) injection temperature to identify major contributing parameters to induced seismic activity. We also calculate spatiotemporal variation of the Coulomb stress which is a combination of shear stress, normal stress and pore pressure and lastly forecast the seismicity rate on the fault zone by computing the seismic prediction model of Dieterich (1994).

  17. Outgroup, alignment and modelling improvements indicate that two TNFSF13-like genes existed in the vertebrate ancestor.

    Science.gov (United States)

    Redmond, Anthony K; Pettinello, Rita; Dooley, Helen

    2017-03-01

    The molecular machinery required for lymphocyte development and differentiation appears to have emerged concomitantly with distinct B- and T-like lymphocyte subsets in the ancestor of all vertebrates. The TNFSF superfamily (TNFSF) members BAFF (TNFSF13/Blys) and APRIL (TNFSF13) are key regulators of B cell development survival, and activation in mammals, but the temporal emergence of these molecules, and their precise relationship to the newly identified TNFSF gene BALM (BAFF and APRIL-like molecule), have not yet been elucidated. Here, to resolve the early evolutionary history of this family, we improved outgroup sampling and alignment quality, and applied better fitting substitution models compared to past studies. Our analyses reveal that BALM is a definitive TNFSF13 family member, which split from BAFF in the gnathostome (jawed vertebrate) ancestor. Most importantly, however, we show that both the APRIL and BAFF lineages existed in the ancestors of all extant vertebrates. This implies that APRIL has been lost, or is yet to be found, in cyclostomes (jawless vertebrates). Our results suggest that lineage-specific gene duplication and loss events have caused lymphocyte regulation, despite shared origins, to become secondarily distinct between gnathostomes and cyclostomes. Finally, the structure of lamprey BAFF-like, and its phylogenetic placement as sister to BAFF and BALM, but not the more slowly evolving APRIL, indicates that the primordial lymphocyte regulator was more APRIL-like than BAFF-like.

  18. Impact of rotavirus vaccination on hospitalisations in Belgium: comparing model predictions with observed data.

    Directory of Open Access Journals (Sweden)

    Baudouin Standaert

    Full Text Available BACKGROUND: Published economic assessments of rotavirus vaccination typically use modelling, mainly static Markov cohort models with birth cohorts followed up to the age of 5 years. Rotavirus vaccination has now been available for several years in some countries, and data have been collected to evaluate the real-world impact of vaccination on rotavirus hospitalisations. This study compared the economic impact of vaccination between model estimates and observed data on disease-specific hospitalisation reductions in a country for which both modelled and observed datasets exist (Belgium. METHODS: A previously published Markov cohort model estimated the impact of rotavirus vaccination on the number of rotavirus hospitalisations in children aged <5 years in Belgium using vaccine efficacy data from clinical development trials. Data on the number of rotavirus-positive gastroenteritis hospitalisations in children aged <5 years between 1 June 2004 and 31 May 2006 (pre-vaccination study period or 1 June 2007 to 31 May 2010 (post-vaccination study period were analysed from nine hospitals in Belgium and compared with the modelled estimates. RESULTS: The model predicted a smaller decrease in hospitalisations over time, mainly explained by two factors. First, the observed data indicated indirect vaccine protection in children too old or too young for vaccination. This herd effect is difficult to capture in static Markov cohort models and therefore was not included in the model. Second, the model included a 'waning' effect, i.e. reduced vaccine effectiveness over time. The observed data suggested this waning effect did not occur during that period, and so the model systematically underestimated vaccine effectiveness during the first 4 years after vaccine implementation. CONCLUSIONS: Model predictions underestimated the direct medical economic value of rotavirus vaccination during the first 4 years of vaccination by approximately 10% when assessing

  19. New Cosmological Model and Its Implications on Observational Data Interpretation

    Directory of Open Access Journals (Sweden)

    Vlahovic Branislav

    2013-09-01

    Full Text Available The paradigm of ΛCDM cosmology works impressively well and with the concept of inflation it explains the universe after the time of decoupling. However there are still a few concerns; after much effort there is no detection of dark matter and there are significant problems in the theoretical description of dark energy. We will consider a variant of the cosmological spherical shell model, within FRW formalism and will compare it with the standard ΛCDM model. We will show that our new topological model satisfies cosmological principles and is consistent with all observable data, but that it may require new interpretation for some data. Considered will be constraints imposed on the model, as for instance the range for the size and allowed thickness of the shell, by the supernovae luminosity distance and CMB data. In this model propagation of the light is confined along the shell, which has as a consequence that observed CMB originated from one point or a limited space region. It allows to interpret the uniformity of the CMB without inflation scenario. In addition this removes any constraints on the uniformity of the universe at the early stage and opens a possibility that the universe was not uniform and that creation of galaxies and large structures is due to the inhomogeneities that originated in the Big Bang.

  20. Modelling shear wave splitting observations from Wellington, New Zealand

    Science.gov (United States)

    Marson-Pidgeon, Katrina; Savage, Martha K.

    2004-05-01

    Frequency-dependent anisotropy was previously observed at the permanent broad-band station SNZO, South Karori, Wellington, New Zealand. This has important implications for the interpretation of measurements in other subduction zones and hence for our understanding of mantle flow. This motivated us to make further splitting measurements using events recorded since the previous study and to develop a new modelling technique. Thus, in this study we have made 67 high-quality shear wave splitting measurements using events recorded at the SNZO station spanning a 10-yr period. This station is the only one operating in New Zealand for longer than 2 yr. Using a combination of teleseismic SKS and S phases and regional ScS phases provides good azimuthal coverage, allowing us to undertake detailed modelling. The splitting measurements indicate that in addition to the frequency dependence observed previously at this station, there are also variations with propagation and initial polarization directions. The fast polarization directions range between 2° and 103°, and the delay times range between 0.75 s and 3.05 s. These ranges are much larger than observed previously at SNZO or elsewhere in New Zealand. Because of the observed frequency dependence we measure the dominant frequency of the phase used to make the splitting measurement, and take this into account in the modelling. We fit the fast polarization directions fairly well with a two-layer anisotropic model with horizontal axes of symmetry. However, such a model does not fit the delay times or explain the frequency dependence. We have developed a new inversion method which allows for an inclined axis of symmetry in each of the two layers. However, applying this method to SNZO does not significantly improve the fit over a two-layer model with horizontal symmetry axes. We are therefore unable to explain the frequency dependence or large variation in delay time values with multiple horizontal layers of anisotropy, even

  1. Cloud condensation nuclei in Western Colorado: Observations and model predictions

    Science.gov (United States)

    Ward, Daniel Stewart

    Variations in the warm cloud-active portion of atmospheric aerosols, or cloud condensation nuclei (CCN), have been shown to impact cloud droplet number concentration and subsequently cloud and precipitation processes. This issue carries special significance in western Colorado where a significant portion of the region's water resources is supplied by precipitation from winter season, orographic clouds, which are particularly sensitive to variations in CCN. Temporal and spatial variations in CCN in western Colorado were investigated using a combination of observations and a new method for modeling CCN. As part of the Inhibition of Snowfall by Pollution Aerosols (ISPA-III) field campaign, total particle and CCN number concentration were measured for a 24-day period in Mesa Verde National Park, climatologically upwind of the San Juan Mountains. These data were combined with CCN observations from Storm Peak Lab (SPL) in northwestern Colorado and from the King Air platform, flying north to south along the Western Slope. Altogether, the sampled aerosols were characteristic of a rural continental environment and the cloud-active portion varied slowly in time, and little in space. Estimates of the is hygroscopicity parameter indicated consistently low aerosol hygroscopicity typical of organic aerosol species. The modeling approach included the addition of prognostic CCN to the Regional Atmospheric Modeling System (RAMS). The RAMS droplet activation scheme was altered using parcel model simulations to include variations in aerosol hygroscopicity, represented by K. Analysis of the parcel model output and a supplemental sensitivity study showed that model CCN will be sensitive to changes in aerosol hygroscopicity, but only for conditions of low supersaturation or small particle sizes. Aerosol number, size distribution median radius, and hygroscopicity (represented by the K parameter) in RAMS were constrained by nudging to forecasts of these quantities from the Weather

  2. Observational constraints on tachyonic chameleon dark energy model

    Science.gov (United States)

    Banijamali, A.; Bellucci, S.; Fazlpour, B.; Solbi, M.

    2018-03-01

    It has been recently shown that tachyonic chameleon model of dark energy in which tachyon scalar field non-minimally coupled to the matter admits stable scaling attractor solution that could give rise to the late-time accelerated expansion of the universe and hence alleviate the coincidence problem. In the present work, we use data from Type Ia supernova (SN Ia) and Baryon Acoustic oscillations to place constraints on the model parameters. In our analysis we consider in general exponential and non-exponential forms for the non-minimal coupling function and tachyonic potential and show that the scenario is compatible with observations.

  3. A sliding mode observer for hemodynamic characterization under modeling uncertainties

    KAUST Repository

    Zayane, Chadia

    2014-06-01

    This paper addresses the case of physiological states reconstruction in a small region of the brain under modeling uncertainties. The misunderstood coupling between the cerebral blood volume and the oxygen extraction fraction has lead to a partial knowledge of the so-called balloon model describing the hemodynamic behavior of the brain. To overcome this difficulty, a High Order Sliding Mode observer is applied to the balloon system, where the unknown coupling is considered as an internal perturbation. The effectiveness of the proposed method is illustrated through a set of synthetic data that mimic fMRI experiments.

  4. Observed and modelled “chemical weather” during ESCOMPTE

    Science.gov (United States)

    Dufour, A.; Amodei, M.; Ancellet, G.; Peuch, V.-H.

    2005-03-01

    The new MOdèle de Chimie Atmosphérique à Grande Echelle (MOCAGE) three-dimensional multiscale chemistry and transport model (CTM) has been applied to study heavy pollution episodes observed during the ESCOMPTE experiment. The model considers the troposphere and lower stratosphere, and allows the possibility of zooming from the planetary scale down to the regional scale over limited area subdomains. Like this, it generates its own time-dependent chemical boundary conditions in the vertical and in the horizontal. This paper focuses on the evaluation and quantification of uncertainties related to chemical and transport modelling during two intensive observing periods, IOP2 and IOP4 (June 20-26 and July 10-14, 2001, respectively). Simulations are compared to the database of four-dimensional observations, which includes ground-based sites and aircraft measurements, radiosoundings, and quasi-continuous measurements of ozone by LIDARs. Thereby, the observed and modelled day-to-day variabilities in air composition both at the surface and in the vertical have been assessed. Then, three sensitivity studies are conducted concerning boundary conditions, accuracy of the emission dataset, and representation of chemistry. Firstly, to go further in the analysis of chemical boundary conditions, results from the standard grid nesting set-up and altered configurations, relying on climatologies, are compared. Along with other recent studies, this work advocates the systematic coupling of limited-area models with global CTMs, even for regional air quality studies or forecasts. Next, we evaluate the benefits of using the detailed high-resolution emissions inventory of ESCOMPTE: improvements are noticeable both on ozone reactivity and on the concentrations of various species of the ozone photochemical cycle especially primary ones. Finally, we provide some insights on the comparison of two simulations differing only by the parameterisation of chemistry and using two state

  5. Successful single treatment with ziv-aflibercept for existing corneal neovascularization following ocular chemical insult in the rabbit model.

    Science.gov (United States)

    Gore, Ariel; Horwitz, Vered; Cohen, Maayan; Gutman, Hila; Cohen, Liat; Gez, Rellie; Kadar, Tamar; Dachir, Shlomit

    2018-03-13

    To evaluate the efficacy of ziv-aflibercept as a treatment for established corneal neovascularization (NV) and to compare its efficacy to that of bevacizumab following ocular chemical insult of sulfur mustard (SM) in the rabbit model. Chemical SM burn was induced in the right eye of NZW rabbits by vapor exposure. Ziv-aflibercept (2 mg) was applied once to neovascularized eyes by subconjunctival injection while subconjunctival bevacizumab (5 mg) was administered twice a week, for 3 weeks. Non-treated exposed eyes served as a control. A clinical follow-up employed by slit-lamp microscope, was performed up to 12 weeks following exposure and digital photographs of the cornea were taken for measurement of blood vessels length using the image analysis software. Eyes were taken for histological evaluation 2, 4 and 8 weeks following treatment for general morphology and for visualization of NV, using H&E and Masson Trichrome stainings, while conjunctival goblet cell density was determined by PAS staining. Corneal NV developed, starting as early as two weeks after exposure. A single subconjunctival treatment of ziv-aflibercept at 4 weeks post exposure, significantly reduced the extent of existing NV already one week following injection, an effect which lasted for at least 8 weeks following treatment, while NV in the non-treated exposed eyes continued to advance. The extensive reduction in corneal NV in the ziv-aflibercept treated group was confirmed by histological evaluation. Bevacizumab multiple treatment showed a benefit in NV reduction, but to a lesser extent compared to the ziv-aflibercept treatment. Finally, ziv-aflibercept increased the density of conjunctival goblet cells as compared to the exposed non-treated group. Subconjunctival ziv-aflibercept single treatment presented a highly efficient long-term therapeutic benefit in reducing existing corneal NV, following ocular sulfur mustard exposure. These findings show the robust anti-angiogenic efficacy of ziv

  6. Model dependence of isospin sensitive observables at high densities

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wen-Mei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Science, Huzhou Teachers College, Huzhou 313000 (China); Yong, Gao-Chan, E-mail: yonggaochan@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Yongjia [School of Science, Huzhou Teachers College, Huzhou 313000 (China); School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Li, Qingfeng [School of Science, Huzhou Teachers College, Huzhou 313000 (China); Zhang, Hongfei [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zuo, Wei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-10-07

    Within two different frameworks of isospin-dependent transport model, i.e., Boltzmann–Uehling–Uhlenbeck (IBUU04) and Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport models, sensitive probes of nuclear symmetry energy are simulated and compared. It is shown that neutron to proton ratio of free nucleons, π{sup −}/π{sup +} ratio as well as isospin-sensitive transverse and elliptic flows given by the two transport models with their “best settings”, all have obvious differences. Discrepancy of numerical value of isospin-sensitive n/p ratio of free nucleon from the two models mainly originates from different symmetry potentials used and discrepancies of numerical value of charged π{sup −}/π{sup +} ratio and isospin-sensitive flows mainly originate from different isospin-dependent nucleon–nucleon cross sections. These demonstrations call for more detailed studies on the model inputs (i.e., the density- and momentum-dependent symmetry potential and the isospin-dependent nucleon–nucleon cross section in medium) of isospin-dependent transport model used. The studies of model dependence of isospin sensitive observables can help nuclear physicists to pin down the density dependence of nuclear symmetry energy through comparison between experiments and theoretical simulations scientifically.

  7. Link between laboratory/field observations and models

    International Nuclear Information System (INIS)

    Cole, C.R.; Foley, M.G.

    1985-10-01

    The various linkages in system performance assessments that integrate disposal program elements must be understood. The linkage between model development and field/laboratory observations is described as the iterative program of site and system characterization for development of an observational-confirmatory data base to develop, improve, and support conceptual models for site and system behavior. The program consists of data gathering and experiments to demonstrate understanding at various spatial and time scales and degrees of complexity. Understanding and accounting for the decreasing characterization certainty that arises with increasing space and time scales is an important aspect of the link between models and observations. The performance allocation process for setting performance goals and confidence levels coupled with a performance assessment approach that provides these performance and confidence estimates will resolve when sufficient characterization has been achieved. At each iteration performance allocation goals are reviewed and revised as necessary. The updated data base and appropriate performance assessment tools and approaches are utilized to identify and design additional tests and data needs necessary to meet current performance allocation goals. 9 refs

  8. The link between laboratory/field observations and models

    International Nuclear Information System (INIS)

    Cole, C.R.; Foley, M.G.

    1986-01-01

    The various linkages in system performance assessments that integrate disposal program elements must be understood. The linkage between model development and field/laboratory observations is described as the iterative program of site and system characterization for development of an observational-confirmatory data base. This data base is designed to develop, improve, and support conceptual models for site and system behavior. The program consists of data gathering and experiments to demonstrate understanding at various spatial and time scales and degrees of complexity. Understanding and accounting for the decreasing characterization certainty that arises with increasing space and time scales is an important aspect of the link between models and observations. The performance allocation process for setting performance goals and confidence levels, coupled with a performance assessment approach that provides these performance and confidence estimates, will determine when sufficient characterization has been achieved. At each iteration, performance allocation goals are reviewed and revised as necessary. The updated data base and appropriate performance assessment tools and approaches are utilized to identify and design additional tests and data needs necessary to meet current performance allocation goals

  9. MOCK OBSERVATIONS OF BLUE STRAGGLERS IN GLOBULAR CLUSTER MODELS

    International Nuclear Information System (INIS)

    Sills, Alison; Glebbeek, Evert; Chatterjee, Sourav; Rasio, Frederic A.

    2013-01-01

    We created artificial color-magnitude diagrams of Monte Carlo dynamical models of globular clusters and then used observational methods to determine the number of blue stragglers in those clusters. We compared these blue stragglers to various cluster properties, mimicking work that has been done for blue stragglers in Milky Way globular clusters to determine the dominant formation mechanism(s) of this unusual stellar population. We find that a mass-based prescription for selecting blue stragglers will select approximately twice as many blue stragglers than a selection criterion that was developed for observations of real clusters. However, the two numbers of blue stragglers are well-correlated, so either selection criterion can be used to characterize the blue straggler population of a cluster. We confirm previous results that the simplified prescription for the evolution of a collision or merger product in the BSE code overestimates their lifetimes. We show that our model blue stragglers follow similar trends with cluster properties (core mass, binary fraction, total mass, collision rate) as the true Milky Way blue stragglers as long as we restrict ourselves to model clusters with an initial binary fraction higher than 5%. We also show that, in contrast to earlier work, the number of blue stragglers in the cluster core does have a weak dependence on the collisional parameter Γ in both our models and in Milky Way globular clusters

  10. General Description of Fission Observables - JEFF Report 24. GEF Model

    International Nuclear Information System (INIS)

    Schmidt, Karl-Heinz; Jurado, Beatriz; Amouroux, Charlotte

    2014-06-01

    The Joint Evaluated Fission and Fusion (JEFF) Project is a collaborative effort among the member countries of the OECD Nuclear Energy Agency (NEA) Data Bank to develop a reference nuclear data library. The JEFF library contains sets of evaluated nuclear data, mainly for fission and fusion applications; it contains a number of different data types, including neutron and proton interaction data, radioactive decay data, fission yield data and thermal scattering law data. The General fission (GEF) model is based on novel theoretical concepts and ideas developed to model low energy nuclear fission. The GEF code calculates fission-fragment yields and associated quantities (e.g. prompt neutron and gamma) for a large range of nuclei and excitation energy. This opens up the possibility of a qualitative step forward to improve further the JEFF fission yields sub-library. This report describes the GEF model which explains the complex appearance of fission observables by universal principles of theoretical models and considerations on the basis of fundamental laws of physics and mathematics. The approach reveals a high degree of regularity and provides a considerable insight into the physics of the fission process. Fission observables can be calculated with a precision that comply with the needs for applications in nuclear technology. The relevance of the approach for examining the consistency of experimental results and for evaluating nuclear data is demonstrated. (authors)

  11. Web-based tool for dynamic functional outcome after acute ischemic stroke and comparison with existing models.

    Science.gov (United States)

    Ji, Ruijun; Du, Wanliang; Shen, Haipeng; Pan, Yuesong; Wang, Penglian; Liu, Gaifen; Wang, Yilong; Li, Hao; Zhao, Xingquan; Wang, Yongjun

    2014-11-25

    Acute ischemic stroke (AIS) is one of the leading causes of death and adult disability worldwide. In the present study, we aimed to develop a web-based risk model for predicting dynamic functional status at discharge, 3-month, 6-month, and 1-year after acute ischemic stroke (Dynamic Functional Status after Acute Ischemic Stroke, DFS-AIS). The DFS-AIS was developed based on the China National Stroke Registry (CNSR), in which eligible patients were randomly divided into derivation (60%) and validation (40%) cohorts. Good functional outcome was defined as modified Rankin Scale (mRS) score ≤ 2 at discharge, 3-month, 6-month, and 1-year after AIS, respectively. Independent predictors of each outcome measure were obtained using multivariable logistic regression. The area under the receiver operating characteristic curve (AUROC) and plot of observed and predicted risk were used to assess model discrimination and calibration. A total of 12,026 patients were included and the median age was 67 (interquartile range: 57-75). The proportion of patients with good functional outcome at discharge, 3-month, 6-month, and 1-year after AIS was 67.9%, 66.5%, 66.9% and 66.9%, respectively. Age, gender, medical history of diabetes mellitus, stroke or transient ischemic attack, current smoking and atrial fibrillation, pre-stroke dependence, pre-stroke statins using, admission National Institutes of Health Stroke Scale score, admission blood glucose were identified as independent predictors of functional outcome at different time points after AIS. The DFS-AIS was developed from sets of predictors of mRS ≤ 2 at different time points following AIS. The DFS-AIS demonstrated good discrimination in the derivation and validation cohorts (AUROC range: 0.837-0.845). Plots of observed versus predicted likelihood showed excellent calibration in the derivation and validation cohorts (all r = 0.99, P discrimination for good functional outcome and mortality at discharge, 3-month, 6

  12. Ecological Assimilation of Land and Climate Observations - the EALCO model

    Science.gov (United States)

    Wang, S.; Zhang, Y.; Trishchenko, A.

    2004-05-01

    Ecosystems are intrinsically dynamic and interact with climate at a highly integrated level. Climate variables are the main driving factors in controlling the ecosystem physical, physiological, and biogeochemical processes including energy balance, water balance, photosynthesis, respiration, and nutrient cycling. On the other hand, ecosystems function as an integrity and feedback on the climate system through their control on surface radiation balance, energy partitioning, and greenhouse gases exchange. To improve our capability in climate change impact assessment, a comprehensive ecosystem model is required to address the many interactions between climate change and ecosystems. In addition, different ecosystems can have very different responses to the climate change and its variation. To provide more scientific support for ecosystem impact assessment at national scale, it is imperative that ecosystem models have the capability of assimilating the large scale geospatial information including satellite observations, GIS datasets, and climate model outputs or reanalysis. The EALCO model (Ecological Assimilation of Land and Climate Observations) is developed for such purposes. EALCO includes the comprehensive interactions among ecosystem processes and climate, and assimilates a variety of remote sensing products and GIS database. It provides both national and local scale model outputs for ecosystem responses to climate change including radiation and energy balances, water conditions and hydrological cycles, carbon sequestration and greenhouse gas exchange, and nutrient (N) cycling. These results form the foundation for the assessment of climate change impact on ecosystems, their services, and adaptation options. In this poster, the main algorithms for the radiation, energy, water, carbon, and nitrogen simulations were diagrammed. Sample input data layers at Canada national scale were illustrated. Model outputs including the Canada wide spatial distributions of net

  13. Realistic modelling of observed seismic motion in complex sedimentary basins

    International Nuclear Information System (INIS)

    Faeh, D.; Panza, G.F.

    1994-03-01

    Three applications of a numerical technique are illustrated to model realistically the seismic ground motion for complex two-dimensional structures. First we consider a sedimentary basin in the Friuli region, and we model strong motion records from an aftershock of the 1976 earthquake. Then we simulate the ground motion caused in Rome by the 1915, Fucino (Italy) earthquake, and we compare our modelling with the damage distribution observed in the town. Finally we deal with the interpretation of ground motion recorded in Mexico City, as a consequence of earthquakes in the Mexican subduction zone. The synthetic signals explain the major characteristics (relative amplitudes, spectral amplification, frequency content) of the considered seismograms, and the space distribution of the available macroseismic data. For the sedimentary basin in the Friuli area, parametric studies demonstrate the relevant sensitivity of the computed ground motion to small changes in the subsurface topography of the sedimentary basin, and in the velocity and quality factor of the sediments. The total energy of ground motion, determined from our numerical simulation in Rome, is in very good agreement with the distribution of damage observed during the Fucino earthquake. For epicentral distances in the range 50km-100km, the source location and not only the local soil conditions control the local effects. For Mexico City, the observed ground motion can be explained as resonance effects and as excitation of local surface waves, and the theoretical and the observed maximum spectral amplifications are very similar. In general, our numerical simulations permit the estimate of the maximum and average spectral amplification for specific sites, i.e. are a very powerful tool for accurate micro-zonation. (author). 38 refs, 19 figs, 1 tab

  14. 40 CFR Table 4 to Subpart Bbbb of... - Model Rule-Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a

    Science.gov (United States)

    2010-07-01

    ... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...

  15. Anisotropy in Fracking: A Percolation Model for Observed Microseismicity

    Science.gov (United States)

    Norris, J. Quinn; Turcotte, Donald L.; Rundle, John B.

    2015-01-01

    Hydraulic fracturing (fracking), using high pressures and a low viscosity fluid, allow the extraction of large quantiles of oil and gas from very low permeability shale formations. The initial production of oil and gas at depth leads to high pressures and an extensive distribution of natural fractures which reduce the pressures. With time these fractures heal, sealing the remaining oil and gas in place. High volume fracking opens the healed fractures allowing the oil and gas to flow to horizontal production wells. We model the injection process using invasion percolation. We use a 2D square lattice of bonds to model the sealed natural fractures. The bonds are assigned random strengths and the fluid, injected at a point, opens the weakest bond adjacent to the growing cluster of opened bonds. Our model exhibits burst dynamics in which the clusters extend rapidly into regions with weak bonds. We associate these bursts with the microseismic activity generated by fracking injections. A principal object of this paper is to study the role of anisotropic stress distributions. Bonds in the y-direction are assigned higher random strengths than bonds in the x-direction. We illustrate the spatial distribution of clusters and the spatial distribution of bursts (small earthquakes) for several degrees of anisotropy. The results are compared with observed distributions of microseismicity in a fracking injection. Both our bursts and the observed microseismicity satisfy Gutenberg-Richter frequency-size statistics.

  16. Report on Integration of Existing Grid Models for N-R HES Interaction Focused on Balancing Authorities for Sub-hour Penalties and Opportunities

    International Nuclear Information System (INIS)

    McJunkin, Timothy; Epiney, Aaron; Rabiti, Cristian

    2017-01-01

    This report provides a summary of the effort in the Nuclear-Renewable Hybrid Energy System (N-R HES) project on the level 4 milestone to consider integration of existing grid models into the factors for optimization on shorter time intervals than the existing electric grid models with the Risk Analysis Virtual Environment (RAVEN) and Modelica [1] optimizations and economic analysis that are the focus of the project to date.

  17. Report on Integration of Existing Grid Models for N-R HES Interaction Focused on Balancing Authorities for Sub-hour Penalties and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    McJunkin, Timothy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Epiney, Aaron [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    This report provides a summary of the effort in the Nuclear-Renewable Hybrid Energy System (N-R HES) project on the level 4 milestone to consider integration of existing grid models into the factors for optimization on shorter time intervals than the existing electric grid models with the Risk Analysis Virtual Environment (RAVEN) and Modelica [1] optimizations and economic analysis that are the focus of the project to date.

  18. Improving Snow Modeling by Assimilating Observational Data Collected by Citizen Scientists

    Science.gov (United States)

    Crumley, R. L.; Hill, D. F.; Arendt, A. A.; Wikstrom Jones, K.; Wolken, G. J.; Setiawan, L.

    2017-12-01

    Modeling seasonal snow pack in alpine environments includes a multiplicity of challenges caused by a lack of spatially extensive and temporally continuous observational datasets. This is partially due to the difficulty of collecting measurements in harsh, remote environments where extreme gradients in topography exist, accompanied by large model domains and inclement weather. Engaging snow enthusiasts, snow professionals, and community members to participate in the process of data collection may address some of these challenges. In this study, we use SnowModel to estimate seasonal snow water equivalence (SWE) in the Thompson Pass region of Alaska while incorporating snow depth measurements collected by citizen scientists. We develop a modeling approach to assimilate hundreds of snow depth measurements from participants in the Community Snow Observations (CSO) project (www.communitysnowobs.org). The CSO project includes a mobile application where participants record and submit geo-located snow depth measurements while working and recreating in the study area. These snow depth measurements are randomly located within the model grid at irregular time intervals over the span of four months in the 2017 water year. This snow depth observation dataset is converted into a SWE dataset by employing an empirically-based, bulk density and SWE estimation method. We then assimilate this data using SnowAssim, a sub-model within SnowModel, to constrain the SWE output by the observed data. Multiple model runs are designed to represent an array of output scenarios during the assimilation process. An effort to present model output uncertainties is included, as well as quantification of the pre- and post-assimilation divergence in modeled SWE. Early results reveal pre-assimilation SWE estimations are consistently greater than the post-assimilation estimations, and the magnitude of divergence increases throughout the snow pack evolution period. This research has implications beyond the

  19. Analysis and modeling of tropical convection observed by CYGNSS

    Science.gov (United States)

    Lang, T. J.; Li, X.; Roberts, J. B.; Mecikalski, J. R.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) is a multi-satellite constellation that utilizes Global Positioning System (GPS) reflectometry to retrieve near-surface wind speeds over the ocean. While CYGNSS is primarily aimed at measuring wind speeds in tropical cyclones, our research has established that the mission may also provide valuable insight into the relationships between wind-driven surface fluxes and general tropical oceanic convection. Currently, we are examining organized tropical convection using a mixture of CYGNSS level 1 through level 3 data, IMERG (Integrated Multi-satellite Retrievals for Global Precipitation Measurement), and other ancillary datasets (including buoys, GPM level 1 and 2 data, as well as ground-based radar). In addition, observing system experiments (OSEs) are being performed using hybrid three-dimensional variational assimilation to ingest CYGNSS observations into a limited-domain, convection-resolving model. Our focus for now is on case studies of convective evolution, but we will also report on progress toward statistical analysis of convection sampled by CYGNSS. Our working hypothesis is that the typical mature phase of organized tropical convection is marked by the development of a sharp gust-front boundary from an originally spatially broader but weaker wind speed change associated with precipitation. This increase in the wind gradient, which we demonstrate is observable by CYGNSS, likely helps to focus enhanced turbulent fluxes of convection-sustaining heat and moisture near the leading edge of the convective system where they are more easily ingested by the updraft. Progress on the testing and refinement of this hypothesis, using a mixture of observations and modeling, will be reported.

  20. Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations

    Science.gov (United States)

    Berri, Guillermo J.; Bertossa, Germán

    2018-01-01

    A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.

  1. Modelling 1-minute directional observations of the global irradiance.

    Science.gov (United States)

    Thejll, Peter; Pagh Nielsen, Kristian; Andersen, Elsa; Furbo, Simon

    2016-04-01

    Direct and diffuse irradiances from the sky has been collected at 1-minute intervals for about a year from the experimental station at the Technical University of Denmark for the IEA project "Solar Resource Assessment and Forecasting". These data were gathered by pyrheliometers tracking the Sun, as well as with apertured pyranometers gathering 1/8th and 1/16th of the light from the sky in 45 degree azimuthal ranges pointed around the compass. The data are gathered in order to develop detailed models of the potentially available solar energy and its variations at high temporal resolution in order to gain a more detailed understanding of the solar resource. This is important for a better understanding of the sub-grid scale cloud variation that cannot be resolved with climate and weather models. It is also important for optimizing the operation of active solar energy systems such as photovoltaic plants and thermal solar collector arrays, and for passive solar energy and lighting to buildings. We present regression-based modelling of the observed data, and focus, here, on the statistical properties of the model fits. Using models based on the one hand on what is found in the literature and on physical expectations, and on the other hand on purely statistical models, we find solutions that can explain up to 90% of the variance in global radiation. The models leaning on physical insights include terms for the direct solar radiation, a term for the circum-solar radiation, a diffuse term and a term for the horizon brightening/darkening. The purely statistical model is found using data- and formula-validation approaches picking model expressions from a general catalogue of possible formulae. The method allows nesting of expressions, and the results found are dependent on and heavily constrained by the cross-validation carried out on statistically independent testing and training data-sets. Slightly better fits -- in terms of variance explained -- is found using the purely

  2. Dispersion Relations for Electroweak Observables in Composite Higgs Models

    CERN Document Server

    Contino, Roberto

    2015-12-14

    We derive dispersion relations for the electroweak oblique observables measured at LEP in the context of $SO(5)/SO(4)$ composite Higgs models. It is shown how these relations can be used and must be modified when modeling the spectral functions through a low-energy effective description of the strong dynamics. The dispersion relation for the parameter $\\epsilon_3$ is then used to estimate the contribution from spin-1 resonances at the 1-loop level. Finally, it is shown that the sign of the contribution to the $\\hat S$ parameter from the lowest-lying spin-1 states is not necessarily positive definite, but depends on the energy scale at which the asymptotic behavior of current correlators is attained.

  3. Observations and models of simple nocturnal slope flows

    International Nuclear Information System (INIS)

    Doran, J.C.; Horst, J.W.

    1983-01-01

    Measurements of simple nocturnal slope winds were taken on Rattlesnake Mountain, a nearly ideal two-dimensional ridge. Tower and tethered balloon instrumentation allowed the determination of the wind and temperature characteristics of the katabatic layer as well as the ambient conditions. Two cases were chosen for study; these were marked by well-defined surface-based temperature inversions and a low-level maximum in the downslope wind component. The downslope development of the slope flow could be determined from the tower measurements, and showed a progressive strenghtening of the katabatic layer. Hydraulic models developed by Manins and Sawford (1979a) and Briggs (1981) gave useful estimates of drainage layer depths, but were not otherwise applicable. A simple numerical model that relates the eddy diffusivity to the local turbulent kinetic energy was found to give good agreement with the observed wind and temperature profiles of the slope flows

  4. INTERSTELLAR NEUTRAL HELIUM IN THE HELIOSPHERE FROM IBEX OBSERVATIONS. II. THE WARSAW TEST PARTICLE MODEL (WTPM)

    Energy Technology Data Exchange (ETDEWEB)

    Sokół, J. M.; Kubiak, M. A.; Bzowski, M.; Swaczyna, P., E-mail: jsokol@cbk.waw.pl [Space Research Centre of the Polish Academy of Sciences, 00-716 Warsaw (Poland)

    2015-10-15

    We have developed a refined and optimized version of the Warsaw Test Particle Model of interstellar neutral gas in the heliosphere, specially tailored for analysis of IBEX-Lo observations. The former version of the model was used in the analysis of neutral He observed by IBEX that resulted in an unexpected conclusion that the interstellar neutral He flow vector was different than previously thought and that a new population of neutral He, dubbed the Warm Breeze, exists in the heliosphere. It was also used in the reanalysis of Ulysses observations that confirmed the original findings on the flow vector, but suggested a significantly higher temperature. The present version of the model has two strains targeted for different applications, based on an identical paradigm, but differing in the implementation and in the treatment of ionization losses. We present the model in detail and discuss numerous effects related to the measurement process that potentially modify the resulting flux of ISN He observed by IBEX, and identify those of them that should not be omitted in the simulations to avoid biasing the results. This paper is part of a coordinated series of papers presenting the current state of analysis of IBEX-Lo observations of ISN He. Details of the analysis method are presented by Swaczyna et al. and results of the analysis are presented by Bzowski et al.

  5. The FluxCompensator: Making Radiative Transfer Models of Hydrodynamical Simulations Directly Comparable to Real Observations

    Energy Technology Data Exchange (ETDEWEB)

    Koepferl, Christine M.; Robitaille, Thomas P., E-mail: koepferl@usm.lmu.de [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2017-11-01

    When modeling astronomical objects throughout the universe, it is important to correctly treat the limitations of the data, for instance finite resolution and sensitivity. In order to simulate these effects, and to make radiative transfer models directly comparable to real observations, we have developed an open-source Python package called the FluxCompensator that enables the post-processing of the output of 3D Monte Carlo radiative transfer codes, such as Hyperion. With the FluxCompensator, realistic synthetic observations can be generated by modeling the effects of convolution with arbitrary point-spread functions, transmission curves, finite pixel resolution, noise, and reddening. Pipelines can be applied to compute synthetic observations that simulate observatories, such as the Spitzer Space Telescope or the Herschel Space Observatory . Additionally, this tool can read in existing observations (e.g., FITS format) and use the same settings for the synthetic observations. In this paper, we describe the package as well as present examples of such synthetic observations.

  6. The FluxCompensator: Making Radiative Transfer Models of Hydrodynamical Simulations Directly Comparable to Real Observations

    Science.gov (United States)

    Koepferl, Christine M.; Robitaille, Thomas P.

    2017-11-01

    When modeling astronomical objects throughout the universe, it is important to correctly treat the limitations of the data, for instance finite resolution and sensitivity. In order to simulate these effects, and to make radiative transfer models directly comparable to real observations, we have developed an open-source Python package called the FluxCompensator that enables the post-processing of the output of 3D Monte Carlo radiative transfer codes, such as Hyperion. With the FluxCompensator, realistic synthetic observations can be generated by modeling the effects of convolution with arbitrary point-spread functions, transmission curves, finite pixel resolution, noise, and reddening. Pipelines can be applied to compute synthetic observations that simulate observatories, such as the Spitzer Space Telescope or the Herschel Space Observatory. Additionally, this tool can read in existing observations (e.g., FITS format) and use the same settings for the synthetic observations. In this paper, we describe the package as well as present examples of such synthetic observations.

  7. Analysis of the Sheltered Instruction Observation Protocol Model on Academic Performance of English Language Learners

    Science.gov (United States)

    Ingram, Sandra W.

    This quantitative comparative descriptive study involved analyzing archival data from end-of-course (EOC) test scores in biology of English language learners (ELLs) taught or not taught using the sheltered instruction observation protocol (SIOP) model. The study includes descriptions and explanations of the benefits of the SIOP model to ELLs, especially in content area subjects such as biology. Researchers have shown that ELLs in high school lag behind their peers in academic achievement in content area subjects. Much of the research on the SIOP model took place in elementary and middle school, and more research was necessary at the high school level. This study involved analyzing student records from archival data to describe and explain if the SIOP model had an effect on the EOC test scores of ELLs taught or not taught using it. The sample consisted of 527 Hispanic students (283 females and 244 males) from Grades 9-12. An independent sample t-test determined if a significant difference existed in the mean EOC test scores of ELLs taught using the SIOP model as opposed to ELLs not taught using the SIOP model. The results indicated that a significant difference existed between EOC test scores of ELLs taught using the SIOP model and ELLs not taught using the SIOP model (p = .02). A regression analysis indicated a significant difference existed in the academic performance of ELLs taught using the SIOP model in high school science, controlling for free and reduced-price lunch (p = .001) in predicting passing scores on the EOC test in biology at the school level. The data analyzed for free and reduced-price lunch together with SIOP data indicated that both together were not significant (p = .175) for predicting passing scores on the EOC test in high school biology. Future researchers should repeat the study with student-level data as opposed to school-level data, and data should span at least three years.

  8. Heliospheric modulation of cosmic rays: model and observation

    Directory of Open Access Journals (Sweden)

    Gerasimova S.K.

    2017-03-01

    Full Text Available This paper presents the basic model of cosmic ray modulation in the heliosphere, developed in Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of the Siberian Branch of the Russian Academy of Sciences. The model has only one free modulation parameter: the ratio of the regular magnetic field to the turbulent one. It may also be applied to the description of cosmic ray intensity variations in a wide energy range from 100 MeV to 100 GeV. Possible mechanisms of generation of the turbulent field are considered. The primary assumption about the electrical neutrality of the heliosphere appears to be wrong, and the zero potential needed to match the model with observations in the solar equatorial plane can be achieved if the frontal point of the heliosphere, which is flowed around by interstellar gas, lies near the plane. We have revealed that the abnormal rise of cosmic ray intensity at the end of solar cycle 23 is related to the residual modulation produced by the subsonic solar wind behind the front of a standing shock wave. The model is used to describe features of cosmic ray intensity variations in several solar activity cycles.

  9. Land-Surface-Atmosphere Coupling in Observations and Models

    Directory of Open Access Journals (Sweden)

    Alan K Betts

    2009-07-01

    Full Text Available The diurnal cycle and the daily mean at the land-surface result from the coupling of many physical processes. The framework of this review is largely conceptual; looking for relationships and information in the coupling of processes in models and observations. Starting from the surface energy balance, the role of the surface and cloud albedos in the shortwave and longwave fluxes is discussed. A long-wave radiative scaling of the diurnal temperature range and the night-time boundary layer is summarized. Several aspects of the local surface energy partition are presented: the role of soilwater availability and clouds; vector methods for understanding mixed layer evolution, and the coupling between surface and boundary layer that determines the lifting condensation level. Moving to larger scales, evaporation-precipitation feedback in models is discussed; and the coupling of column water vapor, clouds and precipitation to vertical motion and moisture convergence over the Amazon. The final topic is a comparison of the ratio of surface shortwave cloud forcing to the diabatic precipitation forcing of the atmosphere in ERA-40 with observations.

  10. Observational tests for H II region models - A 'champagne party'

    Energy Technology Data Exchange (ETDEWEB)

    Alloin, D; Tenorio-Tagle, G

    1979-09-01

    Observations of several neighboring H II regions associated with a molecular cloud were performed in order to test the champagne model of H II region-molecular cloud interaction leading to the supersonic expansion of molecular cloud gas. Nine different positions in the Gum 61 nebula were observed using an image dissector scanner attached to a 3.6-m telescope, and it is found that the area corresponds to a low excitation, high density nebula, with electron densities ranging between 1400 and 2800/cu cm and larger along the boundary of the ionized gas. An observed increase in pressure and density located in an interior region of the nebula is interpreted in terms of an area between two rarefaction waves generated together with a strong isothermal shock, responsible for the champagne-like streaming, by a pressure discontinuity between the ionized molecular cloud in which star formation takes place and the intercloud gas. It is noted that a velocity field determination would provide the key in understanding the evolution of such a region.

  11. Some major problems with existing models and terminology associated with kimberlite pipes from a volcanological perspective, and some suggestions

    Science.gov (United States)

    Cas, R. A. F.; Hayman, P.; Pittari, A.; Porritt, L.

    2008-06-01

    Five significant problems hinder advances in understanding of the volcanology of kimberlites: (1) kimberlite geology is very model driven; (2) a highly genetic terminology drives deposit or facies interpretation; (3) the effects of alteration on preserved depositional textures have been grossly underestimated; (4) the level of understanding of the physical process significance of preserved textures is limited; and, (5) some inferred processes and deposits are not based on actual, modern volcanological processes. These issues need to be addressed in order to advance understanding of kimberlite volcanological pipe forming processes and deposits. The traditional, steep-sided southern African pipe model (Class I) consists of a steep tapering pipe with a deep root zone, a middle diatreme zone and an upper crater zone (if preserved). Each zone is thought to be dominated by distinctive facies, respectively: hypabyssal kimberlite (HK, descriptively called here massive coherent porphyritic kimberlite), tuffisitic kimberlite breccia (TKB, descriptively here called massive, poorly sorted lapilli tuff) and crater zone facies, which include variably bedded pyroclastic kimberlite and resedimented and reworked volcaniclastic kimberlite (RVK). Porphyritic coherent kimberlite may, however, also be emplaced at different levels in the pipe, as later stage intrusions, as well as dykes in the surrounding country rock. The relationship between HK and TKB is not always clear. Sub-terranean fluidisation as an emplacement process is a largely unsubstantiated hypothesis; modern in-vent volcanological processes should initially be considered to explain observed deposits. Crater zone volcaniclastic deposits can occur within the diatreme zone of some pipes, indicating that the pipe was largely empty at the end of the eruption, and subsequently began to fill-in largely through resedimentation and sourcing of pyroclastic deposits from nearby vents. Classes II and III Canadian kimberlite models

  12. Observational uncertainty and regional climate model evaluation: A pan-European perspective

    Science.gov (United States)

    Kotlarski, Sven; Szabó, Péter; Herrera, Sixto; Räty, Olle; Keuler, Klaus; Soares, Pedro M.; Cardoso, Rita M.; Bosshard, Thomas; Pagé, Christian; Boberg, Fredrik; Gutiérrez, José M.; Jaczewski, Adam; Kreienkamp, Frank; Liniger, Mark. A.; Lussana, Cristian; Szepszo, Gabriella

    2017-04-01

    Local and regional climate change assessments based on downscaling methods crucially depend on the existence of accurate and reliable observational reference data. In dynamical downscaling via regional climate models (RCMs) observational data can influence model development itself and, later on, model evaluation, parameter calibration and added value assessment. In empirical-statistical downscaling, observations serve as predictand data and directly influence model calibration with corresponding effects on downscaled climate change projections. Focusing on the evaluation of RCMs, we here analyze the influence of uncertainties in observational reference data on evaluation results in a well-defined performance assessment framework and on a European scale. For this purpose we employ three different gridded observational reference grids, namely (1) the well-established EOBS dataset (2) the recently developed EURO4M-MESAN regional re-analysis, and (3) several national high-resolution and quality-controlled gridded datasets that recently became available. In terms of climate models five reanalysis-driven experiments carried out by five different RCMs within the EURO-CORDEX framework are used. Two variables (temperature and precipitation) and a range of evaluation metrics that reflect different aspects of RCM performance are considered. We furthermore include an illustrative model ranking exercise and relate observational spread to RCM spread. The results obtained indicate a varying influence of observational uncertainty on model evaluation depending on the variable, the season, the region and the specific performance metric considered. Over most parts of the continent, the influence of the choice of the reference dataset for temperature is rather small for seasonal mean values and inter-annual variability. Here, model uncertainty (as measured by the spread between the five RCM simulations considered) is typically much larger than reference data uncertainty. For

  13. Bivariate spatial analysis of temperature and precipitation from general circulation models and observation proxies

    KAUST Repository

    Philbin, R.

    2015-05-22

    This study validates the near-surface temperature and precipitation output from decadal runs of eight atmospheric ocean general circulation models (AOGCMs) against observational proxy data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis temperatures and Global Precipitation Climatology Project (GPCP) precipitation data. We model the joint distribution of these two fields with a parsimonious bivariate Matérn spatial covariance model, accounting for the two fields\\' spatial cross-correlation as well as their own smoothnesses. We fit output from each AOGCM (30-year seasonal averages from 1981 to 2010) to a statistical model on each of 21 land regions. Both variance and smoothness values agree for both fields over all latitude bands except southern mid-latitudes. Our results imply that temperature fields have smaller smoothness coefficients than precipitation fields, while both have decreasing smoothness coefficients with increasing latitude. Models predict fields with smaller smoothness coefficients than observational proxy data for the tropics. The estimated spatial cross-correlations of these two fields, however, are quite different for most GCMs in mid-latitudes. Model correlation estimates agree well with those for observational proxy data for Australia, at high northern latitudes across North America, Europe and Asia, as well as across the Sahara, India, and Southeast Asia, but elsewhere, little consistent agreement exists.

  14. Bivariate spatial analysis of temperature and precipitation from general circulation models and observation proxies

    KAUST Repository

    Philbin, R.; Jun, M.

    2015-01-01

    This study validates the near-surface temperature and precipitation output from decadal runs of eight atmospheric ocean general circulation models (AOGCMs) against observational proxy data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis temperatures and Global Precipitation Climatology Project (GPCP) precipitation data. We model the joint distribution of these two fields with a parsimonious bivariate Matérn spatial covariance model, accounting for the two fields' spatial cross-correlation as well as their own smoothnesses. We fit output from each AOGCM (30-year seasonal averages from 1981 to 2010) to a statistical model on each of 21 land regions. Both variance and smoothness values agree for both fields over all latitude bands except southern mid-latitudes. Our results imply that temperature fields have smaller smoothness coefficients than precipitation fields, while both have decreasing smoothness coefficients with increasing latitude. Models predict fields with smaller smoothness coefficients than observational proxy data for the tropics. The estimated spatial cross-correlations of these two fields, however, are quite different for most GCMs in mid-latitudes. Model correlation estimates agree well with those for observational proxy data for Australia, at high northern latitudes across North America, Europe and Asia, as well as across the Sahara, India, and Southeast Asia, but elsewhere, little consistent agreement exists.

  15. Empirical STORM-E Model. [I. Theoretical and Observational Basis

    Science.gov (United States)

    Mertens, Christopher J.; Xu, Xiaojing; Bilitza, Dieter; Mlynczak, Martin G.; Russell, James M., III

    2013-01-01

    Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 lm channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 lm VER is sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 lm VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part II of this series describes the explicit development of the empirical storm-time correction factor for E-region peak electron densities, and shows comparisons of E-region electron densities between STORM-E predictions and incoherent scatter radar measurements. In this paper, Part I of the series, the efficacy of using SABER-derived NO+(v) VER as a proxy for the E-region response to solar-geomagnetic disturbances is presented. Furthermore, a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 lm limb emission measurements is given. Finally, an assessment of key uncertainties in retrieving NO+(v) VER is presented

  16. Fracture initiation associated with chemical degradation: observation and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Byoungho Choi; Zhenwen Zhou; Chudnovsky, Alexander [Illinois Univ., Dept. of Civil and Materials Engineering (M/C 246), Chicago, IL (United States); Stivala, Salvatore S. [Stevens Inst. of Technology, Dept. of Chemistry and Chemical Biology, Hoboken, NJ (United States); Sehanobish, Kalyan; Bosnyak, Clive P. [Dow Chemical Co., Freeport, TX (United States)

    2005-01-01

    The fracture initiation in engineering thermoplastics resulting from chemical degradation is usually observed in the form of a microcrack network within a surface layer of degraded polymer exposed to a combined action of mechanical stresses and chemically aggressive environment. Degradation of polymers is usually manifested in a reduction of molecular weight, increase of crystallinity in semi crystalline polymers, increase of material density, a subtle increase in yield strength, and a dramatic reduction in toughness. An increase in material density, i.e., shrinkage of the degraded layer is constrained by adjacent unchanged material results in a buildup of tensile stress within the degraded layer and compressive stress in the adjacent unchanged material due to increasing incompatibility between the two. These stresses are an addition to preexisting manufacturing and service stresses. At a certain level of degradation, a combination of toughness reduction and increase of tensile stress result in fracture initiation. A quantitative model of the described above processes is presented in these work. For specificity, the internally pressurized plastic pipes that transport a fluid containing a chemically aggressive (oxidizing) agent is used as the model of fracture initiation. Experimental observations of material density and toughness dependence on degradation reported elsewhere are employed in the model. An equation for determination of a critical level of degradation corresponding to the offset of fracture is constructed. The critical level of degradation for fracture initiation depends on the rates of toughness deterioration and build-up of the degradation related stresses as well as on the manufacturing and service stresses. A method for evaluation of the time interval prior to fracture initiation is also formulated. (Author)

  17. The 2010 Saturn's Great White Spot: Observations and models

    Science.gov (United States)

    Sanchez-Lavega, A.

    2011-12-01

    On December 5, 2010, a major storm erupted in Saturn's northern hemisphere at a planetographic latitude of 37.7 deg [1]. These phenomena are known as "Great White Spots" (GWS) and they have been observed once per Saturn year since the first case confidently reported in 1876. The last event occurred at Saturn's Equator in 1990 [2]. A GWS differs from similar smaller-scale storms in that it generates a planetary-scale disturbance that spreads zonally spanning the whole latitude band. We report on the evolution and motions of the 2010 GWS and its associated disturbance during the months following the outbreak, based mainly on high quality images obtained in the visual range submitted to the International Outer Planet Watch PVOL database [3], with the 1m telescope at Pic-du-Midi Observatory and the 2.2 m telescope at Calar Alto Observatory. The GWS "head source" extinguished by June 2011 implying that it survived about 6 months. Since this source is assumed to be produced by water moist convection, a reservoir of water vapor must exist at a depth of 10 bar and at the same time a disturbance producing the necessary convergence to trigger the ascending motions. The high temporal sampling and coverage allowed us to study the dynamics of the GWS in detail and the multi-wavelength observations provide information on its cloud top structure. We present non-linear simulations using the EPIC code of the evolution of the potential vorticity generated by a continuous Gaussian heat source extending from 10 bar to about 1 bar, that compare extraordinary well to the observed cloud field evolution. Acknowledgements: This work has been funded by Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464-07. The presentation is done on behalf of the team listed in Reference [1]. [1]Sánchez-Lavega A., et al., Nature, 475, 71-74 (2011) [2]Sánchez-Lavega A., et al., Nature, 353, 397-401 (1991) [3]Hueso R., et al., Planet. Space Sci., 58, 1152-1159 (2010).

  18. Wind Turbine Model and Observer in Takagi-Sugeno Model Structure

    International Nuclear Information System (INIS)

    Georg, Sören; Müller, Matthias; Schulte, Horst

    2014-01-01

    Based on a reduced-order, dynamic nonlinear wind turbine model in Takagi- Sugeno (TS) model structure, a TS state observer is designed as a disturbance observer to estimate the unknown effective wind speed. The TS observer model is an exact representation of the underlying nonlinear model, obtained by means of the sector-nonlinearity approach. The observer gain matrices are obtained by means of a linear matrix inequality (LMI) design approach for optimal fuzzy control, where weighting matrices for the individual system states and outputs are included. The observer is tested in simulations with the aero-elastic code FAST for the NREL 5 MW reference turbine, where it shows a stable behaviour in turbulent wind simulations

  19. Modeling Prairie Pothole Lakes: Linking Satellite Observation and Calibration (Invited)

    Science.gov (United States)

    Schwartz, F. W.; Liu, G.; Zhang, B.; Yu, Z.

    2009-12-01

    This paper examines the response of a complex lake wetland system to variations in climate. The focus is on the lakes and wetlands of the Missouri Coteau, which is part of the larger Prairie Pothole Region of the Central Plains of North America. Information on lake size was enumerated from satellite images, and yielded power law relationships for different hydrological conditions. More traditional lake-stage data were made available to us from the USGS Cottonwood Lake Study Site in North Dakota. A Probabilistic Hydrologic Model (PHM) was developed to simulate lake complexes comprised of tens-of-thousands or more individual closed-basin lakes and wetlands. What is new about this model is a calibration scheme that utilizes remotely-sensed data on lake area as well as stage data for individual lakes. Some ¼ million individual data points are used within a Genetic Algorithm to calibrate the model by comparing the simulated results with observed lake area-frequency power law relationships derived from Landsat images and water depths from seven individual lakes and wetlands. The simulated lake behaviors show good agreement with the observations under average, dry, and wet climatic conditions. The calibrated model is used to examine the impact of climate variability on a large lake complex in ND, in particular, the “Dust Bowl Drought” 1930s. This most famous drought of the 20th Century devastated the agricultural economy of the Great Plains with health and social impacts lingering for years afterwards. Interestingly, the drought of 1930s is unremarkable in relation to others of greater intensity and frequency before AD 1200 in the Great Plains. Major droughts and deluges have the ability to create marked variability of the power law function (e.g. up to one and a half orders of magnitude variability from the extreme Dust Bowl Drought to the extreme 1993-2001 deluge). This new probabilistic modeling approach provides a novel tool to examine the response of the

  20. MODELING ATMOSPHERIC EMISSION FOR CMB GROUND-BASED OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Errard, J.; Borrill, J. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Ade, P. A. R. [School of Physics and Astronomy, Cardiff University, Cardiff CF10 3XQ (United Kingdom); Akiba, Y.; Chinone, Y. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Arnold, K.; Atlas, M.; Barron, D.; Elleflot, T. [Department of Physics, University of California, San Diego, CA 92093-0424 (United States); Baccigalupi, C.; Fabbian, G. [International School for Advanced Studies (SISSA), Trieste I-34014 (Italy); Boettger, D. [Department of Astronomy, Pontifica Universidad Catolica de Chile (Chile); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, B3H 4R2 (Canada); Cukierman, A. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Delabrouille, J. [AstroParticule et Cosmologie, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cité (France); Dobbs, M.; Gilbert, A. [Physics Department, McGill University, Montreal, QC H3A 0G4 (Canada); Ducout, A.; Feeney, S. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Feng, C. [Department of Physics and Astronomy, University of California, Irvine (United States); and others

    2015-08-10

    Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3D-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the polarbear-i project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.

  1. Equation-free analysis of two-component system signalling model reveals the emergence of co-existing phenotypes in the absence of multistationarity.

    Directory of Open Access Journals (Sweden)

    Rebecca B Hoyle

    Full Text Available Phenotypic differences of genetically identical cells under the same environmental conditions have been attributed to the inherent stochasticity of biochemical processes. Various mechanisms have been suggested, including the existence of alternative steady states in regulatory networks that are reached by means of stochastic fluctuations, long transient excursions from a stable state to an unstable excited state, and the switching on and off of a reaction network according to the availability of a constituent chemical species. Here we analyse a detailed stochastic kinetic model of two-component system signalling in bacteria, and show that alternative phenotypes emerge in the absence of these features. We perform a bifurcation analysis of deterministic reaction rate equations derived from the model, and find that they cannot reproduce the whole range of qualitative responses to external signals demonstrated by direct stochastic simulations. In particular, the mixed mode, where stochastic switching and a graded response are seen simultaneously, is absent. However, probabilistic and equation-free analyses of the stochastic model that calculate stationary states for the mean of an ensemble of stochastic trajectories reveal that slow transcription of either response regulator or histidine kinase leads to the coexistence of an approximate basal solution and a graded response that combine to produce the mixed mode, thus establishing its essential stochastic nature. The same techniques also show that stochasticity results in the observation of an all-or-none bistable response over a much wider range of external signals than would be expected on deterministic grounds. Thus we demonstrate the application of numerical equation-free methods to a detailed biochemical reaction network model, and show that it can provide new insight into the role of stochasticity in the emergence of phenotypic diversity.

  2. Observations

    DEFF Research Database (Denmark)

    Rossiter, John R.; Percy, Larry

    2013-01-01

    as requiring a new model of how advertising communicates and persuades, which, as the authors' textbooks explain, is sheer nonsense and contrary to the goal of integrated marketing. We provide in this article a translation of practitioners' jargon into more scientifically acceptable terminology as well...... as a classification of the new advertising formats in terms of traditional analogs with mainstream media advertising....

  3. 40 CFR Table 5 to Subpart Bbbb of... - Model Rule-Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Model Rule-Carbon Monoxide Emission... BBBB of Part 60—Model Rule—Carbon Monoxide Emission Limits for Existing Small Municipal Waste... PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste...

  4. Radar observations and shape model of asteroid 16 Psyche

    Science.gov (United States)

    Shepard, Michael K.; Richardson, James; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Conrad, Al; de Pater, Imke; Adamkovics, Mate; de Kleer, Katherine; Males, Jared R.; Morzinski, Katie M.; Close, Laird M.; Kaasalainen, Mikko; Viikinkoski, Matti; Timerson, Bradley; Reddy, Vishnu; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.; Benner, Lance A. M.; Giorgini, Jon D.; Warner, Brian D.; Harris, Alan W.

    2017-01-01

    Using the S-band radar at Arecibo Observatory, we observed 16 Psyche, the largest M-class asteroid in the main belt. We obtained 18 radar imaging and 6 continuous wave runs in November and December 2015, and combined these with 16 continuous wave runs from 2005 and 6 recent adaptive-optics (AO) images (Drummond et al., 2016) to generate a three-dimensional shape model of Psyche. Our model is consistent with a previously published AO image (Hanus et al., 2013) and three multi-chord occultations. Our shape model has dimensions 279 × 232 × 189 km (± 10%), Deff = 226 ± 23 km, and is 6% larger than, but within the uncertainties of, the most recently published size and shape model generated from the inversion of lightcurves (Hanus et al., 2013). Psyche is roughly ellipsoidal but displays a mass-deficit over a region spanning 90° of longitude. There is also evidence for two ∼50-70 km wide depressions near its south pole. Our size and published masses lead to an overall bulk density estimate of 4500 ± 1400 kgm-3. Psyche's mean radar albedo of 0.37 ± 0.09 is consistent with a near-surface regolith composed largely of iron-nickel and ∼40% porosity. Its radar reflectivity varies by a factor of 1.6 as the asteroid rotates, suggesting global variations in metal abundance or bulk density in the near surface. The variations in radar albedo appear to correlate with large and small-scale shape features. Our size and Psyche's published absolute magnitude lead to an optical albedo of pv = 0.15 ± 0.03, and there is evidence for albedo variegations that correlate with shape features.

  5. Asteroid 16 Psyche: Radar Observations and Shape Model

    Science.gov (United States)

    Shepard, Michael K.; Richardson, James E.; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Conrad, Al; de Pater, Imke; Adamkovics, Mate; de Kleer, Katherine R.; Males, Jared; Morzinski, Kathleen M.; Miller Close, Laird; Kaasalainen, Mikko; Viikinkoski, Matti; Timerson, Bradley; Reddy, Vishnu; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.; Warner, Brian D.; Harris, Alan W.

    2016-10-01

    We observed 16 Psyche, the largest M-class asteroid in the main belt, using the S-band radar at Arecibo Observatory. We obtained 18 radar imaging and 6 continuous wave runs in November and December 2015, and combined these with 16 continuous wave runs from 2005 and 6 recent adaptive-optics (AO) images to generate a three-dimensional shape model of Psyche. Our model is consistent with a previously published AO image [Hanus et al. Icarus 226, 1045-1057, 2013] and three multi-chord occultations. Our shape model has dimensions 279 x 232 x 189 km (±10%), Deff = 226 ± 23 km, and is 6% larger than, but within the uncertainties of, the most recently published size and shape model generated from the inversion of lightcurves [Hanus et al., 2013]. Psyche is roughly ellipsoidal but displays a mass-deficit over a region spanning 90° of longitude. There is also evidence for two ~50-70 km wide depressions near its south pole. Our size and published masses lead to an overall bulk density estimate of 4500 ± 1400 kg m-3. Psyche's mean radar albedo of 0.37 ± 0.09 is consistent with a near-surface regolith composed largely of iron-nickel and ~40% porosity. Its radar reflectivity varies by a factor of 1.6 as the asteroid rotates, suggesting global variations in metal abundance or bulk density in the near surface. The variations in radar albedo appear to correlate with large and small-scale shape features. Our size and Psyche's published absolute magnitude lead to an optical albedo of pv = 0.15 ± 0.03, and there is evidence for albedo variegations that correlate with shape features.

  6. The NASA Severe Thunderstorm Observations and Regional Modeling (NASA STORM) Project

    Science.gov (United States)

    Schultz, Christopher J.; Gatlin, Patrick N.; Lang, Timothy J.; Srikishen, Jayanthi; Case, Jonathan L.; Molthan, Andrew L.; Zavodsky, Bradley T.; Bailey, Jeffrey; Blakeslee, Richard J.; Jedlovec, Gary J.

    2016-01-01

    The NASA Severe Storm Thunderstorm Observations and Regional Modeling(NASA STORM) project enhanced NASA’s severe weather research capabilities, building upon existing Earth Science expertise at NASA Marshall Space Flight Center (MSFC). During this project, MSFC extended NASA’s ground-based lightning detection capacity to include a readily deployable lightning mapping array (LMA). NASA STORM also enabled NASA’s Short-term Prediction and Research Transition (SPoRT) to add convection allowing ensemble modeling to its portfolio of regional numerical weather prediction (NWP) capabilities. As a part of NASA STORM, MSFC developed new open-source capabilities for analyzing and displaying weather radar observations integrated from both research and operational networks. These accomplishments enabled by NASA STORM are a step towards enhancing NASA’s capabilities for studying severe weather and positions them for any future NASA related severe storm field campaigns.

  7. THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. II. THE CHALLENGE OF COMPARING GALAXY EVOLUTION MODELS TO OBSERVATIONS

    International Nuclear Information System (INIS)

    Conroy, Charlie; Gunn, James E.; White, Martin

    2010-01-01

    Models for the formation and evolution of galaxies readily predict physical properties such as star formation rates, metal-enrichment histories, and, increasingly, gas and dust content of synthetic galaxies. Such predictions are frequently compared to the spectral energy distributions of observed galaxies via the stellar population synthesis (SPS) technique. Substantial uncertainties in SPS exist, and yet their relevance to the task of comparing galaxy evolution models to observations has received little attention. In the present work, we begin to address this issue by investigating the importance of uncertainties in stellar evolution, the initial stellar mass function (IMF), and dust and interstellar medium (ISM) properties on the translation from models to observations. We demonstrate that these uncertainties translate into substantial uncertainties in the ultraviolet, optical, and near-infrared colors of synthetic galaxies. Aspects that carry significant uncertainties include the logarithmic slope of the IMF above 1 M sun , dust attenuation law, molecular cloud disruption timescale, clumpiness of the ISM, fraction of unobscured starlight, and treatment of advanced stages of stellar evolution including blue stragglers, the horizontal branch, and the thermally pulsating asymptotic giant branch. The interpretation of the resulting uncertainties in the derived colors is highly non-trivial because many of the uncertainties are likely systematic, and possibly correlated with the physical properties of galaxies. We therefore urge caution when comparing models to observations.

  8. Phenotypic T cell exhaustion in a murine model of bacterial infection in the setting of pre-existing malignancy.

    Directory of Open Access Journals (Sweden)

    Rohit Mittal

    Full Text Available While much of cancer immunology research has focused on anti-tumor immunity both systemically and within the tumor microenvironment, little is known about the impact of pre-existing malignancy on pathogen-specific immune responses. Here, we sought to characterize the antigen-specific CD8+ T cell response following a bacterial infection in the setting of pre-existing pancreatic adenocarcinoma. Mice with established subcutaneous pancreatic adenocarcinomas were infected with Listeria monocytogenes, and antigen-specific CD8+ T cell responses were compared to those in control mice without cancer. While the kinetics and magnitude of antigen-specific CD8+ T cell expansion and accumulation was comparable between the cancer and non-cancer groups, bacterial antigen-specific CD8+ T cells and total CD4+ and CD8+ T cells in cancer mice exhibited increased expression of the coinhibitory receptors BTLA, PD-1, and 2B4. Furthermore, increased inhibitory receptor expression was associated with reduced IFN-γ and increased IL-2 production by bacterial antigen-specific CD8+ T cells in the cancer group. Taken together, these data suggest that cancer's immune suppressive effects are not limited to the tumor microenvironment, but that pre-existing malignancy induces phenotypic exhaustion in T cells by increasing expression of coinhibitory receptors and may impair pathogen-specific CD8+ T cell functionality and differentiation.

  9. Automatic single questionnaire intensity (SQI, EMS98 scale) estimation using ranking models built on the existing BCSF database

    Science.gov (United States)

    Schlupp, A.; Sira, C.; Schmitt, K.; Schaming, M.

    2013-12-01

    In charge of intensity estimations in France, BCSF has collected and manually analyzed more than 47000 online individual macroseismic questionnaires since 2000 up to intensity VI. These macroseismic data allow us to estimate one SQI value (Single Questionnaire Intensity) for each form following the EMS98 scale. The reliability of the automatic intensity estimation is important as they are today used for automatic shakemaps communications and crisis management. Today, the automatic intensity estimation at BCSF is based on the direct use of thumbnails selected on a menu by the witnesses. Each thumbnail corresponds to an EMS-98 intensity value, allowing us to quickly issue an intensity map of the communal intensity by averaging the SQIs at each city. Afterwards an expert, to determine a definitive SQI, manually analyzes each form. This work is time consuming and not anymore suitable considering the increasing number of testimonies at BCSF. Nevertheless, it can take into account incoherent answers. We tested several automatic methods (USGS algorithm, Correlation coefficient, Thumbnails) (Sira et al. 2013, IASPEI) and compared them with 'expert' SQIs. These methods gave us medium score (between 50 to 60% of well SQI determined and 35 to 40% with plus one or minus one intensity degree). The best fit was observed with the thumbnails. Here, we present new approaches based on 3 statistical ranking methods as 1) Multinomial logistic regression model, 2) Discriminant analysis DISQUAL and 3) Support vector machines (SVMs). The two first methods are standard methods, while the third one is more recent. Theses methods could be applied because the BCSF has already in his database more then 47000 forms and because their questions and answers are well adapted for a statistical analysis. The ranking models could then be used as automatic method constrained on expert analysis. The performance of the automatic methods and the reliability of the estimated SQI can be evaluated thanks to

  10. Modelling of particular phenomena observed in PANDA with Gothic

    International Nuclear Information System (INIS)

    Bandurski, Th.; Putz, F.; Andreani, M.; Analytis, M.

    2000-01-01

    PANDA is a large scale facility for investigating the long-term decay heat removal from the containment of a next generation 'passive' Advanced Light Water Reactor (ALWR). The first test series was aimed at the investigation of the long-term LOCA response of the Passive Containment Cooling System (PCCS) for the General Electric (GE) Simplified Boiling Water Reactor (SBWR). Recently, the facility is used in the framework of two European projects for investigating the performance of four passive cooling systems, i.e. the Building Condenser (BC) designed by Siemens for the SWR-1000 long-term containment cooling, the Passive Containment Cooling System for the European Simplified Boiling Water Reactor (ESBWR), the Containment Plate Condenser (CPC) and the Isolation Condenser (IC) for cooling of a BWR core. The PANDA tests have the dual objectives of improving confidence in the performance of the passive heat removal mechanisms underlying the design of the tested safety systems and extending the data base available for containment analysis code qualification. Among others, the containment analysis code Gothic was chosen for the analysis of particular phenomena observed during the PANDA tests. Ibis paper presents selected safety relevant phenomena observed in the PANDA tests and identified for the analyses and possible approaches for their modeling with Gothic. (author)

  11. A new theory of plant-microbe nutrient competition resolves inconsistencies between observations and model predictions.

    Science.gov (United States)

    Zhu, Qing; Riley, William J; Tang, Jinyun

    2017-04-01

    Terrestrial plants assimilate anthropogenic CO 2 through photosynthesis and synthesizing new tissues. However, sustaining these processes requires plants to compete with microbes for soil nutrients, which therefore calls for an appropriate understanding and modeling of nutrient competition mechanisms in Earth System Models (ESMs). Here, we survey existing plant-microbe competition theories and their implementations in ESMs. We found no consensus regarding the representation of nutrient competition and that observational and theoretical support for current implementations are weak. To reconcile this situation, we applied the Equilibrium Chemistry Approximation (ECA) theory to plant-microbe nitrogen competition in a detailed grassland 15 N tracer study and found that competition theories in current ESMs fail to capture observed patterns and the ECA prediction simplifies the complex nature of nutrient competition and quantitatively matches the 15 N observations. Since plant carbon dynamics are strongly modulated by soil nutrient acquisition, we conclude that (1) predicted nutrient limitation effects on terrestrial carbon accumulation by existing ESMs may be biased and (2) our ECA-based approach may improve predictions by mechanistically representing plant-microbe nutrient competition. © 2016 by the Ecological Society of America.

  12. Modeling Exoplanetary Atmospheres using BART, TEA, and Drift-RHD; Theoretical studies and Observational Implications

    Science.gov (United States)

    Dobbs-Dixon, Ian

    The explosion in the number of exoplanets detected to date has revealed a surprising diversity. When attempting to model this diversity, it is crucial to account for the uncertainties resulting from our limited knowledge of chemical, dynamical, and cloud formation processes in their atmospheres. Combining a retrieval technique with theorydriven models is a particularly promising way to address these processes and constrain a physically plausible atmospheric structure. In particular, a detailed micro-physical treatment of clouds and the longitudinal and latitudinal assessments of temperature and chemical profiles, have yet to be addressed in the field. Our team members are experts in radiative-hydrodynamic modeling (Dr. Ian DobbsDixon), cloud kinetics (Dr. Christiana Helling), retrievals and thermo-equilibrium chemistry (Dr. Jasmina Blecic), and observational diagnostics and predictions (Dr. Thomas Greene). The key goals of this proposal are to extend our understanding of the 3D atmospheric structure of gas-giant exoplanets by coupling state-of-the-art selfconsistent models together with a retrieval framework to 1) address cloud kinetics in retrievals, 2) assess 3D temperature and chemical structures in retrievals, 3) model a suite of well-observed planets within the framework of our models, and 4) make observational predictions for current and future NASA missions. To address these goals we have developed a number of tools: Drift-RHD, TEA, BART, and OBS. Drift-RHD solves both the 3D radiative-hydrodynamic equations and a time dependent kinetic cloud model. TEA, Thermochemical Equilibrium Abundances, calculates abundances of chemical species present in the atmosphere. BART, a Bayesian Atmospheric Radiative Transfer code, is a statistical retrieval framework to explore the parameter space of atmospheric chemical abundances and thermal profiles. OBS is a suite of tools developed to simulate observations. Though these tools exist and have been utilized independently in

  13. Surface Soil Moisture Memory Estimated from Models and SMAP Observations

    Science.gov (United States)

    He, Q.; Mccoll, K. A.; Li, C.; Lu, H.; Akbar, R.; Pan, M.; Entekhabi, D.

    2017-12-01

    Soil moisture memory(SMM), which is loosely defined as the time taken by soil to forget an anomaly, has been proved to be important in land-atmosphere interaction. There are many metrics to calculate the SMM timescale, for example, the timescale based on the time-series autocorrelation, the timescale ignoring the soil moisture time series and the timescale which only considers soil moisture increment. Recently, a new timescale based on `Water Cycle Fraction' (Kaighin et al., 2017), in which the impact of precipitation on soil moisture memory is considered, has been put up but not been fully evaluated in global. In this study, we compared the surface SMM derived from SMAP observations with that from land surface model simulations (i.e., the SMAP Nature Run (NR) provided by the Goddard Earth Observing System, version 5) (Rolf et al., 2014). Three timescale metrics were used to quantify the surface SMM as: T0 based on the soil moisture time series autocorrelation, deT0 based on the detrending soil moisture time series autocorrelation, and tHalf based on the Water Cycle Fraction. The comparisons indicate that: (1) there are big gaps between the T0 derived from SMAP and that from NR (2) the gaps get small for deT0 case, in which the seasonality of surface soil moisture was removed with a moving average filter; (3) the tHalf estimated from SMAP is much closer to that from NR. The results demonstrate that surface SMM can vary dramatically among different metrics, while the memory derived from land surface model differs from the one from SMAP observation. tHalf, with considering the impact of precipitation, may be a good choice to quantify surface SMM and have high potential in studies related to land atmosphere interactions. References McColl. K.A., S.H. Alemohammad, R. Akbar, A.G. Konings, S. Yueh, D. Entekhabi. The Global Distribution and Dynamics of Surface Soil Moisture, Nature Geoscience, 2017 Reichle. R., L. Qing, D.L. Gabrielle, A. Joe. The "SMAP_Nature_v03" Data

  14. Modeling MESSENGER Observations of Calcium in Mercury's Exosphere

    Science.gov (United States)

    Burger, Matthew Howard; Killen, Rosemary M.; McClintock, William E.; Vervack, Ronald J., Jr.; Merkel, Aimee W.; Sprague, Ann L.; Sarantos, Menelaos

    2012-01-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MESSENGER spacecraft has made the first high-spatial-resolution observations of exospheric calcium at Mercury. We use a Monte Carlo model of the exosphere to track the trajectories of calcium atoms ejected from the surface until they are photoionized, escape from the system, or stick to the surface. This model permits an exploration of exospheric source processes and interactions among neutral atoms, solar radiation, and the planetary surface. The MASCS data have suggested that a persistent, high-energy source of calcium that was enhanced in the dawn, equatorial region of Mercury was active during MESSENGER's three flybys of Mercury and during the first seven orbits for which MASCS obtained data. The total Ca source rate from the surface varied between 1.2x10(exp 23) and 2.6x10(exp 23) Ca atoms/s, if its temperature was 50,000 K. The origin of this high-energy, asymmetric source is unknown, although from this limited data set it does not appear to be consistent with micrometeoroid impact vaporization, ion sputtering, electron-stimulated desorption, or vaporization at dawn of material trapped on the cold nightside.

  15. Observation and modeling of 222Rn daughters in liquid nitrogen

    International Nuclear Information System (INIS)

    Frodyma, N.; Pelczar, K.; Wójcik, M.

    2014-01-01

    The results of alpha spectrometric measurements of the activity of 222 Rn daughters dissolved in liquefied nitrogen are presented. A direct detection method of ionized alpha-emitters from the 222 Rn decay chain ( 214 Po and 218 Po) in a cryogenic liquid in the presence of an external electric field is shown. Properties of the radioactive ions are derived from a proposed model of ion production and transport in the cryogenic liquid. Ionic life-time of the ions was found to be on the order of 10 s in liquid nitrogen (4.0 purity class). The presence of positive and negative ions was observed. - Highlights: • A direct detection method of the alpha-emitters in a cryogenic liquid is shown. • We examine electrostatic drifting of the radioactive ions in liquid nitrogen. • The ions belong to the Radon-222 decay chain; Radon-222 is dissolved in the liquid. • The model of the ions production and behaviour in the liquid is proposed. • The ion production significantly depends on the nuclear decay type (alpha or beta)

  16. Modeling the Ionosphere with GPS and Rotation Measure Observations

    Science.gov (United States)

    Malins, J. B.; Taylor, G. B.; White, S. M.; Dowell, J.

    2017-12-01

    Advances in digital processing have created new tools for looking at and examining the ionosphere. We have combined data from dual frequency GPSs, digital ionosondes and observations from The Long Wavelength Array (LWA), a 256 dipole low frequency radio telescope situated in central New Mexico in order to examine ionospheric profiles. By studying polarized pulsars, the LWA is able to very accurately determine the Faraday rotation caused by the ionosphere. By combining this data with the international geomagnetic reference field, the LWA can evaluate ionospheric profiles and how well they predict the actual Faraday rotation. Dual frequency GPS measurements of total electron content, as well as measurements from digisonde data were used to model the ionosphere, and to predict the Faraday rotation to with in 0.1 rad/m2. Additionally, it was discovered that the predicted topside profile of the digisonde data did not accurate predict faraday rotation measurements, suggesting a need to reexamine the methods for creating the topside predicted profile. I will discuss the methods used to measure rotation measure and ionosphere profiles as well as discuss possible corrections to the topside model.

  17. Unconventional Constraints on Nitrogen Chemistry using DC3 Observations and Trajectory-based Chemical Modeling

    Science.gov (United States)

    Shu, Q.; Henderson, B. H.

    2017-12-01

    Chemical transport models underestimate nitrogen dioxide observations in the upper troposphere (UT). Previous research in the UT succeeded in combining model predictions with field campaign measurements to demonstrate that the nitric acid formation rate (HO + NO2 → HNO3 (R1)) is overestimated by 22% (Henderson et al., 2012). A subsequent publication (Seltzer et al., 2015) demonstrated that single chemical constraint alters ozone and aerosol formation/composition. This work attempts to replicate previous chemical constraints with newer observations and a different modeling framework. We apply the previously successful constraint framework to Deep Convection Clouds and Chemistry (DC3). DC3 is a more recent field campaign where simulated nitrogen imbalances still exist. Freshly convected air parcels, identified in the DC3 dataset, as initial coordinates to initiate Lagrangian trajectories. Along each trajectory, we simulate the air parcel chemical state. Samples along the trajectories will form ensembles that represent possible realizations of UT air parcels. We then apply Bayesian inference to constrain nitrogen chemistry and compare results to the existing literature. Our anticipated results will confirm overestimation of HNO3 formation rate in previous work and provide further constraints on other nitrogen reaction rate coefficients that affect terminal products from NOx. We will particularly focus on organic nitrate chemistry that laboratory literature has yet to fully address. The results will provide useful insights into nitrogen chemistry that affects climate and human health.

  18. Effects of introduction of new resources and fragmentation of existing resources on limiting wealth distribution in asset exchange models

    Science.gov (United States)

    Ali Saif, M.; Gade, Prashant M.

    2009-03-01

    Pareto law, which states that wealth distribution in societies has a power-law tail, has been the subject of intensive investigations in the statistical physics community. Several models have been employed to explain this behavior. However, most of the agent based models assume the conservation of number of agents and wealth. Both these assumptions are unrealistic. In this paper, we study the limiting wealth distribution when one or both of these assumptions are not valid. Given the universality of the law, we have tried to study the wealth distribution from the asset exchange models point of view. We consider models in which (a) new agents enter the market at a constant rate (b) richer agents fragment with higher probability introducing newer agents in the system (c) both fragmentation and entry of new agents is taking place. While models (a) and (c) do not conserve total wealth or number of agents, model (b) conserves total wealth. All these models lead to a power-law tail in the wealth distribution pointing to the possibility that more generalized asset exchange models could help us to explain the emergence of a power-law tail in wealth distribution.

  19. Tidally modulated eruptions on Enceladus: Cassini ISS observations and models

    International Nuclear Information System (INIS)

    Nimmo, Francis; Porco, Carolyn; Mitchell, Colin

    2014-01-01

    We use images acquired by the Cassini Imaging Science Subsystem (ISS) to investigate the temporal variation of the brightness and height of the south polar plume of Enceladus. The plume's brightness peaks around the moon's apoapse, but with no systematic variation in scale height with either plume brightness or Enceladus' orbital position. We compare our results, both alone and supplemented with Cassini near-infrared observations, with predictions obtained from models in which tidal stresses are the principal control of the eruptive behavior. There are three main ways of explaining the observations: (1) the activity is controlled by right-lateral strike slip motion; (2) the activity is driven by eccentricity tides with an apparent time delay of about 5 hr; (3) the activity is driven by eccentricity tides plus a 1:1 physical libration with an amplitude of about 0.°8 (3.5 km). The second hypothesis might imply either a delayed eruptive response, or a dissipative, viscoelastic interior. The third hypothesis requires a libration amplitude an order of magnitude larger than predicted for a solid Enceladus. While we cannot currently exclude any of these hypotheses, the third, which is plausible for an Enceladus with a subsurface ocean, is testable by using repeat imaging of the moon's surface. A dissipative interior suggests that a regional background heat source should be detectable. The lack of a systematic variation in plume scale height, despite the large variations in plume brightness, is plausibly the result of supersonic flow; the details of the eruption process are yet to be understood.

  20. Odessa Tsunami of 27 June 2014: Observations and Numerical Modelling

    Science.gov (United States)

    Šepić, Jadranka; Rabinovich, Alexander B.; Sytov, Victor N.

    2018-04-01

    On 27 June, a 1-2-m high wave struck the beaches of Odessa, the third largest Ukrainian city, and the neighbouring port-town Illichevsk (northwestern Black Sea). Throughout the day, prominent seiche oscillations were observed in several other ports of the Black Sea. Tsunamigenic synoptic conditions were found over the Black Sea, stretching from Romania in the west to the Crimean Peninsula in the east. Intense air pressure disturbances and convective thunderstorm clouds were associated with these conditions; right at the time of the event, a 1.5-hPa air pressure jump was recorded at Odessa and a few hours earlier in Romania. We have utilized a barotropic ocean numerical model to test two hypotheses: (1) a tsunami-like wave was generated by an air pressure disturbance propagating directly over Odessa ("Experiment 1"); (2) a tsunami-like wave was generated by an air pressure disturbance propagating offshore, approximately 200 km to the south of Odessa, and along the shelf break ("Experiment 2"). Both experiments decisively confirm the meteorological origin of the tsunami-like waves on the coast of Odessa and imply that intensified long ocean waves in this region were generated via the Proudman resonance mechanism while propagating over the northwestern Black Sea shelf. The "Odessa tsunami" of 27 June 2014 was identified as a "beach meteotsunami", similar to events regularly observed on the beaches of Florida, USA, but different from the "harbour meteotsunamis", which occurred 1-3 days earlier in Ciutadella (Baleares, Spain), Mazara del Vallo (Sicily, Italy) and Vela Luka (Croatia) in the Mediterranean Sea, despite that they were associated with the same atmospheric system moving over the Mediterranean/Black Sea region on 23-27 June 2014.

  1. On the existence of a first order phase transition at small vacuum angel θin the CP3 model

    International Nuclear Information System (INIS)

    Olejnik, S.; Slovenska Akademia Vied, Bratislava; Schierholz, G.; Forschungszentrum Juelich GmbH

    1993-12-01

    We examine the phase structure of the CP 3 model as a function of θ in the weak coupling regime. It is shown that the model has a first order phase transition at small θ. We pay special attention to the extrapolation of the data to the infinite volume. It is found that the critical value of θ decreases towards zero as β is taken to infinity. (orig.)

  2. Model Data Interoperability for the United States Integrated Ocean Observing System (IOOS)

    Science.gov (United States)

    Signell, Richard P.

    2010-05-01

    Model data interoperability for the United States Integrated Ocean Observing System (IOOS) was initiated with a focused one year project. The problem was that there were many regional and national providers of oceanographic model data; each had unique file conventions, distribution techniques and analysis tools that made it difficult to compare model results and observational data. To solve this problem, a distributed system was built utilizing a customized middleware layer and a common data model. This allowed each model data provider to keep their existing model and data files unchanged, yet deliver model data via web services in a common form. With standards-based applications that used these web services, end users then had a common way to access data from any of the models. These applications included: (1) a 2D mapping and animation using a web browser application, (2) an advanced 3D visualization and animation using a desktop application, and (3) a toolkit for a common scientific analysis environment. Due to the flexibility and low impact of the approach on providers, rapid progress was made. The system was implemented in all eleven US IOOS regions and at the NOAA National Coastal Data Development Center, allowing common delivery of regional and national oceanographic model forecast and archived results that cover all US waters. The system, based heavily on software technology from the NSF-sponsored Unidata Program Center, is applicable to any structured gridded data, not just oceanographic model data. There is a clear pathway to expand the system to include unstructured grid (e.g. triangular grid) data.

  3. Eight Year Climatologies from Observational (AIRS) and Model (MERRA) Data

    Science.gov (United States)

    Hearty, Thomas; Savtchenko, Andrey; Won, Young-In; Theobalk, Mike; Vollmer, Bruce; Manning, Evan; Smith, Peter; Ostrenga, Dana; Leptoukh, Greg

    2010-01-01

    We examine climatologies derived from eight years of temperature, water vapor, cloud, and trace gas observations made by the Atmospheric Infrared Sounder (AIRS) instrument flying on the Aqua satellite and compare them to similar climatologies constructed with data from a global assimilation model, the Modern Era Retrospective-Analysis for Research and Applications (MERRA). We use the AIRS climatologies to examine anomalies and trends in the AIRS data record. Since sampling can be an issue for infrared satellites in low earth orbit, we also use the MERRA data to examine the AIRS sampling biases. By sampling the MERRA data at the AIRS space-time locations both with and without the AIRS quality control we estimate the sampling bias of the AIRS climatology and the atmospheric conditions where AIRS has a lower sampling rate. While the AIRS temperature and water vapor sampling biases are small at low latitudes, they can be more than a few degrees in temperature or 10 percent in water vapor at higher latitudes. The largest sampling biases are over desert. The AIRS and MERRA data are available from the Goddard Earth Sciences Data and Information Services Center (GES DISC). The AIRS climatologies we used are available for analysis with the GIOVANNI data exploration tool. (see, http://disc.gsfc.nasa.gov).

  4. Observer model optimization of a spectral mammography system

    Science.gov (United States)

    Fredenberg, Erik; Åslund, Magnus; Cederström, Björn; Lundqvist, Mats; Danielsson, Mats

    2010-04-01

    Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. Contrast-enhanced spectral imaging has been thoroughly investigated, but unenhanced imaging may be more useful because it comes as a bonus to the conventional non-energy-resolved absorption image at screening; there is no additional radiation dose and no need for contrast medium. We have used a previously developed theoretical framework and system model that include quantum and anatomical noise to characterize the performance of a photon-counting spectral mammography system with two energy bins for unenhanced imaging. The theoretical framework was validated with synthesized images. Optimal combination of the energy-resolved images for detecting large unenhanced tumors corresponded closely, but not exactly, to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, deteriorated detectability. For small microcalcifications or tumors on uniform backgrounds, however, energy subtraction was suboptimal whereas energy weighting provided a minute improvement. The performance was largely independent of beam quality, detector energy resolution, and bin count fraction. It is clear that inclusion of anatomical noise and imaging task in spectral optimization may yield completely different results than an analysis based solely on quantum noise.

  5. Electroweak precision observables in the minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Heinemeyer, S.; Hollik, W.; Weiglein, G.

    2006-01-01

    The current status of electroweak precision observables in the Minimal Supersymmetric Standard Model (MSSM) is reviewed. We focus in particular on the W boson mass, M W , the effective leptonic weak mixing angle, sin 2 θ eff , the anomalous magnetic moment of the muon (g-2) μ , and the lightest CP-even MSSM Higgs boson mass, m h . We summarize the current experimental situation and the status of the theoretical evaluations. An estimate of the current theoretical uncertainties from unknown higher-order corrections and from the experimental errors of the input parameters is given. We discuss future prospects for both the experimental accuracies and the precision of the theoretical predictions. Confronting the precision data with the theory predictions within the unconstrained MSSM and within specific SUSY-breaking scenarios, we analyse how well the data are described by the theory. The mSUGRA scenario with cosmological constraints yields a very good fit to the data, showing a clear preference for a relatively light mass scale of the SUSY particles. The constraints on the parameter space from the precision data are discussed, and it is shown that the prospective accuracy at the next generation of colliders will enhance the sensitivity of the precision tests very significantly

  6. Assessment of hospital performance with a case-mix standardized mortality model using an existing administrative database in Japan.

    Science.gov (United States)

    Miyata, Hiroaki; Hashimoto, Hideki; Horiguchi, Hiromasa; Fushimi, Kiyohide; Matsuda, Shinya

    2010-05-19

    Few studies have examined whether risk adjustment is evenly applicable to hospitals with various characteristics and case-mix. In this study, we applied a generic prediction model to nationwide discharge data from hospitals with various characteristics. We used standardized data of 1,878,767 discharged patients provided by 469 hospitals from July 1 to October 31, 2006. We generated and validated a case-mix in-hospital mortality prediction model using 50/50 split sample validation. We classified hospitals into two groups based on c-index value (hospitals with c-index > or = 0.8; hospitals with c-index /=0.8 and were classified as the higher c-index group. A significantly higher proportion of hospitals in the lower c-index group were specialized hospitals and hospitals with convalescent wards. The model fits well to a group of hospitals with a wide variety of acute care events, though model fit is less satisfactory for specialized hospitals and those with convalescent wards. Further sophistication of the generic prediction model would be recommended to obtain optimal indices to region specific conditions.

  7. Towards unified performance measures for evaluating nuclear safeguard systems: mathematical foundations and formal comparison of existing models

    International Nuclear Information System (INIS)

    Corynen, G.C.

    1979-01-01

    An important step in the analysis of large-scale systems is the development of economical and meaningful measures of system performance. In the literature on analysis of nuclear safeguard systems, many performance measures have been advanced, but their interrelationships and their relevance to overall system objectives have not received attention commensurate with the effort spent in developing detailed safeguard models. The work reported here is an attempt to improve the development and evaluation of performance measures for nuclear safeguard systems. This work falls into three main areas. First, we develop a new framework which provides an initial basis for defining and structuring performance measures. To demonstrate that this framework allows a clear understanding of the purposes of nuclear safeguard systems, we employ it to state various safeguard questions clearly and concisely. The framework reflects the rough subsystem structure of safeguard systems - the detection and response subsystems - and formally accommodates various safeguard models. We especially emphasize two of these models which are under development at Lawrence Livermore Laboratory, the structured assessment approach (SAA) and the systems vulnerability assessment method (SVAM). Second, we examine some performance measures presently used in the nuclear safeguards area and in reliability theory in general. Some of these we accept and modify to obtain system performance measures that are an additive combination of subsystem performance measures, a very convenient form indeed. Others we reject as impractical and meaningless. Finally, we determine some common features between the SAA and SVAM models by formally comparing these models in our framework

  8. Existence, Multiplicity, and Stability of Positive Solutions of a Predator-Prey Model with Dinosaur Functional Response

    Directory of Open Access Journals (Sweden)

    Xiaozhou Feng

    2017-01-01

    Full Text Available We investigate the property of positive solutions of a predator-prey model with Dinosaur functional response under Dirichlet boundary conditions. Firstly, using the comparison principle and fixed point index theory, the sufficient conditions and necessary conditions on coexistence of positive solutions of a predator-prey model with Dinosaur functional response are established. Secondly, by virtue of bifurcation theory, perturbation theory of eigenvalues, and the fixed point index theory, we establish the bifurcation of positive solutions of the model and obtain the stability and multiplicity of the positive solution under certain conditions. Furthermore, the local uniqueness result is studied when b and d are small enough. Finally, we investigate the multiplicity, uniqueness, and stability of positive solutions when k>0 is sufficiently large.

  9. Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise

    Science.gov (United States)

    Brown, Patrick T.; Li, Wenhong; Cordero, Eugene C.; Mauget, Steven A.

    2015-01-01

    The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20th century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal. PMID:25898351

  10. CONFRONTING THE JET MODEL OF Sgr A* WITH THE FARADAY ROTATION MEASURE OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ya-Ping; Yuan, Feng [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China); Daniel Wang, Q., E-mail: fyuan@shao.ac.cn, E-mail: wqd@astro.umass.edu [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2015-01-01

    Sgr A* is probably the supermassive black hole being investigated most extensively due to its proximity to Earth. Several theoretical models for its steady state emission have been proposed in the past two decades. Both the radiative-inefficient accretion flow and the jet model have been shown to well explain the observed spectral energy distribution. The Faraday rotation measure (RM) has been unambiguously measured at the submillimeter wavelength, but it has only been tested against the accretion flow model. Here we first calculate the RM based on the jet model and find that the predicted value is two orders of magnitude lower than the measured value. We then include an additional contribution from the accretion flow in front of the jet and show that the measured RM may be reconciled with the model under some tight constraints. The main constraint is that the inclination angle should be greater than ∼73°. However, this requirement is not consistent with an existing observational estimate of the inclination angle.

  11. Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise.

    Science.gov (United States)

    Brown, Patrick T; Li, Wenhong; Cordero, Eugene C; Mauget, Steven A

    2015-04-21

    The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20(th) century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal.

  12. COCOA Code for Creating Mock Observations of Star Cluster Models

    OpenAIRE

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Dalessandro, Emanuele

    2017-01-01

    We introduce and present results from the COCOA (Cluster simulatiOn Comparison with ObservAtions) code that has been developed to create idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or \\textit{N}-body codes in a way that is useful for direct comparison with photometric observations. In this paper, we describe the C...

  13. Rotating shallow water modeling of planetary,astrophysical and plasma vortical structures (plasma transport across a magnetic field,model of the jupiter's GRS, prediction of existence of giant vortices in spiral galaxies

    Directory of Open Access Journals (Sweden)

    M. V. Nezlin

    1999-01-01

    Full Text Available Three kinds of results have been described in this paper. Firstly, an experimental study of the Rossby vortex meridional drift on the rotating shallow water has been carried out. Owing to the stringent physical analogy between the Rossby vortices and drift vortices in the magnetized plasma, the results obtained have allowed one to make a conclusion that the transport rate of the plasma, trapped by the drift vortices, across the magnetic field is equivalent to the “gyro-Bohm” diffusion coefficient. Secondly, a model of big vortices of the type of the Great Red Spot of Jupiter, dominating in the atmospheres of the outer planets, has been produced. Thirdly, the rotating shallow water modeling has been carried out of the hydrodynamical generation mechanism of spiral structures in galaxies. Trailing spiral waves of various azimuthal modes, generated by a shear flow between fast rotating “nucleus” and slow rotating periphery, were produced. The spirals are similar to those existing in the real galaxies. The hydrodynamical concept of the spiral structure formation in galaxies has been substantiated. Strong anticyclonic vortices between the spiral arms of the structures under study have been discovered for the first time. The existence of analogous vortices in real galaxies has been predicted. (This prediction has been reliably confirmed recently in special astronomical observations, carried out on the basis of the mentioned laboratory modeling and the prediction made – see the paper by A. Fridman et al. (Astrophysics and Space Science, 1997, 252, 115.

  14. The Effectiveness of Business Codes: A Critical Examination of Existing Studies and the Development of an Integrated Research Model

    OpenAIRE

    Kaptein, S.P.; Schwartz, M.S.

    2007-01-01

    textabstractBusiness codes are a widely used management instrument. Research into the effectiveness of business codes has, however, produced conflicting results. The main reasons for the divergent findings are: varying definitions of key terms; deficiencies in the empirical data and methodologies used; and a lack of theory. In this paper, we propose an integrated research model and suggest directions for future research.

  15. Comparison and Extension of Existing 3D Propagation Models with Real-World Effects Based on Ray-tracing

    DEFF Research Database (Denmark)

    Kifle, Dereje W.; Gimenez, Lucas Chavarria; Wegmann, Bernhard

    2014-01-01

    antenna beam orientation like antenna tilting or when users are distributed in the third dimension (height) in multi-floor scenarios. Ray tracing based generated propagation maps that show the realistic propagation effect are used as 3D real world reference for investigation and model approval....

  16. Existing air sparging model and literature review for the development of an air sparging optimization decision tool

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The objectives of this Report are two-fold: (1) to provide overviews of the state-of-the-art and state-of-the-practice with respect to air sparging technology, air sparging models and related or augmentation technologies (e.g., soil vapor extraction); and (2) to provide the basis for the development of the conceptual Decision Tool. The Project Team conducted an exhaustive review of available literature. The complete listing of the documents, numbering several hundred and reviewed as a part of this task, is included in Appendix A. Even with the large amount of material written regarding the development and application of air sparging, there still are significant gaps in the technical community`s understanding of the remediation technology. The results of the literature review are provided in Section 2. In Section 3, an overview of seventeen conceptual, theoretical, mathematical and empirical models is presented. Detailed descriptions of each of the models reviewed is provided in Appendix B. Included in Appendix D is a copy of the questionnaire used to compile information about the models. The remaining sections of the document reflect the analysis and synthesis of the information gleaned during the literature and model reviews. The results of these efforts provide the basis for development of the decision tree and conceptual decision tool for determining applicability and optimization of air sparging. The preliminary decision tree and accompanying information provided in Section 6 describe a three-tiered approach for determining air sparging applicability: comparison with established scenarios; calculation of conceptual design parameters; and the conducting of pilot-scale studies to confirm applicability. The final two sections of this document provide listings of the key success factors which will be used for evaluating the utility of the Decision Tool and descriptions of potential applications for Decision Tool use.

  17. Model Consistent Pseudo-Observations of Precipitation and Their Use for Bias Correcting Regional Climate Models

    Directory of Open Access Journals (Sweden)

    Peter Berg

    2015-01-01

    Full Text Available Lack of suitable observational data makes bias correction of high space and time resolution regional climate models (RCM problematic. We present a method to construct pseudo-observational precipitation data bymerging a large scale constrained RCMreanalysis downscaling simulation with coarse time and space resolution observations. The large scale constraint synchronizes the inner domain solution to the driving reanalysis model, such that the simulated weather is similar to observations on a monthly time scale. Monthly biases for each single month are corrected to the corresponding month of the observational data, and applied to the finer temporal resolution of the RCM. A low-pass filter is applied to the correction factors to retain the small spatial scale information of the RCM. The method is applied to a 12.5 km RCM simulation and proven successful in producing a reliable pseudo-observational data set. Furthermore, the constructed data set is applied as reference in a quantile mapping bias correction, and is proven skillful in retaining small scale information of the RCM, while still correcting the large scale spatial bias. The proposed method allows bias correction of high resolution model simulations without changing the fine scale spatial features, i.e., retaining the very information required by many impact models.

  18. Challenge to the model of lake charr evolution: Shallow- and deep-water morphs exist within a small postglacial lake

    Science.gov (United States)

    Chavarie, Louise; Muir, Andrew M.; Zimmerman, Mara S.; Baillie, Shauna M.; Hansen, Michael J.; Nate, Nancy A.; Yule, Daniel L.; Middel, Trevor; Bentzen, Paul; Krueger, Charles C.

    2016-01-01

    All examples of lake charr (Salvelinus namaycush) diversity occur within the largest, deepest lakes of North America (i.e. > 2000 km2). We report here Rush Lake (1.3 km2) as the first example of a small lake with two lake charr morphs (lean and huronicus). Morphology, diet, life history, and genetics were examined to demonstrate the existence of morphs and determine the potential influence of evolutionary processes that led to their formation or maintenance. Results showed that the huronicus morph, caught in deep-water, had a deeper body, smaller head and jaws, higher eye position, greater buoyancy, and deeper peduncle than the shallow-water lean morph. Huronicus grew slower to a smaller adult size, and had an older mean age than the lean morph. Genetic comparisons showed low genetic divergence between morphs, indicating incomplete reproductive isolation. Phenotypic plasticity and differences in habitat use between deep and shallow waters associated with variation in foraging opportunities seems to have been sufficient to maintain the two morphs, demonstrating their important roles in resource polymorphism. Rush Lake expands previous explanations for lake charr intraspecific diversity, from large to small lakes and from reproductive isolation to the presence of gene flow associated with strong ecological drivers.

  19. Observing the observer (I): meta-bayesian models of learning and decision-making.

    NARCIS (Netherlands)

    Daunizeau, J.; Ouden, H.E.M. den; Pessiglione, M.; Kiebel, S.J.; Stephan, K.E.; Friston, K.J.

    2010-01-01

    In this paper, we present a generic approach that can be used to infer how subjects make optimal decisions under uncertainty. This approach induces a distinction between a subject's perceptual model, which underlies the representation of a hidden "state of affairs" and a response model, which

  20. Polarimetry of Solar System Objects: Observations vs. Models

    Science.gov (United States)

    Yanamandra-Fisher, P. A.

    2014-04-01

    results of main belt comets, asteroids with ring system, lunar studies, planned exploration of planetary satellites that may harbour sub-surface oceans, there is increasing need to include polarimetric (linear, circular and differential) as an integral observing mode of instruments and facilities. For laboratory measurements, there is a need to identify simulants that mimic the polarimetric behaviour of solar system small bodies and measure their polarimetric behavior as function of various physical process they are subject to and have undergone radiation changes of their surfaces. Therefore, inclusion of polarimetric remote sensing and development of spectropolarimeters for groundbased facilities and instruments on space missions is needed, with similar maturation of vector radiative transfer models and related laboratory measurements.

  1. MHD-model for low-frequency waves in a tokamak with toroidal plasma rotation and problem of existence of global geodesic acoustic modes

    Energy Technology Data Exchange (ETDEWEB)

    Lakhin, V. P.; Sorokina, E. A., E-mail: sorokina.ekaterina@gmail.com, E-mail: vilkiae@gmail.com; Ilgisonis, V. I. [National Research Centre Kurchatov Institute (Russian Federation); Konovaltseva, L. V. [Peoples’ Friendship University of Russia (Russian Federation)

    2015-12-15

    A set of reduced linear equations for the description of low-frequency perturbations in toroidally rotating plasma in axisymmetric tokamak is derived in the framework of ideal magnetohydrodynamics. The model suitable for the study of global geodesic acoustic modes (GGAMs) is designed. An example of the use of the developed model for derivation of the integral conditions for GGAM existence and of the corresponding dispersion relation is presented. The paper is dedicated to the memory of academician V.D. Shafranov.

  2. Model-observer similarity, error modeling and social learning in rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Elisabetta Monfardini

    Full Text Available Monkeys readily learn to discriminate between rewarded and unrewarded items or actions by observing their conspecifics. However, they do not systematically learn from humans. Understanding what makes human-to-monkey transmission of knowledge work or fail could help identify mediators and moderators of social learning that operate regardless of language or culture, and transcend inter-species differences. Do monkeys fail to learn when human models show a behavior too dissimilar from the animals' own, or when they show a faultless performance devoid of error? To address this question, six rhesus macaques trained to find which object within a pair concealed a food reward were successively tested with three models: a familiar conspecific, a 'stimulus-enhancing' human actively drawing the animal's attention to one object of the pair without actually performing the task, and a 'monkey-like' human performing the task in the same way as the monkey model did. Reward was manipulated to ensure that all models showed equal proportions of errors and successes. The 'monkey-like' human model improved the animals' subsequent object discrimination learning as much as a conspecific did, whereas the 'stimulus-enhancing' human model tended on the contrary to retard learning. Modeling errors rather than successes optimized learning from the monkey and 'monkey-like' models, while exacerbating the adverse effect of the 'stimulus-enhancing' model. These findings identify error modeling as a moderator of social learning in monkeys that amplifies the models' influence, whether beneficial or detrimental. By contrast, model-observer similarity in behavior emerged as a mediator of social learning, that is, a prerequisite for a model to work in the first place. The latter finding suggests that, as preverbal infants, macaques need to perceive the model as 'like-me' and that, once this condition is fulfilled, any agent can become an effective model.

  3. Visualization in hydrological and atmospheric modeling and observation

    Science.gov (United States)

    Helbig, C.; Rink, K.; Kolditz, O.

    2013-12-01

    In recent years, visualization of geoscientific and climate data has become increasingly important due to challenges such as climate change, flood prediction or the development of water management schemes for arid and semi-arid regions. Models for simulations based on such data often have a large number of heterogeneous input data sets, ranging from remote sensing data and geometric information (such as GPS data) to sensor data from specific observations sites. Data integration using such information is not straightforward and a large number of potential problems may occur due to artifacts, inconsistencies between data sets or errors based on incorrectly calibrated or stained measurement devices. Algorithms to automatically detect various of such problems are often numerically expensive or difficult to parameterize. In contrast, combined visualization of various data sets is often a surprisingly efficient means for an expert to detect artifacts or inconsistencies as well as to discuss properties of the data. Therefore, the development of general visualization strategies for atmospheric or hydrological data will often support researchers during assessment and preprocessing of the data for model setup. When investigating specific phenomena, visualization is vital for assessing the progress of the ongoing simulation during runtime as well as evaluating the plausibility of the results. We propose a number of such strategies based on established visualization methods that - are applicable to a large range of different types of data sets, - are computationally inexpensive to allow application for time-dependent data - can be easily parameterized based on the specific focus of the research. Examples include the highlighting of certain aspects of complex data sets using, for example, an application-dependent parameterization of glyphs, iso-surfaces or streamlines. In addition, we employ basic rendering techniques allowing affine transformations, changes in opacity as well

  4. Optimization and validation of an existing, surgical and robust dry eye rat model for the evaluation of therapeutic compounds.

    Science.gov (United States)

    Joossen, Cedric; Lanckacker, Ellen; Zakaria, Nadia; Koppen, Carina; Joossens, Jurgen; Cools, Nathalie; De Meester, Ingrid; Lambeir, Anne-Marie; Delputte, Peter; Maes, Louis; Cos, Paul

    2016-05-01

    The aim of this research was to optimize and validate an animal model for dry eye, adopting clinically relevant evaluation parameters. Dry eye was induced in female Wistar rats by surgical removal of the exorbital lacrimal gland. The clinical manifestations of dry eye were evaluated by tear volume measurements, corneal fluorescein staining, cytokine measurements in tear fluid, MMP-9 mRNA expression and CD3(+) cell infiltration in the conjunctiva. The animal model was validated by treatment with Restasis(®) (4 weeks) and commercial dexamethasone eye drops (2 weeks). Removal of the exorbital lacrimal gland resulted in 50% decrease in tear volume and a gradual increase in corneal fluorescein staining. Elevated levels of TNF-α and IL-1α have been registered in tear fluid together with an increase in CD3(+) cells in the palpebral conjunctiva when compared to control animals. Additionally, an increase in MMP-9 mRNA expression was recorded in conjunctival tissue. Reference treatment with Restasis(®) and dexamethasone eye drops had a positive effect on all evaluation parameters, except on tear volume. This rat dry eye model was validated extensively and judged appropriate for the evaluation of novel compounds and therapeutic preparations for dry eye disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Near Source 2007 Peru Tsunami Runup Observations and Modeling

    Science.gov (United States)

    Borrero, J. C.; Fritz, H. M.; Kalligeris, N.; Broncano, P.; Ortega, E.

    2008-12-01

    On 15 August 2007 an earthquake with moment magnitude (Mw) of 8.0 centered off the coast of central Peru, generated a tsunami with locally focused runup heights of up to 10 m. A reconnaissance team was deployed two weeks after the event and investigated the tsunami effects at 51 sites. Three tsunami fatalities were reported south of the Paracas Peninsula in a sparsely populated desert area where the largest tsunami runup heights and massive inundation distances up to 2 km were measured. Numerical modeling of the earthquake source and tsunami suggest that a region of high slip near the coastline was primarily responsible for the extreme runup heights. The town of Pisco was spared by the Paracas Peninsula, which blocked tsunami waves from propagating northward from the high slip region. As with all near field tsunamis, the waves struck within minutes of the massive ground shaking. Spontaneous evacuations coordinated by the Peruvian Coast Guard minimized the fatalities and illustrate the importance of community-based education and awareness programs. The residents of the fishing village Lagunilla were unaware of the tsunami hazard after an earthquake and did not evacuate, which resulted in 3 fatalities. Despite the relatively benign tsunami effects at Pisco from this event, the tsunami hazard for this city (and its liquefied natural gas terminal) cannot be underestimated. Between 1687 and 1868, the city of Pisco was destroyed 4 times by tsunami waves. Since then, two events (1974 and 2007) have resulted in partial inundation and moderate damage. The fact that potentially devastating tsunami runup heights were observed immediately south of the peninsula only serves to underscore this point.

  6. Anthropogenic desertification by high-albedo pollution Observations and modeling

    Science.gov (United States)

    Otterman, J.; Rosenberg, N. W.; Rosenberg, E.

    1974-01-01

    ERTS-1 MSS albedo data of Western Negev, Sinai and the Gaza strip are presented. A sharp contrast in albedo exists across the Negev-Sinai and Negev-Gaza strip borders. Anthropogenic desertification has occurred on the Arab side due to overgrazing and Bedouin agriculture, whereas natural vegetation grows much more abundantly on the Israeli side.

  7. An efficient method of exploring simulation models by assimilating literature and biological observational data.

    Science.gov (United States)

    Hasegawa, Takanori; Nagasaki, Masao; Yamaguchi, Rui; Imoto, Seiya; Miyano, Satoru

    2014-07-01

    Recently, several biological simulation models of, e.g., gene regulatory networks and metabolic pathways, have been constructed based on existing knowledge of biomolecular reactions, e.g., DNA-protein and protein-protein interactions. However, since these do not always contain all necessary molecules and reactions, their simulation results can be inconsistent with observational data. Therefore, improvements in such simulation models are urgently required. A previously reported method created multiple candidate simulation models by partially modifying existing models. However, this approach was computationally costly and could not handle a large number of candidates that are required to find models whose simulation results are highly consistent with the data. In order to overcome the problem, we focused on the fact that the qualitative dynamics of simulation models are highly similar if they share a certain amount of regulatory structures. This indicates that better fitting candidates tend to share the basic regulatory structure of the best fitting candidate, which can best predict the data among candidates. Thus, instead of evaluating all candidates, we propose an efficient explorative method that can selectively and sequentially evaluate candidates based on the similarity of their regulatory structures. Furthermore, in estimating the parameter values of a candidate, e.g., synthesis and degradation rates of mRNA, for the data, those of the previously evaluated candidates can be utilized. The method is applied here to the pharmacogenomic pathways for corticosteroids in rats, using time-series microarray expression data. In the performance test, we succeeded in obtaining more than 80% of consistent solutions within 15% of the computational time as compared to the comprehensive evaluation. Then, we applied this approach to 142 literature-recorded simulation models of corticosteroid-induced genes, and consequently selected 134 newly constructed better models. The

  8. Earth Observations, Models and Geo-Design in Support of SDG Implementation and Monitoring

    Science.gov (United States)

    Plag, H. P.; Jules-Plag, S.

    2016-12-01

    Implementation and Monitoring of the United Nations' Sustainable Development Goals (SDGs) requires support from Earth observation and scientific communities. Applying a goal-based approach to determine the data needs to the Targets and Indicators associated with the SDGs demonstrates that integration of environmental with socio-economic and statistical data is required. Large data gaps exist for the built environment. A Geo-Design platform can provide the infrastructure and conceptual model for the data integration. The development of policies and actions to foster the implementation of SDGs in many cases requires research and the development of tools to answer "what if" questions. Here, agent-based models and model webs combined with a Geo-Design platform are promising avenues. This advanced combined infrastructure can also play a crucial role in the necessary capacity building. We will use the example of SDG 5 (Gender equality) to illustrate these approaches. SDG 11 (Sustainable Cities and Communities) is used to underline the cross-goal linkages and the joint benefits of Earth observations, data integration, and modeling tools for multiple SDGs.

  9. Observation and excitation of magnetohydrodynamic waves in numerical models of Earth's core

    Science.gov (United States)

    Teed, R.; Hori, K.; Tobias, S.; Jones, C. A.

    2017-12-01

    Several types of magnetohydrodynamic waves are theorised to operate in Earth's outer core but their detection is limited by the inability to probe the fluid core directly. Secular variation data and periodic changes in Earth's length-of-day provide evidence for the possible existence of waves. Numerical simulations of core dynamics enable us to search directly for waves and determine their properties. With this information it is possible to consider whether they can be the origin of features observed in observational data. We focus on two types of wave identified in our numerical experiments: i) torsional waves and ii) slow magnetic Rossby waves. Our models display periodic, Earth-like torsional waves that travel outwards from the tangent cylinder circumscribing the inner core. We discuss the properties of these waves and their similarites to observational data. Excitation is via a matching of the Alfvén frequency with that of small modes of convection focused at the tangent cylinder. The slow magnetic Rossby waves observed in our simulations show that these waves may account for some geomagnetic westward drifts observed at mid-latitudes. We present analysis showing excitation of waves by the convective instability and we discuss how the detection of these waves could also provide an estimate of the strength of the toroidal component of the magnetic field within the planetary fluid core.

  10. National electricity planning in settings with low pre-existing grid coverage: Development of a spatial model and case study of Kenya

    International Nuclear Information System (INIS)

    Parshall, Lily; Pillai, Dana; Mohan, Shashank; Sanoh, Aly; Modi, Vijay

    2009-01-01

    We develop a spatial electricity planning model to guide grid expansion in countries with low pre-existing electricity coverage. The model can be used to rapidly estimate connection costs and compare different regions and communities. Inputs that are modeled include electricity demand, costs, and geographic characteristics. The spatial nature of the model permits accurate representation of the existing electricity network and population distribution, which form the basis for future expansion decisions. The methodology and model assumptions are illustrated using country-specific data from Kenya. Results show that under most geographic conditions, extension of the national grid is less costly than off-grid options. Based on realistic penetration rates for Kenya, we estimate an average connection cost of $1900 per household, with lower-cost connection opportunities around major cities and in denser rural regions. In areas with an adequate pre-existing medium-voltage backbone, we estimate that over 30% of households could be connected for less than $1000 per connection through infilling. The penetration rate, an exogenous factor chosen by electricity planners, is found to have a large effect on household connection costs, often outweighing socio-economic and spatial factors such as inter-household distance, per-household demand, and proximity to the national grid.

  11. A diagnostic model to estimate winds and small-scale drag from Mars Observer PMIRR data

    Science.gov (United States)

    Barnes, J. R.

    1993-01-01

    Theoretical and modeling studies indicate that small-scale drag due to breaking gravity waves is likely to be of considerable importance for the circulation in the middle atmospheric region (approximately 40-100 km altitude) on Mars. Recent earth-based spectroscopic observations have provided evidence for the existence of circulation features, in particular, a warm winter polar region, associated with gravity wave drag. Since the Mars Observer PMIRR experiment will obtain temperature profiles extending from the surface up to about 80 km altitude, it will be extensively sampling middle atmospheric regions in which gravity wave drag may play a dominant role. Estimating the drag then becomes crucial to the estimation of the atmospheric winds from the PMIRR-observed temperatures. An interative diagnostic model based upon one previously developed and tested with earth satellite temperature data will be applied to the PMIRR measurements to produce estimates of the small-scale zonal drag and three-dimensional wind fields in the Mars middle atmosphere. This model is based on the primitive equations, and can allow for time dependence (the time tendencies used may be based upon those computed in a Fast Fourier Mapping procedure). The small-scale zonal drag is estimated as the residual in the zonal momentum equation; the horizontal winds having first been estimated from the meridional momentum equation and the continuity equation. The scheme estimates the vertical motions from the thermodynamic equation, and thus needs estimates of the diabatic heating based upon the observed temperatures. The latter will be generated using a radiative model. It is hoped that the diagnostic scheme will be able to produce good estimates of the zonal gravity wave drag in the Mars middle atmosphere, estimates that can then be used in other diagnostic or assimilation efforts, as well as more theoretical studies.

  12. Modelling dust polarization observations of molecular clouds through MHD simulations

    Science.gov (United States)

    King, Patrick K.; Fissel, Laura M.; Chen, Che-Yu; Li, Zhi-Yun

    2018-03-01

    The BLASTPol observations of Vela C have provided the most detailed characterization of the polarization fraction p and dispersion in polarization angles S for a molecular cloud. We compare the observed distributions of p and S with those obtained in synthetic observations of simulations of molecular clouds, assuming homogeneous grain alignment. We find that the orientation of the mean magnetic field relative to the observer has a significant effect on the p and S distributions. These distributions for Vela C are most consistent with synthetic observations where the mean magnetic field is close to the line of sight. Our results point to apparent magnetic disorder in the Vela C molecular cloud, although it can be due to either an inclination effect (i.e. observing close to the mean field direction) or significant field tangling from strong turbulence/low magnetization. The joint correlations of p with column density and of S with column density for the synthetic observations generally agree poorly with the Vela C joint correlations, suggesting that understanding these correlations requires a more sophisticated treatment of grain alignment physics.

  13. Using modeling, satellite images and existing global datasets for rapid preliminary assessments of renewable energy resources: The case of Mali

    International Nuclear Information System (INIS)

    Nygaard, Ivan; Badger, Jake; Larsen, Soeren; Rasmussen, Kjeld; Nielsen, Thomas Theis; Hansen, Lars Boye; Stisen, Simon; Mariko, Adama; Togola, Ibrahim

    2010-01-01

    This paper presents a novel approach to the preliminary, low-cost, national-scale mapping of wind energy, solar energy and certain categories of bio-energy resources in developing countries, using Mali as an example. The methods applied make extensive use of satellite remote sensing and meteorological mesoscale modeling. The paper presents first results from applying the methodology in Mali and discusses the appropriateness of the results obtained. It is shown that northern Mali has considerable wind energy potential, while average wind speeds in the southern part are too low to make wind power a competitive option. Solar energy resources are shown to be abundant in all of Mali, though the highest values are found in the south. The temporal variation is relatively limited. Bio-energy resources are also concentrated in the south, but there are small pockets of high vegetation productivity in the irrigated areas of the Niger inland delta that might be interesting from a renewable energy resource perspective. Finally, the paper discusses the role that renewable energy resources might play in the energy systems of Mali, given the spatio-temporal distribution of renewable energy resources. It is argued that at the current price of about 70 US$/barrel for fossil fuels, renewable energy resources are becoming economically as well as environmentally attractive options. (author)

  14. Observational properties of models of semidetached close binaries. Pt. 2

    International Nuclear Information System (INIS)

    Giannone, P.; Giannuzzi, M.A.; Pucillo, M.

    1975-01-01

    Binaries of Cases A and B with intermediate and small masses have been studied. Synthetic light curves are shown to be affected mainly by the assumption concerning the shape of the components. The comparison between synthetic light curves and observed data can give further information on the reliability of the hypotheses assumed in the computations of binary star evolution. The calculated properties lead to useful indications about the evolutionary stages of observed binaries. The detection of systems evolving according to Case A appears to be favoured in comparison with that of systems of Case B. Systems with undersize subgiants result comparatively difficult to observe. (orig./BJ) [de

  15. Ice formation and development in aged, wintertime cumulus over the UK : observations and modelling

    Science.gov (United States)

    Crawford, I.; Bower, K. N.; Choularton, T. W.; Dearden, C.; Crosier, J.; Westbrook, C.; Capes, G.; Coe, H.; Connolly, P.; Dorsey, J. R.; Gallagher, M. W.; Williams, P.; Trembath, J.; Cui, Z.; Blyth, A.

    2011-11-01

    Precipitation Interactions Model) to investigate the likely origins of the ice phase in these slightly supercooled clouds and to assess the role played by the HM process in this and in controlling precipitation formation under these conditions. WRF results showed that while HM does act to increase the mass and number concentration of ice particles produced in the model simulations, in the absence of HM, the ice number concentration arising from primary ice nucleation alone (several L-1) was apparently sufficient to sustain precipitation although the distribution of the precipitation was changed. Thus in the WRF model the HM process was shown to be non-critical for the formation of precipitation in this particular case. However, this result is seen to be subject to an important caveat concerning the simulation of the cloud macrostructure. The model was unable to capture a sharp temperature inversion seen in the radiosonde profiles at 2 km, and consequently the cloud top temperature in the model was able to reach lower values than observed in-situ or obtained from satellite data. ACPIM simulations confirmed the HM process to be a very powerful mechanism for producing the observed high ice concentrations, provided that primary nucleation occured to initiate the ice formation, and large droplets were present which then fell collecting the primary ice particles to form instant rimer particles. However, the time to generate the observed peak ice concentrations was found to be dependant on the number of primary IN present (decreasing with increasing IN number). This became realistic (around 20 min) only when the temperature input to the existing IN parameterisation was 6 °C lower than observed at cloud top, highlighting the requirement to improve basic knowledge of the number and type of IN active at these high temperatures. In simulations where cloud droplet numbers were realistic the precipitation rate was found to be unaffected by HM, with warm rain processes dominating

  16. Five year experience in management of perforated peptic ulcer and validation of common mortality risk prediction models - are existing models sufficient? A retrospective cohort study.

    Science.gov (United States)

    Anbalakan, K; Chua, D; Pandya, G J; Shelat, V G

    2015-02-01

    Emergency surgery for perforated peptic ulcer (PPU) is associated with significant morbidity and mortality. Accurate and early risk stratification is important. The primary aim of this study is to validate the various existing MRPMs and secondary aim is to audit our experience of managing PPU. 332 patients who underwent emergency surgery for PPU at a single intuition from January 2008 to December 2012 were studied. Clinical and operative details were collected. Four MRPMs: American Society of Anesthesiology (ASA) score, Boey's score, Mannheim peritonitis index (MPI) and Peptic ulcer perforation (PULP) score were validated. Median age was 54.7 years (range 17-109 years) with male predominance (82.5%). 61.7% presented within 24 h of onset of abdominal pain. Median length of stay was 7 days (range 2-137 days). Intra-abdominal collection, leakage, re-operation and 30-day mortality rates were 8.1%, 2.1%, 1.2% and 7.2% respectively. All the four MRPMs predicted intra-abdominal collection and mortality; however, only MPI predicted leak (p = 0.01) and re-operation (p = 0.02) rates. The area under curve for predicting mortality was 75%, 72%, 77.2% and 75% for ASA score, Boey's score, MPI and PULP score respectively. Emergency surgery for PPU has low morbidity and mortality in our experience. MPI is the only scoring system which predicts all - intra-abdominal collection, leak, reoperation and mortality. All four MRPMs had a similar and fair accuracy to predict mortality, however due to geographic and demographic diversity and inherent weaknesses of exiting MRPMs, quest for development of an ideal model should continue. Copyright © 2015 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  17. Global observations and modeling of atmosphere-surface exchange of elemental mercury: a critical review

    Science.gov (United States)

    Zhu, Wei; Lin, Che-Jen; Wang, Xun; Sommar, Jonas; Fu, Xuewu; Feng, Xinbin

    2016-04-01

    Reliable quantification of air-surface fluxes of elemental Hg vapor (Hg0) is crucial for understanding mercury (Hg) global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc.) in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere-surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air-surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.). However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann-Whitney U test). The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia). The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0 flux observations in East

  18. Global observations and modeling of atmosphere–surface exchange of elemental mercury: a critical review

    Directory of Open Access Journals (Sweden)

    W. Zhu

    2016-04-01

    Full Text Available Reliable quantification of air–surface fluxes of elemental Hg vapor (Hg0 is crucial for understanding mercury (Hg global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc. in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere–surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air–surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.. However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann–Whitney U test. The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia. The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0

  19. Adaptive Finite Element-Discrete Element Analysis for Microseismic Modelling of Hydraulic Fracture Propagation of Perforation in Horizontal Well considering Pre-Existing Fractures

    Directory of Open Access Journals (Sweden)

    Yongliang Wang

    2018-01-01

    Full Text Available Hydrofracturing technology of perforated horizontal well has been widely used to stimulate the tight hydrocarbon reservoirs for gas production. To predict the hydraulic fracture propagation, the microseismicity can be used to infer hydraulic fractures state; by the effective numerical methods, microseismic events can be addressed from changes of the computed stresses. In numerical models, due to the challenges in accurately representing the complex structure of naturally fractured reservoir, the interaction between hydraulic and pre-existing fractures has not yet been considered and handled satisfactorily. To overcome these challenges, the adaptive finite element-discrete element method is used to refine mesh, effectively identify the fractures propagation, and investigate microseismic modelling. Numerical models are composed of hydraulic fractures, pre-existing fractures, and microscale pores, and the seepage analysis based on the Darcy’s law is used to determine fluid flow; then moment tensors in microseismicity are computed based on the computed stresses. Unfractured and naturally fractured models are compared to assess the influences of pre-existing fractures on hydrofracturing. The damaged and contact slip events were detected by the magnitudes, B-values, Hudson source type plots, and focal spheres.

  20. Observations of secular changes in the kinematic model of SS433

    International Nuclear Information System (INIS)

    Collins, G.W. II; Newsom, G.H.

    1982-01-01

    In this paper the authors present evidence that several of the defining parameters of the Kinematic Model for SS433 are not constant but rather exhibit long term systematic changes. Recent data confirm the existence of the previously reported decrease in the precessional period. The value for this period change, when combined with the observed change in the period of the synodic spectral variations, implies that the orbital period is not significantly changing on a time scale less than 1000 years. In addition they find mounting evidence for a statistically significant (4sigma) secular change in the cone angle theta at a rate of about -1.5 x 10 -3 deg/day. However, the surprisingly short time scales implied by the observed values of dP/dt and dtheta/dt when combined with estimates of the system age suggest the possible existence of detectable higher time derivatives. This view is supported by the most recent data which suggest a value for d 2 P/dt 2 approximately 10 -5 (days) -1 . It is possible to understand these secular changes in terms of the motions to be expected from an object exhibiting classical precession in response to an external torque. (Auth.)

  1. Szekeres Swiss-cheese model and supernova observations

    International Nuclear Information System (INIS)

    Bolejko, Krzysztof; Celerier, Marie-Noeelle

    2010-01-01

    We use different particular classes of axially symmetric Szekeres Swiss-cheese models for the study of the apparent dimming of the supernovae of type Ia. We compare the results with those obtained in the corresponding Lemaitre-Tolman Swiss-cheese models. Although the quantitative picture is different the qualitative results are comparable, i.e., one cannot fully explain the dimming of the supernovae using small-scale (∼50 Mpc) inhomogeneities. To fit successfully the data we need structures of order of 500 Mpc size or larger. However, this result might be an artifact due to the use of axial light rays in axially symmetric models. Anyhow, this work is a first step in trying to use Szekeres Swiss-cheese models in cosmology and it will be followed by the study of more physical models with still less symmetry.

  2. Model selection for marginal regression analysis of longitudinal data with missing observations and covariate measurement error.

    Science.gov (United States)

    Shen, Chung-Wei; Chen, Yi-Hau

    2015-10-01

    Missing observations and covariate measurement error commonly arise in longitudinal data. However, existing methods for model selection in marginal regression analysis of longitudinal data fail to address the potential bias resulting from these issues. To tackle this problem, we propose a new model selection criterion, the Generalized Longitudinal Information Criterion, which is based on an approximately unbiased estimator for the expected quadratic error of a considered marginal model accounting for both data missingness and covariate measurement error. The simulation results reveal that the proposed method performs quite well in the presence of missing data and covariate measurement error. On the contrary, the naive procedures without taking care of such complexity in data may perform quite poorly. The proposed method is applied to data from the Taiwan Longitudinal Study on Aging to assess the relationship of depression with health and social status in the elderly, accommodating measurement error in the covariate as well as missing observations. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Observations and global numerical modelling of the St. Patrick's Day 2015 geomagnetic storm event

    Science.gov (United States)

    Foerster, M.; Prokhorov, B. E.; Doornbos, E.; Astafieva, E.; Zakharenkova, I.

    2017-12-01

    With a sudden storm commencement (SSC) at 04:45 UT on St. Patrick's day 2015 started the most severe geomagnetic storm in solar cycle 24. It appeared as a two-stage geomagnetic storm with a minimum SYM-H value of -233 nT. In the response to the storm commencement in the first activation, a short-term positive effect in the ionospheric vertical electron content (VTEC) occurred at low- and mid-latitudes on the dayside. The second phase commencing around 12:30 UT lasted longer and caused significant and complex storm-time changes around the globe with hemispherical different ionospheric storm reactions in different longitudinal ranges. Swarm-C observations of the neutral mass density variation along the orbital path as well as Langmuir probe plasma and magnetometer measurements of all three Swarm satellites and global TEC records are used for physical interpretations and modelling of the positive/negative storm scenario. These observations pose a challenge for the global numerical modelling of thermosphere-ionosphere storm processes as the storm, which occurred around spring equinox, obviously signify the existence of other impact factors than seasonal dependence for hemispheric asymmetries to occur. Numerical simulation trials using the Potsdam version of the Upper Atmosphere Model (UAM-P) are presented to explain these peculiar M-I-T storm processes.

  4. 3D Modeling of CMEs observed with STEREO

    Science.gov (United States)

    Bosman, E.; Bothmer, V.

    2012-04-01

    From January 2007 until end of 2010, 565 typical large-scale coronal mass ejections (CMEs) have been identified in the SECCHI/COR2 synoptic movies of the STEREO Mission. A subset comprising 114 CME events, selected based on the CME's brightness appearance in the SECCHI/COR2 images, has been modeled through the Graduated Cylindrical Shell (GCS) Model developed by Thernisien et al. (2006). This study presents an overview of the GCS forward-modeling results and an interpretation of the CME characteristics in relationship to their solar source region properties and solar cycle appearances.

  5. A mathematical model of a steady flow through the Kaplan turbine - The existence of a weak solution in the case of an arbitrarily large inflow

    Science.gov (United States)

    Neustupa, Tomáš

    2017-07-01

    The paper presents the mathematical model of a steady 2-dimensional viscous incompressible flow through a radial blade machine. The corresponding boundary value problem is studied in the rotating frame. We provide the classical and weak formulation of the problem. Using a special form of the so called "artificial" or "natural" boundary condition on the outflow, we prove the existence of a weak solution for an arbitrarily large inflow.

  6. Observations and models of the decimetric radio emission from Jupiter

    International Nuclear Information System (INIS)

    Pater, I. de.

    1980-01-01

    The high energy electron distribution as a function of energy, pitch angle and spatial coordinates in Jupiter's inner magnetosphere was derived from a comparison of radio data and model calculations of Jupiter's synchrotron radiation. (Auth.)

  7. A sliding mode observer for hemodynamic characterization under modeling uncertainties

    KAUST Repository

    Zayane, Chadia; Laleg-Kirati, Taous-Meriem

    2014-01-01

    This paper addresses the case of physiological states reconstruction in a small region of the brain under modeling uncertainties. The misunderstood coupling between the cerebral blood volume and the oxygen extraction fraction has lead to a partial

  8. Constraining supersymmetric models using Higgs physics, precision observables and direct searches

    International Nuclear Information System (INIS)

    Zeune, Lisa

    2014-08-01

    principle be interpreted as the lightest or the second lightest CP-even Higgs in both models. We discuss mechanisms to enhance the tw o photon rate in the MSSM and the NMSSM. Within the framework of the MSSM, we fit the various Higgs decay rates as measured by the Large Hadron Collider (LHC) and the Tevatron experiments, including also low-energy observables, under the hypothesis that either the light or the heavy CP-even Higgs boson corresponds the observed signal. We find an overall good quality of the fits. For the interpretation of the observed Higgs as the light CP-even Higgs the fit quality in the MSSM is slightly better than in the SM. In the third part of this thesis we present a tool, called Fastlim, to calculate conservative limits on SUSY models from direct SUSY searches at the LHC. Experimentalists present their results from direct SUSY searches in simplified scenarios of more general models. The impact of their results on many other SUSY scenarios has not been investigated, so that the impact of the existing search limits on realistic SUSY scenarios is difficult to assess. Using Fastlim the results can be reinterpreted in other (less restricted) models without performing any Monte-Carlo event generation. The program reconstructs the visible cross section from pre-calculated efficiency and cross section tables for simplified event topologies. As an application of our tool we study the constraints from direct LHC searches on the parameter space of ''natural'' SUSY models.

  9. A Computational Model for Observation in Quantum Mechanics.

    Science.gov (United States)

    1987-03-16

    Interferometer experiment ............. 17 2.3 The EPR Paradox experiment ................. 22 3 The Computational Model, an Overview 28 4 Implementation 34...40 4.4 Code for the EPR paradox experiment ............... 46 4.5 Code for the double slit interferometer experiment ..... .. 50 5 Conclusions 59 A...particle run counter to fact. The EPR paradox experiment (see section 2.3) is hard to resolve with this class of models, collectively called hidden

  10. Understanding Transient Forcing with Plasma Instability Model, Ionospheric Propagation Model and GNSS Observations

    Science.gov (United States)

    Deshpande, K.; Zettergren, M. D.; Datta-Barua, S.

    2017-12-01

    Fluctuations in the Global Navigation Satellite Systems (GNSS) signals observed as amplitude and phase scintillations are produced by plasma density structures in the ionosphere. Phase scintillation events in particular occur due to structures at Fresnel scales, typically about 250 meters at ionospheric heights and GNSS frequency. Likely processes contributing to small-scale density structuring in auroral and polar regions include ionospheric gradient-drift instability (GDI) and Kelvin-Helmholtz instability (KHI), which result, generally, from magnetosphere-ionosphere interactions (e.g. reconnection) associated with cusp and auroral zone regions. Scintillation signals, ostensibly from either GDI or KHI, are frequently observed in the high latitude ionosphere and are potentially useful diagnostics of how energy from the transient forcing in the cusp or polar cap region cascades, via instabilities, to small scales. However, extracting quantitative details of instabilities leading to scintillation using GNSS data drastically benefits from both a model of the irregularities and a model of GNSS signal propagation through irregular media. This work uses a physics-based model of the generation of plasma density irregularities (GEMINI - Geospace Environment Model of Ion-Neutral Interactions) coupled to an ionospheric radio wave propagation model (SIGMA - Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere) to explore the cascade of density structures from medium to small (sub-kilometer) scales. Specifically, GEMINI-SIGMA is used to simulate expected scintillation from different instabilities during various stages of evolution to determine features of the scintillation that may be useful to studying ionospheric density structures. Furthermore we relate the instabilities producing GNSS scintillations to the transient space and time-dependent magnetospheric phenomena and further predict characteristics of scintillation in different geophysical

  11. Modelling small groundwater systems - the role of targeted field investigations and observational data in reducing model uncertainty

    Science.gov (United States)

    Abesser, Corinna; Hughes, Andrew; Boon, David

    2017-04-01

    the fit between predicted and observed heads and reduction in overall model uncertainty. The impact of availability of observational data on model calibration was tested as part of this study, confirming that equifinality remains an issue despite improved system characterisation and suggesting that uncertainty relating to the distribution of hydraulic conductivity (K) within the dune system must be further reduced. This study illustrates that groundwater modelling is not linear but should be an iterative process, especially in systems where large geological uncertainties exist. It should be carried out in conjunction with field studies, i.e. not as a postscript, but as ongoing interaction. This interaction is required throughout the investigation process and is key to heuristic learning and improved system understanding. Given that the role of modelling is to raise questions as well as answer them, this study demonstrates that this applies even in small systems that are thought to be well understood. This research is funded by the UK Natural Environmental Research Council (NERC). The work is distributed under the Creative Commons Attribution 3.0 Unported License together with an author copyright. This licence does not conflict with the regulations of the Crown Copyright.

  12. Asteroseismic observations and modelling of 70 Ophiuchi AB

    Energy Technology Data Exchange (ETDEWEB)

    Eggenberger, P; Miglio, A [Institut d' Astrophysique et de Geophysique de l' Universite de Liege, 17 Allee du 6 Aout, B-4000 Liege (Belgium); Carrier, F [Institute of Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Fernandes, J [Observatorio Astronomico da Universidade de Coimbra e Departamento de Matematica, FCTUC (Portugal); Santos, N C [Centro de AstrofIsica, Universidade do Porto, Rua das Estrelas, P-4150-762 Porto (Portugal)], E-mail: eggenberger@astro.ulg.ac.be

    2008-10-15

    The analysis of solar-like oscillations for stars belonging to a binary system provides an opportunity to probe the internal stellar structure and to test our knowledge of stellar physics. We present asteroseismic observations of 70 Oph A performed with the HARPS spectrograph together with a comprehensive theoretical calibration of the 70 Ophiuchi system.

  13. Observations and Numerical Modeling of the Jovian Ribbon

    Science.gov (United States)

    Cosentino, R. G.; Simon, A.; Morales-Juberias, R.; Sayanagi, K. M.

    2015-01-01

    Multiple wavelength observations made by the Hubble Space Telescope in early 2007 show the presence of a wavy, high-contrast feature in Jupiter's atmosphere near 30 degrees North. The "Jovian Ribbon," best seen at 410 nanometers, irregularly undulates in latitude and is time-variable in appearance. A meridional intensity gradient algorithm was applied to the observations to track the Ribbon's contour. Spectral analysis of the contour revealed that the Ribbon's structure is a combination of several wavenumbers ranging from k equals 8-40. The Ribbon is a dynamic structure that has been observed to have spectral power for dominant wavenumbers which vary over a time period of one month. The presence of the Ribbon correlates with periods when the velocity of the westward jet at the same location is highest. We conducted numerical simulations to investigate the stability of westward jets of varying speed, vertical shear, and background static stability to different perturbations. A Ribbon-like morphology was best reproduced with a 35 per millisecond westward jet that decreases in amplitude for pressures greater than 700 hectopascals and a background static stability of N equals 0.005 per second perturbed by heat pulses constrained to latitudes south of 30 degrees North. Additionally, the simulated feature had wavenumbers that qualitatively matched observations and evolved throughout the simulation reproducing the Jovian Ribbon's dynamic structure.

  14. Intelligent Cognitive Radio Models for Enhancing Future Radio Astronomy Observations

    Directory of Open Access Journals (Sweden)

    Ayodele Abiola Periola

    2016-01-01

    Full Text Available Radio astronomy organisations desire to optimise the terrestrial radio astronomy observations by mitigating against interference and enhancing angular resolution. Ground telescopes (GTs experience interference from intersatellite links (ISLs. Astronomy source radio signals received by GTs are analysed at the high performance computing (HPC infrastructure. Furthermore, observation limitation conditions prevent GTs from conducting radio astronomy observations all the time, thereby causing low HPC utilisation. This paper proposes mechanisms that protect GTs from ISL interference without permanent prevention of ISL data transmission and enhance angular resolution. The ISL transmits data by taking advantage of similarities in the sequence of observed astronomy sources to increase ISL connection duration. In addition, the paper proposes a mechanism that enhances angular resolution by using reconfigurable earth stations. Furthermore, the paper presents the opportunistic computing scheme (OCS to enhance HPC utilisation. OCS enables the underutilised HPC to be used to train learning algorithms of a cognitive base station. The performances of the three mechanisms are evaluated. Simulations show that the proposed mechanisms protect GTs from ISL interference, enhance angular resolution, and improve HPC utilisation.

  15. NACP Regional: Original Observation Data and Biosphere and Inverse Model Outputs

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the originally-submitted observation measurement data, terrestrial biosphere model output data, and inverse model simulations that various...

  16. NACP Regional: Original Observation Data and Biosphere and Inverse Model Outputs

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains the originally-submitted observation measurement data, terrestrial biosphere model output data, and inverse model simulations that...

  17. Citizen observations contributing to flood modelling: opportunities and challenges

    Directory of Open Access Journals (Sweden)

    T. H. Assumpção

    2018-02-01

    Full Text Available Citizen contributions to science have been successfully implemented in many fields, and water resources is one of them. Through citizens, it is possible to collect data and obtain a more integrated decision-making process. Specifically, data scarcity has always been an issue in flood modelling, which has been addressed in the last decades by remote sensing and is already being discussed in the citizen science context. With this in mind, this article aims to review the literature on the topic and analyse the opportunities and challenges that lie ahead. The literature on monitoring, mapping and modelling, was evaluated according to the flood-related variable citizens contributed to. Pros and cons of the collection/analysis methods were summarised. Then, pertinent publications were mapped into the flood modelling cycle, considering how citizen data properties (spatial and temporal coverage, uncertainty and volume are related to its integration into modelling. It was clear that the number of studies in the area is rising. There are positive experiences reported in collection and analysis methods, for instance with velocity and land cover, and also when modelling is concerned, for example by using social media mining. However, matching the data properties necessary for each part of the modelling cycle with citizen-generated data is still challenging. Nevertheless, the concept that citizen contributions can be used for simulation and forecasting is proved and further work lies in continuing to develop and improve not only methods for collection and analysis, but certainly for integration into models as well. Finally, in view of recent automated sensors and satellite technologies, it is through studies as the ones analysed in this article that the value of citizen contributions, complementing such technologies, is demonstrated.

  18. Citizen observations contributing to flood modelling: opportunities and challenges

    Science.gov (United States)

    Assumpção, Thaine H.; Popescu, Ioana; Jonoski, Andreja; Solomatine, Dimitri P.

    2018-02-01

    Citizen contributions to science have been successfully implemented in many fields, and water resources is one of them. Through citizens, it is possible to collect data and obtain a more integrated decision-making process. Specifically, data scarcity has always been an issue in flood modelling, which has been addressed in the last decades by remote sensing and is already being discussed in the citizen science context. With this in mind, this article aims to review the literature on the topic and analyse the opportunities and challenges that lie ahead. The literature on monitoring, mapping and modelling, was evaluated according to the flood-related variable citizens contributed to. Pros and cons of the collection/analysis methods were summarised. Then, pertinent publications were mapped into the flood modelling cycle, considering how citizen data properties (spatial and temporal coverage, uncertainty and volume) are related to its integration into modelling. It was clear that the number of studies in the area is rising. There are positive experiences reported in collection and analysis methods, for instance with velocity and land cover, and also when modelling is concerned, for example by using social media mining. However, matching the data properties necessary for each part of the modelling cycle with citizen-generated data is still challenging. Nevertheless, the concept that citizen contributions can be used for simulation and forecasting is proved and further work lies in continuing to develop and improve not only methods for collection and analysis, but certainly for integration into models as well. Finally, in view of recent automated sensors and satellite technologies, it is through studies as the ones analysed in this article that the value of citizen contributions, complementing such technologies, is demonstrated.

  19. Modeling natural wetlands: A new global framework built on wetland observations

    Science.gov (United States)

    Matthews, E.; Romanski, J.; Olefeldt, D.

    2015-12-01

    Natural wetlands are the world's largest methane (CH4) source, and their distribution and CH4 fluxes are sensitive to interannual and longer-term climate variations. Wetland distributions used in wetland-CH4 models diverge widely, and these geographic differences contribute substantially to large variations in magnitude, seasonality and distribution of modeled methane fluxes. Modeling wetland type and distribution—closely tied to simulating CH4 emissions—is a high priority, particularly for studies of wetlands and CH4 dynamics under past and future climates. Methane-wetland models either prescribe or simulate methane-producing areas (aka wetlands) and both approaches result in predictable over- and under-estimates. 1) Monthly satellite-derived inundation data include flooded areas that are not wetlands (e.g., lakes, reservoirs, and rivers), and do not identify non-flooded wetlands. 2) Models simulating methane-producing areas overwhelmingly rely on modeled soil moisture, systematically over-estimating total global area, with regional over- and under-estimates, while schemes to model soil-moisture typically cannot account for positive water tables (i.e., flooding). Interestingly, while these distinct hydrological approaches to identify wetlands are complementary, merging them does not provide critical data needed to model wetlands for methane studies. We present a new integrated framework for modeling wetlands, and ultimately their methane emissions, that exploits the extensive body of data and information on wetlands. The foundation of the approach is an existing global gridded data set comprising all and only wetlands, including vegetation information. This data set is augmented with data inter alia on climate, inundation dynamics, soil type and soil carbon, permafrost, active-layer depth, growth form, and species composition. We investigate this enhanced wetland data set to identify which variables best explain occurrence and characteristics of observed

  20. Observations & modeling of solar-wind/magnetospheric interactions

    Science.gov (United States)

    Hoilijoki, Sanni; Von Alfthan, Sebastian; Pfau-Kempf, Yann; Palmroth, Minna; Ganse, Urs

    2016-07-01

    The majority of the global magnetospheric dynamics is driven by magnetic reconnection, indicating the need to understand and predict reconnection processes and their global consequences. So far, global magnetospheric dynamics has been simulated using mainly magnetohydrodynamic (MHD) models, which are approximate but fast enough to be executed in real time or near-real time. Due to their fast computation times, MHD models are currently the only possible frameworks for space weather predictions. However, in MHD models reconnection is not treated kinetically. In this presentation we will compare the results from global kinetic (hybrid-Vlasov) and global MHD simulations. Both simulations are compared with in-situ measurements. We will show that the kinetic processes at the bow shock, in the magnetosheath and at the magnetopause affect global dynamics even during steady solar wind conditions. Foreshock processes cause an asymmetry in the magnetosheath plasma, indicating that the plasma entering the magnetosphere is not symmetrical on different sides of the magnetosphere. Behind the bow shock in the magnetosheath kinetic wave modes appear. Some of these waves propagate to the magnetopause and have an effect on the magnetopause reconnection. Therefore we find that kinetic phenomena have a significant role in the interaction between the solar wind and the magnetosphere. While kinetic models cannot be executed in real time currently, they could be used to extract heuristics to be added in the faster MHD models.

  1. Observing and modeling nonlinear dynamics in an internal combustion engine

    International Nuclear Information System (INIS)

    Daw, C.S.; Kennel, M.B.; Finney, C.E.; Connolly, F.T.

    1998-01-01

    We propose a low-dimensional, physically motivated, nonlinear map as a model for cyclic combustion variation in spark-ignited internal combustion engines. A key feature is the interaction between stochastic, small-scale fluctuations in engine parameters and nonlinear deterministic coupling between successive engine cycles. Residual cylinder gas from each cycle alters the in-cylinder fuel-air ratio and thus the combustion efficiency in succeeding cycles. The model close-quote s simplicity allows rapid simulation of thousands of engine cycles, permitting statistical studies of cyclic-variation patterns and providing physical insight into this technologically important phenomenon. Using symbol statistics to characterize the noisy dynamics, we find good quantitative matches between our model and experimental time-series measurements. copyright 1998 The American Physical Society

  2. The cosmological Janus model: comparison with observational data

    Science.gov (United States)

    Petit, Jean-Pierre; Dagostini, Gilles

    2017-01-01

    In 2014 we presented a model based on a system of two coupled field equations to describe two populations of particles, one positive and the other mass of negative mass. The analysis of this system by Newtonian approximation show that the masses of the same signs attract according to Newton's law while the masses of opposite signs repel according to an anti-Newton law. This eliminates the runaway phenomenon. It uses the time-dependent exact solution of this system to build the bolometric magnitude distribution of the red-shift. Comparing the prediction of our model -which requires adjustment with a single parameter- with the data from 740 supernovae highlighting the acceleration of the universe gives an excellent agreement. The comparison is then made with the multi-parametric Λ CDM model.

  3. A non-linear beta-binomial regression model for mapping EORTC QLQ- C30 to the EQ-5D-3L in lung cancer patients: a comparison with existing approaches.

    Science.gov (United States)

    Khan, Iftekhar; Morris, Stephen

    2014-11-12

    The performance of the Beta Binomial (BB) model is compared with several existing models for mapping the EORTC QLQ-C30 (QLQ-C30) on to the EQ-5D-3L using data from lung cancer trials. Data from 2 separate non small cell lung cancer clinical trials (TOPICAL and SOCCAR) are used to develop and validate the BB model. Comparisons with Linear, TOBIT, Quantile, Quadratic and CLAD models are carried out. The mean prediction error, R(2), proportion predicted outside the valid range, clinical interpretation of coefficients, model fit and estimation of Quality Adjusted Life Years (QALY) are reported and compared. Monte-Carlo simulation is also used. The Beta-Binomial regression model performed 'best' among all models. For TOPICAL and SOCCAR trials, respectively, residual mean square error (RMSE) was 0.09 and 0.11; R(2) was 0.75 and 0.71; observed vs. predicted means were 0.612 vs. 0.608 and 0.750 vs. 0.749. Mean difference in QALY's (observed vs. predicted) were 0.051 vs. 0.053 and 0.164 vs. 0.162 for TOPICAL and SOCCAR respectively. Models tested on independent data show simulated 95% confidence from the BB model containing the observed mean more often (77% and 59% for TOPICAL and SOCCAR respectively) compared to the other models. All algorithms over-predict at poorer health states but the BB model was relatively better, particularly for the SOCCAR data. The BB model may offer superior predictive properties amongst mapping algorithms considered and may be more useful when predicting EQ-5D-3L at poorer health states. We recommend the algorithm derived from the TOPICAL data due to better predictive properties and less uncertainty.

  4. Identifying Clusters with Mixture Models that Include Radial Velocity Observations

    Science.gov (United States)

    Czarnatowicz, Alexis; Ybarra, Jason E.

    2018-01-01

    The study of stellar clusters plays an integral role in the study of star formation. We present a cluster mixture model that considers radial velocity data in addition to spatial data. Maximum likelihood estimation through the Expectation-Maximization (EM) algorithm is used for parameter estimation. Our mixture model analysis can be used to distinguish adjacent or overlapping clusters, and estimate properties for each cluster.Work supported by awards from the Virginia Foundation for Independent Colleges (VFIC) Undergraduate Science Research Fellowship and The Research Experience @Bridgewater (TREB).

  5. Experimental observations and theoretical models for beam-beam phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10/sup 10/-10/sup 11/ and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented.

  6. Experimental observations and theoretical models for beam-beam phenomena

    International Nuclear Information System (INIS)

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10 10 -10 11 and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented

  7. ODM2 (Observation Data Model): The EarthChem Use Case

    Science.gov (United States)

    Lehnert, Kerstin; Song, Lulin; Hsu, Leslie; Horsburgh, Jeffrey S.; Aufdenkampe, Anthony K.; Mayorga, Emilio; Tarboton, David; Zaslavsky, Ilya

    2014-05-01

    PetDB is an online data system that was created in the late 1990's to serve online a synthesis of published geochemical and petrological data of igneous and metamorphic rocks. PetDB has today reached a volume of 2.5 million analytical values for nearly 70,000 rock samples. PetDB's data model (Lehnert et al., G-Cubed 2000) was designed to store sample-based observational data generated by the analysis of rocks, together with a wide range of metadata documenting provenance of the samples, analytical procedures, data quality, and data source. Attempts to store additional types of geochemical data such as time-series data of seafloor hydrothermal springs and volcanic gases, depth-series data for marine sediments and soils, and mineral or mineral inclusion data revealed the limitations of the schema: the inability to properly record sample hierarchies (for example, a garnet that is included in a diamond that is included in a xenolith that is included in a kimberlite rock sample), inability to properly store time-series data, inability to accommodate classification schemes other than rock lithologies, deficiencies of identifying and documenting datasets that are not part of publications. In order to overcome these deficiencies, PetDB has been developing a new data schema using the ODM2 information model (ODM=Observation Data Model). The development of ODM2 is a collaborative project that leverages the experience of several existing information representations, including PetDB and EarthChem, and the CUAHSI HIS Observations Data Model (ODM), as well as the general specification for encoding observational data called Observations and Measurements (O&M) to develop a uniform information model that seamlessly manages spatially discrete, feature-based earth observations from environmental samples and sample fractions as well as in-situ sensors, and to test its initial implementation in a variety of user scenarios. The O&M model, adopted as an international standard by the Open

  8. Exploring the accretion model of M87 and 3C 84 with the Faraday rotation measure observations

    OpenAIRE

    Li, Ya-Ping; Yuan, Feng; Xie, Fu-Guo

    2016-01-01

    Low-luminosity active galactic nuclei (LLAGNs) are believed to be powered by an accretion-jet model, consisting of an inner advection-dominated accretion flow (ADAF), an outer truncated standard thin disk, and a jet. But model degeneracy still exists in this framework. For example, the X-ray emission can originate from either the ADAF or jet. The aim of the present work is to check these models with the Faraday rotation measure (RM) observations recently detected for two LLAGNs, M87 and 3C 84...

  9. Multiband Lightcurve of Tabby’s Star: Observations and Modeling

    Science.gov (United States)

    Yin, Yao; Wilcox, Alejandro; Boyajian, Tabetha S.

    2018-06-01

    Since March 2017, The Thacher Observatory in California has been monitoring changes in brightness of KIC 8462852 (Tabby's Star), an F-type main sequence star whose irregular dimming behavior was first discovered by Tabetha Boyajian by examining Kepler data. We obtained over 20k observations over 135 nights in 2017 in 4 photometric bands, and detected 4 dip events greater than 1%. The relative magnitude of each dip compared across our 4 different photometric bands provides critical information regarding the nature of the obscuring material, and we present a preliminary analysis of these events. The Thacher Observatory is continuing its monitoring of Tabby’s Star in 2018.

  10. Observation Likelihood Model Design and Failure Recovery Scheme toward Reliable Localization of Mobile Robots

    Directory of Open Access Journals (Sweden)

    Chang-bae Moon

    2011-01-01

    Full Text Available Although there have been many researches on mobile robot localization, it is still difficult to obtain reliable localization performance in a human co-existing real environment. Reliability of localization is highly dependent upon developer's experiences because uncertainty is caused by a variety of reasons. We have developed a range sensor based integrated localization scheme for various indoor service robots. Through the experience, we found out that there are several significant experimental issues. In this paper, we provide useful solutions for following questions which are frequently faced with in practical applications: 1 How to design an observation likelihood model? 2 How to detect the localization failure? 3 How to recover from the localization failure? We present design guidelines of observation likelihood model. Localization failure detection and recovery schemes are presented by focusing on abrupt wheel slippage. Experiments were carried out in a typical office building environment. The proposed scheme to identify the localizer status is useful in practical environments. Moreover, the semi-global localization is a computationally efficient recovery scheme from localization failure. The results of experiments and analysis clearly present the usefulness of proposed solutions.

  11. Observation Likelihood Model Design and Failure Recovery Scheme Toward Reliable Localization of Mobile Robots

    Directory of Open Access Journals (Sweden)

    Chang-bae Moon

    2010-12-01

    Full Text Available Although there have been many researches on mobile robot localization, it is still difficult to obtain reliable localization performance in a human co-existing real environment. Reliability of localization is highly dependent upon developer's experiences because uncertainty is caused by a variety of reasons. We have developed a range sensor based integrated localization scheme for various indoor service robots. Through the experience, we found out that there are several significant experimental issues. In this paper, we provide useful solutions for following questions which are frequently faced with in practical applications: 1 How to design an observation likelihood model? 2 How to detect the localization failure? 3 How to recover from the localization failure? We present design guidelines of observation likelihood model. Localization failure detection and recovery schemes are presented by focusing on abrupt wheel slippage. Experiments were carried out in a typical office building environment. The proposed scheme to identify the localizer status is useful in practical environments. Moreover, the semi-global localization is a computationally efficient recovery scheme from localization failure. The results of experiments and analysis clearly present the usefulness of proposed solutions.

  12. Latitudinal amplitude-phase structure of MHD waves: STARE radar observations and modeling

    Directory of Open Access Journals (Sweden)

    Pilipenko V.

    2016-09-01

    Full Text Available We have developed a numerical model that yields a steady-state distribution of field components of MHD wave in an inhomogeneous plasma box simulating the realistic magnetosphere. The problem of adequate boundary condition at the ionosphere–magnetosphere interface for coupled MHD mode is considered. To justify the model’s assumptions, we have derived the explicit inequality showing when the ionospheric inductive Hall effect can be neglected upon the consideration of Alfven wave reflection from the ionospheric boundaries. The model predicts a feature of the ULF spatial amplitude/phase distribution that has not been noticed by the field line resonance theory: the existence of a region with opposite phase delays on the source side of the resonance. This theoretical prediction is supported by the amplitude-phase latitudinal structures of Pc5 waves observed by STARE radar and IMAGE magnetometers. A gradual decrease in azimuthal wave number m at smaller L-shells was observed at longitudinally separated radar beams.

  13. Linking Fine-Scale Observations and Model Output with Imagery at Multiple Scales

    Science.gov (United States)

    Sadler, J.; Walthall, C. L.

    2014-12-01

    The development and implementation of a system for seasonal worldwide agricultural yield estimates is underway with the international Group on Earth Observations GeoGLAM project. GeoGLAM includes a research component to continually improve and validate its algorithms. There is a history of field measurement campaigns going back decades to draw upon for ways of linking surface measurements and model results with satellite observations. Ground-based, in-situ measurements collected by interdisciplinary teams include yields, model inputs and factors affecting scene radiation. Data that is comparable across space and time with careful attention to calibration is essential for the development and validation of agricultural applications of remote sensing. Data management to ensure stewardship, availability and accessibility of the data are best accomplished when considered an integral part of the research. The expense and logistical challenges of field measurement campaigns can be cost-prohibitive and because of short funding cycles for research, access to consistent, stable study sites can be lost. The use of a dedicated staff for baseline data needed by multiple investigators, and conducting measurement campaigns using existing measurement networks such as the USDA Long Term Agroecosystem Research network can fulfill these needs and ensure long-term access to study sites.

  14. Pre-existing liver cirrhosis reduced the toxic effect of diethylene glycol in a rat model due to the impaired hepatic alcohol dehydrogenase.

    Science.gov (United States)

    Ming Xing Huang; Xiao Mou Peng; Lin Gu; Gui Hua Chen

    2011-09-01

    Hepatic metabolizing enzymes of diethylene glycol (DEG) are impaired in liver diseases. Thus, the purpose of this study was to increase our understandings in metabolism and toxicology of DEG by clarifying the influences of pre-existing liver disease. Forty Sprague-Dawley rats with carbon tetrachloride-induced liver cirrhosis and 20 control rats were intraperitoneally administered a single dose of DEG, and randomly killed 1, 2, 5 or 8 days following exposure. Compared with control rats, the model rats had significantly higher blood CO(2)-combining power, lower blood urine nitrogen, serum creatinine and alanine aminotransferase levels on the second day and a lower mortality rate on the eighth day following DEG exposure. Enlargements of liver and kidneys and degeneration and necrosis of hepatocytes and renal tubules in the model rats was also less serious than in the control rats. Urine DEG levels were significantly higher on the first day in the model rats than the control rats (46.65 ± 8.79 mg vs 18.88 ± 6.18 mg, p activity in the model rats was significantly lower than that in the control rats, which was positively related to renal damage. The toxic effects of DEG in rats with pre-existing liver cirrhosis are significantly reduced, which may be due to the decreased hepatic ADH activity. It suggests that the metabolite of ADH is responsible for DEG poisoning, and this toxic metabolite may mainly originate in the liver.

  15. Metric versus observable operator representation, higher spin models

    Science.gov (United States)

    Fring, Andreas; Frith, Thomas

    2018-02-01

    We elaborate further on the metric representation that is obtained by transferring the time-dependence from a Hermitian Hamiltonian to the metric operator in a related non-Hermitian system. We provide further insight into the procedure on how to employ the time-dependent Dyson relation and the quasi-Hermiticity relation to solve time-dependent Hermitian Hamiltonian systems. By solving both equations separately we argue here that it is in general easier to solve the former. We solve the mutually related time-dependent Schrödinger equation for a Hermitian and non-Hermitian spin 1/2, 1 and 3/2 model with time-independent and time-dependent metric, respectively. In all models the overdetermined coupled system of equations for the Dyson map can be decoupled algebraic manipulations and reduces to simple linear differential equations and an equation that can be converted into the non-linear Ermakov-Pinney equation.

  16. Observation of the Meissner effect in a lattice Higgs model

    Science.gov (United States)

    Damgaard, Poul H.; Heller, Urs M.

    1988-01-01

    The lattice-regularized U(1) Higgs model in an external electromagnetic field is studied by Monte Carlo techniques. In the Coulomb phase, magnetic flux can flow through uniformly. The Higgs phase splits into a region where magnetic flux can penetrate only in the form of vortices and a region where the magnetic flux is completely expelled, the relativistic analog of the Meissner effect in superconductivity. Evidence is presented for symmetry restoration in strong external fields.

  17. Uniform relativistic universe models with pressure. Part 2. Observational tests

    International Nuclear Information System (INIS)

    Krempec, J.; Krygier, B.

    1977-01-01

    The magnitude-redshift and angular diameter-redshift relations are discussed for the uniform (homogeneous and isotropic) relativistic Universe models with pressure. The inclusion of pressure into the energy-momentum tensor has given larger values of the deceleration parameter q. An increase of the deceleration parameter has led to the brightening of objects as well as to a little larger angular diameters. (author)

  18. Capturing Characteristics of Atmospheric Refractivity Using Observations and Modeling Approaches

    Science.gov (United States)

    2015-06-01

    times during TW13 where a rawinsonde was suspended from a kite or a tethered balloon , depending on the wind speed, launched from a ridged hull...appended to the bottom of a balloon sounding or a COAMPS model profile in some fashion in order to provide a complete profile for use in propagation...rawinsonde” (“radar wind-sonde”). The instrument package is suspended from a buoyant balloon which is released from the surface and often reaches heights

  19. Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program

    Science.gov (United States)

    2017-05-09

    Professor Chad Higgins , Oregon State University. Corvallis. Oregon (Host: University of Utah) Or. Stefano Serafin, University of Vienna. Austria... Chris Hocul, ARL White Sands Missile Range). • NCAR 4DWX model output has been analyzed by the University of Virginia group, which has been... Higgins , and H., Parlange, M.B., 2013: Similarity scaling over a steep alpine slope, Boundary-Layer Meteor., 147(3), 401-419. Pu, Z., H. Zhang, and J. A

  20. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

    Science.gov (United States)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby

    2013-12-01

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  1. Aligning observed and modelled behaviour based on workflow decomposition

    Science.gov (United States)

    Wang, Lu; Du, YuYue; Liu, Wei

    2017-09-01

    When business processes are mostly supported by information systems, the availability of event logs generated from these systems, as well as the requirement of appropriate process models are increasing. Business processes can be discovered, monitored and enhanced by extracting process-related information. However, some events cannot be correctly identified because of the explosion of the amount of event logs. Therefore, a new process mining technique is proposed based on a workflow decomposition method in this paper. Petri nets (PNs) are used to describe business processes, and then conformance checking of event logs and process models is investigated. A decomposition approach is proposed to divide large process models and event logs into several separate parts that can be analysed independently; while an alignment approach based on a state equation method in PN theory enhances the performance of conformance checking. Both approaches are implemented in programmable read-only memory (ProM). The correctness and effectiveness of the proposed methods are illustrated through experiments.

  2. ON THE NATURE OF THE TERTIARY COMPANION TO FW TAU: ALMA CO OBSERVATIONS AND SED MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Caceres, Claudio; Hardy, Adam; Schreiber, Matthias R.; Cánovas, Héctor [Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, 2360102 Valparaíso (Chile); Cieza, Lucas A. [Núcleo de Astronomía, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Williams, Jonathan P. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Hales, Antonio [Atacama Large Millimeter/Submillimeter Array, Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura, 763-0355 Santiago (Chile); Pinte, Christophe [Univ. Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble (France); Ménard, Francois [UMI-FCA, CNRS/INSU, UMI 3386 (France); Wahhaj, Zahed [European Southern Observatory, Av. Alonso de Córdova 3107, Vitacura, 19001 Santiago (Chile)

    2015-06-20

    It is thought that planetary mass companions may form through gravitational disk instabilities or core accretion. Identifying such objects in the process of formation would provide the most direct test for the competing formation theories. One of the most promising candidates for a planetary mass object still in formation is the third object in the FW Tau system. We present here ALMA cycle 1 observations confirming the recently published 1.3 mm detection of a dust disk around this third object and present for the first time a clear detection of a single peak {sup 12}CO (2–1) line, providing direct evidence for the simultaneous existence of a gas disk. We perform radiative transfer modeling of the third object in FW Tau and find that current observations are consistent with either a brown dwarf embedded in an edge-on disk or a planet embedded in a low inclination disk, which is externally irradiated by the binary companion. Further observations with ALMA, aiming for high SNR detections of non-contaminated gas lines, are required to conclusively unveil the nature of the third object in FW Tau.

  3. Committed warming inferred from observations and an energy balance model

    Science.gov (United States)

    Pincus, R.; Mauritsen, T.

    2017-12-01

    Due to the lifetime of CO2 and thermal inertia of the ocean, the Earth's climate is not equilibrated with anthropogenic forcing. As a result, even if fossil fuel emissions were to suddenly cease, some level of committed warming is expected due to past emissions. Here, we provide an observational-based quantification of this committed warming using the instrument record of global-mean warming, recently-improved estimates of Earth's energy imbalance, and estimates of radiative forcing from the fifth IPCC assessment report. Compared to pre-industrial levels, we find a committed warming of 1.5K [0.9-3.6, 5-95 percentile] at equilibrium, and of 1.3K [0.9-2.3] within this century. However, when assuming that ocean carbon uptake cancels remnant greenhouse gas-induced warming on centennial timescales, committed warming is reduced to 1.1K [0.7-1.8]. Conservatively, there is a 32% risk that committed warming already exceeds the 1.5K target set in Paris, and that this will likely be crossed prior to 2053. Regular updates of these observationally-constrained committed warming estimates, though simplistic, can provide transparent guidance as uncertainty regarding transient climate sensitivity inevitably narrows and understanding the limitations of the framework is advanced.

  4. Development of a Symptom-Based Patient-Reported Outcome Instrument for Functional Dyspepsia: A Preliminary Conceptual Model and an Evaluation of the Adequacy of Existing Instruments.

    Science.gov (United States)

    Taylor, Fiona; Reasner, David S; Carson, Robyn T; Deal, Linda S; Foley, Catherine; Iovin, Ramon; Lundy, J Jason; Pompilus, Farrah; Shields, Alan L; Silberg, Debra G

    2016-10-01

    The aim was to document, from the perspective of the empirical literature, the primary symptoms of functional dyspepsia (FD), evaluate the extent to which existing questionnaires target those symptoms, and, finally, identify any missing evidence that would impact the questionnaires' use in regulated clinical trials to assess treatment efficacy claims intended for product labeling. A literature review was conducted to identify the primary symptoms of FD and existing symptom-based FD patient-reported outcome (PRO) instruments. Following a database search, abstracts were screened and articles were retrieved for review. The primary symptoms of FD were organized into a conceptual model and the PRO instruments were evaluated for conceptual coverage as well as compared against evidentiary requirements presented in the FDA's PRO Guidance for Industry. Fifty-six articles and 16 instruments assessing FD symptoms were reviewed. Concepts listed in the Rome III criteria for FD (n = 7), those assessed by existing FD instruments (n = 34), and symptoms reported by patients in published qualitative research (n = 6) were summarized in the FD conceptual model. Except for vomiting, all of the identified symptoms from the published qualitative research reports were also specified in the Rome III criteria. Only three of the 16 instruments, the Dyspepsia Symptom Severity Index (DSSI), Nepean Dyspepsia Index (NDI), and Short-Form Nepean Dyspepsia Index (SF-NDI), measure all seven FD symptoms defined by the Rome III criteria. Among these three, each utilizes a 2-week recall period and 5-point Likert-type scale, and had evidence of patient involvement in development. Despite their coverage, when these instruments were evaluated in light of regulatory expectations, several issues jeopardized their potential qualification for substantiation of a labeling claim. No existing PRO instruments that measured all seven symptoms adhered to the regulatory principles necessary to support product

  5. Modelling the widths of fission observables in GEF

    Directory of Open Access Journals (Sweden)

    Schmidt K.-H.

    2013-03-01

    Full Text Available The widths of the mass distributions of the different fission channels are traced back to the probability distributions of the corresponding quantum oscillators that are coupled to the heat bath, which is formed by the intrinsic degrees of freedom of the fissioning system under the influence of pairing correlations and shell effects. Following conclusion from stochastic calculations of Adeev and Pashkevich, an early freezing due to dynamical effects is assumed. It is shown that the mass width of the fission channels in low-energy fission is strongly influenced by the zero-point motion of the corresponding quantum oscillator. The observed variation of the mass widths of the asymmetric fission channels with excitation energy is attributed to the energy-dependent properties of the heat bath and not to the population of excited states of the corresponding quantum oscillator.

  6. Observation and modelling of the Fe XXI line profile observed by IRIS during the impulsive phase of flares

    Science.gov (United States)

    Polito, V.; Testa, P.; De Pontieu, B.; Allred, J. C.

    2017-12-01

    The observation of the high temperature (above 10 MK) Fe XXI 1354.1 A line with the Interface Region Imaging Spectrograph (IRIS) has provided significant insights into the chromospheric evaporation process in flares. In particular, the line is often observed to be completely blueshifted, in contrast to previous observations at lower spatial and spectral resolution, and in agreement with predictions from theoretical models. Interestingly, the line is also observed to be mostly symmetric and with a large excess above the thermal width. One popular interpretation for the excess broadening is given by assuming a superposition of flows from different loop strands. In this work, we perform a statistical analysis of Fe XXI line profiles observed by IRIS during the impulsive phase of flares and compare our results with hydrodynamic simulations of multi-thread flare loops performed with the 1D RADYN code. Our results indicate that the multi-thread models cannot easily reproduce the symmetry of the line and that some other physical process might need to be invoked in order to explain the observed profiles.

  7. Analysis and Modeling of Jovian Radio Emissions Observed by Galileo

    Science.gov (United States)

    Menietti, J. D.

    2003-01-01

    Our studies of Jovian radio emission have resulted in the publication of five papers in refereed journals, with three additional papers in progress. The topics of these papers include the study of narrow-band kilometric radio emission; the apparent control of radio emission by Callisto; quasi-periodic radio emission; hectometric attenuation lanes and their relationship to Io volcanic activity; and modeling of HOM attenuation lanes using ray tracing. A further study of the control of radio emission by Jovian satellites is currently in progress. Abstracts of each of these papers are contained in the Appendix. A list of the publication titles are also included.

  8. Conical Refraction: new observations and a dual cone model.

    Science.gov (United States)

    Sokolovskii, G S; Carnegie, D J; Kalkandjiev, T K; Rafailov, E U

    2013-05-06

    We propose a paraxial dual-cone model of conical refraction involving the interference of two cones of light behind the exit face of the crystal. The supporting experiment is based on beam selecting elements breaking down the conically refracted beam into two separate hollow cones which are symmetrical with one another. The shape of these cones of light is a product of a 'competition' between the divergence caused by the conical refraction and the convergence due to the focusing by the lens. The developed mathematical description of the conical refraction demonstrates an excellent agreement with experiment.

  9. A Model for Estimation of Rain Rate on Tropical Land from TRMM Microwave Imager Radiometer Observations

    Science.gov (United States)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Kim, Kyu-Myong

    2004-01-01

    Over the tropical land regions observations of the 85 GHz brightness temperature (T(sub 85v)) made by the TRMM Microwave Imager (TMI) radiometer when analyzed with the help of rain rate (R(sub pR)) deduced from the TRMM Precipitation Radar (PR) indicate that there are two maxima in rain rate. One strong maximum occurs when T(sub 85) has a value of about 220 K and the other weaker one when T(sub 85v) is much colder approx. 150 K. Together with the help of earlier studies based on airborne Doppler Radar observations and radiative transfer theoretical simulations, we infer the maximum near 220 K is a result of relatively weak scattering due to super cooled rain drops and water coated ice hydrometeors associated with a developing thunderstorm (Cb) that has a strong updraft. The other maximum is associated with strong scattering due to ice particles that are formed when the updraft collapses and the rain from the Cb is transit2oning from convective type to stratiform type. Incorporating these ideas and with a view to improve the estimation of rain rate from existing operational method applicable to the tropical land areas, we have developed a rain retrieval model. This model utilizes two parameters, that have a horizontal scale of approx. 20km, deduced from the TMI measurements at 19, 21 and 37 GHz (T(sub 19v), T(sub 21v), T(sub 37v). The third parameter in the model, namely the horizontal gradient of brightness temperature within the 20 km scale, is deduced from TMI measurements at 85 GHz. Utilizing these parameters our retrieval model is formulated to yield instantaneous rain rate on a scale of 20 km and seasonal average on a mesoscale that agree well with that of the PR.

  10. Augmenting an observation network to facilitate flow and transport model discrimination.

    Science.gov (United States)

    Improving understanding of subsurface conditions includes performance comparison for competing models, independently developed or obtained via model abstraction. The model comparison and discrimination can be improved if additional observations will be included. The objective of this work was to i...

  11. Droplet number uncertainties associated with CCN: an assessment using observations and a global model adjoint

    Directory of Open Access Journals (Sweden)

    R. H. Moore

    2013-04-01

    Full Text Available We use the Global Modelling Initiative (GMI chemical transport model with a cloud droplet parameterisation adjoint to quantify the sensitivity of cloud droplet number concentration to uncertainties in predicting CCN concentrations. Published CCN closure uncertainties for six different sets of simplifying compositional and mixing state assumptions are used as proxies for modelled CCN uncertainty arising from application of those scenarios. It is found that cloud droplet number concentrations (Nd are fairly insensitive to the number concentration (Na of aerosol which act as CCN over the continents (∂lnNd/∂lnNa ~10–30%, but the sensitivities exceed 70% in pristine regions such as the Alaskan Arctic and remote oceans. This means that CCN concentration uncertainties of 4–71% translate into only 1–23% uncertainty in cloud droplet number, on average. Since most of the anthropogenic indirect forcing is concentrated over the continents, this work shows that the application of Köhler theory and attendant simplifying assumptions in models is not a major source of uncertainty in predicting cloud droplet number or anthropogenic aerosol indirect forcing for the liquid, stratiform clouds simulated in these models. However, it does highlight the sensitivity of some remote areas to pollution brought into the region via long-range transport (e.g., biomass burning or from seasonal biogenic sources (e.g., phytoplankton as a source of dimethylsulfide in the southern oceans. Since these transient processes are not captured well by the climatological emissions inventories employed by current large-scale models, the uncertainties in aerosol-cloud interactions during these events could be much larger than those uncovered here. This finding motivates additional measurements in these pristine regions, for which few observations exist, to quantify the impact (and associated uncertainty of transient aerosol processes on cloud properties.

  12. Regional-Scale Climate Change: Observations and Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Raymond S; Diaz, Henry F

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, and we conducted studies of changes in phonological indicators based on various climatic thresholds.

  13. The 15 August 2007 Peru tsunami runup observations and modeling

    Science.gov (United States)

    Fritz, Hermann M.; Kalligeris, Nikos; Borrero, Jose C.; Broncano, Pablo; Ortega, Erick

    2008-05-01

    On 15 August 2007 an earthquake with moment magnitude (Mw) of 8.0 centered off the coast of central Peru, generated a tsunami with locally focused runup heights of up to10 m. A reconnaissance team was deployed two weeks after the event and investigated the tsunami effects at 51 sites. Three tsunami fatalities were reported south of the Paracas Peninsula in a sparsely populated desert area where the largest tsunami runup heights were measured. Numerical modeling of the earthquake source and tsunami suggest that a region of high slip near the coastline was primarily responsible for the extreme runup heights. The town of Pisco was spared by the Paracas Peninsula, which blocked tsunami waves from propagating northward from the high slip region. The coast of Peru has experienced numerous deadly and destructive tsunamis throughout history, which highlights the importance of ongoing tsunami awareness and education efforts to ensure successful self-evacuation.

  14. Integrating observational and modelling systems for the management of the Great Barrier Reef

    Science.gov (United States)

    Baird, M. E.; Jones, E. M.; Margvelashvili, N.; Mongin, M.; Rizwi, F.; Robson, B.; Schroeder, T.; Skerratt, J.; Steven, A. D.; Wild-Allen, K.

    2016-02-01

    Observational and modelling systems provide two sources of knowledge that must be combined to provide a more complete view than either observations or models alone can provide. Here we describe the eReefs coupled hydrodynamic, sediment and biogeochemical model that has been developed for the Great Barrier Reef; and the multiple observations that are used to constrain the model. Two contrasting examples of model - observational integration are highlighted. First we explore the carbon chemistry of the waters above the reef, for which observations are accurate, but expensive and therefore sparse, while model behaviour is highly skilful. For carbon chemistry, observations are used to constrain model parameterisation and quantify model error, with the model output itself providing the most useable knowledge for management purposes. In contrast, ocean colour provides inaccurate, but cheap and spatially and temporally extensive observations. Thus observations are best combined with the model in a data assimilating framework, where a custom-designed optical model has been developed for the purposes of incorporating ocean colour observations. The future management of Great Barrier Reef water quality will be based on an integration of observing and modelling systems, providing the most robust information available.

  15. Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling

    Directory of Open Access Journals (Sweden)

    A. Budishchev

    2014-09-01

    Full Text Available Most plot-scale methane emission models – of which many have been developed in the recent past – are validated using data collected with the closed-chamber technique. This method, however, suffers from a low spatial representativeness and a poor temporal resolution. Also, during a chamber-flux measurement the air within a chamber is separated from the ambient atmosphere, which negates the influence of wind on emissions. Additionally, some methane models are validated by upscaling fluxes based on the area-weighted averages of modelled fluxes, and by comparing those to the eddy covariance (EC flux. This technique is rather inaccurate, as the area of upscaling might be different from the EC tower footprint, therefore introducing significant mismatch. In this study, we present an approach to validate plot-scale methane models with EC observations using the footprint-weighted average method. Our results show that the fluxes obtained by the footprint-weighted average method are of the same magnitude as the EC flux. More importantly, the temporal dynamics of the EC flux on a daily timescale are also captured (r2 = 0.7. In contrast, using the area-weighted average method yielded a low (r2 = 0.14 correlation with the EC measurements. This shows that the footprint-weighted average method is preferable when validating methane emission models with EC fluxes for areas with a heterogeneous and irregular vegetation pattern.

  16. Climate sciences, observation and modelling: an historical perspective

    International Nuclear Information System (INIS)

    Morel, P.; Le Treut, H.; Charles, L.

    2013-01-01

    At a time when the public perception of climate change is recovering from the controversies and vocal dissent aired during the recent years, we thought it would be interesting to begin this special issue with an interview of Pierre Morel. As the originator of physical climate studies in France, he established and led (until 1975) the Dynamic Meteorology Laboratory of CNRS, a component of the Pierre-Simon Laplace Institute (IPSL), which has become the focus of climate research in France. However his professional activities were pursued largely in an international context. Alumnus of Ecole Normale Superieure in Paris, physicist, first director of scientific research and advanced technology programs in the French space agency CNES from 1962 to 1964 and then Professor at the University of Paris, he specialized in the field of geophysical fluid dynamics. In 1967, he became a member of the international Joint Organizing Committee for the Global Atmospheric Research Programme (GARP) and eventually vice-chairman of the Committee until 1982. He conceived and promoted a number of satellite projects, in particular the operational ARGOS navigation and data collection System on NOAA polar-orbiting meteorological satellites and the European geostationary meteorological satellite Meteosat. In 1982, he became the first director of the international World Climate Research Programme that followed upon GARP and continued in this function until 1994. He then joined NASA Headquarters in the capacity as Senior Visiting Scientist in the Office of Mission to Planet Earth. This unorthodox professional career gave Pierre Morel an exceptionally broad, possibly unmatched, view of all facets of climate science and global observations. Herve Le Treut, with whom this interview was prepared and conducted, is the current director of IPSL, a member of the French Academy of Sciences, and professor at Ecole Polytechnique and University Pierre and Marie Curie of Paris. We are grateful to both for

  17. New insights on geomagnetic storms from observations and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jordanova, Vania K [Los Alamos National Laboratory

    2009-01-01

    Understanding the response at Earth of the Sun's varying energy output and forecasting geomagnetic activity is of central interest to space science, since intense geomagnetic storms may cause severe damages on technological systems and affect communications. Episodes of southward (Bzmodel (RAM), and investigate the mechanisms responsible for trapping particles and for causing their loss. We find that periods of increased magnetospheric convection coinciding with enhancements of plasma sheet density are needed for strong ring current buildup. During the HSS-driven storm the convection potential is highly variable and causes small sporadic injections into the ring current. The long period of enhanced convection during the CME-driven storm causes a continuous ring current injection penetrating to lower L shells and stronger ring current buildup.

  18. Benthic boundary layer. IOS observational and modelling programme

    International Nuclear Information System (INIS)

    Saunders, P.M.; Richards, K.J.

    1985-01-01

    Near bottom currents, measured at three sites in the N.E. Atlantic, reveal the eddying characteristics of the flow. Eddies develop, migrate and decay in ways best revealed by numerical modelling simulations. Eddies control the thickness of the bottom mixed layer by accumulating and thickening or spreading and thinning the bottom waters. At the boundaries of eddies benthic fronts form providing a path for upward displacement of the bottom water. An experiment designed to estimate vertical diffusivity is performed. The flux of heat into the bottom of the Iberian basin through Discovery Gap is deduced from year long current measurements. The flux is supposed balanced by geothermal heating through the sea floor and diapycnal diffusion in the water. A diffusivity of 1.5 to 4 cm 2 s -1 is derived for the bottom few hundred meters of the deep ocean. Experiments to estimate horizontal diffusivity are described. If a tracer is discharged from the sea bed the volume of sea water in which it is found increases with time and after 20 years will fill an ocean basin of side 1000 km to a depth of only 1 to 2 km. (author)

  19. The interplay between rheology and pre-existing structures in the lithosphere and its influence on intraplate tectonics: Insights from scaled physical analogue models.

    Science.gov (United States)

    Santimano, T. N.; Adiban, P.; Pysklywec, R.

    2017-12-01

    The primary controls of deformation in the lithosphere are related to its rheological properties. In addition, recent work reveals that inherited zones of weakness in the deep lithosphere are prevalent and can also define tectonic activity. To understand how deformation is genetically related to rheology and/or pre-existing structures, we compare a set of physical analogue models with the presence and absence of a fault in the deep lithosphere. The layered lithosphere scaled models of a brittle upper crust, viscous lower crust and viscous mantle lithosphere are deformed in a convergent setting. Deformation of the model is recorded using high spatial and temporal stereoscopic cameras. We use Particle Image Velocimetry (PIV) to acquire a time-series dataset and study the velocity field and subsequently strain in the model. The finished model is also cut into cross-section revealing the finite internal structures that are then compared to the topography of the model. Preliminary results show that deformation in models with an inherited fault in the mantle lithosphere is accommodated by displacement along the fault plane that propagates into the overlying viscous lower crust and brittle upper crust. Here, the majority of the deformation is localized along the fault in a brittle manner. This is in contrast to the model absent of a fault that also displays significant amounts of deformation. In this setting, ductile deformation is accommodated by folding and thickening of the viscous layers and flexural shearing of the brittle upper crust. In these preliminary experiments, the difference in the strength profile between the mantle lithosphere and the lower crust is within the same order of magnitude. Future experiments will include models where the strength difference is an order of magnitude. This systematic study aids in understanding the role of rheology and deep structures particularly in transferring stress over time to the surface and is therefore fundamental in

  20. Enhancing Earth Observation and Modeling for Tsunami Disaster Response and Management

    Science.gov (United States)

    Koshimura, Shunichi; Post, Joachim

    2017-04-01

    In the aftermath of catastrophic natural disasters, such as earthquakes and tsunamis, our society has experienced significant difficulties in assessing disaster impact in the limited amount of time. In recent years, the quality of satellite sensors and access to and use of satellite imagery and services has greatly improved. More and more space agencies have embraced data-sharing policies that facilitate access to archived and up-to-date imagery. Tremendous progress has been achieved through the continuous development of powerful algorithms and software packages to manage and process geospatial data and to disseminate imagery and geospatial datasets in near-real time via geo-web-services, which can be used in disaster-risk management and emergency response efforts. Satellite Earth observations now offer consistent coverage and scope to provide a synoptic overview of large areas, repeated regularly. These can be used to compare risk across different countries, day and night, in all weather conditions, and in trans-boundary areas. On the other hand, with use of modern computing power and advanced sensor networks, the great advances of real-time simulation have been achieved. The data and information derived from satellite Earth observations, integrated with in situ information and simulation modeling provides unique value and the necessary complement to socio-economic data. Emphasis also needs to be placed on ensuring space-based data and information are used in existing and planned national and local disaster risk management systems, together with other data and information sources as a way to strengthen the resilience of communities. Through the case studies of the 2011 Great East Japan earthquake and tsunami disaster, we aim to discuss how earth observations and modeling, in combination with local, in situ data and information sources, can support the decision-making process before, during and after a disaster strikes.

  1. Magnetospheric pulsations: Models and observations of compressional waves

    International Nuclear Information System (INIS)

    Zhu, Xiaoming.

    1989-01-01

    The first part of the dissertation models ultralow frequency (ULF) waves in a simplified geometry in order to understand the physics of the mode coupling between the compressional and shear Alfven waves in an inhomogeneous magnetized plasma. Wave mode coupling occurs when a field line resonant frequency (defined by the shear Alfven mode) matches the global mode frequency (defined by the compressional mode). Large wave amplitudes occur near the resonant field line. Although the wave amplitude of the global mode is small away from resonant field lines, significant wave energy is stored in the wave mode due to its large scale nature. It serves as a reservoir to continuously feed energy to resonant field lines. This mechanism may explain why some field line resonances can last for times longer than that predicted from the ionospheric Joule dissipation. A nonmonotonic Alfven velocity divides the magnetosphere into two or more cavities by the local maxima of the Alfven velocity. The global mode is typically localized in one of the cavities except at some preferred frequencies, the global mode can extend through more than one cavity. This may explain ULF wave excitations in the low latitude magnetosphere. The second part of the dissertation is devoted to study compressional waves in the outer magnetosphere using magnetic field and plasma data. Statistical information on the distribution of compressional Pc 5 waves in the outer magnetosphere is obtained. Large amplitude, long period compressional Pc 5 pulsations are found very common near the magnetic equator. They are polarized mainly in a meridian plane with comparable compressional and transverse amplitudes. Close correlation between compressional wave amplitude and plasma β is also found. Several case studies show that compressional waves are quenched in the region where β < 1

  2. ANN Model for Predicting the Impact of Submerged Aquatic Weeds Existence on the Hydraulic Performance of Branched Open Channel System Accompanied by Water Structures

    International Nuclear Information System (INIS)

    Abdeen, Mostafa A. M.; Abdin, Alla E.

    2007-01-01

    The existence of hydraulic structures in a branched open channel system urges the need for considering the gradually varied flow criterion in evaluating the different hydraulic characteristics in this type of open channel system. Computations of hydraulic characteristics such as flow rates and water surface profiles in branched open channel system with hydraulic structures require tremendous numerical effort especially when the flow cannot be assumed uniform. In addition, the existence of submerged aquatic weeds in this branched open channel system adds to the complexity of the evaluation of the different hydraulic characteristics for this system. However, this existence of aquatic weeds can not be neglected since it is very common in Egyptian open channel systems. Artificial Neural Network (ANN) has been widely utilized in the past decade in civil engineering applications for the simulation and prediction of the different physical phenomena and has proven its capabilities in the different fields. The present study aims towards introducing the use of ANN technique to model and predict the impact of submerged aquatic weeds existence on the hydraulic performance of branched open channel system. Specifically the current paper investigates a branched open channel system that consists of main channel supplies water to two branch channels that are infested by submerged aquatic weeds and have water structures such as clear over fall weirs and sluice gates. The results of this study showed that ANN technique was capable, with small computational effort and high accuracy, of predicting the impact of different infestation percentage for submerged aquatic weeds on the hydraulic performance of branched open channel system with two different hydraulic structures

  3. Existence of dark matter with observed properties of cosmic microwave background radiation substantiates three conservation laws of classical physics and all principles of quantum mechanics as creates the value of Planck’s constant

    Science.gov (United States)

    Boriev, I. A.

    2018-03-01

    Astronomical data indicate a presence of dark matter (DM) in the space, what is necessary for explanation of observed dynamics of the galaxies within Newtonian mechanics. DM, at its very low density (∼10-26kg/m3), constitutes main part of the matter in the Universe, 10 times the mass of all visible cosmic bodies. No doubt, namely properties of DM, which fills space, must determine its physical properties and fundamental physical laws. Taking into account observed properties of cosmic microwave background radiation (CMBR), whose energy is ∼90% of all cosmic radiation, and understanding that this radiation is produced by DM motion, conservation laws of classical physics and principles of quantum mechanics receive their materialistic substantiation. Thus, CMBR high homogeneity and isotropy (∼10-4), and hence the same properties of DM (and space) justify momentum and angular momentum conservation laws, respectively, according to E. Noether's theorems. CMBR has black body spectrum at ∼2.7K with maximum wavelength ∼1.9·10-3m, what allows calculate the value of mechanical action produced by DM thermal motion (∼7·10-34 J·s). This value corresponds well to the Planck’s constant, which is the mechanical action too, what gives materialistic basis for all principles of quantum mechanics. Obtained results directly confirm the reality of DM existence, and show that CMBR is an observed display of DM thermal motion. Understanding that namely from DM occur known creation of electron-positron pairs as contrarily rotating material vortexes (according to their spins) let substantiate positron nature of ball lightning what first explains all its observed specific properties.

  4. An observational and modeling study of the August 2017 Florida climate extreme event.

    Science.gov (United States)

    Konduru, R.; Singh, V.; Routray, A.

    2017-12-01

    A special report on the climate extremes by the Intergovernmental Panel on Climate Change (IPCC) elucidates that the sole cause of disasters is due to the exposure and vulnerability of the human and natural system to the climate extremes. The cause of such a climate extreme could be anthropogenic or non-anthropogenic. Therefore, it is challenging to discern the critical factor of influence for a particular climate extreme. Such kind of perceptive study with reasonable confidence on climate extreme events is possible only if there exist any past case studies. A similar rarest climate extreme problem encountered in the case of Houston floods and extreme rainfall over Florida in August 2017. A continuum of hurricanes like Harvey and Irma targeted the Florida region and caused catastrophe. Due to the rarity of August 2017 Florida climate extreme event, it requires the in-depth study on this case. To understand the multi-faceted nature of the event, a study on the development of the Harvey hurricane and its progression and dynamics is significant. Current article focus on the observational and modeling study on the Harvey hurricane. A global model named as NCUM (The global UK Met office Unified Model (UM) operational at National Center for Medium Range Weather Forecasting, India, was utilized to simulate the Harvey hurricane. The simulated rainfall and wind fields were compared with the observational datasets like Tropical Rainfall Measuring Mission rainfall datasets and Era-Interim wind fields. The National Centre for Environmental Prediction (NCEP) automated tracking system was utilized to track the Harvey hurricane, and the tracks were analyzed statistically for different forecasts concerning the Harvey hurricane track of Joint Typhon Warning Centre. Further, the current study will be continued to investigate the atmospheric processes involved in the August 2017 Florida climate extreme event.

  5. Improved Analysis of Earth System Models and Observations using Simple Climate Models

    Science.gov (United States)

    Nadiga, B. T.; Urban, N. M.

    2016-12-01

    both ESM experiments and actual observations are presented. One such result points to the importance of direct sequestration of heat below 700 m, a process that is not allowed for in the simple models that have been traditionally used to deduce climate sensitivity.

  6. Requirements for existing buildings

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Wittchen, Kim Bjarne

    This report collects energy performance requirements for existing buildings in European member states by June 2012.......This report collects energy performance requirements for existing buildings in European member states by June 2012....

  7. Greening Existing Tribal Buildings

    Science.gov (United States)

    Guidance about improving sustainability in existing tribal casinos and manufactured homes. Many steps can be taken to make existing buildings greener and healthier. They may also reduce utility and medical costs.

  8. Few promising multivariable prognostic models exist for recovery of people with non-specific neck pain in musculoskeletal primary care: a systematic review.

    Science.gov (United States)

    Wingbermühle, Roel W; van Trijffel, Emiel; Nelissen, Paul M; Koes, Bart; Verhagen, Arianne P

    2018-01-01

    Which multivariable prognostic model(s) for recovery in people with neck pain can be used in primary care? Systematic review of studies evaluating multivariable prognostic models. People with non-specific neck pain presenting at primary care. Baseline characteristics of the participants. Recovery measured as pain reduction, reduced disability, or perceived recovery at short-term and long-term follow-up. Fifty-three publications were included, of which 46 were derivation studies, four were validation studies, and three concerned combined studies. The derivation studies presented 99 multivariate models, all of which were at high risk of bias. Three externally validated models generated usable models in low risk of bias studies. One predicted recovery in non-specific neck pain, while two concerned participants with whiplash-associated disorders (WAD). Discriminative ability of the non-specific neck pain model was area under the curve (AUC) 0.65 (95% CI 0.59 to 0.71). For the first WAD model, discriminative ability was AUC 0.85 (95% CI 0.79 to 0.91). For the second WAD model, specificity was 99% (95% CI 93 to 100) and sensitivity was 44% (95% CI 23 to 65) for prediction of non-recovery, and 86% (95% CI 73 to 94) and 55% (95% CI 41 to 69) for prediction of recovery, respectively. Initial Neck Disability Index scores and age were identified as consistent prognostic factors in these three models. Three externally validated models were found to be usable and to have low risk of bias, of which two showed acceptable discriminative properties for predicting recovery in people with neck pain. These three models need further validation and evaluation of their clinical impact before their broad clinical use can be advocated. PROSPERO CRD42016042204. [Wingbermühle RW, van Trijffel E, Nelissen PM, Koes B, Verhagen AP (2018) Few promising multivariable prognostic models exist for recovery of people with non-specific neck pain in musculoskeletal primary care: a systematic review

  9. Error detection in GPS observations by means of Multi-process models

    DEFF Research Database (Denmark)

    Thomsen, Henrik F.

    2001-01-01

    The main purpose of this article is to present the idea of using Multi-process models as a method of detecting errors in GPS observations. The theory behind Multi-process models, and double differenced phase observations in GPS is presented shortly. It is shown how to model cycle slips in the Mul...

  10. Generalised linear models for correlated pseudo-observations, with applications to multi-state models

    DEFF Research Database (Denmark)

    Andersen, Per Kragh; Klein, John P.; Rosthøj, Susanne

    2003-01-01

    Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model......Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model...

  11. Estimating the average treatment effect on survival based on observational data and using partly conditional modeling.

    Science.gov (United States)

    Gong, Qi; Schaubel, Douglas E

    2017-03-01

    Treatments are frequently evaluated in terms of their effect on patient survival. In settings where randomization of treatment is not feasible, observational data are employed, necessitating correction for covariate imbalances. Treatments are usually compared using a hazard ratio. Most existing methods which quantify the treatment effect through the survival function are applicable to treatments assigned at time 0. In the data structure of our interest, subjects typically begin follow-up untreated; time-until-treatment, and the pretreatment death hazard are both heavily influenced by longitudinal covariates; and subjects may experience periods of treatment ineligibility. We propose semiparametric methods for estimating the average difference in restricted mean survival time attributable to a time-dependent treatment, the average effect of treatment among the treated, under current treatment assignment patterns. The pre- and posttreatment models are partly conditional, in that they use the covariate history up to the time of treatment. The pre-treatment model is estimated through recently developed landmark analysis methods. For each treated patient, fitted pre- and posttreatment survival curves are projected out, then averaged in a manner which accounts for the censoring of treatment times. Asymptotic properties are derived and evaluated through simulation. The proposed methods are applied to liver transplant data in order to estimate the effect of liver transplantation on survival among transplant recipients under current practice patterns. © 2016, The International Biometric Society.

  12. An integrative neural model of social perception, action observation, and theory of mind

    Science.gov (United States)

    Yang, Daniel Y.-J.; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A.

    2016-01-01

    In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder. PMID:25660957

  13. A New Metric for Land-Atmosphere Coupling Strength: Applications on Observations and Modeling

    Science.gov (United States)

    Tang, Q.; Xie, S.; Zhang, Y.; Phillips, T. J.; Santanello, J. A., Jr.; Cook, D. R.; Riihimaki, L.; Gaustad, K.

    2017-12-01

    A new metric is proposed to quantify the land-atmosphere (LA) coupling strength and is elaborated by correlating the surface evaporative fraction and impacting land and atmosphere variables (e.g., soil moisture, vegetation, and radiation). Based upon multiple linear regression, this approach simultaneously considers multiple factors and thus represents complex LA coupling mechanisms better than existing single variable metrics. The standardized regression coefficients quantify the relative contributions from individual drivers in a consistent manner, avoiding the potential inconsistency in relative influence of conventional metrics. Moreover, the unique expendable feature of the new method allows us to verify and explore potentially important coupling mechanisms. Our observation-based application of the new metric shows moderate coupling with large spatial variations at the U.S. Southern Great Plains. The relative importance of soil moisture vs. vegetation varies by location. We also show that LA coupling strength is generally underestimated by single variable methods due to their incompleteness. We also apply this new metric to evaluate the representation of LA coupling in the Accelerated Climate Modeling for Energy (ACME) V1 Contiguous United States (CONUS) regionally refined model (RRM). This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-734201

  14. An integrative neural model of social perception, action observation, and theory of mind.

    Science.gov (United States)

    Yang, Daniel Y-J; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A

    2015-04-01

    In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Warm and cold molecular gas conditions modeled in 87 galaxies observed by the Herschel SPIRE FTS

    Science.gov (United States)

    Kamenetzky, Julia; Rangwala, Naseem; Glenn, Jason

    2018-01-01

    Molecular gas is the raw material for star formation, and like the interstellar medium (ISM) in general, it can exist in regions of higher and lower excitation. Rotational transitions of the CO molecule are bright and sensitive to cold molecular gas. While the majority of the molecular gas exists in the very cold component traced by CO J=1-0, the higher-J lines trace the highly excited gas that may be more indicative of star formation processes. The atmosphere is opaque to these lines, but the launch of the Herschel Space Observatory made them accessible for study of Galactic and extragalactic sources. We have conducted two-component, non-local thermodynamic equilibrium (non-LTE) modeling of the CO lines from J=1‑0 through J=13‑12 in 87 galaxies observed by the Herschel SPIRE Fourier Transform Spectrometer (FTS). We used the nested sampling algorithm Multinest to compare the measured CO spectral line energy distributions (SLEDs) to the ones produced by a custom version of the non-LTE code RADEX. This allowed us to fully examine the degeneracies in parameter space for kinetic temperature, molecular gas density, CO column density, and area filling factor.Here we discuss the major findings of our study, as well as the important implications of two-component molecular gas modeling. The average pressure of the warm gas is slightly correlated with galaxy LFIR, but that of the cold gas is not. A high-J (such as J=11-10) to J=1-0 line ratio is diagnostic of warm component pressure. We find a very large spread in our derived values of "alpha-CO," with no discernable trend with LFIR, and average molecular gas depletion times that decrease with LFIR. If only a few molecular lines are available in a galaxy's SLED, the limited ability to model only one component will change the results. A one-component fit often underestimates the flux of carbon monoxide (CO) J=1‑0 and the mass. If low-J lines are not included, mass is underestimated by an order of magnitude. Even when

  16. Reconciling laboratory and observational models of mantle rheology in geodynamic modelling

    Science.gov (United States)

    King, Scott D.

    2016-10-01

    Experimental and geophysical observations constraining mantle rheology are reviewed with an emphasis on their impact on mantle geodynamic modelling. For olivine, the most studied and best-constrained mantle mineral, the tradeoffs associated with the uncertainties in the activation energy, activation volume, grain-size and water content allow the construction of upper mantle rheology models ranging from nearly uniform with depth to linearly increasing from the base of the lithosphere to the top of the transition zone. Radial rheology models derived from geophysical observations allow for either a weak upper mantle or a weak transition zone. Experimental constraints show that wadsleyite and ringwoodite are stronger than olivine at the top of the transition zone; however the uncertainty in the concentration of water in the transition zone precludes ruling out a weak transition zone. Both observational and experimental constraints allow for strong or weak slabs and the most promising constraints on slab rheology may come from comparing inferred slab geometry from seismic tomography with systematic studies of slab morphology from dynamic models. Experimental constraints on perovskite and ferropericlase strength are consistent with general feature of rheology models derived from geophysical observations and suggest that the increase in viscosity through the top of the upper mantle could be due to the increase in the strength of ferropericlase from 20-65 GPa. The decrease in viscosity in the bottom half of the lower mantle could be the result of approaching the melting temperature of perovskite. Both lines of research are consistent with a high-viscosity lithosphere, a low viscosity either in the upper mantle or transition zone, and high viscosity in the lower mantle, increasing through the upper half of the lower mantle and decreasing in the bottom half of the lower mantle, with a low viscosity above the core. Significant regions of the mantle, including high

  17. Modeling and Monitoring Terrestrial Primary Production in a Changing Global Environment: Toward a Multiscale Synthesis of Observation and Simulation

    Directory of Open Access Journals (Sweden)

    Shufen Pan

    2014-01-01

    Full Text Available There is a critical need to monitor and predict terrestrial primary production, the key indicator of ecosystem functioning, in a changing global environment. Here we provide a brief review of three major approaches to monitoring and predicting terrestrial primary production: (1 ground-based field measurements, (2 satellite-based observations, and (3 process-based ecosystem modelling. Much uncertainty exists in the multi-approach estimations of terrestrial gross primary production (GPP and net primary production (NPP. To improve the capacity of model simulation and prediction, it is essential to evaluate ecosystem models against ground and satellite-based measurements and observations. As a case, we have shown the performance of the dynamic land ecosystem model (DLEM at various scales from site to region to global. We also discuss how terrestrial primary production might respond to climate change and increasing atmospheric CO2 and uncertainties associated with model and data. Further progress in monitoring and predicting terrestrial primary production requires a multiscale synthesis of observations and model simulations. In the Anthropocene era in which human activity has indeed changed the Earth’s biosphere, therefore, it is essential to incorporate the socioeconomic component into terrestrial ecosystem models for accurately estimating and predicting terrestrial primary production in a changing global environment.

  18. Evaluation of main control room habitability in Japanese LWR (2). Evaluation for applicability of existing atmospheric dispersion models to building wake dispersion by using wind tunnel experiment

    International Nuclear Information System (INIS)

    Fukuda, Ryo; Fujita, Yuko; Yoneda, Jiro; Okabayashi, Kazuki; Tabuse, Shigehiko; Watada, Masayuki

    2009-01-01

    dispersion effect exists behind a building. Regarding the degree of meandering effect with dispersion by a building, however, the further investigation would still be necessary for a conclusion. At an additional experiment with a model of a higher release point similar to BWR LOCA showed no significant dispersion effect behind a building. The prediction of both of past and recent prediction models did not show an enough good agreement with this experimental data. The configuration coefficient by Gifford model, only predicting the experiment with PWR LOCA, was widely ranged between 0.1 and 1.0 on the roof of the building. (author)

  19. Updating flood maps efficiently using existing hydraulic models, very-high-accuracy elevation data, and a geographic information system; a pilot study on the Nisqually River, Washington

    Science.gov (United States)

    Jones, Joseph L.; Haluska, Tana L.; Kresch, David L.

    2001-01-01

    A method of updating flood inundation maps at a fraction of the expense of using traditional methods was piloted in Washington State as part of the U.S. Geological Survey Urban Geologic and Hydrologic Hazards Initiative. Large savings in expense may be achieved by building upon previous Flood Insurance Studies and automating the process of flood delineation with a Geographic Information System (GIS); increases in accuracy and detail result from the use of very-high-accuracy elevation data and automated delineation; and the resulting digital data sets contain valuable ancillary information such as flood depth, as well as greatly facilitating map storage and utility. The method consists of creating stage-discharge relations from the archived output of the existing hydraulic model, using these relations to create updated flood stages for recalculated flood discharges, and using a GIS to automate the map generation process. Many of the effective flood maps were created in the late 1970?s and early 1980?s, and suffer from a number of well recognized deficiencies such as out-of-date or inaccurate estimates of discharges for selected recurrence intervals, changes in basin characteristics, and relatively low quality elevation data used for flood delineation. FEMA estimates that 45 percent of effective maps are over 10 years old (FEMA, 1997). Consequently, Congress has mandated the updating and periodic review of existing maps, which have cost the Nation almost 3 billion (1997) dollars. The need to update maps and the cost of doing so were the primary motivations for piloting a more cost-effective and efficient updating method. New technologies such as Geographic Information Systems and LIDAR (Light Detection and Ranging) elevation mapping are key to improving the efficiency of flood map updating, but they also improve the accuracy, detail, and usefulness of the resulting digital flood maps. GISs produce digital maps without manual estimation of inundated areas between

  20. Enhanced online model identification and state of charge estimation for lithium-ion battery with a FBCRLS based observer

    International Nuclear Information System (INIS)

    Wei, Zhongbao; Meng, Shujuan; Xiong, Binyu; Ji, Dongxu; Tseng, King Jet

    2016-01-01

    Highlights: • Integrated online model identification and SOC estimate is explored. • Noise variances are online estimated in a data-driven way. • Identification bias caused by noise corruption is attenuated. • SOC is online estimated with high accuracy and fast convergence. • Algorithm comparison shows the superiority of proposed method. - Abstract: State of charge (SOC) estimators with online identified battery model have proven to have high accuracy and better robustness due to the timely adaption of time varying model parameters. In this paper, we show that the common methods for model identification are intrinsically biased if both the current and voltage sensors are corrupted with noises. The uncertainties in battery model further degrade the accuracy and robustness of SOC estimate. To address this problem, this paper proposes a novel technique which integrates the Frisch scheme based bias compensating recursive least squares (FBCRLS) with a SOC observer for enhanced model identification and SOC estimate. The proposed method online estimates the noise statistics and compensates the noise effect so that the model parameters can be extracted without bias. The SOC is further estimated in real time with the online updated and unbiased battery model. Simulation and experimental studies show that the proposed FBCRLS based observer effectively attenuates the bias on model identification caused by noise contamination and as a consequence provides more reliable estimate on SOC. The proposed method is also compared with other existing methods to highlight its superiority in terms of accuracy and convergence speed.

  1. Spiral model of the Galaxy from observations of the interstellar light attenuation

    International Nuclear Information System (INIS)

    Urasin, L.A.

    1987-01-01

    The model of two arms spiral structure of the Galaxy is made from the observations of space distribution of the interstellar dust matter. This model is the logarithmic spiral with characteristic angle (pith) 6.5 deg

  2. EXPLORING THE ACCRETION MODEL OF M87 AND 3C 84 WITH THE FARADAY ROTATION MEASURE OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ya-Ping; Yuan, Feng; Xie, Fu-Guo, E-mail: fyuan@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2016-10-20

    Low-luminosity active galactic nuclei (LLAGNs) are believed to be powered by an accretion-jet model, consisting of an inner advection-dominated accretion flow (ADAF), an outer truncated standard thin disk, and a jet; however, model degeneracy still exists in this framework. For example, the X-ray emission can originate from either the ADAF or the jet. The aim of the present work is to check these models with the Faraday rotation measure (RM) observations recently detected for two LLAGNs, M87 and 3C 84, in the sub-mm band. For M87, we find that the RM predicted by the model in which the X-ray emission originates from the ADAF is larger than the observed upper limit of RM by over two orders of magnitude, while the model in which the X-ray emission originates from the jet predicts a RM lower than the observed upper limit. For 3C 84, the sub-mm emission is found to be dominated by the jet component, while the Faraday screen is attributed to the ADAFs. This scenario can naturally explain the observed external origin of the RM and why the RM is found to be stable during a two-year interval although the sub-mm emission increases at the same period.

  3. EXPLORING THE ACCRETION MODEL OF M87 AND 3C 84 WITH THE FARADAY ROTATION MEASURE OBSERVATIONS

    International Nuclear Information System (INIS)

    Li, Ya-Ping; Yuan, Feng; Xie, Fu-Guo

    2016-01-01

    Low-luminosity active galactic nuclei (LLAGNs) are believed to be powered by an accretion-jet model, consisting of an inner advection-dominated accretion flow (ADAF), an outer truncated standard thin disk, and a jet; however, model degeneracy still exists in this framework. For example, the X-ray emission can originate from either the ADAF or the jet. The aim of the present work is to check these models with the Faraday rotation measure (RM) observations recently detected for two LLAGNs, M87 and 3C 84, in the sub-mm band. For M87, we find that the RM predicted by the model in which the X-ray emission originates from the ADAF is larger than the observed upper limit of RM by over two orders of magnitude, while the model in which the X-ray emission originates from the jet predicts a RM lower than the observed upper limit. For 3C 84, the sub-mm emission is found to be dominated by the jet component, while the Faraday screen is attributed to the ADAFs. This scenario can naturally explain the observed external origin of the RM and why the RM is found to be stable during a two-year interval although the sub-mm emission increases at the same period.

  4. Exploring the Accretion Model of M87 and 3C 84 with the Faraday Rotation Measure Observations

    Science.gov (United States)

    Li, Ya-Ping; Yuan, Feng; Xie, Fu-Guo

    2016-10-01

    Low-luminosity active galactic nuclei (LLAGNs) are believed to be powered by an accretion-jet model, consisting of an inner advection-dominated accretion flow (ADAF), an outer truncated standard thin disk, and a jet; however, model degeneracy still exists in this framework. For example, the X-ray emission can originate from either the ADAF or the jet. The aim of the present work is to check these models with the Faraday rotation measure (RM) observations recently detected for two LLAGNs, M87 and 3C 84, in the sub-mm band. For M87, we find that the RM predicted by the model in which the X-ray emission originates from the ADAF is larger than the observed upper limit of RM by over two orders of magnitude, while the model in which the X-ray emission originates from the jet predicts a RM lower than the observed upper limit. For 3C 84, the sub-mm emission is found to be dominated by the jet component, while the Faraday screen is attributed to the ADAFs. This scenario can naturally explain the observed external origin of the RM and why the RM is found to be stable during a two-year interval although the sub-mm emission increases at the same period.

  5. Sensitivity of wetland methane emissions to model assumptions: application and model testing against site observations

    Directory of Open Access Journals (Sweden)

    L. Meng

    2012-07-01

    Full Text Available Methane emissions from natural wetlands and rice paddies constitute a large proportion of atmospheric methane, but the magnitude and year-to-year variation of these methane sources are still unpredictable. Here we describe and evaluate the integration of a methane biogeochemical model (CLM4Me; Riley et al., 2011 into the Community Land Model 4.0 (CLM4CN in order to better explain spatial and temporal variations in methane emissions. We test new functions for soil pH and redox potential that impact microbial methane production in soils. We also constrain aerenchyma in plants in always-inundated areas in order to better represent wetland vegetation. Satellite inundated fraction is explicitly prescribed in the model, because there are large differences between simulated fractional inundation and satellite observations, and thus we do not use CLM4-simulated hydrology to predict inundated areas. A rice paddy module is also incorporated into the model, where the fraction of land used for rice production is explicitly prescribed. The model is evaluated at the site level with vegetation cover and water table prescribed from measurements. Explicit site level evaluations of simulated methane emissions are quite different than evaluating the grid-cell averaged emissions against available measurements. Using a baseline set of parameter values, our model-estimated average global wetland emissions for the period 1993–2004 were 256 Tg CH4 yr−1 (including the soil sink and rice paddy emissions in the year 2000 were 42 Tg CH4 yr−1. Tropical wetlands contributed 201 Tg CH4 yr−1, or 78% of the global wetland flux. Northern latitude (>50 N systems contributed 12 Tg CH4 yr−1. However, sensitivity studies show a large range (150–346 Tg CH4 yr−1 in predicted global methane emissions (excluding emissions from rice paddies. The large range is

  6. Novel and existing data for a future physiological toxicokinetic model of ethylene and its metabolite ethylene oxide in mouse, rat, and human.

    Science.gov (United States)

    Filser, Johannes Georg; Artati, Anna; Li, Qiang; Pütz, Christian; Semder, Brigitte; Klein, Dominik; Kessler, Winfried

    2015-11-05

    The olefin ethylene is a ubiquitously found gas. It originates predominantly from plants, combustion processes and industrial sources. In mammals, inhaled ethylene is metabolized by cytochrome P450-dependent monooxygenases, particularly by cytochrome P450 2E1, to ethylene oxide, an epoxide that directly alkylates proteins and DNA. Ethylene oxide was mutagenic in vitro and in vivo in insects and mammals and carcinogenic in rats and mice. A physiological toxicokinetic model is a most useful tool for estimating the ethylene oxide burden in ethylene-exposed rodents and humans. The only published physiological toxicokinetic model for ethylene and metabolically produced ethylene oxide is discussed. Additionally, existing data required for the development of a future model and for testing its predictive accuracy are reviewed and extended by new gas uptake studies with ethylene and ethylene oxide in B6C3F1 mice and with ethylene in F344 rats. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  7. An Analytical Model for Assessing Stability of Pre-Existing Faults in Caprock Caused by Fluid Injection and Extraction in a Reservoir

    Science.gov (United States)

    Wang, Lei; Bai, Bing; Li, Xiaochun; Liu, Mingze; Wu, Haiqing; Hu, Shaobin

    2016-07-01

    Induced seismicity and fault reactivation associated with fluid injection and depletion were reported in hydrocarbon, geothermal, and waste fluid injection fields worldwide. Here, we establish an analytical model to assess fault reactivation surrounding a reservoir during fluid injection and extraction that considers the stress concentrations at the fault tips and the effects of fault length. In this model, induced stress analysis in a full-space under the plane strain condition is implemented based on Eshelby's theory of inclusions in terms of a homogeneous, isotropic, and poroelastic medium. The stress intensity factor concept in linear elastic fracture mechanics is adopted as an instability criterion for pre-existing faults in surrounding rocks. To characterize the fault reactivation caused by fluid injection and extraction, we define a new index, the "fault reactivation factor" η, which can be interpreted as an index of fault stability in response to fluid pressure changes per unit within a reservoir resulting from injection or extraction. The critical fluid pressure change within a reservoir is also determined by the superposition principle using the in situ stress surrounding a fault. Our parameter sensitivity analyses show that the fault reactivation tendency is strongly sensitive to fault location, fault length, fault dip angle, and Poisson's ratio of the surrounding rock. Our case study demonstrates that the proposed model focuses on the mechanical behavior of the whole fault, unlike the conventional methodologies. The proposed method can be applied to engineering cases related to injection and depletion within a reservoir owing to its efficient computational codes implementation.

  8. Simultaneous Estimation of Model State Variables and Observation and Forecast Biases Using a Two-Stage Hybrid Kalman Filter

    Science.gov (United States)

    Pauwels, V. R. N.; DeLannoy, G. J. M.; Hendricks Franssen, H.-J.; Vereecken, H.

    2013-01-01

    In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.

  9. Simultaneous estimation of model state variables and observation and forecast biases using a two-stage hybrid Kalman filter

    Directory of Open Access Journals (Sweden)

    V. R. N. Pauwels

    2013-09-01

    Full Text Available In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.

  10. Predicting detection performance with model observers: Fourier domain or spatial domain?

    Science.gov (United States)

    Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia

    2016-02-27

    The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images.

  11. On the Realistic Stochastic Model of GPS Observables: Implementation and Performance

    Science.gov (United States)

    Zangeneh-Nejad, F.; Amiri-Simkooei, A. R.; Sharifi, M. A.; Asgari, J.

    2015-12-01

    High-precision GPS positioning requires a realistic stochastic model of observables. A realistic GPS stochastic model of observables should take into account different variances for different observation types, correlations among different observables, the satellite elevation dependence of observables precision, and the temporal correlation of observables. Least-squares variance component estimation (LS-VCE) is applied to GPS observables using the geometry-based observation model (GBOM). To model the satellite elevation dependent of GPS observables precision, an exponential model depending on the elevation angles of the satellites are also employed. Temporal correlation of the GPS observables is modelled by using a first-order autoregressive noise model. An important step in the high-precision GPS positioning is double difference integer ambiguity resolution (IAR). The fraction or percentage of success among a number of integer ambiguity fixing is called the success rate. A realistic estimation of the GNSS observables covariance matrix plays an important role in the IAR. We consider the ambiguity resolution success rate for two cases, namely a nominal and a realistic stochastic model of the GPS observables using two GPS data sets collected by the Trimble R8 receiver. The results confirm that applying a more realistic stochastic model can significantly improve the IAR success rate on individual frequencies, either on L1 or on L2. An improvement of 20% was achieved to the empirical success rate results. The results also indicate that introducing the realistic stochastic model leads to a larger standard deviation for the baseline components by a factor of about 2.6 on the data sets considered.

  12. Do Elementary Particles Have an Objective Existence?

    OpenAIRE

    Nissenson, Bilha

    2007-01-01

    The formulation of quantum theory does not comply with the notion of objective existence of elementary particles. Objective existence independent of observation implies the distinguishability of elementary particles. In other words: If elementary particles have an objective existence independent of observations, then they are distinguishable. Or if elementary particles are indistinguishable then matter cannot have existence independent of our observation. This paper presents a simple deductio...

  13. Nonlinear observer design for a nonlinear string/cable FEM model using contraction theory

    DEFF Research Database (Denmark)

    Turkyilmaz, Yilmaz; Jouffroy, Jerome; Egeland, Olav

    model is presented in the form of partial differential equations (PDE). Galerkin's method is then applied to obtain a set of ordinary differential equations such that the cable model is approximated by a FEM model. Based on the FEM model, a nonlinear observer is designed to estimate the cable...

  14. A Study of the Carbon Cycle Using NASA Observations and the GEOS Model

    Science.gov (United States)

    Pawson, Steven; Gelaro, Ron; Ott, Lesley; Putman, Bill; Chatterjee, Abhishek; Koster, Randy; Lee, Eunjee; Oda, Tom; Weir, Brad; Zeng, Fanwei

    2018-01-01

    The Goddard Earth Observing System (GEOS) model has been developed in the Global Modeling and Assimilation Office (GMAO) at NASA's Goddard Space Flight Center. From its roots in chemical transport and as a General Circulation Model, the GEOS model has been extended to an Earth System Model based on a modular construction using the Earth System Modeling Framework (ESMF), combining elements developed in house in the GMAO with others that are imported through collaborative research. It is used extensively for research and for product generation, both as a free-running model and as the core of the GMAO's data assimilation system. In recent years, the GMAO's modeling and assimilation efforts have been strongly supported by Piers Sellers, building on both his earlier legacy as an observationally oriented model developer and his post-astronaut career as a dynamic leader into new territory. Piers' long-standing interest in the carbon cycle and the combination of models with observations motivates this presentation, which will focus on the representation of the carbon cycle in the GEOS Earth System Model. Examples will include: (i) the progression from specified land-atmosphere surface fluxes to computations with an interactive model component (Catchment-CN), along with constraints on vegetation distributions using satellite observations; (ii) the use of high-resolution satellite observations to constrain human-generated inputs to the atmosphere; (iii) studies of the consistency of the observed atmospheric carbon dioxide concentrations with those in the model simulations. The presentation will focus on year-to-year variations in elements of the carbon cycle, specifically on how the observations can inform the representation of mechanisms in the model and lead to integrity in global carbon dioxide simulations. Further, applications of the GEOS model to the planning of new carbon-climate observations will be addressed, as an example of the work that was strongly supported by

  15. Task Equivalence for Model and Human-Observer Comparisons in SPECT Localization Studies

    Science.gov (United States)

    Sen, Anando; Kalantari, Faraz; Gifford, Howard C.

    2016-06-01

    While mathematical model observers are intended for efficient assessment of medical imaging systems, their findings should be relevant for human observers as the primary clinical end users. We have investigated whether pursuing equivalence between the model and human-observer tasks can help ensure this goal. A localization receiver operating characteristic (LROC) study tested prostate lesion detection in simulated In-111 SPECT imaging with anthropomorphic phantoms. The test images were 2D slices extracted from reconstructed volumes. The iterative ordered sets expectation-maximization (OSEM) reconstruction algorithm was used with Gaussian postsmoothing. Variations in the number of iterations and the level of postfiltering defined the test strategies in the study. Human-observer performance was compared with that of a visual-search (VS) observer, a scanning channelized Hotelling observer, and a scanning channelized nonprewhitening (CNPW) observer. These model observers were applied with precise information about the target regions of interest (ROIs). ROI knowledge was a study variable for the human observers. In one study format, the humans read the SPECT image alone. With a dual-modality format, the SPECT image was presented alongside an anatomical image slice extracted from the density map of the phantom. Performance was scored by area under the LROC curve. The human observers performed significantly better with the dual-modality format, and correlation with the model observers was also improved. Given the human-observer data from the SPECT study format, the Pearson correlation coefficients for the model observers were 0.58 (VS), -0.12 (CH), and -0.23 (CNPW). The respective coefficients based on the human-observer data from the dual-modality study were 0.72, 0.27, and -0.11. These results point towards the continued development of the VS observer for enhancing task equivalence in model-observer studies.

  16. Disturbance observer-based L1 robust tracking control for hypersonic vehicles with T-S disturbance modeling

    Directory of Open Access Journals (Sweden)

    Yang Yi

    2016-11-01

    Full Text Available This article concerns a disturbance observer-based L1 robust anti-disturbance tracking algorithm for the longitudinal models of hypersonic flight vehicles with different kinds of unknown disturbances. On one hand, by applying T-S fuzzy models to represent those modeled disturbances, a disturbance observer relying on T-S disturbance models can be constructed to track the dynamics of exogenous disturbances. On the other hand, L1 index is introduced to analyze the attenuation performance of disturbance for those unmodeled disturbances. By utilizing the existing convex optimization algorithm, a disturbance observer-based proportional-integral-controlled input is proposed such that the stability of hypersonic flight vehicles can be ensured and the tracking error for velocity and altitude in hypersonic flight vehicle models can converge to equilibrium point. Furthermore, the satisfactory disturbance rejection and attenuation with L1 index can be obtained simultaneously. Simulation results on hypersonic flight vehicle models can reflect the feasibility and effectiveness of the proposed control algorithm.

  17. A comprehensive study on rotation reversal in KSTAR: experimental observations and modelling

    Science.gov (United States)

    Na, D. H.; Na, Yong-Su; Angioni, C.; Yang, S. M.; Kwon, J. M.; Jhang, Hogun; Camenen, Y.; Lee, S. G.; Shi, Y. J.; Ko, W. H.; Lee, J. A.; Hahm, T. S.; KSTAR Team

    2017-12-01

    Dedicated experiments have been performed in KSTAR Ohmic plasmas to investigate the detailed physics of the rotation reversal phenomena. Here we adapt the more general definition of rotation reversal, a large change of the intrinsic toroidal rotation gradient produced by minor changes in the control parameters (Camenen et al 2017 Plasma Phys. Control. Fusion 59 034001), which is commonly observed in KSTAR regardless of the operating conditions. The two main phenomenological features of the rotation reversal are the normalized toroidal rotation gradient ({{u}\\prime} ) change in the gradient region and the existence of an anchor point. For the KSTAR Ohmic plasma database including the experiment results up to the 2016 experimental campaign, both features were investigated. First, the observations show that the locations of the gradient and the anchor point region are dependent on {{q}95} . Second, a strong dependence of {{u}\\prime} on {νeff} is clearly observed in the gradient region, whereas the dependence on R/{{L}{{Ti}}} , R/{{L}{{Te}}} , and R/{{L}{{ne}}} is unclear considering the usual variation of the normalized gradient length in KSTAR. The experimental observations were compared against several theoretical models. The rotation reversal might not occur due to the transition of the dominant turbulence from the trapped electron mode to the ion temperature gradient mode or the neoclassical equilibrium effect in KSTAR. Instead, it seems that the profile shearing effects associated with a finite ballooning tilting well reproduce the experimental observations of both the gradient region and the anchor point; the difference seems to be related to the magnetic shear and the q value. Further analysis implies that the increase of {{u}\\prime} in the gradient region with the increase of the collisionality would occur when the reduction of the momentum diffusivity is comparatively larger than the reduction of the residual stress. It is supported by the perturbative

  18. Sociometric Status and Social Drinking: Observations of Modelling and Persuasion in Young Adult Peer Groups

    Science.gov (United States)

    Bot, Sander M.; Engels, Rutger C. M. E.; Knibbe, Ronald A.; Meeus, Wim H. J.

    2007-01-01

    Because young adult drinking occurs primarily in peer groups, this should be taken into account when studying influences on drinking behaviour. This paper aimed to assess influences on drinking by observing existing peer groups in a naturalistic setting. We first analysed the basic levels at which two types of influence take place. The first,…

  19. Model and performance of current sensor observers for a doubly fed induction generator

    DEFF Research Database (Denmark)

    Li, Hui; Yang, Chao; Hu, Yaogang

    2014-01-01

    . A stator and rotor current observer model, which is based on the state-space models of doubly fed induction generators, is then derived by using the stator and rotor voltage signals as inputs. To demonstrate the effectiveness of the proposed current observer, its dynamic performance is simulated using...

  20. A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models

    Science.gov (United States)

    Geller, Marvin A.; Alexadner, M. Joan; Love, Peter T.; Bacmeister, Julio; Ern, Manfred; Hertzog, Albert; Manzini, Elisa; Preusse, Peter; Sato, Kaoru; Scaife, Adam A.; hide

    2013-01-01

    For the first time, a formal comparison is made between gravity wave momentum fluxes in models and those derived from observations. Although gravity waves occur over a wide range of spatial and temporal scales, the focus of this paper is on scales that are being parameterized in present climate models, sub-1000-km scales. Only observational methods that permit derivation of gravity wave momentum fluxes over large geographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration balloons, and high-vertical-resolution radiosonde data. The models discussed include two high-resolution models in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations,MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations indicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.

  1. Improved hydrological modeling for remote regions using a combination of observed and simulated precipitation data

    DEFF Research Database (Denmark)

    van der Linden, Sandra; Christensen, Jens Hesselbjerg

    2003-01-01

    -resolution regional climate model (HIRHAM4) with a mean-field bias correction using observed precipitation. A hydrological model (USAFLOW) was applied to simulate runoff using observed precipitation and a combination of observed and simulated precipitation as input. The method was illustrated for the remote Usa basin......, situated in the European part of Arctic Russia, close to the Ural Mountains. It was shown that runoff simulations agree better with observations when the combined precipitation data set was used than when only observed precipitation was used. This appeared to be because the HIRHAM4 model data compensated...... for the absence of observed data from mountainous areas where precipitation is orographically enhanced. In both cases, the runoff simulated by USAFLOW was superior to the runoff simulated within the HIRHAM4 model itself. This was attributed to the rather simplistic description of the water balance in the HIRHAM4...

  2. LTE modeling of inhomogeneous chromospheric structure using high-resolution limb observations

    Science.gov (United States)

    Lindsey, C.

    1987-01-01

    The paper discusses considerations relevant to LTE modeling of rough atmospheres. Particular attention is given to the application of recent high-resolution observations of the solar limb in the far-infrared and radio continuum to the modeling of chromospheric spicules. It is explained how the continuum limb observations can be combined with morphological knowledge of spicule structure to model the physical conditions in chromospheric spicules. This discussion forms the basis for a chromospheric model presented in a parallel publication based on observations ranging from 100 microns to 2.6 mm.

  3. Accounting for correlated observations in an age-based state-space stock assessment model

    DEFF Research Database (Denmark)

    Berg, Casper Willestofte; Nielsen, Anders

    2016-01-01

    Fish stock assessment models often relyon size- or age-specific observations that are assumed to be statistically independent of each other. In reality, these observations are not raw observations, but rather they are estimates from a catch-standardization model or similar summary statistics base...... the independence assumption is rejected. Less fluctuating estimates of the fishing mortality is obtained due to a reduced process error. The improved model does not suffer from correlated re