Yeh, H.
2007-12-01
More than 4500 deaths by tsunamis were recorded in the decade of 1990. For example, the 1992 Flores Tsunami in Indonesia took away at least 1712 lives, and more than 2182 people were victimized by the 1998 Papua New Guinea Tsunami. Such staggering death toll has been totally overshadowed by the 2004 Indian Ocean Tsunami that claimed more than 220,000 lives. Unlike hurricanes that are often evaluated by economic losses, death count is the primary measure for tsunami hazard. It is partly because tsunamis kill more people owing to its short lead- time for warning. Although exact death tallies are not available for most of the tsunami events, there exist gender and age discriminations in tsunami casualties. Significant gender difference in the victims of the 2004 Indian Ocean Tsunami was attributed to women's social norms and role behavior, as well as cultural bias toward women's inability to swim. Here we develop a rational casualty model based on humans' limit to withstand the tsunami flows. The application to simple tsunami runup cases demonstrates that biological and physiological disadvantages also make a significant difference in casualty rate. It further demonstrates that the gender and age discriminations in casualties become most pronounced when tsunami is marginally strong and the difference tends to diminish as tsunami strength increases.
Yu, Wenya; Lv, Yipeng; Hu, Chaoqun; Liu, Xu; Chen, Haiping; Xue, Chen; Zhang, Lulu
2018-01-01
Emergency medical system for mass casualty incidents (EMS-MCIs) is a global issue. However, China lacks such studies extremely, which cannot meet the requirement of rapid decision-support system. This study aims to realize modeling EMS-MCIs in Shanghai, to improve mass casualty incident (MCI) rescue efficiency in China, and to provide a possible method of making rapid rescue decisions during MCIs. This study established a system dynamics (SD) model of EMS-MCIs using the Vensim DSS program. Intervention scenarios were designed as adjusting scales of MCIs, allocation of ambulances, allocation of emergency medical staff, and efficiency of organization and command. Mortality increased with the increasing scale of MCIs, medical rescue capability of hospitals was relatively good, but the efficiency of organization and command was poor, and the prehospital time was too long. Mortality declined significantly when increasing ambulances and improving the efficiency of organization and command; triage and on-site first-aid time were shortened if increasing the availability of emergency medical staff. The effect was the most evident when 2,000 people were involved in MCIs; however, the influence was very small under the scale of 5,000 people. The keys to decrease the mortality of MCIs were shortening the prehospital time and improving the efficiency of organization and command. For small-scale MCIs, improving the utilization rate of health resources was important in decreasing the mortality. For large-scale MCIs, increasing the number of ambulances and emergency medical professionals was the core to decrease prehospital time and mortality. For super-large-scale MCIs, increasing health resources was the premise.
Human casualties in earthquakes: Modelling and mitigation
Spence, R.J.S.; So, E.K.M.
2011-01-01
Earthquake risk modelling is needed for the planning of post-event emergency operations, for the development of insurance schemes, for the planning of mitigation measures in the existing building stock, and for the development of appropriate building regulations; in all of these applications estimates of casualty numbers are essential. But there are many questions about casualty estimation which are still poorly understood. These questions relate to the causes and nature of the injuries and deaths, and the extent to which they can be quantified. This paper looks at the evidence on these questions from recent studies. It then reviews casualty estimation models available, and finally compares the performance of some casualty models in making rapid post-event casualty estimates in recent earthquakes.
Modelling Mass Casualty Decontamination Systems Informed by Field Exercise Data
Directory of Open Access Journals (Sweden)
Richard Amlôt
2012-10-01
Full Text Available In the event of a large-scale chemical release in the UK decontamination of ambulant casualties would be undertaken by the Fire and Rescue Service (FRS. The aim of this study was to track the movement of volunteer casualties at two mass decontamination field exercises using passive Radio Frequency Identification tags and detection mats that were placed at pre-defined locations. The exercise data were then used to inform a computer model of the FRS component of the mass decontamination process. Having removed all clothing and having showered, the re-dressing (termed re-robing of casualties was found to be a bottleneck in the mass decontamination process during both exercises. Computer simulations showed that increasing the capacity of each lane of the re-robe section to accommodate 10 rather than five casualties would be optimal in general, but that a capacity of 15 might be required to accommodate vulnerable individuals. If the duration of the shower was decreased from three minutes to one minute then a per lane re-robe capacity of 20 might be necessary to maximise the throughput of casualties. In conclusion, one practical enhancement to the FRS response may be to provide at least one additional re-robe section per mass decontamination unit.
Development and validation of a mass casualty conceptual model.
Culley, Joan M; Effken, Judith A
2010-03-01
To develop and validate a conceptual model that provides a framework for the development and evaluation of information systems for mass casualty events. The model was designed based on extant literature and existing theoretical models. A purposeful sample of 18 experts validated the model. Open-ended questions, as well as a 7-point Likert scale, were used to measure expert consensus on the importance of each construct and its relationship in the model and the usefulness of the model to future research. Computer-mediated applications were used to facilitate a modified Delphi technique through which a panel of experts provided validation for the conceptual model. Rounds of questions continued until consensus was reached, as measured by an interquartile range (no more than 1 scale point for each item); stability (change in the distribution of responses less than 15% between rounds); and percent agreement (70% or greater) for indicator questions. Two rounds of the Delphi process were needed to satisfy the criteria for consensus or stability related to the constructs, relationships, and indicators in the model. The panel reached consensus or sufficient stability to retain all 10 constructs, 9 relationships, and 39 of 44 indicators. Experts viewed the model as useful (mean of 5.3 on a 7-point scale). Validation of the model provides the first step in understanding the context in which mass casualty events take place and identifying variables that impact outcomes of care. This study provides a foundation for understanding the complexity of mass casualty care, the roles that nurses play in mass casualty events, and factors that must be considered in designing and evaluating information-communication systems to support effective triage under these conditions.
So, Emily; Spence, Robin
2013-01-01
Recent earthquakes such as the Haiti earthquake of 12 January 2010 and the Qinghai earthquake on 14 April 2010 have highlighted the importance of rapid estimation of casualties after the event for humanitarian response. Both of these events resulted in surprisingly high death tolls, casualties and survivors made homeless. In the Mw = 7.0 Haiti earthquake, over 200,000 people perished with more than 300,000 reported injuries and 2 million made homeless. The Mw = 6.9 earthquake in Qinghai resulted in over 2,000 deaths with a further 11,000 people with serious or moderate injuries and 100,000 people have been left homeless in this mountainous region of China. In such events relief efforts can be significantly benefitted by the availability of rapid estimation and mapping of expected casualties. This paper contributes to ongoing global efforts to estimate probable earthquake casualties very rapidly after an earthquake has taken place. The analysis uses the assembled empirical damage and casualty data in the Cambridge Earthquake Impacts Database (CEQID) and explores data by event and across events to test the relationships of building and fatality distributions to the main explanatory variables of building type, building damage level and earthquake intensity. The prototype global casualty estimation model described here uses a semi-empirical approach that estimates damage rates for different classes of buildings present in the local building stock, and then relates fatality rates to the damage rates of each class of buildings. This approach accounts for the effect of the very different types of buildings (by climatic zone, urban or rural location, culture, income level etc), on casualties. The resulting casualty parameters were tested against the overall casualty data from several historical earthquakes in CEQID; a reasonable fit was found.
So, E.
2010-12-01
Earthquake casualty loss estimation, which depends primarily on building-specific casualty rates, has long suffered from a lack of cross-disciplinary collaboration in post-earthquake data gathering. An increase in our understanding of what contributes to casualties in earthquakes involve coordinated data-gathering efforts amongst disciplines; these are essential for improved global casualty estimation models. It is evident from examining past casualty loss models and reviewing field data collected from recent events, that generalized casualty rates cannot be applied globally for different building types, even within individual countries. For a particular structure type, regional and topographic building design effects, combined with variable material and workmanship quality all contribute to this multi-variant outcome. In addition, social factors affect building-specific casualty rates, including social status and education levels, and human behaviors in general, in that they modify egress and survivability rates. Without considering complex physical pathways, loss models purely based on historic casualty data, or even worse, rates derived from other countries, will be of very limited value. What’s more, as the world’s population, housing stock, and living and cultural environments change, methods of loss modeling must accommodate these variables, especially when considering casualties. To truly take advantage of observed earthquake losses, not only do damage surveys need better coordination of international and national reconnaissance teams, but these teams must integrate difference areas of expertise including engineering, public health and medicine. Research is needed to find methods to achieve consistent and practical ways of collecting and modeling casualties in earthquakes. International collaboration will also be necessary to transfer such expertise and resources to the communities in the cities which most need it. Coupling the theories and findings from
International Nuclear Information System (INIS)
Urrutia, J D; Bautista, L A; Baccay, E B
2014-01-01
The aim of this study was to develop mathematical models for estimating earthquake casualties such as death, number of injured persons, affected families and total cost of damage. To quantify the direct damages from earthquakes to human beings and properties given the magnitude, intensity, depth of focus, location of epicentre and time duration, the regression models were made. The researchers formulated models through regression analysis using matrices and used α = 0.01. The study considered thirty destructive earthquakes that hit the Philippines from the inclusive years 1968 to 2012. Relevant data about these said earthquakes were obtained from Philippine Institute of Volcanology and Seismology. Data on damages and casualties were gathered from the records of National Disaster Risk Reduction and Management Council. This study will be of great value in emergency planning, initiating and updating programs for earthquake hazard reduction in the Philippines, which is an earthquake-prone country.
Jaiswal, Kishor; Wald, David J.; Earle, Paul S.; Porter, Keith A.; Hearne, Mike
2011-01-01
Since the launch of the USGS’s Prompt Assessment of Global Earthquakes for Response (PAGER) system in fall of 2007, the time needed for the U.S. Geological Survey (USGS) to determine and comprehend the scope of any major earthquake disaster anywhere in the world has been dramatically reduced to less than 30 min. PAGER alerts consist of estimated shaking hazard from the ShakeMap system, estimates of population exposure at various shaking intensities, and a list of the most severely shaken cities in the epicentral area. These estimates help government, scientific, and relief agencies to guide their responses in the immediate aftermath of a significant earthquake. To account for wide variability and uncertainty associated with inventory, structural vulnerability and casualty data, PAGER employs three different global earthquake fatality/loss computation models. This article describes the development of the models and demonstrates the loss estimation capability for earthquakes that have occurred since 2007. The empirical model relies on country-specific earthquake loss data from past earthquakes and makes use of calibrated casualty rates for future prediction. The semi-empirical and analytical models are engineering-based and rely on complex datasets including building inventories, time-dependent population distributions within different occupancies, the vulnerability of regional building stocks, and casualty rates given structural collapse.
The Casualty Network System Capstone Project
2012-12-01
described by the Watts and Strogatz model (Watts & Strogatz , 1998). Based on the Watts and Strogatz model, the AF can be viewed as a small world...chemical casualties handbook (Vol. 7). Fort Detrick, MD: U.S. Government Printing Office. Watts, Duncan, & Strogatz , Steven (1998). Collective dynamics of
Development of a Fuzzy Model for Iranian Marine Casualties Management
Directory of Open Access Journals (Sweden)
Ali Moradi
2014-09-01
Full Text Available Marine Accident investigation multidimensional and complex, so this study aimed to provide a systematic approach to determining the degree of the most influential parameters (dimensions in accident occurrence in order to improve marine safety in the direction of good governance. In this paper, two-phase procedures are proposed. The first stage utilizes the fuzzy Delphi method (FDM to determine the critical factors of Marine Accident Investigation by interviewing the pertinent authorities. In the second stage, the fuzzy analytic hierarchy process (FAHP is applied to pair fuzzy numbers as measurable indices and finally to rank by degree each influential criterion within accident investigation. This study considers 1 goal, 4 aspects, and 31 criteria (parameters and establishes a ranking model that allows decision-makers to assess the prior ordering of reasons and sort by the most effective parameters involved in marine accident occurrence. The empirical study indicated that People, working and living conditions, effect is considered the highest ranking aspect, and Ability, skills, and knowledge of workers is considered the most important evaluation criterion overall by experts. These results were derived from fuzzy Delphi analytical hierarchy processing (FDAHP. A demonstration of the prior ordering of accident-causing parameters by authorities was addressed as well. Therefore, ranking the priority of every influential criterion (parameter will help marine transportation decision makers emphasize the areas in which to improve in order to prevent future marine accidents.
International Nuclear Information System (INIS)
Bentley, P.R.
1981-12-01
The determination of blast overpressures and fallout radiation doses at points on a sufficiently fine grid, for any part or for the whole of the UK, and for any postulated attack, is an essential element in the systematic assessment of casualties, the estimation of numbers of homeless, and the evaluation of life-saving measures generally. Models are described which provide the required blast and dose values and which are intended to supersede existing models which were introduced in 1971. The factors which affect blast and, more particularly, dose values are discussed, and the way in which various factors are modelled is described. The models are incorporated into separate computer programs which are described, the outputs of which are stored on magnetic tape for subsequent use as required. (author)
Balbus, J. M.; Kirsch, T.; Mitrani-Reiser, J.
2017-12-01
Over recent decades, natural disasters and mass-casualty events in United States have repeatedly revealed the serious consequences of health care facility vulnerability and the subsequent ability to deliver care for the affected people. Advances in predictive modeling and vulnerability assessment for health care facility failure, integrated infrastructure, and extreme weather events have now enabled a more rigorous scientific approach to evaluating health care system vulnerability and assessing impacts of natural and human disasters as well as the value of specific interventions. Concurrent advances in computing capacity also allow, for the first time, full integration of these multiple individual models, along with the modeling of population behaviors and mass casualty responses during a disaster. A team of federal and academic investigators led by the National Center for Disaster Medicine and Public Health (NCDMPH) is develoing a platform for integrating extreme event forecasts, health risk/impact assessment and population simulations, critical infrastructure (electrical, water, transportation, communication) impact and response models, health care facility-specific vulnerability and failure assessments, and health system/patient flow responses. The integration of these models is intended to develop much greater understanding of critical tipping points in the vulnerability of health systems during natural and human disasters and build an evidence base for specific interventions. Development of such a modeling platform will greatly facilitate the assessment of potential concurrent or sequential catastrophic events, such as a terrorism act following a severe heat wave or hurricane. This presentation will highlight the development of this modeling platform as well as applications not just for the US health system, but also for international science-based disaster risk reduction efforts, such as the Sendai Framework and the WHO SMART hospital project.
Abir, Mahshid; Davis, Matthew M; Sankar, Pratap; Wong, Andrew C; Wang, Stewart C
2013-02-01
To design and test a model to predict surge capacity bottlenecks at a large academic medical center in response to a mass-casualty incident (MCI) involving multiple burn victims. Using the simulation software ProModel, a model of patient flow and anticipated resource use, according to principles of disaster management, was developed based upon historical data from the University Hospital of the University of Michigan Health System. Model inputs included: (a) age and weight distribution for casualties, and distribution of size and depth of burns; (b) rate of arrival of casualties to the hospital, and triage to ward or critical care settings; (c) eligibility for early discharge of non-MCI inpatients at time of MCI; (d) baseline occupancy of intensive care unit (ICU), surgical step-down, and ward; (e) staff availability-number of physicians, nurses, and respiratory therapists, and the expected ratio of each group to patients; (f) floor and operating room resources-anticipating the need for mechanical ventilators, burn care and surgical resources, blood products, and intravenous fluids; (g) average hospital length of stay and mortality rate for patients with inhalation injury and different size burns; and (h) average number of times that different size burns undergo surgery. Key model outputs include time to bottleneck for each limiting resource and average waiting time to hospital bed availability. Given base-case model assumptions (including 100 mass casualties with an inter-arrival rate to the hospital of one patient every three minutes), hospital utilization is constrained within the first 120 minutes to 21 casualties, due to the limited number of beds. The first bottleneck is attributable to exhausting critical care beds, followed by floor beds. Given this limitation in number of patients, the temporal order of the ensuing bottlenecks is as follows: Lactated Ringer's solution (4 h), silver sulfadiazine/Silvadene (6 h), albumin (48 h), thrombin topical (72 h), type
Eating Order: A 13-Week Trust Model Class for Dieting Casualties
Jackson, Elizabeth G.
2008-01-01
Chronic dieting distorts eating behaviors and causes weight escalation. Desperation about losing weight results in pursuit of extreme weight loss measures. Instead of offering yet another diet, nutrition educators can teach chronic dieters (dieting casualties) to develop eating competence. Eating Order, a 13-week class for chronic dieters based on…
A third-party casualty risk model for unmanned aircraft system operations
International Nuclear Information System (INIS)
Melnyk, Richard; Schrage, Daniel; Volovoi, Vitali; Jimenez, Hernando
2014-01-01
Unmanned Aircraft System (UAS) integration into the National Airspace System (NAS) is an important goal of many members of the Aerospace community including stakeholders such as the military, law enforcement and potential civil users of UAS. However, integration efforts have remained relatively limited due to safety concerns. Due to the nature of UAS, safety predictions must look beyond the system itself and take the operating environment into account. A framework that can link UAS reliability and physical characteristics to the effects on the bystander population is required. This study proposes using a Target Level of Safety approach and an event tree format, populated with data from existing studies that share characteristics of UAS crashes to enable casualty prediction for UAS operations. - Highlights: • A framework for predicting bystander casualties caused by UAS mishaps. • A method to facilitate UAS integration by linking system reliability to system safety. • A tool to help develop UAS certification standards
Li, Shuang; Yu, Xiaohui; Zhang, Yanjuan; Zhai, Changhai
2018-01-01
Casualty prediction in a building during earthquakes benefits to implement the economic loss estimation in the performance-based earthquake engineering methodology. Although after-earthquake observations reveal that the evacuation has effects on the quantity of occupant casualties during earthquakes, few current studies consider occupant movements in the building in casualty prediction procedures. To bridge this knowledge gap, a numerical simulation method using refined cellular automata model is presented, which can describe various occupant dynamic behaviors and building dimensions. The simulation on the occupant evacuation is verified by a recorded evacuation process from a school classroom in real-life 2013 Ya'an earthquake in China. The occupant casualties in the building under earthquakes are evaluated by coupling the building collapse process simulation by finite element method, the occupant evacuation simulation, and the casualty occurrence criteria with time and space synchronization. A case study of casualty prediction in a building during an earthquake is provided to demonstrate the effect of occupant movements on casualty prediction.
2018-03-30
aided Design of the Operational Requirements-based Casualty Assessment Model within BRL-CAD 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ...upper_arm_r.s upper_arm_r.s-bool r upper_leg_l.r - lower_leg_l.s-bool r upper_leg_r.r - lower_leg_r.s-bool r upper_arm_r.r - lower_arm_r.s-bool r ...upper_arm_l.r - lower_arm_l.s-bool r pelvis.r - hip_l.s-bool - hip_r.s-bool - upper_leg_l.s-bool - upper_leg_r.s-bool r thorax.r - shoulder_l.s-bool
Population and energy elasticity of tornado casualties
Fricker, Tyler; Elsner, James B.; Jagger, Thomas H.
2017-04-01
Tornadoes are capable of catastrophic destruction and mass casualties, but there are yet no estimates of how sensitive the number of casualties are to changes in the number of people in harm's way or to changes in tornado energy. Here the relationship between tornado casualties (deaths and injuries), population, and energy dissipation is quantified using the economic concept of "elasticity." Records of casualties from individual tornadoes over the period 2007-2015 are fit to a regression model. The coefficient on the population term (population elasticity) indicates that a doubling in population increases the casualty rate by 21% [(17, 24)%, 95% credible interval]. The coefficient on the energy term (energy elasticity) indicates that a doubling in energy dissipation leads to a 33% [(30, 35)%, 95% credible interval] increase in the casualty rate. The difference in elasticity values show that on average, changes in energy dissipation have been relatively more important in explaining tornado casualties than changes in population. Assuming no changes in warning effectiveness or mitigation efforts, these elasticity estimates can be used to project changes in casualties given the known population trends and possible trends in tornado activity.
Casualties and threshold effects
International Nuclear Information System (INIS)
Mays, C.W.; National Cancer Inst., Bethesda
1988-01-01
Radiation effects like cancer are denoted as casualties. Other radiation effects occur almost in everyone when the radiation dose is sufficiently high. One then speaks of radiation effects with a threshold dose. In this article the author puts his doubt about this classification of radiation effects. He argues that some effects of exposure to radiation do not fit in this classification. (H.W.). 19 refs.; 2 figs.; 1 tab
Ghanem, Bernard; Ahuja, Narendra
2013-01-01
This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal
Dynamic Latent Classification Model
DEFF Research Database (Denmark)
Zhong, Shengtong; Martínez, Ana M.; Nielsen, Thomas Dyhre
as possible. Motivated by this problem setting, we propose a generative model for dynamic classification in continuous domains. At each time point the model can be seen as combining a naive Bayes model with a mixture of factor analyzers (FA). The latent variables of the FA are used to capture the dynamics...
Molenaar, Peter C M
2017-01-01
Equivalences of two classes of dynamic models for weakly stationary multivariate time series are discussed: dynamic factor models and autoregressive models. It is shown that exploratory dynamic factor models can be rotated, yielding an infinite set of equivalent solutions for any observed series. It also is shown that dynamic factor models with lagged factor loadings are not equivalent to the currently popular state-space models, and that restriction of attention to the latter type of models may yield invalid results. The known equivalent vector autoregressive model types, standard and structural, are given a new interpretation in which they are conceived of as the extremes of an innovating type of hybrid vector autoregressive models. It is shown that consideration of hybrid models solves many problems, in particular with Granger causality testing.
Leatherman, Matthew L; Held, Jenny M; Fluke, Laura M; McEvoy, Christian S; Inaba, Kenji; Grabo, Daniel; Martin, Matthew J; Earley, Angela S; Ricca, Robert L; Polk, Travis M
2017-07-01
Tension pneumothorax (tPTX) remains a significant cause of potentially preventable death in military and civilian settings. The current prehospital standard of care for tPTX is immediate decompression with a 14-gauge 8-cm angiocatheter; however, failure rates may be as high as 17% to 60%. Alternative devices, such as 10-gauge angiocatheter, modified Veress needle, and laparoscopic trocar, have shown to be potentially more effective in animal models; however, little is known about the relative insertional safety or mechanical stability during casualty movement. Seven soft-embalmed cadavers were intubated and mechanically ventilated. Chest wall thickness was measured at the second intercostal space at the midclavicular line (2MCL) and the fifth intercostal space along the anterior axillary line (5AAL). CO2 insufflation created a PTX, and needle decompression was then performed with a randomized device. Insertional depth was measured between hub and skin before and after simulated casualty transport. Thoracoscopy was used to evaluate for intrapleural placement and/or injury during insertion and after movement. Cadaver demographics, device displacement, device dislodgment, and injuries were recorded. Three decompressions were performed at each site (2MCL/5AAL), totaling 12 events per cadaver. Eighty-four decompressions were performed. Average cadaver age was 59 years, and body mass index was 24 kg/m. The CWT varied between cadavers because of subcutaneous emphysema, but the average was 39 mm at the 2MCL and 31 mm at the 5AAL. Following movement, the 2MCL site was more likely to become dislodged than the 5AAL (67% vs. 17%, p = 0.001). Median displacement also differed between 2MCL and 5AAL (23 vs. 2 mm, p = 0.001). No significant differences were noted in dislodgement or displacement between devices. Five minor lung injuries were noted at the 5AAL position. Preliminary results from this human cadaver study suggest the 5AAL position is a more stable and reliable location
Marine Casualty and Pollution Data for Researchers
Department of Homeland Security — The Marine Casualty and Pollution Data files provide details about marine casualty and pollution incidents investigated by Coast Guard Offices throughout the United...
Developing and Organizing a Trauma System and Mass Casualty ...
African Journals Online (AJOL)
An effective trauma system may potentially manage mass casualty incidence ... Israel has a unique trauma system of organizing and managing an emergency event, ... Wisdom, motivation and pragmatism of the Israeli model may be useful to ...
Models for Dynamic Applications
DEFF Research Database (Denmark)
Sales-Cruz, Mauricio; Morales Rodriguez, Ricardo; Heitzig, Martina
2011-01-01
This chapter covers aspects of the dynamic modelling and simulation of several complex operations that include a controlled blending tank, a direct methanol fuel cell that incorporates a multiscale model, a fluidised bed reactor, a standard chemical reactor and finally a polymerisation reactor...... be applied to formulate, analyse and solve these dynamic problems and how in the case of the fuel cell problem the model consists of coupledmeso and micro scale models. It is shown how data flows are handled between the models and how the solution is obtained within the modelling environment....
Casualty Risk From Tornadoes in the United States is Highest in Urbanized Areas Across the Mid South
Fricker, T.; Elsner, J.
2017-12-01
Risk factors for tornado casualties are well known. Less understood is how and to what degree these determinants, after controlling for strength and urban density, vary spatially and temporally. Here we fit models to casualty counts from all casualty-producing tornadoes since 1995 in order to quantify the interactions between urbanization and energy on casualty rates. Results from the models show that the more urbanized areas of the Mid South are substantively and significantly more vulnerable to casualties from tornadoes than elsewhere in the country. Casualty rates are significantly higher on the weekend for tornadoes in this region. Night and day casualty rates are similar regardless of where they occur. Higher vulnerability to casualties from tornadoes occurring in more urbanized areas correspond significantly with greater percentages of elderly people. Many of the micro cities in the Mid South are threatened by tornadoes annually and this threat might potentially be exacerbated by climate change.
DEFF Research Database (Denmark)
Andreasen, Martin Møller; Meldrum, Andrew
This paper studies whether dynamic term structure models for US nominal bond yields should enforce the zero lower bound by a quadratic policy rate or a shadow rate specification. We address the question by estimating quadratic term structure models (QTSMs) and shadow rate models with at most four...
Do lower income areas have more pedestrian casualties?
Noland, Robert B; Klein, Nicholas J; Tulach, Nicholas K
2013-10-01
Pedestrian and motor vehicle casualties are analyzed for the State of New Jersey with the objective of determining how the income of an area may be associated with casualties. We develop a maximum-likelihood negative binomial model to examine how various spatially defined variables, including road, income, and vehicle ownership, may be associated with casualties using census block-group level data. Due to suspected spatial correlation in the data we also employ a conditional autoregressive Bayesian model using Markov Chain Monte Carlo simulation, implemented with Crimestat software. Results suggest that spatial correlation is an issue as some variables are not statistically significant in the spatial model. We find that both pedestrian and motor vehicle casualties are greater in lower income block groups. Both are also associated with less household vehicle ownership, which is not surprising for pedestrian casualties, but is a surprising result for motor vehicle casualties. Controls for various road categories provide expected relationships. Individual level data is further examined to determine relationships between the location of a crash victim and their residence zip code, and this largely confirms a residual effect associated with both lower income individuals and lower income areas. Copyright © 2013 Elsevier Ltd. All rights reserved.
A markov decision process model for the optimal dispatch of military medical evacuation assets.
Keneally, Sean K; Robbins, Matthew J; Lunday, Brian J
2016-06-01
We develop a Markov decision process (MDP) model to examine aerial military medical evacuation (MEDEVAC) dispatch policies in a combat environment. The problem of deciding which aeromedical asset to dispatch to each service request is complicated by the threat conditions at the service locations and the priority class of each casualty event. We assume requests for MEDEVAC support arrive sequentially, with the location and the priority of each casualty known upon initiation of the request. The United States military uses a 9-line MEDEVAC request system to classify casualties as being one of three priority levels: urgent, priority, and routine. Multiple casualties can be present at a single casualty event, with the highest priority casualty determining the priority level for the casualty event. Moreover, an armed escort may be required depending on the threat level indicated by the 9-line MEDEVAC request. The proposed MDP model indicates how to optimally dispatch MEDEVAC helicopters to casualty events in order to maximize steady-state system utility. The utility gained from servicing a specific request depends on the number of casualties, the priority class for each of the casualties, and the locations of both the servicing ambulatory helicopter and casualty event. Instances of the dispatching problem are solved using a relative value iteration dynamic programming algorithm. Computational examples are used to investigate optimal dispatch policies under different threat situations and armed escort delays; the examples are based on combat scenarios in which United States Army MEDEVAC units support ground operations in Afghanistan.
International Nuclear Information System (INIS)
Nishimura, Hiroshi.
1993-05-01
Object-Oriented Programming has been used extensively to model the LBL Advanced Light Source 1.5 GeV electron storage ring. This paper is on the present status of the class library construction with emphasis on a dynamic modeling
Bun, M.J.G.; Sarafidis, V.
2013-01-01
This Chapter reviews the recent literature on dynamic panel data models with a short time span and a large cross-section. Throughout the discussion we considerlinear models with additional endogenous covariates. First we give a broad overview of available inference methods placing emphasis on GMM.
Ghanem, Bernard
2013-01-01
This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal interdependency and stationarity, i.e., the motions are similar in any small spatiotemporal neighborhood. Examples of DS abound in nature, e.g., herds of animals and flocks of birds. To capture the local spatiotemporal properties of the DS, we present a probabilistic model that learns both the spatial layout of swarm elements (based on low-level image segmentation) and their joint dynamics that are modeled as linear transformations. To this end, a spatiotemporal neighborhood is associated with each swarm element, in which local stationarity is enforced both spatially and temporally. We assume that the prior on the swarm dynamics is distributed according to an MRF in both space and time. Embedding this model in a MAP framework, we iterate between learning the spatial layout of the swarm and its dynamics. We learn the swarm transformations using ICM, which iterates between estimating these transformations and updating their distribution in the spatiotemporal neighborhoods. We demonstrate the validity of our method by conducting experiments on real and synthetic video sequences. Real sequences of birds, geese, robot swarms, and pedestrians evaluate the applicability of our model to real world data. © 2012 Elsevier Inc. All rights reserved.
Manual estimation of fallout casualties. Final report
International Nuclear Information System (INIS)
Gant, K.S.; Haaland, C.M.
1978-08-01
A method is described for enabling Emergency Operating Centers (EOCs) to estimate nuclear fallout casualties (fatalities and injuries) during and after nuclear attack without the aid of computers. This method is compatible with the current manual method for estimating initial weapons effects. The new technique requires that the EOCs have information on nuclear detonations and upper wind conditions and that they have maps, a protractor, map overlay material, grease pencils, worksheets, and pencils. In addition, they will need two tables of data and a fallout casualty (FC) template, all supplied in this report. Five steps are involved in the estimation of fallout casualties for an area: sketching fallout wind streamlines on a map overlay; plotting locations of nuclear detonations and their fallout streamlines; measuring crosswind and upwind distances to detonation points from the point of interest; reading radiation exposure tables and summing the contributions from different weapons to obtain the exposure at that point; and using the FC template with the protection factor profile for the area to estimate fatalities and injuries. The tables of radiation exposure are based on a modified Weapons Systems Evaluation Group-10 (WSEG-10) fallout model. The table of county protection factor profiles (PFPs) assumes a Community Shelter Plan (CSP) posture
Malafeyev, O. A.; Nemnyugin, S. A.; Rylow, D.; Kolpak, E. P.; Awasthi, Achal
2017-07-01
The corruption dynamics is analyzed by means of the lattice model which is similar to the three-dimensional Ising model. Agents placed at nodes of the corrupt network periodically choose to perfom or not to perform the act of corruption at gain or loss while making decisions based on the process history. The gain value and its dynamics are defined by means of the Markov stochastic process modelling with parameters established in accordance with the influence of external and individual factors on the agent's gain. The model is formulated algorithmically and is studied by means of the computer simulation. Numerical results are obtained which demonstrate asymptotic behaviour of the corruption network under various conditions.
Directory of Open Access Journals (Sweden)
Loktev Aleksey Alekseevich
2013-01-01
Full Text Available The authors present their findings associated with their modeling of a dynamic load damper. According to the authors, the damper is to be installed onto a structure or its element that may be exposed to impact, vibration or any other dynamic loading. The damper is composed of paralleled or consecutively connected viscous and elastic elements. The authors study the influence of viscosity and elasticity parameters of the damper produced onto the regular displacement of points of the structure to be protected and onto the regular acceleration transmitted immediately from the damper to the elements positioned below it.
Dynamic wake meandering modeling
Energy Technology Data Exchange (ETDEWEB)
Larsen, Gunner C.; Aagaard Madsen, H.; Bingoel, F. (and others)
2007-06-15
We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, however, have the potential to include also mutual wake interaction phenomenons. The basic conjecture behind the dynamic wake meandering model is that wake transportation in the atmospheric boundary layer is driven by the large scale lateral- and vertical turbulence components. Based on this conjecture a stochastic model of the downstream wake meandering is formulated. In addition to the kinematic formulation of the dynamics of the 'meandering frame of reference', models characterizing the mean wake deficit as well as the added wake turbulence, described in the meandering frame of reference, are an integrated part the model complex. For design applications, the computational efficiency of wake deficit prediction is a key issue. Two computationally low cost models are developed for this purpose. The character of the added wake turbulence, generated by the up-stream turbine in the form of shed and trailed vorticity, has been approached by analytical as well as by numerical studies. The dynamic wake meandering philosophy has been verified by comparing model predictions with extensive full-scale measurements. These comparisons have demonstrated good agreement, both qualitatively and quantitatively, concerning both flow characteristics and turbine load characteristics. Contrary to previous attempts to model wake loading, the dynamic wake meandering approach opens for a unifying description in the sense that turbine power and load aspects can be treated simultaneously. This capability is a direct and attractive consequence of the model being based on the underlying physical process, and it potentially opens for optimization of wind farm topology, of wind farm operation as
International Nuclear Information System (INIS)
Colanero, K.; Chu, M.-C.
2002-01-01
We study a dynamical chiral bag model, in which massless fermions are confined within an impenetrable but movable bag coupled to meson fields. The self-consistent motion of the bag is obtained by solving the equations of motion exactly assuming spherical symmetry. When the bag interacts with an external meson wave we find three different kinds of resonances: fermionic, geometric, and σ resonances. We discuss the phenomenological implications of our results
Model for macroevolutionary dynamics.
Maruvka, Yosef E; Shnerb, Nadav M; Kessler, David A; Ricklefs, Robert E
2013-07-02
The highly skewed distribution of species among genera, although challenging to macroevolutionists, provides an opportunity to understand the dynamics of diversification, including species formation, extinction, and morphological evolution. Early models were based on either the work by Yule [Yule GU (1925) Philos Trans R Soc Lond B Biol Sci 213:21-87], which neglects extinction, or a simple birth-death (speciation-extinction) process. Here, we extend the more recent development of a generic, neutral speciation-extinction (of species)-origination (of genera; SEO) model for macroevolutionary dynamics of taxon diversification. Simulations show that deviations from the homogeneity assumptions in the model can be detected in species-per-genus distributions. The SEO model fits observed species-per-genus distributions well for class-to-kingdom-sized taxonomic groups. The model's predictions for the appearance times (the time of the first existing species) of the taxonomic groups also approximately match estimates based on molecular inference and fossil records. Unlike estimates based on analyses of phylogenetic reconstruction, fitted extinction rates for large clades are close to speciation rates, consistent with high rates of species turnover and the relatively slow change in diversity observed in the fossil record. Finally, the SEO model generally supports the consistency of generic boundaries based on morphological differences between species and provides a comparator for rates of lineage splitting and morphological evolution.
International Nuclear Information System (INIS)
McFadden, J.H.; Paulsen, M.P.; Gose, G.C.
1981-01-01
Thermal-hydraulic codes in general use for system calculations are based on extensive analyses of loss-of-coolant accidents following the postulated rupture of a large coolant pipe. In this study, time-dependent equation for the slip velocity in a two-phase flow condition has been incorporated into the RETRAN-02 computer code. This model addition was undertaken to remove a limitation in RETRAN-01 associated with the homogeneous equilibrium mixture model. The dynamic slip equation was derived from a set of two-fluid conservation equations. 18 refs
Glaese, John R.; Tobbe, Patrick A.
1986-01-01
The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.
Traffic accidents involving fatigue driving and their extent of casualties.
Zhang, Guangnan; Yau, Kelvin K W; Zhang, Xun; Li, Yanyan
2016-02-01
The rapid progress of motorization has increased the number of traffic-related casualties. Although fatigue driving is a major cause of traffic accidents, the public remains not rather aware of its potential harmfulness. Fatigue driving has been termed as a "silent killer." Thus, a thorough study of traffic accidents and the risk factors associated with fatigue-related casualties is of utmost importance. In this study, we analyze traffic accident data for the period 2006-2010 in Guangdong Province, China. The study data were extracted from the traffic accident database of China's Public Security Department. A logistic regression model is used to assess the effect of driver characteristics, type of vehicles, road conditions, and environmental factors on fatigue-related traffic accident occurrence and severity. On the one hand, male drivers, trucks, driving during midnight to dawn, and morning rush hours are identified as risk factors of fatigue-related crashes but do not necessarily result in severe casualties. Driving at night without street-lights contributes to fatigue-related crashes and severe casualties. On the other hand, while factors such as less experienced drivers, unsafe vehicle status, slippery roads, driving at night with street-lights, and weekends do not have significant effect on fatigue-related crashes, yet accidents associated with these factors are likely to have severe casualties. The empirical results of the present study have important policy implications on the reduction of fatigue-related crashes as well as their severity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mass casualty tracking with air traffic control methodologies.
Hoskins, Jason D; Graham, Ross F; Robinson, Duane R; Lutz, Clifford C; Folio, Les R
2009-06-01
An intrahospital casualty throughput system modeled after air traffic control (ATC) tracking procedures was tested in mass casualty exercises. ATC uses a simple tactile process involving informational progress strips representing each aircraft, which are held in bays representing each stage of flight to prioritize and manage aircraft. These strips can be reordered within the bays to indicate a change in priority of aircraft sequence. In this study, a similar system was designed for patient tracking. We compared the ATC model and traditional casualty tracking methods of paper and clipboard in 18 four-hour casualty scenarios, each with 5 to 30 mock casualties. The experimental and control groups were alternated to maximize exposure and minimize training effects. Results were analyzed with Mann-Whitney statistical analysis with p value < 0.05 (two-sided). The ATC method had significantly (p = 0.017) fewer errors in critical patient data (eg, name, social security number, diagnosis). Specifically, the ATC method better tracked the mechanism of injury, working diagnosis, and disposition of patients. The ATC method also performed considerably better with patient accountability during mass casualty scenarios. Data strips were comparable with the control method in terms of ease of use. In addition, participants preferred the ATC method to the control (p = 0.003) and preferred using the ATC method (p = 0.003) to traditional methods in the future. The ATC model more effectively tracked patient data with fewer errors when compared with the clipboard method. Application of these principles can enhance trauma management and can have application in civilian and military trauma centers and emergency rooms.
DEFF Research Database (Denmark)
Borregaard, Michael K.; Matthews, Thomas J.; Whittaker, Robert James
2016-01-01
Aim: Island biogeography focuses on understanding the processes that underlie a set of well-described patterns on islands, but it lacks a unified theoretical framework for integrating these processes. The recently proposed general dynamic model (GDM) of oceanic island biogeography offers a step...... towards this goal. Here, we present an analysis of causality within the GDM and investigate its potential for the further development of island biogeographical theory. Further, we extend the GDM to include subduction-based island arcs and continental fragment islands. Location: A conceptual analysis...... of evolutionary processes in simulations derived from the mechanistic assumptions of the GDM corresponded broadly to those initially suggested, with the exception of trends in extinction rates. Expanding the model to incorporate different scenarios of island ontogeny and isolation revealed a sensitivity...
Lee, James S; Franc, Jeffrey M
2015-08-01
A high influx of patients during a mass-casualty incident (MCI) may disrupt patient flow in an already overcrowded emergency department (ED) that is functioning beyond its operating capacity. This pilot study examined the impact of a two-step ED triage model using Simple Triage and Rapid Treatment (START) for pre-triage, followed by triage with the Canadian Triage and Acuity Scale (CTAS), on patient flow during a MCI simulation exercise. Hypothesis/Problem It was hypothesized that there would be no difference in time intervals nor patient volumes at each patient-flow milestone. Physicians and nurses participated in a computer-based tabletop disaster simulation exercise. Physicians were randomized into the intervention group using START, then CTAS, or the control group using START alone. Patient-flow milestones including time intervals and patient volumes from ED arrival to triage, ED arrival to bed assignment, ED arrival to physician assessment, and ED arrival to disposition decision were compared. Triage accuracy was compared for secondary purposes. There were no significant differences in the time interval from ED arrival to triage (mean difference 108 seconds; 95% CI, -353 to 596 seconds; P=1.0), ED arrival to bed assignment (mean difference 362 seconds; 95% CI, -1,269 to 545 seconds; P=1.0), ED arrival to physician assessment (mean difference 31 seconds; 95% CI, -1,104 to 348 seconds; P=0.92), and ED arrival to disposition decision (mean difference 175 seconds; 95% CI, -1,650 to 1,300 seconds; P=1.0) between the two groups. There were no significant differences in the volume of patients to be triaged (32% vs 34%; 95% CI for the difference -16% to 21%; P=1.0), assigned a bed (16% vs 21%; 95% CI for the difference -11% to 20%; P=1.0), assessed by a physician (20% vs 22%; 95% CI for the difference -14% to 19%; P=1.0), and with a disposition decision (20% vs 9%; 95% CI for the difference -25% to 4%; P=.34) between the two groups. The accuracy of triage was similar
Campagnoli, Patrizia; Petris, Giovanni
2009-01-01
State space models have gained tremendous popularity in as disparate fields as engineering, economics, genetics and ecology. Introducing general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. It illustrates the fundamental steps needed to use dynamic linear models in practice, using R package.
GIS and dynamic phenomena modeling
Czech Academy of Sciences Publication Activity Database
Klimešová, Dana
2006-01-01
Roč. 4, č. 4 (2006), s. 11-15 ISSN 0139-570X Institutional research plan: CEZ:AV0Z10750506 Keywords : dynamic modelling * temporal analysis * dynamics evaluation * temporal space Subject RIV: BC - Control Systems Theory
Optimization of Lyophilized Plasma for Use in Combat Casualties
2016-03-01
ratio of NS infused at a rate of 165 ml/min, minus any given during the controlled hemorrhage to induce acidosis and coagulopathy. This reflects...antioxidant effect suggesting the potential to reduce acute respiratory distress syndrome and multiple organ failure in combat casualties. This model
Modelling dynamic roughness during floods
Paarlberg, Andries; Dohmen-Janssen, Catarine M.; Hulscher, Suzanne J.M.H.; Termes, A.P.P.
2007-01-01
In this paper, we present a dynamic roughness model to predict water levels during floods. Hysteresis effects of dune development are explicitly included. It is shown that differences between the new dynamic roughness model, and models where the roughness coefficient is calibrated, are most
Hybrid dynamics for currency modeling
Theodosopoulos, Ted; Trifunovic, Alex
2006-01-01
We present a simple hybrid dynamical model as a tool to investigate behavioral strategies based on trend following. The multiplicative symbolic dynamics are generated using a lognormal diffusion model for the at-the-money implied volatility term structure. Thus, are model exploits information from derivative markets to obtain qualititative properties of the return distribution for the underlier. We apply our model to the JPY-USD exchange rate and the corresponding 1mo., 3mo., 6mo. and 1yr. im...
Strategies for Improved Hospital Response to Mass Casualty Incidents.
TariVerdi, Mersedeh; Miller-Hooks, Elise; Kirsch, Thomas
2018-03-19
Mass casualty incidents are a concern in many urban areas. A community's ability to cope with such events depends on the capacities and capabilities of its hospitals for handling a sudden surge in demand of patients with resource-intensive and specialized medical needs. This paper uses a whole-hospital simulation model to replicate medical staff, resources, and space for the purpose of investigating hospital responsiveness to mass casualty incidents. It provides details of probable demand patterns of different mass casualty incident types in terms of patient categories and arrival patterns, and accounts for related transient system behavior over the response period. Using the layout of a typical urban hospital, it investigates a hospital's capacity and capability to handle mass casualty incidents of various sizes with various characteristics, and assesses the effectiveness of designed demand management and capacity-expansion strategies. Average performance improvements gained through capacity-expansion strategies are quantified and best response actions are identified. Capacity-expansion strategies were found to have superadditive benefits when combined. In fact, an acceptable service level could be achieved by implementing only 2 to 3 of the 9 studied enhancement strategies. (Disaster Med Public Health Preparedness. 2018;page 1 of 13).
Computer Modelling of Dynamic Processes
Directory of Open Access Journals (Sweden)
B. Rybakin
2000-10-01
Full Text Available Results of numerical modeling of dynamic problems are summed in the article up. These problems are characteristic for various areas of human activity, in particular for problem solving in ecology. The following problems are considered in the present work: computer modeling of dynamic effects on elastic-plastic bodies, calculation and determination of performances of gas streams in gas cleaning equipment, modeling of biogas formation processes.
Structural dynamic modifications via models
Indian Academy of Sciences (India)
The study shows that as many as half of the matrix ... the dynamicist's analytical modelling skill which would appear both in the numerator as. Figure 2. ..... Brandon J A 1990 Strategies for structural dynamic modification (New York: John Wiley).
Dynamic programming models and applications
Denardo, Eric V
2003-01-01
Introduction to sequential decision processes covers use of dynamic programming in studying models of resource allocation, methods for approximating solutions of control problems in continuous time, production control, more. 1982 edition.
Dynamical models of the Galaxy
Directory of Open Access Journals (Sweden)
McMillan P.J.
2012-02-01
Full Text Available I discuss the importance of dynamical models for exploiting survey data, focusing on the advantages of “torus” models. I summarize a number of applications of these models to the study of the Milky Way, including the determination of the peculiar Solar velocity and investigation of the Hyades moving group.
International Nuclear Information System (INIS)
McFadden, J.H.; Paulsen, M.P.; Gose, G.C.
1981-01-01
A time dependent equation for the slip velocity in a two-phase flow condition has been incorporated into a developmental version of the RETRAN computer code. This model addition has been undertaken to remove a limitation in RETRAN-01 associated with the homogeneous equilibrium mixture model. In this paper, the development of the slip model is summarized and the corresponding constitutive equations are discussed. Comparisons of RETRAN analyses with steady-state void fraction data and data from the Semiscale S-02-6 small break test are also presented
Modeling Propellant Tank Dynamics
National Aeronautics and Space Administration — The main objective of my work will be to develop accurate models of self-pressurizing propellant tanks for use in designing hybrid rockets. The first key goal is to...
Review of On-Scene Management of Mass-Casualty Attacks
Directory of Open Access Journals (Sweden)
Annelie Holgersson
2016-02-01
Full Text Available Background: The scene of a mass-casualty attack (MCA entails a crime scene, a hazardous space, and a great number of people needing medical assistance. Public transportation has been the target of such attacks and involves a high probability of generating mass casualties. The review aimed to investigate challenges for on-scene responses to MCAs and suggestions made to counter these challenges, with special attention given to attacks on public transportation and associated terminals. Methods: Articles were found through PubMed and Scopus, â€œrelevant articlesâ€ as defined by the databases, and a manual search of references. Inclusion criteria were that the article referred to attack(s and/or a public transportation-related incident and issues concerning formal on-scene response. An appraisal of the articlesâ€™ scientific quality was conducted based on an evidence hierarchy model developed for the study. Results: One hundred and five articles were reviewed. Challenges for command and coordination on scene included establishing leadership, inter-agency collaboration, multiple incident sites, and logistics. Safety issues entailed knowledge and use of personal protective equipment, risk awareness and expectations, cordons, dynamic risk assessment, defensive versus offensive approaches, and joining forces. Communication concerns were equipment shortfalls, dialoguing, and providing information. Assessment problems were scene layout and interpreting environmental indicators as well as understanding setting-driven needs for specialist skills and resources. Triage and treatment difficulties included differing triage systems, directing casualties, uncommon injuries, field hospitals, level of care, providing psychological and pediatric care. Transportation hardships included scene access, distance to hospitals, and distribution of casualties. Conclusion: Commonly encountered challenges during unintentional incidents were added to during MCAs
Modelling group dynamic animal movement
DEFF Research Database (Denmark)
Langrock, Roland; Hopcraft, J. Grant C.; Blackwell, Paul G.
2014-01-01
makes its movement decisions relative to the group centroid. The basic idea is framed within the flexible class of hidden Markov models, extending previous work on modelling animal movement by means of multi-state random walks. While in simulation experiments parameter estimators exhibit some bias......, to date, practical statistical methods which can include group dynamics in animal movement models have been lacking. We consider a flexible modelling framework that distinguishes a group-level model, describing the movement of the group's centre, and an individual-level model, such that each individual......Group dynamic movement is a fundamental aspect of many species' movements. The need to adequately model individuals' interactions with other group members has been recognised, particularly in order to differentiate the role of social forces in individual movement from environmental factors. However...
Transfusion-Associated Microchimerism in Combat Casualties
National Research Council Canada - National Science Library
Dunne, James R; Lee, Tzong-Hae; Burns, Christopher; Cardo, Lisa J; Curry, Kathleen; Busch, Michael P
2007-01-01
...) in civilian trauma patients receiving allogenic red blood cell (RBC) transfusions. We explored the incidence of TA-MC in combat casualties receiving FrWB compared with patients receiving standard stored RBC transfusions. Methods...
Management of Mass Casualty Burn Disasters
National Research Council Canada - National Science Library
Cancio, Leopoldo C; Pruitt, Basil A
2005-01-01
Mass casualty burn disasters are potentially challenging, in part because the majority of health care providers are inexperienced in the care of thermally injured patients and in part because of the...
Modeling Internet Topology Dynamics
Haddadi, H.; Uhlig, S.; Moore, A.; Mortier, R.; Rio, M.
Despite the large number of papers on network topology modeling and inference, there still exists ambiguity about the real nature of the Internet AS and router level topology. While recent findings have illustrated the inaccuracies in maps inferred from BGP peering and traceroute measurements,
Generative Models of Conformational Dynamics
Langmead, Christopher James
2014-01-01
Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term ‘generative’ refers to a...
Bloch, Yuval H; Leiba, Adi; Veaacnin, Nurit; Paizer, Yohanan; Schwartz, Dagan; Kraskas, Ahuva; Weiss, Gali; Goldberg, Avishay; Bar-Dayan, Yaron
2007-01-01
Mildly injured and "worried well" patients can have profound effects on the management of a mass-casualty incident. The objective of this study is to describe the characteristics and lessons learned from an event that occurred on 28 August 2005 near the central bus station in Beer-Sheva, Israel. The unique profile of injuries allows for the examination of the medical and operational aspects of the management of mild casualties. Data were collected during and after the event, using patient records and formal debriefings. They were processed focusing on the characteristics of patient complaints, medical response, and the dynamics of admission. A total of 64 patients presented to the local emergency department, including two critical casualties. The remaining 62 patients were mildly injured or suffered from stress. Patient presentation to the emergency department was bi-phasic; during the first two hours following the attack (i.e., early phase), the rate of arrival was high (one patient every three minutes), and anxiety was the most frequent chief complaint. During the second phase, the rate of arrival was lower (one patient every 27 minutes), and the typical chief complaint was somatic. Additionally, tinnitus and complaints related to minor trauma also were recorded frequently. Psychiatric consultation was obtained for 58 (91%) of the patients. Social services were involved in the care of 47 of the patients (73%). Otolaryngology and surgery consultations were obtained for 45% and 44%, respectively. The need for some medical specialties (e.g., surgery and orthopedics) mainly was during the first phase, whereas others, mainly psychiatry and otolaryngology, were needed during both phases. Only 13 patients (20%) needed a consultation from internal medicine. Following a terrorist attack, a large number of mildly injured victims and those experiencing stress are to be expected, without a direct relation to the effectiveness of the attack. Mildly injured patients tend to
Preliminary quantitative assessment of earthquake casualties and damages
DEFF Research Database (Denmark)
Badal, J.; Vázquez-Prada, M.; González, Á.
2005-01-01
Prognostic estimations of the expected number of killed or injured people and about the approximate cost associated with the damages caused by earthquakes are made following a suitable methodology of wide-ranging application. For the preliminary assessment of human life losses due to the occurrence...... of a relatively strong earthquake we use a quantitative model consisting of a correlation between the number of casualties and the earthquake magnitude as a function of population density. The macroseismic intensity field is determined in accordance with an updated anelastic attenuation law, and the number...... the local social wealth as a function of the gross domestic product of the country. This last step is performed on the basis of the relationship of the macroseismic intensity to the earthquake economic loss in percentage of the wealth. Such an approach to the human casualty and damage levels is carried out...
Vehicle dynamics modeling and simulation
Schramm, Dieter; Bardini, Roberto
2014-01-01
The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models on the basis of real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios.
Containing Terrorism: A Dynamic Model
Directory of Open Access Journals (Sweden)
Giti Zahedzadeh
2017-06-01
Full Text Available The strategic interplay between counterterror measures and terror activity is complex. Herein, we propose a dynamic model to depict this interaction. The model generates stylized prognoses: (i under conditions of inefficient counterterror measures, terror groups enjoy longer period of activity but only if recruitment into terror groups remains low; high recruitment shortens the period of terror activity (ii highly efficient counterterror measures effectively contain terror activity, but only if recruitment remains low. Thus, highly efficient counterterror measures can effectively contain terrorism if recruitment remains restrained. We conclude that the trajectory of the dynamics between counterterror measures and terror activity is heavily altered by recruitment.
A dynamical model of terrorism
Directory of Open Access Journals (Sweden)
Firdaus Udwadia
2006-01-01
Full Text Available This paper develops a dynamical model of terrorism. We consider the population in a given region as being made up of three primary components: terrorists, those susceptible to both terrorist and pacifist propaganda, and nonsusceptibles, or pacifists. The dynamical behavior of these three populations is studied using a model that incorporates the effects of both direct military/police intervention to reduce the terrorist population, and nonviolent, persuasive intervention to influence the susceptibles to become pacifists. The paper proposes a new paradigm for studying terrorism, and looks at the long-term dynamical evolution in time of these three population components when such interventions are carried out. Many important features—some intuitive, others not nearly so—of the nature of terrorism emerge from the dynamical model proposed, and they lead to several important policy implications for the management of terrorism. The different circumstances in which nonviolent intervention and/or military/police intervention may be beneficial, and the specific conditions under which each mode of intervention, or a combination of both, may be useful, are obtained. The novelty of the model presented herein is that it deals with the time evolution of terrorist activity. It appears to be one of the few models that can be tested, evaluated, and improved upon, through the use of actual field data.
Generative Models of Conformational Dynamics
Langmead, Christopher James
2014-01-01
Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term ‘generative’ refers to a model of the joint probability distribution over the behaviors of the constituent atoms. In the context of molecular modeling, generative models reveal the correlation structure between the atoms, and may be used to predict how the system will respond to structural perturbations. We begin by discussing traditional methods, which produce multivariate Gaussian models. We then discuss GAMELAN (GrAphical Models of Energy LANdscapes), which produces generative models of complex, non-Gaussian conformational dynamics (e.g., allostery, binding, folding, etc) from long timescale simulation data. PMID:24446358
Experimental Modeling of Dynamic Systems
DEFF Research Database (Denmark)
Knudsen, Morten Haack
2006-01-01
An engineering course, Simulation and Experimental Modeling, has been developed that is based on a method for direct estimation of physical parameters in dynamic systems. Compared with classical system identification, the method appears to be easier to understand, apply, and combine with physical...
Business model dynamics and innovation
DEFF Research Database (Denmark)
Cavalcante, Sergio Andre; Kesting, Peter; Ulhøi, John Parm
2011-01-01
the impact of specific changes to a firm's business model. Such a tool would be particularly useful in identifying path dependencies and resistance at the process level, and would therefore allow a firm's management to take focused action on this in advance. Originality/value – The paper makes two main...... and specifies four different types of business model change: business model creation, extension, revision, and termination. Each type of business model change is associated with specific challenges. Practical implications – The proposed typology can serve as a basis for developing a management tool to evaluate......Purpose – This paper aims to discuss the need to dynamize the existing conceptualization of business model, and proposes a new typology to distinguish different types of business model change. Design/methodology/approach – The paper integrates basic insights of innovation, business process...
On whole Abelian model dynamics
Energy Technology Data Exchange (ETDEWEB)
Chauca, J.; Doria, R. [CBPF, Rio de Janeiro (Brazil); Aprendanet, Petropolis, 25600 (Brazil)
2012-09-24
Physics challenge is to determine the objects dynamics. However, there are two ways for deciphering the part. The first one is to search for the ultimate constituents; the second one is to understand its behaviour in whole terms. Therefore, the parts can be defined either from elementary constituents or as whole functions. Historically, science has been moving through the first aspect, however, quarks confinement and complexity are interrupting this usual approach. These relevant facts are supporting for a systemic vision be introduced. Our effort here is to study on the whole meaning through gauge theory. Consider a systemic dynamics oriented through the U(1) - systemic gauge parameter which function is to collect a fields set {l_brace}A{sub {mu}I}{r_brace}. Derive the corresponding whole gauge invariant Lagrangian, equations of motion, Bianchi identities, Noether relationships, charges and Ward-Takahashi equations. Whole Lorentz force and BRST symmetry are also studied. These expressions bring new interpretations further than the usual abelian model. They are generating a systemic system governed by 2N+ 10 classical equations plus Ward-Takahashi identities. A whole dynamics based on the notions of directive and circumstance is producing a set determinism where the parts dynamics are inserted in the whole evolution. A dynamics based on state, collective and individual equations with a systemic interdependence.
Relating structure and dynamics in organisation models
Jonkers, C.M.; Treur, J.
2002-01-01
To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems,
Modelling MIZ dynamics in a global model
Rynders, Stefanie; Aksenov, Yevgeny; Feltham, Daniel; Nurser, George; Naveira Garabato, Alberto
2016-04-01
Exposure of large, previously ice-covered areas of the Arctic Ocean to the wind and surface ocean waves results in the Arctic pack ice cover becoming more fragmented and mobile, with large regions of ice cover evolving into the Marginal Ice Zone (MIZ). The need for better climate predictions, along with growing economic activity in the Polar Oceans, necessitates climate and forecasting models that can simulate fragmented sea ice with a greater fidelity. Current models are not fully fit for the purpose, since they neither model surface ocean waves in the MIZ, nor account for the effect of floe fragmentation on drag, nor include sea ice rheology that represents both the now thinner pack ice and MIZ ice dynamics. All these processes affect the momentum transfer to the ocean. We present initial results from a global ocean model NEMO (Nucleus for European Modelling of the Ocean) coupled to the Los Alamos sea ice model CICE. The model setup implements a novel rheological formulation for sea ice dynamics, accounting for ice floe collisions, thus offering a seamless framework for pack ice and MIZ simulations. The effect of surface waves on ice motion is included through wave pressure and the turbulent kinetic energy of ice floes. In the multidecadal model integrations we examine MIZ and basin scale sea ice and oceanic responses to the changes in ice dynamics. We analyse model sensitivities and attribute them to key sea ice and ocean dynamical mechanisms. The results suggest that the effect of the new ice rheology is confined to the MIZ. However with the current increase in summer MIZ area, which is projected to continue and may become the dominant type of sea ice in the Arctic, we argue that the effects of the combined sea ice rheology will be noticeable in large areas of the Arctic Ocean, affecting sea ice and ocean. With this study we assert that to make more accurate sea ice predictions in the changing Arctic, models need to include MIZ dynamics and physics.
Ship Engine Room Casualty Analysis by Using Decision Tree Method
Directory of Open Access Journals (Sweden)
Ömür Yaşar SAATÇİOĞLU
2017-03-01
Full Text Available Ships may encounter undesirable conditions during operations. In consequence of a casualty, fire, explosion, flooding, grounding, injury even death may occur. Besides, these results can be avoidable with precautions and preventive operating processes. In maritime transportation, casualties depend on various factors. These were listed as misuse of the engine equipment and tools, defective machinery or equipment, inadequacy of operational procedure and measure of safety and force majeure effects. Casualty reports which were published in Australia, New Zealand, United Kingdom, Canada and United States until 2015 were examined and the probable causes and consequences of casualties were determined with their occurrence percentages. In this study, 89 marine investigation reports regarding engine room casualties were analyzed. Casualty factors were analyzed with their frequency percentages and also their main causes were constructed. This study aims to investigate engine room based casualties, frequency of each casualty type and main causes by using decision tree method.
The 43rd Infantry Division: Unit Cohesion and Neuropsychiatric Casualties
National Research Council Canada - National Science Library
Fuschak, K
1999-01-01
..., The Solomon Islands, from July to September 1943. The study explores the multiple causes of these casualties, to include ignorance of lessons learned regarding neuropsychiatric casualties in World War I, general unpreparedness, poor training...
Social Dynamics Modeling and Inference
2018-03-29
the experiment(s)/ theory and equipment or analyses. Development of innovative theoretical model and methodologies with experimental verifications...information. The methodology based on communication and information theory (thanks to leave at MIT supported by this research) is described in [J1], [C2...a dynamic system [C1] and as a social learning mechanism in details [J4]. Furthermore, by incentive seeding and rewiring connections, information
Level I center triage and mass casualties.
Hoey, Brian A; Schwab, C William
2004-05-01
The world has been marked by a recent series of high-profile terrorist attacks, including the attack of September 11, 2001, in New York City. Similar to natural disasters, these attacks often result in a large number of casualties necessitating triage strategies. The end of the twentieth century was marked by the development of trauma systems in the United States and abroad. By their very nature, trauma centers are best equipped to handle mass casualties resulting from natural and manmade disasters. Triage assessment tools and scoring systems have evolved to facilitate this triage process and to potentially reduce the morbidity and mortality associated with these events.
Multiscale modeling of pedestrian dynamics
Cristiani, Emiliano; Tosin, Andrea
2014-01-01
This book presents mathematical models and numerical simulations of crowd dynamics. The core topic is the development of a new multiscale paradigm, which bridges the microscopic and macroscopic scales taking the most from each of them for capturing the relevant clues of complexity of crowds. The background idea is indeed that most of the complex trends exhibited by crowds are due to an intrinsic interplay between individual and collective behaviors. The modeling approach promoted in this book pursues actively this intuition and profits from it for designing general mathematical structures susceptible of application also in fields different from the inspiring original one. The book considers also the two most traditional points of view: the microscopic one, in which pedestrians are tracked individually, and the macroscopic one, in which pedestrians are assimilated to a continuum. Selected existing models are critically analyzed. The work is addressed to researchers and graduate students.
Military Medical Revolution: Prehospital Combat Casualty Care
2012-01-01
systems Anesthesia Antisepsis/sanitation (Lister, Pasteur , Koch) Nursing care (Nightingale) World War I and World War II Antibiotics Blood...to preserve the life of casualties in critical conditions. TACEVAC includes evacuation by both designat- ed medical (MEDEVAC) mobility assets and...military experience in Somalia, Afghanistan, and Iraq revitalized the concept of treating hemorrhage with plas- ma to preserve coagulation system
Characterizing and Modeling Citation Dynamics
Eom, Young-Ho; Fortunato, Santo
2011-01-01
Citation distributions are crucial for the analysis and modeling of the activity of scientists. We investigated bibliometric data of papers published in journals of the American Physical Society, searching for the type of function which best describes the observed citation distributions. We used the goodness of fit with Kolmogorov-Smirnov statistics for three classes of functions: log-normal, simple power law and shifted power law. The shifted power law turns out to be the most reliable hypothesis for all citation networks we derived, which correspond to different time spans. We find that citation dynamics is characterized by bursts, usually occurring within a few years since publication of a paper, and the burst size spans several orders of magnitude. We also investigated the microscopic mechanisms for the evolution of citation networks, by proposing a linear preferential attachment with time dependent initial attractiveness. The model successfully reproduces the empirical citation distributions and accounts for the presence of citation bursts as well. PMID:21966387
MATHEMATICAL MODEL FOR RIVERBOAT DYNAMICS
Directory of Open Access Journals (Sweden)
Aleksander Grm
2017-01-01
Full Text Available Present work describes a simple dynamical model for riverboat motion based on the square drag law. Air and water interactions with the boat are determined from aerodynamic coefficients. CFX simulations were performed with fully developed turbulent flow to determine boat aerodynamic coefficients for an arbitrary angle of attack for the air and water portions separately. The effect of wave resistance is negligible compared to other forces. Boat movement analysis considers only two-dimensional motion, therefore only six aerodynamics coefficients are required. The proposed model is solved and used to determine the critical environmental parameters (wind and current under which river navigation can be conducted safely. Boat simulator was tested in a single area on the Ljubljanica river and estimated critical wind velocity.
Energy Technology Data Exchange (ETDEWEB)
Cipiti, Benjamin B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-03-01
The Co-Decontamination (CoDCon) Demonstration project is designed to test the separation of a mixed U and Pu product from dissolved spent nuclear fuel. The primary purpose of the project is to quantify the accuracy and precision to which a U/Pu mass ratio can be achieved without removing a pure Pu product. The system includes an on-line monitoring system using spectroscopy to monitor the ratios throughout the process. A dynamic model of the CoDCon flowsheet and on-line monitoring system was developed in order to expand the range of scenarios that can be examined for process control and determine overall measurement uncertainty. The model development and initial results are presented here.
Modeling the dynamics of choice.
Baum, William M; Davison, Michael
2009-06-01
A simple linear-operator model both describes and predicts the dynamics of choice that may underlie the matching relation. We measured inter-food choice within components of a schedule that presented seven different pairs of concurrent variable-interval schedules for 12 food deliveries each with no signals indicating which pair was in force. This measure of local choice was accurately described and predicted as obtained reinforcer sequences shifted it to favor one alternative or the other. The effect of a changeover delay was reflected in one parameter, the asymptote, whereas the effect of a difference in overall rate of food delivery was reflected in the other parameter, rate of approach to the asymptote. The model takes choice as a primary dependent variable, not derived by comparison between alternatives-an approach that agrees with the molar view of behaviour.
Dynamical modeling of tidal streams
International Nuclear Information System (INIS)
Bovy, Jo
2014-01-01
I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.
System Dynamics Modelling for a Balanced Scorecard
DEFF Research Database (Denmark)
Nielsen, Steen; Nielsen, Erland Hejn
2008-01-01
/methodology/approach - We use a case study model to develop time or dynamic dimensions by using a System Dynamics modelling (SDM) approach. The model includes five perspectives and a number of financial and non-financial measures. All indicators are defined and related to a coherent number of different cause...... have a major influence on other indicators and profit and may be impossible to predict without using a dynamic model. Practical implications - The model may be used as the first step in quantifying the cause-and-effect relationships of an integrated BSC model. Using the System Dynamics model provides......Purpose - To construct a dynamic model/framework inspired by a case study based on an international company. As described by the theory, one of the main difficulties of BSC is to foresee the time lag dimension of different types of indicators and their combined dynamic effects. Design...
International Nuclear Information System (INIS)
Shin, Seung Ki; Seong, Poong Hyun
2008-01-01
Conventional static reliability analysis methods are inadequate for modeling dynamic interactions between components of a system. Various techniques such as dynamic fault tree, dynamic Bayesian networks, and dynamic reliability block diagrams have been proposed for modeling dynamic systems based on improvement of the conventional modeling methods. In this paper, we review these methods briefly and introduce dynamic nodes to the existing Reliability Graph with General Gates (RGGG) as an intuitive modeling method to model dynamic systems. For a quantitative analysis, we use a discrete-time method to convert an RGGG to an equivalent Bayesian network and develop a software tool for generation of probability tables
[Mass casualty incidents - current concepts and developments].
Savinsky, Godo; Stuhr, Markus; Kappus, Stefan; Trümpler, Stefan; Wenderoth, Stephan; Wohlers, Jan-Hauke; Paschen, Hans-Richard; Kerner, Thoralf
2014-12-01
Medical concepts and strategies are permanently changing. Due to the emergency response in a mass casualty incident everyone who is involved has to work together with different organisations and public authorities, which are not part of the regular emergency medical service. Within the last 25 years throughout the whole country of Germany the role of a "chief emergency physician" has been implemented and in preparation for the FIFA World Cup 2006 mobile treatment units were set up. In 2007, special units of the "Medical Task Force" - funded by the german state - were introduced and have been established by now. They will be a permanent part of regional plannings for mass casualty incidents. This article highlights current concepts and developments in different parts of Germany. © Georg Thieme Verlag Stuttgart · New York.
Westinghouse GOCO conduct of casualty drills
International Nuclear Information System (INIS)
Ames, C.P.
1996-02-01
Purpose of this document is to provide Westinghouse Government Owned Contractor Operated (GOCO) Facilities with information that can be used to implement or improve drill programs. Elements of this guide are highly recommended for use when implementing a new drill program or when assessing an existing program. Casualty drills focus on response to abnormal conditions presenting a hazard to personnel, environment, or equipment; they are distinct from Emergency Response Exercises in which the training emphasis is on site, field office, and emergency management team interaction. The DOE documents which require team training and conducting drills in nuclear facilities and should be used as guidance in non-nuclear facilities are: DOE 5480.19 (Chapter 1 of Attachment I) and DOE 5480.20 (Chapter 1, paragraphs 7 a. and d. of continuing training). Casualty drills should be an integral part of the qualification and training program at every DOE facility
Yale and the Atomic Bomb Casualty Commission
International Nuclear Information System (INIS)
Bowers, J.Z.
1983-01-01
This is a description, based largely on personal discussions, of the contributions of men from the Yale University School of Medicine to the saga of the immediate and long-term studies on the medical effects of the atomic bombs at Hiroshima and Nagasaki. They played key roles in the immediate studies of bomb effects, in the creation of long-term studies of delayed effects, and in elevating the Atomic Bomb Casualty Commission after 1955 to a position of excellence in its studies and relations with the Japanese. The accumulation of the information presented in this paper derives from research for the preparation of the history of the Atomic Bomb Casualty Commission. In 1975, the commission was passed to Japanese leadership as the Radiation Effects Research Foundation
Characterizing and modeling citation dynamics.
Directory of Open Access Journals (Sweden)
Young-Ho Eom
Full Text Available Citation distributions are crucial for the analysis and modeling of the activity of scientists. We investigated bibliometric data of papers published in journals of the American Physical Society, searching for the type of function which best describes the observed citation distributions. We used the goodness of fit with Kolmogorov-Smirnov statistics for three classes of functions: log-normal, simple power law and shifted power law. The shifted power law turns out to be the most reliable hypothesis for all citation networks we derived, which correspond to different time spans. We find that citation dynamics is characterized by bursts, usually occurring within a few years since publication of a paper, and the burst size spans several orders of magnitude. We also investigated the microscopic mechanisms for the evolution of citation networks, by proposing a linear preferential attachment with time dependent initial attractiveness. The model successfully reproduces the empirical citation distributions and accounts for the presence of citation bursts as well.
Supply based on demand dynamical model
Levi, Asaf; Sabuco, Juan; Sanjuán, Miguel A. F.
2018-04-01
We propose and numerically analyze a simple dynamical model that describes the firm behaviors under uncertainty of demand. Iterating this simple model and varying some parameter values, we observe a wide variety of market dynamics such as equilibria, periodic, and chaotic behaviors. Interestingly, the model is also able to reproduce market collapses.
Opinion dynamics model based on quantum formalism
Energy Technology Data Exchange (ETDEWEB)
Artawan, I. Nengah, E-mail: nengahartawan@gmail.com [Theoretical Physics Division, Department of Physics, Udayana University (Indonesia); Trisnawati, N. L. P., E-mail: nlptrisnawati@gmail.com [Biophysics, Department of Physics, Udayana University (Indonesia)
2016-03-11
Opinion dynamics model based on quantum formalism is proposed. The core of the quantum formalism is on the half spin dynamics system. In this research the implicit time evolution operators are derived. The analogy between the model with Deffuant dan Sznajd models is discussed.
Relating structure and dynamics in organisation models
Jonker, C.M.; Treur, J.
2003-01-01
To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems, on
Shartar, Samuel E; Moore, Brooks L; Wood, Lori M
2017-12-01
Metropolitan areas must be prepared to manage large numbers of casualties related to a major incident. Most US cities do not have adequate trauma center capacity to manage large-scale mass casualty incidents (MCIs). Creating surge capacity requires the distribution of casualties to hospitals that are not designated as trauma centers. Our objectives were to extrapolate MCI response research into operational objectives for MCI distribution plan development; formulate a patient distribution model based on research, hospital capacities, and resource availability; and design and disseminate a casualty distribution tool for use by emergency medical services (EMS) personnel to distribute patients to the appropriate level of care. Working with hospitals within the region, we refined emergency department surge capacity for MCIs and developed a prepopulated tool for EMS providers to use to distribute higher-acuity casualties to trauma centers and lower-acuity casualties to nontrauma hospitals. A mechanism to remove a hospital from the list of available resources, if it is overwhelmed with patients who self-transport to the location, also was put into place. The number of critically injured survivors from an MCI has proven to be consistent, averaging 7% to 10%. Moving critically injured patients to level 1 trauma centers can result in a 25% reduction in mortality, when compared with care at nontrauma hospitals. US cities face major gaps in the surge capacity needed to manage an MCI. Sixty percent of "walking wounded" casualties self-transport to the closest hospital(s) to the incident. Directing critically ill patients to designated trauma centers has the potential to reduce mortality associated with the event. When applied to MCI responses, damage-control principles reduce resource utilization and optimize surge capacity. A universal system for mass casualty triage was identified and incorporated into the region's EMS. Flagship regional coordinating hospitals were designated
Analyzing the Effects of Urban Combat on Daily Casualty Rates
National Research Council Canada - National Science Library
Yazilitas, Hakan
2004-01-01
.... The available data set contains measurements about the battles like initial strengths, daily casualties, terrain, front width, linear density, attacker's and defender's country, and armor losses...
Dynamic modelling of nuclear steam generators
International Nuclear Information System (INIS)
Kerlin, T.W.; Katz, E.M.; Freels, J.; Thakkar, J.
1980-01-01
Moving boundary, nodal models with dynamic energy balances, dynamic mass balances, quasi-static momentum balances, and an equivalent single channel approach have been developed for steam generators used in nuclear power plants. The model for the U-tube recirculation type steam generator is described and comparisons are made of responses from models of different complexity; non-linear versus linear, high-order versus low order, detailed modeling of the control system versus a simple control assumption. The results of dynamic tests on nuclear power systems show that when this steam generator model is included in a system simulation there is good agreement with actual plant performance. (author)
Dynamic Airspace Managment - Models and Algorithms
Cheng, Peng; Geng, Rui
2010-01-01
This chapter investigates the models and algorithms for implementing the concept of Dynamic Airspace Management. Three models are discussed. First two models are about how to use or adjust air route dynamically in order to speed up air trafï¬c ï¬‚ow and reduce delay. The third model gives a way to dynamically generate the optimal sector conï¬guration for an air trafï¬c control center to both balance the controllerâ€™s workload and save control resources. The ï¬rst model, called the Dynami...
Wind Farm Decentralized Dynamic Modeling With Parameters
DEFF Research Database (Denmark)
Soltani, Mohsen; Shakeri, Sayyed Mojtaba; Grunnet, Jacob Deleuran
2010-01-01
Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...... local models. The results of this report are especially useful, but not limited, to design a decentralized wind farm controller, since in centralized controller design one can also use the model and update it in a central computing node.......Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...
System dynamics modelling of situation awareness
CSIR Research Space (South Africa)
Oosthuizen, R
2015-11-01
Full Text Available . The feedback loops and delays in the Command and Control system also contribute to the complex dynamic behavior. This paper will build on existing situation awareness models to develop a System Dynamics model to support a qualitative investigation through...
An Agent Model Integrating an Adaptive Model for Environmental Dynamics
Treur, J.; Umair, M.
2011-01-01
The environments in which agents are used often may be described by dynamical models, e.g., in the form of a set of differential equations. In this paper, an agent model is proposed that can perform model-based reasoning about the environment, based on a numerical (dynamical system) model of the
Hydration dynamics near a model protein surface
International Nuclear Information System (INIS)
Russo, Daniela; Hura, Greg; Head-Gordon, Teresa
2003-01-01
The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering and molecular dynamics simulation for both the completely deuterated and completely hydrogenated leucine monomer. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational water dynamics are analyzed in a first approximation with a jump diffusion model. At the highest solute concentrations, the hydration water dynamics is significantly suppressed and characterized by a long residential time and a slow diffusion coefficient. The analysis of the more dilute concentration solutions takes into account the results of the 2.0M solution as a model of the first hydration shell. Subtracting the first hydration layer based on the 2.0M spectra, the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis shows spatially heterogeneous dynamics at high concentration that becomes homogeneous at more dilute concentrations. We discuss the hydration dynamics results of this model protein system in the context of glassy systems, protein function, and protein-protein interfaces
Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection
DEFF Research Database (Denmark)
Bork, Lasse; Møller, Stig Vinther
2015-01-01
We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves substantia......We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves...
Chao, Y.; Cheng, C. T.; Hsiao, Y. H.; Hsu, C. T.; Yeh, K. C.; Liu, P. L.
2017-12-01
There are 5.3 typhoons hit Taiwan per year on average in last decade. Typhoon Morakot in 2009, the most severe typhoon, causes huge damage in Taiwan, including 677 casualties and roughly NT 110 billion (3.3 billion USD) in economic loss. Some researches documented that typhoon frequency will decrease but increase in intensity in western North Pacific region. It is usually preferred to use high resolution dynamical model to get better projection of extreme events; because coarse resolution models cannot simulate intense extreme events. Under that consideration, dynamical downscaling climate data was chosen to describe typhoon satisfactorily, this research used the simulation data from AGCM of Meteorological Research Institute (MRI-AGCM). Considering dynamical downscaling methods consume massive computing power, and typhoon number is very limited in a single model simulation, using dynamical downscaling data could cause uncertainty in disaster risk assessment. In order to improve the problem, this research used four sea surfaces temperatures (SSTs) to increase the climate change scenarios under RCP 8.5. In this way, MRI-AGCMs project 191 extreme typhoons in Taiwan (when typhoon center touches 300 km sea area of Taiwan) in late 21th century. SOBEK, a two dimensions flood simulation model, was used to assess the flood risk under four SSTs climate change scenarios in Tainan, Taiwan. The results show the uncertainty of future flood risk assessment is significantly decreased in Tainan, Taiwan in late 21th century. Four SSTs could efficiently improve the problems of limited typhoon numbers in single model simulation.
Adaptive numerical modeling of dynamic crack propagation
International Nuclear Information System (INIS)
Adouani, H.; Tie, B.; Berdin, C.; Aubry, D.
2006-01-01
We propose an adaptive numerical strategy that aims at developing reliable and efficient numerical tools to model dynamic crack propagation and crack arrest. We use the cohesive zone theory as behavior of interface-type elements to model crack. Since the crack path is generally unknown beforehand, adaptive meshing is proposed to model the dynamic crack propagation. The dynamic study requires the development of specific solvers for time integration. As both geometry and finite element mesh of the studied structure evolve in time during transient analysis, the stability behavior of dynamic solver becomes a major concern. For this purpose, we use the space-time discontinuous Galerkin finite element method, well-known to provide a natural framework to manage meshes that evolve in time. As an important result, we prove that the space-time discontinuous Galerkin solver is unconditionally stable, when the dynamic crack propagation is modeled by the cohesive zone theory, which is highly non-linear. (authors)
Modeling Gas Dynamics in California Sea Lions
2015-09-30
W. and Fahlman, A. (2009). Could beaked whales get the bends?. Effect of diving behaviour and physiology on modelled gas exchange for three species...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Modeling Gas Dynamics in California Sea Lions Andreas...to update a current gas dynamics model with recently acquired data for respiratory compliance (P-V), and body compartment size estimates in
A Dynamic Model of Sustainment Investment
2015-02-01
Sustainment System Dynamics Model 11 Figure 7: Core Structure of Sustainment Work 12 Figure 8: Bandwagon Effect Loop 13 Figure 9: Limits to Growth Loop 14...Dynamics Model sustainment capacity sustainment performance gap Bandwagon Effect R1 Limits to Growth B1 S Work Smarter B3 Work Bigger B2 desired...which is of concern primarily when using the model as a vehicle for research. Figure 8 depicts a reinforcing loop called the “ Bandwagon Effect
Modeling the Dynamic Digestive System Microbiome†
Estes, Anne M.
2015-01-01
“Modeling the Dynamic Digestive System Microbiome” is a hands-on activity designed to demonstrate the dynamics of microbiome ecology using dried pasta and beans to model disturbance events in the human digestive system microbiome. This exercise demonstrates how microbiome diversity is influenced by: 1) niche availability and habitat space and 2) a major disturbance event, such as antibiotic use. Students use a pictorial key to examine prepared models of digestive system microbiomes to determi...
26 CFR 1.165-7 - Casualty losses.
2010-04-01
... where damage by casualty has occurred to a building and ornamental or fruit trees used in a trade or business, the decrease in value shall be measured by taking the building and trees into account separately... building and trees. (ii) In determining a casualty loss involving real property and improvements thereon...
The Casualty Actuarial Society: Helping Universities Train Future Actuaries
Boa, J. Michael; Gorvett, Rick
2014-01-01
The Casualty Actuarial Society (CAS) believes that the most effective way to advance the actuarial profession is to work in partnership with universities. The CAS stands ready to assist universities in creating or enhancing courses and curricula associated with property/casualty actuarial science. CAS resources for university actuarial science…
Mass casualty triage after an airplane crash near Amsterdam
Postma, Ingri L. E.; Weel, Hanneke; Heetveld, Martin J.; van der Zande, Ineke; Bijlsma, Taco S.; Bloemers, Frank W.; Goslings, J. Carel
2013-01-01
Triage is an important aspect of the management of mass casualty incidents. This study describes the triage after the Turkish Airlines Crash near Amsterdam in 2009. The results of the triage and the injuries of P3 casualties were evaluated. In addition, the role of the trauma mechanism and its
Differential equation models for sharp threshold dynamics.
Schramm, Harrison C; Dimitrov, Nedialko B
2014-01-01
We develop an extension to differential equation models of dynamical systems to allow us to analyze probabilistic threshold dynamics that fundamentally and globally change system behavior. We apply our novel modeling approach to two cases of interest: a model of infectious disease modified for malware where a detection event drastically changes dynamics by introducing a new class in competition with the original infection; and the Lanchester model of armed conflict, where the loss of a key capability drastically changes the effectiveness of one of the sides. We derive and demonstrate a step-by-step, repeatable method for applying our novel modeling approach to an arbitrary system, and we compare the resulting differential equations to simulations of the system's random progression. Our work leads to a simple and easily implemented method for analyzing probabilistic threshold dynamics using differential equations. Published by Elsevier Inc.
Nonlinear dynamic phenomena in the beer model
DEFF Research Database (Denmark)
Mosekilde, Erik; Laugesen, Jakob Lund
2007-01-01
The production-distribution system or "beer game" is one of the most well-known system dynamics models. Notorious for the complex dynamics it produces, the beer game has been used for nearly five decades to illustrate how structure generates behavior and to explore human decision making. Here we...
Phone Routing using the Dynamic Memory Model
DEFF Research Database (Denmark)
Bendtsen, Claus Nicolaj; Krink, Thiemo
2002-01-01
In earlier studies a genetic algorithm (GA) extended with the dynamic memory model has shown remarkable performance on real-world-like problems. In this paper we experiment with routing in communication networks and show that the dynamic memory GA performs remarkable well compared to ant colony...
Dynamic queuing transmission model for dynamic network loading
DEFF Research Database (Denmark)
Raovic, Nevena; Nielsen, Otto Anker; Prato, Carlo Giacomo
2017-01-01
and allowing for the representation of multiple vehicle classes, queue spillbacks and shock waves. The model assumes that a link is split into a moving part plus a queuing part, and p that traffic dynamics are given by a triangular fundamental diagram. A case-study is investigated and the DQTM is compared...
Some dynamical aspects of interacting quintessence model
Indian Academy of Sciences (India)
Binayak S Choudhury
2018-03-16
Mar 16, 2018 ... Accelerated expansion of the Universe; quintessence; dynamical system; Friedmann–Lemaitre–. Robertson–Walker ... accepted theoretical model. One of the .... Thus, quintessence loses its self-strength and gives dark matter.
Modeling of truck's braking dynamics with ABS
Directory of Open Access Journals (Sweden)
Maxym DYACHUK
2014-09-01
Full Text Available In the article some questions of ABS simulation on the basis of plane vehicle's dynamics and automatic modeling are considered. The author's algorithm of ABS modulators control is presented.
Dynamic Models of Insurgent Activity
2014-05-19
one dimension that has recently been studied in the computer science community. The model involves movement with a speed proportional to a “fear...more realistic model of human locomotion. The movement of the criminal agents follows a biased Levy flight with step sizes distributed according to a...power-law distribution. The biased Brownian motion of the original model is then derived as a special case. Starting with an agent-based model, we
Stochastic population dynamic models as probability networks
M.E. and D.C. Lee. Borsuk
2009-01-01
The dynamics of a population and its response to environmental change depend on the balance of birth, death and age-at-maturity, and there have been many attempts to mathematically model populations based on these characteristics. Historically, most of these models were deterministic, meaning that the results were strictly determined by the equations of the model and...
Bond graph modeling of nuclear reactor dynamics
International Nuclear Information System (INIS)
Tylee, J.L.
1981-01-01
A tenth-order linear model of a pressurized water reactor (PWR) is developed using bond graph techniques. The model describes the nuclear heat generation process and the transfer of this heat to the reactor coolant. Comparisons between the calculated model response and test data from a small-scale PWR show the model to be an adequate representation of the actual plant dynamics. Possible application of the model in an advanced plant diagnostic system is discussed
Swarm Intelligence for Urban Dynamics Modelling
International Nuclear Information System (INIS)
Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gerard H. E.
2009-01-01
In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.
Swarm Intelligence for Urban Dynamics Modelling
Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gérard H. E.
2009-04-01
In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.
Understanding and Modeling Teams As Dynamical Systems
Gorman, Jamie C.; Dunbar, Terri A.; Grimm, David; Gipson, Christina L.
2017-01-01
By its very nature, much of teamwork is distributed across, and not stored within, interdependent people working toward a common goal. In this light, we advocate a systems perspective on teamwork that is based on general coordination principles that are not limited to cognitive, motor, and physiological levels of explanation within the individual. In this article, we present a framework for understanding and modeling teams as dynamical systems and review our empirical findings on teams as dynamical systems. We proceed by (a) considering the question of why study teams as dynamical systems, (b) considering the meaning of dynamical systems concepts (attractors; perturbation; synchronization; fractals) in the context of teams, (c) describe empirical studies of team coordination dynamics at the perceptual-motor, cognitive-behavioral, and cognitive-neurophysiological levels of analysis, and (d) consider the theoretical and practical implications of this approach, including new kinds of explanations of human performance and real-time analysis and performance modeling. Throughout our discussion of the topics we consider how to describe teamwork using equations and/or modeling techniques that describe the dynamics. Finally, we consider what dynamical equations and models do and do not tell us about human performance in teams and suggest future research directions in this area. PMID:28744231
Dynamical models of spiral galaxies
International Nuclear Information System (INIS)
Grosbol, P.
1990-01-01
The effects of changing the basic parameters of rotation curve steepness, amount of bulge, and pitch angle of the imposed spiral pattern in the galactic model of Contoupolos and Grosbel (1986) are investigated. The general conclusions of the model are confirmed and shown to be insensitive to the specific choice of parameters for the galactic potential. The exact amplitude at which the nonlinear effects at the 4:1 resonance become important do, however, depend on the model
Energy Balance Models and Planetary Dynamics
Domagal-Goldman, Shawn
2012-01-01
We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.
Stirling Engine Dynamic System Modeling
Nakis, Christopher G.
2004-01-01
The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.
Brand Equity Evolution: a System Dynamics Model
Directory of Open Access Journals (Sweden)
Edson Crescitelli
2009-04-01
Full Text Available One of the greatest challenges in brand management lies in monitoring brand equity over time. This paper aimsto present a simulation model able to represent this evolution. The model was drawn on brand equity concepts developed by Aaker and Joachimsthaler (2000, using the system dynamics methodology. The use ofcomputational dynamic models aims to create new sources of information able to sensitize academics and managers alike to the dynamic implications of their brand management. As a result, an easily implementable model was generated, capable of executing continuous scenario simulations by surveying casual relations among the variables that explain brand equity. Moreover, the existence of a number of system modeling tools will allow extensive application of the concepts used in this study in practical situations, both in professional and educational settings
Discrete dynamic modeling of cellular signaling networks.
Albert, Réka; Wang, Rui-Sheng
2009-01-01
Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.
Dynamic Modelling with "MLE-Energy Dynamic" for Primary School
Giliberti, Enrico; Corni, Federico
During the recent years simulation and modelling are growing instances in science education. In primary school, however, the main use of software is the simulation, due to the lack of modelling software tools specially designed to fit/accomplish the needs of primary education. In particular primary school teachers need to use simulation in a framework that is both consistent and simple enough to be understandable by children [2]. One of the possible area to approach modelling is about the construction of the concept of energy, in particular for what concerns the relations among substance, potential, power [3]. Following the previous initial research results with this approach [2], and with the static version of the software MLE Energy [1], we suggest the design and the experimentation of a dynamic modelling software—MLE dynamic-capable to represent dynamically the relations occurring when two substance-like quantities exchange energy, modifying their potential. By means of this software the user can graphically choose the dependent and independent variables and leave the other parameters fixed. The software has been initially evaluated, during a course of science education with a group of primary school teachers-to-be, to test the ability of the software to improve teachers' way of thinking in terms of substance-like quantities and their effects (graphical representation of the extensive, intensive variables and their mutual relations); moreover, the software has been tested with a group of primary school teachers, asking their opinion about the software didactical relevance in the class work.
Analysis of the Causes of Maritime Casualties
Directory of Open Access Journals (Sweden)
Jelenko Švetak
2003-01-01
Full Text Available A survey of total loss accidents in merchant shipping over aperiod of 30 years shows that these can be arranged in the followingorder: stranding, fire, water-leaks, gales and collision;other accidents are also taken into consideration. The analysisconsiders ships over 500 GT of different flags, plying any routeof navigation.Initially, a sample of 500 merchant ships- of different typesand tonnage- and under 15 different flags is analyzed to determineage and type of ship, and the causes of accidents.In the second analysis, the same 15 flags are considered,but now over a wider range on a sample totalling 1,500 merchantships. The results of both analyses are compared. It isshown that all collisions together with gale amount to 25% ofmaritime casualty returns -in the total loss lists- while strandingand collision take more than 40% of the toll.
Protective measures while treating CWA casualties
International Nuclear Information System (INIS)
Medema, J.
2009-01-01
When Chemical Warfare agent casualties are brought into a medical facility they are usually decontaminated before receiving treatment. The decontamination can range from simply undressing to complex entry/exit procedures for a collective protection medical shelter. It is expected that the decontamination has reduced the contamination to such a degree that there is no more hazard for the medical personnel from emanating CWA vapors. However there is quite some evidence that this is usually not the case and additional protective measures are required in order to have the medical staff operating unhindered and not endangered by albeit low but still hazardous CWA vapor concentrations that at the end of the day would have adverse effects on the capabilities of the medical staff. In the paper some simple but effective means will be described that will reduce the exposure of the medical staff to.(author)
Dynamics of the standard model
Donoghue, John F; Holstein, Barry R
2014-01-01
Describing the fundamental theory of particle physics and its applications, this book provides a detailed account of the Standard Model, focusing on techniques that can produce information about real observed phenomena. The book begins with a pedagogic account of the Standard Model, introducing essential techniques such as effective field theory and path integral methods. It then focuses on the use of the Standard Model in the calculation of physical properties of particles. Rigorous methods are emphasized, but other useful models are also described. This second edition has been updated to include recent theoretical and experimental advances, such as the discovery of the Higgs boson. A new chapter is devoted to the theoretical and experimental understanding of neutrinos, and major advances in CP violation and electroweak physics have been given a modern treatment. This book is valuable to graduate students and researchers in particle physics, nuclear physics and related fields.
Forecasting with Dynamic Regression Models
Pankratz, Alan
2012-01-01
One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.
Amputations in natural disasters and mass casualties: staged approach.
Wolfson, Nikolaj
2012-10-01
Amputation is a commonly performed procedure during natural disasters and mass casualties related to industrial accidents and military conflicts where large civilian populations are subjected to severe musculoskeletal trauma. Crush injuries and crush syndrome, an often-overwhelming number of casualties, delayed presentations, regional cultural and other factors, all can mandate a surgical approach to amputation that is different than that typically used under non-disaster conditions. The following article will review the subject of amputation during natural disasters and mass casualties with emphasis on a staged approach to minimise post-surgical complications, especially infection.
Dynamic Modelling Of A SCARA Robot
Turiel, J. Perez; Calleja, R. Grossi; Diez, V. Gutierrez
1987-10-01
This paper describes a method for modelling industrial robots that considers dynamic approach to manipulation systems motion generation, obtaining the complete dynamic model for the mechanic part of the robot and taking into account the dynamic effect of actuators acting at the joints. For a four degree of freedom SCARA robot we obtain the dynamic model for the basic (minimal) configuration, that is, the three degrees of freedom that allow us to place the robot end effector in a desired point, using the Lagrange Method to obtain the dynamic equations in matrix form. The manipulator is considered to be a set of rigid bodies inter-connected by joints in the form of simple kinematic pairs. Then, the state space model is obtained for the actuators that move the robot joints, uniting the models of the single actuators, that is, two DC permanent magnet servomotors and an electrohydraulic actuator. Finally, using a computer simulation program written in FORTRAN language, we can compute the matrices of the complete model.
Dynamic modeling of IGCC power plants
International Nuclear Information System (INIS)
Casella, F.; Colonna, P.
2012-01-01
Integrated Gasification Combined Cycle (IGCC) power plants are an effective option to reduce emissions and implement carbon-dioxide sequestration. The combination of a very complex fuel-processing plant and a combined cycle power station leads to challenging problems as far as dynamic operation is concerned. Dynamic performance is extremely relevant because recent developments in the electricity market push toward an ever more flexible and varying operation of power plants. A dynamic model of the entire system and models of its sub-systems are indispensable tools in order to perform computer simulations aimed at process and control design. This paper presents the development of the lumped-parameters dynamic model of an entrained-flow gasifier, with special emphasis on the modeling approach. The model is implemented into software by means of the Modelica language and validated by comparison with one set of data related to the steady operation of the gasifier of the Buggenum power station in the Netherlands. Furthermore, in order to demonstrate the potential of the proposed modeling approach and the use of simulation for control design purposes, a complete model of an exemplary IGCC power plant, including its control system, has been developed, by re-using existing models of combined cycle plant components; the results of a load dispatch ramp simulation are presented and shortly discussed. - Highlights: ► The acausal dynamic model of an entrained gasifier has been developed. ► The model can be used to perform system optimization and control studies. ► The model has been validated using field data. ► Model use is illustrated with an example showing the transient of an IGCC plant.
Automated adaptive inference of phenomenological dynamical models
Daniels, Bryan
Understanding the dynamics of biochemical systems can seem impossibly complicated at the microscopic level: detailed properties of every molecular species, including those that have not yet been discovered, could be important for producing macroscopic behavior. The profusion of data in this area has raised the hope that microscopic dynamics might be recovered in an automated search over possible models, yet the combinatorial growth of this space has limited these techniques to systems that contain only a few interacting species. We take a different approach inspired by coarse-grained, phenomenological models in physics. Akin to a Taylor series producing Hooke's Law, forgoing microscopic accuracy allows us to constrain the search over dynamical models to a single dimension. This makes it feasible to infer dynamics with very limited data, including cases in which important dynamical variables are unobserved. We name our method Sir Isaac after its ability to infer the dynamical structure of the law of gravitation given simulated planetary motion data. Applying the method to output from a microscopically complicated but macroscopically simple biological signaling model, it is able to adapt the level of detail to the amount of available data. Finally, using nematode behavioral time series data, the method discovers an effective switch between behavioral attractors after the application of a painful stimulus.
Online Learning of Industrial Manipulators' Dynamics Models
DEFF Research Database (Denmark)
Polydoros, Athanasios
2017-01-01
, it was compared with multiple other state-of-the-art machine learning algorithms. Moreover, the thesis presents the application of the proposed learning method on robot control for achieving trajectory execution while learning the inverse dynamics models on-the-fly . Also it is presented the application...... of the dynamics models. Those mainly derive from physics-based methods and thus they are based on physical properties which are hard to be calculated. In this thesis, is presented, a novel online machine learning approach which is able to model both inverse and forward dynamics models of industrial manipulators....... The proposed method belongs to the class of deep learning and exploits the concepts of self-organization, recurrent neural networks and iterative multivariate Bayesian regression. It has been evaluated on multiple datasets captured from industrial robots while they were performing various tasks. Also...
Dynamic optimization deterministic and stochastic models
Hinderer, Karl; Stieglitz, Michael
2016-01-01
This book explores discrete-time dynamic optimization and provides a detailed introduction to both deterministic and stochastic models. Covering problems with finite and infinite horizon, as well as Markov renewal programs, Bayesian control models and partially observable processes, the book focuses on the precise modelling of applications in a variety of areas, including operations research, computer science, mathematics, statistics, engineering, economics and finance. Dynamic Optimization is a carefully presented textbook which starts with discrete-time deterministic dynamic optimization problems, providing readers with the tools for sequential decision-making, before proceeding to the more complicated stochastic models. The authors present complete and simple proofs and illustrate the main results with numerous examples and exercises (without solutions). With relevant material covered in four appendices, this book is completely self-contained.
Dynamic modeling of the INAPRO aquaponic system
Karimanzira, Divas; Keesman, Karel J.; Kloas, Werner; Baganz, Daniela; Rauschenbach, Thomas
2016-01-01
The use of modeling techniques to analyze aquaponics systems is demonstrated with an example of dynamic modeling for the production of Nile tilapia (Oreochromis niloticus) and tomatoes (Solanum lycopersicon) using the innovative double recirculating aquaponic system ASTAF-PRO. For the management
Dynamic spatial panels : models, methods, and inferences
Elhorst, J. Paul
This paper provides a survey of the existing literature on the specification and estimation of dynamic spatial panel data models, a collection of models for spatial panels extended to include one or more of the following variables and/or error terms: a dependent variable lagged in time, a dependent
A Discrete Dynamical Model of Signed Partitions
Directory of Open Access Journals (Sweden)
G. Chiaselotti
2013-01-01
Full Text Available We use a discrete dynamical model with three evolution rules in order to analyze the structure of a partially ordered set of signed integer partitions whose main properties are actually not known. This model is related to the study of some extremal combinatorial sum problems.
Dynamic Factor Models for the Volatility Surface
DEFF Research Database (Denmark)
van der Wel, Michel; Ozturk, Sait R.; Dijk, Dick van
The implied volatility surface is the collection of volatilities implied by option contracts for different strike prices and time-to-maturity. We study factor models to capture the dynamics of this three-dimensional implied volatility surface. Three model types are considered to examine desirable...
Dynamical modeling of surface tension
International Nuclear Information System (INIS)
Brackbill, J.U.; Kothe, D.B.
1996-01-01
In a recent review it is said that free-surface flows ''represent some of the difficult remaining challenges in computational fluid dynamics''. There has been progress with the development of new approaches to treating interfaces, such as the level-set method and the improvement of older methods such as the VOF method. A common theme of many of the new developments has been the regularization of discontinuities at the interface. One example of this approach is the continuum surface force (CSF) formulation for surface tension, which replaces the surface stress given by Laplace's equation by an equivalent volume force. Here, we describe how CSF might be made more useful. Specifically, we consider a derivation of the CSF equations from a minimization of surface energy as outlined by Jacqmin. This reformulation suggests that if one eliminates the computation of curvature in terms of a unit normal vector, parasitic currents may be eliminated For this reformulation to work, it is necessary that transition region thickness be controlled. Various means for this, in addition to the one discussed by Jacqmin are discussed
Session 6: Dynamic Modeling and Systems Analysis
Csank, Jeffrey; Chapman, Jeffryes; May, Ryan
2013-01-01
These presentations cover some of the ongoing work in dynamic modeling and dynamic systems analysis. The first presentation discusses dynamic systems analysis and how to integrate dynamic performance information into the systems analysis. The ability to evaluate the dynamic performance of an engine design may allow tradeoffs between the dynamic performance and operability of a design resulting in a more efficient engine design. The second presentation discusses the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a Simulation system with a library containing the basic building blocks that can be used to create dynamic Thermodynamic Systems. Some of the key features include Turbo machinery components, such as turbines, compressors, etc., and basic control system blocks. T-MAT is written in the Matlab-Simulink environment and is open source software. The third presentation focuses on getting additional performance from the engine by allowing the limit regulators only to be active when a limit is danger of being violated. Typical aircraft engine control architecture is based on MINMAX scheme, which is designed to keep engine operating within prescribed mechanical/operational safety limits. Using a conditionally active min-max limit regulator scheme, additional performance can be gained by disabling non-relevant limit regulators
Mesoscale Models of Fluid Dynamics
Boghosian, Bruce M.; Hadjiconstantinou, Nicolas G.
During the last half century, enormous progress has been made in the field of computational materials modeling, to the extent that in many cases computational approaches are used in a predictive fashion. Despite this progress, modeling of general hydrodynamic behavior remains a challenging task. One of the main challenges stems from the fact that hydrodynamics manifests itself over a very wide range of length and time scales. On one end of the spectrum, one finds the fluid's "internal" scale characteristic of its molecular structure (in the absence of quantum effects, which we omit in this chapter). On the other end, the "outer" scale is set by the characteristic sizes of the problem's domain. The resulting scale separation or lack thereof as well as the existence of intermediate scales are key to determining the optimal approach. Successful treatments require a judicious choice of the level of description which is a delicate balancing act between the conflicting requirements of fidelity and manageable computational cost: a coarse description typically requires models for underlying processes occuring at smaller length and time scales; on the other hand, a fine-scale model will incur a significantly larger computational cost.
Modelling biased human trust dynamics
Hoogendoorn, M.; Jaffry, S.W.; Maanen, P.P. van; Treur, J.
2013-01-01
Abstract. Within human trust related behaviour, according to the literature from the domains of Psychology and Social Sciences often non-rational behaviour can be observed. Current trust models that have been developed typically do not incorporate non-rational elements in the trust formation
Dynamic model for a boiling water reactor
International Nuclear Information System (INIS)
Muscettola, M.
1963-07-01
A theoretical formulation is derived for the dynamics of a boiling water reactor of the pressure tube and forced circulation type. Attention is concentrated on neutron kinetics, fuel element heat transfer dynamics, and the primary circuit - that is the boiling channel, riser, steam drum, downcomer and recirculating pump of a conventional La Mont loop. Models for the steam and feedwater plant are not derived. (author)
A dynamical model for multifragmentation
International Nuclear Information System (INIS)
Ngo, H.; Ighezou, F.Z.; Ngo, C.
1999-01-01
The surface multifragmentation of highly excited (compression and thermal excitation) 208 Pb is investigated with a finite temperature spherical TDHF approximation coupled to a restructured aggregation model. This approach is discussed in terms of the data available from ALADIN collaboration at GSI on gold ion induced reactions on C, Al and Cu targets at 600 MeV/u excitation energy. The calculation showed that the slowest fragments originate in the nuclear volume while the smaller, faster fragments are emitted from surface
Nonlinear Dynamic Models in Advanced Life Support
Jones, Harry
2002-01-01
To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.
The Impact of 10 Years of War on Combat Casualty Care Research: A Citation Analysis
2012-01-01
Crommett JW, et al. Evaluation of trauma team performance using an advanced human patient simulator for resuscitation training. J Trauma. 2002;52:1078Y1085...transection model to compare nine hemostatic dressings. They concluded that the use of a zeolite hemostatic agent controlled hemorrhage and significantly...review of the scientific literature published during this period can be used to evaluate the research on combat casualty care conducted during the recent
System Dynamics Modeling of Multipurpose Reservoir Operation
Directory of Open Access Journals (Sweden)
Ebrahim Momeni
2006-03-01
Full Text Available System dynamics, a feedback – based object – oriented simulation approach, not only represents complex dynamic systemic systems in a realistic way but also allows the involvement of end users in model development to increase their confidence in modeling process. The increased speed of model development, the possibility of group model development, the effective communication of model results, and the trust developed in the model due to user participation are the main strengths of this approach. The ease of model modification in response to changes in the system and the ability to perform sensitivity analysis make this approach more attractive compared with systems analysis techniques for modeling water management systems. In this study, a system dynamics model was developed for the Zayandehrud basin in central Iran. This model contains river basin, dam reservoir, plains, irrigation systems, and groundwater. Current operation rule is conjunctive use of ground and surface water. Allocation factor for each irrigation system is computed based on the feedback from groundwater storage in its zone. Deficit water is extracted from groundwater.The results show that applying better rules can not only satisfy all demands such as Gawkhuni swamp environmental demand, but it can also prevent groundwater level drawdown in future.
Net-bottom Cage Inserts for Water Bird Casualties
Directory of Open Access Journals (Sweden)
Jackie Belle
2017-10-01
Full Text Available My Bright Idea is a net-bottomed cage insert, which is used to support pelagic avian casualties. The idea was designed and modified by the International Bird Rescue in California (Bird Rescue.
Management of the mass casualty from the 2001 Jos crisis
African Journals Online (AJOL)
2012-11-04
Nov 4, 2012 ... The complex nature of natural and man‑made disasters poses multidisciplinary ... system [Figure 1] to mobilize staff from outside the hospital. Management of the mass ..... warning before casualties arrived. Transportation to ...
Modeling and identification in structural dynamics
Jayakumar, Paramsothy
1987-01-01
Analytical modeling of structures subjected to ground motions is an important aspect of fully dynamic earthquake-resistant design. In general, linear models are only sufficient to represent structural responses resulting from earthquake motions of small amplitudes. However, the response of structures during strong ground motions is highly nonlinear and hysteretic. System identification is an effective tool for developing analytical models from experimental data. Testing of full-scale prot...
Feature Extraction for Structural Dynamics Model Validation
Energy Technology Data Exchange (ETDEWEB)
Farrar, Charles [Los Alamos National Laboratory; Nishio, Mayuko [Yokohama University; Hemez, Francois [Los Alamos National Laboratory; Stull, Chris [Los Alamos National Laboratory; Park, Gyuhae [Chonnam Univesity; Cornwell, Phil [Rose-Hulman Institute of Technology; Figueiredo, Eloi [Universidade Lusófona; Luscher, D. J. [Los Alamos National Laboratory; Worden, Keith [University of Sheffield
2016-01-13
As structural dynamics becomes increasingly non-modal, stochastic and nonlinear, finite element model-updating technology must adopt the broader notions of model validation and uncertainty quantification. For example, particular re-sampling procedures must be implemented to propagate uncertainty through a forward calculation, and non-modal features must be defined to analyze nonlinear data sets. The latter topic is the focus of this report, but first, some more general comments regarding the concept of model validation will be discussed.
Record Dynamics and the Parking Lot Model for granular dynamics
Sibani, Paolo; Boettcher, Stefan
Also known for its application to granular compaction (E. Ben-Naim et al., Physica D, 1998), the Parking Lot Model (PLM) describes the random parking of identical cars in a strip with no marked bays. In the thermally activated version considered, cars can be removed at an energy cost and, in thermal equilibrium, their average density increases as temperature decreases. However, equilibration at high density becomes exceedingly slow and the system enters an aging regime induced by a kinematic constraint, the fact that parked cars may not overlap. As parking an extra car reduces the available free space,the next parking event is even harder to achieve. Records in the number of parked cars mark the salient features of the dynamics and are shown to be well described by the log-Poisson statistics known from other glassy systems with record dynamics. Clusters of cars whose positions must be rearranged to make the next insertion possible have a length scale which grows logarithmically with age, while their life-time grows exponentially with size. The implications for a recent cluster model of colloidal dynamics,(S. Boettcher and P. Sibani, J. Phys.: Cond. Matter, 2011 N. Becker et al., J. Phys.: Cond. Matter, 2014) are discussed. Support rom the Villum Foundation is gratefully acknowledged.
Modeling the dynamics of dissent
Lee, Eun; Holme, Petter; Lee, Sang Hoon
2017-11-01
We investigate the formation of opinion against authority in an authoritarian society composed of agents with different levels of authority. We explore a ;dissenting; opinion, held by lower-ranking, obedient, or less authoritative people, spreading in an environment of an ;affirmative; opinion held by authoritative leaders. A real-world example would be a corrupt society where people revolt against such leaders, but it can be applied to more general situations. In our model, agents can change their opinion depending on their authority relative to their neighbors and their own confidence level. In addition, with a certain probability, agents can override the affirmative opinion to take the dissenting opinion of a neighbor. Based on analytic derivation and numerical simulations, we observe that both the network structure and heterogeneity in authority, and their correlation, significantly affect the possibility of the dissenting opinion to spread through the population. In particular, the dissenting opinion is suppressed when the authority distribution is very heterogeneous and there exists a positive correlation between the authority and the number of neighbors of people (degree). Except for such an extreme case, though, spreading of the dissenting opinion takes place when people have the tendency to override the authority to hold the dissenting opinion, but the dissenting opinion can take a long time to spread to the entire society, depending on the model parameters. We argue that the internal social structure of agents sets the scale of the time to reach consensus, based on the analysis of the underlying structural properties of opinion spreading.
Modeling Dynamic Regulatory Processes in Stroke
McDermott, Jason E.; Jarman, Kenneth; Taylor, Ronald; Lancaster, Mary; Shankaran, Harish; Vartanian, Keri B.; Stevens, Susan L.; Stenzel-Poore, Mary P.; Sanfilippo, Antonio
2012-01-01
The ability to examine the behavior of biological systems in silico has the potential to greatly accelerate the pace of discovery in diseases, such as stroke, where in vivo analysis is time intensive and costly. In this paper we describe an approach for in silico examination of responses of the blood transcriptome to neuroprotective agents and subsequent stroke through the development of dynamic models of the regulatory processes observed in the experimental gene expression data. First, we identified functional gene clusters from these data. Next, we derived ordinary differential equations (ODEs) from the data relating these functional clusters to each other in terms of their regulatory influence on one another. Dynamic models were developed by coupling these ODEs into a model that simulates the expression of regulated functional clusters. By changing the magnitude of gene expression in the initial input state it was possible to assess the behavior of the networks through time under varying conditions since the dynamic model only requires an initial starting state, and does not require measurement of regulatory influences at each time point in order to make accurate predictions. We discuss the implications of our models on neuroprotection in stroke, explore the limitations of the approach, and report that an optimized dynamic model can provide accurate predictions of overall system behavior under several different neuroprotective paradigms. PMID:23071432
Coupling population dynamics with earth system models: the POPEM model.
Navarro, Andrés; Moreno, Raúl; Jiménez-Alcázar, Alfonso; Tapiador, Francisco J
2017-09-16
Precise modeling of CO 2 emissions is important for environmental research. This paper presents a new model of human population dynamics that can be embedded into ESMs (Earth System Models) to improve climate modeling. Through a system dynamics approach, we develop a cohort-component model that successfully simulates historical population dynamics with fine spatial resolution (about 1°×1°). The population projections are used to improve the estimates of CO 2 emissions, thus transcending the bulk approach of existing models and allowing more realistic non-linear effects to feature in the simulations. The module, dubbed POPEM (from Population Parameterization for Earth Models), is compared with current emission inventories and validated against UN aggregated data. Finally, it is shown that the module can be used to advance toward fully coupling the social and natural components of the Earth system, an emerging research path for environmental science and pollution research.
The 2004 Fitts Lecture: Current Perspective on Combat Casualty Care
2005-07-01
deliver this lecture, I actually wondered whether he had called the wrong number. Dr. Basil Pruitt described Dr. William P. Fitts in his 1992 Fitts Lecture...in our ability to care for injured casualties in a deployed setting. Dr. Basil Pruitt eloquently described the interaction between the AAST and...ation ( ABA ) verified burn centers (Fig. 3) in proximity to the USAF hubs.11 We anticipated between 500 and 2,500 burn casualties and created a
Dynamical properties of the Rabi model
International Nuclear Information System (INIS)
Hu, Binglu; Zhou, Huili; Chen, Shujie; Xianlong, Gao; Wang, Kelin
2017-01-01
We study the dynamical properties of the quantum Rabi model using a systematic expansion method. Based on the observation that the parity symmetry of the Rabi model is kept during evolution of the states, we decompose the initial state and the time-dependent one into positive and negative parity parts expanded by superposition of the coherent states. The evolutions of the corresponding positive and the negative parities are obtained, in which the expansion coefficients in the dynamical equations are known from the derived recurrence relation. (paper)
Dynamic Modeling of ThermoFluid Systems
DEFF Research Database (Denmark)
Jensen, Jakob Munch
2003-01-01
The objective of the present study has been to developed dynamic models for two-phase flow in pipes (evaporation and condensation). Special attention has been given to modeling evaporators for refrigeration plant particular dry-expansion evaporators. Models of different complexity have been...... formulated. The different models deviate with respect to the detail¿s included and calculation time in connection with simulation. The models have been implemented in a new library named ThermoTwoPhase to the programming language Modelica. A test rig has been built with an evaporator instrumented in a way...
Research on nonlinear stochastic dynamical price model
International Nuclear Information System (INIS)
Li Jiaorui; Xu Wei; Xie Wenxian; Ren Zhengzheng
2008-01-01
In consideration of many uncertain factors existing in economic system, nonlinear stochastic dynamical price model which is subjected to Gaussian white noise excitation is proposed based on deterministic model. One-dimensional averaged Ito stochastic differential equation for the model is derived by using the stochastic averaging method, and applied to investigate the stability of the trivial solution and the first-passage failure of the stochastic price model. The stochastic price model and the methods presented in this paper are verified by numerical studies
Modelling environmental dynamics. Advances in goematic solutions
Energy Technology Data Exchange (ETDEWEB)
Paegelow, Martin [Toulouse-2 Univ., 31 (France). GEODE UMR 5602 CNRS; Camacho Olmedo, Maria Teresa (eds.) [Granada Univ (Spain). Dpto. de Analisis Geografico Regional y Geografia Fisica
2008-07-01
Modelling environmental dynamics is critical to understanding and predicting the evolution of the environment in response to the large number of influences including urbanisation, climate change and deforestation. Simulation and modelling provide support for decision making in environmental management. The first chapter introduces terminology and provides an overview of methodological modelling approaches which may be applied to environmental and complex dynamics. Based on this introduction this book illustrates various models applied to a large variety of themes: deforestation in tropical regions, fire risk, natural reforestation in European mountains, agriculture, biodiversity, urbanism, climate change and land management for decision support, etc. These case studies, provided by a large international spectrum of researchers and presented in a uniform structure, focus particularly on methods and model validation so that this book is not only aimed at researchers and graduates but also at professionals. (orig.)
Modeling emotional dynamics : currency versus field.
Energy Technology Data Exchange (ETDEWEB)
Sallach, D .L.; Decision and Information Sciences; Univ. of Chicago
2008-08-01
Randall Collins has introduced a simplified model of emotional dynamics in which emotional energy, heightened and focused by interaction rituals, serves as a common denominator for social exchange: a generic form of currency, except that it is active in a far broader range of social transactions. While the scope of this theory is attractive, the specifics of the model remain unconvincing. After a critical assessment of the currency theory of emotion, a field model of emotion is introduced that adds expressiveness by locating emotional valence within its cognitive context, thereby creating an integrated orientation field. The result is a model which claims less in the way of motivational specificity, but is more satisfactory in modeling the dynamic interaction between cognitive and emotional orientations at both individual and social levels.
Modeling initial contact dynamics during ambulation with dynamic simulation.
Meyer, Andrew R; Wang, Mei; Smith, Peter A; Harris, Gerald F
2007-04-01
Ankle-foot orthoses are frequently used interventions to correct pathological gait. Their effects on the kinematics and kinetics of the proximal joints are of great interest when prescribing ankle-foot orthoses to specific patient groups. Mathematical Dynamic Model (MADYMO) is developed to simulate motor vehicle crash situations and analyze tissue injuries of the occupants based multibody dynamic theories. Joint kinetics output from an inverse model were perturbed and input to the forward model to examine the effects of changes in the internal sagittal ankle moment on knee and hip kinematics following heel strike. Increasing the internal ankle moment (augmentation, equivalent to gastroc-soleus contraction) produced less pronounced changes in kinematic results at the hip, knee and ankle than decreasing the moment (attenuation, equivalent to gastroc-soleus relaxation). Altering the internal ankle moment produced two distinctly different kinematic curve morphologies at the hip. Decreased internal ankle moments increased hip flexion, peaking at roughly 8% of the gait cycle. Increasing internal ankle moments decreased hip flexion to a lesser degree, and approached normal at the same point in the gait cycle. Increasing the internal ankle moment produced relatively small, well-behaved extension-biased kinematic results at the knee. Decreasing the internal ankle moment produced more substantial changes in knee kinematics towards flexion that increased with perturbation magnitude. Curve morphologies were similar to those at the hip. Immediately following heel strike, kinematic results at the ankle showed movement in the direction of the internal moment perturbation. Increased internal moments resulted in kinematic patterns that rapidly approach normal after initial differences. When the internal ankle moment was decreased, differences from normal were much greater and did not rapidly decrease. This study shows that MADYMO can be successfully applied to accomplish forward
A Stochastic Model for Malaria Transmission Dynamics
Directory of Open Access Journals (Sweden)
Rachel Waema Mbogo
2018-01-01
Full Text Available Malaria is one of the three most dangerous infectious diseases worldwide (along with HIV/AIDS and tuberculosis. In this paper we compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in malaria transmission dynamics. Relationships between the basic reproduction number for malaria transmission dynamics between humans and mosquitoes and the extinction thresholds of corresponding continuous-time Markov chain models are derived under certain assumptions. The stochastic model is formulated using the continuous-time discrete state Galton-Watson branching process (CTDSGWbp. The reproduction number of deterministic models is an essential quantity to predict whether an epidemic will spread or die out. Thresholds for disease extinction from stochastic models contribute crucial knowledge on disease control and elimination and mitigation of infectious diseases. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that malaria outbreak is more likely if the disease is introduced by infected mosquitoes as opposed to infected humans. These insights demonstrate the importance of a policy or intervention focusing on controlling the infected mosquito population if the control of malaria is to be realized.
Modeling biological pathway dynamics with timed automata.
Schivo, Stefano; Scholma, Jetse; Wanders, Brend; Urquidi Camacho, Ricardo A; van der Vet, Paul E; Karperien, Marcel; Langerak, Rom; van de Pol, Jaco; Post, Janine N
2014-05-01
Living cells are constantly subjected to a plethora of environmental stimuli that require integration into an appropriate cellular response. This integration takes place through signal transduction events that form tightly interconnected networks. The understanding of these networks requires capturing their dynamics through computational support and models. ANIMO (analysis of Networks with Interactive Modeling) is a tool that enables the construction and exploration of executable models of biological networks, helping to derive hypotheses and to plan wet-lab experiments. The tool is based on the formalism of Timed Automata, which can be analyzed via the UPPAAL model checker. Thanks to Timed Automata, we can provide a formal semantics for the domain-specific language used to represent signaling networks. This enforces precision and uniformity in the definition of signaling pathways, contributing to the integration of isolated signaling events into complex network models. We propose an approach to discretization of reaction kinetics that allows us to efficiently use UPPAAL as the computational engine to explore the dynamic behavior of the network of interest. A user-friendly interface hides the use of Timed Automata from the user, while keeping the expressive power intact. Abstraction to single-parameter kinetics speeds up construction of models that remain faithful enough to provide meaningful insight. The resulting dynamic behavior of the network components is displayed graphically, allowing for an intuitive and interactive modeling experience.
Dynamic Model Averaging in Large Model Spaces Using Dynamic Occam’s Window*
Onorante, Luca; Raftery, Adrian E.
2015-01-01
Bayesian model averaging has become a widely used approach to accounting for uncertainty about the structural form of the model generating the data. When data arrive sequentially and the generating model can change over time, Dynamic Model Averaging (DMA) extends model averaging to deal with this situation. Often in macroeconomics, however, many candidate explanatory variables are available and the number of possible models becomes too large for DMA to be applied in its original form. We propose a new method for this situation which allows us to perform DMA without considering the whole model space, but using a subset of models and dynamically optimizing the choice of models at each point in time. This yields a dynamic form of Occam’s window. We evaluate the method in the context of the problem of nowcasting GDP in the Euro area. We find that its forecasting performance compares well with that of other methods. PMID:26917859
Dynamic Model Averaging in Large Model Spaces Using Dynamic Occam's Window.
Onorante, Luca; Raftery, Adrian E
2016-01-01
Bayesian model averaging has become a widely used approach to accounting for uncertainty about the structural form of the model generating the data. When data arrive sequentially and the generating model can change over time, Dynamic Model Averaging (DMA) extends model averaging to deal with this situation. Often in macroeconomics, however, many candidate explanatory variables are available and the number of possible models becomes too large for DMA to be applied in its original form. We propose a new method for this situation which allows us to perform DMA without considering the whole model space, but using a subset of models and dynamically optimizing the choice of models at each point in time. This yields a dynamic form of Occam's window. We evaluate the method in the context of the problem of nowcasting GDP in the Euro area. We find that its forecasting performance compares well with that of other methods.
On the mathematical modeling of soccer dynamics
Machado, J. A. Tenreiro; Lopes, António M.
2017-12-01
This paper addresses the modeling and dynamical analysis of soccer teams. Two modeling perspectives based on the concepts of fractional calculus are adopted. In the first, the power law behavior and fractional-order integration are explored. In the second, a league season is interpreted in the light of a system where the teams are represented by objects (particles) that evolve in time and interact (collide) at successive rounds with dynamics driven by the outcomes of the matches. The two proposed models embed implicitly details of players and coaches, or strategical and tactical maneuvers during the matches. Therefore, the scale of observation focuses on the teams behavior in the scope of the observed variables. Data characterizing two European soccer leagues in the season 2015-2016 are adopted and processed. The model leads to the emergence of patterns that are analyzed and interpreted.
BWR stability using a reducing dynamical model
International Nuclear Information System (INIS)
Ballestrin Bolea, J. M.; Blazquez Martinez, J. B.
1990-01-01
BWR stability can be treated with reduced order dynamical models. When the parameters of the model came from dynamical models. When the parameters of the model came from experimental data, the predictions are accurate. In this work an alternative derivation for the void fraction equation is made, but remarking the physical structure of the parameters. As the poles of power/reactivity transfer function are related with the parameters, the measurement of the poles by other techniques such as noise analysis will lead to the parameters, but the system of equations is non-linear. Simple parametric calculation of decay ratio are performed, showing why BWRs become unstable when they are operated at low flow and high power. (Author)
Modelling the Dynamics of Emotional Awareness
Thilakarathne, D.J.; Treur, J.; Schaub, T.
2014-01-01
In this paper, based on literature from Cognitive and Affective Neuroscience, a computational agent model is introduced incorporating the role of emotional awareness states in the dynamics of action generation. More specifically, it covers both automatic, unconscious (bottom-up) and more cognitive
Object Oriented Modelling and Dynamical Simulation
DEFF Research Database (Denmark)
Wagner, Falko Jens; Poulsen, Mikael Zebbelin
1998-01-01
This report with appendix describes the work done in master project at DTU.The goal of the project was to develop a concept for simulation of dynamical systems based on object oriented methods.The result was a library of C++-classes, for use when both building componentbased models and when...
Modeling the population dynamics of Pacific yew.
Richard T. Busing; Thomas A. Spies
1995-01-01
A study of Pacific yew (Taxus brevifolia Nutt.) population dynamics in the mountains of western Oregon and Washington was based on a combination of long-term population data and computer modeling. Rates of growth and mortality were low in mature and old-growth forest stands. Diameter growth at breast height ranged from 0 to 3 centimeters per decade...
CFTSIM-ITER dynamic fuel cycle model
International Nuclear Information System (INIS)
Busigin, A.; Gierszewski, P.
1998-01-01
Dynamic system models have been developed for specific tritium systems with considerable detail and for integrated fuel cycles with lesser detail (e.g. D. Holland, B. Merrill, Analysis of tritium migration and deposition in fusion reactor systems, Proceedings of the Ninth Symposium Eng. Problems of Fusion Research (1981); M.A. Abdou, E. Vold, C. Gung, M. Youssef, K. Shin, DT fuel self-sufficiency in fusion reactors, Fusion Technol. (1986); G. Spannagel, P. Gierszewski, Dynamic tritium inventory of a NET/ITER fuel cycle with lithium salt solution blanket, Fusion Eng. Des. (1991); W. Kuan, M.A. Abdou, R.S. Willms, Dynamic simulation of a proposed ITER tritium processing system, Fusion Technol. (1995)). In order to provide a tool to understand and optimize the behavior of the ITER fuel cycle, a dynamic fuel cycle model called CFTSIM is under development. The CFTSIM code incorporates more detailed ITER models, specifically for the important isotope separation system, and also has an easier-to-use graphical interface. This paper provides an overview of CFTSIM Version 1.0. The models included are those with significant and varying tritium inventories over a test campaign: fueling, plasma and first wall, pumping, fuel cleanup, isotope separation and storage. An illustration of the results is shown. (orig.)
The quantum Rabi model: solution and dynamics
International Nuclear Information System (INIS)
Xie, Qiongtao; Zhong, Honghua; Lee, Chaohong; Batchelor, Murray T
2017-01-01
This article presents a review of recent developments on various aspects of the quantum Rabi model. Particular emphasis is given on the exact analytic solution obtained in terms of confluent Heun functions. The analytic solutions for various generalisations of the quantum Rabi model are also discussed. Results are also reviewed on the level statistics and the dynamics of the quantum Rabi model. The article concludes with an introductory overview of several experimental realisations of the quantum Rabi model. An outlook towards future developments is also given. (topical review)
A complete dynamic model of primary sedimentation.
Paraskevas, P; Kolokithas, G; Lekkas, T
1993-11-01
A dynamic mathematical model for the primary clarifier of a wastewater treatment plant is described, which is represented by a general tanks-in-series model, to simulate insufficient mixing. The model quantifies successfully the diurnal response of both the suspended and dissolved species. It is general enough, so that the values of the parameters can be replaced with those applicable to a specific case. The model was verified through data from the Biological Centre of Metamorfosi, in Athens, Greece, and can be used to assist in the design of new plants or in the analysis and output predictions of existing ones.
Dynamic Modeling of CDS Index Tranche Spreads
DEFF Research Database (Denmark)
Dorn, Jochen
This paper provides a Market Model which implies a dynamics for standardized CDS index tranche spreads, i.e. tranches which securitise CDS index series and dispose of predefined subordination. This model is useful for pricing options on tranches with future Issue Dates as well as for modeling...... options on structured credit derivatives. With the upcoming regulation of the CDS market in perspective, the model presented here is also an attempt to face the effects on pricing approaches provoked by an eventual Clearing Chamber . It becomes also possible to calibrate Index Tranche Options with bespoke...... tenors/tranche subordination to market data obtained by more liquid Index Tranche Options with standard characteristics....
Uncertainty and its propagation in dynamics models
International Nuclear Information System (INIS)
Devooght, J.
1994-01-01
The purpose of this paper is to bring together some characteristics due to uncertainty when we deal with dynamic models and therefore to propagation of uncertainty. The respective role of uncertainty and inaccuracy is examined. A mathematical formalism based on Chapman-Kolmogorov equation allows to define a open-quotes subdynamicsclose quotes where the evolution equation takes the uncertainty into account. The problem of choosing or combining models is examined through a loss function associated to a decision
Dynamic multibody modeling for tethered space elevators
Williams, Paul
2009-08-01
This paper presents a fundamental modeling strategy for dealing with powered and propelled bodies moving along space tethers. The tether is divided into a large number of discrete masses, which are connected by viscoelastic springs. The tether is subject to the full range of forces expected in Earth orbit in a relatively simple manner. Two different models of the elevator dynamics are presented. In order to capture the effect of the elevator moving along the tether, the elevator dynamics are included as a separate body in both models. One model treats the elevator's motion dynamically, where propulsive and friction forces are applied to the elevator body. The second model treats the elevator's motion kinematically, where the distance along the tether is determined by adjusting the lengths of tether on either side of the elevator. The tether model is used to determine optimal configurations for the space elevator. A modal analysis of two different configurations is presented which show that the fundamental mode of oscillation is a pendular one around the anchor point with a period on the order of 160 h for the in-plane motion, and 24 h for the out-of-plane motion. Numerical simulation results of the effects of the elevator moving along the cable are presented for different travel velocities and different elevator masses.
Sepsis progression and outcome: a dynamical model
Directory of Open Access Journals (Sweden)
Gessler Damian DG
2006-02-01
Full Text Available Abstract Background Sepsis (bloodstream infection is the leading cause of death in non-surgical intensive care units. It is diagnosed in 750,000 US patients per annum, and has high mortality. Current understanding of sepsis is predominately observational and correlational, with only a partial and incomplete understanding of the physiological dynamics underlying the syndrome. There exists a need for dynamical models of sepsis progression, based upon basic physiologic principles, which could eventually guide hourly treatment decisions. Results We present an initial mathematical model of sepsis, based on metabolic rate theory that links basic vascular and immunological dynamics. The model includes the rate of vascular circulation, a surrogate for the metabolic rate that is mechanistically associated with disease progression. We use the mass-specific rate of blood circulation (SRBC, a correlate of the body mass index, to build a differential equation model of circulation, infection, organ damage, and recovery. This introduces a vascular component into an infectious disease model that describes the interaction between a pathogen and the adaptive immune system. Conclusion The model predicts that deviations from normal SRBC correlate with disease progression and adverse outcome. We compare the predictions with population mortality data from cardiovascular disease and cancer and show that deviations from normal SRBC correlate with higher mortality rates.
Mineral vein dynamics modeling (FRACS). Phase 1
Energy Technology Data Exchange (ETDEWEB)
Urai, J.; Virgo, S.; Arndt, M. [RWTH Aachen (Germany). Geologie-Endogene Dynamik] [and others
2013-07-15
The Mineral Vein Dynamics Modeling group ''FRACS'' is a team of 7 research groups from the Universities of Mainz, Aachen, Tuebingen, Karlsruhe, Bayreuth, ETH Zuerich and Glasgow working on an understanding of the dynamic development of fracturing, fluid flow and fracture sealing. World-class field laboratories, especially carbonate sequences from the Oman Mountains are studied and classified. State of the art numerical programs are written, expanded and used to simulate the dynamic interaction of fracturing, flow and resealing and the results are compared with the natural examples. Newest analytical technologies including laser scanning, high resolution X-ray microtomography, fluid inclusion and isotope analysis are performed to understand and compare the results of simulations with natural examples. A new statistical program was developed to classify the natural fracture and vein systems and compare them with dynamic numerical simulations and analytical models. The results of the first project phase are extremely promising. Most of the numerical models have been developed up to the stage where they can be used to simulate the natural examples. The models allow a definition of the first proxies for high fluid pressure and tectonic stresses. It was found out that the Oman Mountains are a complex and very dynamic system that constantly fractures and reseals from the scale of small veins up to the scale of large normal and strike slip faults. The numerical simulations also indicate that the permeability of such systems is not a constant but that the system adjusts to the driving force, for ex-ample high fluid pressure. When the system reseals fast a fluctuating behavior can be observed in the models where the system constantly fractures and reseals, which is in accordance with the observation of the natural laboratory.
Direct modeling for computational fluid dynamics
Xu, Kun
2015-06-01
All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct
New concepts for dynamic plant uptake models
DEFF Research Database (Denmark)
Rein, Arno; Legind, Charlotte Nielsen; Trapp, Stefan
2011-01-01
Models for the prediction of chemical uptake into plants are widely applied tools for human and wildlife exposure assessment, pesticide design and for environmental biotechnology such as phytoremediation. Steady-state considerations are often applied, because they are simple and have a small data...... need. However, often the emission pattern is non-steady. Examples are pesticide spraying, or the application of manure and sewage sludge on agricultural fields. In these scenarios, steady-state solutions are not valid, and dynamic simulation is required. We compared different approaches for dynamic...
Statistical models of petrol engines vehicles dynamics
Ilie, C. O.; Marinescu, M.; Alexa, O.; Vilău, R.; Grosu, D.
2017-10-01
This paper focuses on studying statistical models of vehicles dynamics. It was design and perform a one year testing program. There were used many same type cars with gasoline engines and different mileage. Experimental data were collected of onboard sensors and those on the engine test stand. A database containing data of 64th tests was created. Several mathematical modelling were developed using database and the system identification method. Each modelling is a SISO or a MISO linear predictive ARMAX (AutoRegressive-Moving-Average with eXogenous inputs) model. It represents a differential equation with constant coefficients. It were made 64th equations for each dependency like engine torque as output and engine’s load and intake manifold pressure, as inputs. There were obtained strings with 64 values for each type of model. The final models were obtained using average values of the coefficients. The accuracy of models was assessed.
Indonesia’s Electricity Demand Dynamic Modelling
Sulistio, J.; Wirabhuana, A.; Wiratama, M. G.
2017-06-01
Electricity Systems modelling is one of the emerging area in the Global Energy policy studies recently. System Dynamics approach and Computer Simulation has become one the common methods used in energy systems planning and evaluation in many conditions. On the other hand, Indonesia experiencing several major issues in Electricity system such as fossil fuel domination, demand - supply imbalances, distribution inefficiency, and bio-devastation. This paper aims to explain the development of System Dynamics modelling approaches and computer simulation techniques in representing and predicting electricity demand in Indonesia. In addition, this paper also described the typical characteristics and relationship of commercial business sector, industrial sector, and family / domestic sector as electricity subsystems in Indonesia. Moreover, it will be also present direct structure, behavioural, and statistical test as model validation approach and ended by conclusions.
Friction modelling of preloaded tube contact dynamics
International Nuclear Information System (INIS)
Hassan, M.A.; Rogers, R.J.
2004-01-01
Many loosely supported components are subjected to flow-induced vibration leading to localized wear. Life prediction depends on robust and accurate modelling of the nonlinear dynamics as the components interact with their supports. The output of such analysis is the component dynamic response and impact forces, including friction forces during stick-slip motions. Such results are used to determine the normal work rates, which are utilized to predict fretting wear damage. Accurate estimates of these parameters are essential. This paper presents simulations of a loosely supported fuel-channel tube subject to turbulence excitation. The effects of tube/support clearance and preload are investigated. Several friction models, including velocity-limited, spring-damper, and force-balance are utilized. A comparison of these models is carried out to investigate their accuracy. The results show good agreement with experimental work rates when a simple iterative procedure to update the friction forces is used. (authors)
Dynamic Circuit Model for Spintronic Devices
Alawein, Meshal
2017-01-09
In this work we propose a finite-difference scheme based circuit model of a general spintronic device and benchmark it with other models proposed for spintronic switching devices. Our model is based on the four-component spin circuit theory and utilizes the widely used coupled stochastic magnetization dynamics/spin transport framework. In addition to the steady-state analysis, this work offers a transient analysis of carrier transport. By discretizing the temporal and spatial derivatives to generate a linear system of equations, we derive new and simple finite-difference conductance matrices that can, to the first order, capture both static and dynamic behaviors of a spintronic device. We also discuss an extension of the spin modified nodal analysis (SMNA) for time-dependent situations based on the proposed scheme.
Dynamic Circuit Model for Spintronic Devices
Alawein, Meshal; Fariborzi, Hossein
2017-01-01
In this work we propose a finite-difference scheme based circuit model of a general spintronic device and benchmark it with other models proposed for spintronic switching devices. Our model is based on the four-component spin circuit theory and utilizes the widely used coupled stochastic magnetization dynamics/spin transport framework. In addition to the steady-state analysis, this work offers a transient analysis of carrier transport. By discretizing the temporal and spatial derivatives to generate a linear system of equations, we derive new and simple finite-difference conductance matrices that can, to the first order, capture both static and dynamic behaviors of a spintronic device. We also discuss an extension of the spin modified nodal analysis (SMNA) for time-dependent situations based on the proposed scheme.
Dynamic Intellectual Capital Model in a Company
Directory of Open Access Journals (Sweden)
Vladimir Shatrevich
2015-06-01
Full Text Available The aim of this paper is to indicate the relations between company’s value added (VA and intangible assets. Authors declare that Intellectual capital (IC is one of the most relevant intangibles for a company, and the concept with measurement, and the relation with value creation is necessary for modern markets. Since relationship between IC elements and VA are complicated, this paper is aimed to create a usable dynamic model for building company’s value added through intellectual capital. The model is incorporating that outputs from IC elements are not homogeneously received and made some contributions to dynamic nature of IC relation and VA. Variables that will help companies to evaluate contribution of each element of IC are added to the model. This paper emphasizes the importance of a company’s IC and the positive interaction between them in generating profits for company.
Friction modelling of preloaded tube contact dynamics
International Nuclear Information System (INIS)
Hassan, M.A.; Rogers, R.J.
2005-01-01
Many loosely supported components are subjected to flow-induced vibration leading to localized wear. Life prediction depends on robust and accurate modelling of the nonlinear dynamics as the components interact with their supports. The output of such analysis is the component dynamic response and impact forces, including friction forces during stick-slip motions. Such results are used to determine the normal work rates, which are utilized to predict fretting wear damage. Accurate estimates of these parameters are essential. This paper presents simulations of a loosely supported fuel-channel tube subject to turbulence excitation. The effects of tube/support clearance and preload are investigated. Several friction models, including velocity-limited, spring-damper and force-balance are utilized. A comparison of these models is carried out to investigate their accuracy. The results show good agreement with experimental work rates when a simple iterative procedure to update the friction forces is used
Traffic flow dynamics data, models and simulation
Treiber, Martin
2013-01-01
This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on ...
Complex networks under dynamic repair model
Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao
2018-01-01
Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.
Collisional model for granular impact dynamics.
Clark, Abram H; Petersen, Alec J; Behringer, Robert P
2014-01-01
When an intruder strikes a granular material from above, the grains exert a stopping force which decelerates and stops the intruder. Many previous studies have used a macroscopic force law, including a drag force which is quadratic in velocity, to characterize the decelerating force on the intruder. However, the microscopic origins of the force-law terms are still a subject of debate. Here, drawing from previous experiments with photoelastic particles, we present a model which describes the velocity-squared force in terms of repeated collisions with clusters of grains. From our high speed photoelastic data, we infer that "clusters" correspond to segments of the strong force network that are excited by the advancing intruder. The model predicts a scaling relation for the velocity-squared drag force that accounts for the intruder shape. Additionally, we show that the collisional model predicts an instability to rotations, which depends on the intruder shape. To test this model, we perform a comprehensive experimental study of the dynamics of two-dimensional granular impacts on beds of photoelastic disks, with different profiles for the leading edge of the intruder. We particularly focus on a simple and useful case for testing shape effects by using triangular-nosed intruders. We show that the collisional model effectively captures the dynamics of intruder deceleration and rotation; i.e., these two dynamical effects can be described as two different manifestations of the same grain-scale physical processes.
Next Generation Carbon-Nitrogen Dynamics Model
Xu, C.; Fisher, R. A.; Vrugt, J. A.; Wullschleger, S. D.; McDowell, N. G.
2012-12-01
Nitrogen is a key regulator of vegetation dynamics, soil carbon release, and terrestrial carbon cycles. Thus, to assess energy impacts on the global carbon cycle and future climates, it is critical that we have a mechanism-based and data-calibrated nitrogen model that simulates nitrogen limitation upon both above and belowground carbon dynamics. In this study, we developed a next generation nitrogen-carbon dynamic model within the NCAR Community Earth System Model (CESM). This next generation nitrogen-carbon dynamic model utilized 1) a mechanistic model of nitrogen limitation on photosynthesis with nitrogen trade-offs among light absorption, electron transport, carboxylation, respiration and storage; 2) an optimal leaf nitrogen model that links soil nitrogen availability and leaf nitrogen content; and 3) an ecosystem demography (ED) model that simulates the growth and light competition of tree cohorts and is currently coupled to CLM. Our three test cases with changes in CO2 concentration, growing temperature and radiation demonstrate the model's ability to predict the impact of altered environmental conditions on nitrogen allocations. Currently, we are testing the model against different datasets including soil fertilization and Free Air CO2 enrichment (FACE) experiments across different forest types. We expect that our calibrated model will considerably improve our understanding and predictability of vegetation-climate interactions.itrogen allocation model evaluations. The figure shows the scatter plots of predicted and measured Vc,max and Jmax scaled to 25 oC (i.e.,Vc,max25 and Jmax25) at elevated CO2 (570 ppm, test case one), reduced radiation in canopy (0.1-0.9 of the radiation at the top of canopy, test case two) and reduced growing temperature (15oC, test case three). The model is first calibrated using control data under ambient CO2 (370 ppm), radiation at the top of the canopy (621 μmol photon/m2/s), the normal growing temperature (30oC). The fitted model
Analysing the temporal dynamics of model performance for hydrological models
Reusser, D.E.; Blume, T.; Schaefli, B.; Zehe, E.
2009-01-01
The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or
An introduction to modeling neuronal dynamics
Börgers, Christoph
2017-01-01
This book is intended as a text for a one-semester course on Mathematical and Computational Neuroscience for upper-level undergraduate and beginning graduate students of mathematics, the natural sciences, engineering, or computer science. An undergraduate introduction to differential equations is more than enough mathematical background. Only a slim, high school-level background in physics is assumed, and none in biology. Topics include models of individual nerve cells and their dynamics, models of networks of neurons coupled by synapses and gap junctions, origins and functions of population rhythms in neuronal networks, and models of synaptic plasticity. An extensive online collection of Matlab programs generating the figures accompanies the book. .
Five challenges in modelling interacting strain dynamics
Directory of Open Access Journals (Sweden)
Paul S. Wikramaratna
2015-03-01
Full Text Available Population epidemiological models where hosts can be infected sequentially by different strains have the potential to help us understand many important diseases. Researchers have in recent years started to develop and use such models, but the extra layer of complexity from multiple strains brings with it many technical challenges. It is therefore hard to build models which have realistic assumptions yet are tractable. Here we outline some of the main challenges in this area. First we begin with the fundamental question of how to translate from complex small-scale dynamics within a host to useful population models. Next we consider the nature of so-called “strain space”. We describe two key types of host heterogeneities, and explain how models could help generate a better understanding of their effects. Finally, for diseases with many strains, we consider the challenge of modelling how immunity accumulates over multiple exposures.
Structural system identification: Structural dynamics model validation
Energy Technology Data Exchange (ETDEWEB)
Red-Horse, J.R.
1997-04-01
Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.
Modeling the dynamic characteristics of pneumatic muscle.
Reynolds, D B; Repperger, D W; Phillips, C A; Bandry, G
2003-03-01
A pneumatic muscle (PM) system was studied to determine whether a three-element model could describe its dynamics. As far as the authors are aware, this model has not been used to describe the dynamics of PM. A new phenomenological model consists of a contractile (force-generating) element, spring element, and damping element in parallel. The PM system was investigated using an apparatus that allowed precise and accurate actuation pressure (P) control by a linear servo-valve. Length change of the PM was measured by a linear potentiometer. Spring and damping element functions of P were determined by a static perturbation method at several constant P values. These results indicate that at constant P, PM behaves as a spring and damper in parallel. The contractile element function of P was determined by the response to a step input in P, using values of spring and damping elements from the perturbation study. The study showed that the resulting coefficient functions of the three-element model describe the dynamic response to the step input of P accurately, indicating that the static perturbation results can be applied to the dynamic case. This model is further validated by accurately predicting the contraction response to a triangular P waveform. All three elements have pressure-dependent coefficients for pressure P in the range 207 < or = P < or = 621 kPa (30 < or = P < or = 90 psi). Studies with a step decrease in P (relaxation of the PM) indicate that the damping element coefficient is smaller during relaxation than contraction.
ITER Dynamic Tritium Inventory Modeling Code
International Nuclear Information System (INIS)
Cristescu, Ioana-R.; Doerr, L.; Busigin, A.; Murdoch, D.
2005-01-01
A tool for tritium inventory evaluation within each sub-system of the Fuel Cycle of ITER is vital, with respect to both the process of licensing ITER and also for operation. It is very likely that measurements of total tritium inventories may not be possible for all sub-systems, however tritium accounting may be achieved by modeling its hold-up within each sub-system and by validating these models in real-time against the monitored flows and tritium streams between the systems. To get reliable results, an accurate dynamic modeling of the tritium content in each sub-system is necessary. In order to optimize the configuration and operation of the ITER fuel cycle, a dynamic fuel cycle model was developed progressively in the decade up to 2000-2001. As the design for some sub-systems from the fuel cycle (i.e. Vacuum pumping, Neutral Beam Injectors (NBI)) have substantially progressed meanwhile, a new code developed under a different platform to incorporate these modifications has been developed. The new code is taking over the models and algorithms for some subsystems, such as Isotope Separation System (ISS); where simplified models have been previously considered, more detailed have been introduced, as for the Water Detritiation System (WDS). To reflect all these changes, the new code developed inside EU participating team was nominated TRIMO (Tritium Inventory Modeling), to emphasize the use of the code on assessing the tritium inventory within ITER
Simple mathematical models of gene regulatory dynamics
Mackey, Michael C; Tyran-Kamińska, Marta; Zeron, Eduardo S
2016-01-01
This is a short and self-contained introduction to the field of mathematical modeling of gene-networks in bacteria. As an entry point to the field, we focus on the analysis of simple gene-network dynamics. The notes commence with an introduction to the deterministic modeling of gene-networks, with extensive reference to applicable results coming from dynamical systems theory. The second part of the notes treats extensively several approaches to the study of gene-network dynamics in the presence of noise—either arising from low numbers of molecules involved, or due to noise external to the regulatory process. The third and final part of the notes gives a detailed treatment of three well studied and concrete examples of gene-network dynamics by considering the lactose operon, the tryptophan operon, and the lysis-lysogeny switch. The notes contain an index for easy location of particular topics as well as an extensive bibliography of the current literature. The target audience of these notes are mainly graduat...
Modeling of Dynamic Responses in Building Insulation
Directory of Open Access Journals (Sweden)
Anna Antonyová
2015-10-01
Full Text Available In this research a measurement systemwas developedfor monitoring humidity and temperature in the cavity between the wall and the insulating material in the building envelope. This new technology does not disturb the insulating material during testing. The measurement system can also be applied to insulation fixed ten or twenty years earlier and sufficiently reveals the quality of the insulation. A mathematical model is proposed to characterize the dynamic responses in the cavity between the wall and the building insulation as influenced by weather conditions.These dynamic responses are manifested as a delay of both humidity and temperature changes in the cavity when compared with the changes in the ambient surrounding of the building. The process is then modeled through numerical methods and statistical analysis of the experimental data obtained using the new system of measurement.
Dynamic energy-demand models. A comparison
International Nuclear Information System (INIS)
Yi, Feng
2000-01-01
This paper compares two second-generation dynamic energy demand models, a translog (TL) and a general Leontief (GL), in the study of price elasticities and factor substitutions of nine Swedish manufacturing industries: food, textiles, wood, paper, printing, chemicals, non-metallic minerals, base metals and machinery. Several model specifications are tested with likelihood ratio test. There is a disagreement on short-run adjustments; the TL model accepts putty-putty production technology of immediate adjustments, implying equal short- and long-run price elasticities of factors, while the GL model rejects immediate adjustments, giving out short-run elasticities quite different from the long-run. The two models also disagree in substitutability in many cases. 21 refs
The dynamic radiation environment assimilation model (DREAM)
International Nuclear Information System (INIS)
Reeves, Geoffrey D.; Koller, Josef; Tokar, Robert L.; Chen, Yue; Henderson, Michael G.; Friedel, Reiner H.
2010-01-01
The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate results than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.
Molecular dynamics modeling of polymer flammability
International Nuclear Information System (INIS)
Nyden, M.R.; Brown, J.E.; Lomakin, S.M.
1992-01-01
Molecular dynamic simulations were used to identify factors which promote char formation during the thermal degradation of polymers. Computer movies based on these simulations, indicate that cross-linked model polymers tend to undergo further cross-linking when burned, eventually forming a high molecular weight, thermally stable char. This paper reports that the prediction was confirmed by char yield measurements made on γ and e - -irradiated polyethylene and chemically cross-linked poly(methyl methacrylate)
Dynamical chaos and beam-beam models
International Nuclear Information System (INIS)
Izrailev, F.M.
1990-01-01
Some aspects of the nonlinear dynamics of beam-beam interaction for simple one-dimensional and two-dimensional models of round and flat beams are discussed. The main attention is paid to the stochasticity threshold due to the overlapping of nonlinear resonances. The peculiarities of a round beam are investigated in view of using the round beams in storage rings to get high luminosity. 16 refs.; 7 figs
Dynamical Model for Indoor Radon Concentration Monitoring
Czech Academy of Sciences Publication Activity Database
Brabec, Marek; Jílek, K.
2009-01-01
Roč. 20, č. 6 (2009), s. 718-729 ISSN 1180-4009. [TIES 2007. Annual Meeting of the International Environmental Society /18./. Mikulov, 16.08.2007-20.08.2007] Institutional research plan: CEZ:AV0Z10300504 Keywords : non-parametric regression * dynamic modeling * time-varying coefficients Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.000, year: 2009
Dynamical symmetries of the shell model
International Nuclear Information System (INIS)
Van Isacker, P.
2000-01-01
The applications of spectrum generating algebras and of dynamical symmetries in the nuclear shell model are many and varied. They stretch back to Wigner's early work on the supermultiplet model and encompass important landmarks in our understanding of the structure of the atomic nucleus such as Racah's SU(2) pairing model and Elliot's SU(3) rotational model. One of the aims of this contribution has been to show the historical importance of the idea of dynamical symmetry in nuclear physics. Another has been to indicate that, in spite of being old, this idea continues to inspire developments that are at the forefront of today's research in nuclear physics. It has been argued in this contribution that the main driving features of nuclear structure can be represented algebraically but at the same time the limitations of the symmetry approach must be recognised. It should be clear that such approach can only account for gross properties and that any detailed description requires more involved numerical calculations of which we have seen many fine examples during this symposium. In this way symmetry techniques can be used as an appropriate starting point for detailed calculations. A noteworthy example of this approach is the pseudo-SU(3) model which starting from its initial symmetry Ansatz has grown into an adequate and powerful description of the nucleus in terms of a truncated shell model. (author)
A model for nuclear research reactor dynamics
Energy Technology Data Exchange (ETDEWEB)
Barati, Ramin, E-mail: Barati.ramin@aut.ac.ir; Setayeshi, Saeed, E-mail: setayesh@aut.ac.ir
2013-09-15
Highlights: • A thirty-fourth order model is used to simulate the dynamics of a research reactor. • We consider delayed neutrons fraction as a function of time. • Variable fuel and temperature reactivity coefficients are used. • WIMS, BORGES and CITVAP codes are used for initial condition calculations. • Results are in agreement with experimental data rather than common codes. -- Abstract: In this paper, a useful thirty-fourth order model is presented to simulate the kinetics and dynamics of a research reactor core. The model considers relevant physical phenomena that govern the core such as reactor kinetics, reactivity feedbacks due to coolant and fuel temperatures (Doppler effects) with variable reactivity coefficients, xenon, samarium, boron concentration, fuel burn up and thermal hydraulics. WIMS and CITVAP codes are used to extract neutron cross sections and calculate the initial neuron flux respectively. The purpose is to present a model with results similar to reality as much as possible with reducing common simplifications in reactor modeling to be used in different analyses such as reactor control, functional reliability and safety. The model predictions are qualified by comparing with experimental data, detailed simulations of reactivity insertion transients, and steady state for Tehran research reactor reported in the literature and satisfactory results have been obtained.
New method dynamically models hydrocarbon fractionation
Energy Technology Data Exchange (ETDEWEB)
Kesler, M.G.; Weissbrod, J.M.; Sheth, B.V. [Kesler Engineering, East Brunswick, NJ (United States)
1995-10-01
A new method for calculating distillation column dynamics can be used to model time-dependent effects of independent disturbances for a range of hydrocarbon fractionation. It can model crude atmospheric and vacuum columns, with relatively few equilibrium stages and a large number of components, to C{sub 3} splitters, with few components and up to 300 equilibrium stages. Simulation results are useful for operations analysis, process-control applications and closed-loop control in petroleum, petrochemical and gas processing plants. The method is based on an implicit approach, where the time-dependent variations of inventory, temperatures, liquid and vapor flows and compositions are superimposed at each time step on the steady-state solution. Newton-Raphson (N-R) techniques are then used to simultaneously solve the resulting finite-difference equations of material, equilibrium and enthalpy balances that characterize distillation dynamics. The important innovation is component-aggregation and tray-aggregation to contract the equations without compromising accuracy. This contraction increases the N-R calculations` stability. It also significantly increases calculational speed, which is particularly important in dynamic simulations. This method provides a sound basis for closed-loop, supervisory control of distillation--directly or via multivariable controllers--based on a rigorous, phenomenological column model.
Dynamic analysis of a parasite population model
Sibona, G. J.; Condat, C. A.
2002-03-01
We study the dynamics of a model that describes the competitive interaction between an invading species (a parasite) and its antibodies in an living being. This model was recently used to examine the dynamical competition between Tripanosoma cruzi and its antibodies during the acute phase of Chagas' disease. Depending on the antibody properties, the model yields three types of outcomes, corresponding, respectively, to healing, chronic disease, and host death. Here, we study the dynamics of the parasite-antibody interaction with the help of simulations, obtaining phase trajectories and phase diagrams for the system. We show that, under certain conditions, the size of the parasite inoculation can be crucial for the infection outcome and that a retardation in the stimulated production of an antibody species may result in the parasite gaining a definitive advantage. We also find a criterion for the relative sizes of the parameters that are required if parasite-generated decoys are indeed to help the invasion. Decoys may also induce a qualitatively different outcome: a limit cycle for the antibody-parasite population phase trajectories.
Simple Models for the Dynamic Modeling of Rotating Tires
Directory of Open Access Journals (Sweden)
J.C. Delamotte
2008-01-01
Full Text Available Large Finite Element (FE models of tires are currently used to predict low frequency behavior and to obtain dynamic model coefficients used in multi-body models for riding and comfort. However, to predict higher frequency behavior, which may explain irregular wear, critical rotating speeds and noise radiation, FE models are not practical. Detailed FE models are not adequate for optimization and uncertainty predictions either, as in such applications the dynamic solution must be computed a number of times. Therefore, there is a need for simpler models that can capture the physics of the tire and be used to compute the dynamic response with a low computational cost. In this paper, the spectral (or continuous element approach is used to derive such a model. A circular beam spectral element that takes into account the string effect is derived, and a method to simulate the response to a rotating force is implemented in the frequency domain. The behavior of a circular ring under different internal pressures is investigated using modal and frequency/wavenumber representations. Experimental results obtained with a real untreaded truck tire are presented and qualitatively compared with the simple model predictions with good agreement. No attempt is made to obtain equivalent parameters for the simple model from the real tire results. On the other hand, the simple model fails to represent the correct variation of the quotient of the natural frequency by the number of circumferential wavelengths with the mode count. Nevertheless, some important features of the real tire dynamic behavior, such as the generation of standing waves and part of the frequency/wavenumber behavior, can be investigated using the proposed simplified model.
Dynamical model of birdsong maintenance and control
Abarbanel, Henry D. I.; Talathi, Sachin S.; Mindlin, Gabriel; Rabinovich, Misha; Gibb, Leif
2004-11-01
The neuroethology of song learning, production, and maintenance in songbirds presents interesting similarities to human speech. We have developed a biophysical model of the manner in which song could be maintained in adult songbirds. This model may inform us about the human counterpart to these processes. In songbirds, signals generated in nucleus High Vocal center (HVc) follow a direct route along a premotor pathway to the robust nucleus of the archistriatum (RA) as well as an indirect route to RA through the anterior forebrain pathway (AFP): the neurons of RA are innervated from both sources. HVc expresses very sparse bursts of spikes having interspike intervals of about 2ms . The expressions of these bursts arrive at the RA with a time difference ΔT≈50±10ms between the two pathways. The observed combination of AMPA and NMDA receptors at RA projection neurons suggests that long-term potentiation and long-term depression can both be induced by spike timing plasticity through the pairing of the HVc and AFP signals. We present a dynamical model that stabilizes this synaptic plasticity through a feedback from the RA to the AFP using known connections. The stabilization occurs dynamically and is absent when the RA→AFP connection is removed. This requires a dynamical selection of ΔT . The model does this, and ΔT lies within the observed range. Our model represents an illustration of a functional consequence of activity-dependent plasticity directly connected with neuroethological observations. Within the model the parameters of the AFP, and thus the magnitude of ΔT , can also be tuned to an unstable regime. This means that destabilization might be induced by neuromodulation of the AFP.
Nonparametric modeling of dynamic functional connectivity in fmri data
DEFF Research Database (Denmark)
Nielsen, Søren Føns Vind; Madsen, Kristoffer H.; Røge, Rasmus
2015-01-01
dynamic changes. The existing approaches modeling dynamic connectivity have primarily been based on time-windowing the data and k-means clustering. We propose a nonparametric generative model for dynamic FC in fMRI that does not rely on specifying window lengths and number of dynamic states. Rooted...
Chancroid transmission dynamics: a mathematical modeling approach.
Bhunu, C P; Mushayabasa, S
2011-12-01
Mathematical models have long been used to better understand disease transmission dynamics and how to effectively control them. Here, a chancroid infection model is presented and analyzed. The disease-free equilibrium is shown to be globally asymptotically stable when the reproduction number is less than unity. High levels of treatment are shown to reduce the reproduction number suggesting that treatment has the potential to control chancroid infections in any given community. This result is also supported by numerical simulations which show a decline in chancroid cases whenever the reproduction number is less than unity.
Population Model with a Dynamic Food Supply
Dickman, Ronald; da Silva Nascimento, Jonas
2009-09-01
We propose a simple population model including the food supply as a dynamic variable. In the model, survival of an organism depends on a certain minimum rate of food consumption; a higher rate of consumption is required for reproduction. We investigate the stationary behavior under steady food input, and the transient behavior of growth and decay when food is present initially but is not replenished. Under a periodic food supply, the system exhibits period-doubling bifurcations and chaos in certain ranges of the reproduction rate. Bifurcations and chaos are favored by a slow reproduction rate and a long period of food-supply oscillation.
Conceptual Model of Dynamic Geographic Environment
Directory of Open Access Journals (Sweden)
Martínez-Rosales Miguel Alejandro
2014-04-01
Full Text Available In geographic environments, there are many and different types of geographic entities such as automobiles, trees, persons, buildings, storms, hurricanes, etc. These entities can be classified into two groups: geographic objects and geographic phenomena. By its nature, a geographic environment is dynamic, thus, it’s static modeling is not sufficient. Considering the dynamics of geographic environment, a new type of geographic entity called event is introduced. The primary target is a modeling of geographic environment as an event sequence, because in this case the semantic relations are much richer than in the case of static modeling. In this work, the conceptualization of this model is proposed. It is based on the idea to process each entity apart instead of processing the environment as a whole. After that, the so called history of each entity and its spatial relations to other entities are defined to describe the whole environment. The main goal is to model systems at a conceptual level that make use of spatial and temporal information, so that later it can serve as the semantic engine for such systems.
Modeling the Dynamic Digestive System Microbiome
Directory of Open Access Journals (Sweden)
Anne M. Estes
2015-08-01
Full Text Available “Modeling the Dynamic Digestive System Microbiome” is a hands-on activity designed to demonstrate the dynamics of microbiome ecology using dried pasta and beans to model disturbance events in the human digestive system microbiome. This exercise demonstrates how microbiome diversity is influenced by: 1 niche availability and habitat space and 2 a major disturbance event, such as antibiotic use. Students use a pictorial key to examine prepared models of digestive system microbiomes to determine what the person with the microbiome “ate.” Students then model the effect of taking antibiotics by removing certain “antibiotic sensitive” pasta. Finally, they add in “environmental microbes” or “native microbes” to recolonize the digestive system, determine how resilient their model microbome community is to disturbance, and discuss the implications. Throughout the exercise, students discuss differences in the habitat space available and microbiome community diversity. This exercise can be modified to discuss changes in the microbiome due to diet shifts and the emergence of antibiotic resistance in more depth.
Quadratic tracer dynamical models tobacco growth
International Nuclear Information System (INIS)
Qiang Jiyi; Hua Cuncai; Wang Shaohua
2011-01-01
In order to study the non-uniformly transferring process of some tracer dosages, we assume that the absorption of some tracer by tobacco is a quadratic function of the tracer quantity of the tracer in the case of fast absorption, whereas the exclusion of the tracer from tobacco is a linear function of the tracer quantity in the case of slow exclusion, after the tracer is introduced into tobacco once at zero time. A single-compartment quadratic dynamical model of Logistic type is established for the leaves of tobacco. Then, a two-compartment quadratic dynamical model is established for leaves and calms of the tobacco. Qualitative analysis of the models shows that the tracer applied to the leaves of the tobacco is excluded finally; however, the tracer stays at the tobacco for finite time. Two methods are also given for computing the parameters in the models. Finally, the results of the models are verified by the 32 P experiment for the absorption of tobacco. (authors)
Mass Casualty Chemical Incident Operational Framework, Assessment and Best Practices
Energy Technology Data Exchange (ETDEWEB)
Greenwalt, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hibbard, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-08-09
Emergency response agencies in most US communities are organized, sized, and equipped to manage those emergencies normally expected. Hospitals in particular do not typically have significant excess capacity to handle massive numbers of casualties, as hospital space is an expensive luxury if not needed. Unfortunately this means that in the event of a mass casualty chemical incident the emergency response system will be overwhelmed. This document provides a self-assessment means for emergency managers to examine their response system and identify shortfalls. It also includes lessons from a detailed analysis of five communities: Baltimore, Boise, Houston, Nassau County, and New Orleans. These lessons provide a list of potential critical decisions to allow for pre-planning and a library of best practices that may be helpful in reducing casualties in the event of an incident.
A multiscale model for virus capsid dynamics.
Chen, Changjun; Saxena, Rishu; Wei, Guo-Wei
2010-01-01
Viruses are infectious agents that can cause epidemics and pandemics. The understanding of virus formation, evolution, stability, and interaction with host cells is of great importance to the scientific community and public health. Typically, a virus complex in association with its aquatic environment poses a fabulous challenge to theoretical description and prediction. In this work, we propose a differential geometry-based multiscale paradigm to model complex biomolecule systems. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum domain of the fluid mechanical description of the aquatic environment from the microscopic discrete domain of the atomistic description of the biomolecule. A multiscale action functional is constructed as a unified framework to derive the governing equations for the dynamics of different scales. We show that the classical Navier-Stokes equation for the fluid dynamics and Newton's equation for the molecular dynamics can be derived from the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows.
A Multiscale Model for Virus Capsid Dynamics
Directory of Open Access Journals (Sweden)
Changjun Chen
2010-01-01
Full Text Available Viruses are infectious agents that can cause epidemics and pandemics. The understanding of virus formation, evolution, stability, and interaction with host cells is of great importance to the scientific community and public health. Typically, a virus complex in association with its aquatic environment poses a fabulous challenge to theoretical description and prediction. In this work, we propose a differential geometry-based multiscale paradigm to model complex biomolecule systems. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum domain of the fluid mechanical description of the aquatic environment from the microscopic discrete domain of the atomistic description of the biomolecule. A multiscale action functional is constructed as a unified framework to derive the governing equations for the dynamics of different scales. We show that the classical Navier-Stokes equation for the fluid dynamics and Newton's equation for the molecular dynamics can be derived from the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows.
AFDM: An Advanced Fluid-Dynamics Model
International Nuclear Information System (INIS)
Bohl, W.R.; Parker, F.R.; Wilhelm, D.; Goutagny, L.; Ninokata, H.
1990-09-01
AFDM, or the Advanced Fluid-Dynamics Model, is a computer code that investigates new approaches simulating the multiphase-flow fluid-dynamics aspects of severe accidents in fast reactors. The AFDM formalism starts with differential equations similar to those in the SIMMER-II code. These equations are modified to treat three velocity fields and supplemented with a variety of new models. The AFDM code has 12 topologies describing what material contacts are possible depending on the presence or absence of a given material in a computational cell, on the dominant liquid, and on the continuous phase. Single-phase, bubbly, churn-turbulent, cellular, and dispersed flow regimes are permitted for the pool situations modeled. Virtual mass terms are included for vapor in liquid-continuous flow. Interfacial areas between the continuous and discontinuous phases are convected to allow some tracking of phenomenological histories. Interfacial areas are also modified by models of nucleation, dynamic forces, turbulence, flashing, coalescence, and mass transfer. Heat transfer is generally treated using engineering correlations. Liquid-vapor phase transitions are handled with the nonequilibrium, heat-transfer-limited model, whereas melting and freezing processes are based on equilibrium considerations. Convection is treated using a fractional-step method of time integration, including a semi-implicit pressure iteration. A higher-order differencing option is provided to control numerical diffusion. The Los Alamos SESAME equation-of-state has been implemented using densities and temperatures as the independent variables. AFDM programming has vectorized all computational loops consistent with the objective of producing an exportable code. 24 refs., 4 figs
Mathematical modeling and applications in nonlinear dynamics
Merdan, Hüseyin
2016-01-01
The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...
Dynamical models of happiness with fractional order
Song, Lei; Xu, Shiyun; Yang, Jianying
2010-03-01
This present study focuses on a dynamical model of happiness described through fractional-order differential equations. By categorizing people of different personality and different impact factor of memory (IFM) with different set of model parameters, it is demonstrated via numerical simulations that such fractional-order models could exhibit various behaviors with and without external circumstance. Moreover, control and synchronization problems of this model are discussed, which correspond to the control of emotion as well as emotion synchronization in real life. This study is an endeavor to combine the psychological knowledge with control problems and system theories, and some implications for psychotherapy as well as hints of a personal approach to life are both proposed.
Modeling Computer Virus and Its Dynamics
Directory of Open Access Journals (Sweden)
Mei Peng
2013-01-01
Full Text Available Based on that the computer will be infected by infected computer and exposed computer, and some of the computers which are in suscepitible status and exposed status can get immunity by antivirus ability, a novel coumputer virus model is established. The dynamic behaviors of this model are investigated. First, the basic reproduction number R0, which is a threshold of the computer virus spreading in internet, is determined. Second, this model has a virus-free equilibrium P0, which means that the infected part of the computer disappears, and the virus dies out, and P0 is a globally asymptotically stable equilibrium if R01 then this model has only one viral equilibrium P*, which means that the computer persists at a constant endemic level, and P* is also globally asymptotically stable. Finally, some numerical examples are given to demonstrate the analytical results.
Continuous Time Dynamic Contraflow Models and Algorithms
Directory of Open Access Journals (Sweden)
Urmila Pyakurel
2016-01-01
Full Text Available The research on evacuation planning problem is promoted by the very challenging emergency issues due to large scale natural or man-created disasters. It is the process of shifting the maximum number of evacuees from the disastrous areas to the safe destinations as quickly and efficiently as possible. Contraflow is a widely accepted model for good solution of evacuation planning problem. It increases the outbound road capacity by reversing the direction of roads towards the safe destination. The continuous dynamic contraflow problem sends the maximum number of flow as a flow rate from the source to the sink in every moment of time unit. We propose the mathematical model for the continuous dynamic contraflow problem. We present efficient algorithms to solve the maximum continuous dynamic contraflow and quickest continuous contraflow problems on single source single sink arbitrary networks and continuous earliest arrival contraflow problem on single source single sink series-parallel networks with undefined supply and demand. We also introduce an approximation solution for continuous earliest arrival contraflow problem on two-terminal arbitrary networks.
Advances in dynamic network modeling in complex transportation systems
Ukkusuri, Satish V
2013-01-01
This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.
OFFl Models: Novel Schema for Dynamical Modeling of Biological Systems.
Ogbunugafor, C Brandon; Robinson, Sean P
2016-01-01
Flow diagrams are a common tool used to help build and interpret models of dynamical systems, often in biological contexts such as consumer-resource models and similar compartmental models. Typically, their usage is intuitive and informal. Here, we present a formalized version of flow diagrams as a kind of weighted directed graph which follow a strict grammar, which translate into a system of ordinary differential equations (ODEs) by a single unambiguous rule, and which have an equivalent representation as a relational database. (We abbreviate this schema of "ODEs and formalized flow diagrams" as OFFL.) Drawing a diagram within this strict grammar encourages a mental discipline on the part of the modeler in which all dynamical processes of a system are thought of as interactions between dynamical species that draw parcels from one or more source species and deposit them into target species according to a set of transformation rules. From these rules, the net rate of change for each species can be derived. The modeling schema can therefore be understood as both an epistemic and practical heuristic for modeling, serving both as an organizational framework for the model building process and as a mechanism for deriving ODEs. All steps of the schema beyond the initial scientific (intuitive, creative) abstraction of natural observations into model variables are algorithmic and easily carried out by a computer, thus enabling the future development of a dedicated software implementation. Such tools would empower the modeler to consider significantly more complex models than practical limitations might have otherwise proscribed, since the modeling framework itself manages that complexity on the modeler's behalf. In this report, we describe the chief motivations for OFFL, carefully outline its implementation, and utilize a range of classic examples from ecology and epidemiology to showcase its features.
OFFl Models: Novel Schema for Dynamical Modeling of Biological Systems.
Directory of Open Access Journals (Sweden)
C Brandon Ogbunugafor
Full Text Available Flow diagrams are a common tool used to help build and interpret models of dynamical systems, often in biological contexts such as consumer-resource models and similar compartmental models. Typically, their usage is intuitive and informal. Here, we present a formalized version of flow diagrams as a kind of weighted directed graph which follow a strict grammar, which translate into a system of ordinary differential equations (ODEs by a single unambiguous rule, and which have an equivalent representation as a relational database. (We abbreviate this schema of "ODEs and formalized flow diagrams" as OFFL. Drawing a diagram within this strict grammar encourages a mental discipline on the part of the modeler in which all dynamical processes of a system are thought of as interactions between dynamical species that draw parcels from one or more source species and deposit them into target species according to a set of transformation rules. From these rules, the net rate of change for each species can be derived. The modeling schema can therefore be understood as both an epistemic and practical heuristic for modeling, serving both as an organizational framework for the model building process and as a mechanism for deriving ODEs. All steps of the schema beyond the initial scientific (intuitive, creative abstraction of natural observations into model variables are algorithmic and easily carried out by a computer, thus enabling the future development of a dedicated software implementation. Such tools would empower the modeler to consider significantly more complex models than practical limitations might have otherwise proscribed, since the modeling framework itself manages that complexity on the modeler's behalf. In this report, we describe the chief motivations for OFFL, carefully outline its implementation, and utilize a range of classic examples from ecology and epidemiology to showcase its features.
Dynamic modeling of gearbox faults: A review
Liang, Xihui; Zuo, Ming J.; Feng, Zhipeng
2018-01-01
Gearbox is widely used in industrial and military applications. Due to high service load, harsh operating conditions or inevitable fatigue, faults may develop in gears. If the gear faults cannot be detected early, the health will continue to degrade, perhaps causing heavy economic loss or even catastrophe. Early fault detection and diagnosis allows properly scheduled shutdowns to prevent catastrophic failure and consequently result in a safer operation and higher cost reduction. Recently, many studies have been done to develop gearbox dynamic models with faults aiming to understand gear fault generation mechanism and then develop effective fault detection and diagnosis methods. This paper focuses on dynamics based gearbox fault modeling, detection and diagnosis. State-of-art and challenges are reviewed and discussed. This detailed literature review limits research results to the following fundamental yet key aspects: gear mesh stiffness evaluation, gearbox damage modeling and fault diagnosis techniques, gearbox transmission path modeling and method validation. In the end, a summary and some research prospects are presented.
Yi, Zheng; Lindner, Benjamin; Prinz, Jan-Hendrik; Noé, Frank; Smith, Jeremy C
2013-11-07
Neutron scattering experiments directly probe the dynamics of complex molecules on the sub pico- to microsecond time scales. However, the assignment of the relaxations seen experimentally to specific structural rearrangements is difficult, since many of the underlying dynamical processes may exist on similar timescales. In an accompanying article, we present a theoretical approach to the analysis of molecular dynamics simulations with a Markov State Model (MSM) that permits the direct identification of structural transitions leading to each contributing relaxation process. Here, we demonstrate the use of the method by applying it to the configurational dynamics of the well-characterized alanine dipeptide. A practical procedure for deriving the MSM from an MD is introduced. The result is a 9-state MSM in the space of the backbone dihedral angles and the side-chain methyl group. The agreement between the quasielastic spectrum calculated directly from the atomic trajectories and that derived from the Markov state model is excellent. The dependence on the wavevector of the individual Markov processes is described. The procedure means that it is now practicable to interpret quasielastic scattering spectra in terms of well-defined intramolecular transitions with minimal a priori assumptions as to the nature of the dynamics taking place.
A simple dynamic energy capacity model
International Nuclear Information System (INIS)
Gander, James P.
2012-01-01
I develop a simple dynamic model showing how total energy capacity is allocated to two different uses and how these uses and their corresponding energy flows are related and behave through time. The control variable of the model determines the allocation. All the variables of the model are in terms of a composite energy equivalent measured in BTU's. A key focus is on the shadow price of energy capacity and its behavior through time. Another key focus is on the behavior of the control variable that determines the allocation of overall energy capacity. The matching or linking of the model's variables to real world U.S. energy data is undertaken. In spite of some limitations of the data, the model and its behavior fit the data fairly well. Some energy policy implications are discussed. - Highlights: ► The model shows how energy capacity is allocated to current output production versus added energy capacity production. ► Two variables in the allocation are the shadow price of capacity and the control variable that determines the allocation. ► The model was linked to U.S. historical energy data and fit the data quite well. ► In particular, the policy control variable was cyclical and consistent with the model. ► Policy implications relevant to the allocation of energy capacity are discussed briefly.
Dynamic modelling of Industrial Heavy Water Plant
International Nuclear Information System (INIS)
Teruel, F.E.
1997-01-01
The dynamic behavior of the isotopic enrichment unites of the Industrial Heavy Water Plant, located in Arroyito, Neuquen, Argentina, was modeled and simulated in the present work. Dynamic models of the chemical and isotopic interchange processes existent in the plant, were developed. This served as a base to obtain representative models of the different unit and control systems. The developed models were represented in a modular code for each unit. Each simulator consists of approximately one hundred non-linear-first-order differential equations and some other algebraic equation, which are time resolved by the code. The different simulators allow to change a big number of boundary conditions and the control systems set point for each simulation, so that the program become very versatile. The output of the code allows to see the evolution through time of the variables of interest. An interface which facilitates the use of the first enrichment stage simulator was developed. This interface allows an easy access to generate wished events during the simulation and includes the possibility to plot evolution of the variables involved. The obtained results agree with the expected tendencies. The calculated nominal steady state matches by the manufacturer. The different steady states obtained, agree with previous works. The times and tendencies involved in the transients generated by the program, are in good agreement with the experience obtained at the plant. Based in the obtained results, it is concluded that the characteristic times of the plant are determined by the masses involved in the process. Different characteristics in the system dynamic behavior were generated with the different simulators, and were validated by plant personnel. This work allowed to understand the different process involved in the heavy water manufacture, and to develop a very useful tool for the personnel of the plant. (author). 14 refs., figs., tabs. plant. (author). 14 refs., figs., tabs
Modeling dynamic functional connectivity using a wishart mixture model
DEFF Research Database (Denmark)
Nielsen, Søren Føns Vind; Madsen, Kristoffer Hougaard; Schmidt, Mikkel Nørgaard
2017-01-01
framework provides model selection by quantifying models generalization to new data. We use this to quantify the number of states within a prespecified window length. We further propose a heuristic procedure for choosing the window length based on contrasting for each window length the predictive...... together whereas short windows are more unstable and influenced by noise and we find that our heuristic correctly identifies an adequate level of complexity. On single subject resting state fMRI data we find that dynamic models generally outperform static models and using the proposed heuristic points...
Adaptive-network models of collective dynamics
Zschaler, G.
2012-09-01
Complex systems can often be modelled as networks, in which their basic units are represented by abstract nodes and the interactions among them by abstract links. This network of interactions is the key to understanding emergent collective phenomena in such systems. In most cases, it is an adaptive network, which is defined by a feedback loop between the local dynamics of the individual units and the dynamical changes of the network structure itself. This feedback loop gives rise to many novel phenomena. Adaptive networks are a promising concept for the investigation of collective phenomena in different systems. However, they also present a challenge to existing modelling approaches and analytical descriptions due to the tight coupling between local and topological degrees of freedom. In this work, which is essentially my PhD thesis, I present a simple rule-based framework for the investigation of adaptive networks, using which a wide range of collective phenomena can be modelled and analysed from a common perspective. In this framework, a microscopic model is defined by the local interaction rules of small network motifs, which can be implemented in stochastic simulations straightforwardly. Moreover, an approximate emergent-level description in terms of macroscopic variables can be derived from the microscopic rules, which we use to analyse the system's collective and long-term behaviour by applying tools from dynamical systems theory. We discuss three adaptive-network models for different collective phenomena within our common framework. First, we propose a novel approach to collective motion in insect swarms, in which we consider the insects' adaptive interaction network instead of explicitly tracking their positions and velocities. We capture the experimentally observed onset of collective motion qualitatively in terms of a bifurcation in this non-spatial model. We find that three-body interactions are an essential ingredient for collective motion to emerge
Modelling forest dynamics along climate gradients in Bolivia
Seiler, C.; Hutjes, R.W.A.; Kruijt, B.; Quispe, J.; Añez, S.; Arora, V.K.; Melton, J.R.; Hickler, T.; Kabat, P.
2014-01-01
Dynamic vegetation models have been used to assess the resilience of tropical forests to climate change, but the global application of these modeling experiments often misrepresents carbon dynamics at a regional level, limiting the validity of future projections. Here a dynamic vegetation model
Modelling Market Dynamics with a "Market Game"
Katahira, Kei; Chen, Yu
In the financial market, traders, especially speculators, typically behave as to yield capital gains by the difference between selling and buying prices. Making use of the structure of Minority Game, we build a novel market toy model which takes account of such the speculative mind involving a round-trip trade to analyze the market dynamics as a system. Even though the micro-level behavioral rules of players in this new model is quite simple, its macroscopic aggregational output has the reproducibility of the well-known stylized facts such as volatility clustering and heavy tails. The proposed model may become a new alternative bottom-up approach in order to study the emerging mechanism of those stylized qualitative properties of asset returns.
Dynamics of a Stochastic Intraguild Predation Model
Directory of Open Access Journals (Sweden)
Zejing Xing
2016-04-01
Full Text Available Intraguild predation (IGP is a widespread ecological phenomenon which occurs when one predator species attacks another predator species with which it competes for a shared prey species. The objective of this paper is to study the dynamical properties of a stochastic intraguild predation model. We analyze stochastic persistence and extinction of the stochastic IGP model containing five cases and establish the sufficient criteria for global asymptotic stability of the positive solutions. This study shows that it is possible for the coexistence of three species under the influence of environmental noise, and that the noise may have a positive effect for IGP species. A stationary distribution of the stochastic IGP model is established and it has the ergodic property, suggesting that the time average of population size with the development of time is equal to the stationary distribution in space. Finally, we show that our results may be extended to two well-known biological systems: food chains and exploitative competition.
Bolster, Ferdia; Linnau, Ken; Mitchell, Steve; Roberge, Eric; Nguyen, Quynh; Robinson, Jeffrey; Lehnert, Bruce; Gross, Joel
2017-02-01
The aims of this article are to describe the events of a recent mass casualty incident (MCI) at our level 1 trauma center and to describe the radiology response to the event. We also describe the findings and recommendations of our radiology department after-action review. An MCI activation was triggered after an amphibious military vehicle, repurposed for tourist activities, carrying 37 passengers, collided with a charter bus carrying 45 passengers on a busy highway bridge in Seattle, WA, USA. There were 4 deaths at the scene, and 51 patients were transferred to local hospitals following prehospital scene triage. Nineteen patients were transferred to our level 1 trauma center. Eighteen casualties arrived within 72 min. Sixteen arrived within 1 h of the first patient arrival, and 1 casualty was transferred 3 h later having initially been assessed at another hospital. Eighteen casualties (94.7 %) underwent diagnostic imaging in the emergency department. Of these 18 casualties, 15 had a trauma series (portable chest x-ray and x-ray of pelvis). Whole-body trauma computed tomography scans (WBCT) were performed on 15 casualties (78.9 %), 12 were immediate and performed during the initial active phase of the MCI, and 3 WBCTs were delayed. The initial 12 WBCTs were completed in 101 min. The mean number of radiographic studies performed per patient was 3 (range 1-8), and the total number of injuries detected was 88. The surge in imaging requirements during an MCI can be significant and exceed normal operating capacity. This report of our radiology experience during a recent MCI and subsequent after-action review serves to provide an example of how radiology capacity and workflow functioned during an MCI, in order to provide emergency radiologists and response planners with practical recommendations for implementation in the event of a future MCI.
Agent-based modeling and network dynamics
Namatame, Akira
2016-01-01
The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...
Flight Dynamic Model Exchange using XML
Jackson, E. Bruce; Hildreth, Bruce L.
2002-01-01
The AIAA Modeling and Simulation Technical Committee has worked for several years to develop a standard by which the information needed to develop physics-based models of aircraft can be specified. The purpose of this standard is to provide a well-defined set of information, definitions, data tables and axis systems so that cooperating organizations can transfer a model from one simulation facility to another with maximum efficiency. This paper proposes using an application of the eXtensible Markup Language (XML) to implement the AIAA simulation standard. The motivation and justification for using a standard such as XML is discussed. Necessary data elements to be supported are outlined. An example of an aerodynamic model as an XML file is given. This example includes definition of independent and dependent variables for function tables, definition of key variables used to define the model, and axis systems used. The final steps necessary for implementation of the standard are presented. Software to take an XML-defined model and import/export it to/from a given simulation facility is discussed, but not demonstrated. That would be the next step in final implementation of standards for physics-based aircraft dynamic models.
Traffic flow dynamics. Data, models and simulation
Energy Technology Data Exchange (ETDEWEB)
Treiber, Martin [Technische Univ. Dresden (Germany). Inst. fuer Wirtschaft und Verkehr; Kesting, Arne [TomTom Development Germany GmbH, Berlin (Germany)
2013-07-01
First comprehensive textbook of this fascinating interdisciplinary topic which explains advances in a way that it is easily accessible to engineering, physics and math students. Presents practical applications of traffic theory such as driving behavior, stability analysis, stop-and-go waves, and travel time estimation. Presents the topic in a novel and systematic way by addressing both microscopic and macroscopic models with a focus on traffic instabilities. Revised and extended edition of the German textbook ''Verkehrsdynamik und -simulation''. This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on traffic instabilities and model calibration/validation present these topics in a novel and systematic way. Finally, the theoretical framework is shown at work in selected applications such as traffic-state and travel-time estimation, intelligent transportation systems, traffic operations management, and a detailed physics-based model for fuel consumption and emissions.
Mineral vein dynamics modelling (FRACS II)
International Nuclear Information System (INIS)
Urai, J.; Virgo, S.; Arndt, M.
2016-08-01
The Mineral Vein Dynamics Modeling group ''FRACS'' started out as a team of 7 research groups in its first phase and continued with a team of 5 research groups at the Universities of Aachen, Tuebingen, Karlsruhe, Mainz and Glasgow during its second phase ''FRACS 11''. The aim of the group was to develop an advanced understanding of the interplay between fracturing, fluid flow and fracture healing with a special emphasis on the comparison of field data and numerical models. Field areas comprised the Oman mountains in Oman (which where already studied in detail in the first phase), a siliciclastic sequence in the Internal Ligurian Units in Italy (closed to Sestri Levante) and cores of Zechstein carbonates from a Lean Gas reservoir in Northern Germany. Numerical models of fracturing, sealing and interaction with fluid that were developed in phase I where expanded in phase 11. They were used to model small scale fracture healing by crystal growth and the resulting influence on flow, medium scale fracture healing and its influence on successive fracturing and healing, as well as large scale dynamic fluid flow through opening and closing fractures and channels as a function of fluid overpressure. The numerical models were compared with structures in the field and we were able to identify first proxies for mechanical vein-hostrock properties and fluid overpressures versus tectonic stresses. Finally we propose a new classification of stylolites based on numerical models and observations in the Zechstein cores and continued to develop a new stress inversion tool to use stylolites to estimate depth of their formation.
Mineral vein dynamics modelling (FRACS II)
Energy Technology Data Exchange (ETDEWEB)
Urai, J.; Virgo, S.; Arndt, M. [RWTH Aachen (Germany); and others
2016-08-15
The Mineral Vein Dynamics Modeling group ''FRACS'' started out as a team of 7 research groups in its first phase and continued with a team of 5 research groups at the Universities of Aachen, Tuebingen, Karlsruhe, Mainz and Glasgow during its second phase ''FRACS 11''. The aim of the group was to develop an advanced understanding of the interplay between fracturing, fluid flow and fracture healing with a special emphasis on the comparison of field data and numerical models. Field areas comprised the Oman mountains in Oman (which where already studied in detail in the first phase), a siliciclastic sequence in the Internal Ligurian Units in Italy (closed to Sestri Levante) and cores of Zechstein carbonates from a Lean Gas reservoir in Northern Germany. Numerical models of fracturing, sealing and interaction with fluid that were developed in phase I where expanded in phase 11. They were used to model small scale fracture healing by crystal growth and the resulting influence on flow, medium scale fracture healing and its influence on successive fracturing and healing, as well as large scale dynamic fluid flow through opening and closing fractures and channels as a function of fluid overpressure. The numerical models were compared with structures in the field and we were able to identify first proxies for mechanical vein-hostrock properties and fluid overpressures versus tectonic stresses. Finally we propose a new classification of stylolites based on numerical models and observations in the Zechstein cores and continued to develop a new stress inversion tool to use stylolites to estimate depth of their formation.
MODELS AND THE DYNAMICS OF THEORIES
Directory of Open Access Journals (Sweden)
Paulo Abrantes
2007-12-01
Full Text Available Abstract: This paper gives a historical overview of the ways various trends in the philosophy of science dealt with models and their relationship with the topics of heuristics and theoretical dynamics. First of all, N. Campbell’s account of analogies as components of scientific theories is presented. Next, the notion of ‘model’ in the reconstruction of the structure of scientific theories proposed by logical empiricists is examined. This overview finishes with M. Hesse’s attempts to develop Campbell’s early ideas in terms of an analogical inference. The final part of the paper points to contemporary developments on these issues which adopt a cognitivist perspective. It is indicated how discussions in the cognitive sciences might help to flesh out some of the insights philosophers of science had concerning the role models and analogies play in actual scientific theorizing. Key words: models, analogical reasoning, metaphors in science, the structure of scientific theories, theoretical dynamics, heuristics, scientific discovery.
Mathematical modeling of infectious disease dynamics
Siettos, Constantinos I.; Russo, Lucia
2013-01-01
Over the last years, an intensive worldwide effort is speeding up the developments in the establishment of a global surveillance network for combating pandemics of emergent and re-emergent infectious diseases. Scientists from different fields extending from medicine and molecular biology to computer science and applied mathematics have teamed up for rapid assessment of potentially urgent situations. Toward this aim mathematical modeling plays an important role in efforts that focus on predicting, assessing, and controlling potential outbreaks. To better understand and model the contagious dynamics the impact of numerous variables ranging from the micro host–pathogen level to host-to-host interactions, as well as prevailing ecological, social, economic, and demographic factors across the globe have to be analyzed and thoroughly studied. Here, we present and discuss the main approaches that are used for the surveillance and modeling of infectious disease dynamics. We present the basic concepts underpinning their implementation and practice and for each category we give an annotated list of representative works. PMID:23552814
Numerical modeling of bubble dynamics in magmas
Huber, Christian; Su, Yanqing; Parmigiani, Andrea
2014-05-01
Understanding the complex non-linear physics that governs volcanic eruptions is contingent on our ability to characterize the dynamics of bubbles and its effect on the ascending magma. The exsolution and migration of bubbles has also a great impact on the heat and mass transport in and out of magma bodies stored at shallow depths in the crust. Multiphase systems like magmas are by definition heterogeneous at small scales. Although mixture theory or homogenization methods are convenient to represent multiphase systems as a homogeneous equivalent media, these approaches do not inform us on possible feedbacks at the pore-scale and can be significantly misleading. In this presentation, we discuss the development and application of bubble-scale multiphase flow modeling to address the following questions : How do bubbles impact heat and mass transport in magma chambers ? How efficient are chemical exchanges between the melt and bubbles during magma decompression? What is the role of hydrodynamic interactions on the deformation of bubbles while the magma is sheared? Addressing these questions requires powerful numerical methods that accurately model the balance between viscous, capillary and pressure stresses. We discuss how these bubble-scale models can provide important constraints on the dynamics of magmas stored at shallow depth or ascending to the surface during an eruption.
Models for inference in dynamic metacommunity systems
Dorazio, Robert M.; Kery, Marc; Royle, J. Andrew; Plattner, Matthias
2010-01-01
A variety of processes are thought to be involved in the formation and dynamics of species assemblages. For example, various metacommunity theories are based on differences in the relative contributions of dispersal of species among local communities and interactions of species within local communities. Interestingly, metacommunity theories continue to be advanced without much empirical validation. Part of the problem is that statistical models used to analyze typical survey data either fail to specify ecological processes with sufficient complexity or they fail to account for errors in detection of species during sampling. In this paper, we describe a statistical modeling framework for the analysis of metacommunity dynamics that is based on the idea of adopting a unified approach, multispecies occupancy modeling, for computing inferences about individual species, local communities of species, or the entire metacommunity of species. This approach accounts for errors in detection of species during sampling and also allows different metacommunity paradigms to be specified in terms of species- and location-specific probabilities of occurrence, extinction, and colonization: all of which are estimable. In addition, this approach can be used to address inference problems that arise in conservation ecology, such as predicting temporal and spatial changes in biodiversity for use in making conservation decisions. To illustrate, we estimate changes in species composition associated with the species-specific phenologies of flight patterns of butterflies in Switzerland for the purpose of estimating regional differences in biodiversity.
Dynamical Vertex Approximation for the Hubbard Model
Toschi, Alessandro
A full understanding of correlated electron systems in the physically relevant situations of three and two dimensions represents a challenge for the contemporary condensed matter theory. However, in the last years considerable progress has been achieved by means of increasingly more powerful quantum many-body algorithms, applied to the basic model for correlated electrons, the Hubbard Hamiltonian. Here, I will review the physics emerging from studies performed with the dynamical vertex approximation, which includes diagrammatic corrections to the local description of the dynamical mean field theory (DMFT). In particular, I will first discuss the phase diagram in three dimensions with a special focus on the commensurate and incommensurate magnetic phases, their (quantum) critical properties, and the impact of fluctuations on electronic lifetimes and spectral functions. In two dimensions, the effects of non-local fluctuations beyond DMFT grow enormously, determining the appearance of a low-temperature insulating behavior for all values of the interaction in the unfrustrated model: Here the prototypical features of the Mott-Hubbard metal-insulator transition, as well as the existence of magnetically ordered phases, are completely overwhelmed by antiferromagnetic fluctuations of exponentially large extension, in accordance with the Mermin-Wagner theorem. Eventually, by a fluctuation diagnostics analysis of cluster DMFT self-energies, the same magnetic fluctuations are identified as responsible for the pseudogap regime in the holed-doped frustrated case, with important implications for the theoretical modeling of the cuprate physics.
A dynamic model of the wormhole and the Multiverse model
International Nuclear Information System (INIS)
Shatskii, A A; Kardashev, N S; Novikov, I D
2008-01-01
An analytic solution methodology for general relativity (GR) equations describing the hypothetical phenomenon of wormholes is presented and the analysis of wormholes in terms of their physical properties is discussed. An analytic solution of the GR equations for static and dynamic spherically symmetric wormholes is given. The dynamic solution generally describes a 'traversable' wormhole, i.e., one allowing matter, energy, and information to pass through it. It is shown how the energy-momentum tensor of matter in a wormhole can be represented in a form allowing the GR equations to be solved analytically, which has a crucial methodological importance for analyzing the properties of the solution obtained. The energy-momentum tensor of wormhole matter is represented as a superposition of a spherically symmetric magnetic (or electric) field and negative-density dust matter, serving as exotic matter necessary for a 'traversable' wormhole to exist. The dynamics of the model are investigated. A similar model is considered (and analyzed in terms of inflation) for the Einstein equations with a Λ term. Superposing enough dust matter, a magnetic field, and a Λ term can produce a static solution, which turns out to be a spherical Multiverse model with an infinite number of wormhole-connected spherical universes. This Multiverse can have its total energy positive everywhere in space, and in addition can be out of equilibrium (i.e., dynamic). (methodological notes)
A dynamic model of the wormhole and the Multiverse model
Energy Technology Data Exchange (ETDEWEB)
Shatskii, A A; Kardashev, N S [Astro-Space Centre of the P. N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Novikov, I D [Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)
2008-05-31
An analytic solution methodology for general relativity (GR) equations describing the hypothetical phenomenon of wormholes is presented and the analysis of wormholes in terms of their physical properties is discussed. An analytic solution of the GR equations for static and dynamic spherically symmetric wormholes is given. The dynamic solution generally describes a 'traversable' wormhole, i.e., one allowing matter, energy, and information to pass through it. It is shown how the energy-momentum tensor of matter in a wormhole can be represented in a form allowing the GR equations to be solved analytically, which has a crucial methodological importance for analyzing the properties of the solution obtained. The energy-momentum tensor of wormhole matter is represented as a superposition of a spherically symmetric magnetic (or electric) field and negative-density dust matter, serving as exotic matter necessary for a 'traversable' wormhole to exist. The dynamics of the model are investigated. A similar model is considered (and analyzed in terms of inflation) for the Einstein equations with a {lambda} term. Superposing enough dust matter, a magnetic field, and a {lambda} term can produce a static solution, which turns out to be a spherical Multiverse model with an infinite number of wormhole-connected spherical universes. This Multiverse can have its total energy positive everywhere in space, and in addition can be out of equilibrium (i.e., dynamic). (methodological notes)
Development of Dynamic Environmental Effect Calculation Model
International Nuclear Information System (INIS)
Jeong, Chang Joon; Ko, Won Il
2010-01-01
The short-term, long-term decay heat, and radioactivity are considered as main environmental parameters of SF and HLA. In this study, the dynamic calculation models for radioactivity, short-term decay heat, and long-term heat load of the SF are developed and incorporated into the Doneness code. The spent fuel accumulation has become a major issue for sustainable operation of nuclear power plants. If a once-through fuel cycle is selected, the SF will be disposed into the repository. Otherwise, in case of fast reactor or reuse cycle, the SF will be reprocessed and the high level waste will be disposed
Trophic dynamics of a simple model ecosystem.
Bell, Graham; Fortier-Dubois, Étienne
2017-09-13
We have constructed a model of community dynamics that is simple enough to enumerate all possible food webs, yet complex enough to represent a wide range of ecological processes. We use the transition matrix to predict the outcome of succession and then investigate how the transition probabilities are governed by resource supply and immigration. Low-input regimes lead to simple communities whereas trophically complex communities develop when there is an adequate supply of both resources and immigrants. Our interpretation of trophic dynamics in complex communities hinges on a new principle of mutual replenishment, defined as the reciprocal alternation of state in a pair of communities linked by the invasion and extinction of a shared species. Such neutral couples are the outcome of succession under local dispersal and imply that food webs will often be made up of suites of trophically equivalent species. When immigrants arrive from an external pool of fixed composition a similar principle predicts a dynamic core of webs constituting a neutral interchange network, although communities may express an extensive range of other webs whose membership is only in part predictable. The food web is not in general predictable from whole-community properties such as productivity or stability, although it may profoundly influence these properties. © 2017 The Author(s).
Computational fluid dynamics modelling in cardiovascular medicine.
Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2016-01-01
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. Published by the BMJ Publishing Group Limited. For permission
A Mathematical Model of Cardiovascular Response to Dynamic Exercise
National Research Council Canada - National Science Library
Magosso, E
2001-01-01
A mathematical model of cardiovascular response to dynamic exercise is presented, The model includes the pulsating heart, the systemic and pulmonary, circulation, a functional description of muscle...
Testing substellar models with dynamical mass measurements
Directory of Open Access Journals (Sweden)
Liu M.C.
2011-07-01
Full Text Available We have been using Keck laser guide star adaptive optics to monitor the orbits of ultracool binaries, providing dynamical masses at lower luminosities and temperatures than previously available and enabling strong tests of theoretical models. We have identified three specific problems with theory: (1 We find that model color–magnitude diagrams cannot be reliably used to infer masses as they do not accurately reproduce the colors of ultracool dwarfs of known mass. (2 Effective temperatures inferred from evolutionary model radii are typically inconsistent with temperatures derived from fitting atmospheric models to observed spectra by 100–300 K. (3 For the only known pair of field brown dwarfs with a precise mass (3% and age determination (≈25%, the measured luminosities are ~2–3× higher than predicted by model cooling rates (i.e., masses inferred from Lbol and age are 20–30% larger than measured. To make progress in understanding the observed discrepancies, more mass measurements spanning a wide range of luminosity, temperature, and age are needed, along with more accurate age determinations (e.g., via asteroseismology for primary stars with brown dwarf binary companions. Also, resolved optical and infrared spectroscopy are needed to measure lithium depletion and to characterize the atmospheres of binary components in order to better assess model deficiencies.
Computational social dynamic modeling of group recruitment.
Energy Technology Data Exchange (ETDEWEB)
Berry, Nina M.; Lee, Marinna; Pickett, Marc; Turnley, Jessica Glicken (Sandia National Laboratories, Albuquerque, NM); Smrcka, Julianne D. (Sandia National Laboratories, Albuquerque, NM); Ko, Teresa H.; Moy, Timothy David (Sandia National Laboratories, Albuquerque, NM); Wu, Benjamin C.
2004-01-01
The Seldon software toolkit combines concepts from agent-based modeling and social science to create a computationally social dynamic model for group recruitment. The underlying recruitment model is based on a unique three-level hybrid agent-based architecture that contains simple agents (level one), abstract agents (level two), and cognitive agents (level three). This uniqueness of this architecture begins with abstract agents that permit the model to include social concepts (gang) or institutional concepts (school) into a typical software simulation environment. The future addition of cognitive agents to the recruitment model will provide a unique entity that does not exist in any agent-based modeling toolkits to date. We use social networks to provide an integrated mesh within and between the different levels. This Java based toolkit is used to analyze different social concepts based on initialization input from the user. The input alters a set of parameters used to influence the values associated with the simple agents, abstract agents, and the interactions (simple agent-simple agent or simple agent-abstract agent) between these entities. The results of phase-1 Seldon toolkit provide insight into how certain social concepts apply to different scenario development for inner city gang recruitment.
AFDM: An advanced fluid-dynamics model
International Nuclear Information System (INIS)
Henneges, G.; Kleinheins, S.
1994-01-01
This volume of the Advanced Fluid-Dynamics Model (AFDM) documents the modeling of the equation of state (EOS) in the code. The authors present an overview of the basic concepts underlying the thermodynamics modeling and resulting EOS, which is a set of relations between the thermodynamic properties of materials. The AFDM code allows for multiphase-multimaterial systems, which they explore in three phase models: two-material solid, two-material liquid, and three-material vapor. They describe and compare two ways of specifying the EOS of materials: (1) as simplified analytic expressions, or (2) as tables that precisely describe the properties of materials and their interactions for mechanical equilibrium. Either of the two EOS models implemented in AFDM can be selected by specifying the option when preprocessing the source code for compilation. Last, the authors determine thermophysical properties such as surface tension, thermal conductivities, and viscosities in the model for the intracell exchanges of AFDM. Specific notations, routines, EOS data, plots, test results, and corrections to the code are available in the appendices
Dynamic models for distributed generation resources
Energy Technology Data Exchange (ETDEWEB)
Morched, A.S. [BPR Energie, Sherbrooke, PQ (Canada)
2010-07-01
Distributed resources can impact the performance of host power systems during both normal and abnormal system conditions. This PowerPoint presentation discussed the use of dynamic models for identifying potential interaction problems between interconnected systems. The models were designed to simulate steady state behaviour as well as transient responses to system disturbances. The distributed generators included directly coupled and electronically coupled generators. The directly coupled generator was driven by wind turbines. Simplified models of grid-side inverters, electronically coupled wind generators and doubly-fed induction generators (DFIGs) were presented. The responses of DFIGs to wind variations were evaluated. Synchronous machine and electronically coupled generator responses were compared. The system model components included load models, generators, protection systems, and system equivalents. Frequency responses to islanding events were reviewed. The study demonstrated that accurate simulations are needed to predict the impact of distributed generation resources on the performance of host systems. Advances in distributed generation technology have outpaced the development of models needed for integration studies. tabs., figs.
AFDM: An Advanced Fluid-Dynamics Model
International Nuclear Information System (INIS)
Wilhelm, D.
1990-09-01
This volume describes the Advanced Fluid-Dynamics Model (AFDM) for topologies, flow regimes, and interfacial areas. The objective of these models is to provide values for the interfacial areas between all components existing in a computational cell. The interfacial areas are then used to evaluate the mass, energy, and momentum transfer between the components. A new approach has been undertaken in the development of a model to convect the interfacial areas of the discontinuous velocity fields in the three-velocity-field environment of AFDM. These interfacial areas are called convectible surface areas. The continuous and discontinuous components are chosen using volume fraction and levitation criteria. This establishes so-called topologies for which the convectible surface areas can be determined. These areas are functions of space and time. Solid particulates that are limited to being discontinuous within the bulk fluid are assumed to have a constant size. The convectible surface areas are subdivided to model contacts between two discontinuous components or discontinuous components and the structure. The models have been written for the flow inside of large pools. Therefore, the structure is tracked only as a boundary to the fluid volume without having a direct influence on velocity or volume fraction distribution by means of flow regimes or boundary layer models. 17 refs., 7 tabs., 18 figs
Graphical models for inferring single molecule dynamics
Directory of Open Access Journals (Sweden)
Gonzalez Ruben L
2010-10-01
Full Text Available Abstract Background The recent explosion of experimental techniques in single molecule biophysics has generated a variety of novel time series data requiring equally novel computational tools for analysis and inference. This article describes in general terms how graphical modeling may be used to learn from biophysical time series data using the variational Bayesian expectation maximization algorithm (VBEM. The discussion is illustrated by the example of single-molecule fluorescence resonance energy transfer (smFRET versus time data, where the smFRET time series is modeled as a hidden Markov model (HMM with Gaussian observables. A detailed description of smFRET is provided as well. Results The VBEM algorithm returns the model’s evidence and an approximating posterior parameter distribution given the data. The former provides a metric for model selection via maximum evidence (ME, and the latter a description of the model’s parameters learned from the data. ME/VBEM provide several advantages over the more commonly used approach of maximum likelihood (ML optimized by the expectation maximization (EM algorithm, the most important being a natural form of model selection and a well-posed (non-divergent optimization problem. Conclusions The results demonstrate the utility of graphical modeling for inference of dynamic processes in single molecule biophysics.
46 CFR 28.80 - Report of casualty.
2010-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY... routine duties. (3) Loss of a vessel. (4) Damage to or by a vessel, its cargo, apparel or gear, except for... industry vessel must submit a report of each casualty involving that vessel to an organization listed in...
Management of the mass casualty from the 2001 Jos crisis
African Journals Online (AJOL)
2012-11-04
Nov 4, 2012 ... Management of Jos crisis mass casualty. 437. Nigerian Journal of ... operating and admission registers and their case notes retrieved from the .... of young males in our study was because these were the rioters in the first ...
Forward and backward dynamics in implicitly defined overlapping generations models
Gardini, L.; Hommes, C.; Tramontana, F.; de Vilder, R.
2009-01-01
In dynamic economic models derived from optimization principles, the forward equilibrium dynamics may not be uniquely defined, while the backward dynamics is well defined. We derive properties of the global forward equilibrium paths based on properties of the backward dynamics. We propose the
Constructing Dynamic Event Trees from Markov Models
International Nuclear Information System (INIS)
Paolo Bucci; Jason Kirschenbaum; Tunc Aldemir; Curtis Smith; Ted Wood
2006-01-01
In the probabilistic risk assessment (PRA) of process plants, Markov models can be used to model accurately the complex dynamic interactions between plant physical process variables (e.g., temperature, pressure, etc.) and the instrumentation and control system that monitors and manages the process. One limitation of this approach that has prevented its use in nuclear power plant PRAs is the difficulty of integrating the results of a Markov analysis into an existing PRA. In this paper, we explore a new approach to the generation of failure scenarios and their compilation into dynamic event trees from a Markov model of the system. These event trees can be integrated into an existing PRA using software tools such as SAPHIRE. To implement our approach, we first construct a discrete-time Markov chain modeling the system of interest by: (a) partitioning the process variable state space into magnitude intervals (cells), (b) using analytical equations or a system simulator to determine the transition probabilities between the cells through the cell-to-cell mapping technique, and, (c) using given failure/repair data for all the components of interest. The Markov transition matrix thus generated can be thought of as a process model describing the stochastic dynamic behavior of the finite-state system. We can therefore search the state space starting from a set of initial states to explore all possible paths to failure (scenarios) with associated probabilities. We can also construct event trees of arbitrary depth by tracing paths from a chosen initiating event and recording the following events while keeping track of the probabilities associated with each branch in the tree. As an example of our approach, we use the simple level control system often used as benchmark in the literature with one process variable (liquid level in a tank), and three control units: a drain unit and two supply units. Each unit includes a separate level sensor to observe the liquid level in the tank
Nonsmooth mechanics models, dynamics and control
Brogliato, Bernard
2016-01-01
Now in its third edition, this standard reference is a comprehensive treatment of nonsmooth mechanical systems refocused to give more prominence to control and modelling. It covers Lagrangian and Newton–Euler systems, detailing mathematical tools such as convex analysis and complementarity theory. The ways in which nonsmooth mechanics influence and are influenced by well-posedness analysis, numerical analysis and simulation, modelling and control are explained. Contact/impact laws, stability theory and trajectory-tracking control are given in-depth exposition connected by a framework formed from complementarity systems and measure-differential inclusions. Links are established with electrical circuits with set-valued nonsmooth elements and with other nonsmooth dynamical systems like impulsive and piecewise linear systems. Nonsmooth Mechanics (third edition) has been substantially rewritten, edited and updated to account for the significant body of results that have emerged in the twenty-first century—incl...
Driven dynamics of simplified tribological models
Energy Technology Data Exchange (ETDEWEB)
Vanossi, A [CNR-INFM National Research Center S3 and Department of Physics, University of Modena and Reggio Emilia, Via Campi 213/A, 41100 Modena (Italy); Braun, O M [Institute of Physics, National Academy of Sciences of Ukraine, 03028 Kiev (Ukraine)
2007-08-01
Over the last decade, remarkable developments in nanotechnology, notably the use of atomic and friction force microscopes (AFM/FFM), the surface-force apparatus (SFA) and the quartz-crystal microbalance (QCM), have provided the possibility to build experimental devices able to perform analysis on well-characterized materials at the nano- and microscale. Simultaneously, tremendous advances in computing hardware and methodology (molecular dynamics techniques and ab initio calculations) have dramatically increased the ability of theoreticians to simulate tribological processes, supplying very detailed information on the atomic scale for realistic sliding systems. This acceleration in experiments and computations, leading often to very detailed yet complex data, has deeply stimulated the search, rediscovery and implementation of simpler mathematical models such as the generalized Frenkel-Kontorova and Tomlinson models, capable of describing and interpreting, in a more immediate way, the essential physics involved in nonlinear sliding phenomena.
Dynamic modeling and control of CFSTF
International Nuclear Information System (INIS)
Danesh, Y.; Jalali Farahani, F.
2001-01-01
This paper deals with the modeling and control of a continuous-flow fermentation process for the production of alcohol: The dynamic behavior of ferment ors has been developed from mass balance and leads to nonlinear differential equations. Based on the proposed model, two computer algorithms are provided to control output alcohol concentration at the desired value by input flow rate manipulation. The first algorithm is based on a conventional Proportional-Integral-Derivative, in which its parameters are determined in a trial and error procedure. The second algorithm is based on optimal controllers. In this way, the difference between output alcohol concentration and desired value is minimized by flow rate manipulation. Minimization (optimization) is done based on the MARQYARDT procedure. The advantages of this method over the conventional Proportional-Integral-Derivative controller are its higher speed and lack of overshoot
Driven dynamics of simplified tribological models
International Nuclear Information System (INIS)
Vanossi, A; Braun, O M
2007-01-01
Over the last decade, remarkable developments in nanotechnology, notably the use of atomic and friction force microscopes (AFM/FFM), the surface-force apparatus (SFA) and the quartz-crystal microbalance (QCM), have provided the possibility to build experimental devices able to perform analysis on well-characterized materials at the nano- and microscale. Simultaneously, tremendous advances in computing hardware and methodology (molecular dynamics techniques and ab initio calculations) have dramatically increased the ability of theoreticians to simulate tribological processes, supplying very detailed information on the atomic scale for realistic sliding systems. This acceleration in experiments and computations, leading often to very detailed yet complex data, has deeply stimulated the search, rediscovery and implementation of simpler mathematical models such as the generalized Frenkel-Kontorova and Tomlinson models, capable of describing and interpreting, in a more immediate way, the essential physics involved in nonlinear sliding phenomena
Organic production in a dynamic CGE model
DEFF Research Database (Denmark)
Jacobsen, Lars Bo
2004-01-01
for conventional production into land for organic production, a period of two years must pass before the land being transformed can be used for organic production. During that time, the land is counted as land of the organic industry, but it can only produce the conventional product. To handle this rule, we make......Concerns about the impact of modern agriculture on the environment have in recent years led to an interest in supporting the development of organic farming. In addition to environmental benefits, the aim is to encourage the provision of other “multifunctional” properties of organic farming...... such as rural amenities and rural development that are spillover benefit additional to the supply of food. In this paper we further develop an existing dynamic general equilibrium model of the Danish economy to specifically incorporate organic farming. In the model and input-output data each primary...
BWR stability using a reduced dynamical model
International Nuclear Information System (INIS)
Ballestrin Bolea, J.M.; Blazquez, J.B.
1990-01-01
BWR stability can be treated with reduced order dynamical models. When the parameters of the model came from experimental data, the predictions are accurate. In this work an alternative derivation for the void fraction equation is made, but remarking the physical struct-ure of the parameters. As the poles of power/reactivity transfer function are related with the parameters, the measurement of the poles by other techniques such as noise analysis will lead to the parameters, but the system of equations in non-linear. Simple parametric calculat-ion of decay ratio are performed, showing why BWRs become unstable when they are operated at low flow and high power. (Author). 7 refs
Dynamical relaxation in 2HDM models
Lalak, Zygmunt; Markiewicz, Adam
2018-03-01
Dynamical relaxation provides an interesting solution to the hierarchy problem in face of the missing signatures of any new physics in recent experiments. Through a dynamical process taking place in the inflationary phase of the Universe it manages to achieve a small electroweak scale without introducing new states observable in current experiments. Appropriate approximation makes it possible to derive an explicit formula for the final vevs in the double-scanning scenario extended to a model with two Higgs doublets (2HDM). Analysis of the relaxation in the 2HDM confirms that in a general case it is impossible to keep vevs of both scalars small, unless fine-tuning is present or additional symmetries are cast upon the Lagrangian. Within the slightly constrained variant of the 2HDM, where odd powers of the fields’ expectation values are not present (which can be easily enforced by requiring that the doublets have different gauge transformations or by imposing a global symmetry) it is shown that the difference between the vevs of two scalars tends to be proportional to the cutoff. The analysis of the relaxation in 2HDM indicates that in a general case the relaxation would be stopped by the first doublet that gains a vev, with the other one remaining vevless with a mass of the order of the cutoff. This happens to conform with the inert doublet model.
Dynamical Model about Rumor Spreading with Medium
Directory of Open Access Journals (Sweden)
Xiaxia Zhao
2013-01-01
Full Text Available Rumor is a kind of social remark, that is untrue, and not be confirmed, and spreads on a large scale in a short time. Usually, it can induce a cloud of pressure, anxiety, and panic. Traditionally, it is propagated by word of mouth. Nowadays, with the emergence of the internet, rumors can be spread by instant messengers, emails, or publishing. With this new pattern of spreading, an ISRW dynamical model considering the medium as a subclass is established. Beside the dynamical analysis of the model, we mainly explore the mechanism of spreading of individuals-to-individuals and medium-to-individual. By numerical simulation, we find that if we want to control the rumor spreading, it will not only need to control the rate of change of the spreader subclass, but also need to control the change of the information about rumor in medium which has larger influence. Moreover, to control the effusion of rumor is more important than deleting existing information about rumor. On the one hand, government should enhance the management of internet. On the other hand, relevant legal institutions for punishing the rumor creator and spreader on internet who can be tracked should be established. Using this way, involved authorities can propose efficient measures to control the rumor spreading to keep the stabilization of society and development of economy.
A Model of Project and Organisational Dynamics
Directory of Open Access Journals (Sweden)
Jenny Leonard
2012-04-01
Full Text Available The strategic, transformational nature of many information systems projects is now widely understood. Large-scale implementations of systems are known to require significant management of organisational change in order to be successful. Moreover, projects are rarely executed in isolation – most organisations have a large programme of projects being implemented at any one time. However, project and value management methodologies provide ad hoc definitions of the relationship between a project and its environment. This limits the ability of an organisation to manage the larger dynamics between projects and organisations, over time, and between projects. The contribution of this paper, therefore, is to use literature on organisational theory to provide a more systematic understanding of this area. The organisational facilitators required to obtain value from a project are categorised, and the processes required to develop those facilitators are defined. This formalisation facilitates generalisation between projects and highlights any time and path dependencies required in developing organisational facilitators. The model therefore has the potential to contribute to the development of IS project management theory within dynamic organisational contexts. Six cases illustrate how this model could be used.
Microscopic to Macroscopic Dynamical Models of Sociality
Solis Salas, Citlali; Woolley, Thomas; Pearce, Eiluned; Dunbar, Robin; Maini, Philip; Social; Evolutionary Neuroscience Research Group (Senrg) Collaboration
To help them survive, social animals, such as humans, need to share knowledge and responsibilities with other members of the species. The larger their social network, the bigger the pool of knowledge available to them. Since time is a limited resource, a way of optimising its use is meeting amongst individuals whilst fulfilling other necessities. In this sense it is useful to know how many, and how often, early humans could meet during a given period of time whilst performing other necessary tasks, such as food gathering. Using a simplified model of these dynamics, which comprehend encounter and memory, we aim at producing a lower-bound to the number of meetings hunter-gatherers could have during a year. We compare the stochastic agent-based model to its mean-field approximation and explore some of the features necessary for the difference between low population dynamics and its continuum limit. We observe an emergent property that could have an inference in the layered structure seen in each person's social organisation. This could give some insight into hunter-gatherer's lives and the development of the social layered structure we have today. With support from the Mexican Council for Science and Technology (CONACyT), the Public Education Secretariat (SEP), and the Mexican National Autonomous University's Foundation (Fundacion UNAM).
Modeling Insurgent Network Structure and Dynamics
Gabbay, Michael; Thirkill-Mackelprang, Ashley
2010-03-01
We present a methodology for mapping insurgent network structure based on their public rhetoric. Indicators of cooperative links between insurgent groups at both the leadership and rank-and-file levels are used, such as joint policy statements or joint operations claims. In addition, a targeting policy measure is constructed on the basis of insurgent targeting claims. Network diagrams which integrate these measures of insurgent cooperation and ideology are generated for different periods of the Iraqi and Afghan insurgencies. The network diagrams exhibit meaningful changes which track the evolution of the strategic environment faced by insurgent groups. Correlations between targeting policy and network structure indicate that insurgent targeting claims are aimed at establishing a group identity among the spectrum of rank-and-file insurgency supporters. A dynamical systems model of insurgent alliance formation and factionalism is presented which evolves the relationship between insurgent group dyads as a function of their ideological differences and their current relationships. The ability of the model to qualitatively and quantitatively capture insurgent network dynamics observed in the data is discussed.
Modeling quantum fluid dynamics at nonzero temperatures
Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.
2014-01-01
The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures. PMID:24704874
Computational Fluid Dynamics Modeling of Bacillus anthracis ...
Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict
Dynamic Causal Models and Autopoietic Systems
Directory of Open Access Journals (Sweden)
OLIVIER DAVID
2007-01-01
Full Text Available Dynamic Causal Modelling (DCM and the theory of autopoietic systems are two important conceptual frameworks. In this review, we suggest that they can be combined to answer important questions about self-organising systems like the brain. DCM has been developed recently by the neuroimaging community to explain, using biophysical models, the non-invasive brain imaging data are caused by neural processes. It allows one to ask mechanistic questions about the implementation of cerebral processes. In DCM the parameters of biophysical models are estimated from measured data and the evidence for each model is evaluated. This enables one to test different functional hypotheses (i.e., models for a given data set. Autopoiesis and related formal theories of biological systems as autonomous machines represent a body of concepts with many successful applications. However, autopoiesis has remained largely theoretical and has not penetrated the empiricism of cognitive neuroscience. In this review, we try to show the connections that exist between DCM and autopoiesis. In particular, we propose a simple modification to standard formulations of DCM that includes autonomous processes. The idea is to exploit the machinery of the system identification of DCMs in neuroimaging to test the face validity of the autopoietic theory applied to neural subsystems. We illustrate the theoretical concepts and their implications for interpreting electroencephalographic signals acquired during amygdala stimulation in an epileptic patient. The results suggest that DCM represents a relevant biophysical approach to brain functional organisation, with a potential that is yet to be fully evaluated
Coordinated supply chain dynamic production planning model
Chandra, Charu; Grabis, Janis
2001-10-01
Coordination of different and often contradicting interests of individual supply chain members is one of the important issues in supply chain management because the individual members can not succeed without success of the supply chain and vice versa. This paper investigates a supply chain dynamic production planning problem with emphasis on coordination. A planning problem is formally described using a supply chain kernel, which defines supply chain configuration, management policies, available resources and objectives both at supply chain or macro and supply chain member or micro levels. The coordinated model is solved in order to balance decisions made at the macro and micro levels and members' profitability is used as the coordination criterion. The coordinated model is used to determine inventory levels and production capacity across the supply chain. Application of the coordinated model distributes costs burden uniformly among supply chain members and preserves overall efficiency of the supply chain. Influence of the demand series uncertainty is investigated. The production planning model is a part of the integrated supply chain decision modeling system, which is shared among the supply chain members across the Internet.
DYNAMIC MODELLING OF VIBRATIONS ASSISTED DRILLING
Directory of Open Access Journals (Sweden)
Mathieu LADONNE
2015-05-01
Full Text Available The number of multi-materials staking configurations for aeronautical structures is increasing, with the evolution of composite and metallic materials. For drilling the fastening holes, the processes of Vibration Assisted Drilling (VAD expand rapidly, as it permits to improve reliability of drilling operations on multilayer structures. Among these processes of VAD, the solution with forced vibrations added to conventional feed to create a discontinuous cutting is the more developed in industry. The back and forth movement allows to improve the evacuation of chips by breaking it. This technology introduces two new operating parameters, the frequency and the amplitude of the oscillation. To optimize the process, the choice of those parameters requires first to model precisely the operation cutting and dynamics. In this paper, a kinematic modelling of the process is firstly proposed. The limits of the model are analysed through comparison between simulations and measurements. The proposed model is used to develop a cutting force model that allows foreseeing the operating conditions which ensure good chips breaking and tool life improvement.
Glasgow, Simon; Vasilakis, Christos; Perkins, Zane; Brundage, Susan; Tai, Nigel; Brohi, Karim
2016-07-01
Traumatic hemorrhage is a leading preventable cause of mortality following mass casualty events (MCEs). Improving outcomes requires adequate in-hospital provision of high-volume red blood cell (RBC) transfusions. This study investigated strategies for optimizing RBC provision to casualties in MCEs using simulation modeling. A computerized simulation model of a UK major trauma center (TC) transfusion system was developed. The model used input data from past MCEs and civilian and military trauma registries. We simulated the effect of varying on-shelf RBC stock hold and the timing of externally restocking RBC supplies on TC treatment capacity across increasing loads of priority one (P1) and two (P2) casualties from an event. Thirty-five thousand simulations were performed. A casualty load of 20 P1s and P2s under standard TC RBC stock conditions left 35% (95% confidence interval, 32-38%) of P1s and 7% (4-10%) of P2s inadequately treated for hemorrhage. Additionally, exhaustion of type O emergency RBC stocks (a surrogate for reaching surge capacity) occurred in a median of 10 hours (IQR, 5 to >12 hours). Doubling casualty load increased this to 60% (57-63%) and 30% (26-34%), respectively, with capacity reached in 2 hours (1-3 hours). The model identified a minimum requirement of 12 U of on-shelf RBCs per P1/P2 casualty received to prevent surge capacity being reached. Restocking supplies in an MCE versus greater permanent on-shelf RBC stock holds was considered at increasing hourly intervals. T-test analysis showed no difference between stock hold versus supply restocking with regard to overall outcomes for MCEs up to 80 P1s and P2s in size (p < 0.05), provided the restock occurred within 6 hours. Even limited-sized MCEs threaten to overwhelm TC transfusion systems. An early-automated push approach to restocking RBCs initiated by central suppliers can produce equivocal outcomes compared with holding excess stock permanently at TCs. Therapeutic/care management study
Computational modeling of intraocular gas dynamics
International Nuclear Information System (INIS)
Noohi, P; Abdekhodaie, M J; Cheng, Y L
2015-01-01
The purpose of this study was to develop a computational model to simulate the dynamics of intraocular gas behavior in pneumatic retinopexy (PR) procedure. The presented model predicted intraocular gas volume at any time and determined the tolerance angle within which a patient can maneuver and still gas completely covers the tear(s). Computational fluid dynamics calculations were conducted to describe PR procedure. The geometrical model was constructed based on the rabbit and human eye dimensions. SF_6 in the form of pure and diluted with air was considered as the injected gas. The presented results indicated that the composition of the injected gas affected the gas absorption rate and gas volume. After injection of pure SF_6, the bubble expanded to 2.3 times of its initial volume during the first 23 h, but when diluted SF_6 was used, no significant expansion was observed. Also, head positioning for the treatment of retinal tear influenced the rate of gas absorption. Moreover, the determined tolerance angle depended on the bubble and tear size. More bubble expansion and smaller retinal tear caused greater tolerance angle. For example, after 23 h, for the tear size of 2 mm the tolerance angle of using pure SF_6 is 1.4 times more than that of using diluted SF_6 with 80% air. Composition of the injected gas and conditions of the tear in PR may dramatically affect the gas absorption rate and gas volume. Quantifying these effects helps to predict the tolerance angle and improve treatment efficiency. (paper)
Dynamic complexities in a parasitoid-host-parasitoid ecological model
International Nuclear Information System (INIS)
Yu Hengguo; Zhao Min; Lv Songjuan; Zhu Lili
2009-01-01
Chaotic dynamics have been observed in a wide range of population models. In this study, the complex dynamics in a discrete-time ecological model of parasitoid-host-parasitoid are presented. The model shows that the superiority coefficient not only stabilizes the dynamics, but may strongly destabilize them as well. Many forms of complex dynamics were observed, including pitchfork bifurcation with quasi-periodicity, period-doubling cascade, chaotic crisis, chaotic bands with narrow or wide periodic window, intermittent chaos, and supertransient behavior. Furthermore, computation of the largest Lyapunov exponent demonstrated the chaotic dynamic behavior of the model
Dynamic complexities in a parasitoid-host-parasitoid ecological model
Energy Technology Data Exchange (ETDEWEB)
Yu Hengguo [School of Mathematic and Information Science, Wenzhou University, Wenzhou, Zhejiang 325035 (China); Zhao Min [School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325027 (China)], E-mail: zmcn@tom.com; Lv Songjuan; Zhu Lili [School of Mathematic and Information Science, Wenzhou University, Wenzhou, Zhejiang 325035 (China)
2009-01-15
Chaotic dynamics have been observed in a wide range of population models. In this study, the complex dynamics in a discrete-time ecological model of parasitoid-host-parasitoid are presented. The model shows that the superiority coefficient not only stabilizes the dynamics, but may strongly destabilize them as well. Many forms of complex dynamics were observed, including pitchfork bifurcation with quasi-periodicity, period-doubling cascade, chaotic crisis, chaotic bands with narrow or wide periodic window, intermittent chaos, and supertransient behavior. Furthermore, computation of the largest Lyapunov exponent demonstrated the chaotic dynamic behavior of the model.
Prediction Models for Dynamic Demand Response
Energy Technology Data Exchange (ETDEWEB)
Aman, Saima; Frincu, Marc; Chelmis, Charalampos; Noor, Muhammad; Simmhan, Yogesh; Prasanna, Viktor K.
2015-11-02
As Smart Grids move closer to dynamic curtailment programs, Demand Response (DR) events will become necessary not only on fixed time intervals and weekdays predetermined by static policies, but also during changing decision periods and weekends to react to real-time demand signals. Unique challenges arise in this context vis-a-vis demand prediction and curtailment estimation and the transformation of such tasks into an automated, efficient dynamic demand response (D^{2}R) process. While existing work has concentrated on increasing the accuracy of prediction models for DR, there is a lack of studies for prediction models for D^{2}R, which we address in this paper. Our first contribution is the formal definition of D^{2}R, and the description of its challenges and requirements. Our second contribution is a feasibility analysis of very-short-term prediction of electricity consumption for D^{2}R over a diverse, large-scale dataset that includes both small residential customers and large buildings. Our third, and major contribution is a set of insights into the predictability of electricity consumption in the context of D^{2}R. Specifically, we focus on prediction models that can operate at a very small data granularity (here 15-min intervals), for both weekdays and weekends - all conditions that characterize scenarios for D^{2}R. We find that short-term time series and simple averaging models used by Independent Service Operators and utilities achieve superior prediction accuracy. We also observe that workdays are more predictable than weekends and holiday. Also, smaller customers have large variation in consumption and are less predictable than larger buildings. Key implications of our findings are that better models are required for small customers and for non-workdays, both of which are critical for D^{2}R. Also, prediction models require just few days’ worth of data indicating that small amounts of
Analytical dynamic modeling of fast trilayer polypyrrole bending actuators
International Nuclear Information System (INIS)
Amiri Moghadam, Amir Ali; Moavenian, Majid; Tahani, Masoud; Torabi, Keivan
2011-01-01
Analytical modeling of conjugated polymer actuators with complicated electro-chemo-mechanical dynamics is an interesting area for research, due to the wide range of applications including biomimetic robots and biomedical devices. Although there have been extensive reports on modeling the electrochemical dynamics of polypyrrole (PPy) bending actuators, mechanical dynamics modeling of the actuators remains unexplored. PPy actuators can operate with low voltage while producing large displacement in comparison to robotic joints, they do not have friction or backlash, but they suffer from some disadvantages such as creep and hysteresis. In this paper, a complete analytical dynamic model for fast trilayer polypyrrole bending actuators has been proposed and named the analytical multi-domain dynamic actuator (AMDDA) model. First an electrical admittance model of the actuator will be obtained based on a distributed RC line; subsequently a proper mechanical dynamic model will be derived, based on Hamilton's principle. The purposed modeling approach will be validated based on recently published experimental results
e-Commerce and supply chains: Modelling of dynamics through ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
The dynamics associated with two production planning and control policies are modelled, viz. .... Hence, there is a strong need to design a dynamic knowledge inference system .... sell a variety of components to the subassembly manufacturer.
Immersive visualization of dynamic CFD model results
International Nuclear Information System (INIS)
Comparato, J.R.; Ringel, K.L.; Heath, D.J.
2004-01-01
With immersive visualization the engineer has the means for vividly understanding problem causes and discovering opportunities to improve design. Software can generate an interactive world in which collaborators experience the results of complex mathematical simulations such as computational fluid dynamic (CFD) modeling. Such software, while providing unique benefits over traditional visualization techniques, presents special development challenges. The visualization of large quantities of data interactively requires both significant computational power and shrewd data management. On the computational front, commodity hardware is outperforming large workstations in graphical quality and frame rates. Also, 64-bit commodity computing shows promise in enabling interactive visualization of large datasets. Initial interactive transient visualization methods and examples are presented, as well as development trends in commodity hardware and clustering. Interactive, immersive visualization relies on relevant data being stored in active memory for fast response to user requests. For large or transient datasets, data management becomes a key issue. Techniques for dynamic data loading and data reduction are presented as means to increase visualization performance. (author)
Modelling of the PELE fragmentation dynamics
Verreault, J.
2014-05-01
The Penetrator with Enhanced Lateral Effect (PELE) is a type of explosive-free projectile that undergoes radial fragmentation upon an impact with a target plate. This type of projectile is composed of a brittle cylindrical shell (the jacket) filled in its core with a material characterized with a large Poisson's ratio. Upon an impact with a target, the axial compression causes the filling to expand in the radial direction. However, due to the brittleness of the jacket material, very little radial deformation can occur which creates a radial stress between the two materials and a hoop stress in the jacket. Fragmentation of the jacket occurs if the hoop stress exceeds the material's ultimate stress. The PELE fragmentation dynamics is explored via Finite-Element Method (FEM) simulations using the Autodyn explicit dynamics hydrocode. The numerical results are compared with an analytical model based on wave interactions, as well as with the experimental investigation of Paulus and Schirm (1996). The comparison is based on the mechanical stress in the filling and the qualitative fragmentation of the jacket.
Modelling of the PELE fragmentation dynamics
International Nuclear Information System (INIS)
Verreault, J
2014-01-01
The Penetrator with Enhanced Lateral Effect (PELE) is a type of explosive-free projectile that undergoes radial fragmentation upon an impact with a target plate. This type of projectile is composed of a brittle cylindrical shell (the jacket) filled in its core with a material characterized with a large Poisson's ratio. Upon an impact with a target, the axial compression causes the filling to expand in the radial direction. However, due to the brittleness of the jacket material, very little radial deformation can occur which creates a radial stress between the two materials and a hoop stress in the jacket. Fragmentation of the jacket occurs if the hoop stress exceeds the material's ultimate stress. The PELE fragmentation dynamics is explored via Finite-Element Method (FEM) simulations using the Autodyn explicit dynamics hydrocode. The numerical results are compared with an analytical model based on wave interactions, as well as with the experimental investigation of Paulus and Schirm (1996). The comparison is based on the mechanical stress in the filling and the qualitative fragmentation of the jacket.
Models of dynamical R-parity violation
Energy Technology Data Exchange (ETDEWEB)
Csáki, Csaba; Kuflik, Eric [Department of Physics, LEPP, Cornell University, Ithaca, NY 14853 (United States); Slone, Oren; Volansky, Tomer [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel)
2015-06-08
The presence of R-parity violating interactions may relieve the tension between existing LHC constraints and natural supersymmetry. In this paper we lay down the theoretical framework and explore models of dynamical R-parity violation in which the breaking of R-parity is communicated to the visible sector by heavy messenger fields. We find that R-parity violation is often dominated by non-holomorphic operators that have so far been largely ignored, and might require a modification of the existing searches at the LHC. The dynamical origin implies that the effects of such operators are suppressed by the ratio of either the light fermion masses or the supersymmetry breaking scale to the mediation scale, thereby providing a natural explanation for the smallness of R-parity violation. We consider various scenarios, classified by whether R-parity violation, flavor breaking and/or supersymmetry breaking are mediated by the same messenger fields. The most compact case, corresponding to a deformation of the so called flavor mediation scenario, allows for the mediation of supersymmetry breaking, R-parity breaking, and flavor symmetry breaking in a unified manner.
Dynamical Models for Computer Viruses Propagation
Directory of Open Access Journals (Sweden)
José R. C. Piqueira
2008-01-01
Full Text Available Nowadays, digital computer systems and networks are the main engineering tools, being used in planning, design, operation, and control of all sizes of building, transportation, machinery, business, and life maintaining devices. Consequently, computer viruses became one of the most important sources of uncertainty, contributing to decrease the reliability of vital activities. A lot of antivirus programs have been developed, but they are limited to detecting and removing infections, based on previous knowledge of the virus code. In spite of having good adaptation capability, these programs work just as vaccines against diseases and are not able to prevent new infections based on the network state. Here, a trial on modeling computer viruses propagation dynamics relates it to other notable events occurring in the network permitting to establish preventive policies in the network management. Data from three different viruses are collected in the Internet and two different identification techniques, autoregressive and Fourier analyses, are applied showing that it is possible to forecast the dynamics of a new virus propagation by using the data collected from other viruses that formerly infected the network.
A Multi-Actor Dynamic Integrated Assessment Model (MADIAM)
Weber, Michael
2004-01-01
The interactions between climate and the socio-economic system are investigated with a Multi-Actor Dynamic Integrated Assessment Model (MADIAM) obtained by coupling a nonlinear impulse response model of the climate sub-system (NICCS) to a multi-actor dynamic economic model (MADEM). The main goal is to initiate a model development that is able to treat the dynamics of the coupled climate socio-economic system, including endogenous technological change, in a non-equilibrium situation, thereby o...
Bio-Inspired Neural Model for Learning Dynamic Models
Duong, Tuan; Duong, Vu; Suri, Ronald
2009-01-01
A neural-network mathematical model that, relative to prior such models, places greater emphasis on some of the temporal aspects of real neural physical processes, has been proposed as a basis for massively parallel, distributed algorithms that learn dynamic models of possibly complex external processes by means of learning rules that are local in space and time. The algorithms could be made to perform such functions as recognition and prediction of words in speech and of objects depicted in video images. The approach embodied in this model is said to be "hardware-friendly" in the following sense: The algorithms would be amenable to execution by special-purpose computers implemented as very-large-scale integrated (VLSI) circuits that would operate at relatively high speeds and low power demands.
R-process nucleosynthesis: a dynamical model
Energy Technology Data Exchange (ETDEWEB)
Hillebrandt, W; Takahashi, K [Technische Hochschule Darmstadt (Germany, F.R.). Inst. fuer Kernphysik; Kodama, T [Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro
1976-10-01
The synthesis of heavy and neutron-rich elements (with the mass number A > approximately 70) is reconsidered in the framework of a dynamical supernova model. The synthesis equation for the rapid neutron-capture (or, the r-) process and the hydrodynamical equations for the supernova explosion are solved simultaneously. Improved systematics of nuclear parameters are used, and the energy release due to ..beta..-decays as well as the energy loss due to neutrinos is taken into account. It is shown that the observed solar-system abundance curve can be reproduced fairly well by assuming only one supernova event on a time-scale of the order of 1 s. However there are still some discrepancies which may be explained by uncertainties in the nuclear data used.
Dynamical system analysis of interacting models
Carneiro, S.; Borges, H. A.
2018-01-01
We perform a dynamical system analysis of a cosmological model with linear dependence between the vacuum density and the Hubble parameter, with constant-rate creation of dark matter. We show that the de Sitter spacetime is an asymptotically stable critical point, future limit of any expanding solution. Our analysis also shows that the Minkowski spacetime is an unstable critical point, which eventually collapses to a singularity. In this way, such a prescription for the vacuum decay not only predicts the correct future de Sitter limit, but also forbids the existence of a stable Minkowski universe. We also study the effect of matter creation on the growth of structures and their peculiar velocities, showing that it is inside the current errors of redshift space distortions observations.
Analysis of A Virus Dynamics Model
Zhang, Baolin; Li, Jianquan; Li, Jia; Zhao, Xin
2018-03-01
In order to more accurately characterize the virus infection in the host, a virus dynamics model with latency and virulence is established and analyzed in this paper. The positivity and boundedness of the solution are proved. After obtaining the basic reproduction number and the existence of infected equilibrium, the Lyapunov method and the LaSalle invariance principle are used to determine the stability of the uninfected equilibrium and infected equilibrium by constructing appropriate Lyapunov functions. We prove that, when the basic reproduction number does not exceed 1, the uninfected equilibrium is globally stable, the virus can be cleared eventually; when the basic reproduction number is more than 1, the infected equilibrium is globally stable, the virus will persist in the host at a certain level. The effect of virulence and latency on infection is also discussed.
Coarsening dynamics in the Vicsek model
Dey, Supravat; Katyal, Nisha; Das, Dibyendu; Puri, Sanjay
We numerically study the flocking model introduced by Vicsek et al. (1995) in the coarsening regime. At standard self-propulsion speeds, we find two distinct growth laws for the coupled density and velocity fields. The characteristic length scale of the density domains grows as Lρ (t) t 1 / 4 , while the velocity length scale grows much faster, viz . , Lv (t) t 5 / 6 . The spatial fluctuations in the density and velocity ordering are studied by calculating the two-point correlation function and the structure factor, which show deviations from the well-known Porod's law. This is a natural consequence of scattering from irregular morphologies that dynamically arise in the system. In contrast, at lower self-propulsion speeds, the morphology is distinct, and as a result a new set of scaling exponents emerge. Most strikingly, the velocity order follows the density order with Lρ (t) Lv (t) t 1 / 4 .
Relativistic dynamical reduction models and nonlocality
International Nuclear Information System (INIS)
Ghirardi, G.C.; Grassi, R.
1990-09-01
We discuss some features of continuous dynamical models yielding state vector reduction and we briefly sketch some recent attempts to get a relativistic generalization of them. Within the relativistic context we analyze in detail the local an nonlocal features of the reduction mechanism and we investigate critically the possibility of attributing objective properties to individual systems in the micro and macroscopic cases. At the nonrelativistic level, two physically equivalent versions of continuous reduction mechanisms have been presented. However, only one of them can be taken as a starting point for the above considered relativistic generalization. By resorting to counterfactual arguments we show that the reason for this lies in the fact that the stochasticity involved in the two approaches has different conceptual implications. (author). 7 refs, 4 figs
A dynamical theory for the Rishon model
International Nuclear Information System (INIS)
Harari, H.; Seiberg, N.
1980-09-01
We propose a composite model for quarks and leptons based on an exact SU(3)sub(C)xSU(3)sub(H) gauge theory and two fundamental J=1/2 fermions: a charged T-rishon and a neutral V-rishon. Quarks, leptons and W-bosons are SU(3)sub(H)-singlet composites of rishons. A dynamically broken effective SU(3)sub(C)xSU(2)sub(L)xSU(2)sub(R)xU(1)sub(B-L) gauge theory emerges at the composite level. The theory is ''natural'', anomaly-free, has no fundamental scalar particles, and describes at least three generations of quarks and leptons. Several ''technicolor'' mechanisms are automatically present. (Author)
Dynamic modeling and simulation of wind turbines
International Nuclear Information System (INIS)
Ghafari Seadat, M.H.; Kheradmand Keysami, M.; Lari, H.R.
2002-01-01
Using wind energy for generating electricity in wind turbines is a good way for using renewable energies. It can also help to protect the environment. The main objective of this paper is dynamic modeling by energy method and simulation of a wind turbine aided by computer. In this paper, the equations of motion are extracted for simulating the system of wind turbine and then the behavior of the system become obvious by solving the equations. The turbine is considered with three blade rotor in wind direction, induced generator that is connected to the network and constant revolution for simulation of wind turbine. Every part of the wind turbine should be simulated for simulation of wind turbine. The main parts are blades, gearbox, shafts and generator
Modelling the Congo basin ecosystems with a dynamic vegetation model
Dury, Marie; Hambuckers, Alain; Trolliet, Franck; Huynen, Marie-Claude; Haineaux, Damien; Fontaine, Corentin M.; Fayolle, Adeline; François, Louis
2014-05-01
The scarcity of field observations in some parts of the world makes difficult a deep understanding of some ecosystems such as humid tropical forests in Central Africa. Therefore, modelling tools are interesting alternatives to study those regions even if the lack of data often prevents sharp calibration and validation of the model projections. Dynamic vegetation models (DVMs) are process-based models that simulate shifts in potential vegetation and its associated biogeochemical and hydrological cycles in response to climate. Initially run at the global scale, DVMs can be run at any spatial scale provided that climate and soil data are available. In the framework of the BIOSERF project ("Sustainability of tropical forest biodiversity and services under climate and human pressure"), we use and adapt the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) to study the Congo basin vegetation dynamics. The field campaigns have notably allowed the refinement of the vegetation representation from plant functional types (PFTs) to individual species through the collection of parameters such as the specific leaf area or the leaf C:N ratio of common tropical tree species and the location of their present-day occurrences from literature and available database. Here, we test the model ability to reproduce the present spatial and temporal variations of carbon stocks (e.g. biomass, soil carbon) and fluxes (e.g. gross and net primary productivities (GPP and NPP), net ecosystem production (NEP)) as well as the observed distribution of the studied species over the Congo basin. In the lack of abundant and long-term measurements, we compare model results with time series of remote sensing products (e.g. vegetation leaf area index (LAI), GPP and NPP). Several sensitivity tests are presented: we assess consecutively the impacts of the level at which the vegetation is simulated (PFTs or species), the spatial resolution and the initial land
Projecting surgeon supply using a dynamic model.
Fraher, Erin P; Knapton, Andy; Sheldon, George F; Meyer, Anthony; Ricketts, Thomas C
2013-05-01
To develop a projection model to forecast the head count and full-time equivalent supply of surgeons by age, sex, and specialty in the United States from 2009 to 2028. The search for the optimal number and specialty mix of surgeons to care for the United States population has taken on increased urgency under health care reform. Expanded insurance coverage and an aging population will increase demand for surgical and other medical services. Accurate forecasts of surgical service capacity are crucial to inform the federal government, training institutions, professional associations, and others charged with improving access to health care. The study uses a dynamic stock and flow model that simulates future changes in numbers and specialty type by factoring in changes in surgeon demographics and policy factors. : Forecasts show that overall surgeon supply will decrease 18% during the period form 2009 to 2028 with declines in all specialties except colorectal, pediatric, neurological surgery, and vascular surgery. Model simulations suggest that none of the proposed changes to increase graduate medical education currently under consideration will be sufficient to offset declines. The length of time it takes to train surgeons, the anticipated decrease in hours worked by surgeons in younger generations, and the potential decreases in graduate medical education funding suggest that there may be an insufficient surgeon workforce to meet population needs. Existing maldistribution patterns are likely to be exacerbated, leading to delayed or lost access to time-sensitive surgical procedures, particularly in rural areas.
Persistent agents in Axelrod's social dynamics model
Reia, Sandro M.; Neves, Ubiraci P. C.
2016-01-01
Axelrod's model of social dynamics has been studied under the effect of external media. Here we study the formation of cultural domains in the model by introducing persistent agents. These are agents whose cultural traits are not allowed to change but may be spread through local neighborhood. In the absence of persistent agents, the system is known to present a transition from a monocultural to a multicultural regime at some critical Q (number of traits). Our results reveal a dependence of critical Q on the occupation probability p of persistent agents and we obtain the phase diagram of the model in the (p,Q) -plane. The critical locus is explained by the competition of two opposite forces named here barrier and bonding effects. Such forces are verified to be caused by non-persistent agents which adhere (adherent agents) to the set of traits of persistent ones. The adherence (concentration of adherent agents) as a function of p is found to decay for constant Q. Furthermore, adherence as a function of Q is found to decay as a power law with constant p.
Stewart, Ian J; Faulk, Tarra I; Sosnov, Jonathan A; Clemens, Michael S; Elterman, Joel; Ross, James D; Howard, Jeffrey T; Fang, Raymond; Zonies, David H; Chung, Kevin K
2016-03-01
Rhabdomyolysis has been associated with poor outcomes in patients with traumatic injury, especially in the setting of acute kidney injury (AKI). However, rhabdomyolysis has not been systematically examined in a large cohort of combat casualties injured in the wars in Iraq and Afghanistan. We conducted a retrospective study of casualties injured during combat operations in Iraq and Afghanistan who were initially admitted to the intensive care unit from February 1, 2002, to February 1, 2011. Information on age, sex, Abbreviated Injury Scale (AIS) score, Injury Severity Score (ISS), mechanism of injury, shock index, creatine kinase, and serum creatinine were collected. These variables were examined via multivariate logistic and Cox regression analyses to determine factors independently associated with rhabdomyolysis, AKI, and death. Of 6,011 admissions identified, a total of 2,109 patients met inclusion criteria and were included for analysis. Rhabdomyolysis, defined as creatine kinase greater than 5,000 U/L, was present in 656 subjects (31.1%). Risk factors for rhabdomyolysis identified on multivariable analysis included injuries to the abdomen and extremities, increased ISS, male sex, explosive mechanism of injury, and shock index greater than 0.9. After adjustment, patients with rhabdomyolysis had a greater than twofold increase in the odds of AKI. In the analysis for mortality, rhabdomyolysis was significantly associated with death until AKI was added, at which point it lost statistical significance. We found that rhabdomyolysis is associated with the development of AKI in combat casualties. While rhabdomyolysis was strongly associated with mortality on the univariate model and in conjunction with both ISS and age, it was not associated with mortality after the inclusion of AKI. This suggests that the effect of rhabdomyolysis on mortality may be mediated by AKI. Prognostic and epidemiologic study, level III.
Intraosseous vascular access in disasters and mass casualty events: A review of the literature.
Burgert, James M
2016-01-01
The intraosseous (IO) route of vascular access has been increasingly used to administer resuscitative fluids and drugs to patients in whom reliable intravenous (IV) access could not be rapidly or easily obtained. It is unknown that to what extent the IO route has been used to gain vascular access during disasters and mass casualty events. The purpose of this review was to examine the existing literature to answer the research question, "What is the utility of the IO route compared to other routes for establishing vascular access in patients resulting from disasters and mass casualty events?" Keyword-based online database search of PubMed, CINAHL, and the Cochrane Database of Systematic Reviews. University-based academic research cell. Included evidence were randomized and nonrandomized trials, systematic reviews with and without meta-analysis, case series, and case reports. Excluded evidence included narrative reviews and expert opinion. Not applicable. Of 297 evidence sources located, 22 met inclusion criteria. Located evidence was organized into four categories including chemical agent poisoning, IO placement, while wearing chemical protective clothing (PPE), military trauma, and infectious disease outbreak. Evidence indicates that the IO route of infusion is pharmacokinetically equal to the IV route and superior to the intramuscular (IM) and endotracheal routes for the administration of antidotal drugs in animal models of chemical agent poisoning while wearing full chemical PPE. The IO route is superior to the IM route for antidote administration during hypovolemic shock. Civilian casualties of explosive attacks and mass shootings would likely benefit from expanded use of the IO route and military resuscitation strategies. The IO route is useful for fluid resuscitation in the management of diarrheal and hemorrhagic infectious disease outbreaks.
A dynamic model of reasoning and memory.
Hawkins, Guy E; Hayes, Brett K; Heit, Evan
2016-02-01
Previous models of category-based induction have neglected how the process of induction unfolds over time. We conceive of induction as a dynamic process and provide the first fine-grained examination of the distribution of response times observed in inductive reasoning. We used these data to develop and empirically test the first major quantitative modeling scheme that simultaneously accounts for inductive decisions and their time course. The model assumes that knowledge of similarity relations among novel test probes and items stored in memory drive an accumulation-to-bound sequential sampling process: Test probes with high similarity to studied exemplars are more likely to trigger a generalization response, and more rapidly, than items with low exemplar similarity. We contrast data and model predictions for inductive decisions with a recognition memory task using a common stimulus set. Hierarchical Bayesian analyses across 2 experiments demonstrated that inductive reasoning and recognition memory primarily differ in the threshold to trigger a decision: Observers required less evidence to make a property generalization judgment (induction) than an identity statement about a previously studied item (recognition). Experiment 1 and a condition emphasizing decision speed in Experiment 2 also found evidence that inductive decisions use lower quality similarity-based information than recognition. The findings suggest that induction might represent a less cautious form of recognition. We conclude that sequential sampling models grounded in exemplar-based similarity, combined with hierarchical Bayesian analysis, provide a more fine-grained and informative analysis of the processes involved in inductive reasoning than is possible solely through examination of choice data. PsycINFO Database Record (c) 2016 APA, all rights reserved.
CFD modeling of the IRIS pressurizer dynamic
International Nuclear Information System (INIS)
Sanz, Ronny R.; Montesinos, Maria E.; Garcia, Carlos; Bueno, Elizabeth D.; Mazaira, Leorlen R.; Bezerra, Jair L.; Lira, Carlos A.B. Oliveira
2015-01-01
Integral layout of nuclear reactor IRIS makes possible the elimination of the spray system, which is usually used to mitigate in-surge transient and also help to Boron homogenization. The study of transients with deficiencies in the Boron homogenization in this technology is very important, because they can cause disturbances in the reactor power and insert a strong reactivity in the core. The detailed knowledge of the behavior of multiphase multicomponent flows is challenging due to the complex phenomena and interactions at the interface. In this context, the CFD modeling is employed in the design of equipment in the nuclear industry as it allows predicting accidents or predicting their performance in dissimilar applications. The aim of the present research is to model the IRIS pressurizer's dynamic using the commercial CFD code CFX. A symmetric tri dimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The model considers the coexistence of four phases and also takes into account the heat losses. The relationships for interfacial mass, energy, and momentum transport are programmed and incorporated into CFX. Moreover, two subdomains and several additional variables are defined to monitoring the boron dilution sequences and condensation-evaporation rates in different control volumes. For transient states a non - equilibrium stratification in the pressurizer is considered. This paper discusses the model developed and the behavior of the system for representative transients sequences. The results of analyzed transients of IRIS can be applied to the design of pressurizer internal structures and components. (author)
CFD modeling of the IRIS pressurizer dynamic
Energy Technology Data Exchange (ETDEWEB)
Sanz, Ronny R.; Montesinos, Maria E.; Garcia, Carlos; Bueno, Elizabeth D.; Mazaira, Leorlen R., E-mail: rsanz@instec.cu, E-mail: mmontesi@instec.cu, E-mail: cgh@instec.cu, E-mail: leored1984@gmail.com [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Bezerra, Jair L.; Lira, Carlos A.B. Oliveira, E-mail: jair.lima@ufpe.br, E-mail: cabol@ufpe.br [Universida Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear
2015-07-01
Integral layout of nuclear reactor IRIS makes possible the elimination of the spray system, which is usually used to mitigate in-surge transient and also help to Boron homogenization. The study of transients with deficiencies in the Boron homogenization in this technology is very important, because they can cause disturbances in the reactor power and insert a strong reactivity in the core. The detailed knowledge of the behavior of multiphase multicomponent flows is challenging due to the complex phenomena and interactions at the interface. In this context, the CFD modeling is employed in the design of equipment in the nuclear industry as it allows predicting accidents or predicting their performance in dissimilar applications. The aim of the present research is to model the IRIS pressurizer's dynamic using the commercial CFD code CFX. A symmetric tri dimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The model considers the coexistence of four phases and also takes into account the heat losses. The relationships for interfacial mass, energy, and momentum transport are programmed and incorporated into CFX. Moreover, two subdomains and several additional variables are defined to monitoring the boron dilution sequences and condensation-evaporation rates in different control volumes. For transient states a non - equilibrium stratification in the pressurizer is considered. This paper discusses the model developed and the behavior of the system for representative transients sequences. The results of analyzed transients of IRIS can be applied to the design of pressurizer internal structures and components. (author)
A eural etwork Model for Dynamics Simulation
African Journals Online (AJOL)
Nafiisah
Results 5 - 18 ... situations, such as a dynamic environment (e.g., a molecular dynamics (MD) simulation whereby an atom constantly changes its local environment and number ..... of systems including both small clusters and bulk structures. 7.
Dynamic models in research and management of biological invasions.
Buchadas, Ana; Vaz, Ana Sofia; Honrado, João P; Alagador, Diogo; Bastos, Rita; Cabral, João A; Santos, Mário; Vicente, Joana R
2017-07-01
Invasive species are increasing in number, extent and impact worldwide. Effective invasion management has thus become a core socio-ecological challenge. To tackle this challenge, integrating spatial-temporal dynamics of invasion processes with modelling approaches is a promising approach. The inclusion of dynamic processes in such modelling frameworks (i.e. dynamic or hybrid models, here defined as models that integrate both dynamic and static approaches) adds an explicit temporal dimension to the study and management of invasions, enabling the prediction of invasions and optimisation of multi-scale management and governance. However, the extent to which dynamic approaches have been used for that purpose is under-investigated. Based on a literature review, we examined the extent to which dynamic modelling has been used to address invasions worldwide. We then evaluated how the use of dynamic modelling has evolved through time in the scope of invasive species management. The results suggest that modelling, in particular dynamic modelling, has been increasingly applied to biological invasions, especially to support management decisions at local scales. Also, the combination of dynamic and static modelling approaches (hybrid models with a spatially explicit output) can be especially effective, not only to support management at early invasion stages (from prevention to early detection), but also to improve the monitoring of invasion processes and impact assessment. Further development and testing of such hybrid models may well be regarded as a priority for future research aiming to improve the management of invasions across scales. Copyright © 2017 Elsevier Ltd. All rights reserved.
Progress towards Continental River Dynamics modeling
Yu, Cheng-Wei; Zheng, Xing; Liu, Frank; Maidment, Daivd; Hodges, Ben
2017-04-01
The high-resolution National Water Model (NWM), launched by U.S. National Oceanic and Atmospheric Administration (NOAA) in August 2016, has shown it is possible to provide real-time flow prediction in rivers and streams across the entire continental United States. The next step for continental-scale modeling is moving from reduced physics (e.g. Muskingum-Cunge) to full dynamic modeling with the Saint-Venant equations. The Simulation Program for River Networks (SPRNT) provides a computational approach for the Saint-Venant equations, but obtaining sufficient channel bathymetric data and hydraulic roughness is seen as a critical challenge. However, recent work has shown the Height Above Nearest Drainage (HAND) method can be applied with the National Elevation Dataset (NED) to provide automated estimation of effective channel bathymetry suitable for large-scale hydraulic simulations. The present work examines the use of SPRNT with the National Hydrography Dataset (NHD) and HAND-derived bathymetry for automated generation of rating curves that can be compared to existing data. The approach can, in theory, be applied to every stream reach in the NHD and thus provide flood guidance where none is available. To test this idea we generated 2000+ rating curves in two catchments in Texas and Alabama (USA). Field data from the USGS and flood records from an Austin, Texas flood in May 2015 were used as validation. Large-scale implementation of this idea requires addressing several critical difficulties associated with numerical instabilities, including ill-posed boundary conditions generated in automated model linkages and inconsistencies in the river geometry. A key to future progress is identifying efficient approaches to isolate numerical instability contributors in a large time-space varying solution. This research was supported in part by the National Science Foundation under grant number CCF-1331610.
Supercomputer modeling of volcanic eruption dynamics
Energy Technology Data Exchange (ETDEWEB)
Kieffer, S.W. [Arizona State Univ., Tempe, AZ (United States); Valentine, G.A. [Los Alamos National Lab., NM (United States); Woo, Mahn-Ling [Arizona State Univ., Tempe, AZ (United States)
1995-06-01
Our specific goals are to: (1) provide a set of models based on well-defined assumptions about initial and boundary conditions to constrain interpretations of observations of active volcanic eruptions--including movies of flow front velocities, satellite observations of temperature in plumes vs. time, and still photographs of the dimensions of erupting plumes and flows on Earth and other planets; (2) to examine the influence of subsurface conditions on exit plane conditions and plume characteristics, and to compare the models of subsurface fluid flow with seismic constraints where possible; (3) to relate equations-of-state for magma-gas mixtures to flow dynamics; (4) to examine, in some detail, the interaction of the flowing fluid with the conduit walls and ground topography through boundary layer theory so that field observations of erosion and deposition can be related to fluid processes; and (5) to test the applicability of existing two-phase flow codes for problems related to the generation of volcanic long-period seismic signals; (6) to extend our understanding and simulation capability to problems associated with emplacement of fragmental ejecta from large meteorite impacts.
A dynamic model of Venus's gravity field
Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.
1984-01-01
Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.
Improving Bioenergy Crops through Dynamic Metabolic Modeling
Directory of Open Access Journals (Sweden)
Mojdeh Faraji
2017-10-01
Full Text Available Enormous advances in genetics and metabolic engineering have made it possible, in principle, to create new plants and crops with improved yield through targeted molecular alterations. However, while the potential is beyond doubt, the actual implementation of envisioned new strains is often difficult, due to the diverse and complex nature of plants. Indeed, the intrinsic complexity of plants makes intuitive predictions difficult and often unreliable. The hope for overcoming this challenge is that methods of data mining and computational systems biology may become powerful enough that they could serve as beneficial tools for guiding future experimentation. In the first part of this article, we review the complexities of plants, as well as some of the mathematical and computational methods that have been used in the recent past to deepen our understanding of crops and their potential yield improvements. In the second part, we present a specific case study that indicates how robust models may be employed for crop improvements. This case study focuses on the biosynthesis of lignin in switchgrass (Panicum virgatum. Switchgrass is considered one of the most promising candidates for the second generation of bioenergy production, which does not use edible plant parts. Lignin is important in this context, because it impedes the use of cellulose in such inedible plant materials. The dynamic model offers a platform for investigating the pathway behavior in transgenic lines. In particular, it allows predictions of lignin content and composition in numerous genetic perturbation scenarios.
Modelling Ebola virus dynamics: Implications for therapy.
Martyushev, Alexey; Nakaoka, Shinji; Sato, Kei; Noda, Takeshi; Iwami, Shingo
2016-11-01
Ebola virus (EBOV) causes a severe, often fatal Ebola virus disease (EVD), for which no approved antivirals exist. Recently, some promising anti-EBOV drugs, which are experimentally potent in animal models, have been developed. However, because the quantitative dynamics of EBOV replication in humans is uncertain, it remains unclear how much antiviral suppression of viral replication affects EVD outcome in patients. Here, we developed a novel mathematical model to quantitatively analyse human viral load data obtained during the 2000/01 Uganda EBOV outbreak and evaluated the effects of different antivirals. We found that nucleoside analogue- and siRNA-based therapies are effective if a therapy with a >50% inhibition rate is initiated within a few days post-symptom-onset. In contrast, antibody-based therapy requires not only a higher inhibition rate but also an earlier administration, especially for otherwise fatal cases. Our results demonstrate that an appropriate choice of EBOV-specific drugs is required for effective EVD treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
Quantum Dynamics in the HMF Model
Plestid, Ryan; O'Dell, Duncan
2017-04-01
The Hamiltonian Mean Field (HMF) model represents a paradigm in the study of long-range interactions but has never been realized in a lab. Recently Shutz and Morigi (PRL 113) have come close but ultimately fallen short. Their proposal relied on cavity-induced interactions between atoms. If a design using cold atoms is to be successful, an understanding of quantum effects is essential. I will outline the natural quantum generalization of the HMF assuming a BEC by using a generalized Gross-Pitaevskii equation (gGPE). I will show how quantum effects modify features which are well understood in the classical model. More specifically, by working in the semi-classical regime (strong interparticle interactions) we can identify the universal features predicted by catastrophe theory dressed with quantum interference effects. The stationary states of gGPE can be solved exactly and are found to be described by self-consistent Mathieu functions. Finally, I will discuss the connection between the classical description of the dynamics in terms of the Vlassov equation, and the gGPE. We would like to thank the Government of Ontario's OGS program, NSERC, and the Perimeter Institute of Theoretical Physics.
Dynamical reduction models with general gaussian noises
International Nuclear Information System (INIS)
Bassi, Angelo; Ghirardi, GianCarlo
2002-02-01
We consider the effect of replacing in stochastic differential equations leading to the dynamical collapse of the statevector, white noise stochastic processes with non white ones. We prove that such a modification can be consistently performed without altering the most interesting features of the previous models. One of the reasons to discuss this matter derives from the desire of being allowed to deal with physical stochastic fields, such as the gravitational one, which cannot give rise to white noises. From our point of view the most relevant motivation for the approach we propose here derives from the fact that in relativistic models the occurrence of white noises is the main responsible for the appearance of untractable divergences. Therefore, one can hope that resorting to non white noises one can overcome such a difficulty. We investigate stochastic equations with non white noises, we discuss their reduction properties and their physical implications. Our analysis has a precise interest not only for the above mentioned subject but also for the general study of dissipative systems and decoherence. (author)
Dynamical reduction models with general Gaussian noises
International Nuclear Information System (INIS)
Bassi, Angelo; Ghirardi, GianCarlo
2002-01-01
We consider the effect of replacing in stochastic differential equations leading to the dynamical collapse of the state vector, white-noise stochastic processes with nonwhite ones. We prove that such a modification can be consistently performed without altering the most interesting features of the previous models. One of the reasons to discuss this matter derives from the desire of being allowed to deal with physical stochastic fields, such as the gravitational one, which cannot give rise to white noises. From our point of view, the most relevant motivation for the approach we propose here derives from the fact that in relativistic models intractable divergences appear as a consequence of the white nature of the noises. Therefore, one can hope that resorting to nonwhite noises, one can overcome such a difficulty. We investigate stochastic equations with nonwhite noises, we discuss their reduction properties and their physical implications. Our analysis has a precise interest not only for the above-mentioned subject but also for the general study of dissipative systems and decoherence
Nonlinear dynamics new directions models and applications
Ugalde, Edgardo
2015-01-01
This book, along with its companion volume, Nonlinear Dynamics New Directions: Theoretical Aspects, covers topics ranging from fractal analysis to very specific applications of the theory of dynamical systems to biology. This second volume contains mostly new applications of the theory of dynamical systems to both engineering and biology. The first volume is devoted to fundamental aspects and includes a number of important new contributions as well as some review articles that emphasize new development prospects. The topics addressed in the two volumes include a rigorous treatment of fluctuations in dynamical systems, topics in fractal analysis, studies of the transient dynamics in biological networks, synchronization in lasers, and control of chaotic systems, among others. This book also: · Develops applications of nonlinear dynamics on a diversity of topics such as patterns of synchrony in neuronal networks, laser synchronization, control of chaotic systems, and the study of transient dynam...
Urban eco-efficiency and system dynamics modelling
Energy Technology Data Exchange (ETDEWEB)
Hradil, P., Email: petr.hradil@vtt.fi
2012-06-15
Assessment of urban development is generally based on static models of economic, social or environmental impacts. More advanced dynamic models have been used mostly for prediction of population and employment changes as well as for other macro-economic issues. This feasibility study was arranged to test the potential of system dynamic modelling in assessing eco-efficiency changes during urban development. (orig.)
Linking spatial and dynamic models for traffic maneuvers
DEFF Research Database (Denmark)
Olderog, Ernst-Rüdiger; Ravn, Anders Peter; Wisniewski, Rafal
2015-01-01
For traffic maneuvers of multiple vehicles on highways we build an abstract spatial and a concrete dynamic model. In the spatial model we show the safety (collision freedom) of lane-change maneuvers. By linking the spatial and dynamic model via suitable refinements of the spatial atoms to distance...
Dynamics in Higher Education Politics: A Theoretical Model
Kauko, Jaakko
2013-01-01
This article presents a model for analysing dynamics in higher education politics (DHEP). Theoretically the model draws on the conceptual history of political contingency, agenda-setting theories and previous research on higher education dynamics. According to the model, socio-historical complexity can best be analysed along two dimensions: the…
Maritime piracy situation modelling with dynamic Bayesian networks
CSIR Research Space (South Africa)
Dabrowski, James M
2015-05-01
Full Text Available A generative model for modelling maritime vessel behaviour is proposed. The model is a novel variant of the dynamic Bayesian network (DBN). The proposed DBN is in the form of a switching linear dynamic system (SLDS) that has been extended into a...
Agent Based Modeling on Organizational Dynamics of Terrorist Network
Bo Li; Duoyong Sun; Renqi Zhu; Ze Li
2015-01-01
Modeling organizational dynamics of terrorist network is a critical issue in computational analysis of terrorism research. The first step for effective counterterrorism and strategic intervention is to investigate how the terrorists operate with the relational network and what affects the performance. In this paper, we investigate the organizational dynamics by employing a computational experimentation methodology. The hierarchical cellular network model and the organizational dynamics model ...
The influence of car registration year on driver casualty rates in Great Britain.
Broughton, Jeremy
2012-03-01
A previous paper analysed data from the British national road accident reporting system to investigate the influence upon car driver casualty rates of the general type of car being driven and its year of first registration. A statistical model was fitted to accident data from 2001 to 2005, and this paper updates the principal results using accident data from 2003 to 2007. Attention focuses upon the role of year of first registration since this allows the influence of developments in car design upon occupant casualty numbers to be evaluated. Three additional topics are also examined with these accident data. Changes over time in frontal and side impacts are compared. Changes in the combined risk for the two drivers involved in a car-car collision are investigated, being the net result of changes in secondary safety and aggressivity. Finally, the results of the new model relating to occupant protection are related to an index that had been developed previously to analyse changes over time in the secondary safety of the car fleet. Copyright © 2011 Elsevier Ltd. All rights reserved.
MODELLING OF DYNAMIC SPEED LIMITS USING THE MODEL PREDICTIVE CONTROL
Directory of Open Access Journals (Sweden)
Andrey Borisovich Nikolaev
2017-09-01
Full Text Available The article considers the issues of traffic management using intelligent system “Car-Road” (IVHS, which consist of interacting intelligent vehicles (IV and intelligent roadside controllers. Vehicles are organized in convoy with small distances between them. All vehicles are assumed to be fully automated (throttle control, braking, steering. Proposed approaches for determining speed limits for traffic cars on the motorway using a model predictive control (MPC. The article proposes an approach to dynamic speed limit to minimize the downtime of vehicles in traffic.
AIR INGRESS ANALYSIS: COMPUTATIONAL FLUID DYNAMIC MODELS
Energy Technology Data Exchange (ETDEWEB)
Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang
2010-08-01
The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.
A Dynamic Travel Time Estimation Model Based on Connected Vehicles
Directory of Open Access Journals (Sweden)
Daxin Tian
2015-01-01
Full Text Available With advances in connected vehicle technology, dynamic vehicle route guidance models gradually become indispensable equipment for drivers. Traditional route guidance models are designed to direct a vehicle along the shortest path from the origin to the destination without considering the dynamic traffic information. In this paper a dynamic travel time estimation model is presented which can collect and distribute traffic data based on the connected vehicles. To estimate the real-time travel time more accurately, a road link dynamic dividing algorithm is proposed. The efficiency of the model is confirmed by simulations, and the experiment results prove the effectiveness of the travel time estimation method.
Conflict Without Casualties: Non-Lethal Weapons in Irregular Warfare
2007-09-01
the body,” and the Geneva Protocol of 1925, bans the use of chemical and biological weapons .11 On 8 April 1975, President Ford issued Executive...E Funding – PE 63851M) (accessed 15 December 2006). The American Journal of Bioethics . “Medical Ethics and Non-Lethal Weapons .” Bioethics.net...CASUALTIES: NON-LETHAL WEAPONS IN IRREGULAR WARFARE by Richard L. Scott September 2007 Thesis Advisor: Robert McNab Second Reader
Job Stress and Coping in Army Casualty Operations Workers
1991-01-14
informing survivors, and 2) a masculine culture that denies socioemotional aspects of policework (Hall, 1982; Hendricks, 1984; Eth, 1987). Casualty...assistance environment, requiring a degree of 42 socioemotional investment, social supports of some nature are useful. Overall, the work atmosphere at COC is...in child- protective service workers. _ fly Service Review, 31-44. 52 Hendricks, J.E. (1984). Death notification: The theory and practice of informing
Challenges to Improving Combat Casualty Survivability on the Battlefield
2015-01-01
Rescue Medic in Mogadishu , Somalia, and Special Forces battalion surgeon during Operation Enduring Freedom. He is currently the Director of the Military...the CoTCCC, an organization born outside the traditional military medical establishment, exposes a void in ownership and expertise in battle - field...serve as bat- talion surgeons responsible for the resuscitation of battle casualties in the battalion aid station. This is reminiscent of how
Scalable patients tracking framework for mass casualty incidents.
Yu, Xunyi; Ganz, Aura
2011-01-01
We introduce a system that tracks patients in a Mass Casualty Incident (MCI) using active RFID triage tags and mobile anchor points (DM-tracks) carried by the paramedics. The system does not involve any fixed deployment of the localization devices while maintaining a low cost triage tag. The localization accuracy is comparable to GPS systems without incurring the cost of providing a GPS based device to every patient in the disaster scene.
Retrospection. Uranium mining Wismut und the legal casualty insurance
International Nuclear Information System (INIS)
Breuer, Joachim
2015-01-01
Although the Wismut uranium mining company in the former DDR had 600.000 employees, the company was not mentioned in the contract on the German reunification. The expenses for the health consequences imposed manifold challenges to the legal casualty insurance. The question of responsibility, the conservation, digitalization and evaluation of data concerning the personnel and health information, partially handwritten is a tremendous amount of work.
Emergency response to mass casualty incidents in Lebanon.
El Sayed, Mazen J
2013-08-01
The emergency response to mass casualty incidents in Lebanon lacks uniformity. Three recent large-scale incidents have challenged the existing emergency response process and have raised the need to improve and develop incident management for better resilience in times of crisis. We describe some simple emergency management principles that are currently applied in the United States. These principles can be easily adopted by Lebanon and other developing countries to standardize and improve their emergency response systems using existing infrastructure.
Modeling of ELM Dynamics in ITER
International Nuclear Information System (INIS)
Pankin, A.Y.; Bateman, G.; Kritz, A.H.; Brennan, D.P.; Snyder, P.B.; Kruger, S.
2007-01-01
Edge localized modes (ELMs) are large scale instabilities that alter the H-mode pedestal, reduce the total plasma stored energy, and can result in heat pulses to the divertor plates. These modes can be triggered by pressure driven ballooning modes or by current driven peeling instabilities. In this study, stability analyses are carried out for a series of ITER equilibria that are generated with the TEQ and TOQ equilibrium codes. The H-mode pedestal pressure and parallel component of plasma current density are varied in a systematic way in order to include the relevant parameter space for a specific ITER discharge. Ideal MHD stability codes, DCON, ELITE, and BALOO code, are employed to determine whether or not each ITER equilibrium profile is unstable to peeling or ballooning modes in the pedestal region. Several equilibria that are close to the marginal stability boundary for peeling and ballooning modes are tested with the NIMROD non-ideal MHD code. The effects of finite resistivity are studied in a series of linear NIMROD computations. It is found that the peeling-ballooning stability threshold is very sensitive to the resistivity and viscosity profiles, which vary dramatically over a wide range near the separatrix. Due to the effects of finite resistivity and viscosity, the peeling-ballooning stability threshold is shifted compared to the ideal threshold. A fundamental question in the integrated modeling of ELMy H-mode discharges concerning how much plasma and current density is removed during each ELM crash can be addressed with nonlinear non-ideal MHD simulations. In this study, the NIMROD computer simulations are continued into the nonlinear stage for several ITER equilibria that are marginally unstable to peeling or ballooning modes. The role of two-fluid and finite Larmor radius effects on the ELM dynamics in ITER geometry is examined. The formation of ELM filament structures, which are observed in many existing tokamak experiments, is demonstrated for ITER
Civilian casualties of Iraqi ballistic missile attack to
Directory of Open Access Journals (Sweden)
Khaji Ali
2012-06-01
Full Text Available 【Abstract】Objective: To determine the pattern of causalities of Iraqi ballistic missile attacks on Tehran, the capital of Iran, during Iraq-Iran war. Methods: Data were extracted from the Army Staff Headquarters based on daily reports of Iranian army units during the war. Results: During 52 days, Tehran was stroked by 118 Al-Hussein missiles (a modified version of Scud missile. Eighty-six missiles landed in populated areas. During Iraqi missile attacks, 422 civilians died and 1 579 injured (4.9 deaths and 18.3 injuries per missile. During 52 days, 8.1 of the civilians died and 30.4 injured daily. Of the cases that died, 101 persons (24% were excluded due to the lack of information. Among the remainders, 179 (55.8% were male and 142 (44.2% were female. The mean age of the victims was 25.3 years±19.9 years. Our results show that the high accuracy of modified Scud missiles landed in crowded ar-eas is the major cause of high mortality in Tehran. The pres-ence of suitable warning system and shelters could reduce civilian casualties. Conclusion: The awareness and readiness of civilian defense forces, rescue services and all medical facilities for dealing with mass casualties caused by ballistic missile at-tacks are necessary. Key words: Mortality; War; Mass casualty incidents; Wounds and injuries
Dynamic hysteretic sensing model of bending-mode Galfenol transducer
International Nuclear Information System (INIS)
Cao, Shuying; Zheng, Jiaju; Sang, Jie; Zhang, Pengfei; Wang, Bowen; Huang, Wenmei
2015-01-01
A dynamic hysteretic sensing model has been developed to predict the dynamic responses of the magnetic induction, the stress, and the output voltage for a bending-mode Galfenol unimorph transducer subjected simultaneously to acceleration and bias magnetic field. This model is obtained by coupling the hysteretic Armstrong model and the structural dynamic model of the Galfenol unimorph beam. The structural dynamic model of the beam is founded based on the Euler-Bernouli beam theory, the nonlinear constitutive equations, and the Faraday law of electromagnetic induction. Comparisons between the calculated and measured results show the model can describe dynamic nonlinear voltage characteristics of the device, and can predict hysteretic behaviors between the magnetic induction and the stress. Moreover, the model can effectively analyze the effects of the bias magnetic field, the acceleration amplitude, and frequency on the root mean square voltage of the device
Dynamic hysteretic sensing model of bending-mode Galfenol transducer
Energy Technology Data Exchange (ETDEWEB)
Cao, Shuying, E-mail: shuying-cao@hebut.edu.cn; Zheng, Jiaju; Sang, Jie; Zhang, Pengfei; Wang, Bowen; Huang, Wenmei [Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability, Hebei University of Technology, Tianjin 300130 (China)
2015-05-07
A dynamic hysteretic sensing model has been developed to predict the dynamic responses of the magnetic induction, the stress, and the output voltage for a bending-mode Galfenol unimorph transducer subjected simultaneously to acceleration and bias magnetic field. This model is obtained by coupling the hysteretic Armstrong model and the structural dynamic model of the Galfenol unimorph beam. The structural dynamic model of the beam is founded based on the Euler-Bernouli beam theory, the nonlinear constitutive equations, and the Faraday law of electromagnetic induction. Comparisons between the calculated and measured results show the model can describe dynamic nonlinear voltage characteristics of the device, and can predict hysteretic behaviors between the magnetic induction and the stress. Moreover, the model can effectively analyze the effects of the bias magnetic field, the acceleration amplitude, and frequency on the root mean square voltage of the device.
System Dynamics Modeling for Supply Chain Information Sharing
Feng, Yang
In this paper, we try to use the method of system dynamics to model supply chain information sharing. Firstly, we determine the model boundaries, establish system dynamics model of supply chain before information sharing, analyze the model's simulation results under different changed parameters and suggest improvement proposal. Then, we establish system dynamics model of supply chain information sharing and make comparison and analysis on the two model's simulation results, to show the importance of information sharing in supply chain management. We wish that all these simulations would provide scientific supports for enterprise decision-making.
A comprehensive dynamic modeling approach for giant magnetostrictive material actuators
International Nuclear Information System (INIS)
Gu, Guo-Ying; Zhu, Li-Min; Li, Zhi; Su, Chun-Yi
2013-01-01
In this paper, a comprehensive modeling approach for a giant magnetostrictive material actuator (GMMA) is proposed based on the description of nonlinear electromagnetic behavior, the magnetostrictive effect and frequency response of the mechanical dynamics. It maps the relationships between current and magnetic flux at the electromagnetic part to force and displacement at the mechanical part in a lumped parameter form. Towards this modeling approach, the nonlinear hysteresis effect of the GMMA appearing only in the electrical part is separated from the linear dynamic plant in the mechanical part. Thus, a two-module dynamic model is developed to completely characterize the hysteresis nonlinearity and the dynamic behaviors of the GMMA. The first module is a static hysteresis model to describe the hysteresis nonlinearity, and the cascaded second module is a linear dynamic plant to represent the dynamic behavior. To validate the proposed dynamic model, an experimental platform is established. Then, the linear dynamic part and the nonlinear hysteresis part of the proposed model are identified in sequence. For the linear part, an approach based on axiomatic design theory is adopted. For the nonlinear part, a Prandtl–Ishlinskii model is introduced to describe the hysteresis nonlinearity and a constrained quadratic optimization method is utilized to identify its coefficients. Finally, experimental tests are conducted to demonstrate the effectiveness of the proposed dynamic model and the corresponding identification method. (paper)
Further Results on Dynamic Additive Hazard Rate Model
Directory of Open Access Journals (Sweden)
Zhengcheng Zhang
2014-01-01
Full Text Available In the past, the proportional and additive hazard rate models have been investigated in the works. Nanda and Das (2011 introduced and studied the dynamic proportional (reversed hazard rate model. In this paper we study the dynamic additive hazard rate model, and investigate its aging properties for different aging classes. The closure of the model under some stochastic orders has also been investigated. Some examples are also given to illustrate different aging properties and stochastic comparisons of the model.
Identification of a nuclear plant dynamics via ARMAX model
International Nuclear Information System (INIS)
Yamamoto, Shigeki; Otsuji, Tomoo; Muramatsu, Eiichi
2000-01-01
Dynamics of the reactor of nuclear ship 'Mutsu' is described by a linear time-invariant discrete-time model which is referred to as ARMAX (Auto-Regressive Moving Average eXogenious inputs) model. Applying system identification methods, parameters of the ARMAX model are determined from input-output data of the reactor. Accuracy of the model is examined in time and frequency domain. We show that the model can be a good approximation of the plant dynamics. (author)
Modeling proteasome dynamics in Parkinson's disease
International Nuclear Information System (INIS)
Sneppen, Kim; Lizana, Ludvig; Jensen, Mogens H; Pigolotti, Simone; Otzen, Daniel
2009-01-01
In Parkinson's disease (PD), there is evidence that α-synuclein (αSN) aggregation is coupled to dysfunctional or overburdened protein quality control systems, in particular the ubiquitin–proteasome system. Here, we develop a simple dynamical model for the on-going conflict between αSN aggregation and the maintenance of a functional proteasome in the healthy cell, based on the premise that proteasomal activity can be titrated out by mature αSN fibrils and their protofilament precursors. In the presence of excess proteasomes the cell easily maintains homeostasis. However, when the ratio between the available proteasome and the αSN protofilaments is reduced below a threshold level, we predict a collapse of homeostasis and onset of oscillations in the proteasome concentration. Depleted proteasome opens for accumulation of oligomers. Our analysis suggests that the onset of PD is associated with a proteasome population that becomes occupied in periodic degradation of aggregates. This behavior is found to be the general state of a proteasome/chaperone system under pressure, and suggests new interpretations of other diseases where protein aggregation could stress elements of the protein quality control system
Dynamics of the Random Field Ising Model
Xu, Jian
The Random Field Ising Model (RFIM) is a general tool to study disordered systems. Crackling noise is generated when disordered systems are driven by external forces, spanning a broad range of sizes. Systems with different microscopic structures such as disordered mag- nets and Earth's crust have been studied under the RFIM. In this thesis, we investigated the domain dynamics and critical behavior in two dipole-coupled Ising ferromagnets Nd2Fe14B and LiHoxY 1-xF4. With Tc well above room temperature, Nd2Fe14B has shown reversible disorder when exposed to an external transverse field and crosses between two universality classes in the strong and weak disorder limits. Besides tunable disorder, LiHoxY1-xF4 has shown quantum tunneling effects arising from quantum fluctuations, providing another mechanism for domain reversal. Universality within and beyond power law dependence on avalanche size and energy were studied in LiHo0.65Y0.35 F4.
Dynamical Models For Prices With Distributed Delays
Directory of Open Access Journals (Sweden)
Mircea Gabriela
2015-06-01
Full Text Available In the present paper we study some models for the price dynamics of a single commodity market. The quantities of supplied and demanded are regarded as a function of time. Nonlinearities in both supply and demand functions are considered. The inventory and the level of inventory are taken into consideration. Due to the fact that the consumer behavior affects commodity demand, and the behavior is influenced not only by the instantaneous price, but also by the weighted past prices, the distributed time delay is introduced. The following kernels are taken into consideration: demand price weak kernel and demand price Dirac kernel. Only one positive equilibrium point is found and its stability analysis is presented. When the demand price kernel is weak, under some conditions of the parameters, the equilibrium point is locally asymptotically stable. When the demand price kernel is Dirac, the existence of the local oscillations is investigated. A change in local stability of the equilibrium point, from stable to unstable, implies a Hopf bifurcation. A family of periodic orbits bifurcates from the positive equilibrium point when the time delay passes through a critical value. The last part contains some numerical simulations to illustrate the effectiveness of our results and conclusions.
Nonlinear dynamics of avian influenza epidemic models.
Liu, Sanhong; Ruan, Shigui; Zhang, Xinan
2017-01-01
Avian influenza is a zoonotic disease caused by the transmission of the avian influenza A virus, such as H5N1 and H7N9, from birds to humans. The avian influenza A H5N1 virus has caused more than 500 human infections worldwide with nearly a 60% death rate since it was first reported in Hong Kong in 1997. The four outbreaks of the avian influenza A H7N9 in China from March 2013 to June 2016 have resulted in 580 human cases including 202 deaths with a death rate of nearly 35%. In this paper, we construct two avian influenza bird-to-human transmission models with different growth laws of the avian population, one with logistic growth and the other with Allee effect, and analyze their dynamical behavior. We obtain a threshold value for the prevalence of avian influenza and investigate the local or global asymptotical stability of each equilibrium of these systems by using linear analysis technique or combining Liapunov function method and LaSalle's invariance principle, respectively. Moreover, we give necessary and sufficient conditions for the occurrence of periodic solutions in the avian influenza system with Allee effect of the avian population. Numerical simulations are also presented to illustrate the theoretical results. Copyright © 2016 Elsevier Inc. All rights reserved.
Modeling shockwave deformation via molecular dynamics
International Nuclear Information System (INIS)
Holian, B.L.
1987-01-01
Molecular dynamics (MD), where the equations of motion of up to thousands of interacting atoms are solved on the computer, has proven to be a powerful tool for investigating a wide variety of nonequilibrium processes from the atomistic viewpoint. Simulations of shock waves in three-dimensional (3D) solids and fluids have shown conclusively that shear-stress relaxation is achieved through atomic rearrangement. In the case of fluids, the transverse motion is viscous, and the constitutive model of Navier-Stokes hydrodynamics has been shown to be accurate - even on the time and distance scales of MD experiments. For strong shocks in solids, the plastic flow that leads to shear-stress relaxation in MD is highly localized near the shock front, involving a slippage along close-packed planes. For shocks of intermediate strength, MD calculations exhibit an elastic precursor running out in front of the steady plastic wave, where slippage similar in character to that in the very strong shocks leads to shear-stress relaxation. An interesting correlation between the maximum shear stress and the Hugoniot pressure jump is observed for both 3D and fluid shockwave calculations, which may have some utility in modeling applications. At low shock strengths, the MD simulations show only elastic compression, with no permanent transverse atomic strains. The result for perfect 3D crystals is also seen in calculations for 1D chains. It is speculated that, if it were practical, a very large MD system containing dislocations could be expected to exhibit more realistic plastic flow for weak shock waves, too
Management of Open Pneumothorax in Tactical Combat Casualty Care: TCCC Guidelines Change 13-02.
Butler, Frank K; Dubose, Joseph J; Otten, Edward J; Bennett, Donald R; Gerhardt, Robert T; Kheirabadi, Bijan S; Gross, Kriby R; Cap, Andrew P; Littlejohn, Lanny F; Edgar, Erin P; Shackelford, Stacy A; Blackbourne, Lorne H; Kotwal, Russ S; Holcomb, John B; Bailey, Jeffrey A
2013-01-01
During the recent United States Central Command (USCENTCOM) and Joint Trauma System (JTS) assessment of prehospital trauma care in Afghanistan, the deployed director of the Joint Theater Trauma System (JTTS), CAPT Donald R. Bennett, questioned why TCCC recommends treating a nonlethal injury (open pneumothorax) with an intervention (a nonvented chest seal) that could produce a lethal condition (tension pneumothorax). New research from the U.S. Army Institute of Surgical Research (USAISR) has found that, in a model of open pneumothorax treated with a chest seal in which increments of air were added to the pleural space to simulate an air leak from an injured lung, use of a vented chest seal prevented the subsequent development of a tension pneumothorax, whereas use of a nonvented chest seal did not. The updated TCCC Guideline for the battlefield management of open pneumothorax is: ?All open and/ or sucking chest wounds should be treated by immediately applying a vented chest seal to cover the defect. If a vente chest seal is not available, use a non-vented chest seal. Monitor the casualty for the potential development of a subsequent tension pneumothorax. If the casualty develops increasing hypoxia, respiratory distress, or hypotension and a tension pneumothorax is suspected, treat by burping or removing the dressing or by needle decompression.? This recommendation was approved by the required two-thirds majority of the Committee on TCCC in June 2013. 2013.
An individual-based model of Zebrafish population dynamics accounting for energy dynamics
DEFF Research Database (Denmark)
Beaudouin, Remy; Goussen, Benoit; Piccini, Benjamin
2015-01-01
Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model...
A model of nematode dynamics in the Westerschelde estuary
Li, J.; Vincx, M.; Herman, P.M.J.
1996-01-01
We developed a time dynamic model to investigate the temporal dynamics of nematode community in the brackish zone of the Westerschelde Estuary. The biomass of four nematode feeding groups observed from March 1991 to February 1992 is used to calibrate the model. Using environmental data as the input,
Dynamic of exact perturbations in Bianchi IX type cosmological models
International Nuclear Information System (INIS)
Mello Neto, J.R.T. de.
1985-01-01
The dynamic of Bianchi IX type cosmological models is studied, after reducing Einstein equations to Hamiltonian system. Using the Melnikov method, the existence of chaos in the dynamic of these models is proved, and some numerical experiments are carried out. (M.C.K.) [pt
Dynamic root uptake model for neutral lipophilic organics
DEFF Research Database (Denmark)
Trapp, Stefan
2002-01-01
and output to stem with the transpiration stream plus first-order metabolism and dilution by exponential growth. For chemicals with low or intermediate lipophilicity (log Kow , 2), there was no relevant difference between dynamic model and equilibrium approach. For lipophilic compounds, the dynamic model...
Model for the dynamic study of AC contactors
Energy Technology Data Exchange (ETDEWEB)
Corcoles, F.; Pedra, J.; Garrido, J.P.; Baza, R. [Dep. d' Eng. Electrica ETSEIB. UPC, Barcelona (Spain)
2000-08-01
This paper proposes a model for the dynamic analysis of AC contactors. The calculation algorithm and implementation are discussed. The proposed model can be used to study the influence of the design parameters and the supply in their dynamic behaviour. The high calculation speed of the implemented algorithm allows extensive ranges of parameter variations to be analysed. (orig.)
Wind speed dynamical model in a wind farm
DEFF Research Database (Denmark)
Soleimanzadeh, Maryam; Wisniewski, Rafal
2010-01-01
, the dynamic model for wind flow will be established. The state space variables are determined based on a fine mesh defined for the farm. The end goal of this method is to assist the development of a dynamical model of a wind farm that can be engaged for better wind farm control strategies....
Accelerating transition dynamics in city regions: A qualitative modeling perspective
P.J. Valkering (Pieter); Yücel, G. (Gönenç); Gebetsroither-Geringer, E. (Ernst); Markvica, K. (Karin); Meynaerts, E. (Erika); N. Frantzeskaki (Niki)
2017-01-01
textabstractIn this article, we take stock of the findings from conceptual and empirical work on the role of transition initiatives for accelerating transitions as input for modeling acceleration dynamics. We applied the qualitative modeling approach of causal loop diagrams to capture the dynamics
Implementing RFID technology in a novel triage system during a simulated mass casualty situation.
Jokela, Jorma; Simons, Tomi; Kuronen, Pentti; Tammela, Juha; Jalasvirta, Pertti; Nurmi, Jouni; Harkke, Ville; Castrén, Maaret
2008-01-01
The purpose of this study is to determine the applicability of Radio Frequency Identification (RFID) technology and commercial cellular networks to provide an online triage system for handling mass casualty situations. This was tested by a using a pilot system for a simulated mass casualty situation during a military field exercise. The system proved to be usable. Compared to the currently used system, it also dramatically improves the general view of mass casualty situations and enhances medical emergency readiness in a military medical setting. The system can also be adapted without any difficulties by the civilian sector for the management of mass casualty disasters.
Dynamic model based on Bayesian method for energy security assessment
International Nuclear Information System (INIS)
Augutis, Juozas; Krikštolaitis, Ričardas; Pečiulytė, Sigita; Žutautaitė, Inga
2015-01-01
Highlights: • Methodology for dynamic indicator model construction and forecasting of indicators. • Application of dynamic indicator model for energy system development scenarios. • Expert judgement involvement using Bayesian method. - Abstract: The methodology for the dynamic indicator model construction and forecasting of indicators for the assessment of energy security level is presented in this article. An indicator is a special index, which provides numerical values to important factors for the investigated area. In real life, models of different processes take into account various factors that are time-dependent and dependent on each other. Thus, it is advisable to construct a dynamic model in order to describe these dependences. The energy security indicators are used as factors in the dynamic model. Usually, the values of indicators are obtained from statistical data. The developed dynamic model enables to forecast indicators’ variation taking into account changes in system configuration. The energy system development is usually based on a new object construction. Since the parameters of changes of the new system are not exactly known, information about their influences on indicators could not be involved in the model by deterministic methods. Thus, dynamic indicators’ model based on historical data is adjusted by probabilistic model with the influence of new factors on indicators using the Bayesian method
A Comprehensive Method for Comparing Mental Models of Dynamic Systems
Schaffernicht, Martin; Grösser, Stefan N.
2011-01-01
Mental models are the basis on which managers make decisions even though external decision support systems may provide help. Research has demonstrated that more comprehensive and dynamic mental models seem to be at the foundation for improved policies and decisions. Eliciting and comparing such models can systematically explicate key variables and their main underlying structures. In addition, superior dynamic mental models can be identified. This paper reviews existing studies which measure ...
Dislocation climb models from atomistic scheme to dislocation dynamics
Niu, Xiaohua; Luo, Tao; Lu, Jianfeng; Xiang, Yang
2016-01-01
We develop a mesoscopic dislocation dynamics model for vacancy-assisted dislocation climb by upscalings from a stochastic model on the atomistic scale. Our models incorporate microscopic mechanisms of (i) bulk diffusion of vacancies, (ii) vacancy exchange dynamics between bulk and dislocation core, (iii) vacancy pipe diffusion along the dislocation core, and (iv) vacancy attachment-detachment kinetics at jogs leading to the motion of jogs. Our mesoscopic model consists of the vacancy bulk dif...
The Financial Accounting Model from a System Dynamics' Perspective
Melse, Eric
2006-01-01
This paper explores the foundation of the financial accounting model. We examine the properties of the accounting equation as the principal algorithm for the design and the development of a System Dynamics model. Key to the perspective is the foundational requirement that resolves the temporal conflict that resides in a stock and flow model. Through formal analysis the accounting equation is redefined as a cybernetic model by expressing the temporal and dynamic properties of its terms. Articu...
Directory of Open Access Journals (Sweden)
Xu Liu
2015-01-01
Full Text Available Unsteady aerodynamic system modeling is widely used to solve the dynamic stability problems encountering aircraft design. In this paper, single degree-of-freedom (SDF vibration model and forced simple harmonic motion (SHM model for dynamic derivative prediction are developed on the basis of modified Etkin model. In the light of the characteristics of SDF time domain solution, the free vibration identification methods for dynamic stability parameters are extended and applied to the time domain numerical simulation of blunted cone calibration model examples. The dynamic stability parameters by numerical identification are no more than 0.15% deviated from those by experimental simulation, confirming the correctness of SDF vibration model. The acceleration derivatives, rotary derivatives, and combination derivatives of Army-Navy Spinner Rocket are numerically identified by using unsteady N-S equation and solving different SHV patterns. Comparison with the experimental result of Army Ballistic Research Laboratories confirmed the correctness of the SHV model and dynamic derivative identification. The calculation result of forced SHM is better than that by the slender body theory of engineering approximation. SDF vibration model and SHM model for dynamic stability parameters provide a solution to the dynamic stability problem encountering aircraft design.
National Research Council Canada - National Science Library
Raftery, Adrian E; Karny, Miroslav; Andrysek, Josef; Ettler, Pavel
2007-01-01
... is. We develop a method called Dynamic Model Averaging (DMA) in which a state space model for the parameters of each model is combined with a Markov chain model for the correct model. This allows the (correct...
Dynamics of mathematical models in biology bringing mathematics to life
Zazzu, Valeria; Guarracino, Mario
2016-01-01
This volume focuses on contributions from both the mathematics and life science community surrounding the concepts of time and dynamicity of nature, two significant elements which are often overlooked in modeling process to avoid exponential computations. The book is divided into three distinct parts: dynamics of genomes and genetic variation, dynamics of motifs, and dynamics of biological networks. Chapters included in dynamics of genomes and genetic variation analyze the molecular mechanisms and evolutionary processes that shape the structure and function of genomes and those that govern genome dynamics. The dynamics of motifs portion of the volume provides an overview of current methods for motif searching in DNA, RNA and proteins, a key process to discover emergent properties of cells, tissues, and organisms. The part devoted to the dynamics of biological networks covers networks aptly discusses networks in complex biological functions and activities that interpret processes in cells. Moreover, chapters i...
Benchmarking novel approaches for modelling species range dynamics.
Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E
2016-08-01
Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches
Bayram, Jamil D; Zuabi, Shawki; Subbarao, Italo
2011-06-01
Hospital surge capacity in multiple casualty events (MCE) is the core of hospital medical response, and an integral part of the total medical capacity of the community affected. To date, however, there has been no consensus regarding the definition or quantification of hospital surge capacity. The first objective of this study was to quantitatively benchmark the various components of hospital surge capacity pertaining to the care of critically and moderately injured patients in trauma-related MCE. The second objective was to illustrate the applications of those quantitative parameters in local, regional, national, and international disaster planning; in the distribution of patients to various hospitals by prehospital medical services; and in the decision-making process for ambulance diversion. A 2-step approach was adopted in the methodology of this study. First, an extensive literature search was performed, followed by mathematical modeling. Quantitative studies on hospital surge capacity for trauma injuries were used as the framework for our model. The North Atlantic Treaty Organization triage categories (T1-T4) were used in the modeling process for simplicity purposes. Hospital Acute Care Surge Capacity (HACSC) was defined as the maximum number of critical (T1) and moderate (T2) casualties a hospital can adequately care for per hour, after recruiting all possible additional medical assets. HACSC was modeled to be equal to the number of emergency department beds (#EDB), divided by the emergency department time (EDT); HACSC = #EDB/EDT. In trauma-related MCE, the EDT was quantitatively benchmarked to be 2.5 (hours). Because most of the critical and moderate casualties arrive at hospitals within a 6-hour period requiring admission (by definition), the hospital bed surge capacity must match the HACSC at 6 hours to ensure coordinated care, and it was mathematically benchmarked to be 18% of the staffed hospital bed capacity. Defining and quantitatively benchmarking the
Stochastic dynamic programming model for optimal resource ...
Indian Academy of Sciences (India)
M Bhuvaneswari
2018-04-11
Apr 11, 2018 ... handover in VANET; because of high dynamics in net- work topology, collaboration ... containers, doctors, nurses, cash and stocks. Similarly, ... GTBA does not take the resource types and availability into consideration.
Induction generator models in dynamic simulation tools
DEFF Research Database (Denmark)
Knudsen, Hans; Akhmatov, Vladislav
1999-01-01
For AC network with large amount of induction generators (windmills) the paper demonstrates a significant discrepancy in the simulated voltage recovery after fault in weak networks when comparing dynamic and transient stability descriptions and the reasons of discrepancies are explained...
Model reduction tools for nonlinear structural dynamics
Slaats, P.M.A.; Jongh, de J.; Sauren, A.A.H.J.
1995-01-01
Three mode types are proposed for reducing nonlinear dynamical system equations, resulting from finite element discretizations: tangent modes, modal derivatives, and newly added static modes. Tangent modes are obtained from an eigenvalue problem with a momentary tangent stiffness matrix. Their
Dynamics models and modeling of tree stand development
Directory of Open Access Journals (Sweden)
M. V. Rogozin
2015-04-01
Full Text Available Brief analysis of scientific works in Russia and in the CIS over the past 100 years. Logical and mathematical models consider the conceptual and show some of the results of their verification. It was found that the models include different laws and the parameters, the sum of which allows you to divide them into four categories: models of static states, development models, models of care for the natural forest and models of cultivation. Each category has fulfilled and fulfills its tasks in economic management. Thus, the model states in statics (table traverse growth played a prominent role in figuring out what may be the most productive (full stands in different regions of the country. However, they do not answer the question of what the initial states lead to the production of complete stands. In a study of the growth of stands used system analysis, and it is observed dominance of works studying static state, snatched from the biological time. Therefore, the real drama of the growth of stands remained almost unexplored. It is no accident there were «chrono-forestry» «plantation forestry» and even «non-traditional forestry», where there is a strong case of a number of new concepts of development stands. That is quite in keeping with Kuhn (Kuhn, 2009 in the forestry crisis began – there were alternative theories and coexist conflicting scientific schools. To develop models of stand development, it is proposed to use a well-known method of repeated observations within 10–20 years, in conjunction with the explanation of the history of the initial density. It mounted on the basis of studying the dynamics of its indicators: the trunk, crown overlap coefficient, the sum of volumes of all crowns and the relative length of the crown. According to these indicators, the researcher selects natural series of development stands with the same initial density. As a theoretical basis for the models it is possible to postulate the general properties of
Modeling Dynamic Fracture of Cryogenic Pellets
Energy Technology Data Exchange (ETDEWEB)
Parks, Paul [General Atomics, San Diego, CA (United States)
2016-06-30
This work is part of an investigation with the long-range objective of predicting the size distribution function and velocity dispersion of shattered pellet fragments after a large cryogenic pellet impacts a solid surface at high velocity. The study is vitally important for the shattered pellet injection (SPI) technique, one of the leading technologies being implemented at ORNL for the mitigation of disruption damage on current tokamaks and ITER. The report contains three parts that are somewhat interwoven. In Part I we formulated a self-similar model for the expansion dynamics and velocity dispersion of the debris cloud following pellet impact against a thick (rigid) target plate. Also presented in Part I is an analytical fracture model that predicts the nominal or mean size of the fragments in the debris cloud and agrees well with known SPI data. The aim of Part II is to gain an understanding of the pellet fracturing process when a pellet is shattered inside a miter tube with a sharp bend. Because miter tubes have a thin stainless steel (SS) wall a permanent deformation (dishing) of the wall is produced at the site of the impact. A review of the literature indicates that most projectile impact on thin plates are those for which the target is deformed and the projectile is perfectly rigid. Such impacts result in “projectile embedding” where the projectile speed is reduced to zero during the interaction so that all the kinetic energy (KE) of the projectile goes into the energy stored in plastic deformation. Much of the literature deals with perforation of the target. The problem here is quite different; the softer pellet easily undergoes complete material failure causing only a small transfer of KE to stored energy of wall deformation. For the real miter tube, we derived a strain energy function for the wall deflection using a non-linear (plastic) stress-strain relation for 304 SS. Using a dishing profile identical to the linear Kirchkoff-Love profile (for lack
System Dynamics (SD) models are useful for holistic integration of data to evaluate indirect and cumulative effects and inform decisions. Complex SD models can provide key insights into how decisions affect the three interconnected pillars of sustainability. However, the complexi...
Modelling of dynamic equivalents in electric power grids
International Nuclear Information System (INIS)
Craciun, Diana Iuliana
2010-01-01
In a first part, this research thesis proposes a description of the context and new constraints of electric grids: architecture, decentralized production with the impact of distributed energy resource systems, dynamic simulation, and interest of equivalent models. Then, the author discusses the modelling of the different components of electric grids: synchronous and asynchronous machines, distributed energy resource with power electronic interface, loading models. She addresses the techniques of reduction of electric grid models: conventional reduction methods, dynamic equivalence methods using non linear approaches or evolutionary algorithm-based methods of assessment of parameters. This last approach is then developed and implemented, and a new method of computation of dynamic equivalents is described
Modelling and Analysis of a New Piezoelectric Dynamic Balance Regulator
Directory of Open Access Journals (Sweden)
Mu-Xun Xu
2012-11-01
Full Text Available In this paper, a new piezoelectric dynamic balance regulator, which can be used in motorised spindle systems, is presented. The dynamic balancing adjustment mechanism is driven by an in-plane bending vibration from an annular piezoelectric stator excited by a high-frequency sinusoidal input voltage. This device has different construction, characteristics and operating principles than a conventional balance regulator. In this work, a dynamic model of the regulator is first developed using a detailed analytical method. Thereafter, MATLAB is employed to numerically simulate the relations between the dominant parameters and the characteristics of the regulator based on thedynamic model. Finally, experimental measurements are used to certify the validity of the dynamic model. Consequently, the mathematical model presented and analysed in this paper can be used as a tool for optimising the design of a piezoelectric dynamic balance regulator during steady state operation.
Modelling the Dynamics of an Aedes albopictus Population
Directory of Open Access Journals (Sweden)
Thomas Anung Basuki
2010-08-01
Full Text Available We present a methodology for modelling population dynamics with formal means of computer science. This allows unambiguous description of systems and application of analysis tools such as simulators and model checkers. In particular, the dynamics of a population of Aedes albopictus (a species of mosquito and its modelling with the Stochastic Calculus of Looping Sequences (Stochastic CLS are considered. The use of Stochastic CLS to model population dynamics requires an extension which allows environmental events (such as changes in the temperature and rainfalls to be taken into account. A simulator for the constructed model is developed via translation into the specification language Maude, and used to compare the dynamics obtained from the model with real data.
Developing a Dynamic Pharmacophore Model for HIV-1 Integrase
International Nuclear Information System (INIS)
Carlson, Heather A.; Masukawa, Keven M.; Rubins, Kathleen; Bushman, Frederic; Jorgensen, William L.; Lins, Roberto; Briggs, James; Mccammon, Andy
2000-01-01
We present the first receptor-based pharmacophore model for HIV-1 integrase. The development of ''dynamic'' pharmacophore models is a new method that accounts for the inherent flexibility of the active site and aims to reduce the entropic penalties associated with binding a ligand. Furthermore, this new drug discovery method overcomes the limitation of an incomplete crystal structure of the target protein. A molecular dynamics (MD) simulation describes the flexibility of the uncomplexed protein. Many conformational models of the protein are saved from the MD simulations and used in a series of multi-unit search for interacting conformers (MUSIC) simulations. MUSIC is a multiple-copy minimization method, available in the BOSS program; it is used to determine binding regions for probe molecules containing functional groups that complement the active site. All protein conformations from the MD are overlaid, and conserved binding regions for the probe molecules are identified. Those conserved binding regions define the dynamic pharmacophore model. Here, the dynamic model is compared to known inhibitors of the integrase as well as a three-point, ligand-based pharmacophore model from the literature. Also, a ''static'' pharmacophore model was determined in the standard fashion, using a single crystal structure. Inhibitors thought to bind in the active site of HIV-1 integrase fit the dynamic model but not the static model. Finally, we have identified a set of compounds from the Available Chemicals Directory that fit the dynamic pharmacophore model, and experimental testing of the compounds has confirmed several new inhibitors
A better START for low-acuity victims: data-driven refinement of mass casualty triage.
Cross, Keith P; Petry, Michael J; Cicero, Mark X
2015-01-01
Methods currently used to triage patients from mass casualty events have a sparse evidence basis. The objective of this project was to assess gaps of the widely used Simple Triage and Rapid Transport (START) algorithm using a large database when it is used to triage low-acuity patients. Subsequently, we developed and tested evidenced-based improvements to START. Using the National Trauma Database (NTDB), a large set of trauma victims were assigned START triage levels, which were then compared to recorded patient mortality outcomes using area under the receiver-operator curve (AUC). Subjects assigned to the "Minor/Green" level who nevertheless died prior to hospital discharge were considered mistriaged. Recursive partitioning identified factors associated with of these mistriaged patients. These factors were then used to develop candidate START models of improved triage, whose overall performance was then re-evaluated using data from the NTDB. This process of evaluating performance, identifying errors, and further adjusting candidate models was repeated iteratively. The study included 322,162 subjects assigned to "Minor/Green" of which 2,046 died before hospital discharge. Age was the primary predictor of under-triage by START. Candidate models which re-assigned patients from the "Minor/Green" triage level to the "Delayed/Yellow" triage level based on age (either for patients >60 or >75), reduced mortality in the "Minor/Green" group from 0.6% to 0.1% and 0.3%, respectively. These candidate START models also showed net improvement in the AUC for predicting mortality overall and in select subgroups. In this research model using trauma registry data, most START under-triage errors occurred in elderly patients. Overall START accuracy was improved by placing elderly but otherwise minimally injured-mass casualty victims into a higher risk triage level. Alternatively, such patients would be candidates for closer monitoring at the scene or expedited transport ahead of other
An Efficient Dynamic Trust Evaluation Model for Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Zhengwang Ye
2017-01-01
Full Text Available Trust evaluation is an effective method to detect malicious nodes and ensure security in wireless sensor networks (WSNs. In this paper, an efficient dynamic trust evaluation model (DTEM for WSNs is proposed, which implements accurate, efficient, and dynamic trust evaluation by dynamically adjusting the weights of direct trust and indirect trust and the parameters of the update mechanism. To achieve accurate trust evaluation, the direct trust is calculated considering multitrust including communication trust, data trust, and energy trust with the punishment factor and regulating function. The indirect trust is evaluated conditionally by the trusted recommendations from a third party. Moreover, the integrated trust is measured by assigning dynamic weights for direct trust and indirect trust and combining them. Finally, we propose an update mechanism by a sliding window based on induced ordered weighted averaging operator to enhance flexibility. We can dynamically adapt the parameters and the interactive history windows number according to the actual needs of the network to realize dynamic update of direct trust value. Simulation results indicate that the proposed dynamic trust model is an efficient dynamic and attack-resistant trust evaluation model. Compared with existing approaches, the proposed dynamic trust model performs better in defending multiple malicious attacks.
About Block Dynamic Model of Earthquake Source.
Gusev, G. A.; Gufeld, I. L.
One may state the absence of a progress in the earthquake prediction papers. The short-term prediction (diurnal period, localisation being also predicted) has practical meaning. Failure is due to the absence of the adequate notions about geological medium, particularly, its block structure and especially in the faults. Geological and geophysical monitoring gives the basis for the notion about geological medium as open block dissipative system with limit energy saturation. The variations of the volume stressed state close to critical states are associated with the interaction of the inhomogeneous ascending stream of light gases (helium and hydrogen) with solid phase, which is more expressed in the faults. In the background state small blocks of the fault medium produce the sliding of great blocks in the faults. But for the considerable variations of ascending gas streams the formation of bound chains of small blocks is possible, so that bound state of great blocks may result (earthquake source). Recently using these notions we proposed a dynamical earthquake source model, based on the generalized chain of non-linear bound oscillators of Fermi-Pasta-Ulam type (FPU). The generalization concerns its in homogeneity and different external actions, imitating physical processes in the real source. Earlier weak inhomogeneous approximation without dissipation was considered. Last has permitted to study the FPU return (return to initial state). Probabilistic properties in quasi periodic movement were found. The chain decay problem due to non-linearity and external perturbations was posed. The thresholds and dependence of life- time of the chain are studied. The great fluctuations of life-times are discovered. In the present paper the rigorous consideration of the inhomogeneous chain including the dissipation is considered. For the strong dissipation case, when the oscillation movements are suppressed, specific effects are discovered. For noise action and constantly arising
VERIFICATION OF GEAR DYNAMIC MODEL IN DIFFERENT OPERATING CONDITIONS
Directory of Open Access Journals (Sweden)
Grzegorz PERUŃ
2014-09-01
Full Text Available The article presents the results of verification of the drive system dynamic model with gear. Tests were carried out on the real object in different operating conditions. For the same assumed conditions were also carried out simulation studies. Comparison of the results obtained from those two series of tests helped determine the suitability of the model and verify the possibility of replacing experimental research by simulations with use of dynamic model.
Modeling aspects of wave kinematics in offshore structures dynamics
International Nuclear Information System (INIS)
Spanos, P.D.; Ghanem, R.; Bhattacharjee, S.
1993-01-01
Magnitude and phase related issues of modeling of ocean wave kinematics are addressed. Causal and non-causal filters are examined. It is shown that if for a particular ocean engineering problem only the magnitude representation of wave spectra spatial relation is critical, analog filters can be quite useful models in conjunction with the technique of statistical linearization, for calculating dynamic analyses. This is illustrated by considering the dynamic response of a simple model of a guyed tower
On the dynamics of k-essence models
International Nuclear Information System (INIS)
Jorge, Pedro; Mimoso, Jose P; Wands, David
2007-01-01
We investigate cosmological dynamics of models with higher-order corrections to the canonical (second-order) kinetic lagrangian for a scalar field, which have been termed k -essence . We study the qualitative dynamics of simple purely kinetic k-essence models and find that the simplest attempts to construct non-singular cosmological models by including higher-order terms in the kinetic lagrangian fail because of a different type of singularity where the scalar field theory becomes ill-defined
Complex Price Dynamics in the Modified Kaldorian Model
Czech Academy of Sciences Publication Activity Database
Kodera, Jan; Van Tran, Q.; Vošvrda, Miloslav
2013-01-01
Roč. 22, č. 3 (2013), s. 358-384 ISSN 1210-0455 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : Priice dynamics, * numerical examples * two-equation model * four-equation model * nonlinear time series analysis Subject RIV: AH - Economics Impact factor: 0.208, year: 2013 http://library.utia.cas.cz/separaty/2013/E/kodera-model of price dynamics and chaos.pdf
Dynamical phase transitions in spin models and automata
International Nuclear Information System (INIS)
Derrida, B.
1989-01-01
Some of the models and methods developed in the study of the dynamics of spin models and automata are described. Special attention is given to the distance method which consists of comparing the time evolution of two configurations. The method is used to obtain the phase boundary between a frozen and a chaotic phase in the case of deterministic models. For stochastic systems the method is used to obtain dynamical phase transitions
Model and simulation of Krause model in dynamic open network
Zhu, Meixia; Xie, Guangqiang
2017-08-01
The construction of the concept of evolution is an effective way to reveal the formation of group consensus. This study is based on the modeling paradigm of the HK model (Hegsekmann-Krause). This paper analyzes the evolution of multi - agent opinion in dynamic open networks with member mobility. The results of the simulation show that when the number of agents is constant, the interval distribution of the initial distribution will affect the number of the final view, The greater the distribution of opinions, the more the number of views formed eventually; The trust threshold has a decisive effect on the number of views, and there is a negative correlation between the trust threshold and the number of opinions clusters. The higher the connectivity of the initial activity group, the more easily the subjective opinion in the evolution of opinion to achieve rapid convergence. The more open the network is more conducive to the unity of view, increase and reduce the number of agents will not affect the consistency of the group effect, but not conducive to stability.
Dynamic modeling of ultrafiltration membranes for whey separation processes
Saltik, M.B.; Ozkan, L.; Jacobs, M.; van der Padt, A.
2017-01-01
In this paper, we present a control relevant rigorous dynamic model for an ultrafiltration membrane unit in a whey separation process. The model consists of a set of differential algebraic equations and is developed for online model based applications such as model based control and process
Modelling, simulation and applications of longitudinal train dynamics
Cole, Colin; Spiryagin, Maksym; Wu, Qing; Sun, Yan Quan
2017-10-01
Significant developments in longitudinal train simulation and an overview of the approaches to train models and modelling vehicle force inputs are firstly presented. The most important modelling task, that of the wagon connection, consisting of energy absorption devices such as draft gears and buffers, draw gear stiffness, coupler slack and structural stiffness is then presented. Detailed attention is given to the modelling approaches for friction wedge damped and polymer draft gears. A significant issue in longitudinal train dynamics is the modelling and calculation of the input forces - the co-dimensional problem. The need to push traction performances higher has led to research and improvement in the accuracy of traction modelling which is discussed. A co-simulation method that combines longitudinal train simulation, locomotive traction control and locomotive vehicle dynamics is presented. The modelling of other forces, braking propulsion resistance, curve drag and grade forces are also discussed. As extensions to conventional longitudinal train dynamics, lateral forces and coupler impacts are examined in regards to interaction with wagon lateral and vertical dynamics. Various applications of longitudinal train dynamics are then presented. As an alternative to the tradition single wagon mass approach to longitudinal train dynamics, an example incorporating fully detailed wagon dynamics is presented for a crash analysis problem. Further applications of starting traction, air braking, distributed power, energy analysis and tippler operation are also presented.
Mass-casualty events at schools: a national preparedness survey.
Graham, James; Shirm, Steve; Liggin, Rebecca; Aitken, Mary E; Dick, Rhonda
2006-01-01
Recent school shootings and terrorist events have demonstrated the need for well-coordinated planning for school-based mass-casualty events. The objective of this study was to document the preparedness of public schools in the United States for the prevention of and the response to a mass-casualty event. A survey was mailed to 3670 school superintendents of public school districts that were chosen at random from a list of school districts from the National Center for Education Statistics of the US Department of Education in January 2004. A second mailing was sent to nonresponders in May 2004. Descriptive statistics were used for survey variables, and the chi2 test was used to compare urban versus rural preparedness. The response rate was 58.2% (2137 usable surveys returned). Most (86.3%) school superintendents reported having a response plan, but fewer (57.2%) have a plan for prevention. Most (95.6%) have an evacuation plan, but almost one third (30%) had never conducted a drill. Almost one quarter (22.1%) have no disaster plan provisions for children with special health care needs, and one quarter reported having no plans for postdisaster counseling. Almost half (42.8%) had never met with local ambulance officials to discuss emergency planning. Urban school districts were better prepared than rural districts on almost all measures in the survey. There are important deficiencies in school emergency/disaster planning. Rural districts are less well prepared than urban districts. Disaster/mass-casualty preparedness of schools should be improved through coordination of school officials and local medical and emergency officials.
A distributed dynamic model of a monolith hydrogen membrane reactor
International Nuclear Information System (INIS)
Michelsen, Finn Are; Wilhelmsen, Øivind; Zhao, Lei; Aasen, Knut Ingvar
2013-01-01
Highlights: ► We model a rigorous distributed dynamic model for a HMR unit. ► The model includes enough complexity for steady-state and dynamic analysis. ► Simulations show that the model is non-linear within the normal operating range. ► The model is useful for studying and handling disturbances such as inlet changes and membrane leakage. - Abstract: This paper describes a distributed mechanistic dynamic model of a hydrogen membrane reformer unit (HMR) used for methane steam reforming. The model is based on a square channel monolith structure concept, where air flows adjacent to a mix of natural gas and water distributed in a chess pattern of channels. Combustion of hydrogen gives energy to the endothermic steam reforming reactions. The model is used for both steady state and dynamic analyses. It therefore needs to be computationally attractive, but still include enough complexity to study the important steady state and dynamic features of the process. Steady-state analysis of the model gives optimum for the steam to carbon and steam to oxygen ratios, where the conversion of methane is 92% and the hydrogen used as energy for the endothermic reactions is 28% at the nominal optimum. The dynamic analysis shows that non-linear control schemes may be necessary for satisfactory control performance
Performance of portable ventilators for mass-casualty care.
Blakeman, Thomas C; Rodriquez, Dario; Dorlac, Warren C; Hanseman, Dennis J; Hattery, Ellie; Branson, Richard D
2011-10-01
Disasters and mass-casualty scenarios may overwhelm medical resources regardless of the level of preparation. Disaster response requires medical equipment, such as ventilators, that can be operated under adverse circumstances and should be able to provide respiratory support for a variety of patient populations. The objective of this study was to evaluate the performance of three portable ventilators designed to provide ventilatory support outside the hospital setting and in mass-casualty incidents, and their adherence to the Task Force for Mass Critical Care recommendations for mass-casualty care ventilators. Each device was evaluated at minimum and maximum respiratory rate and tidal volume settings to determine the accuracy of set versus delivered VT at lung compliance settings of 0.02, 0.08 and 0.1 L/cm H20 with corresponding resistance settings of 10, 25, and 5 cm H2O/L/sec, to simulate patients with ARDS, severe asthma, and normal lungs. Additionally, different FIO2 settings with each device (if applicable) were evaluated to determine accuracy of FIO2 delivery and evaluate the effect on delivered VT. Ventilators also were tested for duration of battery life. VT decreased with all three devices as compliance decreased. The decrease was more pronounced when the internal compressor was activated. At the 0.65 FIO2 setting on the MCV 200, the measured FIO2 varied widely depending on the set VT. Battery life range was 311-582 minutes with the 73X having the longest battery life. Delivered VT decreased toward the end of battery life with the SAVe having the largest decrease. The respiratory rate on the SAVe also decreased approaching the end of battery life. The 73X and MCV 200 were the closest to satisfying the Task Force for Mass Critical Care requirements for mass casualty ventilators, although neither had the capability to provide PEEP. The 73X provided the most consistent tidal volume delivery across all compliances, had the longest battery duration and the
Nuclear and radiological risk: contaminated mass casualties in the hospital
International Nuclear Information System (INIS)
Telion, C.; Lejay, M.; Carli, P.
2006-01-01
The basic scenario for the medical response organization is the explosion of the dirty bomb in public places spreading radioactive material and contaminating casualties. The French plan gives precise directions for the organization of the emergency room and the simple protective measures for medical staff and equipment to avoid dissemination and contamination into the hospital. Decontamination consists of the undressing of the victims followed by showering. The detection of the contamination can limit the time-consuming unnecessary decontamination procedure and the radioactive waste. Medical and paramedical staff is trained to wear protective disposal paper suits and to direct the procedure of decontamination. (author)
Mixing of the Glauber dynamics for the ferromagnetic Potts model
Bordewich, Magnus; Greenhill, Catherine; Patel, Viresh
2013-01-01
We present several results on the mixing time of the Glauber dynamics for sampling from the Gibbs distribution in the ferromagnetic Potts model. At a fixed temperature and interaction strength, we study the interplay between the maximum degree ($\\Delta$) of the underlying graph and the number of colours or spins ($q$) in determining whether the dynamics mixes rapidly or not. We find a lower bound $L$ on the number of colours such that Glauber dynamics is rapidly mixing if at least $L$ colours...
Modeling workforce demand in North Dakota: a System Dynamics approach
Muminova, Adiba
2015-01-01
This study investigates the dynamics behind the workforce demand and attempts to predict the potential effects of future changes in oil prices on workforce demand in North Dakota. The study attempts to join System Dynamics and Input-Output models in order to overcome shortcomings in both of the approaches and gain a more complete understanding of the issue of workforce demand. A system dynamics simulation of workforce demand within different economic sector...
Dynamic shape transitions in the sdg boson model
International Nuclear Information System (INIS)
Kuyucak, S.
1992-01-01
The dynamic evolution of shapes in the sdg interacting boson model is investigated using the angular momentum projected mean field theory. Deformed nuclei are found to be quite stable against shape changes but transitional nuclei could exhibit dynamic shape transitions in the region L = 10-20. Conditions of existence and experimental signatures for dynamic shape transitions are discussed together with a likely candidate, 192 Os. 13 refs., 3 figs
Dynamic shape transitions in the sdg boson model
Kuyucak, S.
The dynamic evolution of shapes in the sdg interacting boson model is investigated using the angular momentum projected mean field theory. Deformed nuclei are found to be quite stable against shape changes but transitional nuclei could exhibit dynamic shape transitions in the region L = 10-20. Conditions of existence and experimental signatures for dynamic shape transitions are discussed together with a likely candidate, 192Os.
Dynamic shape transitions in the sdg boson model
Energy Technology Data Exchange (ETDEWEB)
Kuyucak, S. (Melbourne Univ., Parkville (Australia). School of Physics)
1992-01-01
The dynamic evolution of shapes in the sdg interacting bosun model is investigated using the angular momentum projected mean field theory. Deformed nuclei are found to be quite stable against shape changes but transitional nuclei could exhibit dynamic shape transitions in the region L = 10-20. Conditions of existence and experimental signatures for dynamic shape transitions are discussed together with a likely candidate, {sup 192}Os. (author).
van Geert, P
Dynamic systems theory conceives of development as a self-organizational process. Both complexity and order emerge as a product of elementary principles of interaction between components involved in the developmental process. This article presents a dynamic systems model based on a general dual
Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model
Reid, Daniel A. P.; Hildenbrandt, H.; Hemelrijk, C. K.; Padding, J.T.
2012-01-01
The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed
Dynamic modeling of the advanced neutron source reactor
International Nuclear Information System (INIS)
March-Leuba, J.; Ibn-Khayat, M.
1990-01-01
The purpose of this paper is to provide a summary description and some applications of a computer model that has been developed to simulate the dynamic behavior of the advanced neutron source (ANS) reactor. The ANS dynamic model is coded in the advanced continuous simulation language (ACSL), and it represents the reactor core, vessel, primary cooling system, and secondary cooling systems. The use of a simple dynamic model in the early stages of the reactor design has proven very valuable not only in the development of the control and plant protection system but also of components such as pumps and heat exchangers that are usually sized based on steady-state calculations
Creation and Reliability Analysis of Vehicle Dynamic Weighing Model
Directory of Open Access Journals (Sweden)
Zhi-Ling XU
2014-08-01
Full Text Available In this paper, it is modeled by using ADAMS to portable axle load meter of dynamic weighing system, controlling a single variable simulation weighing process, getting the simulation weighing data under the different speed and weight; simultaneously using portable weighing system with the same parameters to achieve the actual measurement, comparative analysis the simulation results under the same conditions, at 30 km/h or less, the simulation value and the measured value do not differ by more than 5 %, it is not only to verify the reliability of dynamic weighing model, but also to create possible for improving algorithm study efficiency by using dynamic weighing model simulation.
U.S. Environmental Protection Agency — The Marine Casualty and Pollution Data files provide details about marine casualty and pollution incidents investigated by Coast Guard Offices throughout the United...
1995-02-01
World wide merchant vessel fire and explosion data were analyzed to determine the contribution of these casualties to the marine pollution problem. The source of information is the Lloyd's Casualty Information System Data Base. The major findings of ...
Efficient Neural Network Modeling for Flight and Space Dynamics Simulation
Directory of Open Access Journals (Sweden)
Ayman Hamdy Kassem
2011-01-01
Full Text Available This paper represents an efficient technique for neural network modeling of flight and space dynamics simulation. The technique will free the neural network designer from guessing the size and structure for the required neural network model and will help to minimize the number of neurons. For linear flight/space dynamics systems, the technique can find the network weights and biases directly by solving a system of linear equations without the need for training. Nonlinear flight dynamic systems can be easily modeled by training its linearized models keeping the same network structure. The training is fast, as it uses the linear system knowledge to speed up the training process. The technique is tested on different flight/space dynamic models and showed promising results.
Fractional-order in a macroeconomic dynamic model
David, S. A.; Quintino, D. D.; Soliani, J.
2013-10-01
In this paper, we applied the Riemann-Liouville approach in order to realize the numerical simulations to a set of equations that represent a fractional-order macroeconomic dynamic model. It is a generalization of a dynamic model recently reported in the literature. The aforementioned equations have been simulated for several cases involving integer and non-integer order analysis, with some different values to fractional order. The time histories and the phase diagrams have been plotted to visualize the effect of fractional order approach. The new contribution of this work arises from the fact that the macroeconomic dynamic model proposed here involves the public sector deficit equation, which renders the model more realistic and complete when compared with the ones encountered in the literature. The results reveal that the fractional-order macroeconomic model can exhibit a real reasonable behavior to macroeconomics systems and might offer greater insights towards the understanding of these complex dynamic systems.
Modeling Academic Education Processes by Dynamic Storyboarding
Sakurai, Yoshitaka; Dohi, Shinichi; Tsuruta, Setsuo; Knauf, Rainer
2009-01-01
In high-level education such as university studies, there is a flexible but complicated system of subject offerings and registration rules such as prerequisite subjects. Those offerings, connected with registration rules, should be matched to the students' learning needs and desires, which change dynamically. Students need assistance in such a…
Adaptation dynamics of the quasispecies model
Indian Academy of Sciences (India)
We study the adaptation dynamics of an initially maladapted population evolving via the elementary processes of mutation and selection. The evolution occurs on rugged fitness landscapes which are defined on the multi-dimensional genotypic space and have many local peaks separated by low fitness valleys. We mainly ...
A fermionic molecular dynamics technique to model nuclear matter
International Nuclear Information System (INIS)
Vantournhout, K.; Jachowicz, N.; Ryckebusch, J.
2009-01-01
Full text: At sub-nuclear densities of about 10 14 g/cm 3 , nuclear matter arranges itself in a variety of complex shapes. This can be the case in the crust of neutron stars and in core-collapse supernovae. These slab like and rod like structures, designated as nuclear pasta, have been modelled with classical molecular dynamics techniques. We present a technique, based on fermionic molecular dynamics, to model nuclear matter at sub-nuclear densities in a semi classical framework. The dynamical evolution of an antisymmetric ground state is described making the assumption of periodic boundary conditions. Adding the concepts of antisymmetry, spin and probability distributions to classical molecular dynamics, brings the dynamical description of nuclear matter to a quantum mechanical level. Applications of this model vary from investigation of macroscopic observables and the equation of state to the study of fundamental interactions on the microscopic structure of the matter. (author)
Dynamic Evolution Model Based on Social Network Services
Xiong, Xi; Gou, Zhi-Jian; Zhang, Shi-Bin; Zhao, Wen
2013-11-01
Based on the analysis of evolutionary characteristics of public opinion in social networking services (SNS), in the paper we propose a dynamic evolution model, in which opinions are coupled with topology. This model shows the clustering phenomenon of opinions in dynamic network evolution. The simulation results show that the model can fit the data from a social network site. The dynamic evolution of networks accelerates the opinion, separation and aggregation. The scale and the number of clusters are influenced by confidence limit and rewiring probability. Dynamic changes of the topology reduce the number of isolated nodes, while the increased confidence limit allows nodes to communicate more sufficiently. The two effects make the distribution of opinion more neutral. The dynamic evolution of networks generates central clusters with high connectivity and high betweenness, which make it difficult to control public opinions in SNS.
The Quadrotor Dynamic Modeling and Indoor Target Tracking Control Method
Directory of Open Access Journals (Sweden)
Dewei Zhang
2014-01-01
Full Text Available A reliable nonlinear dynamic model of the quadrotor is presented. The nonlinear dynamic model includes actuator dynamic and aerodynamic effect. Since the rotors run near a constant hovering speed, the dynamic model is simplified at hovering operating point. Based on the simplified nonlinear dynamic model, the PID controllers with feedback linearization and feedforward control are proposed using the backstepping method. These controllers are used to control both the attitude and position of the quadrotor. A fully custom quadrotor is developed to verify the correctness of the dynamic model and control algorithms. The attitude of the quadrotor is measured by inertia measurement unit (IMU. The position of the quadrotor in a GPS-denied environment, especially indoor environment, is estimated from the downward camera and ultrasonic sensor measurements. The validity and effectiveness of the proposed dynamic model and control algorithms are demonstrated by experimental results. It is shown that the vehicle achieves robust vision-based hovering and moving target tracking control.
46 CFR 4.05-12 - Alcohol or drug use by individuals directly involved in casualties.
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Alcohol or drug use by individuals directly involved in... § 4.05-12 Alcohol or drug use by individuals directly involved in casualties. (a) For each marine... evidence of alcohol or drug use by individuals directly involved in the casualty. (b) The marine employer...
46 CFR 122.210 - Alcohol or drug use by individuals directly involved in casualties.
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Alcohol or drug use by individuals directly involved in... PASSENGERS OPERATIONS Marine Casualties and Voyage Records § 122.210 Alcohol or drug use by individuals... alcohol or drug use by individuals directly involved in the casualty. (b) The owner, agent, master, or...
46 CFR 122.220 - Records of a voyage resulting in a marine casualty.
2010-10-01
....220 Section 122.220 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER... OPERATIONS Marine Casualties and Voyage Records § 122.220 Records of a voyage resulting in a marine casualty... custody thereof, shall make these records available upon request, to a duly authorized investigating...
Patient distribution in a mass casualty event of an airplane crash.
Postma, Ingri L E; Weel, Hanneke; Heetveld, Martin J; van der Zande, Ineke; Bijlsma, Taco S; Bloemers, Frank W; Goslings, J Carel
2013-11-01
Difficulties have been reported in the patient distribution during Mass Casualty Incidents. In this study we analysed the regional patient distribution protocol (PDP) and the actual patient distribution after the 2009 Turkish Airlines crash near Amsterdam. Analysis of the patient distribution of 126 surviving casualties of the crash by collecting data on medical treatment capacity, number of patients received per hospital, triage classification, Injury Severity Score (ISS), secondary transfers, distance from the crash site, and the critical mortality rate. The PDP holds ambiguous definitions of medical treatment capacity and was not followed. There were 14 receiving hospitals (distance from crash: 5.8-53.5 km); four hospitals received 133-213% of their treatment capacity, and 5 hospitals received 1 patient. Three hospitals within 20 km of the crash did not receive any casualties. Level I trauma centres received 89% of the 'critical' casualties and 92% of the casualties with ISS ≥ 16. Only 3 casualties were secondarily transferred, and no casualties died in, or on the way to hospital (critical mortality rate=0%). Patient distribution worked out well after the crash as secondary transfers were low and critical mortality rate was zero. However, the regional PDP was not followed in this MCI and casualties were unevenly distributed among hospitals. The PDP is indistinctive, and should be updated in cooperation between Emergency Services, surrounding hospitals, and Schiphol International Airport as a high risk area. Copyright © 2013 Elsevier Ltd. All rights reserved.
Biomolecular Modeling in a Process Dynamics and Control Course
Gray, Jeffrey J.
2006-01-01
I present modifications to the traditional course entitled, "Process dynamics and control," which I renamed "Modeling, dynamics, and control of chemical and biological processes." Additions include the central dogma of biology, pharmacokinetic systems, population balances, control of gene transcription, and large-scale…
Stochastic Online Learning in Dynamic Networks under Unknown Models
2016-08-02
The key is to develop online learning strategies at each individual node. Specifically, through local information exchange with its neighbors, each...infinitely repeated game with incomplete information and developed a dynamic pricing strategy referred to as Competitive and Cooperative Demand Learning...Stochastic Online Learning in Dynamic Networks under Unknown Models This research aims to develop fundamental theories and practical algorithms for
Modelling flow dynamics in water distribution networks using ...
African Journals Online (AJOL)
One such approach is the Artificial Neural Networks (ANNs) technique. The advantage of ANNs is that they are robust and can be used to model complex linear and non-linear systems without making implicit assumptions. ANNs can be trained to forecast flow dynamics in a water distribution network. Such flow dynamics ...
Varying parameter models to accommodate dynamic promotion effects
Foekens, E.W.; Leeflang, P.S.H.; Wittink, D.R.
1999-01-01
The purpose of this paper is to examine the dynamic effects of sales promotions. We create dynamic brand sales models (for weekly store-level scanner data) by relating store intercepts and a brand's own price elasticity to a measure of the cumulated previous price discounts - amount and time - for
Modeling self-occlusions in dynamic shape and appearance tracking
Yang, Yanchao; Sundaramoorthi, Ganesh
2013-01-01
We present a method to track the precise shape of a dynamic object in video. Joint dynamic shape and appearance models, in which a template of the object is propagated to match the object shape and radiance in the next frame, are advantageous over
Inference in High-dimensional Dynamic Panel Data Models
DEFF Research Database (Denmark)
Kock, Anders Bredahl; Tang, Haihan
We establish oracle inequalities for a version of the Lasso in high-dimensional fixed effects dynamic panel data models. The inequalities are valid for the coefficients of the dynamic and exogenous regressors. Separate oracle inequalities are derived for the fixed effects. Next, we show how one can...
Model tests on dynamic performance of RC shear walls
International Nuclear Information System (INIS)
Nagashima, Toshio; Shibata, Akenori; Inoue, Norio; Muroi, Kazuo.
1991-01-01
For the inelastic dynamic response analysis of a reactor building subjected to earthquakes, it is essentially important to properly evaluate its restoring force characteristics under dynamic loading condition and its damping performance. Reinforced concrete shear walls are the main structural members of a reactor building, and dominate its seismic behavior. In order to obtain the basic information on the dynamic restoring force characteristics and damping performance of shear walls, the dynamic test using a large shaking table, static displacement control test and the pseudo-dynamic test on the models of a shear wall were conducted. In the dynamic test, four specimens were tested on a large shaking table. In the static test, four specimens were tested, and in the pseudo-dynamic test, three specimens were tested. These tests are outlined. The results of these tests were compared, placing emphasis on the restoring force characteristics and damping performance of the RC wall models. The strength was higher in the dynamic test models than in the static test models mainly due to the effect of loading rate. (K.I.)
HOURS, Martine; KHATI, Inès; CHARNAY, Pierrette; CHOSSEGROS, Laetitia; TARDY, Hélène; TOURNIER, Charlène; PERRINE, Anne-Laure; LUAUTE, Jacques; LAUMON, Bernard
2014-01-01
Objectives: To compare health status, family and occupational impact and quality of life one year after an accident between casualties with whiplash versus other mild injuries, and to explore the relation between initial injury (whiplash vs. other) and quality of life. Design: Prospective cohort study. Subjects: The study used data from the ESPARR cohort (a representative cohort of road accident casualties) and included 173 casualties with 'pure' whiplash and a population of 207 casualties wi...
Validation of the dynamic model for a pressurized water reactor
International Nuclear Information System (INIS)
Zwingelstein, Gilles.
1979-01-01
Dynamic model validation is a necessary procedure to assure that the developed empirical or physical models are satisfactorily representing the dynamic behavior of the actual plant during normal or abnormal transients. For small transients, physical models which represent isolated core, isolated steam generator and the overall pressurized water reactor are described. Using data collected during the step power changes that occured during the startup procedures, comparisons of experimental and actual transients are given at 30% and 100% of full power. The agreement between the transients derived from the model and those recorded on the plant indicates that the developed models are well suited for use for functional or control studies
A dynamic stall model for airfoils with deformable trailing edges
DEFF Research Database (Denmark)
Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Dan Christian
2007-01-01
on an airfoil section undergoing arbitrary motion in heave, lead-lag, pitch, Trailing Edge (TE) flapping. In the linear region, the model reduces to the inviscid model of Gaunaa [4], which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed......The present work contains an extension of the Beddoes-Leishman (B-L) type dynamic stall model, as described by Hansen et al. [7]. In this work a Deformable Trailing Edge Geometry (DTEG) has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments...
Quantum dynamics modeled by interacting trajectories
Cruz-Rodríguez, L.; Uranga-Piña, L.; Martínez-Mesa, A.; Meier, C.
2018-03-01
We present quantum dynamical simulations based on the propagation of interacting trajectories where the effect of the quantum potential is mimicked by effective pseudo-particle interactions. The method is applied to several quantum systems, both for bound and scattering problems. For the bound systems, the quantum ground state density and zero point energy are shown to be perfectly obtained by the interacting trajectories. In the case of time-dependent quantum scattering, the Eckart barrier and uphill ramp are considered, with transmission coefficients in very good agreement with standard quantum calculations. Finally, we show that via wave function synthesis along the trajectories, correlation functions and energy spectra can be obtained based on the dynamics of interacting trajectories.
Handbook of electrical power system dynamics modeling, stability, and control
Eremia, Mircea
2013-01-01
Complete guidance for understanding electrical power system dynamics and blackouts This handbook offers a comprehensive and up-to-date treatment of power system dynamics. Addressing the full range of topics, from the fundamentals to the latest technologies in modeling, stability, and control, Handbook of Electrical Power System Dynamics provides engineers with hands-on guidance for understanding the phenomena leading to blackouts so they can design the most appropriate solutions for a cost-effective and reliable operation. Focusing on system dynamics, the book details
A dynamic model of functioning of a bank
Malafeyev, Oleg; Awasthi, Achal; Zaitseva, Irina; Rezenkov, Denis; Bogdanova, Svetlana
2018-04-01
In this paper, we analyze dynamic programming as a novel approach to solve the problem of maximizing the profits of a bank. The mathematical model of the problem and the description of bank's work is described in this paper. The problem is then approached using the method of dynamic programming. Dynamic programming makes sure that the solutions obtained are globally optimal and numerically stable. The optimization process is set up as a discrete multi-stage decision process and solved with the help of dynamic programming.
A Simple Model of Pharmaceutical Price Dynamics
Bhattacharya, Jayanta; Vogt, William B
2003-01-01
Branded pharmaceutical firms use price and promotional strategy to manage public knowledge about their drugs. We propose a dynamic theory of pharmaceutical pricing and conduct an exploratory empirical analysis inspired by the theory. Our theory predicts a pattern of increasing prices and decreasing promotional activities over a drug's life cycle. Prices are kept low and advertising levels high early in the life cycle in order to build public knowledge about the drug. As knowledge grows, price...
A dynamic model of renal blood flow autoregulation
DEFF Research Database (Denmark)
Holstein-Rathlou, N H; Marsh, D J
1994-01-01
To test whether a mathematical model combining dynamic models of the tubuloglomerular feedback (TGF) mechanism and the myogenic mechanism was sufficient to explain dynamic autoregulation of renal blood flow, we compared model simulations with experimental data. To assess the dynamic characteristics...... of renal autoregulation, a broad band perturbation of the arterial pressure was employed in both the simulations and the experiments. Renal blood flow and tubular pressure were used as response variables in the comparison. To better approximate the situation in vivo where a large number of individual...... data, which shows a unimodal curve for the admittance phase. The ability of the model to reproduce the experimental data supports the hypothesis that dynamic autoregulation of renal blood flow is due to the combined action of TGF and the myogenic response....
Marginal Utility of Conditional Sensitivity Analyses for Dynamic Models
Background/Question/MethodsDynamic ecological processes may be influenced by many factors. Simulation models thatmimic these processes often have complex implementations with many parameters. Sensitivityanalyses are subsequently used to identify critical parameters whose uncertai...
Dynamical Model of Rocket Propellant Loading with Liquid Hydrogen
National Aeronautics and Space Administration — A dynamical model describing the multi-stage process of rocket propellant loading has been developed. It accounts for both the nominal and faulty regimes of...
Cognitive Models for Learning to Control Dynamic Systems
National Research Council Canada - National Science Library
Eberhart, Russ; Hu, Xiaohui; Chen, Yaobin
2008-01-01
Report developed under STTR contract for topic "Cognitive models for learning to control dynamic systems" demonstrated a swarm intelligence learning algorithm and its application in unmanned aerial vehicle (UAV) mission planning...
On natural hierarchy in dynamically broken gauge models
International Nuclear Information System (INIS)
Frere, J.M.
1980-01-01
A model based on dynamical symmetry breaking provides a naturally large 'mass hierarchy'. Few fermions are needed at intermediate energies, and asymptotic freedom of usual interactions is therefore not imperiled. (orig.)
Functional dynamic factor models with application to yield curve forecasting
Hays, Spencer; Shen, Haipeng; Huang, Jianhua Z.
2012-01-01
resulted in a trade-off between goodness of fit and consistency with economic theory. To address this, herein we propose a novel formulation which connects the dynamic factor model (DFM) framework with concepts from functional data analysis: a DFM
Slow logarithmic relaxation in models with hierarchically constrained dynamics
Brey, J. J.; Prados, A.
2000-01-01
A general kind of models with hierarchically constrained dynamics is shown to exhibit logarithmic anomalous relaxation, similarly to a variety of complex strongly interacting materials. The logarithmic behavior describes most of the decay of the response function.
The ising model on the dynamical triangulated random surface
International Nuclear Information System (INIS)
Aleinov, I.D.; Migelal, A.A.; Zmushkow, U.V.
1990-01-01
The critical properties of Ising model on the dynamical triangulated random surface embedded in D-dimensional Euclidean space are investigated. The strong coupling expansion method is used. The transition to thermodynamical limit is performed by means of continuous fractions
Bistable dynamics of an insect–pathogen model
Indian Academy of Sciences (India)
acterize diseases that spread through environmental propagules or through random contact ... This fact motivated us to investigate the effects of cost of disease resistance .... Therefore, the model may have complex dynamic behaviour depen-.
PM Synchronous Motor Dynamic Modeling with Genetic Algorithm ...
African Journals Online (AJOL)
Adel
This paper proposes dynamic modeling simulation for ac Surface Permanent Magnet Synchronous ... Simulations are implemented using MATLAB with its genetic algorithm toolbox. .... selection, the process that drives biological evolution.
Management of the mass casualty from the 2001 Jos crisis.
Ozoilo, K N; Kidmas, A T; Nwadiaro, H C; Iya, D; Onche, I I; Misauno, M A; Sule, A Z; Yiltok, S J; Uba, A F; Ramyil, V M; Dakum, N K; Ugwu, B T
2014-01-01
We report our experience in the hospital management of mass casualty following the Jos civil crisis of 2001. A retrospective analysis of the records of patients managed in the Jos civil crisis of September 2001, in Plateau State, Nigeria. Information extracted included demographic data of patients, mechanisms of injury, nature and site of injury, treatment modalities and outcome of care. A total of 463 crisis victims presented over a 5 day period. Out of these, the records of 389 (84.0%) were available and analyzed. There were 348 (89.5%) males and 41 females (10.5%) aged between 3 weeks and 70 years, with a median age of 26 years. Most common mechanisms of injury were gunshot in 176 patients (45.2%) and blunt injuries from clubs and sticks in 140 patients (36.0%). Debridement with or without suturing was the most common surgical procedure, performed in 128 patients (33%) followed by exploratory laparotomy in 27 (6.9%) patients. Complications were documented in 55 patients (14.1%) and there were 16 hospital deaths (4.1% mortality). Challenges included exhaustion of supplies, poor communication and security threats both within the hospital and outside. Most patients reaching the hospital alive had injuries that did not require lifesaving interventions. Institutional preparedness plan would enable the hospital to have an organized approach to care, with better chances of success. More effective means of containing crises should be employed to reduce the attendant casualty rate.
19 CFR 158.21 - Allowance in duties for casualty, loss, or theft while in Customs custody.
2010-04-01
... 19 Customs Duties 2 2010-04-01 2010-04-01 false Allowance in duties for casualty, loss, or theft... LOST, DAMAGED, ABANDONED, OR EXPORTED Casualty, Loss, or Theft While in Customs Custody § 158.21 Allowance in duties for casualty, loss, or theft while in Customs custody. Section 563(a), Tariff Act of...
Latent Growth and Dynamic Structural Equation Models.
Grimm, Kevin J; Ram, Nilam
2018-05-07
Latent growth models make up a class of methods to study within-person change-how it progresses, how it differs across individuals, what are its determinants, and what are its consequences. Latent growth methods have been applied in many domains to examine average and differential responses to interventions and treatments. In this review, we introduce the growth modeling approach to studying change by presenting different models of change and interpretations of their model parameters. We then apply these methods to examining sex differences in the development of binge drinking behavior through adolescence and into adulthood. Advances in growth modeling methods are then discussed and include inherently nonlinear growth models, derivative specification of growth models, and latent change score models to study stochastic change processes. We conclude with relevant design issues of longitudinal studies and considerations for the analysis of longitudinal data.
Stochastic dynamical models for ecological regime shifts
DEFF Research Database (Denmark)
Møller, Jan Kloppenborg; Carstensen, Jacob; Madsen, Henrik
the physical and biological knowledge of the system, and nonlinearities introduced here can generate regime shifts or enhance the probability of regime shifts in the case of stochastic models, typically characterized by a threshold value for the known driver. A simple model for light competition between...... definition and stability of regimes become less subtle. Ecological regime shifts and their modeling must be viewed in a probabilistic manner, particularly if such model results are to be used in ecosystem management....
Business model dynamics: a case survey
de Reuver, Mark; Bouwman, Harry; Maclnnes, Ian
2009-01-01
In the turbulent world of e-commerce, companies can only survive by continuously reinventing their business models. However, because most studies look at business models as snapshots in time, there is little insight into how changing market-related, technological and regulatory conditions generally drive revisions in business models. In this paper, we examine which types of external drivers are strongest in forcing business models to change throughout their life cycle. To do so, we study 45 l...
Analytical and numerical modeling of sandbanks dynamics
Idier, Deborah; Astruc, Dominique
2003-01-01
Linear and nonlinear behavior of large-scale underwater bedform patterns like sandbanks are studied using linear stability analysis and numerical modeling. The model is based on depth-integrated hydrodynamics equations with a quadratic bottom friction law and a bed load sediment transport model
Five challenges in modelling interacting strain dynamics
DEFF Research Database (Denmark)
Wikramaratna, Paul S; Kurcharski, Adam; Gupta, Sunetra
2015-01-01
population models. Next we consider the nature of so-called “strain space”. We describe two key types of host heterogeneities, and explain how models could help generate a better understanding of their effects. Finally, for diseases with many strains, we consider the challenge of modelling how immunity...
Dynamic pricing models for electronic business
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
learning. We present a detailed example of an e-business market to show the ... to auction based models and §6 is devoted to game theoretic models. ..... Machine learning models: An e-business market provides a rich playground for online.
Numerical solution of dynamic equilibrium models under Poisson uncertainty
DEFF Research Database (Denmark)
Posch, Olaf; Trimborn, Timo
2013-01-01
We propose a simple and powerful numerical algorithm to compute the transition process in continuous-time dynamic equilibrium models with rare events. In this paper we transform the dynamic system of stochastic differential equations into a system of functional differential equations of the retar...... solution to Lucas' endogenous growth model under Poisson uncertainty are used to compute the exact numerical error. We show how (potential) catastrophic events such as rare natural disasters substantially affect the economic decisions of households....
A Dynamic Growth Model for Flows of Foreign Direct Investment
Yi-Hui Chiang; Yiming Li; Chih-Young Hung
2007-01-01
In this work, we for the first time study the dynamic flows of the foreign direct investment (FDI) with a dynamic growth theory. We define the FDI flow as a process which transmits throughout a given social system by way of diverse communication channels. In model formulation, seven assumptions are thus proposed and the foreign capital policy of the host country is considered as an external influence; in addition, the investment policy of the investing country is modeled as an internal influe...
Discretization model for nonlinear dynamic analysis of three dimensional structures
International Nuclear Information System (INIS)
Hayashi, Y.
1982-12-01
A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt
Game equilibrium models I evolution and game dynamics
1991-01-01
There are two main approaches towards the phenotypic analysis of frequency dependent natural selection. First, there is the approach of evolutionary game theory, which was introduced in 1973 by John Maynard Smith and George R. Price. In this theory, the dynamical process of natural selection is not modeled explicitly. Instead, the selective forces acting within a population are represented by a fitness function, which is then analysed according to the concept of an evolutionarily stable strategy or ESS. Later on, the static approach of evolutionary game theory has been complemented by a dynamic stability analysis of the replicator equations. Introduced by Peter D. Taylor and Leo B. Jonker in 1978, these equations specify a class of dynamical systems, which provide a simple dynamic description of a selection process. Usually, the investigation of the replicator dynamics centers around a stability analysis of their stationary solutions. Although evolutionary stability and dynamic stability both intend to charac...
Modeling and dynamic simulation of U-tube steam generator
International Nuclear Information System (INIS)
Cui Zhenghua; Jia Dounan; Chen Xuejun; Yu Erjun
1992-01-01
An accurate and simple dynamic mathematical model of U-tube steam generator is presented. It is solved by Adams method and Gear method respectively. The results of this model are in good agreements with that of Kerlin's model which has been validated by the tests. And the two calculating methods are compared
Development of a Dynamic Engine Brake Model for Control Purposes
Seykens, X.L.J.; Baert, R.S.G.; Willems, F.P.T.; Vink, W.; van den Heuvel, I.T.M.
2006-01-01
This paper presents the extension of an existing mean value dynamic engine model with new models for the combination of a compression release brake and an exhaust valve brake. The focus is on the prediction of engine brake torque, exhaust gas temperatures and mass flow rates. The implemented models
Development of a dynamic engine brake model for control purposes
Seykens, X.L.J.; Baert, R.S.G.; Willems, F.P.T.; Vink, W.; van den Heuvel, I.T.M.; Corde, G.
2007-01-01
This paper presents the extension of an existing mean value dynamic engine model with new models for the combination of a compression release brake and an exhaust valve brake. The focus is on the prediction of engine brake torque, exhaust gas temperatures and mass flow rates. The implemented models
A Dynamic Systems Theory Model of Visual Perception Development
Coté, Carol A.
2015-01-01
This article presents a model for understanding the development of visual perception from a dynamic systems theory perspective. It contrasts to a hierarchical or reductionist model that is often found in the occupational therapy literature. In this proposed model vision and ocular motor abilities are not foundational to perception, they are seen…
System Dynamic Modelling for a Balanced Scorecard: A Case Study
DEFF Research Database (Denmark)
Nielsen, Steen; Nielsen, Erland Hejn
Purpose - The purpose of this research is to make an analytical model of the BSC foundation by using a dynamic simulation approach for a 'hypothetical case' model, based on only part of an actual case study of BSC. Design/methodology/approach - The model includes five perspectives and a number...
Particle hopping vs. fluid-dynamical models for traffic flow
Energy Technology Data Exchange (ETDEWEB)
Nagel, K.
1995-12-31
Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.
Modeling dynamic effects of promotion on interpurchase times
D. Fok (Dennis); R. Paap (Richard); Ph.H.B.F. Franses (Philip Hans)
2002-01-01
textabstractIn this paper we put forward a duration model to analyze the dynamic effects of marketing-mix variables on interpurchase times. We extend the accelerated failure-time model with an autoregressive structure. An important feature of our model is that it allows for different long-run and
Dynamic wind turbine models in power system simulation tool
DEFF Research Database (Denmark)
Hansen, A.; Jauch, Clemens; Soerensen, P.
The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...
Optimum workforce-size model using dynamic programming approach
African Journals Online (AJOL)
This paper presents an optimum workforce-size model which determines the minimum number of excess workers (overstaffing) as well as the minimum total recruitment cost during a specified planning horizon. The model is an extension of other existing dynamic programming models for manpower planning in the sense ...
Spatial-temporal patterns in Mediterranean carnivore road casualties: Consequences for mitigation
Grilo, C.; Bissonette, J.A.; Santos-Reis, M.
2009-01-01
Many carnivores have been seriously impacted by the expansion of transportation systems and networks; however we know little about carnivore response to the extent and magnitude of road mortality, or which age classes may be disproportionately impacted. Recent research has demonstrated that wildlife-vehicle-collisions (WVC) involving carnivores are modulated by temporal and spatial factors. Thus, we investigated road mortality on a guild of small and medium-sized carnivores in southern Portugal using road-kill data obtained from a systematic 36 months monitoring period along highways (260 km) and national roads (314 km) by addressing the following questions: (a) which species and age class are most vulnerable to WVC? (b) are there temporal and/or spatial patterns in road-kill? and (c) which life-history and/or spatial factors influence the likelihood of collisions? We recorded a total of 806 carnivore casualties, which represented an average of 47 ind./100 km/year. Red fox and stone marten had the highest mortality rates. Our findings highlight three key messages: (1) the majority of road-killed individuals were adults of common species; (2) all carnivores, except genets, were more vulnerable during specific life-history phenological periods: higher casualties were observed when red fox and stone marten were provisioning young, Eurasian badger casualties occurred more frequently during dispersal, and higher Egyptian mongoose mortality occurred during the breeding period; and (3) modeling demonstrated that favorable habitat, curves in the road, and low human disturbance were major contributors to the deadliest road segments. Red fox carcasses were more likely to be found on road sections with passages distant from urban areas. Conversely, stone marten mortalities were found more often on national roads with high of cork oak woodland cover; Egyptian mongoose and genet road-kills were found more often on road segments close to curves. Based on our results, two key
Slow dynamics in translation-invariant quantum lattice models
Michailidis, Alexios A.; Žnidarič, Marko; Medvedyeva, Mariya; Abanin, Dmitry A.; Prosen, Tomaž; Papić, Z.
2018-03-01
Many-body quantum systems typically display fast dynamics and ballistic spreading of information. Here we address the open problem of how slow the dynamics can be after a generic breaking of integrability by local interactions. We develop a method based on degenerate perturbation theory that reveals slow dynamical regimes and delocalization processes in general translation invariant models, along with accurate estimates of their delocalization time scales. Our results shed light on the fundamental questions of the robustness of quantum integrable systems and the possibility of many-body localization without disorder. As an example, we construct a large class of one-dimensional lattice models where, despite the absence of asymptotic localization, the transient dynamics is exceptionally slow, i.e., the dynamics is indistinguishable from that of many-body localized systems for the system sizes and time scales accessible in experiments and numerical simulations.
Analyzing Oil Futures with a Dynamic Nelson-Siegel Model
DEFF Research Database (Denmark)
Hansen, Niels Strange; Lunde, Asger
In this paper we are interested in the term structure of futures contracts on oil. The objective is to specify a relatively parsimonious model which explains data well and performs well in a real time out of sample forecasting. The dynamic Nelson-Siegel model is normally used to analyze and forec......In this paper we are interested in the term structure of futures contracts on oil. The objective is to specify a relatively parsimonious model which explains data well and performs well in a real time out of sample forecasting. The dynamic Nelson-Siegel model is normally used to analyze...... and forecast interest rates of different maturities. The structure of oil futures resembles the structure of interest rates and this motivates the use of this model for our purposes. The data set is vast and the dynamic Nelson-Siegel model allows for a significant dimension reduction by introducing three...
Computational model of cellular metabolic dynamics
DEFF Research Database (Denmark)
Li, Yanjun; Solomon, Thomas; Haus, Jacob M
2010-01-01
of the cytosol and mitochondria. The model simulated skeletal muscle metabolic responses to insulin corresponding to human hyperinsulinemic-euglycemic clamp studies. Insulin-mediated rate of glucose disposal was the primary model input. For model validation, simulations were compared with experimental data......: intracellular metabolite concentrations and patterns of glucose disposal. Model variations were simulated to investigate three alternative mechanisms to explain insulin enhancements: Model 1 (M.1), simple mass action; M.2, insulin-mediated activation of key metabolic enzymes (i.e., hexokinase, glycogen synthase......, by application of mechanism M.3, the model predicts metabolite concentration changes and glucose partitioning patterns consistent with experimental data. The reaction rate fluxes quantified by this detailed model of insulin/glucose metabolism provide information that can be used to evaluate the development...
A stochastic phase-field model determined from molecular dynamics
von Schwerin, Erik; Szepessy, Anders
2010-01-01
The dynamics of dendritic growth of a crystal in an undercooled melt is determined by macroscopic diffusion-convection of heat and by capillary forces acting on the nanometer scale of the solid-liquid interface width. Its modelling is useful for instance in processing techniques based on casting. The phase-field method is widely used to study evolution of such microstructural phase transformations on a continuum level; it couples the energy equation to a phenomenological Allen-Cahn/Ginzburg-Landau equation modelling the dynamics of an order parameter determining the solid and liquid phases, including also stochastic fluctuations to obtain the qualitatively correct result of dendritic side branching. This work presents a method to determine stochastic phase-field models from atomistic formulations by coarse-graining molecular dynamics. It has three steps: (1) a precise quantitative atomistic definition of the phase-field variable, based on the local potential energy; (2) derivation of its coarse-grained dynamics model, from microscopic Smoluchowski molecular dynamics (that is Brownian or over damped Langevin dynamics); and (3) numerical computation of the coarse-grained model functions. The coarse-grained model approximates Gibbs ensemble averages of the atomistic phase-field, by choosing coarse-grained drift and diffusion functions that minimize the approximation error of observables in this ensemble average. © EDP Sciences, SMAI, 2010.
A stochastic phase-field model determined from molecular dynamics
von Schwerin, Erik
2010-03-17
The dynamics of dendritic growth of a crystal in an undercooled melt is determined by macroscopic diffusion-convection of heat and by capillary forces acting on the nanometer scale of the solid-liquid interface width. Its modelling is useful for instance in processing techniques based on casting. The phase-field method is widely used to study evolution of such microstructural phase transformations on a continuum level; it couples the energy equation to a phenomenological Allen-Cahn/Ginzburg-Landau equation modelling the dynamics of an order parameter determining the solid and liquid phases, including also stochastic fluctuations to obtain the qualitatively correct result of dendritic side branching. This work presents a method to determine stochastic phase-field models from atomistic formulations by coarse-graining molecular dynamics. It has three steps: (1) a precise quantitative atomistic definition of the phase-field variable, based on the local potential energy; (2) derivation of its coarse-grained dynamics model, from microscopic Smoluchowski molecular dynamics (that is Brownian or over damped Langevin dynamics); and (3) numerical computation of the coarse-grained model functions. The coarse-grained model approximates Gibbs ensemble averages of the atomistic phase-field, by choosing coarse-grained drift and diffusion functions that minimize the approximation error of observables in this ensemble average. © EDP Sciences, SMAI, 2010.
Badlands: A parallel basin and landscape dynamics model
Directory of Open Access Journals (Sweden)
T. Salles
2016-01-01
Full Text Available Over more than three decades, a number of numerical landscape evolution models (LEMs have been developed to study the combined effects of climate, sea-level, tectonics and sediments on Earth surface dynamics. Most of them are written in efficient programming languages, but often cannot be used on parallel architectures. Here, I present a LEM which ports a common core of accepted physical principles governing landscape evolution into a distributed memory parallel environment. Badlands (acronym for BAsin anD LANdscape DynamicS is an open-source, flexible, TIN-based landscape evolution model, built to simulate topography development at various space and time scales.
Algorithm of Dynamic Model Structural Identification of the Multivariable Plant
Directory of Open Access Journals (Sweden)
Л.М. Блохін
2004-02-01
Full Text Available The new algorithm of dynamic model structural identification of the multivariable stabilized plant with observable and unobservable disturbances in the regular operating modes is offered in this paper. With the help of the offered algorithm it is possible to define the “perturbed” models of dynamics not only of the plant, but also the dynamics characteristics of observable and unobservable casual disturbances taking into account the absence of correlation between themselves and control inputs with the unobservable perturbations.
A Lagrangian dynamic subgrid-scale model turbulence
Meneveau, C.; Lund, T. S.; Cabot, W.
1994-01-01
A new formulation of the dynamic subgrid-scale model is tested in which the error associated with the Germano identity is minimized over flow pathlines rather than over directions of statistical homogeneity. This procedure allows the application of the dynamic model with averaging to flows in complex geometries that do not possess homogeneous directions. The characteristic Lagrangian time scale over which the averaging is performed is chosen such that the model is purely dissipative, guaranteeing numerical stability when coupled with the Smagorinsky model. The formulation is tested successfully in forced and decaying isotropic turbulence and in fully developed and transitional channel flow. In homogeneous flows, the results are similar to those of the volume-averaged dynamic model, while in channel flow, the predictions are superior to those of the plane-averaged dynamic model. The relationship between the averaged terms in the model and vortical structures (worms) that appear in the LES is investigated. Computational overhead is kept small (about 10 percent above the CPU requirements of the volume or plane-averaged dynamic model) by using an approximate scheme to advance the Lagrangian tracking through first-order Euler time integration and linear interpolation in space.
Modeling of classical swirl injector dynamics
Ismailov, Maksud M.
The knowledge of the dynamics of a swirl injector is crucial in designing a stable liquid rocket engine. Since the swirl injector is a complex fluid flow device in itself, not much work has been conducted to describe its dynamics either analytically or by using computational fluid dynamics techniques. Even the experimental observation is limited up to date. Thus far, there exists an analytical linear theory by Bazarov [1], which is based on long-wave disturbances traveling on the free surface of the injector core. This theory does not account for variation of the nozzle reflection coefficient as a function of disturbance frequency, and yields a response function which is strongly dependent on the so called artificial viscosity factor. This causes an uncertainty in designing an injector for the given operational combustion instability frequencies in the rocket engine. In this work, the author has studied alternative techniques to describe the swirl injector response, both analytically and computationally. In the analytical part, by using the linear small perturbation analysis, the entire phenomenon of unsteady flow in swirl injectors is dissected into fundamental components, which are the phenomena of disturbance wave refraction and reflection, and vortex chamber resonance. This reveals the nature of flow instability and the driving factors leading to maximum injector response. In the computational part, by employing the nonlinear boundary element method (BEM), the author sets the boundary conditions such that they closely simulate those in the analytical part. The simulation results then show distinct peak responses at frequencies that are coincident with those resonant frequencies predicted in the analytical part. Moreover, a cold flow test of the injector related to this study also shows a clear growth of instability with its maximum amplitude at the first fundamental frequency predicted both by analytical methods and BEM. It shall be noted however that Bazarov
Amendment to Validated dynamic flow model
DEFF Research Database (Denmark)
Knudsen, Torben
2011-01-01
The purpose of WP2 is to establish flow models relating the wind speed at turbines in a farm. Until now, active control of power reference has not been included in these models as only data with standard operation has been available. In this report the first data series with power reference excit...... turbine in undisturbed flow. For this data set both the multiplicative model and in particular the simple first order transfer function model can predict the down wind wind speed from upwind wind speed and loading.......The purpose of WP2 is to establish flow models relating the wind speed at turbines in a farm. Until now, active control of power reference has not been included in these models as only data with standard operation has been available. In this report the first data series with power reference...
Soil Models and Vehicle System Dynamics
2013-05-07
been further adapted to the Kayenta model [52]. The Sandia GeoModel has yet to be included in tire-terrain interaction studies. However, the...stiffness in one plane, and there is a transversely anisotropic version of the Kayenta model. Anisotropy may also be addressed using fabric tensors [53...71 [52] Brannon, R.M., Fossum, A.F., and Strack, O.E., 2009, “ KAYENTA : Theory and User’s Guide”, Sandia Report
Dynamic magnetic hysteresis behavior and dynamic phase transition in the spin-1 Blume-Capel model
Energy Technology Data Exchange (ETDEWEB)
Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2012-03-15
The nature (time variation) of response magnetization m(wt) of the spin-1 Blume-Capel model in the presence of a periodically varying external magnetic field h(wt) is studied by employing the effective-field theory (EFT) with correlations as well as the Glauber-type stochastic dynamics. We determine the time variations of m(wt) and h(wt) for various temperatures, and investigate the dynamic magnetic hysteresis behavior. We also investigate the temperature dependence of the dynamic magnetization, hysteresis loop area and correlation near the transition point in order to characterize the nature (first- or second-order) of the dynamic transitions as well as obtain the dynamic phase transition temperatures. The hysteresis loops are obtained for different reduced temperatures and we find that the areas of the loops are decreasing with the increasing of the reduced temperatures. We also present the dynamic phase diagrams and compare the results of the EFT with the results of the dynamic mean-field approximation. The phase diagrams exhibit many dynamic critical points, such as tricritical ( Bullet ), zero-temperature critical (Z), triple (TP) and multicritical (A) points. According to values of Hamiltonian parameters, besides the paramagnetic (P), ferromagnetic (F) fundamental phases, one coexistence or mixed phase region, (F+P) and the reentrant behavior exist in the system. The results are in good agreement with some experimental and theoretical results. - Highlights: Black-Right-Pointing-Pointer Kinetic spin-1 Blume-Capel model is studied using the effective-field theory. Black-Right-Pointing-Pointer We investigated the dynamic magnetic hysteresis behavior. Black-Right-Pointing-Pointer Dynamic magnetization, hysteresis loop area and correlation are investigated. Black-Right-Pointing-Pointer System exhibits tricritical, zero-temperature, triple and multicritical points. Black-Right-Pointing-Pointer We present the dynamic phase diagrams and compare the results of the EFT
Dynamic stochastic accumulation model with application to pension savings management
Directory of Open Access Journals (Sweden)
Melicherčik Igor
2010-01-01
Full Text Available We propose a dynamic stochastic accumulation model for determining optimal decision between stock and bond investments during accumulation of pension savings. Stock prices are assumed to be driven by the geometric Brownian motion. Interest rates are modeled by means of the Cox-Ingersoll-Ross model. The optimal decision as a solution to the corresponding dynamic stochastic program is a function of the duration of saving, the level of savings and the short rate. Qualitative and quantitative properties of the optimal solution are analyzed. The model is tested on the funded pillar of the Slovak pension system. The results are calculated for various risk preferences of a saver.
A dynamic marketing model with best reply and inertia
International Nuclear Information System (INIS)
Bischi, Gian Italo; Cerboni Baiardi, Lorenzo
2015-01-01
In this paper we consider a nonlinear discrete-time dynamic model proposed by Farris et al. (2005) as a market share attraction model with two firms that decide marketing efforts over time according to best reply strategies with naïve expectations. The model also considers an adaptive adjustment toward best reply, a form of inertia or anchoring attitude, and we investigate the effects of heterogeneities among firms. A rich scenario of local and global bifurcations is obtained even with just two competing firms, and a comparison is proposed with apparently similar duopoly models based on repeated best reply dynamics with naïve expectations and adaptive adjustment.
Dynamical models of the human eye and strabismus
International Nuclear Information System (INIS)
Pascolo, P.; Carniel, R.; Grimaz, S.
2009-01-01
In this work, the applicability of a recently published dynamical model of the eye to the case of strabismus is investigated. Although the basic scheme of the original model remains valid, the simulation of the pathological dynamics requires a more suitable coverage of the space of the physiological rotations of the eye. This requisite is reached by developing the original model and by taking into account the contributions of connective tissues that were originally neglected. Possible wider fields of application of the model are then discussed.
Discrete modeling considerations in multiphase fluid dynamics
International Nuclear Information System (INIS)
Ransom, V.H.; Ramshaw, J.D.
1988-01-01
The modeling of multiphase flows play a fundamental role in light water reactor safety. The main ingredients in our discrete modeling Weltanschauung are the following considerations: (1) Any physical model must be cast into discrete form for a digital computer. (2) The usual approach of formulating models in differential form and then discretizing them is potentially hazardous. It may be preferable to formulate the model in discrete terms from the outset. (3) Computer time and storage constraints limit the resolution that can be employed in practical calculations. These limits effectively define the physical phenomena, length scales, and time scales which cannot be directly represented in the calculation and therefore must be modeled. This information should be injected into the model formulation process at an early stage. (4) Practical resolution limits are generally so coarse that traditional convergence and truncation-error analyses become irrelevant. (5) A discrete model constitutes a reduced description of a physical system, from which fine-scale details are eliminated. This elimination creates a statistical closure problem. Methods from statistical physics may therefore be useful in the formulation of discrete models. In the present paper we elaborate on these themes and illustrate them with simple examples. 48 refs
Structural Identifiability of Dynamic Systems Biology Models.
Villaverde, Alejandro F; Barreiro, Antonio; Papachristodoulou, Antonis
2016-10-01
A powerful way of gaining insight into biological systems is by creating a nonlinear differential equation model, which usually contains many unknown parameters. Such a model is called structurally identifiable if it is possible to determine the values of its parameters from measurements of the model outputs. Structural identifiability is a prerequisite for parameter estimation, and should be assessed before exploiting a model. However, this analysis is seldom performed due to the high computational cost involved in the necessary symbolic calculations, which quickly becomes prohibitive as the problem size increases. In this paper we show how to analyse the structural identifiability of a very general class of nonlinear models by extending methods originally developed for studying observability. We present results about models whose identifiability had not been previously determined, report unidentifiabilities that had not been found before, and show how to modify those unidentifiable models to make them identifiable. This method helps prevent problems caused by lack of identifiability analysis, which can compromise the success of tasks such as experiment design, parameter estimation, and model-based optimization. The procedure is called STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decomposition), and it is implemented in a MATLAB toolbox which is available as open source software. The broad applicability of this approach facilitates the analysis of the increasingly complex models used in systems biology and other areas.
Dynamic modeling method for infrared smoke based on enhanced discrete phase model
Zhang, Zhendong; Yang, Chunling; Zhang, Yan; Zhu, Hongbo
2018-03-01
The dynamic modeling of infrared (IR) smoke plays an important role in IR scene simulation systems and its accuracy directly influences the system veracity. However, current IR smoke models cannot provide high veracity, because certain physical characteristics are frequently ignored in fluid simulation; simplifying the discrete phase as a continuous phase and ignoring the IR decoy missile-body spinning. To address this defect, this paper proposes a dynamic modeling method for IR smoke, based on an enhanced discrete phase model (DPM). A mathematical simulation model based on an enhanced DPM is built and a dynamic computing fluid mesh is generated. The dynamic model of IR smoke is then established using an extended equivalent-blackbody-molecule model. Experiments demonstrate that this model realizes a dynamic method for modeling IR smoke with higher veracity.
Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research
Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter
2010-01-01
Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.
Evaluating system behavior through Dynamic Master Logic Diagram (DMLD) modeling
International Nuclear Information System (INIS)
Hu, Y.-S.; Modarres, Mohammad
1999-01-01
In this paper, the Dynamic Master Logic Diagram (DMLD) is introduced for representing full-scale time-dependent behavior and uncertain behavior of complex physical systems. Conceptually, the DMLD allows one to decompose a complex system hierarchically to model and to represent: (1) partial success/failure of the system, (2) full-scale logical, physical and fuzzy connectivity relations, (3) probabilistic, resolutional or linguistic uncertainty, (4) multiple-state system dynamics, and (5) floating threshold and transition effects. To demonstrate the technique, examples of using DMLD to model, to diagnose and to control dynamic behavior of a system are presented. A DMLD-based expert system building tool, called Dynamic Reliability Expert System (DREXs), is introduced to automate the DMLD modeling process
Dynamic systems models new methods of parameter and state estimation
2016-01-01
This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics. Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated. The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamic...
Development of dynamic Bayesian models for web application test management
Azarnova, T. V.; Polukhin, P. V.; Bondarenko, Yu V.; Kashirina, I. L.
2018-03-01
The mathematical apparatus of dynamic Bayesian networks is an effective and technically proven tool that can be used to model complex stochastic dynamic processes. According to the results of the research, mathematical models and methods of dynamic Bayesian networks provide a high coverage of stochastic tasks associated with error testing in multiuser software products operated in a dynamically changing environment. Formalized representation of the discrete test process as a dynamic Bayesian model allows us to organize the logical connection between individual test assets for multiple time slices. This approach gives an opportunity to present testing as a discrete process with set structural components responsible for the generation of test assets. Dynamic Bayesian network-based models allow us to combine in one management area individual units and testing components with different functionalities and a direct influence on each other in the process of comprehensive testing of various groups of computer bugs. The application of the proposed models provides an opportunity to use a consistent approach to formalize test principles and procedures, methods used to treat situational error signs, and methods used to produce analytical conclusions based on test results.
Development of a Stirling System Dynamic Model with Enhanced Thermodynamics
Regan, Timothy F.; Lewandowski, Edward J.
2005-02-01
The Stirling Convertor System Dynamic Model developed at NASA Glenn Research Center is a software model developed from first principles that includes the mechanical and mounting dynamics, the thermodynamics, the linear alternator, and the controller of a free-piston Stirling power convertor, along with the end user load. As such it represents the first detailed modeling tool for fully integrated Stirling convertor-based power systems. The thermodynamics of the model were originally a form of the isothermal Stirling cycle. In some situations it may be desirable to improve the accuracy of the Stirling cycle portion of the model. An option under consideration is to enhance the SDM thermodynamics by coupling the model with Gedeon Associates' Sage simulation code. The result will be a model that gives a more accurate prediction of the performance and dynamics of the free-piston Stirling convertor. A method of integrating the Sage simulation code with the System Dynamic Model is described. Results of SDM and Sage simulation are compared to test data. Model parameter estimation and model validation are discussed.
Modeling and dynamic behaviour of hydropower plants
Kishor, Nand
2017-01-01
This book presents a systematic approach to mathematical modeling of different configurations of hydropower plants over four sections - modeling and simulation approaches; control of hydropower plants; operation and scheduling of hydropower plants, including pumped storage; and special features of small hydropower plants.
Modelling the dynamics of nonendemic epidemics
International Nuclear Information System (INIS)
Ramani, A.; Grammaticos, B.; Satsuma, J.
2009-01-01
We present two models for an epidemic where the individuals are infective over a fixed period of time and which never becomes endemic i.e., no infective individuals remain after the epidemic has run its course. The first model is based on a delay-difference scheme. We show that, as a function of the delay (which corresponds to the period of infectiveness) the percentage of non-infected population varies over a wide range. We present also a variant of our model where the recovery rate follows a Poisson law and obtain a discrete version of the SIR model. We estimate the percentage of non-infected population in the two models, show that they lead to almost the same values and present an explanation of this fact. The second model is based on the assumption that the infection is spread by carriers. Under the hypothesis that the carriers are relatively long-lived, and that the number of the infected ones is a relatively small fraction of the total population of potential carriers, we show that the model reduces to the same version of the discrete SIR obtained by our first model.
Analytical system dynamics modeling and simulation
Fabien, Brian C
2008-01-01
This book offering a modeling technique based on Lagrange's energy method includes 125 worked examples. Using this technique enables one to model and simulate systems as diverse as a six-link, closed-loop mechanism or a transistor power amplifier.
Integrating microbial diversity in soil carbon dynamic models parameters
Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie
2015-04-01
Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten
Modelling Dynamic Topologies via Extensions of VDM-RT
DEFF Research Database (Denmark)
Nielsen, Claus Ballegård
Only a few formal methods include descriptions of the network topology that the modelled system is deployed onto. In VDM Real-Time (VDM-RT) this has been enabled for distributed systems that have a static structure. However, when modelling dynamic systems this fixed topology becomes an issue....... Systems with highly distributed and alternating relationships cannot be expressed correctly in a static model. This document describes how VDM-RT can be extended with new language constructs to enable the description of dynamic reconfiguration of the network topology during the runtime execution...... of a model. The extension is developed on the basis of a case study involving a dynamic system that has a constant changing system topology. With a basis in the case study a model is developed that uses the static version of VDM-RT in order to reveal the limitations of the language. The case study...
Agent Based Modeling on Organizational Dynamics of Terrorist Network
Directory of Open Access Journals (Sweden)
Bo Li
2015-01-01
Full Text Available Modeling organizational dynamics of terrorist network is a critical issue in computational analysis of terrorism research. The first step for effective counterterrorism and strategic intervention is to investigate how the terrorists operate with the relational network and what affects the performance. In this paper, we investigate the organizational dynamics by employing a computational experimentation methodology. The hierarchical cellular network model and the organizational dynamics model are developed for modeling the hybrid relational structure and complex operational processes, respectively. To intuitively elucidate this method, the agent based modeling is used to simulate the terrorist network and test the performance in diverse scenarios. Based on the experimental results, we show how the changes of operational environments affect the development of terrorist organization in terms of its recovery and capacity to perform future tasks. The potential strategies are also discussed, which can be used to restrain the activities of terrorists.
Development of a dynamic computational model of social cognitive theory.
Riley, William T; Martin, Cesar A; Rivera, Daniel E; Hekler, Eric B; Adams, Marc A; Buman, Matthew P; Pavel, Misha; King, Abby C
2016-12-01
Social cognitive theory (SCT) is among the most influential theories of behavior change and has been used as the conceptual basis of health behavior interventions for smoking cessation, weight management, and other health behaviors. SCT and other behavior theories were developed primarily to explain differences between individuals, but explanatory theories of within-person behavioral variability are increasingly needed as new technologies allow for intensive longitudinal measures and interventions adapted from these inputs. These within-person explanatory theoretical applications can be modeled as dynamical systems. SCT constructs, such as reciprocal determinism, are inherently dynamical in nature, but SCT has not been modeled as a dynamical system. This paper describes the development of a dynamical system model of SCT using fluid analogies and control systems principles drawn from engineering. Simulations of this model were performed to assess if the model performed as predicted based on theory and empirical studies of SCT. This initial model generates precise and testable quantitative predictions for future intensive longitudinal research. Dynamic modeling approaches provide a rigorous method for advancing health behavior theory development and refinement and for guiding the development of more potent and efficient interventions.
Computational fluid dynamic modelling of cavitation
Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.
1993-01-01
Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.
Electricity spot price dynamics: Beyond financial models
International Nuclear Information System (INIS)
Guthrie, Graeme; Videbeck, Steen
2007-01-01
We reveal properties of electricity spot prices that cannot be captured by the statistical models, commonly used to model financial asset prices, that are increasingly used to model electricity prices. Using more than eight years of half-hourly spot price data from the New Zealand Electricity Market, we find that the half-hourly trading periods fall naturally into five groups corresponding to the overnight off-peak, the morning peak, daytime off-peak, evening peak, and evening off-peak. The prices in different trading periods within each group are highly correlated with each other, yet the correlations between prices in different groups are lower. Models, adopted from the modeling of security prices, that are currently applied to electricity spot prices are incapable of capturing this behavior. We use a periodic autoregression to model prices instead, showing that shocks in the peak periods are larger and less persistent than those in off-peak periods, and that they often reappear in the following peak period. In contrast, shocks in the off-peak periods are smaller, more persistent, and die out (perhaps temporarily) during the peak periods. Current approaches to modeling spot prices cannot capture this behavior either. (author)
Fractional dynamical model for neurovascular coupling
Belkhatir, Zehor
2014-08-01
The neurovascular coupling is a key mechanism linking the neural activity to the hemodynamic behavior. Modeling of this coupling is very important to understand the brain function but it is at the same time very complex due to the complexity of the involved phenomena. Many studies have reported a time delay between the neural activity and the cerebral blood flow, which has been described by adding a delay parameter in some of the existing models. An alternative approach is proposed in this paper, where a fractional system is used to model the neurovascular coupling. Thanks to its nonlocal property, a fractional derivative is suitable for modeling the phenomena with delay. The proposed model is coupled with the first version of the well-known balloon model, which relates the cerebral blood flow to the Blood Oxygen Level Dependent (BOLD) signal measured using functional Magnetic Resonance Imaging (fMRI). Through some numerical simulations, the properties of the fractional model are explained and some preliminary comparisons to a real BOLD data set are provided. © 2014 IEEE.
On the modelling of gyroplane flight dynamics
Houston, Stewart; Thomson, Douglas
2017-01-01
The study of the gyroplane, with a few exceptions, is largely neglected in the literature which is indicative of a niche configuration limited to the sport and recreational market where resources are limited. However the contemporary needs of an informed population of owners and constructors, as well as the possibility of a wider application of such low-cost rotorcraft in other roles, suggests that an examination of the mathematical modelling requirements for the study of gyroplane flight mechanics is timely. Rotorcraft mathematical modelling has become stratified in three levels, each one defining the inclusion of various layers of complexity added to embrace specific modelling features as well as an attempt to improve fidelity. This paper examines the modelling of gyroplane flight mechanics in the context of this complexity, and shows that relatively simple formulations are adequate for capturing most aspects of gyroplane trim, stability and control characteristics. In particular the conventional 6 degree-of-freedom model structure is suitable for the synthesis of models from flight test data as well as being the framework for reducing the order of the higher levels of modelling. However, a high level of modelling can be required to mimic some aspects of behaviour observed in data gathered from flight experiments and even then can fail to capture other details. These limitations are addressed in the paper. It is concluded that the mathematical modelling of gyroplanes for the simulation and analysis of trim, stability and control presents no special difficulty and the conventional techniques, methods and formulations familiar to the rotary-wing community are directly applicable.
Dynamic thermo-hydraulic model of district cooling networks
International Nuclear Information System (INIS)
Oppelt, Thomas; Urbaneck, Thorsten; Gross, Ulrich; Platzer, Bernd
2016-01-01
Highlights: • A dynamic thermo-hydraulic model for district cooling networks is presented. • The thermal modelling is based on water segment tracking (Lagrangian approach). • Thus, numerical errors and balance inaccuracies are avoided. • Verification and validation studies proved the reliability of the model. - Abstract: In the present paper, the dynamic thermo-hydraulic model ISENA is presented which can be applied for answering different questions occurring in design and operation of district cooling networks—e.g. related to economic and energy efficiency. The network model consists of a quasistatic hydraulic model and a transient thermal model based on tracking water segments through the whole network (Lagrangian method). Applying this approach, numerical errors and balance inaccuracies can be avoided which leads to a higher quality of results compared to other network models. Verification and validation calculations are presented in order to show that ISENA provides reliable results and is suitable for practical application.