Sample records for modeling domain covered

  1. TENCompetence Domain Model

    NARCIS (Netherlands)


    This is the version 1.1 of the TENCompetence Domain Model (version 1.0 released at 19-6-2006; version 1.1 at 9-11-2008). It contains several files: a) a pdf with the model description, b) three jpg files with class models (also in the pdf), c) a MagicDraw zip file with the model itself, d) a release

  2. Landfill cover performance monitoring using time domain reflectometry

    International Nuclear Information System (INIS)

    Neher, E.R.; Cotten, G.B.; McElroy, D.


    Time domain reflectometry (TDR) systems were installed to monitor soil moisture in two newly constructed landfill covers at the Idaho National Engineering and Environmental Laboratory. Each TDR system includes four vertical arrays with each array consisting of four TDR probes located at depths of 15, 30, 45, and 60 cm. The deepest probes at 60 cm were installed beneath a compacted soil layer to analyze infiltration through the compacted layer. Based on the TDR data, infiltration through the two covers between March and October, 1997 ranged from less than measurable to 1.5 cm. However, due to a prohibition on penetrating the buried waste and resulting limits on probe placement depths, deeper percolation was not evaluated. Some of the advantages found in the application of TDR for infiltration monitoring at this site are the relative low cost and rugged nature of the equipment. Also, of particular importance, the ability to collect frequent moisture measurements allows the capture and evaluation of soil moisture changes resulting from episodic precipitation events. Disadvantages include the inability to install the probes into the waste, difficulties in interpretation of infiltration during freeze/thaw periods, and some excessive noise in the data

  3. Landfill cover performance monitoring using time domain reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Neher, E.R.; Cotten, G.B. [Parsons Infrastructure & Technology Group, Inc., Idaho Falls, ID (United States); McElroy, D. [Lockheed-Martin Idaho Technologies Company, Idaho Falls, ID (United States)


    Time domain reflectometry (TDR) systems were installed to monitor soil moisture in two newly constructed landfill covers at the Idaho National Engineering and Environmental Laboratory. Each TDR system includes four vertical arrays with each array consisting of four TDR probes located at depths of 15, 30, 45, and 60 cm. The deepest probes at 60 cm were installed beneath a compacted soil layer to analyze infiltration through the compacted layer. Based on the TDR data, infiltration through the two covers between March and October, 1997 ranged from less than measurable to 1.5 cm. However, due to a prohibition on penetrating the buried waste and resulting limits on probe placement depths, deeper percolation was not evaluated. Some of the advantages found in the application of TDR for infiltration monitoring at this site are the relative low cost and rugged nature of the equipment. Also, of particular importance, the ability to collect frequent moisture measurements allows the capture and evaluation of soil moisture changes resulting from episodic precipitation events. Disadvantages include the inability to install the probes into the waste, difficulties in interpretation of infiltration during freeze/thaw periods, and some excessive noise in the data.

  4. Modeling software systems by domains (United States)

    Dippolito, Richard; Lee, Kenneth


    The Software Architectures Engineering (SAE) Project at the Software Engineering Institute (SEI) has developed engineering modeling techniques that both reduce the complexity of software for domain-specific computer systems and result in systems that are easier to build and maintain. These techniques allow maximum freedom for system developers to apply their domain expertise to software. We have applied these techniques to several types of applications, including training simulators operating in real time, engineering simulators operating in non-real time, and real-time embedded computer systems. Our modeling techniques result in software that mirrors both the complexity of the application and the domain knowledge requirements. We submit that the proper measure of software complexity reflects neither the number of software component units nor the code count, but the locus of and amount of domain knowledge. As a result of using these techniques, domain knowledge is isolated by fields of engineering expertise and removed from the concern of the software engineer. In this paper, we will describe kinds of domain expertise, describe engineering by domains, and provide relevant examples of software developed for simulator applications using the techniques.

  5. The profile of the domain walls in amorphous glass-covered microwires

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F.; Rigue, J.N. [Universidade Federal de Santa Maria, Campus Cachoeira do Sul, RS (Brazil); Carara, M., E-mail: [Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)


    Highlights: • Glass-covered microwires with positive magnetostriction were studied. • The single domain wall dynamics was studied under different conditions. • We have evaluated the profile and shape of the moving domain walls. • The domain wall evolves from a bell shape to a parabolic one when a current is applied. - Abstract: We have studied the domain wall dynamics in Joule-annealed amorphous glass-covered microwires with positive magnetostriction in the presence of an electric current, in order to evaluate the profile and shape of the moving domain wall. Such microwires are known to present magnetic bi-stability when axially magnetized. The single domain wall dynamics was evaluated under different conditions, under an axially applied stress and an electric current. We have observed the well known increasing of the domain wall damping with the applied stress due to the increase in the magnetoelastic anisotropy and, when the current is applied, depending on the current intensity and direction, a modification on the axial domain wall damping. When the orthogonal motion of the domain wall is considered, we have observed that the associated velocity present a smaller dependence on the applied current intensity. It was observed a modification on both the domain wall shape and length. In a general way, the domain wall evolves from a bell shape to a parabolic shape as the current intensity is increased. The results were explained in terms of the change in the magnetic energy promoted by the additional Oersted field.

  6. Generic domain models in software engineering (United States)

    Maiden, Neil


    This paper outlines three research directions related to domain-specific software development: (1) reuse of generic models for domain-specific software development; (2) empirical evidence to determine these generic models, namely elicitation of mental knowledge schema possessed by expert software developers; and (3) exploitation of generic domain models to assist modelling of specific applications. It focuses on knowledge acquisition for domain-specific software development, with emphasis on tool support for the most important phases of software development.


    Directory of Open Access Journals (Sweden)

    Kobozeva A.


    Full Text Available One of the main requirements to steganografic algorithm to be developed is robustness against disturbing influences, that is, to attacks against the embedded message. It was shown that guaranteeing the stego algorithm robustness does not depend on whether the additional information is embedded into the spatial or transformation domain of the cover image. Given the existing advantages of the spatial domain of the cover image in organization of embedding and extracting processes, a sufficient condition for ensuring robustness of such stego transformation was obtained in this work. It was shown that the amount of brightness correction related to the pixels of the cover image block is similar to the amount of correction related to the maximum singular value of the corresponding matrix of the block in case of embedding additional data that ensures robustness against attacks on the embedded message. Recommendations were obtained for selecting the size of the cover image block used in stego transformation as one of the parameters determining the calculation error of stego message. Given the inversely correspondence between the stego capacity of the stego channel being organized and the size of the cover image block, l=8 value was recommended.

  8. Latent domain models for statistical machine translation

    NARCIS (Netherlands)

    Hoàng, C.


    A data-driven approach to model translation suffers from the data mismatch problem and demands domain adaptation techniques. Given parallel training data originating from a specific domain, training an MT system on the data would result in a rather suboptimal translation for other domains. But does

  9. Using Built-In Domain-Specific Modeling Support to Guide Model-Based Test Generation

    Directory of Open Access Journals (Sweden)

    Teemu Kanstrén


    Full Text Available We present a model-based testing approach to support automated test generation with domain-specific concepts. This includes a language expert who is an expert at building test models and domain experts who are experts in the domain of the system under test. First, we provide a framework to support the language expert in building test models using a full (Java programming language with the help of simple but powerful modeling elements of the framework. Second, based on the model built with this framework, the toolset automatically forms a domain-specific modeling language that can be used to further constrain and guide test generation from these models by a domain expert. This makes it possible to generate a large set of test cases covering the full model, chosen (constrained parts of the model, or manually define specific test cases on top of the model while using concepts familiar to the domain experts.

  10. Meta-Domains for Automated Model Building

    National Research Council Canada - National Science Library

    Easley, Matthew; Bradley, Elizabeth


    .... In particular, we introduce a new structure for automated model building known as a meta-domain which, when instantiated with components, tailors the space of candidate models to the system at hand...

  11. Polsar Land Cover Classification Based on Hidden Polarimetric Features in Rotation Domain and Svm Classifier (United States)

    Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P.


    Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as H / Ani / text-decoration: overline">α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets' scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification

  12. Port-Based Modeling in Different Domains

    NARCIS (Netherlands)

    Batlle, C.; Couenne, F.; Doria-Cerezo, A.; Fossas, E.; Jallut, C.; Lefevre, L.; Le Gorrec, Y.; Maschke, B.M.; Ortega, R.; Schlacher, K.; Tayakout, M.; Duindam, V.; Macchelli, Alessandro; Stramigioli, Stefano; Bruyninckx, Herman


    In this Chapter we present some detailed examples of modelling in several domains using port and port-Hamiltonian concepts, as have been presented in the previous chapters. We start with the electromechanical domain in Sect. 3.1, while in Sect. 3.2 it is shown how port-Hamiltonian systems can be

  13. Multi-Domain Modeling Based on Modelica

    Directory of Open Access Journals (Sweden)

    Liu Jun


    Full Text Available With the application of simulation technology in large-scale and multi-field problems, multi-domain unified modeling become an effective way to solve these problems. This paper introduces several basic methods and advantages of the multidisciplinary model, and focuses on the simulation based on Modelica language. The Modelica/Mworks is a newly developed simulation software with features of an object-oriented and non-casual language for modeling of the large, multi-domain system, which makes the model easier to grasp, develop and maintain.It This article shows the single degree of freedom mechanical vibration system based on Modelica language special connection mechanism in Mworks. This method that multi-domain modeling has simple and feasible, high reusability. it closer to the physical system, and many other advantages.

  14. Modeling Network Traffic in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Sheng Ma


    Full Text Available This work discovers that although network traffic has the complicated short- and long-range temporal dependence, the corresponding wavelet coefficients are no longer long-range dependent. Therefore, a "short-range" dependent process can be used to model network traffic in the wavelet domain. Both independent and Markov models are investigated. Theoretical analysis shows that the independent wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian Noise traffic. Any model, which captures additional correlations in the wavelet domain, only improves the performance marginally. The independent wavelet model is then used as a unified approach to model network traffic including VBR MPEG video and Ethernet data. The computational complexity is O(N for developing such wavelet models and generating synthesized traffic of length N, which is among the lowest attained.

  15. Towards Clone Detection in UML Domain Models

    DEFF Research Database (Denmark)

    Störrle, Harald


    Code clones (i.e., duplicate fragments of code) have been studied for long, and there is strong evidence that they are a major source of software faults. Anecdotal evidence suggests that this phenomenon occurs similarly in models, suggesting that model clones are as detrimental to model quality...... as they are to code quality. However, programming language code and visual models have significant differences that make it difficult to directly transfer notions and algorithms developed in the code clone arena to model clones. In this article, we develop and propose a definition of the notion of “model clone” based...... on the thorough analysis of practical scenarios. We propose a formal definition of model clones, specify a clone detection algorithm for UML domain models, and implement it prototypically. We investigate different similarity heuristics to be used in the algorithm, and report the performance of our approach. While...

  16. Towards Clone Detection in UML Domain Models

    DEFF Research Database (Denmark)

    Störrle, Harald


    Code clones - that is, duplicate fragments of code - have been studied for a long time. There is strong evidence that code clones are a major source of software faults. Anecdotal evidence suggests that this phenomenon is not restricted to code, but occurs in models in a very similar way. So...... it is likely that model clones are as detrimental to model quality as they are to code quality. However, programming language code and visual models also have significant differences so that notions and algorithms developed in the code clone arena cannot be transferred directly to model clones. In this article......, we discuss how model clones arise by analyzing several practical scenarios. We propose a formal definition of models and clones, that allows us to specify a generic clone detection algorithm. Through a thorough analysis of the detail structure of sample UML domain models, recommendations for clone...

  17. Domain walls collision in Fe-rich and Co-rich glass covered microwires

    Directory of Open Access Journals (Sweden)

    Gonzalez J.


    Full Text Available We report the results of the investigation of domain walls propagation in Fe-rich and Co-rich microwires performed using Sixtus-Tonks and magneto-optical Kerr effect techniques. It was found that under certain experimental conditions we are able to create the regime of the motion of two domain walls moving to opposite directions which terminates by the collision of the domain walls. Also the domain walls collision was visualized using magneto-optical Kerr effect microscope when the surface giant Barkhausen jump induced by circular magnetic field has been observed.

  18. Modeled impact of anthropogenic land cover change on climate (United States)

    Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.


    Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.

  19. Radon diffusion through multilayer earthen covers: models and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, D.W.; Oster, C.A.; Nelson, R.W.; Gee, G.W.


    A capability to model and analyze the fundamental interactions that influence the diffusion of radon gas through uranium mill tailings and cover systems has been investigated. The purpose of this study is to develop the theoretical basis for modeling radon diffusion and to develop an understanding of the fundamental interactions that influence radon diffusion. This study develops the theoretical basis for modeling radon diffusion in one, two and three dimensions. The theory has been incorporated into three computer models that are used to analyze several tailings and cover configurations. This report contains a discussion of the theoretical basis for modeling radon diffusion, a discussion of the computer models used to analyze uranium mill tailings and multilayered cover systems, and presents the results that have been obtained.

  20. Domain Endurants: An Analysis and Description Process Model

    DEFF Research Database (Denmark)

    Bjørner, Dines


    We present a summary, Sect. 2, of a structure of domain analysis and description concepts: techniques and tools. And we link, in Sect. 3, these concepts, embodied in domain analysis prompts and domain description prompts, in a model of how a diligent domain analyser cum describer would use them. ...

  1. Simulating feedbacks in land use and land cover change models

    NARCIS (Netherlands)

    Verburg, P.H.


    In spite of the many advances in land use and land cover change modelling over the past decade many challenges remain. One of these challenges relates to the explicit treatment of feedback mechanisms in descriptive models of the land use system. This paper argues for model-based analysis to explore

  2. Modelling land cover change in the Ganga basin (United States)

    Moulds, S.; Tsarouchi, G.; Mijic, A.; Buytaert, W.


    Over recent decades the green revolution in India has driven substantial environmental change. Modelling experiments have identified northern India as a 'hot spot' of land-atmosphere coupling strength during the boreal summer. However, there is a wide range of sensitivity of atmospheric variables to soil moisture between individual climate models. The lack of a comprehensive land cover change dataset to force climate models has been identified as a major contributor to model uncertainty. In this work a time series dataset of land cover change between 1970 and 2010 is constructed for northern India to improve the quantification of regional hydrometeorological feedbacks. The MODIS instrument on board the Aqua and Terra satellites provides near-continuous remotely sensed datasets from 2000 to the present day. However, the quality of satellite products before 2000 is poor. To complete the dataset MODIS images are extrapolated back in time using the Conversion of Land Use and its Effects at small regional extent (CLUE-s) modelling framework. Non-spatial estimates of land cover area from national agriculture and forest statistics, available on a state-wise, annual basis, are used as a direct model input. Land cover change is allocated spatially as a function of biophysical and socioeconomic drivers identified using logistic regression. This dataset will provide an essential input to a high resolution, physically based land surface model to generate the lower boundary condition to assess the impact of land cover change on regional climate.

  3. Distributed calibrating snow models using remotely sensed snow cover information (United States)

    Li, H.


    Distributed calibrating snow models using remotely sensed snow cover information Hongyi Li1, Tao Che1, Xin Li1, Jian Wang11. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China For improving the simulation accuracy of snow model, remotely sensed snow cover data are used to calibrate spatial parameters of snow model. A physically based snow model is developed and snow parameters including snow surface roughness, new snow density and critical threshold temperature distinguishing snowfall from precipitation, are spatially calibrated in this study. The study region, Babaohe basin, located in northwestern China, have seasonal snow cover and with complex terrain. The results indicates that the spatially calibration of snow model parameters make the simulation results more reasonable, and the simulated snow accumulation days, plot-scale snow depth are more better than lumped calibration.

  4. Domain-specific modeling enabling full code generation

    CERN Document Server

    Kelly, Steven


    Domain-Specific Modeling (DSM) is the latest approach tosoftware development, promising to greatly increase the speed andease of software creation. Early adopters of DSM have been enjoyingproductivity increases of 500–1000% in production for over adecade. This book introduces DSM and offers examples from variousfields to illustrate to experienced developers how DSM can improvesoftware development in their teams. Two authorities in the field explain what DSM is, why it works,and how to successfully create and use a DSM solution to improveproductivity and quality. Divided into four parts, the book covers:background and motivation; fundamentals; in-depth examples; andcreating DSM solutions. There is an emphasis throughout the book onpractical guidelines for implementing DSM, including how toidentify the nece sary language constructs, how to generate fullcode from models, and how to provide tool support for a new DSMlanguage. The example cases described in the book are available thebook's Website, www.dsmbook....

  5. Monitoring of covering model of the National radioactive waste repository

    International Nuclear Information System (INIS)

    Jezikova, M.


    The subject of this rigorous report is justification of cover model building at radioactive waste repository in Mochovce as a very important engineering barrier preventing significant release of radioactive substances into the environment and providing protection against ionizing radiation. This rigorous report includes a theoretical part, which describes radioactive waste characterization, radioactive waste management and summary of the preliminary activities prior to the building cover model, particularly involving the selection of appropriate variables and parameters and creation of monitoring plan during the long term monitoring for evaluation of this barrier in order to ensure minimization of any leak of radioactive substances from RAW. The next part includes evaluation of the values of parameters and variables to build cover model of RAW in Mochovce during 2006-2008 (author)

  6. Modeling ocean wave propagation under sea ice covers (United States)

    Zhao, Xin; Shen, Hayley H.; Cheng, Sukun


    Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice-covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology

  7. Stochastic modeling of the cover effect and bedrock erosion (United States)

    Turowski, Jens M.


    Several important fluvial bedrock erosion processes are driven by the impact of bed load particles. Bed load transport rates fluctuate strongly in both nature and experiment, and stochastic models of the transport processes have been put forward to describe this behavior. In this paper I adapt a model based on a Markov chain formulation to derive probability distributions for bed load transport rate over a rock bed only partly covered by sediment. I propose a way to calculate the probability distribution of bed cover for given sediment supply using a combinatoric model and combine the two curves to calculate probability distributions for bed cover and erosion rate at constant hydraulics. In the proposed model, mean bed cover is an exponentially declining function of the number of particles in the control volume. The model describes recently published experimental data well, but at the moment it is not possible to finally discriminate between the exponential and the previously proposed linear model formulation. Distributions of erosion rate are fairly broad functions slightly skewed toward high erosion rates.

  8. A Review of Domain Modelling and Domain Imaging Techniques in Ferroelectric Crystals. (United States)

    Potnis, Prashant R; Tsou, Nien-Ti; Huber, John E


    The present paper reviews models of domain structure in ferroelectric crystals, thin films and bulk materials. Common crystal structures in ferroelectric materials are described and the theory of compatible domain patterns is introduced. Applications to multi-rank laminates are presented. Alternative models employing phase-field and related techniques are reviewed. The paper then presents methods of observing ferroelectric domain structure, including optical, polarized light, scanning electron microscopy, X-ray and neutron diffraction, atomic force microscopy and piezo-force microscopy. Use of more than one technique for unambiguous identification of the domain structure is also described.

  9. A Review of Domain Modelling and Domain Imaging Techniques in Ferroelectric Crystals

    Directory of Open Access Journals (Sweden)

    John E. Huber


    Full Text Available The present paper reviews models of domain structure in ferroelectric crystals, thin films and bulk materials. Common crystal structures in ferroelectric materials are described and the theory of compatible domain patterns is introduced. Applications to multi-rank laminates are presented. Alternative models employing phase-field and related techniques are reviewed. The paper then presents methods of observing ferroelectric domain structure, including optical, polarized light, scanning electron microscopy, X-ray and neutron diffraction, atomic force microscopy and piezo-force microscopy. Use of more than one technique for unambiguous identification of the domain structure is also described.

  10. Domain Theory, Its Models and Concepts

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup; Howard, Thomas J.; Bruun, Hans Peter Lomholt


    Domain Theory is a systems approach for the analysis and synthesis of products. Its basic idea is to view a product as systems of activities, organs and parts and to define structure, elements, behaviour and function in these domains. The theory is a basis for a long line of research contribution...

  11. Predicting detection performance with model observers: Fourier domain or spatial domain? (United States)

    Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia


    The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images.

  12. Modeling the Seasonality of Snow Cover in Naryn Oblast, Kyrgyzstan. (United States)

    Tomaszewska, M. A.; Henebry, G. M.


    Vertical transhumance practiced by herders in the highlands of Kyrgyzstan is strongly affected by timing of snow melt in high-elevation summer pastures. To model snow cover seasonality, we explore a novel approach through the synergistic use of "frost degree-days" obtained from MODIS land surface temperature data and the normalized difference snow index (NDSI) derived from over 16 years of Landsat imagery (2000-2015). From the fitted parameter coefficients of a convex quadratic model linking NDSI to accumulated frost degree-days (AFDD), we calculated two key metrics—the Peak Height of the NDSI and the Thermal Time (in AFDD) to the Peak Height—to examine the interannual variation in the timing of snow cover onset, snow melt, and snow cover duration. We discuss the strengths and limitations of this modeling approach to snow cover seasonality as well as demonstrate how it complements the land surface phenology modeling for understanding climatic influences on the highland pastures of Naryn oblast in Central Kyrgyzstan.

  13. An Improved Shock Model for Bare and Covered Explosives (United States)

    Scholtes, Gert; Bouma, Richard


    TNO developed a toolbox to estimate the probability of a violent event on a ship or other platform, when the munition bunker is hit by e.g. a bullet or fragment from a missile attack. To obtain the proper statistical output, several millions of calculations are needed to obtain a reliable estimate. Because millions of different scenarios have to be calculated, hydrocode calculations cannot be used for this type of application, but a fast and good engineering solutions is needed. At this moment the Haskins and Cook-model is used for this purpose. To obtain a better estimate for covered explosives and munitions, TNO has developed a new model which is a combination of the shock wave model at high pressure, as described by Haskins and Cook, in combination with the expanding shock wave model of Green. This combined model gives a better fit with the experimental values for explosives response calculations, using the same critical energy fluence values for covered as well as for bare explosives. In this paper the theory is explained and results of the calculations for several bare and covered explosives will be presented. To show this, the results will be compared with the experimental values from literature for composition B, Composition B-3 and PBX-9404.

  14. Estimated Frequency Domain Model Uncertainties used in Robust Controller Design

    DEFF Research Database (Denmark)

    Tøffner-Clausen, S.; Andersen, Palle; Stoustrup, Jakob


    This paper deals with the combination of system identification and robust controller design. Recent results on estimation of frequency domain model uncertainty are......This paper deals with the combination of system identification and robust controller design. Recent results on estimation of frequency domain model uncertainty are...

  15. Modeling Domain Variability in Requirements Engineering with Contexts (United States)

    Lapouchnian, Alexei; Mylopoulos, John

    Various characteristics of the problem domain define the context in which the system is to operate and thus impact heavily on its requirements. However, most requirements specifications do not consider contextual properties and few modeling notations explicitly specify how domain variability affects the requirements. In this paper, we propose an approach for using contexts to model domain variability in goal models. We discuss the modeling of contexts, the specification of their effects on system goals, and the analysis of goal models with contextual variability. The approach is illustrated with a case study.

  16. Analysis of Sea Ice Cover Sensitivity in Global Climate Model

    Directory of Open Access Journals (Sweden)

    V. P. Parhomenko


    Full Text Available The paper presents joint calculations using a 3D atmospheric general circulation model, an ocean model, and a sea ice evolution model. The purpose of the work is to analyze a seasonal and annual evolution of sea ice, long-term variability of a model ice cover, and its sensitivity to some parameters of model as well to define atmosphere-ice-ocean interaction.Results of 100 years simulations of Arctic basin sea ice evolution are analyzed. There are significant (about 0.5 m inter-annual fluctuations of an ice cover.The ice - atmosphere sensible heat flux reduced by 10% leads to the growth of average sea ice thickness within the limits of 0.05 m – 0.1 m. However in separate spatial points the thickness decreases up to 0.5 m. An analysis of the seasonably changing average ice thickness with decreasing, as compared to the basic variant by 0.05 of clear sea ice albedo and that of snow shows the ice thickness reduction in a range from 0.2 m up to 0.6 m, and the change maximum falls for the summer season of intensive melting. The spatial distribution of ice thickness changes shows, that on the large part of the Arctic Ocean there was a reduction of ice thickness down to 1 m. However, there is also an area of some increase of the ice layer basically in a range up to 0.2 m (Beaufort Sea. The 0.05 decrease of sea ice snow albedo leads to reduction of average ice thickness approximately by 0.2 m, and this value slightly depends on a season. In the following experiment the ocean – ice thermal interaction influence on the ice cover is estimated. It is carried out by increase of a heat flux from ocean to the bottom surface of sea ice by 2 W/sq. m in comparison with base variant. The analysis demonstrates, that the average ice thickness reduces in a range from 0.2 m to 0.35 m. There are small seasonal changes of this value.The numerical experiments results have shown, that an ice cover and its seasonal evolution rather strongly depend on varied parameters

  17. Interoperable domain models: the ISO land administration domain model LADM and its external classes

    CSIR Research Space (South Africa)

    Lemmen, CHJ


    Full Text Available This paper provides a brief overview of one of the first spatial domain standards: a standard for the domain of Land Administration (LA). This standard is in the draft stage of development now (May 2011). The development of domain standards is a...


    International Nuclear Information System (INIS)

    Buscheck, T.A.


    The purpose of the Multiscale Thermohydrologic Model (MSTHM) is to describe the thermohydrologic evolution of the near-field environment (NFE) and engineered barrier system (EBS) throughout the potential high-level nuclear waste repository at Yucca Mountain for a particular engineering design (CRWMS M andO 2000c). The process-level model will provide thermohydrologic (TH) information and data (such as in-drift temperature, relative humidity, liquid saturation, etc.) for use in other technical products. This data is provided throughout the entire repository area as a function of time. The MSTHM couples the Smeared-heat-source Drift-scale Thermal-conduction (SDT), Line-average-heat-source Drift-scale Thermohydrologic (LDTH), Discrete-heat-source Drift-scale Thermal-conduction (DDT), and Smeared-heat-source Mountain-scale Thermal-conduction (SMT) submodels such that the flow of water and water vapor through partially-saturated fractured rock is considered. The MSTHM accounts for 3-D drift-scale and mountain-scale heat flow, repository-scale variability of stratigraphy and infiltration flux, and waste package (WP)-to-WP variability in heat output from WPs. All submodels use the nonisothermal unsaturated-saturated flow and transport (NUFT) simulation code. The MSTHM is implemented in several data-processing steps. The four major steps are: (1) submodel input-file preparation, (2) execution of the four submodel families with the use of the NUFT code, (3) execution of the multiscale thermohydrologic abstraction code (MSTHAC), and (4) binning and post-processing (i.e., graphics preparation) of the output from MSTHAC. Section 6 describes the MSTHM in detail. The objectives of this Analyses and Model Report (AMR) are to investigate near field (NF) and EBS thermohydrologic environments throughout the repository area at various evolution periods, and to provide TH data that may be used in other process model reports

  19. On Automatic Modeling and Use of Domain-specific Ontologies

    DEFF Research Database (Denmark)

    Andreasen, Troels; Knappe, Rasmus; Bulskov, Henrik


    In this paper, we firstly introduce an approach to the modeling of a domain-specific ontology for use in connection with a given document collection. Secondly, we present a methodology for deriving conceptual similarity from the domain-specific ontology. Adopted for ontology representation is a s...

  20. Domain analysis and modeling to improve comparability of health statistics. (United States)

    Okada, M; Hashimoto, H; Ohida, T


    Health statistics is an essential element to improve the ability of managers of health institutions, healthcare researchers, policy makers, and health professionals to formulate appropriate course of reactions and to make decisions based on evidence. To ensure adequate health statistics, standards are of critical importance. A study on healthcare statistics domain analysis is underway in an effort to improve usability and comparability of health statistics. The ongoing study focuses on structuring the domain knowledge and making the knowledge explicit with a data element dictionary being the core. Supplemental to the dictionary are a domain term list, a terminology dictionary, and a data model to help organize the concepts constituting the health statistics domain.

  1. Using SST and land cover data from EO Missions for improved mesoscale modelling of the coastal zone

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Floors, Rogier Ralph; Lea, Guillaume

    the Danish Meteorological Institute (DMI), specifically developed for the North Sea and Baltic Sea region. To improve the physical description of the domain, the elevation, topography and land use, the CORINE land cover database and the SRTM elevation database are used as boundary conditions; with a spatial...... resolution of 100 m to 250 m, the CORINE land cover information represent a more accurate classification of land uses for the entire domain. SST, land cover, and elevation information from Earth Observation platforms are unique due to their extended spatial coverage and resolution, such that they can......, which do not resolve the large changes in local topographic features and atmospheric stability well [1]. The accuracy of modelled wind resource predictions can be improved by using local wind measurements to calibrate the models. RUNE investigated cost-effective measurement solutions for improving...

  2. Topic modelling in the information warfare domain

    CSIR Research Space (South Africa)

    De Waal, A


    Full Text Available In this paper the authors provide context to Topic Modelling as an Information Warfare technique. Topic modelling is a technique that discovers latent topics in unstructured and unlabelled collection of documents. The topic structure can be searched...

  3. PolSAR Land Cover Classification Based on Roll-Invariant and Selected Hidden Polarimetric Features in the Rotation Domain

    Directory of Open Access Journals (Sweden)

    Chensong Tao


    Full Text Available Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR. Target polarimetric response is strongly dependent on its orientation. Backscattering responses of the same target with different orientations to the SAR flight path may be quite different. This target orientation diversity effect hinders PolSAR image understanding and interpretation. Roll-invariant polarimetric features such as entropy, anisotropy, mean alpha angle, and total scattering power are independent of the target orientation and are commonly adopted for PolSAR image classification. On the other aspect, target orientation diversity also contains rich information which may not be sensed by roll-invariant polarimetric features. In this vein, only using the roll-invariant polarimetric features may limit the final classification accuracy. To address this problem, this work uses the recently reported uniform polarimetric matrix rotation theory and a visualization and characterization tool of polarimetric coherence pattern to investigate hidden polarimetric features in the rotation domain along the radar line of sight. Then, a feature selection scheme is established and a set of hidden polarimetric features are selected in the rotation domain. Finally, a classification method is developed using the complementary information between roll-invariant and selected hidden polarimetric features with a support vector machine (SVM/decision tree (DT classifier. Comparison experiments are carried out with NASA/JPL AIRSAR and multi-temporal UAVSAR data. For AIRSAR data, the overall classification accuracy of the proposed classification method is 95.37% (with SVM/96.38% (with DT, while that of the conventional classification method is 93.87% (with SVM/94.12% (with DT, respectively. Meanwhile, for multi-temporal UAVSAR data, the mean overall classification accuracy of the proposed method is up to 97.47% (with SVM/99.39% (with DT, which is also higher

  4. Stochastic lattice model of synaptic membrane protein domains (United States)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A.


    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  5. Stochastic lattice model of synaptic membrane protein domains. (United States)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A


    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  6. Developing a Domain Model for Relay Circuits

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth


    for railways madeby Bjørner, however our model is more general: the components can be of any kind and can later be refined to e.g. railway components or circuit components. Then we show how the abstract network model can be refined into an explicit model for relay circuits. The circuit model describes...... the statics as well as the dynamics of relay circuits, i.e. how a relay circuit can be composed legally from electrical components as well as how the components may change state over time. Finally the circuit model is transformed into an executable model, and we show how a concrete circuit can be defined...

  7. Modelling circulation in an ice-covered lake

    Directory of Open Access Journals (Sweden)

    Boris Arkhipov


    Full Text Available In deep ice-covered lakes with temperatures below 4 °C the heat flux from the bottom sediment results in a horizontal density gradient and a consequent flow along the bottom slope. Measurements in Lake Pääjärvi, Finland, show a stable temperature field where a heat gain through the bottom and a heat loss through the ice nearly balance each other. The circulation is thermal with low velocities (less than 1.5 cm s–1. We used the 3D hydrodynamic Princeton Ocean Model as a tool to simulate the water circulation and the temperature distribution under the ice. The model forcing was based on field temperature measurements. The model simulations suggest that in midwinter the velocity field of the upper water layers is anticyclonic while that of deep layers is cyclonic. Comparison with current measurements at one site showed good agreement between the modelled and observed results. On the basis of the modelled results it is possible to better understand the distributions of some micro-organisms and the accumulation of oxygen depleted waters in the deepest part of the lake.

  8. Time domain modeling of tunable response of graphene

    DEFF Research Database (Denmark)

    Prokopeva, Ludmila; Emani, Naresh K.; Boltasseva, Alexandra


    We present a causal numerical model for time domain simulations of the optical response of graphene. The dielectric function is approximated with a conductivity term, a Drude term and a number of the critical points terms.......We present a causal numerical model for time domain simulations of the optical response of graphene. The dielectric function is approximated with a conductivity term, a Drude term and a number of the critical points terms....

  9. Influence of forest cover changes on regional weather conditions: estimations using the mesoscale model COSMO (United States)

    Olchev, A. V.; Rozinkina, I. A.; Kuzmina, E. V.; Nikitin, M. A.; Rivin, G. S.


    This modeling study intends to estimate the possible influence of forest cover change on regional weather conditions using the non-hydrostatic model COSMO. The central part of the East European Plain was selected as the ‘model region’ for the study. The results of numerical experiments conducted for the warm period of 2010 for the modeling domain covering almost the whole East European Plain showed that deforestation and afforestation processes within the selected model region of the area about 105 km2 can lead to significant changes in regional weather conditions. The deforestation processes have resulted in an increase of the air temperature and a reduction in the amount of precipitation. The afforestation processes can produce the opposite effects, as manifested in decreased air temperature and increased precipitation. Whereas a change of the air temperature is observed mainly inside of the model region, the changes of the precipitation are evident within the entire East European Plain, even in regions situated far away from the external boundaries of the model region.

  10. Building a Flexible Software Factory Using Partial Domain Specific Models

    NARCIS (Netherlands)

    Warmer, J.B.; Kleppe, A.G.


    This paper describes some experiences in building a software factory by defining multiple small domain specific languages (DSLs) and having multiple small models per DSL. This is in high contrast with traditional approaches using monolithic models, e.g. written in UML. In our approach, models behave

  11. Time versus frequency domain measurements: layered model ...

    African Journals Online (AJOL)

    The effect of receiver coil alignment errors δ on the response of electromagnetic measurements in a layered earth model is studied. The statistics of generalized least square inverse was employed to analyzed the errors on three different geophysical applications. The following results were obtained: (i) The FEM ellipiticity is ...

  12. Bonding and Molecular Geometry without Orbitals- The Electron Domain Model (United States)

    Gillespie, Ronald J.; Spencer, James N.; Moog, Richard S.


    An alternative to the conventional valence bond approach to bonding and geometry-the electron domain model-is presented. This approach avoids some of the problems with the standard approach and presents fewer difficulties for the student, while still providing a physical basis for the VSEPR model and a link to the valence bond model. The electron domain model also emphasizes the importance of the Pauli principle in understanding the chemical bond and molecular geometry. A letter from Derek W. Smith in our April 2000 issue addresses the above.

  13. Modelling Deforestation and Land Cover Transitions of Tropical Peatlands in Sumatra, Indonesia Using Remote Sensed Land Cover Data Sets

    Directory of Open Access Journals (Sweden)

    Ian Elz


    Full Text Available In Southeast Asia land use change associated with forest loss and degradation is a major source of greenhouse gas (GHG emissions. This is of particular concern where deforestation occurs on peat soils. A business-as-usual (BAU land change model was developed using Dinamica EGO© for a REDD+ Demonstration Activity area in south-east Jambi Province, Sumatra, Indonesia containing Berbak National Park (NP. The model output will be used as baseline land change predictions for comparison with alternative land cover management scenarios as part of a REDD+ feasibility study. The study area is approximately 376,000 ha with approximately 50% on peat soils. The model uses published 2000 and 2010 land cover maps as input and projects land cover change for thirty years until 2040. The model predicted that under a BAU scenario the forest area, 185,000 ha in 2010, will decline by 37% by 2040. In protected forest areas, approximately 50% of the study area, forest cover will reduce by 25%. Peat swamp forest will reduce by almost 37%. The greatest land cover category increases are plantation/regrowth areas (which includes oil palm and open areas which each increase by 30,000 ha. These results indicate that the site has great potential as an Indonesian REDD+ Demonstration Activity.

  14. An Integrated Framework to Specify Domain-Specific Modeling Languages

    DEFF Research Database (Denmark)

    Zarrin, Bahram; Baumeister, Hubert


    In this paper, we propose an integrated framework that can be used by DSL designers to implement their desired graphical domain-specific languages. This framework relies on Microsoft DSL Tools, a meta-modeling framework to build graphical domain-specific languages, and an extension of ForSpec, a ...... language to define their semantics. Integrating these technologies under the umbrella of Microsoft Visual Studio IDE allows DSL designers to utilize a single development environment for developing their desired domain-specific languages....

  15. Modeling human response errors in synthetic flight simulator domain (United States)

    Ntuen, Celestine A.


    This paper presents a control theoretic approach to modeling human response errors (HRE) in the flight simulation domain. The human pilot is modeled as a supervisor of a highly automated system. The synthesis uses the theory of optimal control pilot modeling for integrating the pilot's observation error and the error due to the simulation model (experimental error). Methods for solving the HRE problem are suggested. Experimental verification of the models will be tested in a flight quality handling simulation.

  16. Domain Specific Language for Modeling Waste Management Systems

    DEFF Research Database (Denmark)

    Zarrin, Bahram

    In order to develop sustainable waste management systems with considering life cycle perspective, scientists and domain experts in environmental science require readily applicable tools for modeling and evaluating the life cycle impacts of the waste management systems. Practice has proved...... environmental technologies i.e. solid waste management systems. Flow-based programming is used to support concurrent execution of the processes, and provides a model-integration language for composing processes from homogeneous or heterogeneous domains. And a domain-specific language is used to define atomic...... that modeling these systems with general-purpose tools is a cumbersome task. On one hand, the scientists have to spend considerable amount of time to understand these tools in order to develop their models. On another hand, integrated assessments are becoming gradually common in environmental management...

  17. Using domain knowledge and domain-inspired discourse model for coreference resolution for clinical narratives. (United States)

    Jindal, Prateek; Roth, Dan


    This paper presents a coreference resolution system for clinical narratives. Coreference resolution aims at clustering all mentions in a single document to coherent entities. A knowledge-intensive approach for coreference resolution is employed. The domain knowledge used includes several domain-specific lists, a knowledge intensive mention parsing, and task informed discourse model. Mention parsing allows us to abstract over the surface form of the mention and represent each mention using a higher-level representation, which we call the mention's semantic representation (SR). SR reduces the mention to a standard form and hence provides better support for comparing and matching. Existing coreference resolution systems tend to ignore discourse aspects and rely heavily on lexical and structural cues in the text. The authors break from this tradition and present a discourse model for "person" type mentions in clinical narratives, which greatly simplifies the coreference resolution. This system was evaluated on four different datasets which were made available in the 2011 i2b2/VA coreference challenge. The unweighted average of F1 scores (over B-cubed, MUC and CEAF) varied from 84.2% to 88.1%. These experiments show that domain knowledge is effective for different mention types for all the datasets. Error analysis shows that most of the recall errors made by the system can be handled by further addition of domain knowledge. The precision errors, on the other hand, are more subtle and indicate the need to understand the relations in which mentions participate for building a robust coreference system. This paper presents an approach that makes an extensive use of domain knowledge to significantly improve coreference resolution. The authors state that their system and the knowledge sources developed will be made publicly available.

  18. Artificial Systems and Models for Risk Covering Operations

    Directory of Open Access Journals (Sweden)

    Laurenţiu Mihai Treapăt


    Full Text Available Mainly, this paper focuses on the roles of artificial intelligence based systems and especially on risk-covering operations. In this context, the paper comes with theoretical explanations on real-life based examples and applications. From a general perspective, the paper enriches its value with a wide discussion on the related subject. The paper aims to revise the volatilities’ estimation models and the correlations between the various time series and also by presenting the Risk Metrics methodology, as explained is a case study. The advantages that the VaR estimation offers, consist of its ability to quantitatively and numerically express the risk level of a portfolio, at a certain moment in time and also the risk of on open position (in titles, in FX, commodities or granted loans, belonging to an economic agent or even individual; hence, its role in a more efficient capital allocation, in the assumed risk delimitation, and also as a performance measurement instrument. In this paper and the study case that completes our work, we aim to prove how we can prevent considerable losses and even bankruptcies if VaR is known and applied accordingly. For this reason, the universities inRomaniashould include or increase their curricula with the study of the VaR model as an artificial intelligence tool. The simplicity of the presented case study, most probably, is the strongest argument of the current work because it can be understood also by the readers that are not necessarily very experienced in the risk management field.

  19. Three-dimensional transient electromagnetic modeling in the Laplace Domain

    International Nuclear Information System (INIS)

    Mizunaga, H.; Lee, Ki Ha; Kim, H.J.


    In modeling electromagnetic responses, Maxwell's equations in the frequency domain are popular and have been widely used (Nabighian, 1994; Newman and Alumbaugh, 1995; Smith, 1996, to list a few). Recently, electromagnetic modeling in the time domain using the finite difference (FDTD) method (Wang and Hohmann, 1993) has also been used to study transient electromagnetic interactions in the conductive medium. This paper presents a new technique to compute the electromagnetic response of three-dimensional (3-D) structures. The proposed new method is based on transforming Maxwell's equations to the Laplace domain. For each discrete Laplace variable, Maxwell's equations are discretized in 3-D using the staggered grid and the finite difference method (FDM). The resulting system of equations is then solved for the fields using the incomplete Cholesky conjugate gradient (ICCG) method. The new method is particularly effective in saving computer memory since all the operations are carried out in real numbers. For the same reason, the computing speed is faster than frequency domain modeling. The proposed approach can be an extremely useful tool in developing an inversion algorithm using the time domain data

  20. Domain decomposition methods in FVM approach to gravity field modelling. (United States)

    Macák, Marek


    The finite volume method (FVM) as a numerical method can be straightforwardly implemented for global or local gravity field modelling. This discretization method solves the geodetic boundary value problems in a space domain. In order to obtain precise numerical solutions, it usually requires very refined discretization leading to large-scale parallel computations. To optimize such computations, we present a special class of numerical techniques that are based on a physical decomposition of the global solution domain. The domain decomposition (DD) methods like the Multiplicative Schwarz Method and Additive Schwarz Method are very efficient methods for solving partial differential equations. We briefly present their mathematical formulations and we test their efficiency. Presented numerical experiments are dealing with gravity field modelling. Since there is no need to solve special interface problems between neighbouring subdomains, in our applications we use the overlapping DD methods.

  1. Forest cover dynamics analysis and prediction modelling using logistic regression model (case study: forest cover at Indragiri Hulu Regency, Riau Province) (United States)

    Nahib, Irmadi; Suryanta, Jaka


    Forest destruction, climate change and global warming could reduce an indirect forest benefit because forest is the largest carbon sink and it plays a very important role in global carbon cycle. To support Reducing Emissions from Deforestation and Forest Degradation (REDD +) program, people pay attention of forest cover changes as the basis for calculating carbon stock changes. This study try to explore the forest cover dynamics as well as the prediction model of forest cover in Indragiri Hulu Regency, Riau Province Indonesia. The study aims to analyse some various explanatory variables associated with forest conversion processes and predict forest cover change using logistic regression model (LRM). The main data used in this study is Land use/cover map (1990 - 2011). Performance of developed model was assessed through a comparison of the predicted model of forest cover change and the actual forest cover in 2011. The analysis result showed that forest cover has decreased continuously between 1990 and 2011, up to the loss of 165,284.82 ha (35.19 %) of forest area. The LRM successfully predicted the forest cover for the period 2010 with reasonably high accuracy (ROC = 92.97 % and 70.26 %).

  2. Nonlinear time-domain modeling of balanced-armature receivers

    DEFF Research Database (Denmark)

    Jensen, Joe; Agerkvist, Finn T.; Harte, James


    of the loudspeaker diaphragm inevitably changes the magnetic and electrical characteristics of the loudspeaker. A numerical time-domain model capable of describing these nonlinearities is presented. By simulation it is demonstrated how the output distortion could potentially be reduced significantly through careful...

  3. Frequency-domain thermal modelling of power semiconductor devices

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Andresen, Markus


    to correctly predict the device temperatures, especially when considering the thermal grease and heat sink attached to the power semiconductor devices. In this paper, the frequency-domain approach is applied to the modelling of thermal dynamics for power devices. The limits of the existing RC lump...

  4. Modeling protein network evolution under genome duplication and domain shuffling

    Directory of Open Access Journals (Sweden)

    Isambert Hervé


    Full Text Available Abstract Background Successive whole genome duplications have recently been firmly established in all major eukaryote kingdoms. Such exponential evolutionary processes must have largely contributed to shape the topology of protein-protein interaction (PPI networks by outweighing, in particular, all time-linear network growths modeled so far. Results We propose and solve a mathematical model of PPI network evolution under successive genome duplications. This demonstrates, from first principles, that evolutionary conservation and scale-free topology are intrinsically linked properties of PPI networks and emerge from i prevailing exponential network dynamics under duplication and ii asymmetric divergence of gene duplicates. While required, we argue that this asymmetric divergence arises, in fact, spontaneously at the level of protein-binding sites. This supports a refined model of PPI network evolution in terms of protein domains under exponential and asymmetric duplication/divergence dynamics, with multidomain proteins underlying the combinatorial formation of protein complexes. Genome duplication then provides a powerful source of PPI network innovation by promoting local rearrangements of multidomain proteins on a genome wide scale. Yet, we show that the overall conservation and topology of PPI networks are robust to extensive domain shuffling of multidomain proteins as well as to finer details of protein interaction and evolution. Finally, large scale features of direct and indirect PPI networks of S. cerevisiae are well reproduced numerically with only two adjusted parameters of clear biological significance (i.e. network effective growth rate and average number of protein-binding domains per protein. Conclusion This study demonstrates the statistical consequences of genome duplication and domain shuffling on the conservation and topology of PPI networks over a broad evolutionary scale across eukaryote kingdoms. In particular, scale

  5. Modeling interactions between land cover and climate in integrated assessment models (Invited) (United States)

    Calvin, K. V.


    Integrated Assessment Models (IAMs) link representations of the regionally disaggregated global economy, energy system, agriculture and land-use, terrestrial carbon cycle, oceans and climate in an internally consistent framework. These models are often used as science-based decision-support tools for evaluating the consequences of climate, energy, and other policies, and their use in this framework is likely to increase in the future. Additionally, these models are used to develop future scenarios of emissions and land cover for use in climate models (e.g., RCPs and CMIP5). Land use is strongly influenced by assumptions about population, income, diet, ecosystem productivity change, and climate policy. Population, income, and diet determine the amount of food production needed in the future. Assumptions about future changes in crop yields due to agronomic developments influence the amount of land needed to produce food crops. Climate policy has implications for land when land-based mitigation options (e.g., afforestation and bioenergy) are considered. IAM models consider each of these factors in their computation of land use in the future. As each of these factors is uncertain in the future, IAM models use scenario analysis to explore the implications of each. For example, IAMs have been used to explore the effect of different mitigation policies on land cover. These models can quantify the trade-offs in terms of land cover, energy prices, food prices, and mitigation costs of each of these policies. Furthermore, IAMs are beginning to explore the effect of climate change on land productivity, and the implications that changes in productivity have on mitigation efforts. In this talk, we describe the implications for future land use and land cover of a variety of socioeconomic, technological, and policy drivers in several IAM models. Additionally, we will discuss the effects of future land cover on climate and the effects of climate on future land cover, as simulated

  6. Synthetic Domain Theory and Models of Linear Abadi & Plotkin Logic

    DEFF Research Database (Denmark)

    Møgelberg, Rasmus Ejlers; Birkedal, Lars; Rosolini, Guiseppe


    Plotkin suggested using a polymorphic dual intuitionistic/linear type theory (PILLY) as a metalanguage for parametric polymorphism and recursion. In recent work the first two authors and R.L. Petersen have defined a notion of parametric LAPL-structure, which are models of PILLY, in which one can...... reason using parametricity and, for example, solve a large class of domain equations, as suggested by Plotkin.In this paper, we show how an interpretation of a strict version of Bierman, Pitts and Russo's language Lily into synthetic domain theory presented by Simpson and Rosolini gives rise...

  7. Modelling the emission of pesticides from covered structures to air

    NARCIS (Netherlands)

    Holterman, H.J.; Sapounas, A.; Beulke, S.; Os, van E.A.; Glass, C.R.


    Emissions of plant protection products (PPP) from covered structures to the air outside were estimated to support the European Food Safety Authority (EFSA) in the development of guidance on risk assessments for protected crops. Such emissions are mainly caused by loss of volatilised PPPs through the

  8. The critical domain size of stochastic population models. (United States)

    Reimer, Jody R; Bonsall, Michael B; Maini, Philip K


    Identifying the critical domain size necessary for a population to persist is an important question in ecology. Both demographic and environmental stochasticity impact a population's ability to persist. Here we explore ways of including this variability. We study populations with distinct dispersal and sedentary stages, which have traditionally been modelled using a deterministic integrodifference equation (IDE) framework. Individual-based models (IBMs) are the most intuitive stochastic analogues to IDEs but yield few analytic insights. We explore two alternate approaches; one is a scaling up to the population level using the Central Limit Theorem, and the other a variation on both Galton-Watson branching processes and branching processes in random environments. These branching process models closely approximate the IBM and yield insight into the factors determining the critical domain size for a given population subject to stochasticity.

  9. Gaussian Process Domain Experts for Modeling of Facial Affect. (United States)

    Eleftheriadis, Stefanos; Rudovic, Ognjen; Deisenroth, Marc Peter; Pantic, Maja


    Most of existing models for facial behavior analysis rely on generic classifiers, which fail to generalize well to previously unseen data. This is because of inherent differences in source (training) and target (test) data, mainly caused by variation in subjects' facial morphology, camera views, and so on. All of these account for different contexts in which target and source data are recorded, and thus, may adversely affect the performance of the models learned solely from source data. In this paper, we exploit the notion of domain adaptation and propose a data efficient approach to adapt already learned classifiers to new unseen contexts. Specifically, we build upon the probabilistic framework of Gaussian processes (GPs), and introduce domain-specific GP experts (e.g., for each subject). The model adaptation is facilitated in a probabilistic fashion, by conditioning the target expert on the predictions from multiple source experts. We further exploit the predictive variance of each expert to define an optimal weighting during inference. We evaluate the proposed model on three publicly available data sets for multi-class (MultiPIE) and multi-label (DISFA, FERA2015) facial expression analysis by performing adaptation of two contextual factors: "where" (view) and "who" (subject). In our experiments, the proposed approach consistently outperforms: 1) both source and target classifiers, while using a small number of target examples during the adaptation and 2) related state-of-the-art approaches for supervised domain adaptation.

  10. Pole-zero form fractional model identification in frequency domain

    International Nuclear Information System (INIS)

    Mansouri, R.; Djamah, T.; Djennoune, S.; Bettayeb, M.


    This paper deals with system identification in the frequency domain using non integer order models given in the pole-zero form. The usual identification techniques cannot be used in this case because of the non integer orders of differentiation which makes the problem strongly nonlinear. A general identification method based on Levenberg-Marquardt algorithm is developed and allows to estimate the (2n+2m+1) parameters of the model. Its application to identify the ''skin effect'' of a squirrel cage induction machine modeling is then presented.

  11. Conceptual Model of the Globalization for Domain-Specific Languages


    Clark, Tony; Van Den Brand, Mark; Combemale, Benoit; Rumpe, Bernhard


    International audience; Domain Specific Languages (DSL) have received some prominence recently. Designing a DSL and all their tools is still cumbersome and lots of work. Engineering of DSLs is still at infancy, not even the terms have been coined and agreed on. In particular globalization and all its consequences need to be precisely defined and discussed. This chapter provides a definition of the relevant terms and relates them, such that a conceptual model emerges. The authors think that th...

  12. Domain Theory for Concurrency

    DEFF Research Database (Denmark)

    Nygaard, Mikkel

    Concurrent computation can be given an abstract mathematical treatment very similar to that provided for sequential computation by domain theory and denotational semantics of Scott and Strachey. A simple domain theory for concurrency is presented. Based on a categorical model of linear logic and ...... towards more expressive languages than HOPLA and Affine HOPLA—in particular concerning extensions to cover independence models. The thesis concludes with a discussion of related work towards a fully fledged domain theory for concurrency....

  13. Land-cover in Watershed Models for Western Ghats

    Indian Academy of Sciences (India)


    the model parameters are required to be altered greatly for good performance and that the model simulations are ... to understand the reasons for the poor performance of the model, a technique was developed to compute the ...... Programme. The authors acknowledge with gratitude the financial assistance provided for the.

  14. Time domain series system definition and gear set reliability modeling

    International Nuclear Information System (INIS)

    Xie, Liyang; Wu, Ningxiang; Qian, Wenxue


    Time-dependent multi-configuration is a typical feature for mechanical systems such as gear trains and chain drives. As a series system, a gear train is distinct from a traditional series system, such as a chain, in load transmission path, system-component relationship, system functioning manner, as well as time-dependent system configuration. Firstly, the present paper defines time-domain series system to which the traditional series system reliability model is not adequate. Then, system specific reliability modeling technique is proposed for gear sets, including component (tooth) and subsystem (tooth-pair) load history description, material priori/posterior strength expression, time-dependent and system specific load-strength interference analysis, as well as statistically dependent failure events treatment. Consequently, several system reliability models are developed for gear sets with different tooth numbers in the scenario of tooth root material ultimate tensile strength failure. The application of the models is discussed in the last part, and the differences between the system specific reliability model and the traditional series system reliability model are illustrated by virtue of several numerical examples. - Highlights: • A new type of series system, i.e. time-domain multi-configuration series system is defined, that is of great significance to reliability modeling. • Multi-level statistical analysis based reliability modeling method is presented for gear transmission system. • Several system specific reliability models are established for gear set reliability estimation. • The differences between the traditional series system reliability model and the new model are illustrated.

  15. Structural updates of alignment of protein domains and consequences on evolutionary models of domain superfamilies. (United States)

    Mutt, Eshita; Rani, Sudha Sane; Sowdhamini, Ramanathan


    Influx of newly determined crystal structures into primary structural databases is increasing at a rapid pace. This leads to updation of primary and their dependent secondary databases which makes large scale analysis of structures even more challenging. Hence, it becomes essential to compare and appreciate replacement of data and inclusion of new data that is critical between two updates. PASS2 is a database that retains structure-based sequence alignments of protein domain superfamilies and relies on SCOP database for its hierarchy and definition of superfamily members. Since, accurate alignments of distantly related proteins are useful evolutionary models for depicting variations within protein superfamilies, this study aims to trace the changes in data in between PASS2 updates. In this study, differences in superfamily compositions, family constituents and length variations between different versions of PASS2 have been tracked. Studying length variations in protein domains, which have been introduced by indels (insertions/deletions), are important because theses indels act as evolutionary signatures in introducing variations in substrate specificity, domain interactions and sometimes even regulating protein stability. With this objective of classifying the nature and source of variations in the superfamilies during transitions (between the different versions of PASS2), increasing length-rigidity of the superfamilies in the recent version is observed. In order to study such length-variant superfamilies in detail, an improved classification approach is also presented, which divides the superfamilies into distinct groups based on their extent of length variation. An objective study in terms of transition between the database updates, detailed investigation of the new/old members and examination of their structural alignments is non-trivial and will help researchers in designing experiments on specific superfamilies, in various modelling studies, in linking

  16. Frequency-Domain Response Analysis for Quantitative Systems Pharmacology Models. (United States)

    Schulthess, Pascal; Post, Teun M; Yates, James; van der Graaf, Piet H


    Drug dosing regimen can significantly impact drug effect and, thus, the success of treatments. Nevertheless, trial and error is still the most commonly used method by conventional pharmacometric approaches to optimize dosing regimen. In this tutorial, we utilize four distinct classes of quantitative systems pharmacology models to introduce frequency-domain response analysis, a method widely used in electrical and control engineering that allows the analytical optimization of drug treatment regimen from the dynamics of the model. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  17. Eight-Vertex Model of Two-Dimensional Domain Walls (United States)

    Rys, Franz S.


    A statistical model of interacting linear domain walls (occurring, e.g., in monolayer adsorbates) is solved on the square lattice with use of exact and numerical results of an equivalent eight-vertex model. For attractive walls a commensurate and an incommensurate phase are separated by a first-order line for stiff walls and by a fluid phase for flexible walls. The phase boundaries with the fluid phase are Ising-like. For repulsive stiff walls an intermediate striped phase with a nonuniversal boundary occurs which vanishes for higher flexibilities. Moreover, disorder lines are located.

  18. Modelling of Context: Designing Mobile Systems from Domain-Dependent Models

    DEFF Research Database (Denmark)

    Nielsen, Peter Axel; Stage, Jan


    Modelling of domain-dependent aspects is a key prerequisite for the design of software for mobile systems. Most mobile systems include a more or less advanced model of selected aspects of the domain in which they are used. This paper discusses the creation of such a model and its relevance...... for technical design of a mobile software system. Conventional approaches to modelling of context focus either on the application domain or the problem domain. These approaches are presented and their relevance for technical design of software for mobile systems is discussed. The paper also reports from...... an empirical study where a methodology that combines both of these approaches was introduced and employed for modelling of the domain-dependent aspects that were relevant for the design of a software component in a mobile telephone. The empirical study was conducted in two companies that produce software...

  19. The Human-Computer Domain Relation in UX Models

    DEFF Research Database (Denmark)

    Clemmensen, Torkil

    This paper argues that the conceptualization of the human, the computer and the domain of use in competing lines of UX research have problematic similarities and superficial differences. The paper qualitatively analyses concepts and models in five research papers that together represent two...... influential lines of UX research: aesthetics and temporal UX, and two use situations: using a website and starting to use a smartphone. The results suggest that the two lines of UX research share a focus on users’ evaluative judgments of technology, both focuses on product qualities rather than activity...... domains, give little details about users, and treat human-computer interaction as perception. The conclusion gives similarities and differences between the approaches to UX. The implications for theory building are indicated....

  20. Efficient time-domain model of the graphene dielectric function (United States)

    Prokopeva, Ludmila J.; Kildishev, Alexander V.


    A honey-comb monolayer lattice of carbon atoms, graphene, is not only ultra-thin, ultra-light, flexible and strong, but also highly conductive when doped and exhibits strong interaction with electromagnetic radiation in the spectral range from microwaves to the ultraviolet. Moreover, this interaction can be effectively controlled electrically. High flexibility and conductivity makes graphene an attractive material for numerous photonic applications requiring transparent conducting electrodes: touchscreens, liquid crystal displays, organic photovoltaic cells, and organic light-emitting diodes. Meanwhile, its tunability makes it desirable for optical modulators, tunable filters and polarizers. This paper deals with the basics of the time-domain modeling of the graphene dielectric function under a random-phase approximation. We focus at applicability of Padé approximants to the interband dielectric function (IDF) of single layer graphene. Our study is centered on the development of a two-critical points approximation (2CPA) of the IDF within a single-electron framework with negligible carrier scattering and a realistic range of chemical potential at room temperature. This development is successfully validated by comparing reflection and transmission spectra computed by a numerical method in time-domain versus semi-analytical calculations in frequency domain. Finally, we sum up our results - (1) high-quality approximation, (2) tunability, and (3) second-order accurate numerical FDTD implementation of the 2CPA of IDF demonstrated across the desired range of the chemical potential to temperature ratios (4 - 23). Finally, we put forward future directions for time-domain modeling of optical response of graphene with wide range of tunable and fabrication-dependent parameters, including other broadening factors and variations of temperature and chemical potentials.

  1. Incorporating agricultural land cover in conceptual rainfall runoff models (United States)

    Euser, Tanja; Hrachowitz, Markus; Winsemius, Hessel; Savenije, Hubert


    Incorporating spatially variable information is a frequently discussed option to increase the performance of (semi) distributed conceptual rainfall runoff models. One of the methods to do this is by using these spatially variable information to delineate Hydrological Response Units (HRUs) within a catchment. This study tests whether the incorporation of an additional agricultural HRU in a conceptual hydrological model can better reflect the spatial differences in runoff generation and therefore improve the simulation of the wetting phase in autumn. The study area is the meso-scale Ourthe catchment in Belgium. A previous study in this area showed that spatial patterns in runoff generation were already better represented by incorporation of a wetland and a hillslope HRU, compared to a lumped model structure. The influences which are considered by including an agriculture HRU are increased drainage speed due to roads, plough pans and increased infiltration excess overland flow (drainage pipes area only limited present), and variable vegetation patterns due to sowing and harvesting. In addition, the vegetation is not modelled as a static resistance towards evaporation, but the Jarvis stress functions are used to increase the realism of the modelled transpiration; in land-surface models the Jarvis stress functions are already often used for modelling transpiration. The results show that an agricultural conceptualisation in addition to wetland and hillslope conceptualisations leads to small improvements in the modelled discharge. However, the influence is larger on the representation of spatial patterns and the modelled contributions of different HRUs to the total discharge.

  2. A domain-independent descriptive design model and its application to structured reflection on design processes

    NARCIS (Netherlands)

    Reymen, Isabelle; Hammer, D.K.; Kroes, P.A.; van Aken, Joan Ernst; van Aken, J.E.; Dorst, C.H.; Bax, M.F.T.; Basten, T


    Domain-independent models of the design process are an important means for facilitating interdisciplinary communication and for supporting multidisciplinary design. Many so-called domain-independent models are, however, not really domain independent. We state that to be domain independent, the

  3. Modelling the role of the design context in the design process: a domain-independent approach

    NARCIS (Netherlands)

    Reymen, Isabelle; Kroes, P.; Basten, T; Durling, D.; Shackleton, J.


    Domain-independent models of the design process are an important means for facilitating interdisciplinary communication and for supporting multidisciplinary design. Many so-called domain-independent models are, however, not really domain independent. We state that, to be domain independent, the

  4. Modelling DNA origami self-assembly at the domain level

    Energy Technology Data Exchange (ETDEWEB)

    Dannenberg, Frits; Kwiatkowska, Marta [Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD (United Kingdom); Dunn, Katherine E. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom); Department of Electronics, University of York, York YO10 5DD (United Kingdom); Bath, Jonathan; Turberfield, Andrew J. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom); Ouldridge, Thomas E. [Department of Physics, University of Oxford, Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Department of Mathematics, Imperial College, 180 Queen’s Gate, London SW7 2AZ (United Kingdom)


    We present a modelling framework, and basic model parameterization, for the study of DNA origami folding at the level of DNA domains. Our approach is explicitly kinetic and does not assume a specific folding pathway. The binding of each staple is associated with a free-energy change that depends on staple sequence, the possibility of coaxial stacking with neighbouring domains, and the entropic cost of constraining the scaffold by inserting staple crossovers. A rigorous thermodynamic model is difficult to implement as a result of the complex, multiply connected geometry of the scaffold: we present a solution to this problem for planar origami. Coaxial stacking of helices and entropic terms, particularly when loop closure exponents are taken to be larger than those for ideal chains, introduce interactions between staples. These cooperative interactions lead to the prediction of sharp assembly transitions with notable hysteresis that are consistent with experimental observations. We show that the model reproduces the experimentally observed consequences of reducing staple concentration, accelerated cooling, and absent staples. We also present a simpler methodology that gives consistent results and can be used to study a wider range of systems including non-planar origami.

  5. Modelling DNA origami self-assembly at the domain level

    International Nuclear Information System (INIS)

    Dannenberg, Frits; Kwiatkowska, Marta; Dunn, Katherine E.; Bath, Jonathan; Turberfield, Andrew J.; Ouldridge, Thomas E.


    We present a modelling framework, and basic model parameterization, for the study of DNA origami folding at the level of DNA domains. Our approach is explicitly kinetic and does not assume a specific folding pathway. The binding of each staple is associated with a free-energy change that depends on staple sequence, the possibility of coaxial stacking with neighbouring domains, and the entropic cost of constraining the scaffold by inserting staple crossovers. A rigorous thermodynamic model is difficult to implement as a result of the complex, multiply connected geometry of the scaffold: we present a solution to this problem for planar origami. Coaxial stacking of helices and entropic terms, particularly when loop closure exponents are taken to be larger than those for ideal chains, introduce interactions between staples. These cooperative interactions lead to the prediction of sharp assembly transitions with notable hysteresis that are consistent with experimental observations. We show that the model reproduces the experimentally observed consequences of reducing staple concentration, accelerated cooling, and absent staples. We also present a simpler methodology that gives consistent results and can be used to study a wider range of systems including non-planar origami

  6. Why Friedman's Non-monotonic Reasoning Defies Hempel's Covering Law Model

    NARCIS (Netherlands)

    M.C.W. Janssen (Maarten); Y-H. Tan (Yao-Hua)


    textabstractIn this paper we will show that Hempel's covering law model can't deal very well with explanations that are based on incomplete knowledge. In particular the symmetry thesis, which is an important aspect of the covering law model, turns out to be problematic for these explanations. We

  7. Why Friedman's non-monotonic reasoning defies Hempel's covering law model

    NARCIS (Netherlands)

    M.C.W. Janssen (Maarten); Y.H. Tan (Yao Hua)


    textabstractIn this paper we will show that Hempel's covering law model can't deal very well with explanations that are based on incomplete knowledge. In particular the symmetry thesis, which is an important aspect of the covering law model, turns out to be problematic for these explanations. We

  8. Frequency and Time Domain Modeling of Acoustic Liner Boundary Conditions (United States)

    Bliss, Donald B.


    As part of a research program directed at the acoustics of advanced subsonic propulsion systems undertaken at NASA Langley, Duke University was funded to develop a boundary condition model for bulk-reacting nacelle liners. The overall objective of the Langley program was to understand and predict noise from advanced subsonic transport engines and to develop related noise control technology. The overall technical areas included: fan and propeller source noise, acoustics of ducts and duct liners, interior noise, subjective acoustics, and systems noise prediction. The Duke effort was directed toward duct liner acoustics for the development of analytical methods to characterize liner behavior in both frequency domain and time domain. A review of duct acoustics and liner technology can be found in Reference [1]. At that time, NASA Langley was investigating the propulsion concept of an advanced ducted fan, with a large diameter housed inside a relatively short duct. Fan diameters in excess of ten feet were proposed. The lengths of both the inlet and exhaust portions of the duct were to be short, probably less than half the fan diameter. The nacelle itself would be relatively thin-walled for reasons of aerodynamic efficiency. The blade-passage frequency was expected to be less than I kHz, and very likely in the 200 to 300 Hz range. Because of the design constraints of a short duct, a thin nacelle, and long acoustic wavelengths, the application of effective liner technology would be especially challenging. One of the needs of the NASA Langley program was the capability to accurately and efficiently predict the behavior of the acoustic liner. The traditional point impedance method was not an adequate model for proposed liner designs. The method was too restrictive to represent bulk reacting liners and to allow for the characterization of many possible innovative liner concepts. In the research effort at Duke, an alternative method, initially developed to handle bulk

  9. Influence of snow cover changes on surface radiation and heat balance based on the WRF model (United States)

    Yu, Lingxue; Liu, Tingxiang; Bu, Kun; Yang, Jiuchun; Chang, Liping; Zhang, Shuwen


    The snow cover extent in mid-high latitude areas of the Northern Hemisphere has significantly declined corresponding to the global warming, especially since the 1970s. Snow-climate feedbacks play a critical role in regulating the global radiation balance and influencing surface heat flux exchange. However, the degree to which snow cover changes affect the radiation budget and energy balance on a regional scale and the difference between snow-climate and land use/cover change (LUCC)-climate feedbacks have been rarely studied. In this paper, we selected Heilongjiang Basin, where the snow cover has changed obviously, as our study area and used the WRF model to simulate the influences of snow cover changes on the surface radiation budget and heat balance. In the scenario simulation, the localized surface parameter data improved the accuracy by 10 % compared with the control group. The spatial and temporal analysis of the surface variables showed that the net surface radiation, sensible heat flux, Bowen ratio, temperature and percentage of snow cover were negatively correlated and that the ground heat flux and latent heat flux were positively correlated with the percentage of snow cover. The spatial analysis also showed that a significant relationship existed between the surface variables and land cover types, which was not obviously as that for snow cover changes. Finally, six typical study areas were selected to quantitatively analyse the influence of land cover types beneath the snow cover on heat absorption and transfer, which showed that when the land was snow covered, the conversion of forest to farmland can dramatically influence the net radiation and other surface variables, whereas the snow-free land showed significantly reduced influence. Furthermore, compared with typical land cover changes, e.g., the conversion of forest into farmland, the influence of snow cover changes on net radiation and sensible heat flux were 60 % higher than that of land cover changes

  10. Reflective measurement models, behavior domains, and common causes

    NARCIS (Netherlands)

    Markus, K.A.; Borsboom, D.

    Causal theories of measurement view test items as effects of a common cause. Behavior domain theories view test item responses as behaviors sampled from a common domain. A domain score is a composite score over this domain. The question arises whether latent variables can simultaneously constitute

  11. Land Cover Characterization for Hydrological Modeling Using Thermal Infrared Emissivities (United States)

    Remote sensing with multispectral thermal infrared observations has the potential to improve regional scale estimation of evapotranspiration (ET) by constraining the land surface energy balance in a way that is not possible using more conventional remote sensing techniques. Current models use data f...

  12. Improving snow cover mapping in forests through the use of a canopy reflectance model

    International Nuclear Information System (INIS)

    Klein, A.G.; Hall, D.K.; Riggs, G.A.


    MODIS, the moderate resolution imaging spectro radiometer, will be launched in 1998 as part of the first earth observing system (EOS) platform. Global maps of land surface properties, including snow cover, will be created from MODIS imagery. The MODIS snow-cover mapping algorithm that will be used to produce daily maps of global snow cover extent at 500 m resolution is currently under development. With the exception of cloud cover, the largest limitation to producing a global daily snow cover product using MODIS is the presence of a forest canopy. A Landsat Thematic Mapper (TM) time-series of the southern Boreal Ecosystem–Atmosphere Study (BOREAS) study area in Prince Albert National Park, Saskatchewan, was used to evaluate the performance of the current MODIS snow-cover mapping algorithm in varying forest types. A snow reflectance model was used in conjunction with a canopy reflectance model (GeoSAIL) to model the reflectance of a snow-covered forest stand. Using these coupled models, the effects of varying forest type, canopy density, snow grain size and solar illumination geometry on the performance of the MODIS snow-cover mapping algorithm were investigated. Using both the TM images and the reflectance models, two changes to the current MODIS snow-cover mapping algorithm are proposed that will improve the algorithm's classification accuracy in forested areas. The improvements include using the normalized difference snow index and normalized difference vegetation index in combination to discriminate better between snow-covered and snow-free forests. A minimum albedo threshold of 10% in the visible wavelengths is also proposed. This will prevent dense forests with very low visible albedos from being classified incorrectly as snow. These two changes increase the amount of snow mapped in forests on snow-covered TM scenes, and decrease the area incorrectly identified as snow on non-snow-covered TM scenes. (author)

  13. Towards the maturity model for feature oriented domain analysis

    Directory of Open Access Journals (Sweden)

    Muhammad Javed


    Full Text Available Assessing the quality of a model has always been a challenge for researchers in academia and industry. The quality of a feature model is a prime factor because it is used in the development of products. A degraded feature model leads the development of low quality products. Few efforts have been made on improving the quality of feature models. This paper is an effort to present our ongoing work i.e. development of FODA (Feature Oriented Domain Analysis maturity model which will help to evaluate the quality of a given feature model. In this paper, we provide the quality levels along with their descriptions. The proposed model consists of four levels starting from level 0 to level 3. Design of each level is based on the severity of errors, whereas severity of errors decreases from level 0 to level 3. We elaborate each level with the help of examples. We borrowed all examples from the material published by the research community of Software Product Lines (SPL for the application of our framework.

  14. Hydrological Modelling and data assimilation of Satellite Snow Cover Area using a Land Surface Model, VIC (United States)

    Naha, Shaini; Thakur, Praveen K.; Aggarwal, S. P.


    The snow cover plays an important role in Himalayan region as it contributes a useful amount to the river discharge. So, besides estimating rainfall runoff, proper assessment of snowmelt runoff for efficient management and water resources planning is also required. A Land Surface Model, VIC (Variable Infiltration Capacity) is used at a high resolution grid size of 1 km. Beas river basin up to Thalot in North West Himalayas (NWH) have been selected as the study area. At first model setup is done and VIC has been run in its energy balance mode. The fluxes obtained from VIC has been routed to simulate the discharge for the time period of (2003-2006). Data Assimilation is done for the year 2006 and the techniques of Data Assimilation considered in this study are Direct Insertion (D.I) and Ensemble Kalman Filter (EnKF) that uses observations of snow covered area (SCA) to update hydrologic model states. The meteorological forcings were taken from 0.5 deg. resolution VIC global forcing data from 1979-2006 with daily maximum temperature, minimum temperature from Climate Research unit (CRU), rainfall from daily variability of NCEP and wind speed from NCEP-NCAR analysis as main inputs and Indian Meteorological Department (IMD) data of 0.25 °. NBSSLUP soil map and land use land cover map of ISRO-GBP project for year 2014 were used for generating the soil parameters and vegetation parameters respectively. The threshold temperature i.e. the minimum rain temperature is -0.5°C and maximum snow temperature is about +0.5°C at which VIC can generate snow fluxes. Hydrological simulations were done using both NCEP and IMD based meteorological Forcing datasets, but very few snow fluxes were obtained using IMD data met forcing, whereas NCEP based met forcing has given significantly better snow fluxes throughout the simulation years as the temperature resolution as given by IMD data is 0.5°C and rainfall resolution of 0.25°C. The simulated discharge has been validated using observed

  15. Porous Media and Immersed Boundary Hybrid-Modelling for Simulating Flow in Stone Cover-Layers

    DEFF Research Database (Denmark)

    Jensen, Bjarne; Liu, Xiaofeng; Christensen, Erik Damgaard

    In this paper we present a new numerical modelling approach for coastal and marine applications where a porous media conceptual model was combined with a free surface volume-of-fluid (VOF) model and an immersed boundary method (IBM). The immersed boundary model covers the method of describing...... a solid object in a simple computational mesh without resolving the object with a conventional body-fitted mesh. This model enables a detailed resolution of some parts of a stone cover layer for erosion protection with the IBM model while other parts are handled with the conceptual porosity model...

  16. Effective roughness calculated from satellite-derived land cover maps and hedge-information used in a weather forecasting model

    DEFF Research Database (Denmark)

    Hasager, C.B.; Nielsen, N.,W.; Jensen, N.O.


    In numerical weather prediction, climate and hydrological modelling, the grid cell size is typically larger than the horizontal length scales of variations in aerodynamic roughness, surface temperature and surface humidity. These local land cover variations give rise to sub-grid scale surface flux...... to be well-described in any large-scale model. A method of aggregating the roughness step changes in arbitrary real terrain has been applied in flat terrain (Denmark) where sub-grid scale vegetation-driven roughness variations are a dominant characteristic of the landscape. The aggregation model...... is a physical two-dimensional atmospheric flow model in the horizontal domain based on a linearized version of the Navier Stoke equation. The equations are solved by the Fast Fourier Transformation technique, hence the code is very fast. The new effective roughness maps have been used in the HIgh Resolution...

  17. A new metric to assess the predictive accuracy of multinomial land cover models

    NARCIS (Netherlands)

    Douma, Jacob C.; Cornwell, William K.; van Bodegom, Peter M.


    Aim: The earth's land cover is often represented by discrete classes, and predicting shifts between these classes is a major goal in the field. One increasingly common approach is to build models that predict land cover classes with probabilities rather than discrete outcomes. Current assessment

  18. Modelling land change: the issue of use and cover in wide-scale applications

    NARCIS (Netherlands)

    Bakker, M.M.; Veldkamp, A.


    In this article, the underlying causes for the apparent mismatch between land cover and land use in the context of wide-scale land change modelling are explored. A land use-land cover (LU/LC) ratio is proposed as a relevant landscape characteristic. The one-to-one ratio between land use and land

  19. A global reference model of the domain name system

    NARCIS (Netherlands)

    Koc, Y.; Jamakovic, A.; Gijsen, B.M.M.


    The domain name system (DNS) is a crucial component of the Internet. At this time, the DNS is facing major changes such as the introduction of DNSSEC and Internationalized Domain Name extensions (IDNs), the adoption of IPv6 and the upcoming extension of new generic top-level domains. These changes

  20. Linear time domain model of the acoustic potential field. (United States)

    Lesniewski, Peter J


    A new time domain formulation of the acoustic wave is developed to avoid approximating assumptions of the linearized scalar wave equation that limit its validity to low Mach particle velocity modeling or to a smooth potential field in a stationary medium. The proposed model offers precision of the moving frame while retaining the form of the widely used linearized scalar wave equation although with respect to modified coordinates. It is applicable to field calculations involving transient waves with unlimited particle velocity, propagating in inhomogenous fluids or in those with time varying density. The model is based on the exact flux continuity equation and the equation of motion, both using the moving reference frame. The resulting closed-form free space scalar wave equation employing total derivatives is converted back to the partial differential form by using modified independent variables. The modified variables are related to the common coordinates of space and time following integral expressions involving transient particle velocity representing wave radiated by each point of a stationary source. Consequently, transient field produced by complex surface velocity sources can be calculated following existing surface integrals of the radiation theory although using modified coordinates. The use of the proposed model is presented in a numerical simulation of a transient velocity source vibrating at selected magnitudes, leading to the determination of the propagating pressure and velocity wave at any point.

  1. Global land cover products tailored to the needs of the climate modeling community - Land Cover project of the ESA Climate Change Initiative (United States)

    Bontemps, S.; Defourny, P.; Radoux, J.; Kalogirou, V.; Arino, O.


    Improving the systematic observation of land cover, as an Essential Climate Variable, will support the United Framework Convention on Climate Change effort to reduce the uncertainties in our understanding of the climate system and to better cope with climate change. The Land Cover project of the ESA Climate Change Initiative aims at contributing to this effort by providing new global land cover products tailored to the expectations of the climate modeling community. During the first three months of the project, consultation mechanisms were established with this community to identify its specific requirements in terms of satellite-based global land cover products. This assessment highlighted specific needs in terms of land cover characterization, accuracy of products, as well as stability and consistency, needs that are currently not met or even addressed. Based on this outcome, the project revisits the current land cover representation and mapping approaches. First, the stable and dynamic components of land cover are distinguished. The stable component refers to the set of land surface features that remains stable over time and thus defines the land cover independently of any sources of temporary or natural variability. Conversely, the dynamic component is directly related to this temporary or natural variability that can induce some variation in land observation over time but without changing the land cover state in its essence (e.g. flood, snow on forest, etc.). Second, the project focuses on the possibility to generate such stable global land cover maps. Previous projects, like GlobCover and MODIS Land Cover, have indeed shown that products' stability is a key issue. In delivering successive global products derived from the same sensor, they highlighted the existence of spurious year-to-year variability in land cover labels, which were not associated with land cover change but with phenology, disturbances or landscape heterogeneity. An innovative land cover

  2. Forcing the snow-cover model SNOWPACK with forecasted weather data

    Directory of Open Access Journals (Sweden)

    S. Bellaire


    Full Text Available Avalanche danger is often estimated based on snow cover stratigraphy and snow stability data. In Canada, single forecasting regions are very large (>50 000 km2 and snow cover data are often not available. To provide additional information on the snow cover and its seasonal evolution the Swiss snow cover model SNOWPACK was therefore coupled with a regional weather forecasting model GEM15. The output of GEM15 was compared to meteorological as well as snow cover data from Mt. Fidelity, British Columbia, Canada, for five winters between 2005 and 2010. Precipitation amounts are most difficult to predict for weather forecasting models. Therefore, we first assess the capability of the model chain to forecast new snow amounts and consequently snow depth. Forecasted precipitation amounts were generally over-estimated. The forecasted data were therefore filtered and used as input for the snow cover model. Comparison between the model output and manual observations showed that after pre-processing the input data the snow depth and new snow events were well modelled. In a case study two key factors of snow cover instability, i.e. surface hoar formation and crust formation were investigated at a single point. Over half of the relevant critical layers were reproduced. Overall, the model chain shows promising potential as a future forecasting tool for avalanche warning services in Canadian data sparse areas and could thus well be applied to similarly large regions elsewhere. However, a more detailed analysis of the simulated snow cover structure is still required.


    Directory of Open Access Journals (Sweden)

    P. Li


    Full Text Available This paper proposed a novel method of decision fusion based on weights of evidence model (WOE. The probability rules from classification results from each separate dataset were fused using WOE to produce the posterior probability for each class. The final classification was obtained by maximum probability. The proposed method was evaluated in land cover classification using two examples. The results showed that the proposed method effectively combined multisensor data in land cover classification and obtained higher classification accuracy than the use of single source data. The weights of evidence model provides an effective decision fusion method for improved land cover classification using multi-sensor data.

  4. Predictive modelling of the spatial pattern of past and future forest cover changes in India (United States)

    Reddy, C. Sudhakar; Singh, Sonali; Dadhwal, V. K.; Jha, C. S.; Rao, N. Rama; Diwakar, P. G.


    This study was carried out to simulate the forest cover changes in India using Land Change Modeler. Classified multi-temporal long-term forest cover data was used to generate the forest covers of 1880 and 2025. The spatial data were overlaid with variables such as the proximity to roads, settlements, water bodies, elevation and slope to determine the relationship between forest cover change and explanatory variables. The predicted forest cover in 1880 indicates an area of 10,42,008 km2, which represents 31.7% of the geographical area of India. About 40% of the forest cover in India was lost during the time interval of 1880-2013. Ownership of majority of forest lands by non-governmental agencies and large scale shifting cultivation are responsible for higher deforestation rates in the Northeastern states. The six states of the Northeast (Assam, Manipur, Meghalaya, Mizoram, Nagaland, Tripura) and one union territory (Andaman & Nicobar Islands) had shown an annual gross rate of deforestation of >0.3 from 2005 to 2013 and has been considered in the present study for the prediction of future forest cover in 2025. The modelling results predicted widespread deforestation in Northeast India and in Andaman & Nicobar Islands and hence is likely to affect the remaining forests significantly before 2025. The multi-layer perceptron neural network has predicted the forest cover for the period of 1880 and 2025 with a Kappa statistic of >0.70. The model predicted a further decrease of 2305 km2 of forest area in the Northeast and Andaman & Nicobar Islands by 2025. The majority of the protected areas are successful in the protection of the forest cover in the Northeast due to management practices, with the exception of Manas, Sonai-Rupai, Nameri and Marat Longri. The predicted forest cover scenario for the year 2025 would provide useful inputs for effective resource management and help in biodiversity conservation and for mitigating climate change.

  5. Spatial Simulation Modelling of Future Forest Cover Change Scenarios in Luangprabang Province, Lao PDR

    Directory of Open Access Journals (Sweden)

    Khamma Homsysavath


    Full Text Available Taking Luangprabang province in Lao Peoples’s Democratic Republic (PDR as an example, we simulated future forest cover changes under the business-as-usual (BAU, pessimistic and optimistic scenarios based on the Markov-cellular automata (MCA model. We computed transition probabilities from satellite-derived forest cover maps (1993 and 2000 using the Markov chains, while the “weights of evidence” technique was used to generate transition potential maps. The initial forest cover map (1993, the transition potential maps and the 1993–2000 transition probabilities were used to calibrate the model. Forest cover simulations were then performed from 1993 to 2007 at an annual time-step. The simulated forest cover map for 2007 was compared to the observed (actual forest cover map for 2007 in order to test the accuracy of the model. Following the successful calibration and validation, future forest cover changes were simulated up to 2014 under different scenarios. The MCA simulations under the BAU and pessimistic scenarios projected that current forest areas would decrease, whereas unstocked forest areas would increase in the future. Conversely, the optimistic scenario projected that current forest areas would increase in the future if strict forestry laws enforcing conservation in protected forest areas are implemented. The three simulation scenarios provide a very good case study for simulating future forest cover changes at the subnational level (Luangprabang province. Thus, the future simulated forest cover changes can possibly be used as a guideline to set reference scenarios as well as undertake REDD/REDD+ preparedness activities within the study area.

  6. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model (United States)

    Yeo, In-Young; Lee, Sangchui; Sadeghi, Ali M.; Beeson, Peter C.; Hively, W. Dean; McCarty, Greg W.; Lang, Megan W.


    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991–2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha−1, but it decreased to 4.6–10.1 kg ha−1 with winter cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils

  7. Capability of Spaceborne Hyperspectral EnMAP Mission for Mapping Fractional Cover for Soil Erosion Modeling

    Directory of Open Access Journals (Sweden)

    Sarah Malec


    Full Text Available Soil erosion can be linked to relative fractional cover of photosynthetic-active vegetation (PV, non-photosynthetic-active vegetation (NPV and bare soil (BS, which can be integrated into erosion models as the cover-management C-factor. This study investigates the capability of EnMAP imagery to map fractional cover in a region near San Jose, Costa Rica, characterized by spatially extensive coffee plantations and grazing in a mountainous terrain. Simulated EnMAP imagery is based on airborne hyperspectral HyMap data. Fractional cover estimates are derived in an automated fashion by extracting image endmembers to be used with a Multiple End-member Spectral Mixture Analysis approach. The C-factor is calculated based on the fractional cover estimates determined independently for EnMAP and HyMap. Results demonstrate that with EnMAP imagery it is possible to extract quality endmember classes with important spectral features related to PV, NPV and soil, and be able to estimate relative cover fractions. This spectral information is critical to separate BS and NPV which greatly can impact the C-factor derivation. From a regional perspective, we can use EnMAP to provide good fractional cover estimates that can be integrated into soil erosion modeling.

  8. Comparison of regional and global land cover products and the implications for biogenic emission modeling. (United States)

    Huang, Ling; McDonald-Buller, Elena; McGaughey, Gary; Kimura, Yosuke; Allen, David T


    Accurate estimates of biogenic emissions are required for air quality models that support the development of air quality management plans and attainment demonstrations. Land cover characterization is an essential driving input for most biogenic emissions models. This work contrasted the global Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product against a regional land cover product developed for the Texas Commissions on Environmental Quality (TCEQ) over four climate regions in eastern Texas, where biogenic emissions comprise a large fraction of the total inventory of volatile organic compounds (VOCs) and land cover is highly diverse. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) was utilized to investigate the influences of land cover characterization on modeled isoprene and monoterpene emissions through changes in the standard emission potential and emission activity factor, both separately and simultaneously. In Central Texas, forest coverage was significantly lower in the MODIS land cover product relative to the TCEQ data, which resulted in substantially lower estimates of isoprene and monoterpene emissions by as much as 90%. Differences in predicted isoprene and monoterpene emissions associated with variability in land cover characterization were primarily caused by differences in the standard emission potential, which is dependent on plant functional type. Photochemical modeling was conducted to investigate the effects of differences in estimated biogenic emissions associated with land cover characterization on predicted ozone concentrations using the Comprehensive Air Quality Model with Extensions (CAMx). Mean differences in maximum daily average 8-hour (MDA8) ozone concentrations were 2 to 6 ppb with maximum differences exceeding 20 ppb. Continued focus should be on reducing uncertainties in the representation of land cover through field validation. Uncertainties in the estimation of biogenic emissions associated with

  9. On Automatic Modeling and Use of Domain-specific Ontologies

    DEFF Research Database (Denmark)

    Andreasen, Troels; Knappe, Rasmus; Bulskov, Henrik


    collection the general ontology is restricted to a domain specific ontology encompassing concepts instantiated in the collection. The resulting domain specific ontology and similarity can be applied for surveying the collection through key concepts and conceptual relations and provides a means for topic...

  10. Describing macro-scale structure of the snow cover by a dynamic-stochastic model

    Directory of Open Access Journals (Sweden)

    A. N. Gelfan


    Full Text Available Possibilities to investigate the spatial structure of snow cover by means of dynamic-stochastic model are discussed in this article. Basin of the Cheboksary reservoir (area of 376 500 was used as an example. Results of numerical experiments show that our dynamic-stochastic model of the snow cover formation reproduces a snow field structure with adequate accuracy. The fractal dimensions of the modeled fields are in good correspondence with respective dimensions of fields obtained from data of the in situ observations.

  11. Estimation of the spatiotemporal dynamics of snow covered area by using cellular automata models (United States)

    Pardo-Igúzquiza, Eulogio; Collados-Lara, Antonio-Juan; Pulido-Velazquez, David


    Given the need to consider the cryosphere in water resources management for mountainous regions, the purpose of this paper is to model the daily spatially distributed dynamics of snow covered area (SCA) by using calibrated cellular automata models. For the operational use of the calibrated model, the only data requirements are the altitude of each cell of the spatial discretization of the area of interest and precipitation and temperature indexes for the area of interest. For the calibration step, experimental snow covered area data are needed. Potential uses of the model are to estimate the snow covered area when satellite data are absent, or when they provide a temporal resolution different from the operational resolution, or when the satellite images are useless because they are covered by clouds or because there has been a sensor failure. Another interesting application is the simulation of SCA dynamics for the snow covered area under future climatic scenarios. The model is applied to the Sierra Nevada mountain range, in southern Spain, which is home to significant biodiversity, contains important water resources in its snowpack, and contains the most meridional ski resort in Europe.

  12. A grid-based model of backwasting of supraglacial ice cliffs over debris-covered glaciers

    NARCIS (Netherlands)

    Buri, Pascal; Pellicciotti, Francesca; Steiner, Jakob F|info:eu-repo/dai/nl/119338653; Miles, Evan S.; Immerzeel, Wouter W|info:eu-repo/dai/nl/290472113


    Ice cliffs might be partly responsible for the high mass losses of debris-covered glaciers in the Hindu Kush-Karakoram-Himalaya region. The few existing models of cliff backwasting are point-scale models applied at few locations or assume cliffs to be planes with constant slope and aspect, a major


    GIS-based hydrologic modeling offers a convenient means of assessing the impacts associated with land-cover/use change for environmental planning efforts. Alternative future scenarios can be used as input to hydrologic models and compared with existing conditions to evaluate pot...

  14. The OntoREA Accounting Model: Ontology-based Modeling of the Accounting Domain

    Directory of Open Access Journals (Sweden)

    Christian Fischer-Pauzenberger


    Full Text Available McCarthy developed a framework for modeling the economic rationale of different business transactions along the enterprise value chain described in his seminal article “The REA Accounting Model – A Generalized Framework for Accounting Systems in a Shared Data Environment” Originally, the REA accounting model was specified in the entity-relationship (ER language. Later on other languages – especially in form of generic data models and UML class models (UML language – were used. Recently, the OntoUML language was developed by Guizzardi and used by Gailly et al. for a metaphysical reengineering of the REA enterprise ontology. Although the REA accounting model originally addressed the accounting domain, it most successfuly is applied as a reference framework for the conceptual modeling of enterprise systems. The primary research objective of this article is to anchor the REA-based models more deeply in the accounting domain. In order to achieve this objective, essential primitives of the REA model are identified and conceptualized in the OntoUML language within the Asset Liability Equity (ALE context of the traditional ALE accounting domain.

  15. Impedance based time-domain modeling of lithium-ion batteries: Part I (United States)

    Gantenbein, Sophia; Weiss, Michael; Ivers-Tiffée, Ellen


    This paper presents a novel lithium-ion cell model, which simulates the current voltage characteristic as a function of state of charge (0%-100%) and temperature (0-30 °C). It predicts the cell voltage at each operating point by calculating the total overvoltage from the individual contributions of (i) the ohmic loss η0, (ii) the charge transfer loss of the cathode ηCT,C, (iii) the charge transfer loss and the solid electrolyte interface loss of the anode ηSEI/CT,A, and (iv) the solid state and electrolyte diffusion loss ηDiff,A/C/E. This approach is based on a physically meaningful equivalent circuit model, which is parametrized by electrochemical impedance spectroscopy and time domain measurements, covering a wide frequency range from MHz to μHz. The model is exemplarily parametrized to a commercial, high-power 350 mAh graphite/LiNiCoAlO2-LiCoO2 pouch cell and validated by continuous discharge and charge curves at varying temperature. For the first time, the physical background of the model allows the operator to draw conclusions about the performance-limiting factor at various operating conditions. Not only can the model help to choose application-optimized cell characteristics, but it can also support the battery management system when taking corrective actions during operation.

  16. A stochastic Forest Fire Model for future land cover scenarios assessment

    Directory of Open Access Journals (Sweden)

    M. D'Andrea


    Full Text Available Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and climatic change. In this paper, we present a method for calibrating a cellular automata wildfire regime simulation model with actual data on land cover and wildfire size-frequency. The method is based on the observation that many forest fire regimes, in different forest types and regions, exhibit power law frequency-area distributions. The standard Drossel-Schwabl cellular automata Forest Fire Model (DS-FFM produces simulations which reproduce this observed pattern. However, the standard model is simplistic in that it considers land cover to be binary – each cell either contains a tree or it is empty – and the model overestimates the frequency of large fires relative to actual landscapes. Our new model, the Modified Forest Fire Model (MFFM, addresses this limitation by incorporating information on actual land use and differentiating among various types of flammable vegetation. The MFFM simulation model was tested on forest types with Mediterranean and sub-tropical fire regimes. The results showed that the MFFM was able to reproduce structural fire regime parameters for these two regions. Further, the model was used to forecast future land cover. Future research will extend this model to refine the forecasts of future land cover and fire regime scenarios under climate, land use and socio-economic change.

  17. Modeling surface energy fluxes and thermal dynamics of a seasonally ice-covered hydroelectric reservoir. (United States)

    Wang, Weifeng; Roulet, Nigel T; Strachan, Ian B; Tremblay, Alain


    The thermal dynamics of human created northern reservoirs (e.g., water temperatures and ice cover dynamics) influence carbon processing and air-water gas exchange. Here, we developed a process-based one-dimensional model (Snow, Ice, WAater, and Sediment: SIWAS) to simulate a full year's surface energy fluxes and thermal dynamics for a moderately large (>500km(2)) boreal hydroelectric reservoir in northern Quebec, Canada. There is a lack of climate and weather data for most of the Canadian boreal so we designed SIWAS with a minimum of inputs and with a daily time step. The modeled surface energy fluxes were consistent with six years of observations from eddy covariance measurements taken in the middle of the reservoir. The simulated water temperature profiles agreed well with observations from over 100 sites across the reservoir. The model successfully captured the observed annual trend of ice cover timing, although the model overestimated the length of ice cover period (15days). Sensitivity analysis revealed that air temperature significantly affects the ice cover duration, water and sediment temperatures, but that dissolved organic carbon concentrations have little effect on the heat fluxes, and water and sediment temperatures. We conclude that the SIWAS model is capable of simulating surface energy fluxes and thermal dynamics for boreal reservoirs in regions where high temporal resolution climate data are not available. SIWAS is suitable for integration into biogeochemical models for simulating a reservoir's carbon cycle. Copyright © 2016 Elsevier B.V. All rights reserved.



    Mohammad Sayemuzzaman; Manoj K. Jha


    State wide variant topographic features in North Carolina attract the hydro-climatologist. There is none modeling study found that predict future Land Cover Land Use (LCLU) change for whole North Carolina. In this study, satellite-derived land cover maps of year 1992, 2001 and 2006 of North Carolina were integrated within the framework of the Markov-Cellular Automata (Markov-CA) model which combines the Markov chain and Cellular Automata (CA) techniques. A Multi-Criteria Evaluation (MCE) was ...

  19. Goal Directed Model Inversion: Learning Within Domain Constraints (United States)

    Colombano, Silvano P.; Compton, Michael; Raghavan, Bharathi; Lum, Henry, Jr. (Technical Monitor)


    Goal Directed Model Inversion (GDMI) is an algorithm designed to generalize supervised learning to the case where target outputs are not available to the learning system. The output of the learning system becomes the input to some external device or transformation, and only the output of this device or transformation can be compared to a desired target. The fundamental driving mechanism of GDMI is to learn from success. Given that a wrong outcome is achieved, one notes that the action that produced that outcome "would have been right if the outcome had been the desired one." The algorithm makes use of these intermediate "successes" to achieve the final goal. A unique and potentially very important feature of this algorithm is the ability to modify the output of the learning module to force upon it a desired syntactic structure. This differs from ordinary supervised learning in the following way: in supervised learning the exact desired output pattern must be provided. In GDMI instead, it is possible to require simply that the output obey certain rules, i.e., that it "make sense" in some way determined by the knowledge domain. The exact pattern that will achieve the desired outcome is then found by the system. The ability to impose rules while allowing the system to search for its own answers in the context of neural networks is potentially a major breakthrough in two ways: 1) it may allow the construction of networks that can incorporate immediately some important knowledge, i.e. would not need to learn everything from scratch as normally required at present, and 2) learning and searching would be limited to the areas where it is necessary, thus facilitating and speeding up the process. These points are illustrated with examples from robotic path planning and parametric design.

  20. Translation of overlay models of student knowledge for relative domains based on domain ontology mapping

    DEFF Research Database (Denmark)

    Sosnovsky, Sergey; Dolog, Peter; Henze, Nicola


    The effectiveness of an adaptive educational system in many respects depends on the precision of modeling assumptions it makes about a student. One of the well-known challenges in student modeling is to adequately assess the initial level of student's knowledge when s/he starts working with a sys......The effectiveness of an adaptive educational system in many respects depends on the precision of modeling assumptions it makes about a student. One of the well-known challenges in student modeling is to adequately assess the initial level of student's knowledge when s/he starts working...

  1. Domain engineering product lines, languages, and conceptual models

    CERN Document Server

    Reinhartz-Berger, Iris; Clark, Tony


    Domain engineering is a set of activities intended to develop, maintain, and manage the creation and evolution of an area of knowledge suitable for processing by a range of software systems.  It is of considerable practical significance, as it provides methods and techniques that help reduce time-to-market, development costs, and project risks on one hand, and helps improve system quality and performance on a consistent basis on the other. In this book, the editors present a collection of invited chapters from various fields related to domain engineering. The individual chapters pres

  2. Pollen-based land-cover change during the Holocene in temperate China for climate modelling (United States)

    Li, Furong; Gaillard, Marie-José; Sugita, Shinya; Mazier, Florence; Xu, Qinghai; Cao, Xianyong; Herxschuh, Ulrike; Zhao, Yan


    Quantification of the biogeochemical and biogeophysical effects of human-induced land-cover change (land-use) on climate in the past is still a subject of debate. Progress in our understanding of the net effect of land-use change on climate greatly depends on the availability of reliable, empirical reconstructions of anthropogenic vegetation change. China is one of the key regions of the world where agricultural civilizations flourished during a large part of the Holocene. However, the role of human activity in vegetation change is not yet fully understood. As a contribution to LandCover6k, we present the first pollen-based reconstruction of land-cover change, both climate-(natural) and human-induced, over the Holocene in temperate China using the REVEALS model (Sugita, 2007). The REVEALS model requires values of pollen productivity for the major plants characteristic of the study region. We performed the first evaluation of the relative pollen productivities (RPP) available from temperate China and established a tentative standard RPP dataset for 31 plant taxa. These RPP values were used together with 95 pollen records from temperate China grouped into 35 groups for the REVEALS application. The REVEALS-based values of plant cover strongly differ from the pollen percentages. As in Europe, pollen percentages generally underestimate the cover of herbs in the vegetation, except for Artemisia that is overrepresented by pollen. As expected, human-induced deforestation is highest in eastern China with 3 major phases of decreasing woodland cover at ca. 5.5-5k, 3.5-3k and 2k calendar years BP. Disentangling human-induced from climate-induced land-cover change requires thorough comparison of the REVEALS reconstructions with historical and archaeological data. Sugita S (2007) The Holocene, 17(2): 229-241.

  3. Optimum land cover products for use in a Glossina-morsitans habitat model of Kenya

    Directory of Open Access Journals (Sweden)

    Messina Joseph P


    Full Text Available Abstract Background Tsetse flies are the primary vector for African trypanosomiasis, a disease that affects both humans and livestock across the continent of Africa. In 1973 tsetse flies were estimated to inhabit 22% of Kenya; by 1996 that number had risen to roughly 34%. Efforts to control the disease were hampered by a lack of information and costs associated with the identification of infested areas. Given changing spatial and demographic factors, a model that can predict suitable tsetse fly habitat based on land cover and climate change is critical to efforts aimed at controlling the disease. In this paper we present a generalizable method, using a modified Mapcurves goodness of fit test, to evaluate the existing publicly available land cover products to determine which products perform the best at identifying suitable tsetse fly land cover. Results For single date applications, Africover was determined to be the best land use land cover (LULC product for tsetse modeling. However, for changing habitats, whether climatically or anthropogenically forced, the IGBP DISCover and MODIS type 1 products where determined to be most practical. Conclusion The method can be used to differentiate between various LULC products and be applied to any such research when there is a known relationship between a species and land cover.

  4. Modelling ice-cliff backwasting on a debris-covered glacier in the Nepalese Himalaya

    NARCIS (Netherlands)

    Steiner, Jakob F.; Pellicciotti, Francesca; Buri, Pascal; Miles, Evan S.; Immerzeel, Walter W.|info:eu-repo/dai/nl/290472113; Reid, Tim D.


    Ice cliffs have been identified as a reason for higher ablation rates on debris-covered glaciers than are implied by the insulation effects of the debris. This study aims to improve our understanding of cliff backwasting, and the role of radiative fluxes in particular. An energy-balance model is

  5. A physically based 3-D model of ice cliff evolution over debris-covered glaciers

    NARCIS (Netherlands)

    Buri, Pascal; Miles, Evan S.; Steiner, J.F.; Immerzeel, W.W.; Wagnon, Patrick; Pellicciotti, Francesca


    We use high-resolution digital elevation models (DEMs) from unmanned aerial vehicle (UAV) surveys to document the evolution of four ice cliffs on the debris-covered tongue of Lirung Glacier, Nepal, over one ablation season. Observations show that out of four cliffs, three different patterns of

  6. Modeling the influence of snow cover temperature and water content on wet-snow avalanche runout (United States)

    Valero, Cesar Vera; Wever, Nander; Christen, Marc; Bartelt, Perry


    Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow height, density, temperature and liquid water content. This information is used to prescribe fracture heights and erosion heights for an avalanche dynamics model. We compare simulated runout distances with observed avalanche deposition fields using a contingency table analysis. Our analysis of the simulations reveals a large variability in predicted runout for tracks with flat terraces and gradual slope transitions to the runout zone. Reliable estimates of avalanche mass (height and density) in the release and erosion zones are identified to be more important than an exact specification of temperature and water content. For wet-snow avalanches, this implies that the layers where meltwater accumulates in the release zone must be identified accurately as this defines the height of the fracture slab and therefore the release mass. Advanced thermomechanical models appear to be better suited to simulate wet-snow avalanche inundation areas than existing guideline procedures if and only if accurate snow cover information is available.

  7. Relating FIA data to habitat classifications via tree-based models of canopy cover (United States)

    Mark D. Nelson; Brian G. Tavernia; Chris Toney; Brian F. Walters


    Wildlife species-habitat matrices are used to relate lists of species with abundance of their habitats. The Forest Inventory and Analysis Program provides data on forest composition and structure, but these attributes may not correspond directly with definitions of wildlife habitats. We used FIA tree data and tree crown diameter models to estimate canopy cover, from...

  8. An enhanced temperature index model for debris-covered glaciers accounting for thickness effect (United States)

    Carenzo, M.; Pellicciotti, F.; Mabillard, J.; Reid, T.; Brock, B. W.


    Debris-covered glaciers are increasingly studied because it is assumed that debris cover extent and thickness could increase in a warming climate, with more regular rockfalls from the surrounding slopes and more englacial melt-out material. Debris energy-balance models have been developed to account for the melt rate enhancement/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya, and can be difficult to extrapolate. Due to their lower data requirements, empirical models have been used extensively in clean glacier melt modelling. For debris-covered glaciers, however, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of varying debris thickness on melt and prescribe a constant reduction for the entire melt across a glacier. In this paper, we present a new temperature-index model that accounts for debris thickness in the computation of melt rates at the debris-ice interface. The model empirical parameters are optimized at the point scale for varying debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter is validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. We develop the model on Miage Glacier, Italy, and then test its transferability on Haut Glacier d'Arolla, Switzerland. The performance of the new debris temperature-index (DETI) model in simulating the glacier melt rate at the point scale is comparable to the one of the physically based approach, and the definition of model parameters as a function of debris thickness allows the simulation of the nonlinear relationship of melt rate to debris thickness, summarised by the

  9. Atomic force microscopy on domains in biological model membranes

    NARCIS (Netherlands)

    Rinia, H.A.


    This thesis describes the preparation and imaging of supported lipid bilayers, which can be regarded as biological modelmembranes, in the light of the formation of domains. The bilayers were prepared with either the Langmuir-Blodgett method, or with vesicle fusion. They were imaged with Atomic Force

  10. Research destruction ice under dynamic loading. Part 1. Modeling explosive ice cover into account the temperature

    Directory of Open Access Journals (Sweden)

    Bogomolov Gennady N.


    Full Text Available In the research, the behavior of ice under shock and explosive loads is analyzed. Full-scale experiments were carried out. It is established that the results of 2013 practically coincide with the results of 2017, which is explained by the temperature of the formation of river ice. Two research objects are considered, including freshwater ice and river ice cover. The Taylor test was simulated numerically. The results of the Taylor test are presented. Ice is described by an elastoplastic model of continuum mechanics. The process of explosive loading of ice by emulsion explosives is numerically simulated. The destruction of the ice cover under detonation products is analyzed in detail.

  11. Sensitivity of tsunami evacuation modeling to direction and land cover assumptions (United States)

    Schmidtlein, Mathew C.; Wood, Nathan J.


    Although anisotropic least-cost-distance (LCD) modeling is becoming a common tool for estimating pedestrian-evacuation travel times out of tsunami hazard zones, there has been insufficient attention paid to understanding model sensitivity behind the estimates. To support tsunami risk-reduction planning, we explore two aspects of LCD modeling as it applies to pedestrian evacuations and use the coastal community of Seward, Alaska, as our case study. First, we explore the sensitivity of modeling to the direction of movement by comparing standard safety-to-hazard evacuation times to hazard-to-safety evacuation times for a sample of 3985 points in Seward's tsunami-hazard zone. Safety-to-hazard evacuation times slightly overestimated hazard-to-safety evacuation times but the strong relationship to the hazard-to-safety evacuation times, slightly conservative bias, and shorter processing times of the safety-to-hazard approach make it the preferred approach. Second, we explore how variations in land cover speed conservation values (SCVs) influence model performance using a Monte Carlo approach with one thousand sets of land cover SCVs. The LCD model was relatively robust to changes in land cover SCVs with the magnitude of local model sensitivity greatest in areas with higher evacuation times or with wetland or shore land cover types, where model results may slightly underestimate travel times. This study demonstrates that emergency managers should be concerned not only with populations in locations with evacuation times greater than wave arrival times, but also with populations with evacuation times lower than but close to expected wave arrival times, particularly if they are required to cross wetlands or beaches.

  12. Content-adaptive pentary steganography using the multivariate generalized Gaussian cover model (United States)

    Sedighi, Vahid; Fridrich, Jessica; Cogranne, Rémi


    The vast majority of steganographic schemes for digital images stored in the raster format limit the amplitude of embedding changes to the smallest possible value. In this paper, we investigate the possibility to further improve the empirical security by allowing the embedding changes in highly textured areas to have a larger amplitude and thus embedding there a larger payload. Our approach is entirely model driven in the sense that the probabilities with which the cover pixels should be changed by a certain amount are derived from the cover model to minimize the power of an optimal statistical test. The embedding consists of two steps. First, the sender estimates the cover model parameters, the pixel variances, when modeling the pixels as a sequence of independent but not identically distributed generalized Gaussian random variables. Then, the embedding change probabilities for changing each pixel by 1 or 2, which can be transformed to costs for practical embedding using syndrome-trellis codes, are computed by solving a pair of non-linear algebraic equations. Using rich models and selection-channel-aware features, we compare the security of our scheme based on the generalized Gaussian model with pentary versions of two popular embedding algorithms: HILL and S-UNIWARD.

  13. Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities. (United States)

    Carlson, Bradley Z; Choler, Philippe; Renaud, Julien; Dedieu, Jean-Pierre; Thuiller, Wilfried


    Quantifying relationships between snow cover duration and plant community properties remains an important challenge in alpine ecology. This study develops a method to estimate spatial variation in energy availability in the context of a topographically complex, high-elevation watershed, which was used to test the explanatory power of environmental gradients both with and without snow cover in relation to taxonomic and functional plant diversity. Snow cover in the French Alps was mapped at 15-m resolution using Landsat imagery for five recent years, and a generalized additive model (GAM) was fitted for each year linking snow to time and topography. Predicted snow cover maps were combined with air temperature and solar radiation data at daily resolution, summed for each year and averaged across years. Equivalent growing season energy gradients were also estimated without accounting for snow cover duration. Relationships were tested between environmental gradients and diversity metrics measured for 100 plots, including species richness, community-weighted mean traits, functional diversity and hyperspectral estimates of canopy chlorophyll content. Accounting for snow cover in environmental variables consistently led to improved predictive power as well as more ecologically meaningful characterizations of plant diversity. Model parameters differed significantly when fitted with and without snow cover. Filtering solar radiation with snow as compared without led to an average gain in R(2) of 0·26 and reversed slope direction to more intuitive relationships for several diversity metrics. The results show that in alpine environments high-resolution data on snow cover duration are pivotal for capturing the spatial heterogeneity of both taxonomic and functional diversity. The use of climate variables without consideration of snow cover can lead to erroneous predictions of plant diversity. The results further indicate that studies seeking to predict the response of alpine

  14. Evaporation suppression from water reservoirs using floating covers: Lab scale observations and model predictions (United States)

    Or, D.; Lehmann, P.; Aminzadeh, M.; Sommer, M.; Wey, H.; Wunderli, H.; Breitenstein, D.


    The competition over dwindling fresh water resources is expected to intensify with projected increase in human population in arid regions, expansion of irrigated land and changes in climate and drought patterns. The volume of water stored in reservoirs would also increase to mitigate seasonal shortages due to rainfall variability and to meet irrigation water needs. By some estimates up to half of the stored water is lost to evaporation thereby exacerbating the water scarcity problem. Recently, there is an upsurge in the use of self-assembling floating covers to suppress evaporation, yet the design, and implementation remain largely empirical. Studies have shown that evaporation suppression is highly nonlinear, as also known from a century of research on gas exchange from plant leaves (that often evaporate as free water surfaces through stomata that are only 1% of leaf area). We report a systematic evaluation of different cover types and external drivers (radiation, wind, wind+radiation) on evaporation suppression and energy balance of a 1.4 m2 basin placed in a wind-tunnel. Surprisingly, evaporation suppression by black and white floating covers (balls and plates) were similar despite significantly different energy balance regimes over the cover surfaces. Moreover, the evaporation suppression efficiency was a simple function of the uncovered area (square root of the uncovered fraction) with linear relations with the covered area in some cases. The thermally decoupled floating covers offer an efficient solution to the evaporation suppression with limited influence of the surface energy balance (water temperature for black and white covers was similar and remained nearly constant). The results will be linked with a predictive evaporation-energy balance model and issues of spatial scales and long exposure times will be studied.

  15. Thermal behavior of laboratory models of honeycomb-covered solar ponds (United States)

    Lin, E. I. H.


    Laboratory experiments were conducted to provide insight into the technical feasibility of honeycomb-covered solar ponds. Cooling tests using honeycomb panels of various materials and geometries showed that a 5.7-cm-thick one-tier panel insulated as effectively as a 10-cm fiberglass slab. Heating tests demonstrated that a model pond covered with a polycarbonate panel boiled upon 16 hours of continuous exposure to a 150-W spotlight. Analysis of the experimental data indicates positively that honeycomb-covered solar ponds can be expected to perform satisfactorily, and that larger-scale outdoor tests should be conducted to provide a more realistic assessment and a more refined performance estimate.

  16. Land cover change impact on urban flood modeling (case study: Upper Citarum watershed) (United States)

    Siregar, R. I.


    The upper Citarum River watershed utilizes remote sensing technology in Geographic Information System to provide information on land coverage by interpretation of objects in the image. Rivers that pass through urban areas will cause flooding problems causing disadvantages, and it disrupts community activities in the urban area. Increased development in a city is related to an increase in the number of population growth that added by increasing quality and quantity of life necessities. Improved urban lifestyle changes have an impact on land cover. The impact in over time will be difficult to control. This study aims to analyze the condition of flooding in urban areas caused by upper Citarum watershed land-use change in 2001 with the land cover change in 2010. This modeling analyzes with the help of HEC-RAS to describe flooded inundation urban areas. Land cover change in upper Citarum watershed is not very significant; it based on the results of data processing of land cover has the difference of area that changed is not enormous. Land cover changes for the floods increased dramatically to a flow coefficient for 2001 is 0.65 and in 2010 at 0.69. In 2001, the inundation area about 105,468 hectares and it were about 92,289 hectares in 2010.

  17. Hydrogeological characterisation and modelling of deformation zones and fracture domains, Forsmark modelling stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (SE)); Leven, Jakob (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE)); Hartley, Lee; Jackson, Peter; Joyce, Steve; Roberts, David; Swift, Ben (Serco Assurance, Harwell (GB))


    The work reported here collates the structural-hydraulic information gathered in 21 cored boreholes and 32 percussion-drilled boreholes belonging to Forsmark site description, modelling stage 2.2. The analyses carried out provide the hydrogeological input descriptions of the bedrock in Forsmark needed by the end users Repository Engineering, Safety Assessment and Environmental Impact Assessment; that is, hydraulic properties of deformation zones and fracture domains. The same information is also needed for constructing 3D groundwater flow models of the Forsmark site and surrounding area. The analyses carried out render the following conceptual model regarding the observed heterogeneity in deformation zone transmissivity: We find the geological division of the deterministically modelled deformation zones into eight categories (sets) useful from a hydrogeological point of view. Seven of the eight categories are steeply dipping, WNW, NW, NNW, NNE, NE, ENE and EW, and on is gently dipping, G. All deformation zones, regardless of orientation (strike and dip), are subjected to a substantial decrease in transmissivity with depth. The data gathered suggest a contrast of c. 20,000 times for the uppermost one kilometre of bedrock, i.e. more than four orders of magnitude. The hydraulic properties below this depth are not investigated. The lateral heterogeneity is also substantial but more irregular in its appearance. For instance, for a given elevation and deformation zone category (orientation), the spatial variability in transmissivity within a particular deformation zone appears to be as large as the variability between all deformation zones. This suggests that the lateral correlation length is shorter than the shortest distance between two adjacent observation points and shorter than the category spacing. The observation that the mean transmissivity of the gently-dipping deformation zones is c. one to two orders of magnitude greater than the mean transmissivities of all

  18. Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling. (United States)

    Trondman, A-K; Gaillard, M-J; Mazier, F; Sugita, S; Fyfe, R; Nielsen, A B; Twiddle, C; Barratt, P; Birks, H J B; Bjune, A E; Björkman, L; Broström, A; Caseldine, C; David, R; Dodson, J; Dörfler, W; Fischer, E; van Geel, B; Giesecke, T; Hultberg, T; Kalnina, L; Kangur, M; van der Knaap, P; Koff, T; Kuneš, P; Lagerås, P; Latałowa, M; Lechterbeck, J; Leroyer, C; Leydet, M; Lindbladh, M; Marquer, L; Mitchell, F J G; Odgaard, B V; Peglar, S M; Persson, T; Poska, A; Rösch, M; Seppä, H; Veski, S; Wick, L


    We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene [around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1° × 1° spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types [evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources. © 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  19. A traceability process assessment model for the medical device domain


    Regan, Gilbert; Biro, Miklos; Mc Caffery, Fergal; McDaid, Kevin; Flood, Derek


    peer-reviewed Traceability of requirements through the software development lifecycle (including supporting processes such as risk management and change management) is a difficult and expensive task. The implementation of effective traceability allows organizations to leverage its many advantages, such as im-pact analysis, product verification and validation, and facilitation of code maintenance. Traceability is conducive to producing quality software. Within the medical device domain, ...

  20. Modeling Operator Performance in Low Task Load Supervisory Domains (United States)


    events in diverse domains, such as the arrival of phone calls to a call center, arrival of people to restaurants , and the arrival of service orders for...Display turns green when a new plan is available from the auto-planner, which is generated by a market -based, decentralized algorithm (Valenti, Bethke...Institute. Shaw, T. H., Warm, J. S., Finomore, L., Tripp, G., Matthews, E. W., & Parasuraman, R. (2009). Effects of Sensory Modality on Cerebral Blood

  1. Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission

    DEFF Research Database (Denmark)

    Verhulst, Sarah; Dau, Torsten; Shera, Christopher A.


    This paper describes the implementation and performance of a nonlinear time-domain model of the cochlea for transient stimulation and human otoacoustic emission generation. The nonlinearity simulates compressive growth of measured basilar-membrane impulse responses. The model accounts for reflect......This paper describes the implementation and performance of a nonlinear time-domain model of the cochlea for transient stimulation and human otoacoustic emission generation. The nonlinearity simulates compressive growth of measured basilar-membrane impulse responses. The model accounts...

  2. Preferred Residential kitchen cabinets Cover Models: The Case of the province of Artvin

    Directory of Open Access Journals (Sweden)

    Abdi Atılgan


    Full Text Available In this study, residential kitchen cabinets today and should be preferred to determine the reasons for the cover models were investigated. The study of urban settlement area of ​​the province of Artvin, the different socio-economic (lower / middle / upper SES levels, cuisine sampling method was chosen families. Data were obtained from the poll and systematic observation. Determination of the outstanding elements of the study and interpretation of the choice of species to cover some of the statistical techniques used. According to the results, residential kitchen cabinets, the most multi-chipboard / mdflam cover (25%, aluminum framed door is at least (1.09% were used. Reasons to prefer the technological developments and the launch of new products, while effective proposals were received by property owners, manufacturers, cover models, significantly affects the reasons for cost differences should be preferred. Another important result, is a form of property owners to ensure the kitchen cabinets. Accordingly, the vast majority of users provided by way of kitchen furniture, in order, while the other places and provided in the reinforcing elements are usually prepared production are known.

  3. Domain-Based Predictive Models for Protein-Protein Interaction Prediction

    Directory of Open Access Journals (Sweden)

    Chen Xue-Wen


    Full Text Available Protein interactions are of biological interest because they orchestrate a number of cellular processes such as metabolic pathways and immunological recognition. Recently, methods for predicting protein interactions using domain information are proposed and preliminary results have demonstrated their feasibility. In this paper, we develop two domain-based statistical models (neural networks and decision trees for protein interaction predictions. Unlike most of the existing methods which consider only domain pairs (one domain from one protein and assume that domain-domain interactions are independent of each other, the proposed methods are capable of exploring all possible interactions between domains and make predictions based on all the domains. Compared to maximum-likelihood estimation methods, our experimental results show that the proposed schemes can predict protein-protein interactions with higher specificity and sensitivity, while requiring less computation time. Furthermore, the decision tree-based model can be used to infer the interactions not only between two domains, but among multiple domains as well.

  4. Checking Architectural and Implementation Constraints for Domain-Specific Component Frameworks using Models


    Noguera, Carlos; Loiret, Frédéric


    Acceptance rate: 38%; International audience; Software components are used in various application domains, and many component models and frameworks have been proposed to fulfill domain-specific requirements. The ad-hoc development of these component frameworks hampers the reuse of tools and abstractions across different frameworks. We believe that in order to promote the reuse of components within various domain contexts an homogeneous design approach is needed. A key requirement of such an a...

  5. Sensitivity Study of Cloud Cover and Ozone Modeling to Microphysics Parameterization (United States)

    Wałaszek, Kinga; Kryza, Maciej; Szymanowski, Mariusz; Werner, Małgorzata; Ojrzyńska, Hanna


    Cloud cover is a significant meteorological parameter influencing the amount of solar radiation reaching the ground surface, and therefore affecting the formation of photochemical pollutants, most of all tropospheric ozone (O3). Because cloud amount and type in meteorological models are resolved by microphysics schemes, adjusting this parameterization is a major factor determining the accuracy of the results. However, verification of cloud cover simulations based on surface data is difficult and yields significant errors. Current meteorological satellite programs provide many high-resolution cloud products, which can be used to verify numerical models. In this study, the Weather Research and Forecasting model (WRF) has been applied for the area of Poland for an episode of June 17th-July 4th, 2008, when high ground-level ozone concentrations were observed. Four simulations were performed, each with a different microphysics parameterization: Purdue Lin, Eta Ferrier, WRF Single-Moment 6-class, and Morrison Double-Moment scheme. The results were then evaluated based on cloud mask satellite images derived from SEVIRI data. Meteorological variables and O3 concentrations were also evaluated. The results show that the simulation using Morrison Double-Moment microphysics provides the most and Purdue Lin the least accurate information on cloud cover and surface meteorological variables for the selected high ozone episode. Those two configurations were used for WRF-Chem runs, which showed significantly higher O3 concentrations and better model-measurements agreement of the latter.

  6. Model Simulation of Urban Evapotranspiration Rates Given Spatial Changes in Land Cover and Elevation (United States)

    Yang, Y.; Endreny, T. A.


    Urban heat islands (UHI) emerge due to changes in albedo and imperviousness as compared with surrounding countryside, and UHI mitigation plans have focused on increasing urban tree cover. Trees can cool urban areas by direct shading and indirect evapotranspiration. Our goal is to create spatially distributed estimates of tree evapotranspiration during the growing season, to use in human thermal comfort models and other UHI simulations. We are modifying tree anatomy and growth functions in the USDA Forest Service Urban Forest Effects (UFORE) model. Modification represents the spatial variation of soil moisture and canopy radiation, which regulate evapotranspiration. Surface elevation derived topographic indices and land cover maps, including NLCD and aerial photographs, are used to adjust weather station estimates of radiation and soil moisture. Tree species and initial anatomy were selected from data gathered by the USDA Forest Service from plots in Syracuse, New York. Model estimates of evapotranspiration were generated for 30m by 30m pixels, and represented soil water and radiation constraints by modifying parameters in the Penman Monteith equations. Future work involves incorporating land cover and topographic data uncertainty into soil moisture and radiation constraints, which would be represented through Monte Carlo simulations. Applications of this research will be considered for the UFORE model in managing urban forest tree plantings to mitigate UHI impacts.

  7. Ferroelastic domain walls in barium titanate - quantitative phenomenological model

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jiří; Márton, Pavel


    Roč. 101, č. 1 (2009), s. 50-62 ISSN 1058-4587 R&D Projects: GA ČR GA202/06/0411; GA ČR(CZ) GD202/05/H003; GA AV ČR 1ET300100401 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectric and ferroelastic domains * BaTiO 3 * Ginzburg-Landau theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.329, year: 2009

  8. A stepwise approach for defining the applicability domain of SAR and QSAR models

    DEFF Research Database (Denmark)

    Dimitrov, Sabcho; Dimitrova, Gergana; Pavlov, Todor


    parametric requirements are imposed in the first stage, specifying in the domain only those chemicals that fall in the range of variation of the physicochemical properties of the chemicals in the training set. The second stage defines the structural similarity between chemicals that are correctly predicted...... by the model. The structural neighborhood of atom-centered fragments is used to determine this similarity. The third stage in defining the domain is based on a mechanistic understanding of the modeled phenomenon. Here, the model domain combines the reliability of specific reactive groups hypothesized to cause......, if metabolic activation of chemicals is a part of the (Q)SAR model. Some of the stages of the proposed approach for defining the model domain can be eliminated depending on the availability and quality of the experimental data used to derive the model, the specificity of (Q)SARs, and the goals...

  9. Integrating Observations and Models to Better Understand a Changing Arctic Sea Ice Cover (United States)

    Stroeve, J. C.


    TThe loss of the Arctic sea ice cover has captured the world's attention. While much attention has been paid to the summer ice loss, changes are not limited to summer. The last few winters have seen record low sea ice extents, with 2017 marking the 3rdyear in a row with a new record low for the winter maximum extent. More surprising is the number of consecutive months between January 2016 through April 2017 with ice extent anomalies more than 2 standard deviations below the 1981-2010 mean. Additionally, October 2016 through April 2017 saw 7 consecutive months with record low extents, something that had not happened before in the last 4 decades of satellite observations. As larger parts of the Arctic Ocean become ice-free in summer, regional seas gradually transition from a perennial to a seasonal ice cover. The Barents Sea is already only seasonally ice covered, whereas the Kara Sea has recently lost most of its summer ice and is thereby starting to become a seasonally ice covered region. These changes serve as harbinger for what's to come for other Arctic seas. Given the rapid pace of change, there is an urgent need to improve our understanding of the drivers behind Arctic sea ice loss, the implications of this ice loss and to predict future changes to better inform policy makers. Climate models play a fundamental role in helping us synthesize the complex elements of the Arctic sea ice system yet generally fail to simulate key features of the sea ice system and the pace of sea ice loss. Nevertheless, modeling advances continue to provide better means of diagnosing sea ice change, and new insights are likely to be gained with model output from the 6th phase of the Coupled Model Intercomparison Project (CMIP6). The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP) aim is to better understand biases and errors in sea ice simulations so that we can improve our understanding of the likely future evolution of the sea ice cover and its impacts on global climate. To

  10. Modeling of surface dust concentration in snow cover at industrial area using neural networks and kriging (United States)

    Sergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Shichkin, A. V.; Tyagunov, A. G.; Medvedev, A. N.


    Modeling of spatial distribution of pollutants in the urbanized territories is difficult, especially if there are multiple emission sources. When monitoring such territories, it is often impossible to arrange the necessary detailed sampling. Because of this, the usual methods of analysis and forecasting based on geostatistics are often less effective. Approaches based on artificial neural networks (ANNs) demonstrate the best results under these circumstances. This study compares two models based on ANNs, which are multilayer perceptron (MLP) and generalized regression neural networks (GRNNs) with the base geostatistical method - kriging. Models of the spatial dust distribution in the snow cover around the existing copper quarry and in the area of emissions of a nickel factory were created. To assess the effectiveness of the models three indices were used: the mean absolute error (MAE), the root-mean-square error (RMSE), and the relative root-mean-square error (RRMSE). Taking into account all indices the model of GRNN proved to be the most accurate which included coordinates of the sampling points and the distance to the likely emission source as input parameters for the modeling. Maps of spatial dust distribution in the snow cover were created in the study area. It has been shown that the models based on ANNs were more accurate than the kriging, particularly in the context of a limited data set.

  11. Potential solar radiation and land cover contributions to digital climate surface modeling (United States)

    Puig, Pol; Batalla, Meritxell; Pesquer, Lluís; Ninyerola, Miquel


    Overview: We have designed a series of ad-hoc experiments to study the role of factors that a priori have a strong weight in developing digital models of temperature and precipitation, such as solar radiation and land cover. Empirical test beds have been designed to improve climate (mean air temperature and total precipitation) digital models using statistical general techniques (multiple regression) with residual correction (interpolated with inverse weighting distance). Aim: Understand what roles these two factors (solar radiation and land cover) play to incorporate them into the process of generating mapping of temperature and rainfall. Study area: The Iberian Peninsula and supported in this, Catalonia and the Catalan Pyrenees. Data: The dependent variables used in all experiments relate to data from meteorological stations precipitation (PL), mean temperature (MT), average temperature minimum (MN) and maximum average temperature (MX). These data were obtained monthly from the AEMET (Agencia Estatal de Meteorología). Data series of stations covers the period between 1950 to 2010. Methodology: The idea is to design ad hoc, based on a sample of more equitable space statistician, to detect the role of radiation. Based on the influence of solar radiation on the temperature of the air from a quantitative point of view, the difficulty in answering this lies in the fact that there are lots of weather stations located in areas where solar radiation is similar. This suggests that the role of the radiation variable remains "off" when, instead, we intuitively think that would strongly influence the temperature. We have developed a multiple regression analysis between these meteorological variables as the dependent ones (Temperature and rainfall), and some geographical variables: altitude (ALT), latitude (LAT), continentality (CON) and solar radiation (RAD) as the independent ones. In case of the experiment with land covers, we have used the NDVI index as a proxy of land

  12. Asymmetric cross-domain interference between two working memory tasks : Implications for models of working memory

    NARCIS (Netherlands)

    Morey, Candice C.; Morey, Richard D.; van der Reijden, Madeleine; Holweg, Margot


    Observations of higher dual-task costs for within-domain than cross-domain task combinations constitute classic evidence for multi-component models of working memory (e.g., Baddeley, 1986; Logie, 2011). However, we report an asymmetric pattern of interference between verbal and visual-spatial tasks,

  13. A general structure for a time-domain model of the cochlea

    NARCIS (Netherlands)

    Duifhuis, H; Wada, H; Takasaka, T; Ikeda, K; Koike, T


    This study presents an implementation of our basic ideas about a time-domain nonlinear model of the cochlea. The time-domain approach is considered necessary because it allows implementation of nonlinearity in general and of a proper temporal analysis of natural transient responses in particular. It

  14. Distributed Modelling of Stormflow Generation: Assessing the Effect of Ground Cover (United States)

    Jarihani, B.; Sidle, R. C.; Roth, C. H.; Bartley, R.; Wilkinson, S. N.


    Understanding the effects of grazing management and land cover changes on surface hydrology is important for water resources and land management. A distributed hydrological modelling platform, wflow, (that was developed as part of Deltares's OpenStreams project) is used to assess the effect of land management practices on runoff generation processes. The model was applied to Weany Creek, a small catchment (13.6 km2) of the Burdekin Basin, North Australia, which is being studied to understand sources of sediment and nutrients to the Great Barrier Reef. Satellite and drone-based ground cover data, high resolution topography from LiDAR, soil properties, and distributed rainfall data were used to parameterise the model. Wflow was used to predict total runoff, peak runoff, time of rise, and lag time for several events of varying magnitudes and antecedent moisture conditions. A nested approach was employed to calibrate the model by using recorded flow hydrographs at three scales: (1) a hillslope sub-catchment: (2) a gullied sub-catchment; and the 13.6 km2 catchment outlet. Model performance was evaluated by comparing observed and predicted stormflow hydrograph attributes using the Nash Sutcliffe efficiency metric. By using a nested approach, spatiotemporal patterns of overland flow occurrence across the catchment can also be evaluated. The results show that a process-based distributed model can be calibrated to simulate spatial and temporal patterns of runoff generation processes, to help identify dominant processes which may be addressed by land management to improve rainfall retention. The model will be used to assess the effects of ground cover changes due to management practices in grazed lands on storm runoff.

  15. The importance of land cover change across urban-rural typologies for climate modeling. (United States)

    Vargo, Jason; Habeeb, Dana; Stone, Brian


    Land cover changes affect local surface energy balances by changing the amount of solar energy reflected, the magnitude and duration over which absorbed energy is released as heat, and the amount of energy that is diverted to non-heating fluxes through evaporation. However, such local influences often are only crudely included in climate modeling exercises, if at all. A better understanding of local land conversion dynamics can serve to inform inputs for climate models and increase the role for land use planning in climate management policy. Here we present a new approach for projecting and incorporating metropolitan land cover change into mesoscale climate and other environmental assessment models. Our results demonstrate the relative contributions of different land development patterns to land cover change and conversion and suggest that regional growth management strategies serving to increase settlement densities over time can have a significant influence on the rate of deforestation per unit of population growth. Employing the approach presented herein, the impacts of land conversion on climate change and on parallel environmental systems and services, such as ground water recharge, habitat provision, and food production, may all be investigated more closely and managed through land use planning. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. An Evaluation of High-Resolution Regional Climate Model Simulated Snow Cover Using Satellite Data (With Implications for the Simulated Snow-Albedo Feedback) (United States)

    Minder, J. R.; Letcher, T.


    Snow cover often exhibits large spatial variability over mountainous regions where variations in elevation, aspect, vegetation, winds, and orographic precipitation all modulate snow cover. Under climate change, reductions in mountain snow cover are likely to substantially amplify regional warming via the snow-albedo feedback. To capture this important feedback it is crucial that regional climate models (RCMs) adequately simulate spatial and temporal variations in snow cover. Snow cover simulated by high-resolution RCMs over the central Rocky Mountains of the United States is evaluated. RCM simulations were conducted using the Weather Research and Forecasting (WRF) model on a 4 km horizontal grid forced by reanalysis boundary conditions over a seven-year time period. A pair of simulations is considered that differ in the domain size (regional vs. continental) and the land surface model (Noah vs. Noah-MP) employed. RCM output is compared with high-resolution gridded satellite analyses of surface albedo and fractional snow cover derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). Results reveal that both RCMs are generally successful at reproducing the observed seasonal cycle and interannual variability of snow extent over the high terrain of the Rockies. However, in simulations using the Noah land surface model (LSM), sub-grid scale fractional snow covered area of grid cells containing snow is systematically too high compared to observations, often exceeding observations by more than 0.2. This bias in fractional snow cover leads to a substantial positive bias in regional surface albedo. Simulations using the Noah-MP LSM produce more realistic variations in fractional snow cover and surface albedo, likely due to its more-realistic treatment of canopy effects. We quantify how differences in simulated snow cover affect the strength of the snow-albedo feedback under climate change. Both RCMs were used to conduct representative 7-year simulations of a

  17. A multi-domain trust management model for supporting RFID applications of IoT.

    Directory of Open Access Journals (Sweden)

    Xu Wu

    Full Text Available The use of RFID technology in complex and distributed environments often leads to a multi-domain RFID system, in which trust establishment among entities from heterogeneous domains without past interaction or prior agreed policy, is a challenge. The current trust management mechanisms in the literature do not meet the specific requirements in multi-domain RFID systems. Therefore, this paper analyzes the special challenges on trust management in multi-domain RFID systems, and identifies the implications and the requirements of the challenges on the solutions to the trust management of multi-domain RFID systems. A multi-domain trust management model is proposed, which provides a hierarchical trust management framework include a diversity of trust evaluation and establishment approaches. The simulation results and analysis show that the proposed method has excellent ability to deal with the trust relationships, better security, and higher accuracy rate.

  18. Bridging the dynamics and organization of chromatin domains by mathematical modeling. (United States)

    Shinkai, Soya; Nozaki, Tadasu; Maeshima, Kazuhiro; Togashi, Yuichi


    The genome is 3-dimensionally organized in the cell, and the mammalian genome DNA is partitioned into submegabase-sized chromatin domains. Genome functions are regulated within and across the domains according to their organization, whereas the chromatin itself is highly dynamic. However, the details of such dynamic organization of chromatin domains in living cells remain unclear. To unify chromatin dynamics and organization, we recently demonstrated that structural information of chromatin domains in living human cells can be extracted from analyses of the subdiffusive nucleosome movement using mathematical modeling. Our mathematical analysis suggested that as the chromatin domain becomes smaller and more compact, nucleosome movement becomes increasingly restricted. Here, we show the implication of these results for bridging the gap between chromatin dynamics and organization, and provide physical insight into chromatin domains as efficient units to conduct genome functions in the thermal noisy environment of the cell.

  19. A multi-domain trust management model for supporting RFID applications of IoT. (United States)

    Wu, Xu; Li, Feng


    The use of RFID technology in complex and distributed environments often leads to a multi-domain RFID system, in which trust establishment among entities from heterogeneous domains without past interaction or prior agreed policy, is a challenge. The current trust management mechanisms in the literature do not meet the specific requirements in multi-domain RFID systems. Therefore, this paper analyzes the special challenges on trust management in multi-domain RFID systems, and identifies the implications and the requirements of the challenges on the solutions to the trust management of multi-domain RFID systems. A multi-domain trust management model is proposed, which provides a hierarchical trust management framework include a diversity of trust evaluation and establishment approaches. The simulation results and analysis show that the proposed method has excellent ability to deal with the trust relationships, better security, and higher accuracy rate.

  20. A parallel domain decomposition algorithm for coastal ocean circulation models based on integer linear programming (United States)

    Jordi, Antoni; Georgas, Nickitas; Blumberg, Alan


    This paper presents a new parallel domain decomposition algorithm based on integer linear programming (ILP), a mathematical optimization method. To minimize the computation time of coastal ocean circulation models, the ILP decomposition algorithm divides the global domain in local domains with balanced work load according to the number of processors and avoids computations over as many as land grid cells as possible. In addition, it maintains the use of logically rectangular local domains and achieves the exact same results as traditional domain decomposition algorithms (such as Cartesian decomposition). However, the ILP decomposition algorithm may not converge to an exact solution for relatively large domains. To overcome this problem, we developed two ILP decomposition formulations. The first one (complete formulation) has no additional restriction, although it is impractical for large global domains. The second one (feasible) imposes local domains with the same dimensions and looks for the feasibility of such decomposition, which allows much larger global domains. Parallel performance of both ILP formulations is compared to a base Cartesian decomposition by simulating two cases with the newly created parallel version of the Stevens Institute of Technology's Estuarine and Coastal Ocean Model (sECOM). Simulations with the ILP formulations run always faster than the ones with the base decomposition, and the complete formulation is better than the feasible one when it is applicable. In addition, parallel efficiency with the ILP decomposition may be greater than one.

  1. Hydrological model performance and parameter estimation in the wavelet-domain

    Directory of Open Access Journals (Sweden)

    B. Schaefli


    Full Text Available This paper proposes a method for rainfall-runoff model calibration and performance analysis in the wavelet-domain by fitting the estimated wavelet-power spectrum (a representation of the time-varying frequency content of a time series of a simulated discharge series to the one of the corresponding observed time series. As discussed in this paper, calibrating hydrological models so as to reproduce the time-varying frequency content of the observed signal can lead to different results than parameter estimation in the time-domain. Therefore, wavelet-domain parameter estimation has the potential to give new insights into model performance and to reveal model structural deficiencies. We apply the proposed method to synthetic case studies and a real-world discharge modeling case study and discuss how model diagnosis can benefit from an analysis in the wavelet-domain. The results show that for the real-world case study of precipitation – runoff modeling for a high alpine catchment, the calibrated discharge simulation captures the dynamics of the observed time series better than the results obtained through calibration in the time-domain. In addition, the wavelet-domain performance assessment of this case study highlights the frequencies that are not well reproduced by the model, which gives specific indications about how to improve the model structure.

  2. Dynamical scaling, domain-growth kinetics, and domain-wall shapes of quenched two-dimensional anisotropic XY models

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Praestgaard, Eigil


    obeys dynamical scaling and the shape of the dynamical scaling function pertaining to the structure factor is found to depend on P. Specifically, this function is described by a Porod-law behavior, q-ω, where ω increases with the wall softness. The kinetic exponent, which describes how the linear domain...... infinite to zero temperature as well as to nonzero temperatures below the ordering transition. The continuous nature of the spin variables causes the domain walls to be ‘‘soft’’ and characterized by a finite thickness. The steady-state thickness of the walls can be varied by a model parameter, P. At zero...... size varies with time, R(t)∼tn, is for both models at zero temperature determined to be n≃0.25, independent of P. At finite temperatures, the growth kinetics is found to cross over to the Lifshitz-Allen-Cahn law characterized by n≃0.50. The results support the idea of two separate zero...

  3. Hydrological modelling of a slope covered with shallow pyroclastic deposits from field monitoring data

    Directory of Open Access Journals (Sweden)

    R. Greco


    Full Text Available A one-dimensional hydrological model of a slope covered with pyroclastic materials is proposed. The soil cover is constituted by layers of loose volcanic ashes and pumices, with a total thickness between 1.8 m and 2.5 m, lying upon a fractured limestone bedrock. The mean inclination of the slope is around 40°, slightly larger than the friction angle of the ashes. Thus, the equilibrium of the slope, significantly affected by the cohesive contribution exerted by soil suction in unsaturated conditions, may be altered by rainfall infiltration. The model assumes a single homogeneous soil layer occupying the entire depth of the cover, and takes into account seasonally variable canopy interception of precipitation and root water uptake by vegetation, mainly constituted by deciduous chestnut woods with a dense underbrush growing during late spring and summer. The bottom boundary condition links water potential at the soil–bedrock interface with the fluctuations of the water table of the aquifer located in the fractured limestone, which is conceptually modelled as a linear reservoir. Most of the model parameters have been assigned according to literature indications or from experimental data. Soil suction and water content data measured between 1 January 2011 and 20 July 2011 at a monitoring station installed along the slope allowed the remaining parameters to be identified. The calibrated model, which reproduced very closely the data of the calibration set, has been applied to the simulation of the hydrological response of the slope to the hourly precipitation record of 1999, when a large flow-like landslide was triggered close to the monitored location. The simulation results show that the lowest soil suction ever attained occurred just at the time the landslide was triggered, indicating that the model is capable of predicting slope failure conditions.

  4. Alpine snow cover in a changing climate: a regional climate model perspective (United States)

    Steger, Christian; Kotlarski, Sven; Jonas, Tobias; Schär, Christoph


    An analysis is presented of an ensemble of regional climate model (RCM) experiments from the ENSEMBLES project in terms of mean winter snow water equivalent (SWE), the seasonal evolution of snow cover, and the duration of the continuous snow cover season in the European Alps. Two sets of simulations are considered, one driven by GCMs assuming the SRES A1B greenhouse gas scenario for the period 1951-2099, and the other by the ERA-40 reanalysis for the recent past. The simulated SWE for Switzerland for the winters 1971-2000 is validated against an observational data set derived from daily snow depth measurements. Model validation shows that the RCMs are capable of simulating the general spatial and seasonal variability of Alpine snow cover, but generally underestimate snow at elevations below 1,000 m and overestimate snow above 1,500 m. Model biases in snow cover can partly be related to biases in the atmospheric forcing. The analysis of climate projections for the twenty first century reveals high inter-model agreement on the following points: The strongest relative reduction in winter mean SWE is found below 1,500 m, amounting to 40-80 % by mid century relative to 1971-2000 and depending upon the model considered. At these elevations, mean winter temperatures are close to the melting point. At higher elevations the decrease of mean winter SWE is less pronounced but still a robust feature. For instance, at elevations of 2,000-2,500 m, SWE reductions amount to 10-60 % by mid century and to 30-80 % by the end of the century. The duration of the continuous snow cover season shows an asymmetric reduction with strongest shortening in springtime when ablation is the dominant factor for changes in SWE. We also find a substantial ensemble-mean reduction of snow reliability relevant to winter tourism at elevations below about 1,800 m by mid century, and at elevations below about 2,000 m by the end of the century.

  5. Modeling and simulating the bidirectional reflectance distribution function (BRDF) of seawater covered by oil slicks (United States)

    Ren, Zijian; Ma, Chunyong; Chen, Lu; Chen, Ge


    A high-efficiency anisotropic model for bidirectional reflectance distribution function (BRDF) of seawater covered by oil slicks (SWCOS) was proposed. This model was set by combining a BRDF model for anisotropic rough sea surface whose slopes follow Gaussian distribution and the two-beam inference theory of a thin film. We have simulated the BRDFs of oil slicks by using the above model and the measured complex refractive index data of Romashkino crude oil. In addition, the relationships between the BRDF of oil slicks and the wind speed of sea surface, thickness of oil slick, complex refractive index of crude oil and the incident zenith angle were analyzed. Also, the differences between optical characteristics of clean water and of polluted water were discussed in the context of the optical contrast of SWCOS. With high simulation speed and reliable simulation precision, this model provides a theoretical basis for rapid detection of oil spill.

  6. PDON: Parkinson's disease ontology for representation and modeling of the Parkinson's disease knowledge domain. (United States)

    Younesi, Erfan; Malhotra, Ashutosh; Gündel, Michaela; Scordis, Phil; Kodamullil, Alpha Tom; Page, Matt; Müller, Bernd; Springstubbe, Stephan; Wüllner, Ullrich; Scheller, Dieter; Hofmann-Apitius, Martin


    Despite the unprecedented and increasing amount of data, relatively little progress has been made in molecular characterization of mechanisms underlying Parkinson's disease. In the area of Parkinson's research, there is a pressing need to integrate various pieces of information into a meaningful context of presumed disease mechanism(s). Disease ontologies provide a novel means for organizing, integrating, and standardizing the knowledge domains specific to disease in a compact, formalized and computer-readable form and serve as a reference for knowledge exchange or systems modeling of disease mechanism. The Parkinson's disease ontology was built according to the life cycle of ontology building. Structural, functional, and expert evaluation of the ontology was performed to ensure the quality and usability of the ontology. A novelty metric has been introduced to measure the gain of new knowledge using the ontology. Finally, a cause-and-effect model was built around PINK1 and two gene expression studies from the Gene Expression Omnibus database were re-annotated to demonstrate the usability of the ontology. The Parkinson's disease ontology with a subclass-based taxonomic hierarchy covers the broad spectrum of major biomedical concepts from molecular to clinical features of the disease, and also reflects different views on disease features held by molecular biologists, clinicians and drug developers. The current version of the ontology contains 632 concepts, which are organized under nine views. The structural evaluation showed the balanced dispersion of concept classes throughout the ontology. The functional evaluation demonstrated that the ontology-driven literature search could gain novel knowledge not present in the reference Parkinson's knowledge map. The ontology was able to answer specific questions related to Parkinson's when evaluated by experts. Finally, the added value of the Parkinson's disease ontology is demonstrated by ontology-driven modeling of PINK1

  7. A physical model describing the interaction of nuclear transport receptors with FG nucleoporin domain assemblies. (United States)

    Zahn, Raphael; Osmanović, Dino; Ehret, Severin; Araya Callis, Carolina; Frey, Steffen; Stewart, Murray; You, Changjiang; Görlich, Dirk; Hoogenboom, Bart W; Richter, Ralf P


    The permeability barrier of nuclear pore complexes (NPCs) controls bulk nucleocytoplasmic exchange. It consists of nucleoporin domains rich in phenylalanine-glycine motifs (FG domains). As a bottom-up nanoscale model for the permeability barrier, we have used planar films produced with three different end-grafted FG domains, and quantitatively analyzed the binding of two different nuclear transport receptors (NTRs), NTF2 and Importin β, together with the concomitant film thickness changes. NTR binding caused only moderate changes in film thickness; the binding isotherms showed negative cooperativity and could all be mapped onto a single master curve. This universal NTR binding behavior - a key element for the transport selectivity of the NPC - was quantitatively reproduced by a physical model that treats FG domains as regular, flexible polymers, and NTRs as spherical colloids with a homogeneous surface, ignoring the detailed arrangement of interaction sites along FG domains and on the NTR surface.

  8. Assimilation of MODIS Snow Cover Fraction Observations into the NASA Catchment Land Surface Model

    Directory of Open Access Journals (Sweden)

    Ally M. Toure


    Full Text Available The NASA Catchment land surface model (CLSM is the land model component used for the Modern-Era Retrospective Analysis for Research and Applications (MERRA. Here, the CLSM versions of MERRA and MERRA-Land are evaluated using snow cover fraction (SCF observations from the Moderate Resolution Imaging Spectroradiometer (MODIS. Moreover, a computationally-efficient empirical scheme is designed to improve CLSM estimates of SCF, snow depth, and snow water equivalent (SWE through the assimilation of MODIS SCF observations. Results show that data assimilation (DA improved SCF estimates compared to the open-loop model without assimilation (OL, especially in areas with ephemeral snow cover and mountainous regions. A comparison of the SCF estimates from DA against snow cover estimates from the NOAA Interactive Multisensor Snow and Ice Mapping System showed an improvement in the probability of detection of up to 28% and a reduction in false alarms by up to 6% (relative to OL. A comparison of the model snow depth estimates against Canadian Meteorological Centre analyses showed that DA successfully improved the model seasonal bias from −0.017 m for OL to −0.007 m for DA, although there was no significant change in root-mean-square differences (RMSD (0.095 m for OL, 0.093 m for DA. The time-average of the spatial correlation coefficient also improved from 0.61 for OL to 0.63 for DA. A comparison against in situ SWE measurements also showed improvements from assimilation. The correlation increased from 0.44 for OL to 0.49 for DA, the bias improved from −0.111 m for OL to −0.100 m for DA, and the RMSD decreased from 0.186 m for OL to 0.180 m for DA.

  9. Application of a niche-based model for forest cover classification

    Directory of Open Access Journals (Sweden)

    Amici V


    Full Text Available In recent years, a surge of interest in biodiversity conservation have led to the development of new approaches to facilitate ecologically-based conservation policies and management plans. In particular, image classification and predictive distribution modeling applied to forest habitats, constitute a crucial issue as forests constitute the most widespread vegetation type and play a key role for ecosystem functioning. Then, the general purpose of this study is to develop a framework that in the absence of large amounts of field data for large areas may allow to select the most appropriate classification. In some cases, a hard division of classes is required, especially as support to environmental policies; despite this it is necessary to take into account problems which derive from a crisp view of ecological entities being mapped, since habitats are expected to be structurally complex and continuously vary within a landscape. In this paper, a niche model (MaxEnt, generally used to estimate species/habitat distribution, has been applied to classify forest cover in a complex Mediterranean area and to estimate the probability distribution of four forest types, producing continuous maps of forest cover. The use of the obtained models as validation of model for crisp classifications, highlighted that crisp classification, which is being continuously used in landscape research and planning, is not free from drawbacks as it is showing a high degree of inner variability. The modeling approach followed by this study, taking into account the uncertainty proper of the natural ecosystems and the use of environmental variables in land cover classification, may represent an useful approach to making more efficient and effective field inventories and to developing effective forest conservation policies.

  10. Evapotranspiration Within the Groundwater Model Domain of the Tuba City, Arizona, Disposal Site Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None


    The revised groundwater model includes estimates of evapotranspiration (ET). The types of vegetation and the influences of ET on groundwater hydrology vary within the model domain. Some plant species within the model domain, classified as phreatophytes, survive by extracting groundwater. ET within these plant communities can result in a net discharge of groundwater if ET exceeds precipitation. Other upland desert plants within the model domain survive on meteoric water, potentially limiting groundwater recharge if ET is equivalent to precipitation. For all plant communities within the model domain, excessive livestock grazing or other disturbances can tip the balance to a net groundwater recharge. This task characterized and mapped vegetation within the groundwater model domain at the Tuba City, Arizona, Site, and then applied a remote sensing algorithm to estimate ET for each vegetation type. The task was designed to address five objectives: 1. Characterize and delineate different vegetation or ET zones within the groundwater model domain, focusing on the separation of plant communities with phreatophytes that survive by tapping groundwater and upland plant communities that are dependent on precipitation. 2. Refine a remote sensing method, developed to estimate ET at the Monument Valley site, for application at the Tuba City site. 3. Estimate recent seasonal and annual ET for all vegetation zones, separating phreatophytic and upland plant communities within the Tuba City groundwater model domain. 4. For selected vegetation zones, estimate ET that might be achieved given a scenario of limited livestock grazing. 5. Analyze uncertainty of ET estimates for each vegetation zone and for the entire groundwater model domain.

  11. Accuracy and Multi Domain Piezoelectric Power Harvesting Model using VHDL-AMS and SPICE

    NARCIS (Netherlands)

    Da Silva Souza, Flavilene; Oki, N.; Filho, J.V.; Loendersloot, Richard; Berkhoff, Arthur P.


    This paper presents a piezoelectric power harvesting model including both the mechanical and electrical domain. It includes a mechanical system, electrical interface, storage capacitor and load. Bridge rectifier, Parallel Synchronized Switch Harvesting on Inductor (P-SSHI) and Synchronous Electric

  12. An Efficient Channel Model for OFDM and Time Domain Single Carrier Transmission Using Impulse Responses

    Directory of Open Access Journals (Sweden)

    Tariq Jamil Saifullah Khanzada


    Full Text Available The OFDM (Orthogonal Frequency Division Multiplexing is well-known, most utilized wideband communication technique of the current era. SCT (Single Carrier Transmission provides equivalent performance in time domain while decision equalizer is implemented in frequency domain. SCT annihilates the ICT (Inter Carrier Interference and the PAPR (Peak to Average Power Ratio which is inherent to OFDM and degrades its performance in time varying channels. An efficient channel model is presented in this contribution, to implement OFDM and SCT in time domain using impulse responses. Both OFDM and SCT models are derived dialectically to model the channel impulse responses. Our model enhances the performance of time domain SCT compared with OFDM and subsides the PAPR and ICI problems of OFDM. SCT is implemented at symbol level contained in blocks. Simulation results implementing Digital Radio Monadiale (DRM assert the performance gain of SCT over OFDM.

  13. Urban slum structure: integrating socioeconomic and land cover data to model slum evolution in Salvador, Brazil. (United States)

    Hacker, Kathryn P; Seto, Karen C; Costa, Federico; Corburn, Jason; Reis, Mitermayer G; Ko, Albert I; Diuk-Wasser, Maria A


    The expansion of urban slums is a key challenge for public and social policy in the 21st century. The heterogeneous and dynamic nature of slum communities limits the use of rigid slum definitions. A systematic and flexible approach to characterize, delineate and model urban slum structure at an operational resolution is essential to plan, deploy, and monitor interventions at the local and national level. We modeled the multi-dimensional structure of urban slums in the city of Salvador, a city of 3 million inhabitants in Brazil, by integrating census-derived socioeconomic variables and remotely-sensed land cover variables. We assessed the correlation between the two sets of variables using canonical correlation analysis, identified land cover proxies for the socioeconomic variables, and produced an integrated map of deprivation in Salvador at 30 m × 30 m resolution. The canonical analysis identified three significant ordination axes that described the structure of Salvador census tracts according to land cover and socioeconomic features. The first canonical axis captured a gradient from crowded, low-income communities with corrugated roof housing to higher-income communities. The second canonical axis discriminated among socioeconomic variables characterizing the most marginalized census tracts, those without access to sanitation or piped water. The third canonical axis accounted for the least amount of variation, but discriminated between high-income areas with white-painted or tiled roofs from lower-income areas. Our approach captures the socioeconomic and land cover heterogeneity within and between slum settlements and identifies the most marginalized communities in a large, complex urban setting. These findings indicate that changes in the canonical scores for slum areas can be used to track their evolution and to monitor the impact of development programs such as slum upgrading.

  14. Modeling and Simulation Fundamentals Theoretical Underpinnings and Practical Domains

    CERN Document Server

    Sokolowski, John A


    An insightful presentation of the key concepts, paradigms, and applications of modeling and simulation. Modeling and simulation has become an integral part of research and development across many fields of study, having evolved from a tool to a discipline in less than two decades. Modeling and Simulation Fundamentals offers a comprehensive and authoritative treatment of the topic and includes definitions, paradigms, and applications to equip readers with the skills needed to work successfully as developers and users of modeling and simulation. Featuring contributions written by leading experts

  15. Modeling ferrite electromagnetic response in the time domain

    International Nuclear Information System (INIS)

    Johnson, J.; DeFord, J.F.; Craig, G.D.


    The behavior of ferrite loads commonly found in induction accelertors has important consequences for the performance of these accelerators. Previous work by the authors on modeling the electromagnetic fields in induction cavities has focussed upon use of a simple, phenomenological model for the process of magnetization reversal in these ferrite loads. In this paper we consider a model for magnetization reversal which is more deeply rooted in theory, and present a simulation of the reversal process based upon this model for an idealized set of boundary conditions. 7 refs., 3 figs

  16. Modelling land cover change in the Brazilian Amazon: temporal changes in drivers and calibration issues. (United States)

    Rosa, Isabel M D; Purves, Drew; Carreiras, João M B; Ewers, Robert M

    Land cover change (LCC) models are used in many studies of human impacts on the environment, but knowing how well these models predict observed changes in the landscape is a challenge. We used nearly three decades of LCC maps to run several LCC simulations to: (1) determine which parameters associated with drivers of LCC (e.g. roads) get selected for which transition (forest to deforested, regeneration to deforested or deforested to regeneration); (2) investigate how the parameter values vary through time with respect to the different activities (e.g. farming); and (3) quantify the influence of choosing a particular time period for model calibration and validation on the performance of LCC models. We found that deforestation of primary forests tends to occur along roads (included in 95 % of models) and outside protected areas (included in all models), reflecting farming establishment. Regeneration tends to occur far from roads (included in 78 % of the models) and inside protected areas (included in 38 % of the models), reflecting the processes of land abandonment. Our temporal analysis of model parameters revealed a degree of variation through time (e.g. effectiveness of protected areas rose by 73 %, p  change was heavily dependent on the year used for calibration ( p  change through time and exert their influence on model predictions.

  17. Domain Walls and Textured Vortices in a Two-Component Ginzburg-Landau Model

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Gaididei, Yu. B.; Christiansen, Peter Leth


    We look for domain wall and textured vortex solutions in a two-component Ginzburg-Landau model inspired by two-band superconductivity. The two-dimensional two-component model, with equal coherence lengths and no magnetic field, shows some interesting properties. In the absence of a Josephson type...... coupling between the two order parameters a ''textured vortex'' is found by analytical and numerical solution of the Ginzburg-Landau equations. With a Josephson type coupling between the two order parameters we find the system to split up in two domains separated by a domain wall, where the order parameter...

  18. NOOP: A Domain-Theoretic Model of Nominally-Typed OOP


    AbdelGawad, Moez; Cartwright, Robert


    The majority of industrial-strength object-oriented (OO) software is written using nominally-typed OO programming languages. Extant domain-theoretic models of OOP developed to analyze OO type systems miss, however, a crucial feature of these mainstream OO languages: nominality. This paper presents the construction of NOOP as the first domain-theoretic model of OOP that includes full class/type names information found in nominally-typed OOP. Inclusion of nominal information in objects of NOOP ...

  19. A Model of Inter and Multi Disciplinary Domains, and their Mutual Interactions

    Directory of Open Access Journals (Sweden)

    Ophir Dan


    Full Text Available The Melvil Dewey Decimal Classification system maps the human knowledge domains into a library classification decimal system, which means that the knowledge is discretized. The domains are countable similarly to how Cantor proved the countability of the fractions' domain. The debate about the "inter-" and "multi-" disciplinary domains may also be extended into "sub-domains" or from another point of view – into "super-domains". However, Science and Technology has rapidly developed after it was classified. If at the beginning, two decimal digits were enough to classify the world's knowledge into a knowledge domain, today we need more digits – about five. This means we are able to display about a million domains of knowledge. The decimal point indicates the sub-division in the zooming-in; the number of such decimal points is unlimited. Thus, the number of hierarchical levels in the knowledge-tree is unlimited. The maximal level is unreachable since it propagates in time. This intriguing issue raises doubts whether the tree is the most appropriate structure in the current state of the knowledge classification. However, I believe that the knowledge tree is a convenient way of expressing various connections between the knowledge domains. There are other models such as multi-level graph-networks that approximate closer to reality. These models can be further visualized by graph diagrams. The knowledge diagram is more complicated, considering the interaction between science and industry relative to each domain. The model of reality might be compared to the object-oriented programming languages approximating reality in order to construct more naturally computer programs that can model the world. The mutual correspondence of the knowledge domains is dynamic. Some examples of relatively new domains are as follows: biotechnology, bioinformatics, nanotechnology, integro-differential equations, data warehouse, data mining, requirements engineering, micro

  20. Understanding the impact of changes in land-use/land-cover and atmospheric dust loading and their coupling upon climate change in the NEESPI study domain drylands (United States)

    Sokolik, I.; Darmenova, K.; Darmenov, A.; Xi, X.; Shao, Y.; Marticorena, B.; Bergametti, G.


    The Northern Eurasia Earth Science Partnership Initiative (NEESPI) Science Plan identifies atmospheric aerosols and pollutions and their impacts on and interactions with the Earth systems (and terrestrial ecosystem dynamics in particular) as a cross-cutting topic of special interest. Wind-blown mineral dust, being an important atmospheric constituent in the NEESPI drylands, can exert strong radiative forcing upon the regional climate and cause adverse impacts on human and ecosystems health. The impacts of dust storms are not only regional, but may affect areas thousands of kilometers from their source, making interactions between climate change, land use and dust aerosols globally relevant. Given the intimate coupling between the land processes and wind-blown atmospheric dust and their importance in the climate system, an improved understanding of how land-use/land-cover changes affect Asian dust and associated feedbacks is needed to make assessments of climate change more realistic. To improve the ability to predict impacts of dust on the climate and environment, we have been developing a coupled regional dust modeling system for Central and East Asia. This includes implementation of a new dust module DuMo into the NCAR Weather Research and Forecasting (WRF) model as well as a coupled treatment of dust aerosol interactions with atmospheric radiation. The dust module DuMo includes two different state-of-the art schemes that explicitly account for land properties (including vegetation and soil geomorphology and moisture) and meteorology, and, thus, improves modeling capability. The focus of this talk will be on the impact of atmospheric dust on the surface energy balance and photosynthetically active radiation (PAR). Both processes play a key role in the ecosystem functioning as well as overall in land-atmosphere interactions, but they are rarely considered in an integrated fashion.

  1. Analysis and Modeling of Urban Land Cover Change in Setúbal and Sesimbra, Portugal

    Directory of Open Access Journals (Sweden)

    Yikalo H. Araya


    Full Text Available The expansion of cities entails the abandonment of forest and agricultural lands, and these lands’ conversion into urban areas, which results in substantial impacts on ecosystems. Monitoring these changes and planning urban development can be successfully achieved using multitemporal remotely sensed data, spatial metrics, and modeling. In this paper, urban land use change analysis and modeling was carried out for the Concelhos of Setúbal and Sesimbra in Portugal. An existing land cover map for the year 1990, together with two derived land cover maps from multispectral satellite images for the years 2000 and 2006, were utilized using an object-oriented classification approach. Classification accuracy assessment revealed satisfactory results that fulfilled minimum standard accuracy levels. Urban land use dynamics, in terms of both patterns and quantities, were studied using selected landscape metrics and the Shannon Entropy index. Results show that urban areas increased by 91.11% between 1990 and 2006. In contrast, the change was only 6.34% between 2000 and 2006. The entropy value was 0.73 for both municipalities in 1990, indicating a high rate of urban sprawl in the area. In 2006, this value, for both Sesimbra and Setúbal, reached almost 0.90. This is demonstrative of a tendency toward intensive urban sprawl. Urban land use change for the year 2020 was modeled using a Cellular Automata based approach. The predictive power of the model was successfully validated using Kappa variations. Projected land cover changes show a growing tendency in urban land use, which might threaten areas that are currently reserved for natural parks and agricultural lands.

  2. Cartographic modelling of aerotechnogenic pollution in snow cover in the landscapes of the Kola Peninsula. (United States)

    Ratkin, N E; Asming, V E; Koshkin, V V


    The goal of this work was to develop computational techniques for sulphates, nickel and copper accumulation in the snow in the local pollution zone. The main task was to reveal the peculiarities of formation and pollution of snow cover on the region with complex cross-relief. A digital cartographic model of aerotechnogenic pollution of snow cover in the landscapes of the local zone has been developed, based on five-year experimental data. Data regarding annual emissions from the industrial complex, information about distribution of wind and the sum of precipitation from meteostation "Nikel" for the winter period, allowed the model to ensure: * material presentation in the form of maps of water capacity and accumulation of sulphates, nickel and copper in the snow over any winter period in retrospective; * calculation of water capacity and accumulation of pollutants for watersheds and other natural-territorial complexes; * solution of the opposite problem about the determination of the emissions of sulphates, nickel and copper from the enterprise by measuring snow pollution in datum points. The model can be used in other northern regions of the Russian Federation with similar physical-geographical and climatic conditions. The relationships between the sum of precipitation and water capacity in the landscapes of the same type and also the relationships between pollution content in snow and relief, pollution content in snow and distance from the source of emissions, were used as the basis for the model.

  3. Contrasting two models of academic self-efficacy--domain-specific versus cross-domain--in children receiving and not receiving special instruction in mathematics. (United States)

    Jungert, Tomas; Hesser, Hugo; Träff, Ulf


    In social cognitive theory, self-efficacy is domain-specific. An alternative model, the cross-domain influence model, would predict that self-efficacy beliefs in one domain might influence performance in other domains. Research has also found that children who receive special instruction are not good at estimating their performance. The aim was to test two models of how self-efficacy beliefs influence achievement, and to contrast children receiving special instruction in mathematics with normally-achieving children. The participants were 73 fifth-grade children who receive special instruction and 70 children who do not receive any special instruction. In year four and five, the children's skills in mathematics and reading were assessed by national curriculum tests, and in their fifth year, self-efficacy in mathematics and reading were measured. Structural equation modeling showed that in domains where children do not receive special instruction in mathematics, self-efficacy is a mediating variable between earlier and later achievement in the same domain. Achievement in mathematics was not mediated by self-efficacy in mathematics for children who receive special instruction. For normal achieving children, earlier achievement in the language domain had an influence on later self-efficacy in the mathematics domain, and self-efficacy beliefs in different domains were correlated. Self-efficacy is mostly domain specific, but may play a different role in academic performance depending on whether children receive special instruction. The results of the present study provided some support of the Cross-Domain Influence Model for normal achieving children. © 2014 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  4. Fitting hidden Markov models of protein domains to a target species: application to Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Terrapon Nicolas


    Full Text Available Abstract Background Hidden Markov Models (HMMs are a powerful tool for protein domain identification. The Pfam database notably provides a large collection of HMMs which are widely used for the annotation of proteins in new sequenced organisms. In Pfam, each domain family is represented by a curated multiple sequence alignment from which a profile HMM is built. In spite of their high specificity, HMMs may lack sensitivity when searching for domains in divergent organisms. This is particularly the case for species with a biased amino-acid composition, such as P. falciparum, the main causal agent of human malaria. In this context, fitting HMMs to the specificities of the target proteome can help identify additional domains. Results Using P. falciparum as an example, we compare approaches that have been proposed for this problem, and present two alternative methods. Because previous attempts strongly rely on known domain occurrences in the target species or its close relatives, they mainly improve the detection of domains which belong to already identified families. Our methods learn global correction rules that adjust amino-acid distributions associated with the match states of HMMs. These rules are applied to all match states of the whole HMM library, thus enabling the detection of domains from previously absent families. Additionally, we propose a procedure to estimate the proportion of false positives among the newly discovered domains. Starting with the Pfam standard library, we build several new libraries with the different HMM-fitting approaches. These libraries are first used to detect new domain occurrences with low E-values. Second, by applying the Co-Occurrence Domain Discovery (CODD procedure we have recently proposed, the libraries are further used to identify likely occurrences among potential domains with higher E-values. Conclusion We show that the new approaches allow identification of several domain families previously absent in

  5. 3D Image Modelling and Specific Treatments in Orthodontics Domain


    Goularas, Dionysis; Djemal, Khalifa; Mannoussakis, Yannis


    In this article, we present a 3D specific dental plaster treatment system for orthodontics. From computer tomography scanner images, we propose first a 3D image modelling and reconstruction method of the Mandible and Maxillary based on an adaptive triangulation allowing management of contours meant for the complex topologies. Secondly, we present two specific treatment methods directly achieved on obtained 3D model allowing the automatic correction for the setting in occlusion of the Mandible...

  6. Modeling thermally activated domain wall dynamics in thin magnetic strips with disorder

    Energy Technology Data Exchange (ETDEWEB)

    Laurson, L; Mughal, A; Serpico, C; Durin, G; Zapperi, S, E-mail: [ISI Foundation, Torino (Italy)


    We study the effect of disorder and temperature on the field-driven dynamics of a transverse domain wall occurring in thin and narrow magnetic strips made of a soft magnetic material such as permalloy. Motivated by a micromagnetic description of such a domain wall, we construct a model based on two coupled flexible lines enclosing the domain wall transition region, capturing both the finite width and the characteristic V-shape of the wall. Disorder is included via randomly distributed pinning centers interacting with the two lines. We study the field-driven dynamics of the domain wall in disordered strips in a finite temperature, and compare our findings to experimental observations of stochastic domain wall dynamics.


    Directory of Open Access Journals (Sweden)

    H. Wu


    Full Text Available Web service composition is one of the key issues to develop a global land cover (GLC information service portal. Aiming at the defect that traditional syntax and semantic service compositionare difficult to take pragmatic information into account, the paper firstly analyses three tiers of web service language and their succession relations, discusses the conceptual model of pragmatic web service, and proposes the idea of pragmatics-oriented adaptive composition method based on the analysis of some examples. On this basis it puts forward the pragmatic web service model based on Behavior-Intention through presetting and expression of service usability, users' intention, and other pragmatic information, develops the on-demand assembly method based on the agent theory and matching and reconstruction method on heterogeneous message, solves the key technological issue of algorithm applicability and heterogeneous message transformation in the process of covering web service composition on the ground, applies these methods into service combination, puts forward the pragmatic driven service composition method based on behavior-intention model, and effectively settles the issue of coordination and interaction of composite service invocation.

  8. Urban land use and land cover change analysis and modeling a case study area Malatya, Turkey


    Baysal, Gülendam


    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies. This research was conducted to analyze the land use and land cover changes and to model the changes for the case study area Malatya, Turkey. The first step of the study was acquisition of multi temporal data in order to detect the changes over the time. For this purpose satellite images (Landsat 1990-2000-2010) have been used. In order to acquire data from satel...

  9. Testing a bilinear domain-specific model of acculturation and enculturation across generational status. (United States)

    Miller, Matthew J


    This study attempted to replicate Miller's (2007) finding that a bilinear domain-specific model of Asian American acculturation demonstrated superior model fit when compared to unilinear and bilinear domain-generic models. Current confirmatory factor analytic tests of competing acculturation models in a cross-validation sample of 306 participants were consistent with Miller's findings. In addition, this study provided novel findings regarding the nature of the acculturation process by testing the bilinear domain-specific model across 1st and 2nd generation samples. Specifically, the generational status moderator hypothesis-that a unilinear model of acculturation would be most appropriate for 1st generation individuals and a bilinear model of acculturation would be most appropriate for 2nd generation individuals-was tested with 494 1st and 2nd generation Asian Americans. Contrary to the assumptions of the generational status moderator hypothesis, present findings demonstrated the appropriateness of the bilinear domain-specific model for both 1st and 2nd generation Asian Americans. Present findings also revealed a pattern of shared and unique relationships between cultural orientations and acculturation domains across generations. Implications for research and counseling are explored. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  10. Snow cover and End of Summer Snowline statistics from a simple stochastic model (United States)

    Petrelli, A.; Crouzy, B.; Perona, P.


    One essential parameter characterizing snow cover statistics is the End Of Summer Snowline (EOSS), which is also a good indicator of actual climatic trends in mountain regions. EOSS is usually modelled by means of spatially distributed physically based models, and typically require heavy parameterization. In this paper we validate the simple stochastic model proposed by Perona et al. (2007), by showing that the snow cover statistics and the position of EOSS can in principle be explained by only four essential (meteorological) parameters. Perona et al. (2007) proposed a model accounting for stochastic snow accumulation in the cold period, and deterministic melting dynamics in the warm period, and studied the statistical distribution of the snowdepth on the long term. By reworking the ensemble average of the steady state evolution equation we single out a relationship between the snowdepth statistics (including the position of EOSS) and the involved parameters. The validation of the established relationship is done using 50 years of field data from 73 Swiss stations located above 2000 m a.s.l. First an estimation of the meteorological parameters is made. Snow height data are used as a precipitation proxy, using temperature data to estimate SWE during the precipitation event. Thresholds are used both to separate accumulation from actual precipitation and wind transport phenomena, and to better assess summer melting rate, considered to be constant over the melting period according to the simplified model. First results show that data for most of the weather stations actually scales with the proposed relationship. This indicates that, on the long term, the effect of spatial and temporal noise masks most of the process detail so that minimalist models suffice to obtain reliable statistics. Future works will test the validity of this approach at different spatial scales, e.g., regional, continental and planetary. Reference: P. Perona, A. Porporato, and L. Ridolfi, "A

  11. Pairing FLUXNET sites to validate model representations of land-use/land-cover change (United States)

    Chen, Liang; Dirmeyer, Paul A.; Guo, Zhichang; Schultz, Natalie M.


    Land surface energy and water fluxes play an important role in land-atmosphere interactions, especially for the climatic feedback effects driven by land-use/land-cover change (LULCC). These have long been documented in model-based studies, but the performance of land surface models in representing LULCC-induced responses has not been investigated well. In this study, measurements from proximate paired (open versus forest) flux tower sites are used to represent observed deforestation-induced changes in surface fluxes, which are compared with simulations from the Community Land Model (CLM) and the Noah Multi-Parameterization (Noah-MP) land model. Point-scale simulations suggest the CLM can represent the observed diurnal and seasonal changes in net radiation (Rnet) and ground heat flux (G), but difficulties remain in the energy partitioning between latent (LE) and sensible (H) heat flux. The CLM does not capture the observed decreased daytime LE, and overestimates the increased H during summer. These deficiencies are mainly associated with models' greater biases over forest land-cover types and the parameterization of soil evaporation. Global gridded simulations with the CLM show uncertainties in the estimation of LE and H at the grid level for regional and global simulations. Noah-MP exhibits a similar ability to simulate the surface flux changes, but with larger biases in H, G, and Rnet change during late winter and early spring, which are related to a deficiency in estimating albedo. Differences in meteorological conditions between paired sites is not a factor in these results. Attention needs to be devoted to improving the representation of surface heat flux processes in land models to increase confidence in LULCC simulations.

  12. A Domain-Specific Language for Generic Interlocking Models and Their Properties

    DEFF Research Database (Denmark)

    Vu, Linh Hong; Haxthausen, Anne Elisabeth; Peleska, Jan


    of this work is to provide a domain-specific language for generic models and an instantiator tool taking not only configuration data but also a generic model as input instead of using a hard-coded generator for instantiating only one fixed generic model and its properties with configuration data....

  13. 3D Image Modelling and Specific Treatments in Orthodontics Domain

    Directory of Open Access Journals (Sweden)

    Dionysis Goularas


    Full Text Available In this article, we present a 3D specific dental plaster treatment system for orthodontics. From computer tomography scanner images, we propose first a 3D image modelling and reconstruction method of the Mandible and Maxillary based on an adaptive triangulation allowing management of contours meant for the complex topologies. Secondly, we present two specific treatment methods directly achieved on obtained 3D model allowing the automatic correction for the setting in occlusion of the Mandible and the Maxillary, and the teeth segmentation allowing more specific dental examinations. Finally, these specific treatments are presented via a client/server application with the aim of allowing a telediagnosis and treatment.

  14. Sequence Domain Harmonic Modeling of Type-IV Wind Turbines

    DEFF Research Database (Denmark)

    Guest, Emerson; Jensen, Kim Høj; Rasmussen, Tonny Wederberg


    -sampled pulsewidth modulation and an analysis of converter generated voltage harmonics due to compensated dead-time. The decoupling capabilities of the proposed the SD harmonic model are verified through a power quality (PQ) assessment of a 3MW Type-IV wind turbine. The assessment shows that the magnitude and phase...... of low-order odd converter generated voltage harmonics are dependent on the converter operating point and the phase of the fundamental component of converter current respectively. The SD harmonic model can be used to make PQ assessments of Type-IV wind turbines or incorporated into harmonic load flows...... for computation of PQ in wind power plants....

  15. Land administration domain model is an ISO standard now

    NARCIS (Netherlands)

    Lemmen, C.H.J.; Van Oosterom, P.J.M.; Uitermark, H.T.; De Zeeuw, K.


    A group of land administration professionals initiated the development of a data model that facilitates the quick and efficient set-up of land registrations. Just like social issues benefit from proper land administration, land administration systems themselves benefit from proper data standards. In

  16. Hybrid time/frequency domain modeling of nonlinear components

    DEFF Research Database (Denmark)

    Wiechowski, Wojciech Tomasz; Lykkegaard, Jan; Bak, Claus Leth


    This paper presents a novel, three-phase hybrid time/frequency methodology for modelling of nonlinear components. The algorithm has been implemented in the DIgSILENT PowerFactory software using the DIgSILENT Programming Language (DPL), as a part of the work described in [1]. Modified HVDC benchmark...

  17. Development and application of dispersive soft ferrite models for time-domain simulation

    International Nuclear Information System (INIS)

    DeFord, J.F.; Kamin, G.; Craig, G.D.; Walling, L.


    Ferrite has a variety of applications in accelerator components, and the capability to model this magnetic material in the time domain is an important adjunct to currently available accelerator modeling tool. We describe in this report a material model we have developed for the magnetic characteristics of PE11BL, the ferrite found in the ETA-II (Experimental Test Accelerator-II) induction module. This model, which includes the important magnetic dispersion effects found in most soft ferrites, has been implemented in 1-D and 2-D finite-difference time-domain (FDTD) electromagnetic simulators, and comparisons with analytic and experimental results are presented

  18. Novel flower-type covered metal stent to prevent cholecystitis: experimental study in a pig model. (United States)

    Woo, Young Sik; Lee, Kwang Hyuck; Lee, Jong Kyun; Noh, Dong Hyo; Park, Joo Kyung; Lee, Kyu Taek; Jang, Kee-Taek


    Covered self-expandable metal stent (CSEMS) has the risk of obstruction of the cystic duct, and the main and branch pancreatic ducts due to strong radial force and covering material, which results in cholecystitis and pancreatitis. A flower-type covered self-expandable metal stent (F-CSEMS) having a five-petal-shaped design with side grooves was constructed to prevent the obstruction of the cystic duct orifice. This study investigated the value of the F-CSEMS in protection for cholecystitis in a pig model. Fourteen pigs randomly underwent endoscopic placement of either F-CSEMS or conventional CSEMS (C-CSEMS). The stent was placed across the cystic duct orifice to impede bile drainage from the gallbladder. Drainage was checked at 24, 48, 120 and 168 h after implantation. Blood was collected at baseline, on days 2 and 7 following implantation. The animals were killed for histologic evaluation on day 7. All stents were successfully inserted into bile duct without any procedure-related complications. At 48 h, the rate of contrast drainage from the gallbladder was higher in the F-CSEMS group than the C-CSEMS group without significant difference (71.4 vs. 28.6% p = 0.28). C-CSEMS was associated with higher levels of C-reactive protein (35.2 vs. 20.5 µg/dl, p = 0.03) and histologic inflammatory scores of gallbladder (score 4 vs. 2; p = 0.03). The F-CSEMS appears safe and helpful to prevent cholecystitis without disturbance of bile flow in a pig model.

  19. Comparative Study of Lectin Domains in Model Species: New Insights into Evolutionary Dynamics

    Directory of Open Access Journals (Sweden)

    Sofie Van Holle


    Full Text Available Lectins are present throughout the plant kingdom and are reported to be involved in diverse biological processes. In this study, we provide a comparative analysis of the lectin families from model species in a phylogenetic framework. The analysis focuses on the different plant lectin domains identified in five representative core angiosperm genomes (Arabidopsis thaliana, Glycine max, Cucumis sativus, Oryza sativa ssp. japonica and Oryza sativa ssp. indica. The genomes were screened for genes encoding lectin domains using a combination of Basic Local Alignment Search Tool (BLAST, hidden Markov models, and InterProScan analysis. Additionally, phylogenetic relationships were investigated by constructing maximum likelihood phylogenetic trees. The results demonstrate that the majority of the lectin families are present in each of the species under study. Domain organization analysis showed that most identified proteins are multi-domain proteins, owing to the modular rearrangement of protein domains during evolution. Most of these multi-domain proteins are widespread, while others display a lineage-specific distribution. Furthermore, the phylogenetic analyses reveal that some lectin families evolved to be similar to the phylogeny of the plant species, while others share a closer evolutionary history based on the corresponding protein domain architecture. Our results yield insights into the evolutionary relationships and functional divergence of plant lectins.

  20. Finite Difference Time Domain Modeling at USA Instruments, Inc. (United States)

    Curtis, Richard


    Due to the competitive nature of the commercial MRI industry, it is essential for the financial health of a participating company to innovate new coil designs and bring product to market rapidly in response to ever-changing market conditions. However, the technology of MRI coil design is still early in its stage of development and its principles are yet evolving. As a result, it is not always possible to know the relevant electromagnetic effects of a given design since the interaction of coil elements is complex and often counter-intuitive. Even if the effects are known qualitatively, the quantitative results are difficult to obtain. At USA Instruments, Inc., the acquisition of the XFDTDâ electromagnetic simulation tool from REMCOM, Inc., has been helpful in determining the electromagnetic performance characteristics of existing coil designs in the prototype stage before the coils are released for production. In the ideal case, a coil design would be modeled earlier at the conceptual stage, so that only good designs will make it to the prototyping stage and the electromagnetic characteristics better understood very early in the design process and before the testing stage has begun. This paper is a brief overview of using FDTD modeling for MRI coil design at USA Instruments, Inc., and shows some of the highlights of recent FDTD modeling efforts on Birdcage coils, a staple of the MRI coil design portfolio.

  1. A domain model of a clinical reading center - Design and implementation. (United States)

    Lotz, Gunnar; Peters, Tobias; Zrenner, Eberhart; Wilke, Robert


    In clinical trials huge amounts of raw data are generated. Often these data are submitted to reading centers for being analyzed by experts of that particular type of examination. Although the installment of a reading center can raise the overall quality, they also introduce additional complexity to the management and conduction of a clinical trial. Software can help to handle this complexity. Domain-driven-design is one concept to tackle software development in such complex domains. Here we present our domain model for a clinical reading center, as well as its actual implementation utilizing the Nuxeo enterprise content management system.

  2. A model for the magnetic domain structure of Gd at 77K

    International Nuclear Information System (INIS)

    Corner, W.D.; Saad, F.M.; Jones, D.W.; Jordan, R.G.


    Magnetic domain structures have been observed on planes perpendicular to the c and b axes of Gd crystals at 77K. Various types of domain boundary which might be found in an easy-cone ferromagnet are discussed. A model is presented which is consistent with observations. In this the easy-cone structure is maintained, but it is assumed that owing to the lower basal-plane anisotropy the magnetization component in the basal plane may change in direction within a single domain. (author)

  3. Modelling and optimization of land use/land cover change in a developing urban catchment. (United States)

    Xu, Ping; Gao, Fei; He, Junchao; Ren, Xinxin; Xi, Weijin


    The impacts of land use/cover change (LUCC) on hydrological processes and water resources are mainly reflected in changes in runoff and pollutant variations. Low impact development (LID) technology is utilized as an effective strategy to control urban stormwater runoff and pollution in the urban catchment. In this study, the impact of LUCC on runoff and pollutants in an urbanizing catchment of Guang-Ming New District in Shenzhen, China, were quantified using a dynamic rainfall-runoff model with the EPA Storm Water Management Model (SWMM). Based on the simulations and observations, the main objectives of this study were: (1) to evaluate the catchment runoff and pollutant variations with LUCC, (2) to select and optimize the appropriate layout of LID in a planning scenario for reducing the growth of runoff and pollutants under LUCC, (3) to assess the optimal planning schemes for land use/cover. The results showed that compared to 2013, the runoff volume, peak flow and pollution load of suspended solids (SS), and chemical oxygen demand increased by 35.1%, 33.6% and 248.5%, and 54.5% respectively in a traditional planning scenario. The assessment result of optimal planning of land use showed that annual rainfall control of land use for an optimal planning scenario with LID technology was 65%, and SS pollutant load reduction efficiency 65.6%.

  4. Space-ecology set covering problem for modeling Daiyun Mountain Reserve, China (United States)

    Lin, Chih-Wei; Liu, Jinfu; Huang, Jiahang; Zhang, Huiguang; Lan, Siren; Hong, Wei; Li, Wenzhou


    Site selection is an important issue in designing the nature reserve that has been studied over the years. However, a well-balanced relationship between preservation of biodiversity and site selection is still challenging. Unlike the existing methods, we consider three critical components, the spatial continuity, spatial compactness and ecological information to address the problem of designing the reserve. In this paper, we propose a new mathematical model of set covering problem called Space-ecology Set Covering Problem (SeSCP) for designing a reserve network. First, we generate the ecological information by forest resource investigation. Then, we split the landscape into elementary cells and calculate the ecological score of each cell. Next, we associate the ecological information with the spatial properties to select a set of cells to form a nature reserve for improving the ability of protecting the biodiversity. Two spatial constraints, continuity and compactability, are given in SeSCP. The continuity is to ensure that any selected site has to be connected with adjacent sites and the compactability is to minimize the perimeter of the selected sites. In computational experiments, we take Daiyun Mountain as a study area to demonstrate the feasibility and effectiveness of the proposed model.

  5. A simplified approach to control system specification and design using domain modelling and mapping

    International Nuclear Information System (INIS)

    Ludgate, G.A.


    Recent developments in the field of accelerator-domain and computer-domain modelling have led to a better understanding of the 'art' of control system specification and design. It now appears possible to 'compile' a control system specification to produce the architectural design. The information required by the 'compiler' is discussed and one hardware optimization algorithm presented. The desired characteristics of the hardware and software components of a distributed control system architecture are discussed and the shortcomings of some commercial products. (author)

  6. An Ontology-Based Transformation Model for the Digital Forensics Domain


    Grigaliunas, Sarunas; Toldinas, Jevgenijus; Venckauskas, Algimantas


    The creation of an ontology makes it possible to form common information structures, to reuse knowledge, to make assumptions within a domain and to analyse every piece of knowledge. In this paper, we aim to create an ontologybased transformation model and a framework to develop an ontology-based transformation system in the digital forensics domain. We describe the architecture of the ontology-based transformation system and its components for assisting computer forensics experts in the appro...

  7. Quantitative Structure-Use Relationship Model thresholds for Model Validation, Domain of Applicability, and Candidate Alternative Selection (United States)

    U.S. Environmental Protection Agency — This file contains value of the model training set confusion matrix, domain of applicability evaluation based on training set to predicted chemicals structural...

  8. High resolution topography and land cover databases for wind resource assessment using mesoscale models (United States)

    Barranger, Nicolas; Stathopoulos, Christos; Kallos, Georges


    In wind resource assessment, mesoscale models can provide wind flow characteristics without the use of mast measurements. In complex terrain, local orography and land cover data assimilation are essential parameters to accurately simulate the wind flow pattern within the atmospheric boundary layer. State-of-the-art Mesoscale Models such as RAMS usually provides orography and landuse data with of resolution of 30s (about 1km). This resolution is necessary for solving mesocale phenomena accurately but not sufficient when the aim is to quantitatively estimate the wind flow characteristics passing over sharp hills or ridges. Furthermore, the abrupt change in land cover characterization is nor always taken into account in the model with a low resolution land use database. When land cover characteristics changes dramatically, parameters such as roughness, albedo or soil moisture that can highly influence the Atmospheric Boundary Layer meteorological characteristics. Therefore they require to be accurately assimilated into the model. Since few years, high resolution databases derived from satellite imagery (Modis, SRTM, LandSat, SPOT ) are available online. Being converted to RAMS requirements inputs, an evaluation of the model requires to be achieved. For this purpose, three new high resolution land cover and two topographical databases are implemented and tested in RAMS. The analysis of terrain variability is performed using basis functions of space frequency and amplitude. Practically, one and two dimension Fast Fourier Transform is applied to terrain height to reveal the main characteristics of local orography according to the obtained wave spectrum. By this way, a comparison between different topographic data sets is performed, based on the terrain power spectrum entailed in the terrain height input. Furthermore, this analysis is a powerful tool in the determination of the proper horizontal grid resolution required to resolve most of the energy containing spectrum

  9. From forest to farmland and moraine to meadow: Integrated modeling of Holocene land cover change (United States)

    Kaplan, J. O.


    Did humans affect global climate over the before the Industrial Era? While this question is hotly debated, the co-evolution of humans and the natural environment over the last 11,700 years had an undisputed role in influencing the development and present state of terrestrial ecosystems, many of which are highly valued today as economic, cultural, and ecological resources. Yet we still have a very incomplete picture of human-environment interactions over the Holocene, both spatially and temporally. In order to address this problem, we combined a global dynamic vegetation model with a new model of preindustrial anthropogenic land cover change. We drive these integrated models with paleoclimate from GCM scenarios, a new synthesis of global demographic, technological, and economic development over preindustrial time, and a global database of historical urbanization covering the last 8000 years. We simulate land cover and land use change, fire, soil erosion, and emissions of CO2 and methane (CH4) from 11,700 years before present to AD 1850. We evaluate our simulations in part with a new set of continental-scale reconstructions of land cover based on records from the Global Pollen Database. Our model results show that climate and tectonic change controlled global land cover in the early Holocene, e.g., shifts in forest biomes in northern continents show an expansion of temperate tree types far to the north of their present day limits, but that by the early Iron Age (1000 BC), humans in Europe, east Asia, and Mesoamerica had a larger influence than natural processes on the landscape. 3000 years before present, anthropogenic deforestation was widespread with most areas of temperate Europe and southwest Asia, east-central China, northern India, and Mesoamerica occupied by a matrix of natural vegetation, cropland and pastures. Burned area and emissions of CO2 and CH4 from wildfires declined slowly over the entire Holocene, as landscape fragmentation and changing agricultural

  10. Modelling land cover change effects on catchment-to-lake sediment transfer (United States)

    Smith, Hugh; Peñuela Fernández, Andres; Sellami, Haykel; Sangster, Heather; Boyle, John; Chiverrell, Richard; Riley, Mark


    Measurements of catchment soil erosion and sediment transfer to streams and lakes are limited and typically short duration (physical and social records coupled with high-resolution, sub-annual simulations of catchment-to-lake soil erosion and sedimentation. This choice of modelling period represents a compromise between the length of record and data availability for model parameterisation. We combine historic datasets for climate and land cover from four lake catchments in Britain with a fully revised catchment-scale modelling approach based on the Morgan-Morgan-Finney model, called MMF-TWI, that incorporates new elements representing plant growth, soil water balance and variable runoff and sediment contributing areas. The catchments comprise an intensively-farmed lowland agricultural catchment and three upland catchments. Historic change simulations were compared with sedimentation rates determined from multiple dated cores taken from each lake. Our revised modelling approach produced generally comparable rates of lake sediment flux to those based on sediment archives. Moreover, these centennial scale records form the basis for examining hypothetical scenarios linked to changes in crop rotation (lowland) and riparian re-afforestation (uplands), as well as providing an extended historic baseline against which to compare future climate effects on runoff, erosion and lake sediment delivery.

  11. Spatial and frequency domain ring source models for the single muscle fiber action potential

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; R., Plonsey


    In the paper, single-fibre models for the extracellular action potential are developed that will allow the potential to the evaluated at an arbitrary field point in the extracellular space. Fourier-domain models are restricted in that they evaluate potentials at equidistant points along a line...... parallel to the fibre axis. Consequently, they cannot easily evaluate the potential at the boundary nodes of a boundary-element electrode model. The Fourier-domain models employ axial-symmetric ring source models, and thereby provide higher accuracy that the line source model, where the source is lumped...... including anisotropy show that the spatial models require extreme care in the integration procedure owing to the singularity in the weighting functions. With adequate sampling, the spatial models can evaluate extracellular potentials with high accuracy....

  12. Modeling the Long-Term Evolution of Supraglacial Ice Cliffs on Himalayan Debris-Covered Glaciers (United States)

    Buri, P.; Miles, E. S.; Steiner, J. F.; Ragettli, S.; Pellicciotti, F.


    Supraglacial ice cliffs are present on debris-covered glaciers worldwide and provide the only direct atmosphere-ice interface over the lower sections of these glaciers. Low albedo and high longwave emissions from surrounding debris cause very high melt rates, accounting for a significant portion of total glacier mass loss. As a result, ice cliffs affect glacier downwasting and mass balance. Additionally, and in contrast to the debris-covered ice, high melt at cliffs turns them into dynamic features, directly affecting glacier surface evolution. While conceptual ideas about the formation, evolution and collapse of ice cliffs exist, their life cycles have never been thoroughly documented. Based on observations obtained from high-resolution aerial and terrestrial images analyzed with Structure-from-Motion and with data from automatic weather stations on two glaciers in the Nepalese Himalaya, we simulate the evolution of selected ice cliffs over several seasons using a new physically-based model of cliff backwasting. The 3D model calculates the energy-balance at the cliff scale and includes the cliff interaction with supraglacial ponds and reburial by debris. We consider cliffs of different shape, orientation and slope, and we show that backwasting leads to a variety of evolution typologies, with cliffs that maintain a constant, self-similar geometry, cliffs that grow laterally and cliffs that disappear through slope shallowing and debris melt-out. Most cliffs persist over several seasons. The presence of a pond appears to be the key control for cliffs to survive, while east and west facing cliffs grow because of higher radiation receipts. We use the model to test the hypothesis that south-facing cliffs do not survive. We show that most south-facing cliffs demise after one melt season on both glaciers, because of high input of solar radiation exceeding the longwave radiation receipt. For north facing features, the longwave radiation receipts at lower cliff sections

  13. Application of the Land Administration Domain Model to the City of ...

    African Journals Online (AJOL)

    The paper explores the adoption of ISO 19152, Geographic information -- Land Administration Domain Model (LADM), in the enhancement of the current City of Johannesburg Land Information System (CoJLIS) data model. The CoJLIS was established to support integration of property data within various departments of the ...

  14. Cloud process modeling for the logistics mall-object-aware BPM for domain experts


    Norbert Weißenberg; Springer, Ulrich


    The Logistics Mall provides a cloud shop and a cloud runtime environment for rented logistics software. It enables a flexible orchestration of software services by using process models. Efficient logistics process models can be designed, changed and deployed by domain experts, minimizing the business-IT-gap. This paper describes some technological background.

  15. Advanced communication system time domain modeling techniques ASYSTD software description. Volume 2: Program support documentation (United States)


    The theoretical basis for the ASYSTD program is discussed in detail. In addition, the extensive bibliography given in this document illustrates some of the extensive work accomplished in the area of time domain simulation. Additions have been in the areas of modeling and language program enhancements, orthogonal transform modeling, error analysis, general filter models, BER measurements, etc. Several models have been developed which utilize the COMSAT generated orthogonal transform algorithms.

  16. Capacitated set-covering model considering the distance objective and dependency of alternative facilities (United States)

    Wayan Suletra, I.; Priyandari, Yusuf; Jauhari, Wakhid A.


    We propose a new model of facility location to solve a kind of problem that belong to a class of set-covering problem using an integer programming formulation. Our model contains a single objective function, but it represents two goals. The first is to minimize the number of facilities, and the other is to minimize the total distance of customers to facilities. The first goal is a mandatory goal, and the second is an improvement goal that is very useful when alternate optimum solutions for the first goal exist. We use a big number as a weight on the first goal to force the solution algorithm to give first priority to the first goal. Besides considering capacity constraints, our model accommodates a kind of either-or constraints representing facilities dependency. The either-or constraints will prevent the solution algorithm to select two or more facilities from the same set of facility with mutually exclusive properties. A real location selection problem to locate a set of wastewater treatment facility (IPAL) in Surakarta city, Indonesia, will describe the implementation of our model. A numerical example is given using the data of that real problem.

  17. Integrated Hydrogeophysical and Hydrogeologic Driven Parameter Upscaling for Dual-Domain Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Flach; Mary Harris; Susan Hubbard; Camelia Knapp; Mike Kowalsky; Maggie Millings; John Shafer; Mike Waddell


    Our research project is motivated by the observations that conventional characterization approaches capture only a fraction of heterogeneity affecting field-scale transport, and that conventional modeling approaches, which use this sparse data, typically do not successfully predict long term plume behavior with sufficient accuracy to guide remedial strategies. Our working hypotheses are that improved prediction of contaminant transport can be achieved using a dual-domain transport approach and field-scale characterization approaches. Our overall objectives are to: (1) develop a dual-domain modeling approach using the TOUGH2 family of codes that incorporates the key interactions between mobile and immobile transport regions that are expected to play a role in long term plume behavior; (2) develop a facies-based multi-scale characterization approach that utilizes log, crosshole, and surface-based characterization information and that is guided by the parameterization needs of the dual domain modeling; and (3) evaluate the approaches by applying them to the prediction of plume behavior at the P-Area at the Savannah River Site (Figure 1). Our three-year project scope includes development of multi-scale characterization and dual-domain modeling approach and field-scale data acquisition (Year 1); Numerical simulations and field-scale characterization (Year 2); and Plume transport simulations and exploration of optimal dual-domain parameters (Year 3).

  18. Birth and death of protein domains: A simple model of evolution explains power law behavior

    Directory of Open Access Journals (Sweden)

    Berezovskaya Faina S


    Full Text Available Abstract Background Power distributions appear in numerous biological, physical and other contexts, which appear to be fundamentally different. In biology, power laws have been claimed to describe the distributions of the connections of enzymes and metabolites in metabolic networks, the number of interactions partners of a given protein, the number of members in paralogous families, and other quantities. In network analysis, power laws imply evolution of the network with preferential attachment, i.e. a greater likelihood of nodes being added to pre-existing hubs. Exploration of different types of evolutionary models in an attempt to determine which of them lead to power law distributions has the potential of revealing non-trivial aspects of genome evolution. Results A simple model of evolution of the domain composition of proteomes was developed, with the following elementary processes: i domain birth (duplication with divergence, ii death (inactivation and/or deletion, and iii innovation (emergence from non-coding or non-globular sequences or acquisition via horizontal gene transfer. This formalism can be described as a birth, death and innovation model (BDIM. The formulas for equilibrium frequencies of domain families of different size and the total number of families at equilibrium are derived for a general BDIM. All asymptotics of equilibrium frequencies of domain families possible for the given type of models are found and their appearance depending on model parameters is investigated. It is proved that the power law asymptotics appears if, and only if, the model is balanced, i.e. domain duplication and deletion rates are asymptotically equal up to the second order. It is further proved that any power asymptotic with the degree not equal to -1 can appear only if the hypothesis of independence of the duplication/deletion rates on the size of a domain family is rejected. Specific cases of BDIMs, namely simple, linear, polynomial and rational

  19. Frequency-Domain Thermal Modelling and Characterization of Power Semiconductor Devices

    DEFF Research Database (Denmark)

    Ma, Ke; He, Ning; Liserre, Marco


    their limits to correctly predict the device temperatures, especially when considering the thermal grease and heat sink attached to the power semiconductor devices. In this paper, frequency-domain approach is applied to the modelling of the thermal dynamics for power devices. The limits of the existing RC lump......The thermal behavior of power electronics devices has being a crucial design consideration because it is closely related to the reliability and also the cost of the converter system. Unfortunately, the widely used thermal models based on lumps of thermal resistances and capacitances have......-based thermal networks are explained from a point of view of frequency domain. Based on the discovery, a more advanced thermal model developed in the frequency domain is proposed, which can be easily established by characterizing the slope variation from the bode diagram of the typically used Foster thermal...

  20. Development of an Improved Crack Propagation Model for Corrosion-Induced Cover Cracking in RC Structures (United States)

    Hilyati, S.; Nizam, Z. M.; Zurisman, M. A. A.; Azhar, A. T. S.


    During the last two decades, reinforced concrete (RC) has been extensively used in most of the world as one of the common construction material due to its advantages and durability. However, RC structures exposed to marine environments are subjected to chloride attack. Chlorides from seawater penetrate into RC structures are not only causing severe corrosion problems but also affect the durability and serviceability of such structures. This paper investigates the influence of transverse reinforcement and spacing of reinforcing bars on concrete cover cracking of two-way RC slab specimens using accelerated corrosion tests. The experimental program involved the testing of four RC slab specimens and was generally designed to observe the crack width and the time of crack to propagate. An improved model for predicting the timing of crack propagation based on the experimental data was then developed.

  1. Using the FORE-SCE model to project land-cover change in the southeastern United States (United States)

    Sohl, Terry; Sayler, Kristi L.


    A wide variety of ecological applications require spatially explicit current and projected land-use and land-cover data. The southeastern United States has experienced massive land-use change since European settlement and continues to experience extremely high rates of forest cutting, significant urban development, and changes in agricultural land use. Forest-cover patterns and structure are projected to change dramatically in the southeastern United States in the next 50 years due to population growth and demand for wood products [Wear, D.N., Greis, J.G. (Eds.), 2002. Southern Forest Resource Assessment. General Technical Report SRS-53. U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC, 635 pp]. Along with our climate partners, we are examining the potential effects of southeastern U.S. land-cover change on regional climate. The U.S. Geological Survey (USGS) Land Cover Trends project is analyzing contemporary (1973-2000) land-cover change in the conterminous United States, providing ecoregion-by-ecoregion estimates of the rates of change, descriptive transition matrices, and changes in landscape metrics. The FORecasting SCEnarios of future land-cover (FORE-SCE) model used Land Cover Trends data and theoretical, statistical, and deterministic modeling techniques to project future land-cover change through 2050 for the southeastern United States. Prescriptions for future proportions of land cover for this application were provided by ecoregion-based extrapolations of historical change. Logistic regression was used to develop relationships between suspected drivers of land-cover change and land cover, resulting in the development of probability-of-occurrence surfaces for each unique land-cover type. Forest stand age was initially established with Forest Inventory and Analysis (FIA) data and tracked through model iterations. The spatial allocation procedure placed patches of new land cover on the landscape until the scenario

  2. Nonlinear System Identification via Basis Functions Based Time Domain Volterra Model

    Directory of Open Access Journals (Sweden)

    Yazid Edwar


    Full Text Available This paper proposes basis functions based time domain Volterra model for nonlinear system identification. The Volterra kernels are expanded by using complex exponential basis functions and estimated via genetic algorithm (GA. The accuracy and practicability of the proposed method are then assessed experimentally from a scaled 1:100 model of a prototype truss spar platform. Identification results in time and frequency domain are presented and coherent functions are performed to check the quality of the identification results. It is shown that results between experimental data and proposed method are in good agreement.

  3. Goal-Based Domain Modeling as a Basis for Cross-Disciplinary Systems Engineering (United States)

    Jarke, Matthias; Nissen, Hans W.; Rose, Thomas; Schmitz, Dominik

    Small and medium-sized enterprises (SMEs) are important drivers for innovation. In particular, project-driven SMEs that closely cooperate with their customers have specific needs in regard to information engineering of their development process. They need a fast requirements capture since this is most often included in the (unpaid) offer development phase. At the same time, they need to maintain and reuse the knowledge and experiences they have gathered in previous projects extensively as it is their core asset. The situation is complicated further if the application field crosses disciplinary boundaries. To bridge the gaps and perspectives, we focus on shared goals and dependencies captured in models at a conceptual level. Such a model-based approach also offers a smarter connection to subsequent development stages, including a high share of automated code generation. In the approach presented here, the agent- and goal-oriented formalism i * is therefore extended by domain models to facilitate information organization. This extension permits a domain model-based similarity search, and a model-based transformation towards subsequent development stages. Our approach also addresses the evolution of domain models reflecting the experiences from completed projects. The approach is illustrated with a case study on software-intensive control systems in an SME of the automotive domain.

  4. The CPAT 2.0.2 Domain Model - How CPAT 2.0.2 "Thinks" From an Analyst Perspective.

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, Lucas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Muldoon, Frank [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Melander, Darryl J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backlund, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, Stephen Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoffman, Matthew John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zwerneman, April Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lawton, Craig R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rice, Roy Eugene [Teledyne Brown Engineering, Huntsville, AL (United States)


    To help effectively plan the management and modernization of their large and diverse fleets of vehicles, the Program Executive Office Ground Combat Systems (PEO GCS) and the Program Executive Office Combat Support and Combat Service Support (PEO CS &CSS) commissioned the development of a large - scale portfolio planning optimization tool. This software, the Capability Portfolio Analysis Tool (CPAT), creates a detailed schedule that optimally prioritizes the modernization or replacement of vehicles within the fleet - respecting numerous business rules associated with fleet structure, budgets, industrial base, research and testing, etc., while maximizing overall fleet performance through time. This report contains a description of the organizational fleet structure and a thorough explanation of the business rules that the CPAT formulation follows involving performance, scheduling, production, and budgets. This report, which is an update to the original CPAT domain model published in 2015 (SAND2015 - 4009), covers important new CPAT features. This page intentionally left blank

  5. Numerical modelling of methane oxidation efficiency and coupled water-gas-heat reactive transfer in a sloping landfill cover. (United States)

    Feng, S; Ng, C W W; Leung, A K; Liu, H W


    Microbial aerobic methane oxidation in unsaturated landfill cover involves coupled water, gas and heat reactive transfer. The coupled process is complex and its influence on methane oxidation efficiency is not clear, especially in steep covers where spatial variations of water, gas and heat are significant. In this study, two-dimensional finite element numerical simulations were carried out to evaluate the performance of unsaturated sloping cover. The numerical model was calibrated using a set of flume model test data, and was then subsequently used for parametric study. A new method that considers transient changes of methane concentration during the estimation of the methane oxidation efficiency was proposed and compared against existing methods. It was found that a steeper cover had a lower oxidation efficiency due to enhanced downslope water flow, during which desaturation of soil promoted gas transport and hence landfill gas emission. This effect was magnified as the cover angle and landfill gas generation rate at the bottom of the cover increased. Assuming the steady-state methane concentration in a cover would result in a non-conservative overestimation of oxidation efficiency, especially when a steep cover was subjected to rainfall infiltration. By considering the transient methane concentration, the newly-modified method can give a more accurate oxidation efficiency. Copyright © 2017. Published by Elsevier Ltd.

  6. Estimation of the applicability domain of kernel-based machine learning models for virtual screening

    Directory of Open Access Journals (Sweden)

    Fechner Nikolas


    Full Text Available Abstract Background The virtual screening of large compound databases is an important application of structural-activity relationship models. Due to the high structural diversity of these data sets, it is impossible for machine learning based QSAR models, which rely on a specific training set, to give reliable results for all compounds. Thus, it is important to consider the subset of the chemical space in which the model is applicable. The approaches to this problem that have been published so far mostly use vectorial descriptor representations to define this domain of applicability of the model. Unfortunately, these cannot be extended easily to structured kernel-based machine learning models. For this reason, we propose three approaches to estimate the domain of applicability of a kernel-based QSAR model. Results We evaluated three kernel-based applicability domain estimations using three different structured kernels on three virtual screening tasks. Each experiment consisted of the training of a kernel-based QSAR model using support vector regression and the ranking of a disjoint screening data set according to the predicted activity. For each prediction, the applicability of the model for the respective compound is quantitatively described using a score obtained by an applicability domain formulation. The suitability of the applicability domain estimation is evaluated by comparing the model performance on the subsets of the screening data sets obtained by different thresholds for the applicability scores. This comparison indicates that it is possible to separate the part of the chemspace, in which the model gives reliable predictions, from the part consisting of structures too dissimilar to the training set to apply the model successfully. A closer inspection reveals that the virtual screening performance of the model is considerably improved if half of the molecules, those with the lowest applicability scores, are omitted from the screening

  7. Estimation of the applicability domain of kernel-based machine learning models for virtual screening. (United States)

    Fechner, Nikolas; Jahn, Andreas; Hinselmann, Georg; Zell, Andreas


    The virtual screening of large compound databases is an important application of structural-activity relationship models. Due to the high structural diversity of these data sets, it is impossible for machine learning based QSAR models, which rely on a specific training set, to give reliable results for all compounds. Thus, it is important to consider the subset of the chemical space in which the model is applicable. The approaches to this problem that have been published so far mostly use vectorial descriptor representations to define this domain of applicability of the model. Unfortunately, these cannot be extended easily to structured kernel-based machine learning models. For this reason, we propose three approaches to estimate the domain of applicability of a kernel-based QSAR model. We evaluated three kernel-based applicability domain estimations using three different structured kernels on three virtual screening tasks. Each experiment consisted of the training of a kernel-based QSAR model using support vector regression and the ranking of a disjoint screening data set according to the predicted activity. For each prediction, the applicability of the model for the respective compound is quantitatively described using a score obtained by an applicability domain formulation. The suitability of the applicability domain estimation is evaluated by comparing the model performance on the subsets of the screening data sets obtained by different thresholds for the applicability scores. This comparison indicates that it is possible to separate the part of the chemspace, in which the model gives reliable predictions, from the part consisting of structures too dissimilar to the training set to apply the model successfully. A closer inspection reveals that the virtual screening performance of the model is considerably improved if half of the molecules, those with the lowest applicability scores, are omitted from the screening. The proposed applicability domain formulations

  8. Modeling the Thickness of Perennial Ice Covers on Stratified Lakes of the Taylor Valley, Antarctica (United States)

    Obryk, M. K.; Doran, P. T.; Hicks, J. A.; McKay, C. P.; Priscu, J. C.


    A one-dimensional ice cover model was developed to predict and constrain drivers of long term ice thickness trends in chemically stratified lakes of Taylor Valley, Antarctica. The model is driven by surface radiative heat fluxes and heat fluxes from the underlying water column. The model successfully reproduced 16 years (between 1996 and 2012) of ice thickness changes for west lobe of Lake Bonney (average ice thickness = 3.53 m; RMSE = 0.09 m, n = 118) and Lake Fryxell (average ice thickness = 4.22 m; RMSE = 0.21 m, n = 128). Long-term ice thickness trends require coupling with the thermal structure of the water column. The heat stored within the temperature maximum of lakes exceeding a liquid water column depth of 20 m can either impede or facilitate ice thickness change depending on the predominant climatic trend (temperature cooling or warming). As such, shallow (lakes without deep temperature maxima are more sensitive indicators of climate change. The long-term ice thickness trends are a result of surface energy flux and heat flux from the deep temperature maximum in the water column, the latter of which results from absorbed solar radiation.

  9. Super-Grid Modeling of the Elastic Wave Equation in Semi-Bounded Domains

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, N. Anders; Sjögreen, Björn



    We develop a super-grid modeling technique for solving the elastic wave equation in semi-bounded two- and three-dimensional spatial domains. In this method, waves are slowed down and dissipated in sponge layers near the far-field boundaries. Mathematically, this is equivalent to a coordinate mapping that transforms a very large physical domain to a significantly smaller computational domain, where the elastic wave equation is solved numerically on a regular grid. To damp out waves that become poorly resolved because of the coordinate mapping, a high order artificial dissipation operator is added in layers near the boundaries of the computational domain. We prove by energy estimates that the super-grid modeling leads to a stable numerical method with decreasing energy, which is valid for heterogeneous material properties and a free surface boundary condition on one side of the domain. Our spatial discretization is based on a fourth order accurate finite difference method, which satisfies the principle of summation by parts. We show that the discrete energy estimate holds also when a centered finite difference stencil is combined with homogeneous Dirichlet conditions at several ghost points outside of the far-field boundaries. Therefore, the coefficients in the finite difference stencils need only be boundary modified near the free surface. This allows for improved computational efficiency and significant simplifications of the implementation of the proposed method in multi-dimensional domains. Numerical experiments in three space dimensions show that the modeling error from truncating the domain can be made very small by choosing a sufficiently wide super-grid damping layer. The numerical accuracy is first evaluated against analytical solutions of Lamb’s problem, where fourth order accuracy is observed with a sixth order artificial dissipation. We then use successive grid refinements to study the numerical accuracy in the more

  10. A physically based 3-D model of ice cliff evolution over debris-covered glaciers (United States)

    Buri, Pascal; Miles, Evan S.; Steiner, Jakob F.; Immerzeel, Walter W.; Wagnon, Patrick; Pellicciotti, Francesca


    We use high-resolution digital elevation models (DEMs) from unmanned aerial vehicle (UAV) surveys to document the evolution of four ice cliffs on the debris-covered tongue of Lirung Glacier, Nepal, over one ablation season. Observations show that out of four cliffs, three different patterns of evolution emerge: (i) reclining cliffs that flatten during the ablation season; (ii) stable cliffs that maintain a self-similar geometry; and (iii) growing cliffs, expanding laterally. We use the insights from this unique data set to develop a 3-D model of cliff backwasting and evolution that is validated against observations and an independent data set of volume losses. The model includes ablation at the cliff surface driven by energy exchange with the atmosphere, reburial of cliff cells by surrounding debris, and the effect of adjacent ponds. The cliff geometry is updated monthly to account for the modifications induced by each of those processes. Model results indicate that a major factor affecting the survival of steep cliffs is the coupling with ponded water at its base, which prevents progressive flattening and possible disappearance of a cliff. The radial growth observed at one cliff is explained by higher receipts of longwave and shortwave radiation, calculated taking into account atmospheric fluxes, shading, and the emission of longwave radiation from debris surfaces. The model is a clear step forward compared to existing static approaches that calculate atmospheric melt over an invariant cliff geometry and can be used for long-term simulations of cliff evolution and to test existing hypotheses about cliffs' survival.

  11. Modelling and analysis of nonlinear thermoacoustic systems using frequency and time domain methods


    Orchini, Alessandro


    In this thesis, low-order nonlinear models for the prediction of the nonlinear behaviour of thermoacoustic systems are developed. These models are based on thermoacoustic networks, in which linear acoustics is combined with a nonlinear heat release model. The acoustic networks considered in this thesis can take into account mean flow and non-trivial acoustic reflection coefficients, and are cast in state-space form to enable analysis both in the frequency and time domains. Starting from l...

  12. Synthetic Modifications In the Frequency Domain for Finite Element Model Update and Damage Detection (United States)


    Aeronautical Society , 24, pp. 590–591. [23] Fritzen, C., and Kiefer, T., 1992, “Localization and Correction of Errors in Finite Element Models Based on...MODIFICATIONS IN THE FREQUENCY DOMAIN FOR FINITE ELEMENT MODEL UPDATE AND DAMAGE DETECTION by Ryun J. C. Konze September 2017 Thesis Advisor...FINITE ELEMENT MODEL UPDATE AND DAMAGE DETECTION 5. FUNDING NUMBERS 6. AUTHOR(S) Ryun J. C. Konze 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES

  13. Loop models on random maps via nested loops: the case of domain symmetry breaking and application to the Potts model (United States)

    Borot, G.; Bouttier, J.; Guitter, E.


    We use the nested loop approach to investigate loop models on random planar maps where the domains delimited by the loops are given two alternating colors, which can be assigned different local weights, hence allowing for an explicit Z2 domain symmetry breaking. Each loop receives a non-local weight n, as well as a local bending energy which controls loop turns. By a standard cluster construction that we review, the Q = n2 Potts model on general random maps is mapped to a particular instance of this problem with domain-non-symmetric weights. We derive in full generality a set of coupled functional relations for a pair of generating series which encode the enumeration of loop configurations on maps with a boundary of a given color, and solve it by extending well-known complex analytic techniques. In the case where loops are fully packed, we analyze in detail the phase diagram of the model and derive exact equations for the position of its non-generic critical points. In particular, we underline that the critical Potts model on general random maps is not self-dual whenever Q ≠ 1. In a model with domain-symmetric weights, we also show the possibility of a spontaneous domain symmetry breaking driven by the bending energy. This article is part of ‘Lattice models and integrability’, a special issue of Journal of Physics A: Mathematical and Theoretical in honour of F Y Wu's 80th birthday.

  14. Changes in snow cover over China in the 21st century as simulated by a high resolution regional climate model

    International Nuclear Information System (INIS)

    Shi Ying; Gao Xuejie; Wu Jia; Giorgi, Filippo


    On the basis of the climate change simulations conducted using a high resolution regional climate model, the Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model, RegCM3, at 25 km grid spacing, future changes in snow cover over China are analyzed. The simulations are carried out for the period of 1951–2100 following the IPCC SRES A1B emission scenario. The results suggest good performances of the model in simulating the number of snow cover days and the snow cover depth, as well as the starting and ending dates of snow cover to the present day (1981–2000). Their spatial distributions and amounts show fair consistency between the simulation and observation, although with some discrepancies. In general, decreases in the number of snow cover days and the snow cover depth, together with postponed snow starting dates and advanced snow ending dates, are simulated for the future, except in some places where the opposite appears. The most dramatic changes are found over the Tibetan Plateau among the three major snow cover areas of Northeast, Northwest and the Tibetan Plateau in China.

  15. Frequency-domain modelling of gain in pump-probe experiment by an inhomogeneous medium (United States)

    Kim, Minkyung; Oh, Sang Soon; Hess, Ortwin; Rho, Junsuk


    Introduction of a gain medium in lossy plasmonic metamaterials reduces and compensates losses or even amplifies an incident light often with nonlinear optical effect. Here, optical gain in a pump-probe experimental setup is effectively calculated in the frequency-domain by approximating a gain material as an inhomogeneous medium. Spatially varying local field amplitudes of the pump and probe beams are included in the model to reproduce the inhomogeneous gain effect, in which population inversion occurs most strongly near the surface and decays along the propagation direction. We demonstrate that transmission spectra calculated by this method agree well with finite-difference time-domain simulation results. This simplified approach of gain modelling offers an easy and reliable way to analyze wave propagation in a gain medium without nonlinear time-domain calculation.

  16. Effects of land cover change on temperature and rainfall extremes in multi-model ensemble simulations

    Directory of Open Access Journals (Sweden)

    A. J. Pitman


    Full Text Available The impact of historical land use induced land cover change (LULCC on regional-scale climate extremes is examined using four climate models within the Land Use and Climate, IDentification of robust impacts project. To assess those impacts, multiple indices based on daily maximum and minimum temperatures and daily precipitation were used. We contrast the impact of LULCC on extremes with the impact of an increase in atmospheric CO2 from 280 ppmv to 375 ppmv. In general, consistent changes in both high and low temperature extremes are similar to the simulated change in mean temperature caused by LULCC and are restricted to regions of intense modification. The impact of LULCC on both means and on most temperature extremes is statistically significant. While the magnitude of the LULCC-induced change in the extremes can be of similar magnitude to the response to the change in CO2, the impacts of LULCC are much more geographically isolated. For most models, the impacts of LULCC oppose the impact of the increase in CO2 except for one model where the CO2-caused changes in the extremes are amplified. While we find some evidence that individual models respond consistently to LULCC in the simulation of changes in rainfall and rainfall extremes, LULCC's role in affecting rainfall is much less clear and less commonly statistically significant, with the exception of a consistent impact over South East Asia. Since the simulated response of mean and extreme temperatures to LULCC is relatively large, we conclude that unless this forcing is included, we risk erroneous conclusions regarding the drivers of temperature changes over regions of intense LULCC.

  17. Characterizing Land-cover Changes Since 1650 in the Southeastern United States for Application to Regional Climate Modeling (United States)

    Reker, R. R.; Loveland, T. R.; Bernhardt, C. E.; Hostetler, S. W.; Sundquist, E. T.; Thompson, R. S.; Willard, D. A.


    Land-cover change is a fundamental contributor to changes in climate, hydrology, and carbon cycling. European settlers introduced a series of widespread land-cover changes in eastern North America beginning in the early 17th century. These changes varied both temporally and spatially, and were related to population growth, emerging technology, and land-use. To examine the potential influence of historical land-cover changes on local to regional climate, we adapted reconstructed fractional land cover from 1650, 1850, and 1920 as well as land cover interpreted from Landsat imagery circa 1992 (Steyaert and Knox, 2008) as input for regional climate model experiments. Observed changes included: deforestation and conversion to agriculture in the mid-Atlantic region from 1650 to 1850, region-wide expansion of agriculture from 1850 to 1920, and wetland drainage, reforestation, and increased urbanization from 1920 to 1992. We translated the land cover datasets to the BATS (Biosphere-Atmosphere Transfer Scheme) thematic classification on a 20 km2 grid for ingestion into the RegCM4 regional climate model. In BATS, land-cover classifications determine biophysical parameters such as the seasonal albedo cycle, fractional vegetation condition, stomatal resistance, leaf area index (LAI), and rooting depth. By defining and characterizing land cover in a consistent manner across the four time slices, we are able to explore interactions and feedbacks between land cover and regional climate in late prehistoric and historic times. Steyaert, L. T., & Knox, R. G. (2008). Reconstructed historical land cover and biophysical parameters for studies of land-atmosphere interactions within the eastern United States. Journal of Geophysical Research: Atmospheres, 113(D2).

  18. A hybrid absorbing boundary condition for frequency-domain finite-difference modelling

    International Nuclear Information System (INIS)

    Ren, Zhiming; Liu, Yang


    Liu and Sen (2010 Geophysics 75 A1–6; 2012 Geophys. Prospect. 60 1114–32) proposed an efficient hybrid scheme to significantly absorb boundary reflections for acoustic and elastic wave modelling in the time domain. In this paper, we extend the hybrid absorbing boundary condition (ABC) into the frequency domain and develop specific strategies for regular-grid and staggered-grid modelling, respectively. Numerical modelling tests of acoustic, visco-acoustic, elastic and vertically transversely isotropic (VTI) equations show significant absorptions for frequency-domain modelling. The modelling results of the Marmousi model and the salt model also demonstrate the effectiveness of the hybrid ABC. For elastic modelling, the hybrid Higdon ABC and the hybrid Clayton and Engquist (CE) ABC are implemented, respectively. Numerical simulations show that the hybrid Higdon ABC gets better absorption than the hybrid CE ABC, especially for S-waves. We further compare the hybrid ABC with the classical perfectly matched layer (PML). Results show that the two ABCs cost the same computation time and memory space for the same absorption width. However, the hybrid ABC is more effective than the PML for the same small absorption width and the absorption effects of the two ABCs gradually become similar when the absorption width is increased. (paper)

  19. Educational Objectives and the Learning Domains: A New Formulation [And] Summary: Pierce-Gray Classification Model for the Cognitive, Affective and Psychomotor Domains. (United States)

    Gray, Charles E.; Pierce, Walter D.

    This paper examines and summarizes the "Pierce-Gray Classification Model for the Cognitive, Affective, and Psychomotor Domains," a model developed for the classification of educational objectives. The classification system was developed to provide a framework that teachers could use as a guide when developing specific instructional objectives for…

  20. The N-terminal domain of apolipoprotein B-100: structural characterization by homology modeling

    Directory of Open Access Journals (Sweden)

    Khachfe Hassan M


    Full Text Available Abstract Background Apolipoprotein B-100 (apo B-100 stands as one of the largest proteins in humans. Its large size of 4536 amino acids hampers the production of X-ray diffraction quality crystals and hinders in-solution NMR analysis, and thus necessitates a domain-based approach for the structural characterization of the multi-domain full-length apo B. Results The structure of apo B-17 (the N-terminal 17% of apolipoprotein B-100 was predicted by homology modeling based on the structure of the N-terminal domain of lipovitellin (LV, a protein that shares not only sequence similarity with B17, but also a functional aspect of lipid binding and transport. The model structure was first induced to accommodate the six disulfide bonds found in that region, and then optimized using simulated annealing. Conclusion The content of secondary structural elements in this model structure correlates well with the reported data from other biophysical probes. The overall topology of the model conforms with the structural outline corresponding to the apo B-17 domain as seen in the EM representation of the complete LDL structure.

  1. (Br-SCMM) Brazilian Smart City Maturity Model: A Perspective from the Health Domain. (United States)

    Afonso, Ricardo Alexandre; dos Santos Brito, Kellyton; Holanda do Nascimento, Clóvis; Campos da Costa, Luciana; Álvaro, Alexandre; Cardoso Garcia, Vinicius


    The term definition "Smart City" still allows various interpretations, and this causes some difficulty in establishing parameters to measure how smart the cities can be. This paper presents a Maturity Model that uses a set of minimum domains and indicators that aim to encourage cities of different sizes to identify their potential and improve processes and public policies.

  2. Lifshitz-Allen-Cahn domain-growth kinetics of Ising models with conserved density

    DEFF Research Database (Denmark)

    Fogedby, Hans C.; Mouritsen, Ole G.


    The domain-growth kinetics of p=fourfold degenerate (2×1) ordering in two-dimensional Ising models with conserved density is studied as a function of temperature and range of Kawasaki spin exchange. It is found by computer simulations that the zero-temperature freezing-in behavior for nearest...

  3. A combustion model with unbounded thermal conductivity and reactant diffusivity in non-smooth domains

    Directory of Open Access Journals (Sweden)

    Sikiru Adigun Sanni


    Full Text Available In this article, we present a strongly coupled quasilinear parabolic combustion model with unbounded thermal conductivity and reactant diffusivity in arbitrary non-smooth domains. A priori estimates are obtained, and the existence of a unique global strong solution is proved using a Banach fixed point theorem.

  4. The road to a standard land administration domain model, and beyond ...

    NARCIS (Netherlands)

    Lemmen, C.H.J.; Uitermark, H.T.; Van Oosterom, P.J.M.; Zevenbergen, J.A.; Greenway, I.


    The Land Administration Domain Model (LADM) is a Draft International Standard (ISO DIS 19152) and in January 2011 was distributed by the ISO central secretariat for a five month voting and commenting time interval. If everything goes as planned, ISO 19152 will be an International Standard (IS) by

  5. A Frequency-Domain Model for a Novel Wave Energy Converter

    NARCIS (Netherlands)

    Wei, Yanji; Yu, Zhiheng; Barradas Berglind, Jose de Jesus; van Rooij, Marijn; Prins, Wouter; Jayawardhana, Bayu; Vakis, Antonis I.

    In this work, we develop a frequency-domain model for the novel Ocean Grazer (OG) wave energy converter (WEC), with the intention to study the hydrodynamic behavior of its array of floater elements individually connected to power take-off (PTO) systems. To investigate these hydrodynamic

  6. The BEM-FDM model of thermal processes proceeding in the domain of the human finger. (United States)

    Majchrzak, Ewa; Mochnacki, Bohdan; Tarasek, Damian; Dziewoński, Mirosław


    The problem of the numerical modeling of thermal processes proceeding in the non-homogeneous domain of the human finger is discussed. The domain considered constitutes the assembling of soft and bone tissues and the system of supplying blood vessels (arteries and veins). The mathematical description of the process analyzed corresponds to the so-called vascular models. At the stage of numerical modeling the algorithm being the composition of the boundary element method (BEM) and the finite difference method (FDM) is applied. The algorithm presented allows one to determine the steady state temperature field in the finger domain in natural convection conditions. To verify the effectiveness and exactness of the method of the problem solution, the thermal imaging measurements of the finger surface temperature have been done. The compatibility of numerical and experimental results (the natural convection conditions) has proved to be quite satisfactory. It is possible to use the algorithm proposed for the modeling of thermal processes proceeding in the conditions of low or high ambient temperatures and the big values of heat transfer coefficients. The impact of protective clothing on the temperature field in the domain of the finger can also be analyzed.

  7. Accurate prediction of interfacial residues in two-domain proteins using evolutionary information: implications for three-dimensional modeling. (United States)

    Bhaskara, Ramachandra M; Padhi, Amrita; Srinivasan, Narayanaswamy


    With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naïve Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (∼85%) and specific (∼95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions. © 2013 Wiley Periodicals, Inc.

  8. A simple model for predicting soil temperature in snow-covered and seasonally frozen soil: model description and testing

    Directory of Open Access Journals (Sweden)

    K. Rankinen


    Full Text Available Microbial processes in soil are moisture, nutrient and temperature dependent and, consequently, accurate calculation of soil temperature is important for modelling nitrogen processes. Microbial activity in soil occurs even at sub-zero temperatures so that, in northern latitudes, a method to calculate soil temperature under snow cover and in frozen soils is required. This paper describes a new and simple model to calculate daily values for soil temperature at various depths in both frozen and unfrozen soils. The model requires four parameters: average soil thermal conductivity, specific heat capacity of soil, specific heat capacity due to freezing and thawing and an empirical snow parameter. Precipitation, air temperature and snow depth (measured or calculated are needed as input variables. The proposed model was applied to five sites in different parts of Finland representing different climates and soil types. Observed soil temperatures at depths of 20 and 50 cm (September 1981–August 1990 were used for model calibration. The calibrated model was then tested using observed soil temperatures from September 1990 to August 2001. R2-values of the calibration period varied between 0.87 and 0.96 at a depth of 20 cm and between 0.78 and 0.97 at 50 cm. R2-values of the testing period were between 0.87 and 0.94 at a depth of 20cm, and between 0.80 and 0.98 at 50cm. Thus, despite the simplifications made, the model was able to simulate soil temperature at these study sites. This simple model simulates soil temperature well in the uppermost soil layers where most of the nitrogen processes occur. The small number of parameters required means that the model is suitable for addition to catchment scale models. Keywords: soil temperature, snow model

  9. Flavor connections and neutrino mass hierarchy in variant invisible axion models without domain wall problem

    International Nuclear Information System (INIS)

    Geng, C.Q.; Ng, J.N.


    New types of invisible axion model based on the recent variant axion models are presented. They belong to the N=1 type model and hence are free of domain wall problems. The Peccei-Quinn symmetry transformations are not totally generation and flavor blind, which may help in understanding the small values of electron and u-quark and large t-quark masses. The light neutrino mass pattern in the two Higgs singlet models can have a very different hierarchy that differs from the other type invisible axion model. (Author) (25 refs.)

  10. Jordan domain and Fatou set concerning diamond-like hierarchical Potts models (United States)

    Jianyong, Qiao; Junyang, Gao


    For the Potts models on the diamond-like hierarchical lattice, the domains of the complex phases are indeed the Fatou components of a family of rational maps. In this paper, we deal with the relationships between this family of Fatou components and the Jordan domains and describe the topological structures of this family of Fatou components completely. The research was supported by the National Natural Science Foundation of China (Grant No 10625107) and the Program for New Century Excellent Talents in University (Grant No 04-0490).

  11. Similarity measure and domain adaptation in multiple mixture model clustering: An application to image processing. (United States)

    Leong, Siow Hoo; Ong, Seng Huat


    This paper considers three crucial issues in processing scaled down image, the representation of partial image, similarity measure and domain adaptation. Two Gaussian mixture model based algorithms are proposed to effectively preserve image details and avoids image degradation. Multiple partial images are clustered separately through Gaussian mixture model clustering with a scan and select procedure to enhance the inclusion of small image details. The local image features, represented by maximum likelihood estimates of the mixture components, are classified by using the modified Bayes factor (MBF) as a similarity measure. The detection of novel local features from MBF will suggest domain adaptation, which is changing the number of components of the Gaussian mixture model. The performance of the proposed algorithms are evaluated with simulated data and real images and it is shown to perform much better than existing Gaussian mixture model based algorithms in reproducing images with higher structural similarity index.

  12. Using state-and-transition models to evaluate impacts of land cover change on wind erosion (United States)

    Wind erosion of rangeland soils is a global problem exacerbated by land cover change. Despite efforts to quantify the impacts of land cover change on wind erosion, assessment uncertainty remains large. We address this uncertainty by evaluating the application of ecological sites and state-and-transi...

  13. Land-cover impacts on streamflow: a change-detection modelling approach that incorporates parameter uncertainty (United States)

    Jan Seibert; Jeffrey J. McDonnell


    The effect of land-use or land-cover change on stream runoff dynamics is not fully understood. In many parts of the world, forest management is the major land-cover change agent. While the paired catchment approach has been the primary methodology used to quantify such effects, it is only possible for small headwater catchments where there is uniformity in...

  14. Finite mixture models for sub-pixel coastal land cover classification

    CSIR Research Space (South Africa)

    Ritchie, Michaela C


    Full Text Available Medium spatial resolution sensors (10-30 m pixel size) have been used for land cover classification and monitoring for decades. However, these sensors do not have the required resolution to detect coastal specific land cover classes and boundaries...

  15. The Parana paradox: can a model explain the decadal impacts of climate variability and land-cover change? (United States)

    Lee, E.; Moorcroft, P. R.; Livino, A.; Briscoe, J.


    Since the 1970s, despite a decrease in rainfall, flow in the Parana river has increased. This paradox is explored using the Ecosystem Demography (ED) model. If there were no change in land cover, the modeled runoff decreased from the 1970s to the 2000s by 11.8% (with 1970 land cover) or 18.8% (with 2008 land cover). When the model is run holding climate constant, the decadal average of the modeled runoff increased by 24.4% (with the 1970s climate) or by 33.6% (with 2000s climate). When the model is run allowing both the actual climate and land-cover changes, the model gives an increase in the decadal average of runoff by 8.5%. This agrees well with 10.5% increase in the actual stream flow as measured at Itaipu. There are three main conclusions from this work. First, the ED model is able to explain a major, paradoxical, reality in the Parana basin. Second, it is necessary to take into account both climate and land use changes when exploring past or future changes in river flows. Third, the ED model, now coupled with a regional climate model (i.e., EDBRAMS), is a sound basis for exploring likely changes in river flows in major South American rivers.

  16. Proceedings of the Third International Workshop on Domain-Specific Languages and Models for Robotic Systems (DSLRob 2012)

    DEFF Research Database (Denmark)

    Schlegel, Christian; Schultz, Ulrik Pagh; Stinckwich, Serge


    Proceedings of the Third International Workshop on Domain-Specific Languages and Models for Robotic Systems (DSLRob'12), held at the 2012 International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR 2012), November 2012 in Tsukuba, Japan. The main topics...... of the workshop were Domain-Specific Languages (DSLs) and Model-driven Architecture (MDA) for robotics. A domain-specific language (DSL) is a programming language dedicated to a particular problem domain that offers specific notations and abstractions that increase programmer productivity within that domain....... Models-driven architecture (MDA) offers a high-level way for domain users to specify the functionality of their system at the right level of abstraction. DSLs and models have historically been used for programming complex systems. However recently they have garnered interest as a separate field of study...

  17. Forecasting Land-Use and Land-Cover in the Great Plains Using Scenario-Based Modeling (United States)

    Bouchard, M. A.; Sohl, T. L.; Sleeter, B. M.; Sayler, K.; Reker, R.; Zhu, Z.


    The U.S. Geological Survey LandCarbon project is assessing potential carbon storage under various Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES). As part of this assessment, the FORE-SCE (FOREcasting SCEnarios of future land cover) model is being used to project land use and land cover (LULC) change annually through 2050. Downscaled IPCC scenarios were used to project LULC change by Omernik Level II Ecoregions, beginning with the Great Plains. Scenarios consistent with SRES storylines A1B, A2, B1, and B2 were developed using the Integrated Model to Assess the Greenhouse Effect (IMAGE), historical land-use histories from the USGS Land Cover Trends project, and workshops of land-use experts. The FORE-SCE model was then used to create spatially explicit LULC maps at a 250-meter pixel resolution to show differences in projected land cover change between scenarios. Economically-based storylines had large increases in agriculture and a loss of natural land covers due to the high demand for agricultural commodities. Environmentally-based scenarios had stable to slight increases in wetlands and grasslands due to conservation of natural land cover. This poster will present maps and results of scenario-based LULC change for the Great Plains.

  18. Modelling suicide and unemployment: a longitudinal analysis covering 63 countries, 2000-11. (United States)

    Nordt, Carlos; Warnke, Ingeborg; Seifritz, Erich; Kawohl, Wolfram


    As with previous economic downturns, there has been debate about an association between the 2008 economic crisis, rising unemployment, and suicide. Unemployment directly affects individuals' health and, unsurprisingly, studies have proposed an association between unemployment and suicide. However, a statistical model examining the relationship between unemployment and suicide by considering specific time trends among age-sex-country subgroups over wider world regions is still lacking. We aimed to enhance knowledge of the specific effect of unemployment on suicide by analysing global public data classified according to world regions. We retrospectively analysed public data for suicide, population, and economy from the WHO mortality database and the International Monetary Fund's world economic outlook database from 2000 to 2011. We selected 63 countries based on sample size and completeness of the respective data and extracted the information about four age groups and sex. To check stability of findings, we conducted an overall random coefficient model including all study countries and four additional models, each covering a different world region. Despite differences in the four world regions, the overall model, adjusted for the unemployment rate, showed that the annual relative risk of suicide decreased by 1·1% (95% CI 0·8-1·4) per year between 2000 and 2011. The best and most stable final model indicated that a higher suicide rate preceded a rise in unemployment (lagged by 6 months) and that the effect was non-linear with higher effects for lower baseline unemployment rates. In all world regions, the relative risk of suicide associated with unemployment was elevated by about 20-30% during the study period. Overall, 41,148 (95% CI 39,552-42,744) suicides were associated with unemployment in 2007 and 46,131 (44,292-47,970) in 2009, indicating 4983 excess suicides since the economic crisis in 2008. Suicides associated with unemployment totalled a nine-fold higher

  19. Growth of solid domains in model membranes: quantitative image analysis reveals a strong correlation between domain shape and spatial position

    DEFF Research Database (Denmark)

    Bernchou, Uffe; Ipsen, John Hjort; Simonsen, Adam Cohen


    The nucleation and growth of solid domains in supported bilayers composed of a binary mixture of equimolar 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) have been studied using combined fluorescence microscopy and AFM. We have found that th...

  20. Modeling Transient Root-zone Soil Moisture Dichotomies in Landscapes with Intermixed Land Covers (United States)

    Patrignani, A.; Ochsner, T. E.


    Although large-scale in situ soil moisture monitoring networks are becoming increasingly valuable research tools, deficiencies of many existing networks include the small spatial support of each station, the low spatial density of stations, and the almost exclusive deployment of stations in grassland vegetation. These grassland soil moisture observations may not adequately represent the real soil moisture patterns in landscapes with intermixed land cover types. The objectives of this study were i) to compare root-zone soil moisture dynamics of two dominant vegetation types across Oklahoma, grassland (observed) and winter wheat cropland (simulated); ii) to relate the soil moisture dynamics of grassland and cropland vegetation using an artificial neural network (ANN) as a transfer function; and iii) to use the resulting ANN to estimate the soil moisture spatial patterns for a landscape of intermixed grassland and wheat cropland. Root-zone soil moisture was represented by plant available water (PAW) in the top 0.8 m of the soil profile. PAW under grassland was calculated from 18 years of soil moisture observations at 78 stations of the Oklahoma Mesonet, whereas PAW under winter wheat was simulated for the same 78 locations using a soil water balance model. Then, we trained an ANN to reproduce the simulated PAW under winter wheat using only seven inputs: day of the year, latitude and longitude, measured PAW under grassland, and percent sand, silt, and clay. The resulting ANN was used, along with grassland soil moisture observations, to estimate the detailed soil moisture pattern for a 9x9 km2 Soil Moisture Active Passive (SMAP) grid cell. The seasonal dynamics of root-zone PAW for grassland and winter wheat were strongly asynchronous, so grassland soil moisture observations rarely reflect cropland soil moisture conditions in the region. The simple ANN approach facilitated efficient and accurate prediction of the simulated PAW under winter wheat, RMSE = 24 mm, using

  1. Estimating California ecosystem carbon change using process model and land cover disturbance data: 1951-2000 (United States)

    Liu, Jinxun; Vogelmann, James E.; Zhu, Zhiliang; Key, Carl H.; Sleeter, Benjamin M.; Price, D.T.; Chen, Jing M.; Cochrane, Mark A.; Eidenshink, Jeffery C.; Howard, Stephen M.; Bliss, Norman B.; Jiang, Hong


    Land use change, natural disturbance, and climate change directly alter ecosystem productivity and carbon stock level. The estimation of ecosystem carbon dynamics depends on the quality of land cover change data and the effectiveness of the ecosystem models that represent the vegetation growth processes and disturbance effects. We used the Integrated Biosphere Simulator (IBIS) and a set of 30- to 60-m resolution fire and land cover change data to examine the carbon changes of California's forests, shrublands, and grasslands. Simulation results indicate that during 1951–2000, the net primary productivity (NPP) increased by 7%, from 72.2 to 77.1 Tg C yr−1 (1 teragram = 1012 g), mainly due to CO2 fertilization, since the climate hardly changed during this period. Similarly, heterotrophic respiration increased by 5%, from 69.4 to 73.1 Tg C yr−1, mainly due to increased forest soil carbon and temperature. Net ecosystem production (NEP) was highly variable in the 50-year period but on average equalled 3.0 Tg C yr−1 (total of 149 Tg C). As with NEP, the net biome production (NBP) was also highly variable but averaged −0.55 Tg C yr−1 (total of –27.3 Tg C) because NBP in the 1980s was very low (–5.34 Tg C yr−1). During the study period, a total of 126 Tg carbon were removed by logging and land use change, and 50 Tg carbon were directly removed by wildland fires. For carbon pools, the estimated total living upper canopy (tree) biomass decreased from 928 to 834 Tg C, and the understory (including shrub and grass) biomass increased from 59 to 63 Tg C. Soil carbon and dead biomass carbon increased from 1136 to 1197 Tg C.Our analyses suggest that both natural and human processes have significant influence on the carbon change in California. During 1951–2000, climate interannual variability was the key driving force for the large interannual changes of ecosystem carbon source and sink at the state level, while logging and fire

  2. Calibrating a Salt Water Intrusion Model with Time-Domain Electromagnetic Data

    DEFF Research Database (Denmark)

    Herckenrath, Daan; Odlum, Nick; Nenna, Vanessa


    are transformed to an electrical resistivity model, after which a geophysical forward response is calculated and compared with the measured geophysical data. This approach was applied for a field site in Santa Cruz County, California, where a time-domain electromagnetic (TDEM) dataset was collected......Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground-based electromagnetic surveys, electrical resistivity models can...

  3. Evaporation suppression from reservoirs using floating covers: Lab scale wind-tunnel observations and mechanistic model predictions (United States)

    Or, Dani; Lehmann, Peter; Aminzadeh, Milad; Sommer, Martina; Wey, Hannah; Krentscher, Christiane; Wunderli, Hans; Breitenstein, Daniel


    The competition over dwindling fresh water resources is expected to intensify with projected increase in human population in arid regions, expansion of irrigated land and changes in climate and drought patterns. The volume of water stored in reservoirs would also increase to mitigate seasonal shortages due to rainfall variability and to meet irrigation water needs. By some estimates up to half of the stored water is lost to evaporation, thereby exacerbating the water scarcity problem. Recently, there is an upsurge in the use of self-assembling floating covers to suppress evaporation, yet the design and implementation remain largely empirical. We report a systematic experimental evaluation of different cover types and external drivers (radiation, wind, wind plus radiation) on evaporation suppression and energy balance of a 1.4 m2 basin placed in a wind-tunnel. Surprisingly, evaporation suppression by black and white floating covers (balls and plates) were similar despite significantly different energy balance regimes over the cover surfaces. Moreover, the evaporation suppression efficiency was a simple function of the uncovered area (square root of the uncovered fraction) with linear relations with the covered area in some cases. The thermally decoupled floating covers offer an efficient solution to the evaporation suppression with limited influence of the surface energy balance (water temperature for black and white covers was similar and remained nearly constant). The results will be linked with a predictive evaporation-energy balance model and issues of spatial scales and long exposure times will be studied.

  4. Model-Based Development and Evaluation of Control for Complex Multi-Domain Systems

    DEFF Research Database (Denmark)

    Grujic, Ivan; Nilsson, Rene

    of such systems, caused by technological advances in all domains, new ways of approaching multi- domain system development are needed. One methodology, which excels in complexity management, is model-based development. Multidomain systems require collaborative modeling, where the physical system dynamics...... Unmanned Aerial Vehicle (UAV) has been constructed and used to develop an attitude controller based on Model Predictive Control (MPC). The MPC controller has been compared to an existing open source Proportional Integral Derivative (PID) attitude controller. This thesis contributes to the discipline......A Cyber-Physical System (CPS) incorporates sensing, actuating, computing and communicative capabilities, which are often combined to control the system. The development of CPSs poses a challenge, since the complexity of the physical system dynamics must be taken into account when designing...

  5. Proceedings of the Second International Workshop on Domain-Specific Languages and Models for Robotic Systems (DSLRob 2011)

    DEFF Research Database (Denmark)

    Schultz, Ulrik Pagh; Stinckwich, Serge

    that domain. Models offer a high-level way for domain users to specify the functionality of their system at the right level of abstraction. DSLs and models have historically been used for programming complex systems. However recently they have garnered interest as a separate field of study. Robotic systems......Proceedings of the Second International Workshop on Domain-Specific Languages and Models for Robotic Systems (DSLRob'11), held in conjunction with the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), September 2011 in San Francisco, USA. The main topics...... of the workshop were Domain-Specific Languages (DSLs) and Model-driven Software Development (MDSD) for robotics. A domain-specific language (DSL) is a programming language dedicated to a particular problem domain that offers specific notations and abstractions that increase programmer productivity within...

  6. A Third-Order Item Response Theory Model for Modeling the Effects of Domains and Subdomains in Large-Scale Educational Assessment Surveys (United States)

    Rijmen, Frank; Jeon, Minjeong; von Davier, Matthias; Rabe-Hesketh, Sophia


    Second-order item response theory models have been used for assessments consisting of several domains, such as content areas. We extend the second-order model to a third-order model for assessments that include subdomains nested in domains. Using a graphical model framework, it is shown how the model does not suffer from the curse of…

  7. Using Urban Landscape Trajectories to Develop a Multi-Temporal Land Cover Database to Support Ecological Modeling

    Directory of Open Access Journals (Sweden)

    Marina Alberti


    Full Text Available Urbanization and the resulting changes in land cover have myriad impacts on ecological systems. Monitoring these changes across large spatial extents and long time spans requires synoptic remotely sensed data with an appropriate temporal sequence. We developed a multi-temporal land cover dataset for a six-county area surrounding the Seattle, Washington State, USA, metropolitan region. Land cover maps for 1986, 1991, 1995, 1999, and 2002 were developed from Landsat TM images through a combination of spectral unmixing, image segmentation, multi-season imagery, and supervised classification approaches to differentiate an initial nine land cover classes. We then used ancillary GIS layers and temporal information to define trajectories of land cover change through multiple updating and backdating rules and refined our land cover classification for each date into 14 classes. We compared the accuracy of the initial approach with the landscape trajectory modifications and determined that the use of landscape trajectory rules increased our ability to differentiate several classes including bare soil (separated into cleared for development, agriculture, and clearcut forest and three intensities of urban. Using the temporal dataset, we found that between 1986 and 2002, urban land cover increased from 8 to 18% of our study area, while lowland deciduous and mixed forests decreased from 21 to 14%, and grass and agriculture decreased from 11 to 8%. The intensity of urban land cover increased with 252 km2 in Heavy Urban in 1986 increasing to 629 km2 by 2002. The ecological systems that are present in this region were likely significantly altered by these changes in land cover. Our results suggest that multi-temporal (i.e., multiple years and multiple seasons within years Landsat data are an economical means to quantify land cover and land cover change across large and highly heterogeneous urbanizing landscapes. Our data, and similar temporal land cover change

  8. Modeling the Land Use/Cover Change in an Arid Region Oasis City Constrained by Water Resource and Environmental Policy Change using Cellular Automata Model (United States)

    Hu, X.; Li, X.; Lu, L.


    Land use/cover change (LUCC) is an important subject in the research of global environmental change and sustainable development, while spatial simulation on land use/cover change is one of the key content of LUCC and is also difficult due to the complexity of the system. The cellular automata (CA) model had an irreplaceable role in simulating of land use/cover change process due to the powerful spatial computing power. However, the majority of current CA land use/cover models were binary-state model that could not provide more general information about the overall spatial pattern of land use/cover change. Here, a multi-state logistic-regression-based Markov cellular automata (MLRMCA) model and a multi-state artificial-neural-network-based Markov cellular automata (MANNMCA) model were developed and were used to simulate complex land use/cover evolutionary process in an arid region oasis city constrained by water resource and environmental policy change, the Zhangye city during the period of 1990-2010. The results indicated that the MANNMCA model was superior to MLRMCA model in simulated accuracy. These indicated that by combining the artificial neural network with CA could more effectively capture the complex relationships between the land use/cover change and a set of spatial variables. Although the MLRMCA model were also some advantages, the MANNMCA model was more appropriate for simulating complex land use/cover dynamics. The two proposed models were effective and reliable, and could reflect the spatial evolution of regional land use/cover changes. These have also potential implications for the impact assessment of water resources, ecological restoration, and the sustainable urban development in arid areas.

  9. Discontinuous Galerkin Time-Domain Modeling of Graphene Nano-Ribbon Incorporating the Spatial Dispersion Effects

    KAUST Repository

    Li, Ping


    It is well known that graphene demonstrates spatial dispersion properties, i.e., its conductivity is nonlocal and a function of spectral wave number (momentum operator) q. In this paper, to account for effects of spatial dispersion on transmission of high speed signals along graphene nano-ribbon (GNR) interconnects, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed. The atomically-thick GNR is modeled using a nonlocal transparent surface impedance boundary condition (SIBC) incorporated into the DGTD scheme. Since the conductivity is a complicated function of q (and one cannot find an analytical Fourier transform pair between q and spatial differential operators), an exact time domain SIBC model cannot be derived. To overcome this problem, the conductivity is approximated by its Taylor series in spectral domain under low-q assumption. This approach permits expressing the time domain SIBC in the form of a second-order partial differential equation (PDE) in current density and electric field intensity. To permit easy incorporation of this PDE with the DGTD algorithm, three auxiliary variables, which degenerate the second-order (temporal and spatial) differential operators to first-order ones, are introduced. Regarding to the temporal dispersion effects, the auxiliary differential equation (ADE) method is utilized to eliminates the expensive temporal convolutions. To demonstrate the applicability of the proposed scheme, numerical results, which involve characterization of spatial dispersion effects on the transfer impedance matrix of GNR interconnects, are presented.

  10. Taxonomic analysis of perceived risk: modeling individual and group perceptions within homogeneous hazard domains

    International Nuclear Information System (INIS)

    Kraus, N.N.; Slovic, P.


    Previous studies of risk perception have typically focused on the mean judgments of a group of people regarding the riskiness (or safety) of a diverse set of hazardous activities, substances, and technologies. This paper reports the results of two studies that take a different path. Study 1 investigated whether models within a single technological domain were similar to previous models based on group means and diverse hazards. Study 2 created a group taxonomy of perceived risk for only one technological domain, railroads, and examined whether the structure of that taxonomy corresponded with taxonomies derived from prior studies of diverse hazards. Results from Study 1 indicated that the importance of various risk characteristics in determining perceived risk differed across individuals and across hazards, but not so much as to invalidate the results of earlier studies based on group means and diverse hazards. In Study 2, the detailed analysis of railroad hazards produced a structure that had both important similarities to, and dissimilarities from, the structure obtained in prior research with diverse hazard domains. The data also indicated that railroad hazards are really quite diverse, with some approaching nuclear reactors in their perceived seriousness. These results suggest that information about the diversity of perceptions within a single domain of hazards could provide valuable input to risk-management decisions

  11. MRI segmentation study based on wavelet-domain hidden Markov models

    International Nuclear Information System (INIS)

    Derraz, F.; Beladgham, M.; Benaissa, M.; Khelif, M.


    Full text.The wavelet's transform has emerged as exciting new tool for statistical image processing. The wavelet domain provides a natural setting for many applications in medical imaging and tele medicine area. The interesting properties of wavelet transform have led to a powerful image processing technique based on a simple transformation of individual wavelet coefficient as thought it were dependent of all others. By exploiting the dependencies between wavelet coefficients, a new wavelet domain probability models have been developed based on the hidden Markov probability models. The Wavelet-domain hidden Markov (HMM) models have recently been introduced and successfully applied in image processing area and in particular the Hidden Markov tree (HMT) models. The HMT models can characterize the joint statistics of wavelet coefficients across scales. these models are tree-structured probabilistic graph that captures statistical properties of the coefficient of wavelet transform. Since the HMT is particularly well suited to image containing singularities like edge and ridge, it provides a good classifier for distinguishing between textures of image. Using the inherent tree structure of the wavelet HMT and it fast training and likelihood algorithms, the texture classification at range of different scales. We then fuse these multi scale classifications using Bayesian probabilistic graph to obtain reliable final segmentations. Finally, the compressed image can be segmented directly. In our work, we have applied these models for texture segmenting of compressed MRI images by using the HMT models. By concisely modeling and fusing the statistical behavior of textures at multiple scales, the algorithm developed on HTM models produces an accurate segmentation of texture images yielding a range of segmentation at different scales. One of the most important results is capability of segmenting compressed image without re-expanding, this create a framework for developing joint

  12. Modeling rates of life form cover change in burned and unburned alpine heathland subject to experimental warming. (United States)

    Camac, James S; Williams, Richard J; Wahren, Carl-Henrik; Jarrad, Frith; Hoffmann, Ary A; Vesk, Peter A


    Elevated global temperatures are expected to alter vegetation dynamics by interacting with physiological processes, biotic relationships and disturbance regimes. However, few studies have explicitly modeled the effects of these interactions on rates of vegetation change, despite such information being critical to forecasting temporal patterns in vegetation dynamics. In this study, we build and parameterize rate-change models for three dominant alpine life forms using data from a 7-year warming experiment. These models allowed us to examine how the interactions between experimental warming, the abundance of bare ground (a measure of past disturbance) and neighboring life forms (a measure of life form interaction) affect rates of cover change in alpine shrubs, graminoids and forbs. We show that experimental warming altered rates of life form cover change by reducing the negative effects of neighboring life forms and positive effects of bare ground. Furthermore, we show that our models can predict the observed direction and rate of life form cover change at burned and unburned long-term monitoring sites. Model simulations revealed that warming in unburned vegetation is expected to result in increased forb and shrub cover and decreased graminoid cover. In contrast, in burned vegetation, warming is predicted to slow post-fire regeneration in both graminoids and forbs and facilitate rapid expansion in shrub cover. These findings illustrate the applicability of modeling rates of vegetation change using experimental data. Our results also highlight the need to account for both disturbance and the abundance of other life forms when examining and forecasting vegetation dynamics under climatic change.

  13. Airborne laser scanning terrain and land cover models as basis for hydrological and hydraulic studies

    International Nuclear Information System (INIS)

    Vetter, M.


    point cloud. Because of the interaction of the laser signal at a specific wavelength and the water surface, the capability to identify areas containing water is very high. These water surface areas are used for land cover classification or generating proper geometry data for hydrodynamic-numerical models. The extent of the water surface is used to replace the water surface with river bed geometry or for hydraulic friction parameter allocation. Based on the water surface extent a river bed modeling method is presented in the next chapter. By combining the existing water surface with terrestrially measured cross section data, a river bed model is created, which is finally integrated into the existing DTM. The main aim of this chapter is to create a DTM of the watercourse, including the river bed model, which can be used as basis for hydrodynamic-numerical modeling and for change detection between two major flood events. The advantage of the DTM with an integrated river bed is that the relevant elevation data of the flood plains are used from the dense and accurate original DTM and the river bed is an interpolated DTM from cross sections. If the distance between the cross sections is large, the river bed model is of poor quality, because of the linear interpolation of the cross sections. In the final methodological part a point cloud based method for estimating hydraulic roughness coefficients is presented. Based on the geometry of the 3D point cloud, vertical structures of the vegetation are analyzed and classified into different land cover classes, which are transformed to Manning's n values. The advantages of the presented method are that the data analysis is fully automatic, reproducible and fast. Finally, the geometry used as elevation input for a 2D hydrodynamic-numerical model and the roughness parameters are measured at one single point in time and calculated from the same data source. Therefore, it is possible to create a hydrodynamic-numerical model exactly

  14. Developing Land Use Land Cover Maps for the Lower Mekong Basin to Aid SWAT Hydrologic Modeling (United States)

    Spruce, J.; Bolten, J. D.; Srinivasan, R.


    This presentation discusses research to develop Land Use Land Cover (LULC) maps for the Lower Mekong Basin (LMB). Funded by a NASA ROSES Disasters grant, the main objective was to produce updated LULC maps to aid the Mekong River Commission's (MRC's) Soil and Water Assessment Tool (SWAT) hydrologic model. In producing needed LULC maps, temporally processed MODIS monthly NDVI data for 2010 were used as the primary data source for classifying regionally prominent forest and agricultural types. The MODIS NDVI data was derived from processing MOD09 and MYD09 8-day reflectance data with the Time Series Product Tool, a custom software package. Circa 2010 Landsat multispectral data from the dry season were processed into top of atmosphere reflectance mosaics and then classified to derive certain locally common LULC types, such as urban areas and industrial forest plantations. Unsupervised ISODATA clustering was used to derive most LULC classifications. GIS techniques were used to merge MODIS and Landsat classifications into final LULC maps for Sub-Basins (SBs) 1-8 of the LMB. The final LULC maps were produced at 250-meter resolution and delivered to the MRC for use in SWAT modeling for the LMB. A map accuracy assessment was performed for the SB 7 LULC map with 14 classes. This assessment was performed by comparing random locations for sampled LULC types to geospatial reference data such as Landsat RGBs, MODIS NDVI phenologic profiles, high resolution satellite data from Google Map/Earth, and other reference data from the MRC (e.g., crop calendars). LULC accuracy assessment results for SB 7 indicated an overall agreement to reference data of 81% at full scheme specificity. However, by grouping 3 deciduous forest classes into 1 class, the overall agreement improved to 87%. The project enabled updated LULC maps, plus more specific rice types were classified compared to the previous LULC maps. The LULC maps from this project should improve the use of SWAT for modeling

  15. Improved virtual channel noise model for transform domain Wyner-Ziv video coding

    DEFF Research Database (Denmark)

    Huang, Xin; Forchhammer, Søren


    Distributed video coding (DVC) has been proposed as a new video coding paradigm to deal with lossy source coding using side information to exploit the statistics at the decoder to reduce computational demands at the encoder. A virtual channel noise model is utilized at the decoder to estimate...... the noise distribution between the side information frame and the original frame. This is one of the most important aspects influencing the coding performance of DVC. Noise models with different granularity have been proposed. In this paper, an improved noise model for transform domain Wyner-Ziv video...

  16. Numerical modeling of wind turbine aerodynamic noise in the time domain. (United States)

    Lee, Seunghoon; Lee, Seungmin; Lee, Soogab


    Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine.


    Hromadka, T.V.


    Besides providing an exact solution for steady-state heat conduction processes (Laplace-Poisson equations), the CVBEM (complex variable boundary element method) can be used for the numerical error analysis of domain model solutions. For problems where soil-water phase change latent heat effects dominate the thermal regime, heat transport can be approximately modeled as a time-stepped steady-state condition in the thawed and frozen regions, respectively. The CVBEM provides an exact solution of the two-dimensional steady-state heat transport problem, and also provides the error in matching the prescribed boundary conditions by the development of a modeling error distribution or an approximate boundary generation.

  18. 3D time-domain spectral elements for stress waves modelling

    International Nuclear Information System (INIS)

    Kudela, P; Ostachowicz, W


    Elastic stress waves induced by piezoelectric transducers are extensively used for damage detection purposes. Induced high frequency impulse signals cause that stress wave modelling by the finite element method is inefficient. Instead, numerical model based on the time-domain spectral element method has been developed to simulate stress wave propagation in metallic structures induced by the piezoelectric transducers. The model solves the coupled electromechanical field equations simultaneously in three-dimensional case. Visualisation of the propagating elastic waves generated by the actuator of different shapes and properties has been performed.

  19. Sensitivity of simulated regional Arctic climate to the choice of coupled model domain

    Directory of Open Access Journals (Sweden)

    Dmitry V. Sein


    Full Text Available The climate over the Arctic has undergone changes in recent decades. In order to evaluate the coupled response of the Arctic system to external and internal forcing, our study focuses on the estimation of regional climate variability and its dependence on large-scale atmospheric and regional ocean circulations. A global ocean–sea ice model with regionally high horizontal resolution is coupled to an atmospheric regional model and global terrestrial hydrology model. This way of coupling divides the global ocean model setup into two different domains: one coupled, where the ocean and the atmosphere are interacting, and one uncoupled, where the ocean model is driven by prescribed atmospheric forcing and runs in a so-called stand-alone mode. Therefore, selecting a specific area for the regional atmosphere implies that the ocean–atmosphere system can develop ‘freely’ in that area, whereas for the rest of the global ocean, the circulation is driven by prescribed atmospheric forcing without any feedbacks. Five different coupled setups are chosen for ensemble simulations. The choice of the coupled domains was done to estimate the influences of the Subtropical Atlantic, Eurasian and North Pacific regions on northern North Atlantic and Arctic climate. Our simulations show that the regional coupled ocean–atmosphere model is sensitive to the choice of the modelled area. The different model configurations reproduce differently both the mean climate and its variability. Only two out of five model setups were able to reproduce the Arctic climate as observed under recent climate conditions (ERA-40 Reanalysis. Evidence is found that the main source of uncertainty for Arctic climate variability and its predictability is the North Pacific. The prescription of North Pacific conditions in the regional model leads to significant correlation with observations, even if the whole North Atlantic is within the coupled model domain. However, the inclusion of the

  20. Frequency Domain Modeling and Simulation of DC Power Electronic Systems Using Harmonic State Space Method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede


    . Through this method, the required computation time and CPU memory can be reduced, where this faster simulation can be an advantage of a large network simulation. Besides, the achieved results show the same results as the non-linear time-domain simulation. Furthermore, the HSS modeling can describe how...... with different switching frequency or harmonics from ac-dc converters makes that harmonics and frequency coupling are both problems of ac system and challenges of dc system. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling...

  1. Adapting and applying a multiple domain model of condom use to Chinese college students. (United States)

    Xiao, Zhiwen; Palmgreen, Philip; Zimmerman, Rick; Noar, Seth


    This study adapts a multiple domain model (MDM) to explain condom use among a sample of sexually active Chinese college students. A cross-sectional survey was conducted and structural equation modeling was used to test the proposed model. Preparatory behaviors, theory of reasoned action (TRA)/theory of planned behavior variables, impulsivity, length of relationship, and alcohol use were significant direct predictors of condom use. The results suggest that MDM can provide a better understanding of heterosexual condom use among Chinese youth, and help in the design of HIV-preventive and safer sex interventions in China.

  2. Finite Difference Time-Domain Modelling of Metamaterials: GPU Implementation of Cylindrical Cloak

    Directory of Open Access Journals (Sweden)

    A. Dawood


    Full Text Available Finite difference time-domain (FDTD technique can be used to model metamaterials by treating them as dispersive material. Drude or Lorentz model can be incorporated into the standard FDTD algorithm for modelling negative permittivity and permeability. FDTD algorithm is readily parallelisable and can take advantage of GPU acceleration to achieve speed-ups of 5x-50x depending on hardware setup. Metamaterial scattering problems are implemented using dispersive FDTD technique on GPU resulting in performance gain of 10x-15x compared to conventional CPU implementation.

  3. Assessment of the transmembrane domain structures in GPCR Dock 2013 models. (United States)

    Wang, Ting; Liu, Haiguang; Duan, Yong


    The community-wide blind prediction of G-protein coupled receptor (GPCR) structures and ligand docking has been conducted three times and the quality of the models was primarily assessed by the accuracy of ligand binding modes. The seven transmembrane (TM) helices of the receptors were taken as a whole; thus the model quality within the 7TM domains has not been evaluated. Here we evaluate the 7TM domain structures in the models submitted for the last round of prediction - GPCR Dock 2013. Applying the 7 × 7 RMSD matrix analysis described in our prior work, we show that the models vary widely in prediction accuracy of the 7TM structures, exhibiting diverse structural differences from the targets. For the prediction of the 5-hydroxytryptamine receptors, the top 7TM models are rather close to the targets, which however are not ranked top by ligand-docking. On the other hand, notable deviations of the TMs are found in in the previously identified top docking models that closely resemble other receptors. We further reveal reasons of success and failure in ligand docking for the models. This current assessment not only complements the previous assessment, but also provides important insights into the current status of GPCR modeling and ligand docking. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Defect-phase-dynamics approach to statistical domain-growth problem of clock models (United States)

    Kawasaki, K.


    The growth of statistical domains in quenched Ising-like p-state clock models with p = 3 or more is investigated theoretically, reformulating the analysis of Ohta et al. (1982) in terms of a phase variable and studying the dynamics of defects introduced into the phase field when the phase variable becomes multivalued. The resulting defect/phase domain-growth equation is applied to the interpretation of Monte Carlo simulations in two dimensions (Kaski and Gunton, 1983; Grest and Srolovitz, 1984), and problems encountered in the analysis of related Potts models are discussed. In the two-dimensional case, the problem is essentially that of a purely dissipative Coulomb gas, with a sq rt t growth law complicated by vertex-pinning effects at small t.

  5. A Model Driven Approach to domain standard specifications examplified by Finance Accounts receivable/ Accounts payable


    Khan, Bahadar


    This thesis was written as a part of a master degree at the University of Oslo. The thesis work was conducted at SINTEF. The work has been carried out in the period November 2002 and April 2005. This thesis might be interesting to anyone interested in Domain Standard Specification Language developed by using the MDA approach to software development. The Model Driven Architecture (MDA) allows to separate the system functionality specification from its implementation on any specific technolo...

  6. Fast simulation approaches for power fluctuation model of wind farm based on frequency domain

    DEFF Research Database (Denmark)

    Lin, Jin; Gao, Wen-zhong; Sun, Yuan-zhang


    This paper discusses one model developed by Riso, DTU, which is capable of simulating the power fluctuation of large wind farms in frequency domain. In the original design, the “frequency-time” transformations are time-consuming and might limit the computation speed for a wind farm of large size....... is more than 300 times if all these approaches are adopted, in any low, medium and high wind speed test scenarios....

  7. Integrated Hydrogeophysical and Hydrogeologic Driven Parameter Upscaling for Dual-Domain Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Flach; Mary Harris; Susan Hubbard; Camelia Knapp; Mike Kowalsky; Maggie Millings; John Shafer; Mike Waddell


    Our research project is motivated by the observations that conventional characterization approaches capture only a fraction of heterogeneity affecting field-scale transport, and that conventional modeling approaches, which use this sparse data, typically do not successfully predict long term plume behavior with sufficient accuracy to guide remedial strategies. Our working hypotheses are that improved prediction of contaminant transport can be achieved using a dual-domain transport approach and field-scale characterization approaches.

  8. Changing Arctic Snow Cover: A Review of Recent Developments and Assessment of Future Needs for Observations, Modelling, and Impacts (United States)

    Bokhorst, Stef; Pedersen, Stine Hojlund; Brucker, Ludovic; Anisimov, Oleg; Bjerke, Jarle W.; Brown, Ross D.; Ehrich, Dorothee; Essery, Richard L. H.; Heilig, Achim; Ingvander, Susanne; hide


    Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region.

  9. Literature review of models for estimating soil erosion and deposition from wind stresses on uranium-mill-tailings covers

    Energy Technology Data Exchange (ETDEWEB)

    Bander, T.J.


    Pacific Northwest Laboratory (PNL) is investigating the use of a rock armoring blanket (riprap) to mitigate wind and water erosion of an earthen radon-suppression cover applied to uranium-mill tailings. The mechanics of wind erosion, as well as of soil deposition, are discussed in this report. Several wind erosion models are reviewed to determine if they can be used to estimate the erosion of soil from a mill-tailings cover. One model, developed by W.S. Chepil, contains the most-important factors that describe variables that influence wind erosion. Particular features of other models are also discussed, as well as the application of Chepil's model to a particular tailings pile. For this particular tailings pile, the estimated erosion was almost one inch per year for an unprotected tailings soil surface. Wide variability in the deposition velocity and lack of adequate deposition models preclude reliable estimates of the rate at which airborne particles are deposited.

  10. Literature review of models for estimating soil erosion and deposition from wind stresses on uranium-mill-tailings covers

    International Nuclear Information System (INIS)

    Bander, T.J.


    Pacific Northwest Laboratory (PNL) is investigating the use of a rock armoring blanket (riprap) to mitigate wind and water erosion of an earthen radon-suppression cover applied to uranium-mill tailings. The mechanics of wind erosion, as well as of soil deposition, are discussed in this report. Several wind erosion models are reviewed to determine if they can be used to estimate the erosion of soil from a mill-tailings cover. One model, developed by W.S. Chepil, contains the most-important factors that describe variables that influence wind erosion. Particular features of other models are also discussed, as well as the application of Chepil's model to a particular tailings pile. For this particular tailings pile, the estimated erosion was almost one inch per year for an unprotected tailings soil surface. Wide variability in the deposition velocity and lack of adequate deposition models preclude reliable estimates of the rate at which airborne particles are deposited

  11. Critical Domain Problem for the Reaction–Telegraph Equation Model of Population Dynamics

    Directory of Open Access Journals (Sweden)

    Weam Alharbi


    Full Text Available A telegraph equation is believed to be an appropriate model of population dynamics as it accounts for the directional persistence of individual animal movement. Being motivated by the problem of habitat fragmentation, which is known to be a major threat to biodiversity that causes species extinction worldwide, we consider the reaction–telegraph equation (i.e., telegraph equation combined with the population growth on a bounded domain with the goal to establish the conditions of species survival. We first show analytically that, in the case of linear growth, the expression for the domain’s critical size coincides with the critical size of the corresponding reaction–diffusion model. We then consider two biologically relevant cases of nonlinear growth, i.e., the logistic growth and the growth with a strong Allee effect. Using extensive numerical simulations, we show that in both cases the critical domain size of the reaction–telegraph equation is larger than the critical domain size of the reaction–diffusion equation. Finally, we discuss possible modifications of the model in order to enhance the positivity of its solutions.

  12. Comparison of the landslide susceptibility models in Taipei Water Source Domain, Taiwan (United States)

    WU, C. Y.; Yeh, Y. C.; Chou, T. H.


    Taipei Water Source Domain, locating at the southeast of Taipei Metropolis, is the main source of water resource in this region. Recently, the downstream turbidity often soared significantly during the typhoon period because of the upstream landslides. The landslide susceptibilities should be analysed to assess the influence zones caused by different rainfall events, and to ensure the abilities of this domain to serve enough and quality water resource. Generally, the landslide susceptibility models can be established based on either a long-term landslide inventory or a specified landslide event. Sometimes, there is no long-term landslide inventory in some areas. Thus, the event-based landslide susceptibility models are established widely. However, the inventory-based and event-based landslide susceptibility models may result in dissimilar susceptibility maps in the same area. So the purposes of this study were to compare the landslide susceptibility maps derived from the inventory-based and event-based models, and to interpret how to select a representative event to be included in the susceptibility model. The landslide inventory from Typhoon Tim in July, 1994 and Typhoon Soudelor in August, 2015 was collected, and used to establish the inventory-based landslide susceptibility model. The landslides caused by Typhoon Nari and rainfall data were used to establish the event-based model. The results indicated the high susceptibility slope-units were located at middle upstream Nan-Shih Stream basin.

  13. Spatially explicit modeling of 1992-2100 land cover and forest stand age for the conterminous United States (United States)

    Sohl, Terry L.; Sayler, Kristi L.; Bouchard, Michelle; Reker, Ryan R.; Friesz, Aaron M.; Bennett, Stacie L.; Sleeter, Benjamin M.; Sleeter, Rachel R.; Wilson, Tamara; Soulard, Christopher E.; Knuppe, Michelle; Van Hofwegen, Travis


    Information on future land-use and land-cover (LULC) change is needed to analyze the impact of LULC change on ecological processes. The U.S. Geological Survey has produced spatially explicit, thematically detailed LULC projections for the conterminous United States. Four qualitative and quantitative scenarios of LULC change were developed, with characteristics consistent with the Intergovernmental Panel on Climate Change (IPCC) Special Report on 5 Emission Scenarios (SRES). The four quantified scenarios (A1B, A2, B1, and B2) served as input to the Forecasting Scenarios of Land-use Change (FORE-SCE) model. Four spatially explicit datasets consistent with scenario storylines were produced for the conterminous United States, with annual LULC maps from 1992 through 2100. The future projections are characterized by a loss of natural land covers in most scenarios, with corresponding expansion of 10 anthropogenic land uses. Along with the loss of natural land covers, remaining natural land covers experience increased fragmentation under most scenarios, with only the B2 scenario remaining relatively stable in both proportion of remaining natural land covers and basic fragmentation measures. Forest stand age was also modeled. By 2100, scenarios and ecoregions with heavy forest cutting have relatively lower mean stand ages compared to those with less 15 forest cutting. Stand ages differ substantially between unprotected and protected forest lands, as well as between different forest classes. The modeled data were compared to the National Land Cover Database (NLCD) and other data sources to assess model characteristics. The consistent, spatially explicit, and thematically detailed LULC projections and the associated forest stand age data layers have been used to analyze LULC impacts on carbon and greenhouse gas fluxes, 20 biodiversity, climate and weather variability, hydrologic change, and other ecological processes.

  14. Mapping CORINE Land Cover from Sentinel-1A SAR and SRTM Digital Elevation Model Data using Random Forests

    Directory of Open Access Journals (Sweden)

    Heiko Balzter


    Full Text Available The European CORINE land cover mapping scheme is a standardized classification system with 44 land cover and land use classes. It is used by the European Environment Agency to report large-scale land cover change with a minimum mapping unit of 5 ha every six years and operationally mapped by its member states. The most commonly applied method to map CORINE land cover change is by visual interpretation of optical/near-infrared satellite imagery. The Sentinel-1A satellite carries a C-band Synthetic Aperture Radar (SAR and was launched in 2014 by the European Space Agency as the first operational Copernicus mission. This study is the first investigation of Sentinel-1A for CORINE land cover mapping. Two of the first Sentinel-1A images acquired during its ramp-up phase in May and December 2014 over Thuringia in Germany are analysed. 27 hybrid level 2/3 CORINE classes are defined. 17 of these were present at the study site and classified based on a stratified random sample of training pixels from the polygon-eroded CORINE 2006 map. Sentinel-1A logarithmic radar backscatter at HH and HV polarisation (May acquisition, VV and VH polarisation (December acquisition, and the HH image texture are used as input bands to the classification. In addition, a Digital Terrain Model (DTM, a Canopy Height Model (CHM and slope and aspect maps from the Shuttle Radar Topography Mission (SRTM are used as input bands to account for geomorphological features of the landscape. In future, elevation data will be delivered for areas with sufficiently high coherence from the Sentinel-1A Interferometric Wide-Swath Mode itself. When augmented by elevation data from radar interferometry, Sentinel-1A is able to discriminate several CORINE land cover classes, making it useful for monitoring of cloud-covered regions. A bistatic Sentinel-1 Convoy mission would enable single-pass interferometric acquisitions without temporal decorrelation.

  15. Biomedical implications from a morphoelastic continuum model for the simulation of contracture formation in skin grafts that cover excised burns

    NARCIS (Netherlands)

    Koppenol, D.C.; Vermolen, F.J.


    A continuum hypothesis-based model is developed for the simulation of the (long term) contraction of skin grafts that cover excised burns in order to obtain suggestions regarding the ideal length of splinting therapy and when to start with this therapy such that the therapy is effective

  16. Research priorities in land use and land-cover change for the Earth System and Integrated Assessment Modelling

    NARCIS (Netherlands)

    Hibbard, K.; Janetos, A.; Vuuren, van D.; Pongratz, J.; Rose, S.; Betts, R.; Herold, M.; Feddema, J.


    This special issue has highlighted recent and innovative methods and results that integrate observations and modelling analyses of regional to global aspect of biophysical and biogeochemical interactions of land-cover change with the climate system. Both the Earth System and the Integrated

  17. Computational models of music perception and cognition II: Domain-specific music processing (United States)

    Purwins, Hendrik; Grachten, Maarten; Herrera, Perfecto; Hazan, Amaury; Marxer, Ricard; Serra, Xavier


    In Part I [Purwins H, Herrera P, Grachten M, Hazan A, Marxer R, Serra X. Computational models of music perception and cognition I: The perceptual and cognitive processing chain. Physics of Life Reviews 2008, in press, doi:10.1016/j.plrev.2008.03.004], we addressed the study of cognitive processes that underlie auditory perception of music, and their neural correlates. The aim of the present paper is to summarize empirical findings from music cognition research that are relevant to three prominent music theoretic domains: rhythm, melody, and tonality. Attention is paid to how cognitive processes like category formation, stimulus grouping, and expectation can account for the music theoretic key concepts in these domains, such as beat, meter, voice, consonance. We give an overview of computational models that have been proposed in the literature for a variety of music processing tasks related to rhythm, melody, and tonality. Although the present state-of-the-art in computational modeling of music cognition definitely provides valuable resources for testing specific hypotheses and theories, we observe the need for models that integrate the various aspects of music perception and cognition into a single framework. Such models should be able to account for aspects that until now have only rarely been addressed in computational models of music cognition, like the active nature of perception and the development of cognitive capacities from infancy to adulthood.

  18. A stochastic forest fire model for future land cover scenarios assessment (United States)

    M. D' Andrea; P. Fiorucci; T.P. Holmes


    Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and...

  19. Simplified Analytical Model of a Covered Burr-Arch-Truss Timber Bridge (United States)

    F. Fanous; D. Rammer; T. Wipf


    Due to the importance of historical timber covered bridges throughout history, their preservation is necessary. However, conducting an accurate structural evaluation of these types of bridges has always caused difficulties to bridge engineers. This paper summarizes an investigation that was sponsored by the Federal Highway Administration and the USDA Forest Products...

  20. Impact of time-domain IP pulse length on measured data and inverted models

    DEFF Research Database (Denmark)

    Olsson, P. I.; Fiandaca, G.; Dahlin, T.


    The duration of time domain (TD) induced polarization (IP) current injections has significant impact on the acquired IP data as well as on the inversion models, if the standard evaluation procedure is followed. However, it is still possible to retrieve similar inversion models if the waveform...... of the injected current and the IP response waveform are included in the inversion. The on-time also generally affects the signal-tonoise ratio (SNR) where an increased on-time gives higher SNR for the IP data....

  1. Land Cover (United States)

    Kansas Data Access and Support Center — The Land Cover database depicts 10 general land cover classes for the State of Kansas. The database was compiled from a digital classification of Landsat Thematic...

  2. The convergent structure of DSM-5 personality trait facets and five-factor model trait domains. (United States)

    Thomas, Katherine M; Yalch, Matthew M; Krueger, Robert F; Wright, Aidan G C; Markon, Kristian E; Hopwood, Christopher J


    The DSM-5 Personality and Personality Disorder Work Group have proposed diagnosing personality disorder based in part on 25 pathological traits. Initial research suggests that five factors explain the covariance among these traits and that these factors reflect the domains of the well-validated Five-Factor Model (FFM) of normative personality. This finding is important because it signifies the potential to apply normative trait research to personality disorder classification in the DSM-5. In this study, trait scale scores on the Personality Inventory for DSM-5 (PID-5) and domain scores from the FFM Rating Form (FFMRF) were subjected to a conjoint exploratory factor analysis (EFA) to test the higher-order convergence of the DSM-5 pathological trait model and the FFM in a nonclinical sample (N = 808). Results indicate that the five higher-order factors of the conjoint EFA reflect the domains of the FFM. The authors briefly discuss implications of this correspondence between the normative FFM and the pathological PID-5.

  3. Dynamic magnetization models for soft ferromagnetic materials with coarse and fine domain structures

    Energy Technology Data Exchange (ETDEWEB)

    Zirka, S.E., E-mail: [Department of Physics and Technology, Dnepropetrovsk National University, Gagarin 72, 49050 Dnepropetrovsk (Ukraine); Moroz, Y.I. [Department of Physics and Technology, Dnepropetrovsk National University, Gagarin 72, 49050 Dnepropetrovsk (Ukraine); Steentjes, S.; Hameyer, K. [Institute of Electrical Machines, RWTH Aachen University, Schinkelstr. 4, 52056 Aachen (Germany); Chwastek, K. [Faculty of Electrical Engineering, Czestochowa University of Technology, al. AK 17, 42-201 Czestochowa (Poland); Zurek, S. [Megger Instruments Ltd., Archcliffe Road, Dover, Kent, CT17 9EN (United Kingdom); Harrison, R.G. [Department of Electronics, Carleton University, Ottawa, Canada K1S 5B6 (Canada)


    We consider dynamic models, both numerical and analytical, that reproduce the magnetization field H(B) and the energy loss in ferromagnetic sheet materials with different domain structures. Conventional non-oriented (NO) and grain-oriented (GO) electrical steels are chosen as typical representatives of fine-domain and coarse-domain materials. The commonly-accepted loss separation procedures in these materials are critically analyzed. The use of a well-known simplified (“classical”) expression for the eddy-current loss is identified as the primary source of mistaken evaluations of excess loss in NO steel, in which the loss components can only be evaluated using the Maxwell (penetration) equation. The situation is quite different in GO steel, in which the loss separation is uncertain, but the total dynamic loss is several times higher than that explained by any version (numerical or analytical) of the classical approach. To illustrate the uncertainty of the loss separation in GO steel, we show that the magnetization field, and thus the total loss, in this material can be represented with equal accuracy using either the existing three-component approach or our proposed two-component technique, which makes no distinction between classical eddy-current and excess fields and losses. - Highlights: • Critical analysis of a ferromagnetic-material loss-separation principle. • This is to warn materials-science engineers about the inaccuracies resulting from this principle. • A transient model having a single dynamic component is proposed.

  4. A model for the evaluation of domain based classification of GPCR. (United States)

    Kumari, Tannu; Pant, Bhaskar; Pardasani, Kamalraj Raj


    G-Protein Coupled Receptors (GPCR) are the largest family of membrane bound receptor and plays a vital role in various biological processes with their amenability to drug intervention. They are the spotlight for the pharmaceutical industry. Experimental methods are both time consuming and expensive so there is need to develop a computational approach for classification to expedite the drug discovery process. In the present study domain based classification model has been developed by employing and evaluating various machine learning approaches like Bagging, J48, Bayes net, and Naive Bayes. Various softwares are available for predicting domains. The result and accuracy of output for the same input varies for these software's. Thus, there is dilemma in choosing any one of it. To address this problem, a simulation model has been developed using well known five softwares for domain prediction to explore the best predicted result with maximum accuracy. The classifier is developed for classification up to 3 levels for class A. An accuracy of 98.59% by Naïve Bayes for level I, 92.07% by J48 for level II and 82.14% by Bagging for level III has been achieved.

  5. Modeling induced polarization effects in helicopter time domain electromagnetic data: Synthetic case studies

    DEFF Research Database (Denmark)

    Viezzoli, Andrea; Kaminskiy, Vladislav; Fiandaca, Gianluca


    We have developed a synthetic multiparametric modeling and inversion exercise undertaken to study the robustness of inverting airborne time-domain electromagnetic (TDEM) data to extract Cole-Cole parameters. The following issues were addressed: nonuniqueness, ill posedness, dependency on manual...... constrained multiparametric inversion was evaluated, including recovery of chargeability distributions from shallow and deep targets based on analysis of induced polarization (IP) effects, simulated in airborne TDEM data. Different scenarios were studied, including chargeable targets associated...... by a shallower chargeable target, became possible only when full Cole-Cole modeling was used in the inversion. Lateral constraints improved the recoverability of model parameters. Finally, modeling IP effects increased the accuracy of recovered electrical resistivity models....

  6. Estimating Parameter Uncertainty in Binding-Energy Models by the Frequency-Domain Bootstrap (United States)

    Bertsch, G. F.; Bingham, Derek


    We propose using the frequency-domain bootstrap (FDB) to estimate errors of modeling parameters when the modeling error is itself a major source of uncertainty. Unlike the usual bootstrap or the simple χ2 analysis, the FDB can take into account correlations between errors. It is also very fast compared to the Gaussian process Bayesian estimate as often implemented for computer model calibration. The method is illustrated with a simple example, the liquid drop model of nuclear binding energies. We find that the FDB gives a more conservative estimate of the uncertainty in liquid drop parameters than the χ2 method, and is in fair accord with more empirical estimates. For the nuclear physics application, there are no apparent obstacles to apply the method to the more accurate and detailed models based on density-functional theory.

  7. How well do we characterize the biophysical effects of vegetation cover change? Benchmarking land surface models against satellite observations. (United States)

    Duveiller, Gregory; Forzieri, Giovanni; Robertson, Eddy; Georgievski, Goran; Li, Wei; Lawrence, Peter; Ciais, Philippe; Pongratz, Julia; Sitch, Stephen; Wiltshire, Andy; Arneth, Almut; Cescatti, Alessandro


    Changes in vegetation cover can affect the climate by altering the carbon, water and energy cycles. The main tools to characterize such land-climate interactions for both the past and future are land surface models (LSMs) that can be embedded in larger Earth System models (ESMs). While such models have long been used to characterize the biogeochemical effects of vegetation cover change, their capacity to model biophysical effects accurately across the globe remains unclear due to the complexity of the phenomena. The result of competing biophysical processes on the surface energy balance varies spatially and seasonally, and can lead to warming or cooling depending on the specific vegetation change and on the background climate (e.g. presence of snow or soil moisture). Here we present a global scale benchmarking exercise of four of the most commonly used LSMs (JULES, ORCHIDEE, JSBACH and CLM) against a dedicated dataset of satellite observations. To facilitate the understanding of the causes that lead to discrepancies between simulated and observed data, we focus on pure transitions amongst major plant functional types (PFTs): from different tree types (evergreen broadleaf trees, deciduous broadleaf trees and needleleaf trees) to either grasslands or crops. From the modelling perspective, this entails generating a separate simulation for each PFT in which all 1° by 1° grid cells are uniformly covered with that PFT, and then analysing the differences amongst them in terms of resulting biophysical variables (e.g net radiation, latent and sensible heat). From the satellite perspective, the effect of pure transitions is obtained by unmixing the signal of different 0.05° spatial resolution MODIS products (albedo, latent heat, upwelling longwave radiation) over a local moving window using PFT maps derived from the ESA Climate Change Initiative land cover map. After aggregating to a common spatial support, the observation and model-driven datasets are confronted and

  8. 3D time-domain airborne EM forward modeling with topography (United States)

    Yin, Changchun; Qi, Yanfu; Liu, Yunhe; Cai, Jing


    The time-domain finite-difference method has been widely used in simulation of the electromagnetic field diffusion. However, this method is severely restricted by the mesh size and time step. To overcome the defect, we adopted edge finite-element method for unstructured grid with Backward Euler method to conduct 3D airborne electromagnetic forward modeling directly in time-domain. The tetrahedral meshes provide the flexibility required for representing the rugged topography and complex-shape anomalous bodies. We simulated the practical shape, size and attitude of transmitting source by directly setting the loop into the well-generated grids. The characteristic properties of vector basic functions guarantee automatic satisfaction of divergence-free property of electric fields. The Galerkin's method is used to discretize the governing equations and a direct solver is adopted to solve the large sparse linear system. We adopted an algorithm with constant step in each time segment to speed up the forward modeling. Further we introduced the local mesh strategy to reduce the calculations, in which an optimized grid is designed for each sounding station. We check the accuracy of our 3D modeling results against the solution for a homogenous half-space and those for a buried vertical plate model using integral equation. The numerical experiments for a hill, a valley or undulating topography model with buried anomalous bodies were further studied that show that the topography has a serious effect on airborne EM data.

  9. Expansion methods for finding nonlinear stability domains of nuclear reactor models

    International Nuclear Information System (INIS)

    Yang, C.Y.; Cho, N.Z.


    Two constructive methods for estimating asymptotic stability domains of nonlinear reactor models are described in this paper: Method A based on expansion of a Lyapunov function and Method B based on expansion of any positive definite function. The methods are established on Lyapunov's stability definitions. Method A provides a sequence of stability regions that eventually approaches the exact stability domain, but requires many expansions to obtain the entire stability region because the starting Lyapunov function usually corresponds to a small stability region and because most reactor systems are stiff. Method B requires only a positive definite function and thus it is easy to come up with a starting region. From a large starting region, the entire stability region is estimated effectively after sufficient iterations. It is particularly useful for reactor systems that are stiff. These methods are applied to several nonlinear reactor models known in the literature: one-temperature feedback model, two-temperature feedback model, and xenon dynamics model, and the results are compared. (author)

  10. Modelling the effects of land cover and climate change on soil water partitioning in a boreal headwater catchment (United States)

    Wang, Hailong; Tetzlaff, Doerthe; Soulsby, Chris


    Climate and land cover are two major factors affecting the water fluxes and balance across spatiotemporal scales. These two factors and their impacts on hydrology are often interlinked. The quantification and differentiation of such impacts is important for developing sustainable land and water management strategies. Here, we calibrated the well-known Hydrus-1D model in a data-rich boreal headwater catchment in Scotland to assess the role of two dominant vegetation types (shrubs vs. trees) in regulating the soil water partitioning and balance. We also applied previously established climate projections for the area and replaced shrubs with trees to imitate current land use change proposals in the region, so as to quantify the potential impacts of climate and land cover changes on soil hydrology. Under tree cover, evapotranspiration and deep percolation to recharge groundwater was about 44% and 57% of annual precipitation, whilst they were about 10% lower and 9% higher respectively under shrub cover in this humid, low energy environment. Meanwhile, tree canopies intercepted 39% of annual precipitation in comparison to 23% by shrubs. Soils with shrub cover stored more water than tree cover. Land cover change was shown to have stronger impacts than projected climate change. With a complete replacement of shrubs with trees under future climate projections at this site, evapotranspiration is expected to increase by ∼39% while percolation to decrease by 21% relative to the current level, more pronounced than the modest changes in the two components (climate change only. The impacts would be particularly marked in warm seasons, which may result in water stress experienced by the vegetation. The findings provide an important evidence base for adaptive management strategies of future changes in low-energy humid environments, where vegetation growth is usually restricted by radiative energy and not water availability while few studies that quantify soil water partitioning

  11. Homology modeling of NR2B modulatory domain of NMDA receptor and analysis of ifenprodil binding. (United States)

    Marinelli, Luciana; Cosconati, Sandro; Steinbrecher, Thomas; Limongelli, Vittorio; Bertamino, Alessia; Novellino, Ettore; Case, David A


    NMDA receptors are glutamate-gated ion channels (iGluRs) that are involved in several important physiological functions such as neuronal development, synaptic plasticity, learning, and memory. Among iGluRs, NMDA receptors have been perhaps the most actively investigated for their role in chronic neurodegeneration such as Alzheimer's, Parkinson's, and Huntington's diseases. Recent studies have shown that the NTD of subunit NR2B modulates ion channel gating through the binding of allosteric modulators such as the prototypical compound ifenprodil. In the present paper, the construction of a three-dimensional model for the NR2B modulatory domain is described and docking calculations allow, for the first time, definition of the ifenprodil binding pose at an atomic level and fully explain all the available structure-activity relationships. Moreover, in an attempt to add further insight into the ifenprodil mechanism of action, as it is not completely clear if it binds and stabilizes an open or a closed conformation of the NR2B modulatory domain, a matter, which is fundamental for the rational design of NMDA antagonists, MD simulations followed by an MM-PBSA analysis were performed. These calculations reveal that the closed conformation of the R1-R2 domain, rather than the open, constitutes the high affinity binding site for ifenprodil and that a profound stabilization of the closed conformation upon ifenprodil binding occurs. Thus, for a rational design and/or for virtual screening experiments, the closed conformation of the R1-R2 domain should be taken into account and our 3D model can provide valuable hints for the design of NR2B-selective antagonists.

  12. Effects of Land Cover Changes to the Quantity of Water Supply and Hydrologic Cycle using Water Balance Models

    Directory of Open Access Journals (Sweden)

    Caja CC


    Full Text Available The hydrologic cycle is a recurring consequence of different forms of movement of water and changes of its physical state on a given area of the earth. The land cover of a certain area is a significant factor affecting the watershed hydrology. This also affects the quantity of water supply within the watershed. This study assessed the impacts of the changing land cover of the Ipo watershed, a part of the Angat-Ipo-La Mesa water system which is the main source of Metro Manila’s water supply. The environmental impacts were assessed using the interaction of vegetation cover changes and the output flow rates in Ipo watershed. Using hydrologic modelling system, the hydrological balance using rainfall, vegetation and terrain data of the watershed was simulated. Over the years, there has been a decreasing land cover within the watershed caused mostly by deforestation and other human activities. This significant change in the land cover resulted to extreme increase in water discharge at all streams and rivers in the watershed and the water balance of the area were affected as saturation and shape of the land terrain changes.

  13. Spreading Speed, Traveling Waves, and Minimal Domain Size in Impulsive Reaction–Diffusion Models

    KAUST Repository

    Lewis, Mark A.


    How growth, mortality, and dispersal in a species affect the species\\' spread and persistence constitutes a central problem in spatial ecology. We propose impulsive reaction-diffusion equation models for species with distinct reproductive and dispersal stages. These models can describe a seasonal birth pulse plus nonlinear mortality and dispersal throughout the year. Alternatively, they can describe seasonal harvesting, plus nonlinear birth and mortality as well as dispersal throughout the year. The population dynamics in the seasonal pulse is described by a discrete map that gives the density of the population at the end of a pulse as a possibly nonmonotone function of the density of the population at the beginning of the pulse. The dynamics in the dispersal stage is governed by a nonlinear reaction-diffusion equation in a bounded or unbounded domain. We develop a spatially explicit theoretical framework that links species vital rates (mortality or fecundity) and dispersal characteristics with species\\' spreading speeds, traveling wave speeds, as well as minimal domain size for species persistence. We provide an explicit formula for the spreading speed in terms of model parameters, and show that the spreading speed can be characterized as the slowest speed of a class of traveling wave solutions. We also give an explicit formula for the minimal domain size using model parameters. Our results show how the diffusion coefficient, and the combination of discrete- and continuous-time growth and mortality determine the spread and persistence dynamics of the population in a wide variety of ecological scenarios. Numerical simulations are presented to demonstrate the theoretical results. © 2012 Society for Mathematical Biology.

  14. Land use and land cover change based on historical space-time model (United States)

    Sun, Qiong; Zhang, Chi; Liu, Min; Zhang, Yongjing


    Land use and cover change is a leading edge topic in the current research field of global environmental changes and case study of typical areas is an important approach understanding global environmental changes. Taking the Qiantang River (Zhejiang, China) as an example, this study explores automatic classification of land use using remote sensing technology and analyzes historical space-time change by remote sensing monitoring. This study combines spectral angle mapping (SAM) with multi-source information and creates a convenient and efficient high-precision land use computer automatic classification method which meets the application requirements and is suitable for complex landform of the studied area. This work analyzes the histological space-time characteristics of land use and cover change in the Qiantang River basin in 2001, 2007 and 2014, in order to (i) verify the feasibility of studying land use change with remote sensing technology, (ii) accurately understand the change of land use and cover as well as historical space-time evolution trend, (iii) provide a realistic basis for the sustainable development of the Qiantang River basin and (iv) provide a strong information support and new research method for optimizing the Qiantang River land use structure and achieving optimal allocation of land resources and scientific management.

  15. Characterization of non-linear household loads for frequency domain modeling

    Directory of Open Access Journals (Sweden)

    Miguel Fernando Romero


    Full Text Available Component-based harmonic studies in public Low Voltage grids require realistic models of individual loads as well as their typical penetration ratios. As fundamental basis for the development of comprehensive models for residential users, this paper identifies the most commonly used household loads in Colombia. The loads are classified according to their Power Factor Correction (PFC circuit topology in no-PFC, passive-PFC and active-PFC devices, and a comprehensive set of loads is selected. Their behavior in terms of harmonic emission is characterized by intensive lab measurements with systematically varied supply voltage distortion. Based on several indices, the suitability of different frequency-domain modeling approaches (e.g. constant current source, decoupled and coupled Norton models is assessed.

  16. Inverse calculation of biochemical oxygen demand models based on time domain for the tidal Foshan River. (United States)

    Er, Li; Xiangying, Zeng


    To simulate the variation of biochemical oxygen demand (BOD) in the tidal Foshan River, inverse calculations based on time domain are applied to the longitudinal dispersion coefficient (E(x)) and BOD decay rate (K(x)) in the BOD model for the tidal Foshan River. The derivatives of the inverse calculation have been respectively established on the basis of different flow directions in the tidal river. The results of this paper indicate that the calculated values of BOD based on the inverse calculation developed for the tidal Foshan River match the measured ones well. According to the calibration and verification of the inversely calculated BOD models, K(x) is more sensitive to the models than E(x) and different data sets of E(x) and K(x) hardly affect the precision of the models.

  17. Finite element time domain modeling of controlled-Source electromagnetic data with a hybrid boundary condition

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin


    method which is unconditionally stable. We solve the diffusion equation for the electric field with a total field formulation. The finite element system of equation is solved using the direct method. The solutions of electric field, at different time, can be obtained using the effective time stepping...... method with trivial computation cost once the matrix is factorized. We try to keep the same time step size for a fixed number of steps using an adaptive time step doubling (ATSD) method. The finite element modeling domain is also truncated using a semi-adaptive method. We proposed a new boundary...... condition based on approximating the total field on the modeling boundary using the primary field corresponding to a layered background model. We validate our algorithm using several synthetic model studies....

  18. Care episode retrieval: distributional semantic models for information retrieval in the clinical domain. (United States)

    Moen, Hans; Ginter, Filip; Marsi, Erwin; Peltonen, Laura-Maria; Salakoski, Tapio; Salanterä, Sanna


    Patients' health related information is stored in electronic health records (EHRs) by health service providers. These records include sequential documentation of care episodes in the form of clinical notes. EHRs are used throughout the health care sector by professionals, administrators and patients, primarily for clinical purposes, but also for secondary purposes such as decision support and research. The vast amounts of information in EHR systems complicate information management and increase the risk of information overload. Therefore, clinicians and researchers need new tools to manage the information stored in the EHRs. A common use case is, given a--possibly unfinished--care episode, to retrieve the most similar care episodes among the records. This paper presents several methods for information retrieval, focusing on care episode retrieval, based on textual similarity, where similarity is measured through domain-specific modelling of the distributional semantics of words. Models include variants of random indexing and the semantic neural network model word2vec. Two novel methods are introduced that utilize the ICD-10 codes attached to care episodes to better induce domain-specificity in the semantic model. We report on experimental evaluation of care episode retrieval that circumvents the lack of human judgements regarding episode relevance. Results suggest that several of the methods proposed outperform a state-of-the art search engine (Lucene) on the retrieval task.

  19. The Success of Linear Bootstrapping Models: Decision Domain-, Expertise-, and Criterion-Specific Meta-Analysis (United States)

    Kaufmann, Esther; Wittmann, Werner W.


    The success of bootstrapping or replacing a human judge with a model (e.g., an equation) has been demonstrated in Paul Meehl’s (1954) seminal work and bolstered by the results of several meta-analyses. To date, however, analyses considering different types of meta-analyses as well as the potential dependence of bootstrapping success on the decision domain, the level of expertise of the human judge, and the criterion for what constitutes an accurate decision have been missing from the literature. In this study, we addressed these research gaps by conducting a meta-analysis of lens model studies. We compared the results of a traditional (bare-bones) meta-analysis with findings of a meta-analysis of the success of bootstrap models corrected for various methodological artifacts. In line with previous studies, we found that bootstrapping was more successful than human judgment. Furthermore, bootstrapping was more successful in studies with an objective decision criterion than in studies with subjective or test score criteria. We did not find clear evidence that the success of bootstrapping depended on the decision domain (e.g., education or medicine) or on the judge’s level of expertise (novice or expert). Correction of methodological artifacts increased the estimated success of bootstrapping, suggesting that previous analyses without artifact correction (i.e., traditional meta-analyses) may have underestimated the value of bootstrapping models. PMID:27327085

  20. Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions

    Directory of Open Access Journals (Sweden)

    Jenkins Thomas G.


    Full Text Available Recent advances in finite-difference time-domain (FDTD modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers are much smaller than the wavelengths of fast (tens of cm and slow (millimeter waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core FDTD/PIC simulations of Alcator C-Mod antenna operation.

  1. Three-Dimensional Transient Electromagnetic Modeling Based on Fictitious Wave Domain Methods (United States)

    Ji, Yanju; Hu, Yanpu; Imamura, Naoto


    Finite-difference time domain (FDTD) methods, which have been widely employed in three-dimensional transient electromagnetic (TEM) modeling, require very small time steps to simulate the electromagnetic fields and this will be time consuming. We present an efficient numerical method for three-dimensional TEM forward modeling. Its key features are based on a correspondence principle between the diffusive and fictitious wave fields. The diffusive Maxwell's equations are transformed and solved in a so-called fictitious wave domain. This scheme allows larger time steps than conventional FDTD methods, allows including air layers, and allows simulating topography. The need for initial field calculations is avoided by including an electric current source in the governing equations. This also avoids a traditional assumption of a flat earth surface in TEM modeling. We test the accuracy of the electromagnetic fields' responses using our method with the spectral differential difference (SLDM) solutions. The results show good agreement even under the existence of air layers and topography in the model.

  2. Modelling Biogeochemistry Across Domains with The Modular System for Shelves and Coasts (MOSSCO) (United States)

    Burchard, H.; Lemmen, C.; Hofmeister, R.; Knut, K.; Nasermoaddeli, M. H.; Kerimoglu, O.; Koesters, F.; Wirtz, K.


    Coastal biogeochemical processes extend from the atmosphere through the water column and the epibenthos into the ocean floor, laterally they are determined by freshwater inflows and open water exchange, and in situ they are mediated by physical, chemical and biological interactions. We use the new Modular System for Shelves and Coasts (MOSSCO, to obtain an integrated view of coastal biogeochemistry. MOSSCO is a coupling framework that builds on existing coupling technologies like the Earth System Modeling Framework (ESMF, for domain-coupling) and the Framework for Aquatic Biogeochemistry (FABM, for process coupling). MOSSCO facilitates the communication about and the integration of existing and of new process models into a threedimensional regional coastal modelling context. In the MOSSCO concept, the integrating framework imposes very few restrictions on contributed data or models; in fact, there is no distinction made between data and models. The few requirements are: (1) principle coupleability, i.e. access to I/O and timing information in submodels, which has recently been referred to as the Basic Model Interface (BMI) (2) open source/open data access and licencing and (3) communication of metadata, such as spatiotemporal information, naming conventions, and physical units. These requirements suffice to integrate different models and data sets into the MOSSCO infrastructure and subsequently built a modular integrated modeling tool that can span a diversity of processes and domains. Here, we demonstrate a MOSSCO application for the southern North Sea, where atmospheric deposition, biochemical processing in the water column and the ocean floor, lateral nutrient replenishment, and wave- and current-dependent remobilization from sediments are accounted for by modular components. A multi-annual simulation yields realistic succession of the spatial gradients of dissolved nutrients, of chlorophyll variability and gross primary production rates

  3. Effect of levels of inquiry model of science teaching on scientific literacy domain attitudes (United States)

    Achmad, Maulana; Suhandi, Andi


    The aim of this research was to obtain an overview of the increase scientific literacy attitudes domain in high school students as the effects of the Levels of Inquiry (LOI) model of science teaching. This research using a quasi-experimental methods and randomizedpretest-posttest control group design. The subject of this research was students of grade X in a senior high school in Purwakarta and it consists of two classes who were divided into experimental class (30 students) and control class (30 students). While experimental class was taught LOIand control class was taught Interactive Lecture Demonstration (ILD). Data were collected using an attitude scale scientific literacy test which is based on the Likert scale. Data were analyzed using normality test, homogeneity test, and t-test to the value of N-gain attitude of scientific literacy scale test. The result of percentage average N-gain experimental class and control are 49 and 31 that classified into medium improvement category. Based on the results of hypothesis testing on the N-gain value obtained by the Sig.(One-tailed) 0.000 literacy domain attitude of students who got learning by LOI is higher than students who got learning by ILD. It can be concluded that the effect of LOI is better to improve scientific literacy domain attitudes significantly.

  4. Accounting rigid support at the border in a mixed model the finite element method in problems of ice cover destruction

    Directory of Open Access Journals (Sweden)

    V. V. Knyazkov


    Full Text Available To evaluate the force to damage the ice covers is necessary for estimation of icebreaking capability of vessels, as well as of hull strength of icebreakers, and navigation of ships in ice conditions. On the other hand, the use of ice cover support to arrange construction works from the ice is also of practical interest.By the present moment a great deal of investigations of ice cover deformation have been carried out to result, usually, in approximate calculations formula which was obtained after making a variety of assumptions. Nevertheless, we believe that it is possible to make further improvement in calculations. Application numerical methods, and, for example, FEM, makes possible to avoid numerous drawbacks of analytical methods dealing with both complex boundaries and load application areas and other problem peculiarities.The article considers an application of mixed models of FEM for investigating ice cover deformation. A simple flexible triangle element of mixed type was taken to solve this problem. Vector of generalized coordinates of the element contains apices flexures and normal bending moments in the middle of its sides. Compared to other elements mixed models easily satisfy compatibility requirements on the boundary of adjacent elements and do not require numerical displacement differentiation to define bending moments, because bending moments are included in vector of element generalized coordinates.The method of account of rigid support plate is proposed. The resulting ratio, taking into account the "stiffening", reduces the number of resolving systems of equations by the number of elements on the plate contour.To evaluate further the results the numerical realization of ice cover stress-strained problem it becomes necessary and correct to check whether calculation results correspond to accurate solution. Using an example of circular plate the convergence of numerical solutions to analytical solutions is showed.The article

  5. Modeling thermal structure, ice cover regime and sensitivity to climate change of two regulated lakes - a Norwegian case study (United States)

    Gebre, Solomon; Boissy, Thibault; Alfredsen, Knut


    A great number of river and lakes in Norway and the Nordic region at large are regulated for water management such as hydropower production. Such regulations have the potential to alter the thermal and hydrological regimes in the lakes and rivers downstream impacting on river environment and ecology. Anticipated changes as a result of climate change in meteorological forcing data such as air temperature and precipitation cause changes in the water balance, water temperature and ice cover duration in the reservoirs. This may necessitate changes in operational rules as part of an adaptation strategy for the future. In this study, a one dimensional (1D) lake thermodynamic and ice cover model (MyLake) has been modified to take into account the effect of dynamic outflows in reservoirs and applied to two small but relatively deep regulated lakes (reservoirs) in Norway (Follsjøen and Tesse). The objective was to assess climate change impacts on the seasonal thermal characteristics, the withdrawal temperatures, and the reservoir ice cover dynamics with current operational regimes. The model solves the vertical energy balance on a daily time-step driven by meteorological and hydrological forcings: 2m air temperature, precipitation, 2m relative humidity, 10m wind speed, cloud cover, air pressure, solar insolation, inflow volume, inflow temperature and reservoir outflows. Model calibration with multi-seasonal data of temperature profiles showed that the model performed well in simulating the vertical water temperature profiles for the two study reservoirs. The withdrawal temperatures were also simulated reasonably well. The comparison between observed and simulated lake ice phenology (which were available only for one of the reservoirs - Tesse) was also reasonable taking into account the uncertainty in the observational data. After model testing and calibration, the model was then used to simulate expected changes in the future (2080s) due to climate change by considering

  6. Changes in the Welfare of an Injured Working Farm Dog Assessed Using the Five Domains Model

    Directory of Open Access Journals (Sweden)

    Katherine E. Littlewood


    Full Text Available The present structured, systematic and comprehensive welfare evaluation of an injured working farm dog using the Five Domains Model is of interest in its own right. It is also an example for others wanting to apply the Model to welfare evaluations in different species and contexts. Six stages of a fictitious scenario involving the dog are considered: (1 its on-farm circumstances before one hind leg is injured; (2 its entanglement in barbed wire, cutting it free and transporting it to a veterinary clinic; (3 the initial veterinary examination and overnight stay; (4 amputation of the limb and immediate post-operative recovery; (5 its first four weeks after rehoming to a lifestyle block; and (6 its subsequent life as an amputee and pet. Not all features of the scenario represent average-to-good practice; indeed, some have been selected to indicate poor practice. It is shown how the Model can draw attention to areas of animal welfare concern and, importantly, to how welfare enhancement may be impeded or facilitated. Also illustrated is how the welfare implications of a sequence of events can be traced and evaluated, and, in relation to specific situations, how the degrees of welfare compromise and enhancement may be graded. In addition, the choice of a companion animal, contrasting its welfare status as a working dog and pet, and considering its treatment in a veterinary clinical setting, help to highlight various welfare impacts of some practices. By focussing attention on welfare problems, the Model can guide the implementation of remedies, including ways of promoting positive welfare states. Finally, wider applications of the Five Domains Model are noted: by enabling both negative and positive welfare-relevant experiences to be graded, the Model can be applied to quality of life assessments and end-of-life decisions and, with particular regard to negative experiences, the Model can also help to strengthen expert witness testimony during

  7. 3D airborne EM modeling based on the spectral-element time-domain (SETD) method (United States)

    Cao, X.; Yin, C.; Huang, X.; Liu, Y.; Zhang, B., Sr.; Cai, J.; Liu, L.


    In the field of 3D airborne electromagnetic (AEM) modeling, both finite-difference time-domain (FDTD) method and finite-element time-domain (FETD) method have limitations that FDTD method depends too much on the grids and time steps, while FETD requires large number of grids for complex structures. We propose a time-domain spectral-element (SETD) method based on GLL interpolation basis functions for spatial discretization and Backward Euler (BE) technique for time discretization. The spectral-element method is based on a weighted residual technique with polynomials as vector basis functions. It can contribute to an accurate result by increasing the order of polynomials and suppressing spurious solution. BE method is a stable tine discretization technique that has no limitation on time steps and can guarantee a higher accuracy during the iteration process. To minimize the non-zero number of sparse matrix and obtain a diagonal mass matrix, we apply the reduced order integral technique. A direct solver with its speed independent of the condition number is adopted for quickly solving the large-scale sparse linear equations system. To check the accuracy of our SETD algorithm, we compare our results with semi-analytical solutions for a three-layered earth model within the time lapse 10-6-10-2s for different physical meshes and SE orders. The results show that the relative errors for magnetic field B and magnetic induction are both around 3-5%. Further we calculate AEM responses for an AEM system over a 3D earth model in Figure 1. From numerical experiments for both 1D and 3D model, we draw the conclusions that: 1) SETD can deliver an accurate results for both dB/dt and B; 2) increasing SE order improves the modeling accuracy for early to middle time channels when the EM field diffuses fast so the high-order SE can model the detailed variation; 3) at very late time channels, increasing SE order has little improvement on modeling accuracy, but the time interval plays

  8. Modified temperature index model for estimating the melt water discharge from debris-covered Lirung Glacier, Nepal

    Directory of Open Access Journals (Sweden)

    A. Parajuli


    Full Text Available In the Nepalese Himalayas, the complex topography, occurrence of debris covered glaciers, and limited data availability creates substantial difficulties for modelling glacier melt. The proper recognition of melt processes governs the accurate estimation of melt water from glacier dominated systems, even in the presence of debris-covered glaciers. This paper presents a glacier melt model developed for the Lirung sub-basin of Langtang valley, which has both a clean glacier area, 5.86 km2, and a debris-covered glacier area, 1.13 km2. We use a temperature index approach to estimate sub-daily melt water discharge for a two week period at the end of monsoon, and the melt factor is varied according to the aspect and distributed to each grid processed from the digital elevation model. The model uses easily available data and simple extrapolation techniques capable of generating melt with limited data. The result obtained from this method provides accurate estimate with an R2 value of 0.89, bias of 0.9% and Nash-Sutcliffe efficiency of 0.86, and suitable in Himalaya where data availability is major issue.

  9. Impact of the snow cover scheme on snow distribution and energy budget modeling over the Tibetan Plateau (United States)

    Xie, Zhipeng; Hu, Zeyong; Xie, Zhenghui; Jia, Binghao; Sun, Genhou; Du, Yizhen; Song, Haiqing


    This paper presents the impact of two snow cover schemes (NY07 and SL12) in the Community Land Model version 4.5 (CLM4.5) on the snow distribution and surface energy budget over the Tibetan Plateau. The simulated snow cover fraction (SCF), snow depth, and snow cover days were evaluated against in situ snow depth observations and a satellite-based snow cover product and snow depth dataset. The results show that the SL12 scheme, which considers snow accumulation and snowmelt processes separately, has a higher overall accuracy (81.8%) than the NY07 (75.8%). The newer scheme performs better in the prediction of overall accuracy compared with the NY07; however, SL12 yields a 15.1% underestimation rate while NY07 overestimated the SCF with a 15.2% overestimation rate. Both two schemes capture the distribution of the maximum snow depth well but show large positive biases in the average value through all periods (3.37, 3.15, and 1.48 cm for NY07; 3.91, 3.52, and 1.17 cm for SL12) and overestimate snow cover days compared with the satellite-based product and in situ observations. Higher altitudes show larger root-mean-square errors (RMSEs) in the simulations of snow depth and snow cover days during the snow-free period. Moreover, the surface energy flux estimations from the SL12 scheme are generally superior to the simulation from NY07 when evaluated against ground-based observations, in particular for net radiation and sensible heat flux. This study has great implications for further improvement of the subgrid-scale snow variations over the Tibetan Plateau.

  10. Optimal Covering Material for Stent-Grafts Placed in the Portal Vein in a Canine Model

    International Nuclear Information System (INIS)

    Ishii, Seigo; Sato, Morio; Sonomura, Tetsuo; Yamada, Katsuyuki; Tanihata, Hirohiko; Ishikawa, Hime; Terada, Masaki; Sahara, Shinya; Kawai, Nobuyuki; Kimura, Masashi; Mori, Ichiro


    Purpose. We evaluated the suitability of Dacron, polytetrafluoroethylene (PTFE), and small intestinal submucosa (SIS) as a covering material for stent-grafts placed in the portal vein as compared with a bare stent. Methods. Using 24 beagle dogs, either bare stents or stent-grafts covered with Dacron, PTFE, or SIS were placed in the main trunk of the portal vein in 6 animals each. Portography was performed immediately after stent placement, and at 2, 4, and 12 weeks thereafter. Next, the extracted stents or stent-grafts were examined histopathologically. Neointimal thickness adjacent to the stent wire and at the midportion between the stent wires was compared among the groups. Then, the neointimal thickness at the sub- and supragraft sites was compared between each stent-graft group. Serial changes in the histologic features of the thickened neointima were also investigated. Results. No significant difference was noted in the mean stenotic ratio of the portal vein diameter between the bare stent and PTFE groups, whereas it was significantly higher in the Dacron and SIS groups compared with the bare stent group. In neither of the studies on neointimal thickness adjacent to the stent wire and at the midportion between the stent wires were any significant differences noted between the neointimal thickness of the bare stent group and the sum of the neointimal thickness of the PTFE group, whereas the sum of the neointimal thickness of the Dacron and SIS groups was significantly greater than that of the bare stent group at both sites. In the comparison of the supragraft neointimal thickness, the SIS group showed significantly greater thickness than the PTFE group, while the difference between the Dacron and PTFE groups was not significant. In the comparison of the subgraft neointimal thickness, the Dacron and SIS groups showed significantly greater thickness than the PTFE group. Conclusion. The present results indicate that of the three covering materials examined here

  11. Comparison of Models Needed for Conceptual Design of Man-Machine Systems in Different Application Domains

    DEFF Research Database (Denmark)

    Rasmussen, Jens


    and subjective preferences. For design of man-machine systems in process control, a framework has been developed in terms of separate representation of the problem domain, the decision task, and the information processing strategies required. The author analyzes the application of this framework to a number......For systematic and computer-aided design of man-machine systems, a consistent framework is needed, i. e. , a set of models which allows the selection of system characteristics which serve the individual user not only to satisfy his goal, but also to select mental processes that match his resources...

  12. Note: Gaussian mixture model for event recognition in optical time-domain reflectometry based sensing systems. (United States)

    Fedorov, A K; Anufriev, M N; Zhirnov, A A; Stepanov, K V; Nesterov, E T; Namiot, D E; Karasik, V E; Pnev, A B


    We propose a novel approach to the recognition of particular classes of non-conventional events in signals from phase-sensitive optical time-domain-reflectometry-based sensors. Our algorithmic solution has two main features: filtering aimed at the de-nosing of signals and a Gaussian mixture model to cluster them. We test the proposed algorithm using experimentally measured signals. The results show that two classes of events can be distinguished with the best-case recognition probability close to 0.9 at sufficient numbers of training samples.

  13. Formation and life-time of memory domains in the dissipative quantum model of brain


    Alfinito, E.; Vitiello, G.


    We show that in the dissipative quantum model of brain the time-dependence of the frequencies of the electrical dipole wave quanta leads to the dynamical organization of the memories in space (i.e. to their localization in more or less diffused regions of the brain) and in time (i.e. to their longer or shorter life-time). The life-time and the localization in domains of the memory states also depend on internal parameters and on the number of links that the brain establishes with the external...

  14. Towards spatial frequency domain optical imaging of neurovascular coupling in a mouse model of Alzheimer's disease (United States)

    Lin, Alexander J.; Konecky, Soren D.; Rice, Tyler B.; Green, Kim N.; Choi, Bernard; Durkin, Anthony J.; Tromberg, Bruce J.


    Early neurovascular coupling (NVC) changes in Alzheimer's disease can potentially provide imaging biomarkers to assist with diagnosis and treatment. Previous efforts to quantify NVC with intrinsic signal imaging have required assumptions of baseline optical pathlength to calculate changes in oxy- and deoxy-hemoglobin concentrations during evoked stimuli. In this work, we present an economical spatial frequency domain imaging (SFDI) platform utilizing a commercially available LED projector, camera, and off-the-shelf optical components suitable for imaging dynamic optical properties. The fast acquisition platform described in this work is validated on silicone phantoms and demonstrated in neuroimaging of a mouse model.

  15. Normal Inverse Gaussian Model-Based Image Denoising in the NSCT Domain

    Directory of Open Access Journals (Sweden)

    Jian Jia


    Full Text Available The objective of image denoising is to retain useful details while removing as much noise as possible to recover an original image from its noisy version. This paper proposes a novel normal inverse Gaussian (NIG model-based method that uses a Bayesian estimator to carry out image denoising in the nonsubsampled contourlet transform (NSCT domain. In the proposed method, the NIG model is first used to describe the distributions of the image transform coefficients of each subband in the NSCT domain. Then, the corresponding threshold function is derived from the model using Bayesian maximum a posteriori probability estimation theory. Finally, optimal linear interpolation thresholding algorithm (OLI-Shrink is employed to guarantee a gentler thresholding effect. The results of comparative experiments conducted indicate that the denoising performance of our proposed method in terms of peak signal-to-noise ratio is superior to that of several state-of-the-art methods, including BLS-GSM, K-SVD, BivShrink, and BM3D. Further, the proposed method achieves structural similarity (SSIM index values that are comparable to those of the block-matching 3D transformation (BM3D method.

  16. A Robustness Analysis of CMIP5 Models over the East Asia-Western North Pacific Domain

    Directory of Open Access Journals (Sweden)

    Tianjun Zhou


    Full Text Available The Coupled Model Intercomparison Project (CMIP is an international community-based infrastructure that supports climate model intercomparison, climate variability, climate prediction, and climate projection. Improving the performance of climate models over East Asia and the western North Pacific has been a challenge for the climate-modeling community. In this paper, we provide a synthesis robustness analysis of the climate models participating in CMIP-Phase 5 (CMIP5. The strengths and weaknesses of the CMIP5 models are assessed from the perspective of climate mean state, interannual variability, past climate change during the mid-Pliocene (MP and the last millennium, and climate projection. The added values of regional climate models relative to the driving global climate models are also assessed. Although an encouraging increase in credibility and an improvement in the simulation of mean states, interannual variability, and past climate changes are visible in the progression from CMIP3 to CMIP5, some previously noticed biases such as the ridge position of the western North Pacific subtropical high and the associated rainfall bias are still evident in CMIP5 models. Weaknesses are also evident in simulations of the interannual amplitude, such as El Niño-Southern Oscillation (ENSO-monsoon relationships. Coupled models generally show better results than standalone atmospheric models in simulating both mean states and interannual variability. Multi-model intercomparison indicates significant uncertainties in the future projection of climate change, although precipitation increases consistently across models constrained by the Clausius-Clapeyron relation. Regional ocean-atmosphere coupled models are recommended for the dynamical downscaling of climate change projections over the East Asia-western North Pacific domain.

  17. Identifying Mechanical Properties of Viscoelastic Materials in Time Domain Using the Fractional Zener Model

    Directory of Open Access Journals (Sweden)

    Ana Paula Delowski Ciniello

    Full Text Available Abstract The present paper aims at presenting a methodology for characterizing viscoelastic materials in time domain, taking into account the fractional Zener constitutive model and the influence of temperature through Williams, Landel, and Ferry’s model. To that effect, a set of points obtained experimentally through uniaxial tensile tests with different constant strain rates is considered. The approach is based on the minimization of the quadratic relative distance between the experimental stress-strain curves and the corresponding ones given by the theoretical model. In order to avoid the local minima in the process of optimization, a hybrid technique based on genetic algorithms and non-linear programming techniques is used. The methodology is applied in the characterization of two different commercial viscoelastic materials. The results indicate that the proposed methodology is effective in identifying thermorheologically simple viscoelastic materials.

  18. Peaks, plateaus, canyons, and craters: The complex geometry of simple mid-domain effect models

    DEFF Research Database (Denmark)

    Colwell, Robert K.; Gotelli, Nicholas J.; Rahbek, Carsten


    dye algorithm to place assemblages of species of uniform We used a spreading dye algorithm to place assemblages of species of uniform range size in one-dimensional or two-dimensional bounded domains. In some models, we allowed dispersal to introduce range discontinuity. Results: As uniform range size...... increases from small to medium, a flat pattern of species As uniform range size increases from small to medium, a flat pattern of species richness is replaced by a pair of peripheral peaks, separated by a valley (one-dimensional models), or by a cratered ring (two-dimensional models) of species richness...... of a uniform size generate more complex patterns, including peaks, plateaus, canyons, and craters of species richness....


    Directory of Open Access Journals (Sweden)

    S. H. Li


    Full Text Available Spatiotemporal modelling of land use/cover change (LUCC has become increasingly important in recent years, especially for environmental change and regional planning. There have been many approaches and software packages for modelling LUCC, but developing a model for a specific region is still a difficult task, because it requires large volume of data input and elaborate model adjustment. Fuxian Lake watershed is one of the most important ecological protection area in China and located in southeast of Kunming city, Yunnan province. In this paper, the CA-Markov model is used to analyse the spatiotemporal LUCC and project its course into the future. Specifically, the model uses high resolution remote sensing images of 2006 and 2009 as input data, and then makes prediction for 2014. A quantitative comparison with remote sensing images of 2014 suggests an overall accuracy of 88%. This spatiotemporal modelling method is expected to facilitate the research of many land cover and use applications modelling.

  20. BRIDG: a domain information model for translational and clinical protocol-driven research. (United States)

    Becnel, Lauren B; Hastak, Smita; Ver Hoef, Wendy; Milius, Robert P; Slack, MaryAnn; Wold, Diane; Glickman, Michael L; Brodsky, Boris; Jaffe, Charles; Kush, Rebecca; Helton, Edward


    It is critical to integrate and analyze data from biological, translational, and clinical studies with data from health systems; however, electronic artifacts are stored in thousands of disparate systems that are often unable to readily exchange data. To facilitate meaningful data exchange, a model that presents a common understanding of biomedical research concepts and their relationships with health care semantics is required. The Biomedical Research Integrated Domain Group (BRIDG) domain information model fulfills this need. Software systems created from BRIDG have shared meaning "baked in," enabling interoperability among disparate systems. For nearly 10 years, the Clinical Data Standards Interchange Consortium, the National Cancer Institute, the US Food and Drug Administration, and Health Level 7 International have been key stakeholders in developing BRIDG. BRIDG is an open-source Unified Modeling Language-class model developed through use cases and harmonization with other models. With its 4+ releases, BRIDG includes clinical and now translational research concepts in its Common, Protocol Representation, Study Conduct, Adverse Events, Regulatory, Statistical Analysis, Experiment, Biospecimen, and Molecular Biology subdomains. The model is a Clinical Data Standards Interchange Consortium, Health Level 7 International, and International Standards Organization standard that has been utilized in national and international standards-based software development projects. It will continue to mature and evolve in the areas of clinical imaging, pathology, ontology, and vocabulary support. BRIDG 4.1.1 and prior releases are freely available at . © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email:

  1. Anticipating potential biodiversity conflicts for future biofuel crops in South Africa: Incorporating land cover information with Species Distribution Models

    CSIR Research Space (South Africa)

    Blanchard, R


    Full Text Available % of biodiversity importance. Anticipating potential biodiversity confl icts for future biofuel crops in South Africa: Incorporating land cover information with Species Distribution Models R BLANCHARD1, DR P O?FARRELL1 AND PROF. D RICHARDSON2 1CSIR Natural... Resources and the Environment, PO Box 320, Stellenbosch, 7599, South Africa 2Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa Email: ? www...

  2. Understanding the Effect of Land Cover Classification on Model Estimates of Regional Carbon Cycling in the Boreal Forest Biome (United States)

    Kimball, John; Kang, Sinkyu


    The original objectives of this proposed 3-year project were to: 1) quantify the respective contributions of land cover and disturbance (i.e., wild fire) to uncertainty associated with regional carbon source/sink estimates produced by a variety of boreal ecosystem models; 2) identify the model processes responsible for differences in simulated carbon source/sink patterns for the boreal forest; 3) validate model outputs using tower and field- based estimates of NEP and NPP; and 4) recommend/prioritize improvements to boreal ecosystem carbon models, which will better constrain regional source/sink estimates for atmospheric C02. These original objectives were subsequently distilled to fit within the constraints of a 1 -year study. This revised study involved a regional model intercomparison over the BOREAS study region involving Biome-BGC, and TEM (A.D. McGuire, UAF) ecosystem models. The major focus of these revised activities involved quantifying the sensitivity of regional model predictions associated with land cover classification uncertainties. We also evaluated the individual and combined effects of historical fire activity, historical atmospheric CO2 concentrations, and climate change on carbon and water flux simulations within the BOREAS study region.

  3. Identifying Generalizable Image Segmentation Parameters for Urban Land Cover Mapping through Meta-Analysis and Regression Tree Modeling

    Directory of Open Access Journals (Sweden)

    Brian A. Johnson


    Full Text Available The advent of very high resolution (VHR satellite imagery and the development of Geographic Object-Based Image Analysis (GEOBIA have led to many new opportunities for fine-scale land cover mapping, especially in urban areas. Image segmentation is an important step in the GEOBIA framework, so great time/effort is often spent to ensure that computer-generated image segments closely match real-world objects of interest. In the remote sensing community, segmentation is frequently performed using the multiresolution segmentation (MRS algorithm, which is tuned through three user-defined parameters (the scale, shape/color, and compactness/smoothness parameters. The scale parameter (SP is the most important parameter and governs the average size of generated image segments. Existing automatic methods to determine suitable SPs for segmentation are scene-specific and often computationally intensive, so an approach to estimating appropriate SPs that is generalizable (i.e., not scene-specific could speed up the GEOBIA workflow considerably. In this study, we attempted to identify generalizable SPs for five common urban land cover types (buildings, vegetation, roads, bare soil, and water through meta-analysis and nonlinear regression tree (RT modeling. First, we performed a literature search of recent studies that employed GEOBIA for urban land cover mapping and extracted the MRS parameters used, the image properties (i.e., spatial and radiometric resolutions, and the land cover classes mapped. Using this data extracted from the literature, we constructed RT models for each land cover class to predict suitable SP values based on the: image spatial resolution, image radiometric resolution, shape/color parameter, and compactness/smoothness parameter. Based on a visual and quantitative analysis of results, we found that for all land cover classes except water, relatively accurate SPs could be identified using our RT modeling results. The main advantage of our

  4. Assessment of Energy Removal Impacts on Physical Systems: Hydrodynamic Model Domain Expansion and Refinement, and Online Dissemination of Model Results

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping


    In this report we describe the 1) the expansion of the PNNL hydrodynamic model domain to include the continental shelf along the coasts of Washington, Oregon, and Vancouver Island; and 2) the approach and progress in developing the online/Internet disseminations of model results and outreach efforts in support of the Puget Sound Operational Forecast System (PS-OPF). Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask, Hydrodynamics, for fiscal year 2010 of the Environmental Effects of Marine and Hydrokinetic Energy project.

  5. Assessment of Energy Removal Impacts on Physical Systems: Hydrodynamic Model Domain Expansion and Refinement, and Online Dissemination of Model Results

    International Nuclear Information System (INIS)

    Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping


    In this report we describe the (1) the expansion of the PNNL hydrodynamic model domain to include the continental shelf along the coasts of Washington, Oregon, and Vancouver Island; and (2) the approach and progress in developing the online/Internet disseminations of model results and outreach efforts in support of the Puget Sound Operational Forecast System (PS-OPF). Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask, Hydrodynamics, for fiscal year 2010 of the Environmental Effects of Marine and Hydrokinetic Energy project.

  6. A note on the translation of conceptual data models into description logics: disjointness and covering assumptions

    CSIR Research Space (South Africa)

    Casini, G


    Full Text Available ). In this paper we propose two simple procedures to assist modelers with integrating these assumptions into their models, thereby allowing for a more complete translation into DLs....

  7. A grid-based Model for Backwasting at supraglacial Ice Cliffs on a debris-covered Glacier (United States)

    Buri, P.; Steiner, J. F.; Pellicciotti, F.; Miles, E. S.; Immerzeel, W.


    In the Himalaya, debris-covered glaciers cover significant portions of the glacierised area. Their behaviour is not entirely understood, but they seem to experience strong mass losses in direct contradiction with the insulating effect of debris. A characteristic most debris-covered glaciers share is the appearance of cliffs and lakes on their surface. These supraglacial features play a role in surface evolution, dynamics and downwasting of debris-covered glaciers but their actual effects have not been quantified at the glacier scale. Numerous measurements of radiative fluxes at the cliff surface, detailed survey of cliffs geometry and ablation have been conducted on the debris-covered Lirung Glacier, Nepalese Himalayas. We used four 20cm-resolution DEMs obtained from UAV flights to represent the glacier surface to a very detailed degree. As the debris remains stable on slopes up to 30°, ice cliffs show inclinations above this threshold and were clearly represented in the DEMs. Direct measurements and a point-scale cliff-backwasting model have showed that melt patterns over a single cliff are highly variable across and along the ice surface due to non-uniform geometry, varying inclination, aspect and terrain view factors. Variability in observed ablation was large also among cliffs. We therefore developed an energy balance model with a gridded representation of the cliff to understand the melt behaviour at the cliff scale. Previous models assumed the cliff to be a plane with a constant slope and aspect, and extrapolation of melt rates to the glacier scale based on this assumption might be erroneous. Using a grid-based approach allows representation of real inclined areas of the cliff. The detailed surface from the UAV-DEM was taken as initial condition for the model. The model was in close agreement with ablation measurements at numerous stakes located on 3 cliffs. Results show very high variability both along the cliffs' elevation and extension. These cannot be

  8. Pest occurrence model in current climate – validation study for European domain

    Directory of Open Access Journals (Sweden)

    Eva Svobodová


    Full Text Available The present study yields detail validation of the pest occurrence models under current climate in wide European domain. Study organisms involve Cydia pomonella, Lobesia botrana, Ostrinia nubilalis, Leptinotarsa decemlineata, Oulema melanopus, Rhopalosiphum padi, and Sitobion avenae. Method used in this study belongs to the category climate matching (CLIMEX model allowing the estimation of areas climatically favourable for species persistence based on the climatic parameters characterising the species development. In the process of model validation parameters were iteratively tested and altered to truly describe the pest presence. The modelled pests presence was verified by comparison of the observed pests occurrence with the number of generations in given modelled area. The notable component of the model parameterization was the sensitivity analyses testing the reaction of species development on changing meteorological items. Parameterization of the factors causing distribution patterns of study species was successful and modelled potential distributions of species correspond well to known core distribution areas for all of these species. This validation study is intended as an initial for forthcoming studies focused on the estimation of geographical shifts of selected pests in the conditions of climate change within the Europe.

  9. Assessing the limits of restraint-based 3D modeling of genomes and genomic domains (United States)

    Trussart, Marie; Serra, François; Baù, Davide; Junier, Ivan; Serrano, Luís; Marti-Renom, Marc A.


    Restraint-based modeling of genomes has been recently explored with the advent of Chromosome Conformation Capture (3C-based) experiments. We previously developed a reconstruction method to resolve the 3D architecture of both prokaryotic and eukaryotic genomes using 3C-based data. These models were congruent with fluorescent imaging validation. However, the limits of such methods have not systematically been assessed. Here we propose the first evaluation of a mean-field restraint-based reconstruction of genomes by considering diverse chromosome architectures and different levels of data noise and structural variability. The results show that: first, current scoring functions for 3D reconstruction correlate with the accuracy of the models; second, reconstructed models are robust to noise but sensitive to structural variability; third, the local structure organization of genomes, such as Topologically Associating Domains, results in more accurate models; fourth, to a certain extent, the models capture the intrinsic structural variability in the input matrices and fifth, the accuracy of the models can be a priori predicted by analyzing the properties of the interaction matrices. In summary, our work provides a systematic analysis of the limitations of a mean-field restrain-based method, which could be taken into consideration in further development of methods as well as their applications. PMID:25800747

  10. Towards 3D Cadastre in Serbia: Development of Serbian Cadastral Domain Model

    Directory of Open Access Journals (Sweden)

    Aleksandra Radulović


    Full Text Available This paper proposes a Serbian cadastral domain model as the country profile for the real estate cadastre, based on the Land Administration Domain Model (LADM, defined within ISO 19152. National laws and other legal acts were analyzed and the incorrect applications of the law are outlined. The national “Strategy of measures and activities for increasing the quality of services in the field of geospatial data and registration of real property rights in the official state records”, which was adopted in 2017, cites the shortcomings of the existing cadastral information system. The proposed profile can solve several problems with the system, such as the lack of interoperability, mismatch of graphic and alphanumeric data, and lack of an integrated cadastral information system. Based on the existing data, the basic concepts of the Serbian cadastre were extracted and the applicability of LADM was tested on an obtained conceptual model. Upon obtaining positive results, a complete country profile was developed according to valid national laws and rulebooks. A table of mappings of LADM classes and country profile classes is presented in this paper, together with an analysis of the conformance level. The proposed Serbian country profile is completely conformant at the medium level and on several high-level classes. LADM also provides support for three-dimensional (3D representations and 3D registration of rights, so the creation of a country profile for Serbia is a starting point toward a 3D cadastre. Given the existence of buildings with overlapping rights and restrictions in 3D, considering expanding the spatial profile with 3D geometries is necessary. Possible solutions to these situations were analyzed. Since the two-dimensional (2D cadastre in Serbia is not fully formed, the proposed solution is to use the 2D model for simple right situations, and the 3D model for more complex situations.

  11. Feature-opinion pair identification of product reviews in Chinese: a domain ontology modeling method (United States)

    Yin, Pei; Wang, Hongwei; Guo, Kaiqiang


    With the emergence of the new economy based on social media, a great amount of consumer feedback on particular products are conveyed through wide-spreading product online reviews, making opinion mining a growing interest for both academia and industry. According to the characteristic mode of expression in Chinese, this research proposes an ontology-based linguistic model to identify the basic appraisal expression in Chinese product reviews-"feature-opinion pair (FOP)." The product-oriented domain ontology is constructed automatically at first, then algorithms to identify FOP are designed by mapping product features and opinions to the conceptual space of the domain ontology, and finally comparative experiments are conducted to evaluate the model. Experimental results indicate that the performance of the proposed approach in this paper is efficient in obtaining a more accurate result compared to the state-of-art algorithms. Furthermore, through identifying and analyzing FOPs, the unstructured product reviews are converted into structured and machine-sensible expression, which provides valuable information for business application. This paper contributes to the related research in opinion mining by developing a solid foundation for further sentiment analysis at a fine-grained level and proposing a general way for automatic ontology construction.

  12. A land-use and land-cover modeling strategy to support a national assessment of carbon stocks and fluxes (United States)

    Sohl, Terry L.; Sleeter, Benjamin M.; Zhu, Zhi-Liang; Sayler, Kristi L.; Bennett, Stacie; Bouchard, Michelle; Reker, Ryan R.; Hawbaker, Todd; Wein, Anne; Liu, Shu-Guang; Kanengieter, Ronald; Acevedo, William


    Changes in land use, land cover, disturbance regimes, and land management have considerable influence on carbon and greenhouse gas (GHG) fluxes within ecosystems. Through targeted land-use and land-management activities, ecosystems can be managed to enhance carbon sequestration and mitigate fluxes of other GHGs. National-scale, comprehensive analyses of carbon sequestration potential by ecosystem are needed, with a consistent, nationally applicable land-use and land-cover (LULC) modeling framework a key component of such analyses. The U.S. Geological Survey has initiated a project to analyze current and projected future GHG fluxes by ecosystem and quantify potential mitigation strategies. We have developed a unique LULC modeling framework to support this work. Downscaled scenarios consistent with IPCC Special Report on Emissions Scenarios (SRES) were constructed for U.S. ecoregions, and the FORE-SCE model was used to spatially map the scenarios. Results for a prototype demonstrate our ability to model LULC change and inform a biogeochemical modeling framework for analysis of subsequent GHG fluxes. The methodology was then successfully used to model LULC change for four IPCC SRES scenarios for an ecoregion in the Great Plains. The scenario-based LULC projections are now being used to analyze potential GHG impacts of LULC change across the U.S.

  13. Calibrating and Validating a Simulation Model to Identify Drivers of Urban Land Cover Change in the Baltimore, MD Metropolitan Region

    Directory of Open Access Journals (Sweden)

    Claire Jantz


    Full Text Available We build upon much of the accumulated knowledge of the widely used SLEUTH urban land change model and offer advances. First, we use SLEUTH’s exclusion/attraction layer to identify and test different urban land cover change drivers; second, we leverage SLEUTH’s self-modification capability to incorporate a demographic model; and third, we develop a validation procedure to quantify the influence of land cover change drivers and assess uncertainty. We found that, contrary to our a priori expectations, new development is not attracted to areas serviced by existing or planned water and sewer infrastructure. However, information about where population and employment growth is likely to occur did improve model performance. These findings point to the dominant role of centrifugal forces in post-industrial cities like Baltimore, MD. We successfully developed a demographic model that allowed us to constrain the SLEUTH model forecasts and address uncertainty related to the dynamic relationship between changes in population and employment and urban land use. Finally, we emphasize the importance of model validation. In this work the validation procedure played a key role in rigorously assessing the impacts of different exclusion/attraction layers and in assessing uncertainty related to population and employment forecasts.

  14. Comparing the performance of flat and hierarchical Habitat/Land-Cover classification models in a NATURA 2000 site (United States)

    Gavish, Yoni; O'Connell, Jerome; Marsh, Charles J.; Tarantino, Cristina; Blonda, Palma; Tomaselli, Valeria; Kunin, William E.


    The increasing need for high quality Habitat/Land-Cover (H/LC) maps has triggered considerable research into novel machine-learning based classification models. In many cases, H/LC classes follow pre-defined hierarchical classification schemes (e.g., CORINE), in which fine H/LC categories are thematically nested within more general categories. However, none of the existing machine-learning algorithms account for this pre-defined hierarchical structure. Here we introduce a novel Random Forest (RF) based application of hierarchical classification, which fits a separate local classification model in every branching point of the thematic tree, and then integrates all the different local models to a single global prediction. We applied the hierarchal RF approach in a NATURA 2000 site in Italy, using two land-cover (CORINE, FAO-LCCS) and one habitat classification scheme (EUNIS) that differ from one another in the shape of the class hierarchy. For all 3 classification schemes, both the hierarchical model and a flat model alternative provided accurate predictions, with kappa values mostly above 0.9 (despite using only 2.2-3.2% of the study area as training cells). The flat approach slightly outperformed the hierarchical models when the hierarchy was relatively simple, while the hierarchical model worked better under more complex thematic hierarchies. Most misclassifications came from habitat pairs that are thematically distant yet spectrally similar. In 2 out of 3 classification schemes, the additional constraints of the hierarchical model resulted with fewer such serious misclassifications relative to the flat model. The hierarchical model also provided valuable information on variable importance which can shed light into "black-box" based machine learning algorithms like RF. We suggest various ways by which hierarchical classification models can increase the accuracy and interpretability of H/LC classification maps.

  15. Lake Ice Cover of Shallow Lakes and Climate Interactions in Arctic Regions (1950-2011): SAR Data Analysis and Numerical Modeling (United States)

    Surdu, C.; Duguay, C.; Brown, L.; Fernàndez-Prieto, D.; Samuelsson, P.


    Lake ice cover is highly correlated with climatic conditions and has, therefore, been demonstrated to be an essential indicator of climate variability and change. Recent studies have shown that the duration of the lake ice cover has decreased, mainly as a consequence of earlier thaw dates in many parts of the Northern Hemisphere over the last 50 years, mainly as a feedback to increased winter and spring air temperature. In response to projected air temperature and winter precipitation changes by climate models until the end of the 21st century, the timing, duration, and thickness of ice cover on Arctic lakes are expected to be impacted. This, in turn, will likely alter the energy, water, and bio-geochemical cycling in various regions of the Arctic. In the case of shallow tundra lakes, many of which are less than 3-m deep, warmer climate conditions could result in a smaller fraction of lakes that fully freeze to the bottom at the time of maximum winter ice thickness since thinner ice covers are predicted to develop. Shallow thermokarst lakes of the coastal plain of northern Alaska, and of other similar Arctic regions, have likely been experiencing changes in seasonal ice phenology and thickness over the last few decades but these have not yet been comprehensively documented. Analysis of a 20-year time series of ERS-1/2 synthetic aperture radar (SAR) data and numerical lake ice modeling were employed to determine the response of ice cover (thickness, freezing to bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA) to climate conditions over the last three decades. New downscaled data specific to the Arctic domain (at a resolution of 0.44 degrees using ERA Interim Reanalysis as boundary condition) produced by the Rossby Centre Regional Atmospheric Climate Model (RCA4) was used to drive the Canadian Lake Ice Model (CLIMo) for the period 1950-2011. In order to assess and integrate the SAR-derived observed changes into a longer historical context, and

  16. What Role for Humans in Global Land Cover Change over the Holocene? Insights from Models and Data (United States)

    Kaplan, J. O.; Krumhardt, K. M.; Davis, B. A. S.; Zanon, M.


    Did humans affect global climate over the before the Industrial Era? While this question is hotly debated, the co-evolution of humans and the natural environment over the last 11,700 years had an undisputed role in influencing the development and present state of terrestrial ecosystems, many of which are highly valued today as economic, cultural, and ecological resources. Yet we still have a very incomplete picture of human-environment interactions over the Holocene. In order to address this, we combined a global dynamic vegetation model with a new model of preindustrial anthropogenic land cover change. We drive this integrated model a new synthesis of demographic, technological, and economic development over preindustrial time, and a database of historical urbanization covering the last 8000 years. We simulate natural vegetation and anthropogenic land use from 11,700 years before present to AD 1850 and compare these results with regional syntheses of pollen-based reconstructions of land cover. Our model results show that climate and tectonics controlled global land cover in the early Holocene. Shifts in forest biomes on the northern continents show an expansion of temperate tree types far to the north of their present day limits. By the early Iron Age (1000 BC), however, humans in Europe, East Asia, and Mesoamerica had a larger influence than natural processes on the landscape. Anthropogenic deforestation was widespread with most areas of temperate Europe and southwest Asia, east-central China, northern India, and Mesoamerica occupied by a matrix of natural vegetation, cropland and pastures. While we simulate fluctuations in human impact on the landscape, including periods of widespread land abandonment, e.g., during the Migration Period in Europe that following the end of the Western Roman Empire, approaching the Industrial Revolution nearly all of the landmasses of Europe and south and East Asia are dominated by anthropogenic activities. In contrast, the

  17. The transparency, reliability and utility of tropical rainforest land-use and land-cover change models. (United States)

    Rosa, Isabel M D; Ahmed, Sadia E; Ewers, Robert M


    Land-use and land-cover (LULC) change is one of the largest drivers of biodiversity loss and carbon emissions globally. We use the tropical rainforests of the Amazon, the Congo basin and South-East Asia as a case study to investigate spatial predictive models of LULC change. Current predictions differ in their modelling approaches, are highly variable and often poorly validated. We carried out a quantitative review of 48 modelling methodologies, considering model spatio-temporal scales, inputs, calibration and validation methods. In addition, we requested model outputs from each of the models reviewed and carried out a quantitative assessment of model performance for tropical LULC predictions in the Brazilian Amazon. We highlight existing shortfalls in the discipline and uncover three key points that need addressing to improve the transparency, reliability and utility of tropical LULC change models: (1) a lack of openness with regard to describing and making available the model inputs and model code; (2) the difficulties of conducting appropriate model validations; and (3) the difficulty that users of tropical LULC models face in obtaining the model predictions to help inform their own analyses and policy decisions. We further draw comparisons between tropical LULC change models in the tropics and the modelling approaches and paradigms in other disciplines, and suggest that recent changes in the climate change and species distribution modelling communities may provide a pathway that tropical LULC change modellers may emulate to further improve the discipline. Climate change models have exerted considerable influence over public perceptions of climate change and now impact policy decisions at all political levels. We suggest that tropical LULC change models have an equally high potential to influence public opinion and impact the development of land-use policies based on plausible future scenarios, but, to do that reliably may require further improvements in the

  18. A general model and numerical method for multiconductor systems in frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Jonas, F. [Swedish Transmission Research Inst., Ludvika (Sweden); Varju, G. [Technical Univ. of Budapest (Hungary). Dept. of Electric Power Systems


    A general multi-conductor model is described in this article. It is based on the distributed line parameter simulation with acceptance of non-homogeneous line sections, discrete and distributed sources, complex discrete elements of any kind at any point. Every parameter and element can be non-linear. The model and the software implementation has successfully been used for solution of different frequency domain problems, e.g. harmonic penetration in unbalanced power networks, railway circuits with auto- or booster transformers, telecommunication circuits. The results of a number of calculated cases have been verified by field tests. An application example is demonstrated in the article: calculation of telecommunication disturbances caused by a railway line with booster transformers in an armored cable. 10 refs, 10 figs, 2 tabs

  19. PSpice modeling of broadband RF cavities for transient and frequency domain simulations

    Energy Technology Data Exchange (ETDEWEB)

    Harzheim, Jens [Institut fuer Theorie Elektromagnetischer Felder, Fachgebiet Beschleunigertechnik, TU Darmstadt (Germany)


    In the future accelerator facility FAIR, Barrier-Bucket Systems will play an important role for different longitudinal beam manipulations. As the function of this type of system is to provide single sine gap voltages, the components of the system have to operate in a broad frequency range. To investigate the different effects and to design the different system components, the whole Barrier-Bucket System is to be modeled in PSpice. While for low power signals, the system shows linear behavior, nonlinear effects arise at higher amplitudes. Therefore, simulations in both, frequency and time domain are needed. The highly frequency dependent magnetic alloy ring cores of the future Barrier-Bucket cavity have been mod eled in a first step and based on these models, the whole cavity was analyzed in PSpice. The simulation results show good agreement with former measurements.

  20. A 2D Time Domain DRBEM Computer Model for MagnetoThermoelastic Coupled Wave Propagation Problems

    Directory of Open Access Journals (Sweden)

    Mohamed Abdelsabour Fahmy


    Full Text Available A numerical computer model based on the dual reciprocity boundary element method (DRBEM is extended to study magneto-thermoelastic coupled wave propagation problems with relaxation times involving anisotropic functionally graded solids. The model formulation is tested through its application to the problem of a solid placed in a constant primary magnetic field acting in the direction of the z-axis and rotating about this axis with a constant angular velocity. In the case of two-dimensional deformation, an implicit-explicit time domain DRBEM was presented and implemented to obtain the solution for the displacement and temperature fields. A comparison of the results is presented graphically in the context of Lord and Shulman (LS and Green and Lindsay (GL theories. Numerical results that demonstrate the validity of the proposed method are also presented graphically.

  1. Validation of a heat conduction model for finite domain, non-uniformly heated, laminate bodies (United States)

    Desgrosseilliers, Louis; Kabbara, Moe; Groulx, Dominic; White, Mary Anne


    Infrared thermographic validation is shown for a closed-form analytical heat conduction model for non-uniformly heated, laminate bodies with an insulated domain boundary. Experiments were conducted by applying power to rectangular electric heaters and cooled by natural convection in air, but also apply to constant-temperature heat sources and forced convection. The model accurately represents two-dimensional laminate heat conduction behaviour giving rise to heat spreading using one-dimensional equations for the temperature distributions and heat transfer rates under steady-state and pseudo-steady-state conditions. Validation of the model with an insulated boundary (complementing previous studies with an infinite boundary) provides useful predictions of heat spreading performance and simplified temperature uniformity calculations (useful in log-mean temperature difference style heat exchanger calculations) for real laminate systems such as found in electronics heat sinks, multi-ply stovetop cookware and interface materials for supercooled salt hydrates. Computational determinations of implicit insulated boundary condition locations in measured data, required to assess model equation validation, were also demonstrated. Excellent goodness of fit was observed (both root-mean-square error and R 2 values), in all cases except when the uncertainty of low temperatures measured via infrared thermography hindered the statistical significance of the model fit. The experimental validation in all other cases supports use of the model equations in design calculations and heat exchange simulations.

  2. Time-domain Electromagnetic Exploration of Salt Islands: Three-dimensional Modelling and Field Results (United States)

    Bauer-Gottwein, P.; . Gondwe, B. R. N.; Christiansen, L.; Kgotlhang, L.; Herckenrath, D.; Zimmermann, S.


    The time-domain electromagnetic method (TDEM) has been widely used in groundwater exploration and geological mapping applications. TDEM measures the subsurface electrical conductivity, which is strongly correlated with groundwater salinity. TDEM thus offers cheap and non-invasive ways to map saltwater intrusion and groundwater salinization. Typically, TDEM data is interpreted using 1D layered-earth models of the subsurface. However, most saltwater intrusion and groundwater salinization phenomena produce eminently three-dimensional anomalies. To fully exploit the information of TDEM data in this context, three-dimensional modeling of the TDEM response is required. We present a finite-element solution for three-dimensional forward modeling of TDEM responses from arbitrary subsurface electrical conductivity distributions. As an application example, the groundwater salinization process on islands in the Okavango Delta is simulated using a variable-density flow and salinity transport model. The transport model outputs are subsequently converted to TDEM responses using the 3D TDEM forward code. A field dataset of ground-based and airborne TDEM data from a selected Okavango Delta island is presented. The TDEM field data cannot be interpreted in terms of 1D layered-earth models, because of the strongly three-dimensional nature of the salinity anomaly under the island. A 3D interpretation of the field data allows detailed and consistent mapping of this anomaly.

  3. Exact Solution of the Six-Vertex Model with Domain Wall Boundary Conditions. Disordered Phase

    CERN Document Server

    Bleher, P M


    The six-vertex model, or the square ice model, with domain wall boundary conditions (DWBC) has been introduced and solved for finite $N$ by Korepin and Izergin. The solution is based on the Yang-Baxter equations and it represents the free energy in terms of an $N\\times N$ Hankel determinant. Paul Zinn-Justin observed that the Izergin-Korepin formula can be re-expressed in terms of the partition function of a random matrix model with a nonpolynomial interaction. We use this observation to obtain the large $N$ asymptotics of the six-vertex model with DWBC in the disordered phase. The solution is based on the Riemann-Hilbert approach and the Deift-Zhou nonlinear steepest descent method. As was noticed by Kuperberg, the problem of enumeration of alternating sign matrices (the ASM problem) is a special case of the the six-vertex model. We compare the obtained exact solution of the six-vertex model with known exact results for the 1, 2, and 3 enumerations of ASMs, and also with the exact solution on the so-called f...

  4. Modeling and Analysis Compute Environments, Utilizing Virtualization Technology in the Climate and Earth Systems Science domain (United States)

    Michaelis, A.; Nemani, R. R.; Wang, W.; Votava, P.; Hashimoto, H.


    Given the increasing complexity of climate modeling and analysis tools, it is often difficult and expensive to build or recreate an exact replica of the software compute environment used in past experiments. With the recent development of new technologies for hardware virtualization, an opportunity exists to create full modeling, analysis and compute environments that are “archiveable”, transferable and may be easily shared amongst a scientific community or presented to a bureaucratic body if the need arises. By encapsulating and entire modeling and analysis environment in a virtual machine image, others may quickly gain access to the fully built system used in past experiments, potentially easing the task and reducing the costs of reproducing and verify past results produced by other researchers. Moreover, these virtual machine images may be used as a pedagogical tool for others that are interested in performing an academic exercise but don't yet possess the broad expertise required. We built two virtual machine images, one with the Community Earth System Model (CESM) and one with Weather Research Forecast Model (WRF), then ran several small experiments to assess the feasibility, performance overheads costs, reusability, and transferability. We present a list of the pros and cons as well as lessoned learned from utilizing virtualization technology in the climate and earth systems modeling domain.

  5. Numerical Studies of Thermal Conditions in Cities - Systematic Model Simulations of Idealized Urban Domains (United States)

    Heene, V.; Buchholz, S.; Kossmann, M.


    Numerical studies of thermal conditions in cities based on model simulations of idealized urban domains are carried out to investigate how changes in the characteristics of urban areas influence street level air temperatures. The simulated modifications of the urban characteristics represent possible adaptation measures for heat reduction in cities, which are commonly used in urban planning. Model simulations are performed with the thermodynamic version of the 3-dimensional micro-scale urban climate model MUKLIMO_3. The simulated idealized urban areas are designed in a simplistic way, i. e. defining homogeneous squared cities of one settlement type, without orography and centered in the model domain. To assess the impact of different adaptation measures the characteristics of the urban areas have been systematically modified regarding building height, albedo of building roof and impervious surfaces, fraction of impervious surfaces between buildings, and percentage of green roofs. To assess the impact of green and blue infrastructure in cities, different configurations for parks and lakes have been investigated - e. g. varying size and distribution within the city. The experiments are performed for different combinations of typical German settlement types and surrounding rural types under conditions of a typical summer day in July. The adaptation measures implemented in the experiments show different impacts for different settlement types mainly due to the differences in building density, building height or impervious surface fraction. Parks and lakes implemented as adaptation measure show strong potential to reduce daytime air temperature, with cooling effects on their built-up surroundings. At night lakes generate negative and positive effects on air temperature, depending on water temperature. In general, all adaptation measures implemented in experiments reveal different impacts on day and night air temperature.

  6. Domain-general biases in spatial localization: Evidence against a distorted body model hypothesis. (United States)

    Medina, Jared; Duckett, Caitlin


    A number of studies have proposed the existence of a distorted body model of the hand. Supporting this hypothesis, judgments of the location of hand landmarks without vision are characterized by consistent distortions-wider knuckle and shorter finger lengths. We examined an alternative hypothesis in which these biases are caused by domain-general mechanisms, in which participants overestimate the distance between consecutive localization judgments that are spatially close. To do so, we examined performance on a landmark localization task with the hand (Experiments 1-3) using a lag-1 analysis. We replicated the widened knuckle judgments in previous studies. Using the lag-1 analysis, we found evidence for a constant overestimation bias along the mediolateral hand axis, such that consecutive stimuli were perceived as farther apart when they were closer (e.g., index-middle knuckle) versus farther (index-pinky) in space. Controlling for this bias, we found no evidence for a distorted body model along the mediolateral hand axis. To examine whether similar widening biases could be found with noncorporeal stimuli, we asked participants to localize remembered dots on a hand-like array (Experiments 4-5). Mean localization judgments were wider than actual along the primary array axis, similar to previous work with hands. As with proprioceptively defined stimuli, we found that this widening was primarily due to a constant overestimation bias. These results provide substantial evidence against a distorted body model hypothesis and support a domain-general model in which responses are biased away from the uncertainty distribution of the previous trial, leading to a constant overestimation bias. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. The ICTP Regional System Model (RESM) to simulate the monsoon in the South Asia CORDEX domain (United States)

    Di Sante, Fabio; Coppola, Erika; Farneti, Riccardo; Giorgi, Filippo


    South Asian climate is characterized mainly by the wet and dry dipole that divides the annual cycle in two seasons: the monsoon season and the dry season. The life and the economy of those regions is very much influenced by the climate variability and the monsoon variability therefore is crucial to understand the physical mechanism associated with them. The spatial and temporal representation of the monsoons over the South Asian region is one of the main challenge of global and regional climate models principally because they fail to represent the SST (sea surface temperature) induced rainfall when forced with observed SST resulting in a poor representation of the monsoon cycle (Fu et al. 2002). The coupling with the ocean is essential to be able to simulate the correct air-sea interaction; the results are in general much improved and the monsoon patterns and the time representation (like the onset for example) are closer to the observations (Fu et al. 2002; Fu et al. 2007; Ratnam et Al. 2008; Seo et Al. 2009). Here we present a Regional Earth System Model (RESM) composed by a regional climate model RegCM4 (Giorgi et al, 2012) coupled with the regional oceanic model MITgcm (Marshall et al, 1997) and two hydrological model: ChyM (Cetemps Hydrological Model, Coppola et al, 2007) and HD model (Max-Planck's HD model; Hagemann and Dümenil, 1998). We simulate the Southern Asian Climate taking into account the whole hydrological cycle. Wind stress, water fluxes and heat fluxes are exchanged from the atmosphere to the ocean, SST are exchanged from ocean to the atmosphere and in order to conserve mass, the river discharge is calculated from the Hydrological model and sent to the ocean. The main goal of this work is to evaluate the impacts of local air-sea interaction in the simulation of the interannual variability, over the Indian CORDEX (Giorgi et al, 2009) domain through regionally ocean-atmosphere-river coupled and uncoupled simulations, with a focus on monsoon season

  8. Domains and domain loss

    DEFF Research Database (Denmark)

    Haberland, Hartmut


    politicians and in the media, especially in the discussion whether some languages undergo ‘domain loss’ vis-à-vis powerful international languages like English. An objection that has been raised here is that domains, as originally conceived, are parameters of language choice and not properties of languages...... not described in terms of domains, and recent research e.g. about the multilingual communities in the Danish-German border area seems to confirm this....

  9. Estimates of Evapotranspiration with a One- and Two-Layer Model of Heat Transfer over Partial Canopy Cover. (United States)

    Kustas, William P.


    One of the applications of remotely sensed surface temperature is to determine the latent heat flux (LE) or evapotranspiration (ET) from held to regional scales. A common approach has been to use surface-air temperature differences in a bulk resistance equation for estimating sensible beat flux, H, and to subsequently solve for LE as a residual in the one-dimensional energy balance equation. This approach has been successfully applied over uniform terrain with nearly full, actively transpiring vegetative cover; however, serious discrepancies between estimated and measured ET have been observed when there is partial canopy cover.In an attempt to improve the estimates of H and as a result compute more accurate values of ET over partial canopy cover, one- and two-layer resistance models are developed to account for some of the factors causing the poor agreement between computed and measured ET.The utility of these two approaches for estimating ET at the field scale is tested with remotely sensed and micrometeorological data collected in an and environment from a furrowed cotton field with 20 percent cover and a dry soil surface. The estimates of LE are compared with values measured using eddy correlation and energy balance methods. It is found that the one-layer model generally performed better than the two-layer model under thew conditions; but only when using a bluff-body correction to the resistance based on a conceptual model of beat and water vapor transfer at the surface taking place by molecular diffusion into Kolmogorov-scale eddies. The empirical adjustment to the surface resistance with the one-layer approach assumed to be applicable for a fairly wide range of conditions was found to be inappropriate. This result is attributed to the significant size of the furrows relative to the height of the vegetation.Furthermore, a sensitivity analysis showed that the one-layer model with the empirical adjustment for the resistance was significantly affected by the

  10. Development of a Landforms Model for Puerto Rico and its Application for Land Cover Change Analysis (United States)

    Sebastian Martinuzzi; William A. Gould; Olga M. Ramos Gonzalez; Brook E. Edwards


    Comprehensive analysis of land morphology is essential to supporting a wide range environmental studies. We developed a landforms model that identifies eleven landform units for Puerto Rico based on parameters of land position and slope. The model is capable of extracting operational information in a simple way and is adaptable to different environments and objectives...

  11. Modeling effect of cover condition and soil type on rotavirus transport in surface flow. (United States)

    Bhattarai, Rabin; Davidson, Paul C; Kalita, Prasanta K; Kuhlenschmidt, Mark S


    Runoff from animal production facilities contains various microbial pathogens which pose a health hazard to both humans and animals. Rotavirus is a frequently detected pathogen in agricultural runoff and the leading cause of death among children around the world. Diarrheal infection caused by rotavirus causes more than two million hospitalizations and death of more than 500,000 children every year. Very little information is available on the environmental factors governing rotavirus transport in surface runoff. The objective of this study is to model rotavirus transport in overland flow and to compare the model results with experimental observations. A physically based model, which incorporates the transport of infective rotavirus particles in both liquid (suspension or free-floating) and solid phase (adsorbed to soil particles), has been used in this study. Comparison of the model results with experimental results showed that the model could reproduce the recovery kinetics satisfactorily but under-predicted the virus recovery in a few cases when multiple peaks were observed during experiments. Similarly, the calibrated model had a good agreement between observed and modeled total virus recovery. The model may prove to be a promising tool for developing effective management practices for controlling microbial pathogens in surface runoff.

  12. Modelling soil moisture under different land covers in a sub-humid ...

    Indian Academy of Sciences (India)

    Optimization of model parameters was performed with Newton search algorithm using the. SOLVER add-in in MS-ExcelR with a convergence limit of 10. −4. Model simulations require an ini- tial value of profile soil moisture (Winitial) and esti- mated soil moisture can be considerably influenced by this value. Therefore, in this ...

  13. Model Checking and Model-based Testing in the Railway Domain

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth; Peleska, Jan


    This chapter describes some approaches and emerging trends for verification and model-based testing of railway control systems. We describe state-of-the-art methods and associated tools for verifying interlocking systems and their configuration data, using bounded model checking and k-induction. ......This chapter describes some approaches and emerging trends for verification and model-based testing of railway control systems. We describe state-of-the-art methods and associated tools for verifying interlocking systems and their configuration data, using bounded model checking and k...

  14. Hybrid meshes and domain decomposition for the modeling of oil reservoirs; Maillages hybrides et decomposition de domaine pour la modelisation des reservoirs petroliers

    Energy Technology Data Exchange (ETDEWEB)

    Gaiffe, St.


    In this thesis, we are interested in the modeling of fluid flow through porous media with 2-D and 3-D unstructured meshes, and in the use of domain decomposition methods. The behavior of flow through porous media is strongly influenced by heterogeneities: either large-scale lithological discontinuities or quite localized phenomena such as fluid flow in the neighbourhood of wells. In these two typical cases, an accurate consideration of the singularities requires the use of adapted meshes. After having shown the limits of classic meshes we present the future prospects offered by hybrid and flexible meshes. Next, we consider the generalization possibilities of the numerical schemes traditionally used in reservoir simulation and we draw two available approaches: mixed finite elements and U-finite volumes. The investigated phenomena being also characterized by different time-scales, special treatments in terms of time discretization on various parts of the domain are required. We think that the combination of domain decomposition methods with operator splitting techniques may provide a promising approach to obtain high flexibility for a local tune-steps management. Consequently, we develop a new numerical scheme for linear parabolic equations which allows to get a higher flexibility in the local space and time steps management. To conclude, a priori estimates and error estimates on the two variables of interest, namely the pressure and the velocity are proposed. (author)

  15. Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes. (United States)

    Mason, R Preston; Jacob, Robert F; Shrivastava, Sandeep; Sherratt, Samuel C R; Chattopadhyay, Amitabha


    Cholesterol crystalline domains characterize atherosclerotic membranes, altering vascular signaling and function. Omega-3 fatty acids reduce membrane lipid peroxidation and subsequent cholesterol domain formation. We evaluated non-peroxidation-mediated effects of eicosapentaenoic acid (EPA), other TG-lowering agents, docosahexaenoic acid (DHA), and other long-chain fatty acids on membrane fluidity, bilayer width, and cholesterol domain formation in model membranes. In membranes prepared at 1.5:1 cholesterol-to-phospholipid (C/P) mole ratio (creating pre-existing domains), EPA, glycyrrhizin, arachidonic acid, and alpha linolenic acid promoted the greatest reductions in cholesterol domains (by 65.5%, 54.9%, 46.8%, and 45.2%, respectively) compared to controls; other treatments had modest effects. EPA effects on cholesterol domain formation were dose-dependent. In membranes with 1:1 C/P (predisposing domain formation), DHA, but not EPA, dose-dependently increased membrane fluidity. DHA also induced cholesterol domain formation without affecting temperature-induced changes in-bilayer unit cell periodicity relative to controls (d-space; 57Å-55Å over 15-30°C). Together, these data suggest simultaneous formation of distinct cholesterol-rich ordered domains and cholesterol-poor disordered domains in the presence of DHA. By contrast, EPA had no effect on cholesterol domain formation and produced larger d-space values relative to controls (60Å-57Å; pacids with differing chain length or unsaturation may differentially influence membrane lipid dynamics and structural organization as a result of distinct phospholipid/sterol interactions. Copyright © 2016. Published by Elsevier B.V.

  16. Shingle 2.0 : Generalising self-consistent and automated domain discretisation for multi-scale geophysical models

    NARCIS (Netherlands)

    Candy, A.S.; Pietrzak, J.D.


    The approaches taken to describe and develop spatial discretisations of the domains required for geophysical simulation models are commonly ad hoc, model- or application-specific, and under-documented. This is particularly acute for simulation models that are flexible in their use of multi-scale,

  17. Modeled Impacts of Cover Crops and Vegetative Barriers on Corn Stover Availability and Soil Quality

    Energy Technology Data Exchange (ETDEWEB)

    Ian J. Bonner; David J. Muth Jr.; Joshua B. Koch; Douglas L. Karlen


    Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion T values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.

  18. Numerical modeling of wave propagation in functionally graded materials using time-domain spectral Chebyshev elements (United States)

    Hedayatrasa, Saeid; Bui, Tinh Quoc; Zhang, Chuanzeng; Lim, Chee Wah


    Numerical modeling of the Lamb wave propagation in functionally graded materials (FGMs) by a two-dimensional time-domain spectral finite element method (SpFEM) is presented. The high-order Chebyshev polynomials as approximation functions are used in the present formulation, which provides the capability to take into account the through thickness variation of the material properties. The efficiency and accuracy of the present model with one and two layers of 5th order spectral elements in modeling wave propagation in FGM plates are analyzed. Different excitation frequencies in a wide range of 28-350 kHz are investigated, and the dispersion properties obtained by the present model are verified by reference results. The through thickness wave structure of two principal Lamb modes are extracted and analyzed by the symmetry and relative amplitude of the vertical and horizontal oscillations. The differences with respect to Lamb modes generated in homogeneous plates are explained. Zero-crossing and wavelet signal processing-spectrum decomposition procedures are implemented to obtain phase and group velocities and their dispersion properties. So it is attested how this approach can be practically employed for simulation, calibration and optimization of Lamb wave based nondestructive evaluation techniques for the FGMs. The capability of modeling stress wave propagation through the thickness of an FGM specimen subjected to impact load is also investigated, which shows that the present method is highly accurate as compared with other existing reference data.

  19. Site descriptive modelling Forsmark, stage 2.2. A fracture domain concept as a basis for the statistical modelling of fractures and minor deformation zones, and interdisciplinary coordination

    Energy Technology Data Exchange (ETDEWEB)

    Olofsson, Isabelle; Simeonov, Assen [Swedish Nuclear Fuel and Waste Manageme nt Co., Stockholm (Sweden); Stephens, Michael [Geological Survey of Sweden (SGU), U ppsala (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Nilsson, Ann-Chatrin [G eosigma AB, Uppsala (Sweden); Roeshoff, Kennert; Lindberg, Ulrika; Lanaro, Flavio [Bergbygg konsult AB, Haesselby (Sweden); Fredriksson, Anders; Persson, Lars [Golder Associat es AB (Sweden)


    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, Forsmark and Simpevarp/Laxemar, with the objective of siting a final waste repository at depth for spent nuclear fuel. The programme is built upon the development of site descriptive models after each data freeze. This report describes the first attempt to define fracture domains for the Forsmark site modelling in stage 2.2. Already during model version 1.2 at Forsmark, significant spatial variability in the fracture pattern was observed. The variability appeared to be so significant that it provoked the need for a subdivision of the model volume for the treatment of geological and hydrogeological data into sub-volumes. Subsequent analyses of data collected up to data freeze 2.1 led to a better understanding of the site and a concept for the definition of fracture domains based on geological characteristics matured. The main objectives of this report are to identify and describe fracture domains at the site on the basis of geological data and to compile hydrogeological, hydrogeochemical and rock mechanics data within each fracture domain and address the implications of this integration activity. On the basis of borehole data, six fracture domains (FFM01-FFM06) have been recognized inside and immediately around the candidate volume. Three of these domains (FFM01, FFM02 and FFM06) lie inside the target volume for a potential repository in the northwestern part of the candidate area, and need to be addressed in the geological DFN modelling work. The hydrogeological data support the subdivision of the bedrock into fracture domains FFM01, FFM02 and FFM03. Few or no data are available for the other three domains. The hydrogeochemical data also support the subdivision into fracture domains FFM01 and FFM02. Since few data are available from the bedrock between deformation zones inside FFM03, there is little information on the hydrogeochemical

  20. Formal Analysis of Security Models for Mobile Devices, Virtualization Platforms, and Domain Name Systems

    Directory of Open Access Journals (Sweden)

    Gustavo Betarte


    Full Text Available In this work we investigate the security of security-critical applications, i.e. applications in which a failure may produce consequences that are unacceptable. We consider three areas: mobile devices, virtualization platforms, and domain name systems. The Java Micro Edition platform defines the Mobile Information Device Profile (MIDP to facilitate the development of applications for mobile devices, like cell phones and PDAs. We first study and compare formally several variants of the security model specified by MIDP to access sensitive resources of a mobile device. Hypervisors allow multiple guest operating systems to run on shared hardware, and offer a compelling means of improving the security and the flexibility of software systems. In this work we present a formalization of an idealized model of a hypervisor. We establish (formally that the hypervisor ensures strong isolation properties between the different operating systems, and guarantees that requests from guest operating systems are eventually attended. We show also that virtualized platforms are transparent, i.e. a guest operating system cannot distinguish whether it executes alone or together with other guest operating systems on the platform. The Domain Name System Security Extensions (DNSSEC is a suite of specifications that provides origin authentication and integrity assurance services for DNS data. We finally introduce a minimalistic specification of a DNSSEC model which provides the grounds needed to formally state and verify security properties concerning the chain of trust of the DNSSEC tree. We develop all our formalizations in the Calculus of Inductive Constructions --formal language that combines a higher-order logic and a richly-typed functional programming language-- using the Coq proof assistant.

  1. Stochastic spatio-temporal model of coral cover as a function of herbivorous grazers, water quality, and coral demographics (United States)

    Neuhausler, R.; Robinson, M.; Bruna, M.


    Over the last 60 years we have seen an increased amount of ecological regime shifts in tropical coastal zones, from coral reefs to macroalgae dominated states, as a result of natural and anthropogenic stresses. However, these shifts are not always immediate- macroalgae are generally present in coral reefs, with their distribution regulated by herbivorous fish. This is especially true in Moorea, French Polynesia, where macroalgae are shown to flourish in spaces that provide refuge from roaming herbivores. While there are currently modeling efforts in projecting ecological regime shifts in Moorea, temporal deterministic models have been utilized, which fail to capture metastability between multiple steady states and can have issues when dealing with very small populations. To address these concerns, we build on these models to account for spatial variations and individual organisms, as well as stochasticity. Our model can project the percent cover of coral, macroalgae, and algae turf as a function of herbivorous grazers, water quality, and coral demographics. Grazers, included as individual fish (particles), evolve according to a kinetic model and interact with neighbouring benthic assemblages, represented as nodes. Water quality and coral demographics are input parameters that can vary over time, allowing our model to be run for temporally changing scenarios and to be adjusted for different reefs. We plan to engage with previous Moorea Reef Resilience Models through a comparative analysis of our models' outcomes and existing Moorea data. Coupling projective models with available data is useful for informing environmental policy and advancing the modeling field.

  2. Benthic Cover (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic cover (habitat) maps are derived from aerial imagery, underwater photos, acoustic surveys, and data gathered from sediment samples. Shallow to moderate-depth...

  3. Advanced spatial metrics analysis in cellular automata land use and cover change modeling

    International Nuclear Information System (INIS)

    Zamyatin, Alexander; Cabral, Pedro


    This paper proposes an approach for a more effective definition of cellular automata transition rules for landscape change modeling using an advanced spatial metrics analysis. This approach considers a four-stage methodology based on: (i) the search for the appropriate spatial metrics with minimal correlations; (ii) the selection of the appropriate neighborhood size; (iii) the selection of the appropriate technique for spatial metrics application; and (iv) the analysis of the contribution level of each spatial metric for joint use. The case study uses an initial set of 7 spatial metrics of which 4 are selected for modeling. Results show a better model performance when compared to modeling without any spatial metrics or with the initial set of 7 metrics.

  4. "Happiness in Life Domains: Evidence from Bangladesh Based on Parametric and Non-Parametric Models"


    Minhaj Mahmud; Yasuyuki Sawada


    This paper applies a two layer approach to explain overall happiness both as a function of happiness in different life-domains and conventional explanatory variables such as income, education and health etc. Then it tests the happiness-income relationship in different happiness domains. Overall, the results suggest that income explains a large part of the variation in total happiness and that income is closely related with domain-specific happiness, even with non-economic domains. This is als...

  5. Modeling of Alpine Grassland Cover Based on Unmanned Aerial Vehicle Technology and Multi-Factor Methods: A Case Study in the East of Tibetan Plateau, China

    Directory of Open Access Journals (Sweden)

    Baoping Meng


    Full Text Available Grassland cover and its temporal changes are key parameters in the estimation and monitoring of ecosystems and their functions, especially via remote sensing. However, the most suitable model for estimating grassland cover and the differences between models has rarely been studied in alpine meadow grasslands. In this study, field measurements of grassland cover in Gannan Prefecture, from 2014 to 2016, were acquired using unmanned aerial vehicle (UAV technology. Single-factor parametric and multi-factor parametric/non-parametric cover inversion models were then constructed based on 14 factors related to grassland cover, and the dynamic variation of the annual maximum cover was analyzed. The results show that (1 nine out of 14 factors (longitude, latitude, elevation, the concentrations of clay and sand in the surface and bottom soils, temperature, precipitation, enhanced vegetation index (EVI and normalized difference vegetation index (NDVI exert a significant effect on grassland cover in the study area. The logarithmic model based on EVI presents the best performance, with an R2 and RMSE of 0.52 and 16.96%, respectively. Single-factor grassland cover inversion models account for only 1–49% of the variation in cover during the growth season. (2 The optimum grassland cover inversion model is the artificial neural network (BP-ANN, with an R2 and RMSE of 0.72 and 13.38%, and SDs of 0.062% and 1.615%, respectively. Both the accuracy and the stability of the BP-ANN model are higher than those of the single-factor parametric models and multi-factor parametric/non-parametric models. (3 The annual maximum cover in Gannan Prefecture presents an increasing trend over 60.60% of the entire study area, while 36.54% is presently stable and 2.86% exhibits a decreasing trend.

  6. Using LIDAR and Quickbird Data to Model Plant Production and Quantify Uncertainties Associated with Wetland Detection and Land Cover Generalizations (United States)

    Cook, Bruce D.; Bolstad, Paul V.; Naesset, Erik; Anderson, Ryan S.; Garrigues, Sebastian; Morisette, Jeffrey T.; Nickeson, Jaime; Davis, Kenneth J.


    Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the MOderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30 m to 1 km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600 ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400 m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.

  7. Biomedical implications from a morphoelastic continuum model for the simulation of contracture formation in skin grafts that cover excised burns. (United States)

    Koppenol, Daniël C; Vermolen, Fred J


    A continuum hypothesis-based model is developed for the simulation of the (long term) contraction of skin grafts that cover excised burns in order to obtain suggestions regarding the ideal length of splinting therapy and when to start with this therapy such that the therapy is effective optimally. Tissue is modeled as an isotropic, heterogeneous, morphoelastic solid. With respect to the constituents of the tissue, we selected the following constituents as primary model components: fibroblasts, myofibroblasts, collagen molecules, and a generic signaling molecule. Good agreement is demonstrated with respect to the evolution over time of the surface area of unmeshed skin grafts that cover excised burns between outcomes of computer simulations obtained in this study and scar assessment data gathered previously in a clinical study. Based on the simulation results, we suggest that the optimal point in time to start with splinting therapy is directly after placement of the skin graft on its recipient bed. Furthermore, we suggest that it is desirable to continue with splinting therapy until the concentration of the signaling molecules in the grafted area has become negligible such that the formation of contractures can be prevented. We conclude this study with a presentation of some alternative ideas on how to diminish the degree of contracture formation that are not based on a mechanical intervention, and a discussion about how the presented model can be adjusted.

  8. Numerical time-domain modelling of hoof-ground interaction during the stance phase. (United States)

    Behnke, R


    Hoof-ground interaction impacts on the health and performance characteristics of horses. Due to complex interactions between hoof and ground during the stance phase, previous experimentally dominated studies concentrated on subproblems of the phenomena observed. A multidisciplinary methodology with mathematical modelling, material testing and in vivo experimental measurements seems promising. With the help of a mathematical approach, this contribution aims to explain from a biomechanical point of view the phenomena observed during experimental investigations (hoof acceleration, interacting forces) and aims to contribute to an overall experimental-mathematical multidisciplinary approach. In silico modelling of hoof-ground interaction (limb, hoof and horizontally unbounded ground). Hoof-ground interaction is represented by a time-domain finite element model including the limb, the hoof and the unbounded representation of the ground via the scaled boundary finite element method to capture radiation damping during the stance phase. Motoric forces (driving forces) of the horse during locomotion are included. Numerical model results for acceleration-time relations (hoof) at different trotting velocities are compared with previously published acceleration-time relations and show qualitative agreement. From the model approach, power loss due to different ground properties and ground damping is computed in combination with the maximum limb force during the stance phase. Intentionally, a simplified model approach for the material and structural representation of the limb, the hoof and the ground in terms of material features and spatial resolution has been used for this study, which might be the basis for a model refinement in terms of contact properties as well as the integration of bone and joint structures. The comparison to experimentally obtained results demonstrates the applicability of the model, which, in turn, enables an insight into the processes taking place

  9. Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions.

    Directory of Open Access Journals (Sweden)

    Holger Perfahl


    Full Text Available We investigate a three-dimensional multiscale model of vascular tumour growth, which couples blood flow, angiogenesis, vascular remodelling, nutrient/growth factor transport, movement of, and interactions between, normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. In particular, we determine how the domain size, aspect ratio and initial vascular network influence the tumour's growth dynamics and its long-time composition. We establish whether it is possible to extrapolate simulation results obtained for small domains to larger ones, by constructing a large simulation domain from a number of identical subdomains, each subsystem initially comprising two parallel parent vessels, with associated cells and diffusible substances. We find that the subsystem is not representative of the full domain and conclude that, for this initial vessel geometry, interactions between adjacent subsystems contribute to the overall growth dynamics. We then show that extrapolation of results from a small subdomain to a larger domain can only be made if the subdomain is sufficiently large and is initialised with a sufficiently complex vascular network. Motivated by these results, we perform simulations to investigate the tumour's response to therapy and show that the probability of tumour elimination in a larger domain can be extrapolated from simulation results on a smaller domain. Finally, we demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour.

  10. A mass balance model to estimate the rate of composting, methane oxidation and anaerobic digestion in soil covers and shallow waste layers. (United States)

    Rafiee, Reza; Obersky, Lizanne; Xie, Sihuang; Clarke, William P


    Although CH 4 oxidation in landfill soil covers is widely studied, the extent of composting and CH 4 oxidation in underlying waste layers has been speculated but not measured. The objective of this study was to develop and validate a mass balance model to estimate the simultaneous rates of anaerobic digestion (r AD ), CH 4 oxidation (r OX ) and composting (r COM ) in environments where O 2 penetration is variable and zones of aerobic and anaerobic activity are intermingled. The modelled domain could include, as an example, a soil cover and the underlying shallow waste to a nominated depth. The proposed model was demonstrated on a blend of biogas from three separate known sources of gas representing the three reaction processes: (i) a bottle of laboratory grade 50:50% CH 4 :CO 2 gas representing anaerobic digestion biogas; (ii) an aerated 250mL bottle containing food waste that represented composting activity; and (iii) an aerated 250mL bottle containing non-degradable graphite granules inoculated with methanotrophs and incubated with CH 4 and O 2 to represent methanotrophic activity. CO 2 , CH 4 , O 2 and the stable isotope 13 C-CO 2 were chosen as the components for the mass balance model. The three reaction rates, r (=r AD , r OX , r COM ) were calculated as fitting parameters to the overdetermined set of 4mass balance equations with the net flux of these components from the bottles q (= [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] ) as inputs to the model. The coefficient of determination (r 2 ) for observed versus modelled values of r were 1.00, 0.97, 0.98 when the stoichiometry of each reaction was based on gas yields measured in the individual bottles and q was calculated by summing yields from the three bottles. r 2 deteriorated to 0.95, 0.96, 0.87 when using an average stoichiometry from 11 incubations of each of the composting and methane oxidation processes. The significant deterioration in the estimation of r

  11. Model checking of safety-critical software in the nuclear engineering domain

    International Nuclear Information System (INIS)

    Lahtinen, J.; Valkonen, J.; Björkman, K.; Frits, J.; Niemelä, I.; Heljanko, K.


    Instrumentation and control (I and C) systems play a vital role in the operation of safety-critical processes. Digital programmable logic controllers (PLC) enable sophisticated control tasks which sets high requirements for system validation and verification methods. Testing and simulation have an important role in the overall verification of a system but are not suitable for comprehensive evaluation because only a limited number of system behaviors can be analyzed due to time limitations. Testing is also performed too late in the development lifecycle and thus the correction of design errors is expensive. This paper discusses the role of formal methods in software development in the area of nuclear engineering. It puts forward model checking, a computer-aided formal method for verifying the correctness of a system design model, as a promising approach to system verification. The main contribution of the paper is the development of systematic methodology for modeling safety critical systems in the nuclear domain. Two case studies are reviewed, in which we have found errors that were previously not detected. We also discuss the actions that should be taken in order to increase confidence in the model checking process.

  12. Modeling and Simulation of Voids in Composite Tape Winding Process Based on Domain Superposition Technique (United States)

    Deng, Bo; Shi, Yaoyao


    The tape winding technology is an effective way to fabricate rotationally composite materials. Nevertheless, some inevitable defects will seriously influence the performance of winding products. One of the crucial ways to identify the quality of fiber-reinforced composite material products is examining its void content. Significant improvement in products' mechanical properties can be achieved by minimizing the void defect. Two methods were applied in this study, finite element analysis and experimental testing, respectively, to investigate the mechanism of how void forming in composite tape winding processing. Based on the theories of interlayer intimate contact and Domain Superposition Technique (DST), a three-dimensional model of prepreg tape void with SolidWorks has been modeled in this paper. Whereafter, ABAQUS simulation software was used to simulate the void content change with pressure and temperature. Finally, a series of experiments were performed to determine the accuracy of the model-based predictions. The results showed that the model is effective for predicting the void content in the composite tape winding process.

  13. Integrating the context-appropriate balanced attention model and reinforcement sensitivity theory: Towards a domain-general personality process model. (United States)

    Collins, Michael D; Jackson, Chris J; Walker, Benjamin R; O'Connor, Peter J; Gardiner, Elliroma


    Over the last 40 years or more the personality literature has been dominated by trait models based on the Big Five (B5). Trait-based models describe personality at the between-person level but cannot explain the within-person mental mechanisms responsible for personality. Nor can they adequately account for variations in emotion and behavior experienced by individuals across different situations and over time. An alternative, yet understated, approach to personality architecture can be found in neurobiological theories of personality, most notably reinforcement sensitivity theory (RST). In contrast to static trait-based personality models like the B5, RST provides a more plausible basis for a personality process model, namely, one that explains how emotions and behavior arise from the dynamic interaction between contextual factors and within-person mental mechanisms. In this article, the authors review the evolution of a neurobiologically based personality process model based on RST, the response modulation model and the context-appropriate balanced attention model. They argue that by integrating this complex literature, and by incorporating evidence from personality neuroscience, one can meaningfully explain personality at both the within- and between-person levels. This approach achieves a domain-general architecture based on RST and self-regulation that can be used to align within-person mental mechanisms, neurobiological systems and between-person measurement models. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Numerical modeling of a snow cover on Hooker Island (Franz Josef Land archipelago

    Directory of Open Access Journals (Sweden)

    V. S. Sokratov


    Full Text Available Results obtained by simulating snow characteristics with a numerical model of surface heat and moisture exchange SPONSOR are presented. The numerical experiments are carried out for Franz Josef Land with typical Arctic climate conditions. The blizzard evaporation parameter is shown to have great influence on snow depth on territories with high wind speed. This parameter significantly improves the simulation quality of the numerical model. Some discrepancies between evaluated and observed snow depth values can be explained by inaccuracies in precipitation measurements (at least in certain cases and errors in calculations of incoming radiation, mostly due to low accuracy in the cloudiness observations.

  15. New business models: the Agents and Inter-Agents in a neuroscientific domain

    Directory of Open Access Journals (Sweden)

    Michela Balconi


    Full Text Available Agency has been classically defined as the ability to sense and judge ourselves as the generators of an action and of its effects. In interactions, the ability to sense and consciously recognize that we – me and you – are the ones that are generating an action and causing its effects has been instead defined inter-agency or joint-agency. The implications of having developed good agency-related skills and of being aware of such processes become crucially important when we think at complex situations that characterize the real-life professional domain. Based on the crucial role of relationship with other social agents, cooperation and team-work for business and management activities, novel business models might benefit from an increased awareness of the way we and our co-workers plan, behave, make decisions, and manage action outcomes.

  16. Computer simulation of temperature-dependent growth of fractal and compact domains in diluted Ising models

    DEFF Research Database (Denmark)

    Sørensen, Erik Schwartz; Fogedby, Hans C.; Mouritsen, Ole G.


    temperature are studied as functions of temperature, time, and concentration. At zero temperature and high dilution, the growing solid is found to have a fractal morphology and the effective fractal exponent D varies with concentration and ratio of time scales of the two dynamical processes. The mechanism...... responsible for forming the fractal solid is shown to be a buildup of a locally high vacancy concentration in the active growth zone. The growth-probability measure of the fractals is analyzed in terms of multifractality by calculating the f(α) spectrum. It is shown that the basic ideas of relating...... probability measures of static fractal objects to the growth-probability distribution during formation of the fractal apply to the present model. The f(α) spectrum is found to be in the universality class of diffusion-limited aggregation. At finite temperatures, the fractal solid domains become metastable...

  17. Medication Reconciliation: Work Domain Ontology, prototype development, and a predictive model. (United States)

    Markowitz, Eliz; Bernstam, Elmer V; Herskovic, Jorge; Zhang, Jiajie; Shneiderman, Ben; Plaisant, Catherine; Johnson, Todd R


    Medication errors can result from administration inaccuracies at any point of care and are a major cause for concern. To develop a successful Medication Reconciliation (MR) tool, we believe it necessary to build a Work Domain Ontology (WDO) for the MR process. A WDO defines the explicit, abstract, implementation-independent description of the task by separating the task from work context, application technology, and cognitive architecture. We developed a prototype based upon the WDO and designed to adhere to standard principles of interface design. The prototype was compared to Legacy Health System's and Pre-Admission Medication List Builder MR tools via a Keystroke-Level Model analysis for three MR tasks. The analysis found the prototype requires the fewest mental operations, completes tasks in the fewest steps, and completes tasks in the least amount of time. Accordingly, we believe that developing a MR tool, based upon the WDO and user interface guidelines, improves user efficiency and reduces cognitive load.

  18. Automated detection of microcalcification clusters in digital mammograms based on wavelet domain hidden Markov tree modeling

    International Nuclear Information System (INIS)

    Regentova, E.; Zhang, L.; Veni, G.; Zheng, J.


    A system is designed for detecting microcalcification clusters (MCC) in digital mammograms. The system is intended for computer-aided diagnostic prompting. Further discrimination of MCC as benign or malignant is assumed to be performed by radiologists. Processing of mammograms is based on the statistical modeling by means of wavelet domain hidden markov trees (WHMT). Segmentation is performed by the weighted likelihood evaluation followed by the classification based on spatial filters for a single microcalcification (MC) and a cluster of MC detection. The analysis is carried out on FROC curves for 40 mammograms from the mini-MIAS database and for 100 mammograms with 50 cancerous and 50 benign cases from DDSM database. The designed system is capable to detect 100% of true positive cases in these sets. The rate of false positives is 2.9 per case for mini-MIAS dataset; and 0.01 for the DDSM images. (orig.)

  19. A computational model for domain structure evolution of nematic liquid crystal elastomers (United States)

    Wang, Hongbo; Oates, William S.


    Liquid crystal elastomers combine both liquid crystals and polymers, which gives rise to many fascinating properties, such as unparalleled elastic anisotropy, photo-mechanics and flexoelectric behavior. The potential applications for these materials widely range from wings for micro-air vehicles to reversible adhesion skins for mobile climbing robots. However, significant challenges remain to understand the rich range of microstructure evolution exibited by these materials. This paper presents a model for domain structure evolution within the Ginzburg-Landau framework. The free energy consists of two parts: the distortion energy introduced by Ericksen [1] and a Landau energy. The finite element method has been implemented to solve the governing equations developed. Numerical examples are given to demonstrate the microstructure evolution.

  20. The analysis of reactively loaded microstrip antennas by finite difference time domain modelling (United States)

    Hilton, G. S.; Beach, M. A.; Railton, C. J.


    In recent years, much interest has been shown in the use of printed circuit antennas in mobile satellite and communications terminals at microwave frequencies. Although such antennas have many advantages in weight and profile size over more conventional reflector/horn configurations, they do, however, suffer from an inherently narrow bandwidth. A way of optimizing the bandwidth of such antennas by an electronic tuning technique using a loaded probe mounted within the antenna structure is examined, and the resulting far-field radiation patterns are shown. Simulation results from a 2D finite difference time domain (FDTD) model for a rectangular microstrip antenna loaded with shorting pins are given and compared to results obtained with an actual antenna. It is hoped that this work will result in a design package for the analysis of microstrip patch antenna elements.

  1. Investigation of nucleon-induced reactions in the Fermi energy domain within the microscopic DYWAN model

    Energy Technology Data Exchange (ETDEWEB)

    Sebille, F.; Bonilla, C. [SUBATECH, Universite de Nantes, CNRS/IN2P3, 44 - Nantes (France); Blideanu, V.; Lecolley, J.F. [Laboratoire de Physique Corpusculaire, ENSICAEN, Universite de Caen, IN2P3-CNRS, 14 - Caen (France)


    A microscopic investigation of nucleon-induced reactions is addressed within the DYWAN model, which is based on the projection methods of out of equilibrium statistical physics and on the mathematical theory of wavelets. Due to a strongly compressed representation of the fermionic wave-functions, the numerical simulations of the nucleon transport in target are therefore able to preserve the quantum nature of the colliding system, as well as a least biased many-body information needed to keep track of the cluster formation. A special attention is devoted to the fingerprints of the phase space topology induced by the fluctuations of the self-consistent mean-field. Comparisons be ween theoretical results and experimental data point out that ETDHF type approaches are well suited to describe reaction mechanisms in the Fermi energy domain. The observed sensitivity to physical effects shows that the nucleon-induced reactions provide a valuable probe of the nuclear interaction in this range of energy. (authors)

  2. A Multi-Level Model of Information Seeking in the Clinical Domain (United States)

    Hung, Peter W.; Johnson, Stephen B.; Kaufman, David R.; Mendonça, Eneida A.


    Objective: Clinicians often have difficulty translating information needs into effective search strategies to find appropriate answers. Information retrieval systems employing an intelligent search agent that generates adaptive search strategies based on human search expertise could be helpful in meeting clinician information needs. A prerequisite for creating such systems is an information seeking model that facilitates the representation of human search expertise. The purpose of developing such a model is to provide guidance to information seeking system development and to shape an empirical research program. Design: The information seeking process was modeled as a complex problem-solving activity. After considering how similarly complex activities had been modeled in other domains, we determined that modeling context-initiated information seeking across multiple problem spaces allows the abstraction of search knowledge into functionally consistent layers. The knowledge layers were identified in the information science literature and validated through our observations of searches performed by health science librarians. Results: A hierarchical multi-level model of context-initiated information seeking is proposed. Each level represents (1) a problem space that is traversed during the online search process, and (2) a distinct layer of knowledge that is required to execute a successful search. Grand strategy determines what information resources will be searched, for what purpose, and in what order. The strategy level represents an overall approach for searching a single resource. Tactics are individual moves made to further a strategy. Operations are mappings of abstract intentions to information resource-specific concrete input. Assessment is the basis of interaction within the strategic hierarchy, influencing the direction of the search. Conclusion: The described multi-level model provides a framework for future research and the foundation for development of an

  3. A High Order Filter with Galerkin Finite Element Method for the Spherical Local domain Model (United States)

    Lee, C. H.; Cheong, H. B.; Kang, H. G.


    A High Order Filter with Galerkin Finite Element Method for the Spherical Local domain ModelChung-Hui Lee1 and Hyeong-Bin Cheong and Hyun-Gyu KangDepartment of Environmental Atmospheric Sciences, Pukyong National University, Busan, Korea (1 A high-order filter with Galerkin finite element method is constructed by applying a two dimensional finite element method with quadrilateral basis functions to the spherical limited area domain. The quadrilateral basis function is defined as four shape-functions on separate four grid-boxes which share the same gridpoint. A first-order derivative is represented with an algebraic equation consisting of nine point stencil. Helmholtz equation on a sphere is the basic component of the high order filter and the filtering is performed by solving this equation with two dimensional finite element method. As the theory describes, for spherical Laplacian operator and first-order derivative, the convergence rates of the error were revealed to be second-order and fourth-order, respectively. In addition, since the convergence rate of errors for the filter in this study was the same as the filter with Fourier finite element method, the accuracy of the filter is comparable to the filter based on the Fourier finite element method. The high-order filter was applied to the WRF (Weather Research and Forecasting) as hyper-viscosity and its performance was compared with those of the built-in viscosity scheme of the WRF model. As a result of the tropical cyclone simulation, the forecast error for the high-order filter and the built-in viscosity were similar for the minimum pressure and track prediction. However, for the precipitation and rainfall distribution, the prediction with high-order filter appeared closer to observations than those with built-in viscosity.

  4. Assessing Land Use-Cover Changes and Modelling Change Scenarios in Two Mountain Spanish National Parks

    Directory of Open Access Journals (Sweden)

    Javier Martínez-Vega


    Full Text Available Land Use-Cover Changes (LUCCs are one of the main problems for the preservation of biodiversity. Protected Areas (PAs do not escape this threat. Some processes, such as intensive recreational use, forest fires or the expansion of artificial areas taking place inside and around them in response to their appeal, question their environmental sustainability and their efficiency. In this paper, we analyze the LUCCs that took place between 1990 and 2006 in two National Parks (NPs belonging to the Spanish network and in their surroundings: Ordesa and Monte Perdido (Ordesa NP and Sierra de Guadarrama (Guadarrama NP. We also simulate land use changes between 2006 and 2030 by means of Artificial Neural Networks (ANNs, taking into account two scenarios: trend and green. Finally, we perform a multi-temporal analysis of natural habitat fragmentation in each NP. The results show that the NPs analyzed are well-preserved and have seen hardly any significant LUCCs inside them. However, Socioeconomic Influence Zones (SIZs and buffers are subject to different dynamics. In the SIZ and buffer of the Ordesa NP, there has been an expansion of built-up areas (annual rate of change = +1.19 around small urban hubs and ski resorts. There has also been a gradual recovery of natural areas, which had been interrupted by forest fires. The invasion of sub-alpine grasslands by shrubs is clear (+2735 ha. The SIZ and buffer of the Guadarrama NP are subject to urban sprawl in forest areas and to the construction of road infrastructures (+5549 ha and an annual rate of change = +1.20. Industrial area has multiplied by 3.3 in 20 years. The consequences are an increase in the Wildland-Urban Interface (WUI, greater risk of forest fires and greater fragmentation of natural habitats (+0.04 in SIZ. In the change scenarios, if conditions change as expected, the specific threats facing each NP can be expected to increase. There are substantial differences between the scenarios depending on

  5. Land cover models to predict non-point nutrient inputs for selected ...

    African Journals Online (AJOL)

    WQSAM is a practical water quality model for use in guiding southern African water quality management. However, the estimation of non-point nutrient inputs within WQSAM is uncertain, as it is achieved through a combination of calibration and expert knowledge. Non-point source loads can be correlated to particular land ...

  6. Spatial object modeling in fuzzy topological spaces: with applications to land cover change

    NARCIS (Netherlands)

    Tang, Xinming; Tang, Xinming


    The central topic of this thesis focuses on the accommodation of fuzzy spatial objects in a GIS. Several issues are discussed theoretically and practically, including the definition of fuzzy spatial objects, the topological relations between them, the modeling of fuzzy spatial objects, the

  7. Combining inventories of land cover and forest resources with prediction models and remotely sensed data (United States)

    Raymond L. Czaplewski


    It is difficult to design systems for national and global resource inventory and analysis that efficiently satisfy changing, and increasingly complex objectives. It is proposed that individual inventory, monitoring, modeling, and remote sensing systems be specialized to achieve portions of the objectives. These separate systems can be statistically linked to accomplish...

  8. Interannual Variabilities in High Cloud Cover from AIRS Data and Comparison to Climate Models (United States)

    Li, K. F.; Mak, S. N.; Chang, T. M.; Antilla, K.; Su, H.; Wong, S.; Jiang, J. H.; Yung, Y. L.


    The Atmospheric Infrared Sounder (AIRS) has been providing high quality data of global high cloud distribution since 2003. We identify the dominant modes of variabilities and associated spatial patterns, and relate them to sea surface temperature (SST). The first two empirical orthogonal functions (EOFs) are highly correlated to the El Niño-Southern Oscillation (ENSO) — including both EP-ENSO (canonical ENSO) and CP-ENSO (ENSO Modoki). These modes are compared with those obtained using the CloudSat data. The same EOF analysis is applied to simulations from 20 AMIP5 models. In general, the models are able to simulate the first EOF, the EP-ENSO, in the data. However, only about half of the AMIP5 models could realistically reproduce the second EOF, the CP-ENSO. Improved understanding of high cloud variabilities will advance climate model simulations and facilitate more accurate predictions of future climate, specifically the climate response to increasing greenhouse gases such as carbon dioxide.

  9. Modelling soil moisture under different land covers in a sub-humid ...

    Indian Academy of Sciences (India)

    cipitation/irrigation and yields output of evapo- transpiration and drainage. Spatial (vertical and lateral) variations in properties and processes are ignored and soil moisture content for the layer as a whole is modelled. Accordingly, application of water balance equation to the soil layer under these assumptions for time period ...

  10. A Mesoscale Meteorological Model of Modified Land Cover to the Effect of Urban Heat Island in Jakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Yopi Ilhamsyah


    Full Text Available A mesoscale meteorological model of modified land cover to the effect of urban heat island (UHI in Jakarta was done. Although higher temperature in the city has been generally known, factors and issues that result in the increase of temperature particularly nighttime temperature over the city, however, are not well-understood. Jakarta, the capital of Indonesia, is encountering urbanization problems foremost. The increasing demand of housing as well as rapid development of sky crapper building, market places and highway diminishes the vegetation which in turn trap heat in the troposphere throughout the year, particularly during dry season on June-August. The fifth-generation mesoscale meteorological model (MM5 was employed in the study. The model involves medium range forecast planetary boundary layer (MRF PBL scheme and land surface with two following parameters: i.e. roughness length over land and thermal inertia of land. These two parameters are chosen to enhance the characteristics of land surface. The simulation was carried out for 3 days on August 5-7, 2004 during dry season. The results showed that the simulation of surface temperature done by MM5 modified land cover described a good comparison to that of weather observation data. As a result, the effect of UHI was also well-observed during day-time. In addition, MM5 modified land cover simulation also illustrated a well-development of sea-breeze and country-breeze during mid-day and nighttime, respectively. However, long-term simulation is still required. Thus, daily diurnal cycles of air temperature and their differences can be well-observed in detail.

  11. Modeling the Hydro-Climatic Effects of Land Cover / Land Use Changes in the Euphrates and Tigris Basin Under a Changing Climate (United States)

    Yilmaz, Y.; Sen, O. L.; Turuncoglu, U. U.


    The Southeastern Anatolia Project (SAP) of Turkey is a multidimensional regional development project based on utilizing the waters of Euphrates and Tigris rivers by irrigating vast semi-arid lands and by producing hydroelectric power. Since the beginning of 90s, the irrigation schemes carried out within the scope of SAP have substantially altered the land cover / land use (LCLU) of the region. In this study, the individual and combined effects of anthropogenic LCLU changes through intensification of irrigation and climate change are investigated by use of a state-of-the-art regional climate model (RegCM4). For this purpose, model simulations with three reconstructed LCLU maps and two future climate change scenarios were conducted over a domain at a horizontal resolution of 48 km over Eastern Mediterranean and Black Sea region, and later on nested domain with 12 km resolution over Turkey. As forcing dataset for RegCM4 at the boundaries, a reanalysis data (NNRP) and outputs of a global circulation model (EC-EARTH) have been used. Model performance was assessed by using high resolution gridded CRU (Climatic Research Unit) data for the period between 1991 and 2008. The model suggests that LCLU changes have some effects on surface hydro-climatic variables in the region (e.g., temperatures are 0.4 0C and 0.8 0C cooler while precipitation amounts are more around 3% and 7%, evapotranspiration rates are higher 51% and 114%, specific humidity amounts are more around 8% and 17%, on annual basis, in simulations respectively with current and future land use maps compared to a simulation with pre-SAP land use conditions). The RCP 4.5 scenario simulation with the default land use map shows that precipitation and evapotranspiration amounts will increase in opposition to the simulation results of RCP 8.5 scenario. Preliminary results of the study indicate that current and future LCLU changes will affect the water balance of the basin. The riparian countries (Turkey, Iraq and Syria

  12. Psychopathology and friendship in children and adolescents: disentangling the role of co-occurring symptom domains with serial mediation models. (United States)

    Manfro, Arthur Gus; Pan, Pedro M; Gadelha, Ary; Fleck, Marcelo; do Rosário, Maria C; Cogo-Moreira, Hugo; Affonseca-Bressan, Rodrigo; Mari, Jair; Miguel, Euripedes C; Rohde, Luis A; Salum, Giovanni A


    The consolidation of social friendship groups is a vital part of human development. The objective of this study is to understand the direct and indirect influences of three major symptomatic domains-emotional, hyperkinetic, and conduct-on friendship. Specifically, we aim to study if the associations of one domain with friendship may be mediated by co-occurring symptoms from another domain. A total of 2512 subjects aged 6-14 years participated in this study. Friendship was evaluated by the Development and Well-Being Assessment's friendship section. We evaluated two main constructs as outcomes: (1) social isolation and (2) friendship latent construct. Emotional, hyperkinetic, and conduct symptomatic domains were evaluated with the Strengths and Difficulties Questionnaire (SDQ). All SDQ domains were positively associated with social isolation and negatively associated with friendship latent construct in univariate analysis. However, serial mediation models showed that the association between conduct domains with social isolation was mediated by emotion and hyperkinetic domains. Moreover, the associations between emotional and hyperkinetic domains with friendship latent construct in non-isolated children were mediated by the conduct domain. Emotion and hyperkinetic domains were directly and indirectly associated with social isolation, whereas conduct was directly and indirectly associated with overall friendship in non-isolated children. Results suggest that interventions aimed to improve social life in childhood and adolescence may have stronger effects if directed towards the treatment of emotion and hyperkinetic symptoms in socially isolated children and directed towards the treatment of conduct symptoms in children with fragile social connections.

  13. Implication of remotely sensed data to incorporate land cover effect into a linear reservoir-based rainfall-runoff model (United States)

    Nourani, Vahid; Fard, Ahmad Fakheri; Niazi, Faegheh; Gupta, Hoshin V.; Goodrich, David C.; Kamran, Khalil Valizadeh


    This study investigates the effect of land use on the Geomorphological Cascade of Unequal linear Reservoirs (GCUR) model using the Normalized Difference Vegetation Index (NDVI) derived from remotely sensed data as a measure of land use. The proposed modeling has two important aspects: it considers the effects of both watershed geomorphology and land use/cover, and it requires only one parameter to be estimated through the use of observed rainfall-runoff data. Geographic Information System (GIS) tools are employed to determine the parameters associated with watershed geomorphology, and the Vegetation Index parameter is extracted from historical Landsat images. The modeling is applied via three formulations to a watershed located in Southeastern Arizona, which consists of two gaged sub-watersheds with different land uses. The results show that while all of the formulations generate forecasts of the basin outlet hydrographs with acceptable accuracy, only the two formulations that consider the effects of land cover (using NDVI) provide acceptable results at the outlets of the sub-watersheds.

  14. Modeling the Development of Vocational Competence: A Psychometric Model for Economic Domains (United States)

    Klotz, Viola Katharina; Winther, Esther; Festner, Dagmar


    This article discusses the development of vocational competence through economic vocational educational training (VET) from a theoretical and psychometric perspective. Most assessment and competence models tend to adopt a state perspective toward assessments of competence and carve out different structures of competence for diverse vocational…

  15. Modeling and imaging land-cover influences on air-temperature in and near Baltimore, MD (United States)

    Gordon Heisler; Alexis Ellis; David J. Nowak; Ian. Yesilonis


    Over the course of 1681 hours between May 5 and September 30, 2006, air temperatures measured at the 1.5-m height at seven sites in and near the city of Baltimore, MD were used to empirically model Δ Tˆ R-p , the difference in air temperature between a site in downtown Baltimore and the six other sites. Variables in the...

  16. Faster Deterministic Volume Estimation in the Oracle Model via Thin Lattice Coverings

    NARCIS (Netherlands)

    D.N. Dadush (Daniel)


    htmlabstractWe give a 2O(n)(1+1/")n time and poly(n)-space deterministic algorithm for computing a (1+")n approximation to the volume of a general convex body K, which comes close to matching the (1+c/")n/2 lower bound for volume estimation in the oracle model by Bárány and Füredi (STOC 1986,


    Directory of Open Access Journals (Sweden)

    Djoko Purnomo


    Full Text Available The particular objective of this study was to investigate the effectiveness of implementation of learning device in the form of macros-based cognitive domain evaluation model via E-learning applied at 10th grade of senior high school in the odd semester based on the curriculum 2013. The method of this study followed the procedures of R & D (Research & Development developed by Borg and Gall. The results of the research and application development of macros-based evaluation model are effective which can be seen from (1 the results of students’ mastery learning, (2 students’ independence gives positive effect on learning outcomes, (3 the learning results of students who used macros-based learning evaluation model of cognitive domain are better rather than those in control class. Based on the above results, it can be concluded that macros-based learning evaluation model of cognitive domain tested has met the quality standards.

  18. Forsmark site investigation. Assessment of the validity of the rock domain model, version 1.2, based on the modelling of gravity and petrophysical data

    Energy Technology Data Exchange (ETDEWEB)

    Isaksson, Hans (GeoVista AB, Uppsala (SE)); Stephens, Michael B. (Geological Survey of Sweden, Uppsala (SE))


    This document reports the results gained by the geophysical modelling of rock domains based on gravity and petrophysical data, which is one of the activities performed within the site investigation work at Forsmark. The main objective with this activity is to assess the validity of the geological rock domain model version 1.2, and to identify discrepancies in the model that may indicate a need for revision of the model or a need for additional investigations. The verification is carried out by comparing the calculated gravity model response, which takes account of the geological model, with a local gravity anomaly that represents the measured data. The model response is obtained from the three-dimensional geometry and the petrophysical data provided for each rock domain in the geological model. Due to model boundary conditions, the study is carried out in a smaller area within the regional model area. Gravity model responses are calculated in three stages; an initial model, a base model and a refined base model. The refined base model is preferred and is used for comparison purposes. In general, there is a good agreement between the refined base model that makes use of the rock domain model, version 1.2 and the measured gravity data, not least where it concerns the depth extension of the critical rock domain RFM029. The most significant discrepancy occurs in the area extending from the SFR office to the SFR underground facility and further to the northwest. It is speculated that this discrepancy is caused by a combination of an overestimation of the volume of gabbro (RFM016) that plunges towards the southeast in the rock domain model, and an underestimation of the volume of occurrence of pegmatite and pegmatitic granite that are known to be present and occur as larger bodies around SFR. Other discrepancies are noted in rock domain RFM022, which is considered to be overestimated in the rock domain model, version 1.2, and in rock domain RFM017, where the gravity

  19. Frequency domain reflectometry modeling for nondestructive evaluation of nuclear power plant cables (United States)

    Glass, S. W.; Fifield, L. S.; Jones, A. M.; Hartman, T. S.


    Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to

  20. Linear planimetric feature domains modeling for multisensor fusion in remote sensing (United States)

    Pigeon, Luc; Solaiman, Basel; Toutin, Thierry; Thomson, Keith P. B.


    The availability of multi-sensed data, especially in remote sensing, leads to new possibilities in the area of target recognition. In fact, the information contained in an individual sensor represents only one facet of the reality. The use of several sensors aims at covering different facets of real world objects. In this study, the targets to recognize are the planimetric features (i.e. roads, energy transmission lines, railroads and rivers). The sensors used are visible type satellite sensors (SPOT Panchromatic and Landsat TM) as well as radar satellites (Radarsat fine mode and ERS-1). Sensor resolutions range from 8 to 30 meters/pixel. In this study, the modeling is not limited, as it is generally the case, to the problem feature's reality, but to each sensor that will be used. Moreover, the decision space (here a 3D symbolic map) has to be modeled in the same way as the reality and sensors to lead to a coherent and uniform system. Each model is developed using an object- oriented approach. Each reality-object is defined through its radiometric, geometric and topologic feature. The sensor model objects are defined in accordance to image acquisition and definition, including the stereo image cases (for SPOT and Radarsat). Finally, the decision space objects define the resulting 3D symbolic map where, for instance, a pixel attributes contain classification information as well as position, accuracy, reality object's membership values, etc.

  1. ISDTool 2.0: a computational model for predicting immunosuppressive domain of retroviruses. (United States)

    Lv, Hongqiang; Han, Jiuqiang; Liu, Jun; Zheng, Jiguang; Zhong, Dexing; Liu, Ruiling


    Immunosuppressive domain (ISD) is a conserved region of transmembrane proteins (TM) in envelope gene (env) of retroviruses. in vitro and vivo, a synthetic peptide (CKS-17) that shows homology to ISD inhibits immune function. Evidence has shown that ISD suppresses lymphocyte proliferation and allows escape from immune effectors of the innate and adaptive arms in mouse immune system. Previously, we have developed a tool ISDTool 1.0 to identify ISD of human endogenous retrovirus (HERV). However, several other important retroviruses exist and no method is devoted to ISD prediction of them so far. In the paper, a computational model is proposed to identify ISD of six typical retroviruses from three species. The model combines the minimum Redundancy Maximum Relevance (mRMR) feature selection criterion with weighted extreme learning machine (WELM) to achieve high identification accuracies of 98.95%, 96.34% and 96.87% using self-consistency, 5-fold and 10-fold cross-validation, respectively. A software tool named ISDTool 2.0 has been developed to facilitate the application of the model and a large number of new putative ISDs of the six retroviruses were predicted. In addition, motifs of ISD in these retroviruses were analyzed and the evolutionary relationship was discussed. Datasets and the software involved in the paper are available at Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. An Inverse Neural Controller Based on the Applicability Domain of RBF Network Models

    Directory of Open Access Journals (Sweden)

    Alex Alexandridis


    Full Text Available This paper presents a novel methodology of generic nature for controlling nonlinear systems, using inverse radial basis function neural network models, which may combine diverse data originating from various sources. The algorithm starts by applying the particle swarm optimization-based non-symmetric variant of the fuzzy means (PSO-NSFM algorithm so that an approximation of the inverse system dynamics is obtained. PSO-NSFM offers models of high accuracy combined with small network structures. Next, the applicability domain concept is suitably tailored and embedded into the proposed control structure in order to ensure that extrapolation is avoided in the controller predictions. Finally, an error correction term, estimating the error produced by the unmodeled dynamics and/or unmeasured external disturbances, is included to the control scheme to increase robustness. The resulting controller guarantees bounded input-bounded state (BIBS stability for the closed loop system when the open loop system is BIBS stable. The proposed methodology is evaluated on two different control problems, namely, the control of an experimental armature-controlled direct current (DC motor and the stabilization of a highly nonlinear simulated inverted pendulum. For each one of these problems, appropriate case studies are tested, in which a conventional neural controller employing inverse models and a PID controller are also applied. The results reveal the ability of the proposed control scheme to handle and manipulate diverse data through a data fusion approach and illustrate the superiority of the method in terms of faster and less oscillatory responses.

  3. An Inverse Neural Controller Based on the Applicability Domain of RBF Network Models. (United States)

    Alexandridis, Alex; Stogiannos, Marios; Papaioannou, Nikolaos; Zois, Elias; Sarimveis, Haralambos


    This paper presents a novel methodology of generic nature for controlling nonlinear systems, using inverse radial basis function neural network models, which may combine diverse data originating from various sources. The algorithm starts by applying the particle swarm optimization-based non-symmetric variant of the fuzzy means (PSO-NSFM) algorithm so that an approximation of the inverse system dynamics is obtained. PSO-NSFM offers models of high accuracy combined with small network structures. Next, the applicability domain concept is suitably tailored and embedded into the proposed control structure in order to ensure that extrapolation is avoided in the controller predictions. Finally, an error correction term, estimating the error produced by the unmodeled dynamics and/or unmeasured external disturbances, is included to the control scheme to increase robustness. The resulting controller guarantees bounded input-bounded state (BIBS) stability for the closed loop system when the open loop system is BIBS stable. The proposed methodology is evaluated on two different control problems, namely, the control of an experimental armature-controlled direct current (DC) motor and the stabilization of a highly nonlinear simulated inverted pendulum. For each one of these problems, appropriate case studies are tested, in which a conventional neural controller employing inverse models and a PID controller are also applied. The results reveal the ability of the proposed control scheme to handle and manipulate diverse data through a data fusion approach and illustrate the superiority of the method in terms of faster and less oscillatory responses.

  4. Domain Reduction Method for Three-Dimensional Earthquake Modeling in Localized Regions (United States)

    Yoshimura, C.; Bielak, J.; Hisada, Y.


    We report on the development of a modular two-step finite element methodology for modeling earthquake ground motion in highly heterogeneous localized regions with large contrasts in wavelengths. We target complex geological structures such as sedimentary basins and ridges that are some distance away from the earthquake source. We overcome the problem of multiple physical scales by subdividing the original problem into two simpler ones. The first is an auxiliary problem that simulates the earthquake source and propagation path effects with a model that encompasses the source and a background structure from which the localized feature has been removed. The second problem models local site effects. Its input is a set of equivalent localized forces derived from the first step. These forces act only within a single layer of elements adjacent to the interface between the exterior region and the geological feature of interest. This enables us to reduce the domain size in the second step. If the background subsurface structure is simple, one can replace the finite element method in the first step with an alternative efficient method. The methodology is verified for a simple, layered, stratigraphic system, and its applicability to more general problems is illustrated by two examples: a basin, and a hill.

  5. Homology Modeling Study of Bovine μ-Calpain Inhibitor-Binding Domains

    Directory of Open Access Journals (Sweden)

    Han-Ha Chai


    Full Text Available The activated mammalian CAPN-structures, the CAPN/CAST complex in particular, have become an invaluable target model using the structure-based virtual screening of drug candidates from the discovery phase to development for over-activated CAPN linked to several diseases, such as post-ischemic injury and cataract formation. The effect of Ca2+-binding to the enzyme is thought to include activation, as well as the dissociation, aggregation, and autolysis of small regular subunits. Unfortunately, the Ca2+-activated enzyme tends to aggregate when provided as a divalent ion at the high-concentration required for the protease crystallization. This is also makes it very difficult to crystallize the whole-length enzyme itself, as well as the enzyme-inhibitor complex. Several parameters that influence CAPN activity have been investigated to determine its roles in Ca2+-modulation, autoproteolysis, phosphorylation, and intracellular distribution and inhibition by its endogenous inhibitor CAST. CAST binds and inhibits CAPN via its CAPN-inhibitor domains (four repeating domains 1–4; CAST1–4 when CAPN is activated by Ca2+-binding. An important key to understanding CAPN1 inhibition by CAST is to determine how CAST interacts at the molecular level with CAPN1 to inhibit its protease activity. In this study, a 3D structure model of a CAPN1 bound bovine CAST4 complex was built by comparative modeling based on the only known template structure of a rat CAPN2/CAST4 complex. The complex model suggests certain residues of bovine CAST4, notably, the TIPPKYQ motif sequence, and the structural elements of these residues, which are important for CAPN1 inhibition. In particular, as CAST4 docks near the flexible active site of CAPN1, conformational changes at the interaction site after binding could be directly related to CAST4 inhibitory activity. These functional interfaces can serve as a guide to the site-mutagenesis in research on bovine CAPN1 structure

  6. Modeling the exposure time in a tidal system: the impacts of external domain, tidal range, and inflows. (United States)

    Gao, Xueping; Zhao, Guixia; Zhang, Chen; Wang, Yan


    Exposure time is an important characteristic for hydrodynamics that has simultaneous impacts on the biochemical processes in tidal systems. To eliminate man-made errors, decrease computational effort, and increase simulation efficiency, exposure time was evaluated under different hydrodynamic conditions for a bay to investigate the impact of the external domain on the accuracy of the computational results for exposure time. The exposure time was explicitly defined and computed using a hydrodynamic model and tracer experiments for a set of ten external domain sizes (EDS), five external domain lengths (EDL), and three special hydrodynamic conditions. The results indicated that the external domain had a significant influence on the exposure time, and the intensity of this influence was related to hydrodynamic conditions. The sensitivity of the exposure time to the external domain increased with increasing tidal range, while freshwater inflows decreased this sensitivity. However, the variation trends for exposure time with different EDS and EDL were independent of the hydrodynamic conditions. Considering the computational efficiency (maximum), the calculated error (minimum) of the exposure time, and the impact of the boundary conditions (minimum), the recommended EDS and EDL range from 9 to 13 times the initial domain size and 1.30 to 1.45 times the length in the bay, respectively. The research regarding exposure time and external domains not only helps to eliminate the errors caused by man-made factors and reduce the computational effort but also provides a reference for understanding the interrelationship between coastal waters, reciprocating flow, and the water environment.

  7. Modeling water uptake by root system covered with mucilage at different degradation state (United States)

    Schwartz, Nimrod; Carminati, Andrea; Meunier, Félicien; Javaux, Mathieu


    For many years the rhizosphere which is the zone of soil in the vicinity of the roots and which is influenced by the roots is known as a unique soil environment with different physical, biological and chemical properties than those of the bulk soil. In recent studies, it has been shown that root exudates and especially mucilage alter the hydraulic properties of the rhizosphere, and that drying and wetting cycles of mucilage result in non-equilibrium dynamics in the rhizosphere, affecting water content distribution and root water uptake (RWU). Current models that integrate RWU with rhizosphere processes are limited to a simplified one root system with a homogeneous distribution of rhizosphere and root properties. In this work, we present a 3D model of water flow in the soil-plant continuum that takes in consideration root architecture and rhizosphere processes including the spatial and temporal variation in root and rhizosphere hydraulic properties, resulted from mucilage exudation and biodegradation. In the new model mucilage concentration is distributed along the root system according to the exudation period and the biodegradation rate of mucilage described with a Monod-type equation. Mucilage considered being composed of miscible and immiscible components, each with contrasted microbial degradation preferences and rate, resulting in a different distribution of each of the component. The rhizosphere water holding capacity and hydraulic conductivity were set to be a function of the total mucilage concentration, and hydrophobicity (captured using non-equilibrium formulation) was set to be a function of the immiscible concentration. Several scenarios describing different degradation and exudation parameters were examined. The results show that the rhizosphere water content is positively related to the mucilage concentration and that the rhizosphere hydraulic conductivity is negatively related to mucilage concentration. We observed a complex relation between the

  8. Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia

    Directory of Open Access Journals (Sweden)

    W. Dawes


    Full Text Available The groundwater resource contained within the sandy aquifers of the Swan Coastal Plain, south-west Western Australia, provides approximately 60 percent of the drinking water for the metropolitan population of Perth. Rainfall decline over the past three decades coupled with increasing water demand from a growing population has resulted in falling dam storage and groundwater levels. Projected future changes in climate across south-west Western Australia consistently show a decline in annual rainfall of between 5 and 15 percent. There is expected to be a reduction of diffuse recharge across the Swan Coastal Plain. This study aims to quantify the change in groundwater recharge in response to a range of future climate and land cover patterns across south-west Western Australia.

    Modelling the impact on the groundwater resource of potential climate change was achieved with a dynamically linked unsaturated/saturated groundwater model. A vertical flux manager was used in the unsaturated zone to estimate groundwater recharge using a variety of simple and complex models based on climate, land cover type (e.g. native trees, plantation, cropping, urban, wetland, soil type, and taking into account the groundwater depth.

    In the area centred on the city of Perth, Western Australia, the patterns of recharge change and groundwater level change are not consistent spatially, or consistently downward. In areas with land-use change, recharge rates have increased. Where rainfall has declined sufficiently, recharge rates are decreasing, and where compensating factors combine, there is little change to recharge. In the southwestern part of the study area, the patterns of groundwater recharge are dictated primarily by soil, geology and land cover. In the sand-dominated areas, there is little response to future climate change, because groundwater levels are shallow and much rainfall is rejected recharge. Where the combination of native vegetation and

  9. Predicting the temporal and spatial probability of orographic cloud cover in the Luquillo Experimental Forest in Puerto Rico using generalized linear (mixed) models. (United States)

    Wei Wu; Charlesb Hall; Lianjun Zhang


    We predicted the spatial pattern of hourly probability of cloud cover in the Luquillo Experimental Forest (LEF) in North-Eastern Puerto Rico using four different models. The probability of cloud cover (defined as “the percentage of the area covered by clouds in each pixel on the map” in this paper) at any hour and any place is a function of three topographic variables...

  10. Comparing Cognitive Models of Domain Mastery and Task Performance in Algebra: Validity Evidence for a State Assessment (United States)

    Warner, Zachary B.


    This study compared an expert-based cognitive model of domain mastery with student-based cognitive models of task performance for Integrated Algebra. Interpretations of student test results are limited by experts' hypotheses of how students interact with the items. In reality, the cognitive processes that students use to solve each item may be…

  11. Lattice model theory of the equation of state covering the gas, liquid, and solid phases (United States)

    Bonavito, N. L.; Tanaka, T.; Chan, E. M.; Horiguchi, T.; Foreman, J. C.


    The three stable states of matter and the corresponding phase transitions were obtained with a single model. Patterned after Lennard-Jones and Devonshires's theory, a simple cubic lattice model containing two fcc sublattices (alpha and beta) is adopted. The interatomic potential is taken to be the Lennard-Jones (6-12) potential. Employing the cluster variation method, the Weiss and the pair approximations on the lattice gas failed to give the correct phase diagrams. Hybrid approximations were devised to describe the lattice term in the free energy. A lattice vibration term corresponding to a free volume correction is included semi-phenomenologically. The combinations of the lattice part and the free volume part yield the three states and the proper phase diagrams. To determine the coexistence regions, the equalities of the pressure and Gibbs free energy per molecule of the coexisting phases were utilized. The ordered branch of the free energy gives rise to the solid phase while the disordered branch yields the gas and liquid phases. It is observed that the triple point and the critical point quantities, the phase diagrams and the coexistence regions plotted are in good agreement with the experimental values and graphs for argon.

  12. New Spectral Model for Constraining Torus Covering Factors from Broadband X-Ray Spectra of Active Galactic Nuclei (United States)

    Baloković, M.; Brightman, M.; Harrison, F. A.; Comastri, A.; Ricci, C.; Buchner, J.; Gandhi, P.; Farrah, D.; Stern, D.


    The basic unified model of active galactic nuclei (AGNs) invokes an anisotropic obscuring structure, usually referred to as a torus, to explain AGN obscuration as an angle-dependent effect. We present a new grid of X-ray spectral templates based on radiative transfer calculations in neutral gas in an approximately toroidal geometry, appropriate for CCD-resolution X-ray spectra (FWHM ≥ 130 eV). Fitting the templates to broadband X-ray spectra of AGNs provides constraints on two important geometrical parameters of the gas distribution around the supermassive black hole: the average column density and the covering factor. Compared to the currently available spectral templates, our model is more flexible, and capable of providing constraints on the main torus parameters in a wider range of AGNs. We demonstrate the application of this model using hard X-ray spectra from NuSTAR (3–79 keV) for four AGNs covering a variety of classifications: 3C 390.3, NGC 2110, IC 5063, and NGC 7582. This small set of examples was chosen to illustrate the range of possible torus configurations, from disk-like to sphere-like geometries with column densities below, as well as above, the Compton-thick threshold. This diversity of torus properties challenges the simple assumption of a standard geometrically and optically thick toroidal structure commonly invoked in the basic form of the unified model of AGNs. Finding broad consistency between our constraints and those from infrared modeling, we discuss how the approach from the X-ray band complements similar measurements of AGN structures at other wavelengths.

  13. Moving domain computational fluid dynamics to interface with an embryonic model of cardiac morphogenesis.

    Directory of Open Access Journals (Sweden)

    Juhyun Lee

    Full Text Available Peristaltic contraction of the embryonic heart tube produces time- and spatial-varying wall shear stress (WSS and pressure gradients (∇P across the atrioventricular (AV canal. Zebrafish (Danio rerio are a genetically tractable system to investigate cardiac morphogenesis. The use of Tg(fli1a:EGFP (y1 transgenic embryos allowed for delineation and two-dimensional reconstruction of the endocardium. This time-varying wall motion was then prescribed in a two-dimensional moving domain computational fluid dynamics (CFD model, providing new insights into spatial and temporal variations in WSS and ∇P during cardiac development. The CFD simulations were validated with particle image velocimetry (PIV across the atrioventricular (AV canal, revealing an increase in both velocities and heart rates, but a decrease in the duration of atrial systole from early to later stages. At 20-30 hours post fertilization (hpf, simulation results revealed bidirectional WSS across the AV canal in the heart tube in response to peristaltic motion of the wall. At 40-50 hpf, the tube structure undergoes cardiac looping, accompanied by a nearly 3-fold increase in WSS magnitude. At 110-120 hpf, distinct AV valve, atrium, ventricle, and bulbus arteriosus form, accompanied by incremental increases in both WSS magnitude and ∇P, but a decrease in bi-directional flow. Laminar flow develops across the AV canal at 20-30 hpf, and persists at 110-120 hpf. Reynolds numbers at the AV canal increase from 0.07±0.03 at 20-30 hpf to 0.23±0.07 at 110-120 hpf (p< 0.05, n=6, whereas Womersley numbers remain relatively unchanged from 0.11 to 0.13. Our moving domain simulations highlights hemodynamic changes in relation to cardiac morphogenesis; thereby, providing a 2-D quantitative approach to complement imaging analysis.

  14. Land Use and Land Cover Changes under Climate Uncertainty: Modelling the Impacts on Hydropower Production in Western Africa

    Directory of Open Access Journals (Sweden)

    Salomon Obahoundje


    Full Text Available The Bui hydropower plant plays a vital role in the socio-economic development of Ghana. This paper attempt to explore the combined effects of climate-land use land cover change on power production using the (WEAP model: Water Evaluation and Planning system. The historical analysis of rainfall and stream flow variability showed that the annual coefficient of variation of rainfall and stream flow are, respectively, 8.6% and 60.85%. The stream flow varied greatly than the rainfall, due to land use land cover changes (LULC. In fact, the LULC analysis revealed important changes in vegetative areas and water bodies. The WEAP model evaluation showed that combined effects of LULC and climate change reduce water availability for all of demand sectors, including hydropower generation at the Bui hydropower plant. However, it was projected that Bui power production will increase by 40.7% and 24.93%, respectively, under wet and adaptation conditions, and decrease by 46% and 2.5%, respectively, under dry and current conditions. The wet condition is defined as an increase in rainfall by 14%, the dry condition as the decrease in rainfall by 15%; current account is business as usual, and the adaptation is as the efficient use of water for the period 2012–2040.

  15. Anopheles fauna of coastal Cayenne, French Guiana: modelling and mapping of species presence using remotely sensed land cover data

    Directory of Open Access Journals (Sweden)

    Antoine Adde

    Full Text Available Little is known about the Anopheles species of the coastal areas of French Guiana, or their spatiotemporal distribution or environmental determinants. The present study aimed to (1 document the distribution of Anopheles fauna in the coastal area around Cayenne, and (2 investigate the use of remotely sensed land cover data as proxies of Anopheles presence. To characterise the Anopheles fauna, we combined the findings of two entomological surveys that were conducted during the period 2007-2009 and in 2014 at 37 sites. Satellite imagery data were processed to extract land cover variables potentially related to Anopheles ecology. Based on these data, a methodology was formed to estimate a statistical predictive model of the spatial-seasonal variations in the presence of Anopheles in the Cayenne region. Two Anopheles species, known as main malaria vectors in South America, were identified, including the more dominant An. aquasalis near town and rural sites, and An. darlingi only found in inland sites. Furthermore, a cross-validated model of An. aquasalis presence that integrated marsh and forest surface area was extrapolated to generate predictive maps. The present study supports the use of satellite imagery by health authorities for the surveillance of malaria vectors and planning of control strategies.

  16. NovelFam3000 – Uncharacterized human protein domains conserved across model organisms

    Directory of Open Access Journals (Sweden)

    Sonnhammer Erik LL


    Full Text Available Abstract Background Despite significant efforts from the research community, an extensive portion of the proteins encoded by human genes lack an assigned cellular function. Most metazoan proteins are composed of structural and/or functional domains, of which many appear in multiple proteins. Once a domain is characterized in one protein, the presence of a similar sequence in an uncharacterized protein serves as a basis for inference of function. Thus knowledge of a domain's function, or the protein within which it arises, can facilitate the analysis of an entire set of proteins. Description From the Pfam domain database, we extracted uncharacterized protein domains represented in proteins from humans, worms, and flies. A data centre was created to facilitate the analysis of the uncharacterized domain-containing proteins. The centre both provides researchers with links to dispersed internet resources containing gene-specific experimental data and enables them to post relevant experimental results or comments. For each human gene in the system, a characterization score is posted, allowing users to track the progress of characterization over time or to identify for study uncharacterized domains in well-characterized genes. As a test of the system, a subset of 39 domains was selected for analysis and the experimental results posted to the NovelFam3000 system. For 25 human protein members of these 39 domain families, detailed sub-cellular localizations were determined. Specific observations are presented based on the analysis of the integrated information provided through the online NovelFam3000 system. Conclusion Consistent experimental results between multiple members of a domain family allow for inferences of the domain's functional role. We unite bioinformatics resources and experimental data in order to accelerate the functional characterization of scarcely annotated domain families.

  17. Advantages of frequency-domain modeling in dynamic-susceptibility contrast magnetic resonance cerebral blood flow quantification. (United States)

    Chen, Jean J; Smith, Michael R; Frayne, Richard


    In dynamic-susceptibility contrast magnetic resonance perfusion imaging, the cerebral blood flow (CBF) is estimated from the tissue residue function obtained through deconvolution of the contrast concentration functions. However, the reliability of CBF estimates obtained by deconvolution is sensitive to various distortions including high-frequency noise amplification. The frequency-domain Fourier transform-based and the time-domain singular-value decomposition-based (SVD) algorithms both have biases introduced into their CBF estimates when noise stability criteria are applied or when contrast recirculation is present. The recovery of the desired signal components from amid these distortions by modeling the residue function in the frequency domain is demonstrated. The basic advantages and applicability of the frequency-domain modeling concept are explored through a simple frequency-domain Lorentzian model (FDLM); with results compared to standard SVD-based approaches. The performance of the FDLM method is model dependent, well representing residue functions in the exponential family while less accurately representing other functions. (c) 2005 Wiley-Liss, Inc.

  18. An Integrated Modelling System to Predict Hydrological Processes under Climate and Land-Use/Cover Change Scenarios

    Directory of Open Access Journals (Sweden)

    Babak Farjad


    Full Text Available This study proposes an integrated modeling system consisting of the physically-based MIKE SHE/MIKE 11 model, a cellular automata model, and general circulation models (GCMs scenarios to investigate the independent and combined effects of future climate and land-use/land-cover (LULC changes on the hydrology of a river system. The integrated modelling system is applied to the Elbow River watershed in southern Alberta, Canada in conjunction with extreme GCM scenarios and two LULC change scenarios in the 2020s and 2050s. Results reveal that LULC change substantially modifies the river flow regime in the east sub-catchment, where rapid urbanization is occurring. It is also shown that the change in LULC causes an increase in peak flows in both the 2020s and 2050s. The impacts of climate and LULC change on streamflow are positively correlated in winter and spring, which intensifies their influence and leads to a significant rise in streamflow, and, subsequently, increases the vulnerability of the watershed to spring floods. This study highlights the importance of using an integrated modeling approach to investigate both the independent and combined impacts of climate and LULC changes on the future of hydrology to improve our understanding of how watersheds will respond to climate and LULC changes.

  19. Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins.

    Directory of Open Access Journals (Sweden)

    Raffi Tonikian


    Full Text Available SH3 domains are peptide recognition modules that mediate the assembly of diverse biological complexes. We scanned billions of phage-displayed peptides to map the binding specificities of the SH3 domain family in the budding yeast, Saccharomyces cerevisiae. Although most of the SH3 domains fall into the canonical classes I and II, each domain utilizes distinct features of its cognate ligands to achieve binding selectivity. Furthermore, we uncovered several SH3 domains with specificity profiles that clearly deviate from the two canonical classes. In conjunction with phage display, we used yeast two-hybrid and peptide array screening to independently identify SH3 domain binding partners. The results from the three complementary techniques were integrated using a Bayesian algorithm to generate a high-confidence yeast SH3 domain interaction map. The interaction map was enriched for proteins involved in endocytosis, revealing a set of SH3-mediated interactions that underlie formation of protein complexes essential to this biological pathway. We used the SH3 domain interaction network to predict the dynamic localization of several previously uncharacterized endocytic proteins, and our analysis suggests a novel role for the SH3 domains of Lsb3p and Lsb4p as hubs that recruit and assemble several endocytic complexes.

  20. Influence of a dexamethasone-eluting covered stent on tissue reaction: an experimental study in a canine bronchial model

    International Nuclear Information System (INIS)

    Shin, Ji Hoon; Song, Ho-Young; Choi, Gi Bok; Kim, Tae-Hyung; Suh, Ji-Yeon; Seo, Tae-Seok; Yuk, Soon Hong; Kim, Young-Hwa; Cho, Yong-Mee


    This study was designed to evaluate the feasibility and efficacy of a dexamethasone (DXM)-eluting, covered, self-expanding metallic stent to reduce tissue reaction following stent placement in a canine bronchial model. We placed a DXM-eluting, polyurethane-covered, self-expanding metallic stent (drug stent, DS) and a polyurethane-covered, self-expanding metallic stent (control stent, CS) alternately in each left main bronchus and left lower lobe bronchus in 12 dogs. The stents were 20 mm in diameter and length when fully expanded. The dose of DXM was approximately 36.7 mg in each DS, but was absent in the CS. The dogs were euthanased 1 week (n=4), 2 weeks (n=4) or 4 weeks (n=4) after stent placement. Histologic findings, such as epithelial erosion/ulcer or granulation tissue thickness, were obtained from the mid-portion of the bronchus, where the stent had been placed, and evaluated between DS and CS. There were no procedure-related complications or malpositioning of any of the bronchial stents. Stent migration was detected in one dog just before euthanasia 1 week following stent placement. Stent patency was maintained until euthanasia in all dogs. Epithelial erosion/ulcer (%) was significantly less in the DS (mean±standard deviation, 46.88±23.75) than in the CS (73.75±14.08) (P=0.026) for all time-points. There was a decrease in epithelial erosion/ulcer as the follow-up period increased in both DS and CS. The granulation tissue thickness (mm) was less in DS (2.63±2.05) than in CS (3.49±2.95), although the difference was not significant (P=0.751) for all time-points. There was a tendency toward an increase in granulation tissue thickness and chronic lymphocytic infiltration as the follow-up period increased in both DS and CS. In conclusion, DXM-eluting, covered, self-expanding metallic stent seems to be effective in reducing tissue reaction secondary to stent placement in a canine bronchial model. (orig.)

  1. Influence of a dexamethasone-eluting covered stent on tissue reaction: an experimental study in a canine bronchial model

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ji Hoon; Song, Ho-Young; Choi, Gi Bok; Kim, Tae-Hyung; Suh, Ji-Yeon [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Center, Seoul (Korea); Seo, Tae-Seok [Gachon Medical School, Department of Radiology, Gil Medical Center, Inchon (Korea); Yuk, Soon Hong [Hannam University, Department of Polymer Science and Engineering, College of Engineering, Daejeon (Korea); Kim, Young-Hwa [Soonchunhyang University Chonan Hospital, Department of Radiology, Chonan (Korea); Cho, Yong-Mee [University of Ulsan College of Medicine, Department of Pathology, Asan Medical Center, Seoul (Korea)


    This study was designed to evaluate the feasibility and efficacy of a dexamethasone (DXM)-eluting, covered, self-expanding metallic stent to reduce tissue reaction following stent placement in a canine bronchial model. We placed a DXM-eluting, polyurethane-covered, self-expanding metallic stent (drug stent, DS) and a polyurethane-covered, self-expanding metallic stent (control stent, CS) alternately in each left main bronchus and left lower lobe bronchus in 12 dogs. The stents were 20 mm in diameter and length when fully expanded. The dose of DXM was approximately 36.7 mg in each DS, but was absent in the CS. The dogs were euthanased 1 week (n=4), 2 weeks (n=4) or 4 weeks (n=4) after stent placement. Histologic findings, such as epithelial erosion/ulcer or granulation tissue thickness, were obtained from the mid-portion of the bronchus, where the stent had been placed, and evaluated between DS and CS. There were no procedure-related complications or malpositioning of any of the bronchial stents. Stent migration was detected in one dog just before euthanasia 1 week following stent placement. Stent patency was maintained until euthanasia in all dogs. Epithelial erosion/ulcer (%) was significantly less in the DS (mean{+-}standard deviation, 46.88{+-}23.75) than in the CS (73.75{+-}14.08) (P=0.026) for all time-points. There was a decrease in epithelial erosion/ulcer as the follow-up period increased in both DS and CS. The granulation tissue thickness (mm) was less in DS (2.63{+-}2.05) than in CS (3.49{+-}2.95), although the difference was not significant (P=0.751) for all time-points. There was a tendency toward an increase in granulation tissue thickness and chronic lymphocytic infiltration as the follow-up period increased in both DS and CS. In conclusion, DXM-eluting, covered, self-expanding metallic stent seems to be effective in reducing tissue reaction secondary to stent placement in a canine bronchial model. (orig.)

  2. Exploratory analysis regarding the domain definitions for computer based analytical models (United States)

    Raicu, A.; Oanta, E.; Barhalescu, M.


    Our previous computer based studies dedicated to structural problems using analytical methods defined the composite cross section of a beam as a result of Boolean operations with so-called ‘simple’ shapes. Using generalisations, in the class of the ‘simple’ shapes were included areas bounded by curves approximated using spline functions and areas approximated as polygons. However, particular definitions lead to particular solutions. In order to ascend above the actual limitations, we conceived a general definition of the cross sections that are considered now calculus domains consisting of several subdomains. The according set of input data use complex parameterizations. This new vision allows us to naturally assign a general number of attributes to the subdomains. In this way there may be modelled new phenomena that use map-wise information, such as the metal alloys equilibrium diagrams. The hierarchy of the input data text files that use the comma-separated-value format and their structure are also presented and discussed in the paper. This new approach allows us to reuse the concepts and part of the data processing software instruments already developed. The according software to be subsequently developed will be modularised and generalised in order to be used in the upcoming projects that require rapid development of computer based models.

  3. A distributed, mobile-immobile domain transport model based on local mass transfer with recirculation zones (United States)

    Zhou, J.; Wang, L.; Chen, Y.; Cardenas, M. B.


    Eddies or recirculation zones and stagnation zones are common in many environmental, engineering, and geophysical flow phenomena. Near rough boundaries, eddies are persistently and distinctly separate to the bulk flow. This leads to delays and long tails in the chemical transport by fluids since the entities being transported can be trapped and later released from the eddies. Here we provide a process-based insight on the anomalous transport induced by eddies using computational experiments with fully resolved flow and transport fields within rough fractures. A computationally tractable and objective eddy detection technique was developed. This allowed for direct insight into the mass transfer process at the interface between eddies and its neighboring main flow channel. A distributed mobile-immobile model with high fidelity has been proposed that incorporates the full local information of eddies and transport within the eddy. This local information includes eddy geometry and mass transfer coefficients. Taking this into account is critical for prediction of anomalous transport, and further provides a physically-based approach for modifying the classic mobile-immobile domain model into a distributed one. The methods and results in this study can serve as the foundation for the analysis and prediction of flow and transport phenomena in different environmental settings with immobile zones.

  4. Evaluation of gridded snow water equivalent and satellite snow cover products for mountain basins in a hydrologic model (United States)

    Dressler, K.A.; Leavesley, G.H.; Bales, R.C.; Fassnacht, S.R.


    The USGS precipitation-runoff modelling system (PRMS) hydrologic model was used to evaluate experimental, gridded, 1 km2 snow-covered area (SCA) and snow water equivalent (SWE) products for two headwater basins within the Rio Grande (i.e. upper Rio Grande River basin) and Salt River (i.e. Black River basin) drainages in the southwestern USA. The SCA product was the fraction of each 1 km2 pixel covered by snow and was derived from NOAA advanced very high-resolution radiometer imagery. The SWE product was developed by multiplying the SCA product by SWE estimates interpolated from National Resources Conservation Service snow telemetry point measurements for a 6 year period (1995-2000). Measured SCA and SWE estimates were consistently lower than values estimated from temperature and precipitation within PRMS. The greatest differences occurred in the relatively complex terrain of the Rio Grande basin, as opposed to the relatively homogeneous terrain of the Black River basin, where differences were small. Differences between modelled and measured snow were different for the accumulation period versus the ablation period and had an elevational trend. Assimilating the measured snowfields into a version of PRMS calibrated to achieve water balance without assimilation led to reduced performance in estimating streamflow for the Rio Grande and increased performance in estimating streamflow for the Black River basin. Correcting the measured SCA and SWE for canopy effects improved simulations by adding snow mostly in the mid-to-high elevations, where satellite estimates of SCA are lower than model estimates. Copyright ?? 2006 John Wiley & Sons, Ltd.

  5. Modeling and experimental assessment of a buried Leu–Ile mutation in dengue envelope domain III

    International Nuclear Information System (INIS)

    Kulkarni, Manjiri R.; Numoto, Nobutaka; Ito, Nobutoshi; Kuroda, Yutaka


    Envelope protein domain III (ED3) of the dengue virus is important for both antibody binding and host cell interaction. Here, we focused on how a L387I mutation in the protein core could take place in DEN4 ED3, but cannot be accommodated in DEN3 ED3 without destabilizing its structure. To this end, we modeled a DEN4_L387I structure using the Penultimate Rotamer Library and taking the DEN4 ED3 main-chain as a fixed template. We found that three out of seven Ile 387 conformers fit in DEN4 ED3 without introducing the severe atomic clashes that are observed when DEN3 serotype’s ED3 is used as a template. A more extensive search using 273 side-chain rotamers of the residues surrounding Ile 387 confirmed this prediction. In order to assess the prediction, we determined the crystal structure of DEN4_L387I at 2 Å resolution. Ile 387 indeed adopted one of the three predicted rotamers. Altogether, this study demonstrates that the effects of single mutations are to a large extent successfully predicted by systematically modeling the side-chain structures of the mutated as well as those of its surrounding residues using fixed main-chain structures and assessing inter-atomic steric clashes. More accurate and reliable predictions require considering sub-angstrom main-chain deformation, which remains a challenging task. - Highlights: • We mutated L387I of DEN4 ED3 and examined its effects on structure and stability. • We modeled the side-chain of Ile 387 using DEN4 ED3's structure as a template. • We determined the crystal structure of DEN4_L387I and confirmed the modeling. • Side-chain repacking occurring around Ile 387 involved >3 inter-connected residues. • These results explained why L387I mutation in DEN4 ED3 conserves thermostability.

  6. Modeling the potential contribution of land cover changes to the late twentieth century Sahel drought using a regional climate model: impact of lateral boundary conditions (United States)

    Wang, Guiling; Yu, Miao; Xue, Yongkang


    This paper investigates the potential impact of "idealized-but-realistic" land cover degradation on the late twentieth century Sahel drought using a regional climate model (RCM) driven with lateral boundary conditions (LBCs) from three different sources, including one re-analysis data and two global climate models (GCMs). The impact of land cover degradation is quantified based on a large number of control-and-experiment pairs of simulations, where the experiment features a degraded land cover relative to the control. Two different approaches of experimental design are tested: in the 1st approach, the RCM land cover degradation experiment shares the same LBCs as the corresponding RCM control, which can be derived from either reanalysis data or a GCM; with the 2nd approach, the LBCs for the RCM control are derived from a GCM control, and the LBCs for the RCM land cover degradation experiment are derived from a corresponding GCM land cover degradation experiment. When the 1st approach is used, results from the RCM driven with the three different sources of LBCs are generally consistent with each other, indicating robustness of the model response against LBCs; when the 2nd approach is used, the RCM results show strong sensitivity to the source of LBCs and the response in the RCM is dominated by the response of the driving GCMs. The spatiotemporal pattern of the precipitation response to land cover degradation as simulated by RCM using the 1st approach closely resembles that of the observed historical changes, while results from the GCMs and the RCM using the 2nd approach bear less similarity to observations. Compared with the 1st approach, the 2nd approach has the advantage of capturing the impact on large scale circulation, but has the disadvantage of being influenced by the GCMs' internal variability and any potential erroneous response of the driving GCMs to land degradation. The 2nd approach therefore requires a large ensemble to reduce the uncertainties derived

  7. Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assessments (United States)

    Prestele, Reinhard; Arneth, Almut; Bondeau, Alberte; de Noblet-Ducoudré, Nathalie; Pugh, Thomas A. M.; Sitch, Stephen; Stehfest, Elke; Verburg, Peter H.


    Land-use and land-cover change (LULCC) represents one of the key drivers of global environmental change. However, the processes and drivers of anthropogenic land-use activity are still overly simplistically implemented in terrestrial biosphere models (TBMs). The published results of these models are used in major assessments of processes and impacts of global environmental change, such as the reports of the Intergovernmental Panel on Climate Change (IPCC). Fully coupled models of climate, land use and biogeochemical cycles to explore land use-climate interactions across spatial scales are currently not available. Instead, information on land use is provided as exogenous data from the land-use change modules of integrated assessment models (IAMs) to TBMs. In this article, we discuss, based on literature review and illustrative analysis of empirical and modeled LULCC data, three major challenges of this current LULCC representation and their implications for land use-climate interaction studies: (I) provision of consistent, harmonized, land-use time series spanning from historical reconstructions to future projections while accounting for uncertainties associated with different land-use modeling approaches, (II) accounting for sub-grid processes and bidirectional changes (gross changes) across spatial scales, and (III) the allocation strategy of independent land-use data at the grid cell level in TBMs. We discuss the factors that hamper the development of improved land-use representation, which sufficiently accounts for uncertainties in the land-use modeling process. We propose that LULCC data-provider and user communities should engage in the joint development and evaluation of enhanced LULCC time series, which account for the diversity of LULCC modeling and increasingly include empirically based information about sub-grid processes and land-use transition trajectories, to improve the representation of land use in TBMs. Moreover, we suggest concentrating on the

  8. Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling

    International Nuclear Information System (INIS)

    Chen, Liang; Dirmeyer, Paul A


    To assess the biogeophysical impacts of land cover/land use change (LCLUC) on surface temperature, two observation-based metrics and their applicability in climate modeling were explored in this study. Both metrics were developed based on the surface energy balance, and provided insight into the contribution of different aspects of land surface change (such as albedo, surface roughness, net radiation and surface heat fluxes) to changing climate. A revision of the first metric, the intrinsic biophysical mechanism, can be used to distinguish the direct and indirect effects of LCLUC on surface temperature. The other, a decomposed temperature metric, gives a straightforward depiction of separate contributions of all components of the surface energy balance. These two metrics well capture observed and model simulated surface temperature changes in response to LCLUC. Results from paired FLUXNET sites and land surface model sensitivity experiments indicate that surface roughness effects usually dominate the direct biogeophysical feedback of LCLUC, while other effects play a secondary role. However, coupled climate model experiments show that these direct effects can be attenuated by large scale atmospheric changes (indirect feedbacks). When applied to real-time transient LCLUC experiments, the metrics also demonstrate usefulness for assessing the performance of climate models and quantifying land–atmosphere interactions in response to LCLUC. (letter)

  9. Hysteresis modelling of GO laminations for arbitrary in-plane directions taking into account the dynamics of orthogonal domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Baghel, A.P.S.; Sai Ram, B. [Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India); Chwastek, K. [Department of Electrical Engineering Czestochowa University of Technology (Poland); Daniel, L. [Group of Electrical Engineering-Paris (GeePs), CNRS(UMR8507)/CentraleSupelec/UPMC/Univ Paris-Sud, 11 rue Joliot-Curie, 91192 Gif-sur-Yvette (France); Kulkarni, S.V. [Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India)


    The anisotropy of magnetic properties in grain-oriented steels is related to their microstructure. It results from the anisotropy of the single crystal properties combined to crystallographic texture. The magnetization process along arbitrary directions can be explained using phase equilibrium for domain patterns, which can be described using Neel's phase theory. According to the theory the fractions of 180° and 90° domain walls depend on the direction of magnetization. This paper presents an approach to model hysteresis loops of grain-oriented steels along arbitrary in-plane directions. The considered description is based on a modification of the Jiles–Atherton model. It includes a modified expression for the anhysteretic magnetization which takes into account contributions of two types of domain walls. The computed hysteresis curves for different directions are in good agreement with experimental results. - Highlights: • An extended Jiles–Atherton description is used to model hysteresis loops in GO steels. • The model stresses the role of material anisotropy and different contributions of the two types of domain walls. • Hysteresis loops can be modeled along arbitrary in-plane directions. • Modeling results are in good agreement with experiments.

  10. Reference architecture and interoperability model for data mining and fusion in scientific cross-domain infrastructures (United States)

    Haener, Rainer; Waechter, Joachim; Grellet, Sylvain; Robida, Francois


    , business logic and processes on the basis of a minimal set of well-known, established standards. It implements the representation of knowledge with the application of domain-controlled vocabularies to statements about resources, information, facts, and complex matters (ontologies). Seismic experts for example, would be interested in geological models or borehole measurements at a certain depth, based on which it is possible to correlate and verify seismic profiles. The entire model is built upon standards from the Open Geospatial Consortium (Dictionaries, Service Layer), the International Organisation for Standardisation (Registries, Metadata), and the World Wide Web Consortium (Resource Description Framework, Spatial Data on the Web Best Practices). It has to be emphasised that this approach is scalable to the greatest possible extent: All information, necessary in the context of cross-domain infrastructures is referenced via vocabularies and knowledge bases containing statements that provide either the information itself or resources (service-endpoints), the information can be retrieved from. The entire infrastructure communication is subject to a broker-based business logic integration platform where the information exchanged between involved participants, is managed on the basis of standardised dictionaries, repositories, and registries. This approach also enables the development of Systems-of-Systems (SoS), which allow the collaboration of autonomous, large scale concurrent, and distributed systems, yet cooperatively interacting as a collective in a common environment.

  11. Analysis and modelling of surface Urban Heat Island in 20 Canadian cities under climate and land-cover change. (United States)

    Gaur, Abhishek; Eichenbaum, Markus Kalev; Simonovic, Slobodan P


    Surface Urban Heat Island (SUHI) is an urban climate phenomenon that is expected to respond to future climate and land-use land-cover change. It is important to further our understanding of physical mechanisms that govern SUHI phenomenon to enhance our ability to model future SUHI characteristics under changing geophysical conditions. In this study, SUHI phenomenon is quantified and modelled at 20 cities distributed across Canada. By analyzing MODerate Resolution Imaging Spectroradiometer (MODIS) sensed surface temperature at the cities over 2002-2012, it is found that 16 out of 20 selected cities have experienced a positive SUHI phenomenon while 4 cities located in the prairies region and high elevation locations have experienced a negative SUHI phenomenon in the past. A statistically significant relationship between observed SUHI magnitude and city elevation is also recorded over the observational period. A Physical Scaling downscaling model is then validated and used to downscale future surface temperature projections from 3 GCMs and 2 extreme Representative Concentration Pathways in the urban and rural areas of the cities. Future changes in SUHI magnitudes between historical (2006-2015) and future timelines: 2030s (2026-2035), 2050s (2046-2055), and 2090s (2091-2100) are estimated. Analysis of future projected changes indicate that 15 (13) out of 20 cities can be expected to experience increases in SUHI magnitudes in future under RCP 2.6 (RCP 8.5). A statistically significant relationship between projected future SUHI change and current size of the cities is also obtained. The study highlights the role of city properties (i.e. its size, elevation, and surrounding land-cover) towards shaping their current and future SUHI characteristics. The results from this analysis will help decision-makers to manage Canadian cities more efficiently under rapidly changing geophysical and demographical conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Time and frequency domain models for multiaxial fatigue life estimation under random loading

    Directory of Open Access Journals (Sweden)

    Andrea Carpinteri


    Full Text Available Engineering structures and components are often subjected to random fatigue loading produced, for example, by wind turbulences, marine waves and vibrations. The methods available in the literature for fatigue assessment under random loading are formulated in time domain or, alternatively, in frequency domain. The former methods require the knowledge of the loading time history, and a large number of experimental tests/numerical simulations is needed to obtain statistically reliable results. The latter methods are generally more advantageous with respect to the time domain ones, allowing a rapid fatigue damage evaluation. In the present paper, a multiaxial criterion formulated in the frequency-domain is presented to estimate the fatigue lives of smooth metallic structures subjected to combined bending and torsion random loading. A comparison in terms of fatigue life prediction by employing a time domain methods, previously proposed by the authors, is also performed.

  13. How to model moon signals using 2-dimensional Gaussian function: Classroom activity for measuring nighttime cloud cover (United States)

    Gacal, G. F. B.; Lagrosas, N.


    Nowadays, cameras are commonly used by students. In this study, we use this instrument to look at moon signals and relate these signals to Gaussian functions. To implement this as a classroom activity, students need computers, computer software to visualize signals, and moon images. A normalized Gaussian function is often used to represent probability density functions of normal distribution. It is described by its mean m and standard deviation s. The smaller standard deviation implies less spread from the mean. For the 2-dimensional Gaussian function, the mean can be described by coordinates (x0, y0), while the standard deviations can be described by sx and sy. In modelling moon signals obtained from sky-cameras, the position of the mean (x0, y0) is solved by locating the coordinates of the maximum signal of the moon. The two standard deviations are the mean square weighted deviation based from the sum of total pixel values of all rows/columns. If visualized in three dimensions, the 2D Gaussian function appears as a 3D bell surface (Fig. 1a). This shape is similar to the pixel value distribution of moon signals as captured by a sky-camera. An example of this is illustrated in Fig 1b taken around 22:20 (local time) of January 31, 2015. The local time is 8 hours ahead of coordinated universal time (UTC). This image is produced by a commercial camera (Canon Powershot A2300) with 1s exposure time, f-stop of f/2.8, and 5mm focal length. One has to chose a camera with high sensitivity when operated at nighttime to effectively detect these signals. Fig. 1b is obtained by converting the red-green-blue (RGB) photo to grayscale values. The grayscale values are then converted to a double data type matrix. The last conversion process is implemented for the purpose of having the same scales for both Gaussian model and pixel distribution of raw signals. Subtraction of the Gaussian model from the raw data produces a moonless image as shown in Fig. 1c. This moonless image can be

  14. Identifying longitudinal growth trajectories of learning domains in problem-based learning: a latent growth curve modeling approach using SEM. (United States)

    Wimmers, Paul F; Lee, Ming


    To determine the direction and extent to which medical student scores (as observed by small-group tutors) on four problem-based-learning-related domains change over nine consecutive blocks during a two-year period (Domains: Problem Solving/Use of Information/Group Process/Professionalism). Latent growth curve modeling is used to analyze performance trajectories in each domain of two cohorts of 1st and 2nd year students (n = 296). Slopes of the growth trajectories show similar linear increments in the first three domains. Further analysis revealed relative strong individual variability in initial scores but not in their later increments. Professionalism, on the other hand, shows low variability and has very small, insignificant slope increments. In this study, we showed that the learning domains (Problem Solving, Use of Information, and Group Process) observed during PBL tutorials are not only related to each other but also develop cumulatively over time. Professionalism, in contrast to the other domains studied, is less affected by the curriculum suggesting that this represents a stable characteristic. The observation that the PBL tutorial has an equal benefit to all students is noteworthy and needs further investigation.

  15. Methodology for Training Small Domain-specific Language Models and Its Application in Service Robot Speech Interface

    Directory of Open Access Journals (Sweden)

    ONDAS Stanislav


    Full Text Available The proposed paper introduces the novel methodology for training small domain-specific language models only from domain vocabulary. Proposed methodology is intended for situations, when no training data are available and preparing of appropriate deterministic grammar is not trivial task. Methodology consists of two phases. In the first phase the “random” deterministic grammar, which enables to generate all possible combination of unigrams and bigrams is constructed from vocabulary. Then, prepared random grammar serves for generating the training corpus. The “random” n-gram model is trained from generated corpus, which can be adapted in second phase. Evaluation of proposed approach has shown usability of the methodology for small domains. Results of methodology assessment favor designed method instead of constructing the appropriate deterministic grammar.

  16. Modeling the effects of land cover and use on landscape capability for urban ungulate populations: Chapter 11 (United States)

    Underwood, Harold; Kilheffer, Chellby R.; Francis, Robert A.; Millington, James D. A.; Chadwick, Michael A.


    Expanding ungulate populations are causing concerns for wildlife professionals and residents in many urban areas worldwide. Nowhere is the phenomenon more apparent than in the eastern US, where urban white-tailed deer (Odocoileus virginianus) populations are increasing. Most habitat suitability models for deer have been developed in rural areas and across large (>1000 km2) spatial extents. Only recently have we begun to understand the factors that contribute to space use by deer over much smaller spatial extents. In this study, we explore the concepts, terminology, methodology and state-of-the-science in wildlife abundance modeling as applied to overabundant deer populations across heterogeneous urban landscapes. We used classified, high-resolution digital orthoimagery to extract landscape characteristics in several urban areas of upstate New York. In addition, we assessed deer abundance and distribution in 1-km2 blocks across each study area from either aerial surveys or ground-based distance sampling. We recorded the number of detections in each block and used binomial mixture models to explore important relationships between abundance and key landscape features. Finally, we cross-validated statistical models of abundance and compared covariate relationships across study sites. Study areas were characterized along a gradient of urbanization based on the proportions of impervious surfaces and natural vegetation which, based on the best-supported models, also distinguished blocks potentially occupied by deer. Models performed better at identifying occurrence of deer and worse at predicting abundance in cross-validation comparisons. We attribute poor predictive performance to differences in deer population trajectories over time. The proportion of impervious surfaces often yielded better predictions of abundance and occurrence than did the proportion of natural vegetation, which we attribute to a lack of certain land cover classes during cold and snowy winters

  17. An Overview of Traceability: Towards a general multi-domain model

    Directory of Open Access Journals (Sweden)

    Kamal Souali


    Full Text Available Traceability for some people, is merely a tool to keep a history over something important that happened in the past. For others, is has no added value to their actual processes or products. In fact, it is becoming more and more valued. Traceability is still a vast area of research and an undiscovered field that if it is well used and managed, can provide a set of critical information or lead to something bigger. Many researches are still working to enhance its use and its integration by providing solutions to help users better manage and control their different elements (products, source code, documents, requirements, specifications, etc.. Nowadays, it is used in almost all domains as it can provide reliable information and helps improve efficiency and productivity. In this paper, we first present the state of the art on traceability and its use, through several examples. Then we provide a list of major techniques used in this field and propose our own traceability definition models.

  18. Microvascular anastomosis in rodent model evaluated by Fourier domain Doppler optical coherence tomography (United States)

    Huang, Yong; Tong, Dedi; Zhu, Shan; Wu, Lehao; Ibrahim, Zuhaib; Lee, WP Andrew; Brandacher, Gerald; Kang, Jin U.


    Vascular and microvascular anastomosis are critical components of reconstructive microsurgery, vascular surgery and transplant surgery. Imaging modality that provides immediate, real-time in-depth view and 3D structure and flow information of the surgical site can be a great valuable tool for the surgeon to evaluate surgical outcome following both conventional and innovative anastomosis techniques, thus potentially increase the surgical success rate. Microvascular anastomosis for vessels with outer diameter smaller than 1.0 mm is extremely challenging and effective evaluation of the outcome is very difficult if not impossible using computed tomography (CT) angiograms, magnetic resonance (MR) angiograms and ultrasound Doppler. Optical coherence tomography (OCT) is a non-invasive high-resolution (micron level), high-speed, 3D imaging modality that has been adopted widely in biomedical and clinical applications. Phaseresolved Doppler OCT that explores the phase information of OCT signals has been shown to be capable of characterizing dynamic blood flow clinically. In this work, we explore the capability of Fourier domain Doppler OCT as an evaluation tool to detect commonly encountered post-operative complications that will cause surgical failure and to confirm positive result with surgeon's observation. Both suture and cuff based techniques were evaluated on the femoral artery and vein in the rodent model.

  19. A Hybrid Solvers Enhanced Integral Equation Domain Decomposition Method for Modeling of Electromagnetic Radiation

    Directory of Open Access Journals (Sweden)

    Ran Zhao


    Full Text Available The hybrid solvers based on integral equation domain decomposition method (HS-DDM are developed for modeling of electromagnetic radiation. Based on the philosophy of “divide and conquer,” the IE-DDM divides the original multiscale problem into many closed nonoverlapping subdomains. For adjacent subdomains, the Robin transmission conditions ensure the continuity of currents, so the meshes of different subdomains can be allowed to be nonconformal. It also allows different fast solvers to be used in different subdomains based on the property of different subdomains to reduce the time and memory consumption. Here, the multilevel fast multipole algorithm (MLFMA and hierarchical (H- matrices method are combined in the framework of IE-DDM to enhance the capability of IE-DDM and realize efficient solution of multiscale electromagnetic radiating problems. The MLFMA is used to capture propagating wave physics in large, smooth regions, while H-matrices are used to capture evanescent wave physics in small regions which are discretized with dense meshes. Numerical results demonstrate the validity of the HS-DDM.

  20. BMExpert: Mining MEDLINE for Finding Experts in Biomedical Domains Based on Language Model. (United States)

    Wang, Beichen; Chen, Xiaodong; Mamitsuka, Hiroshi; Zhu, Shanfeng


    With the rapid development of biomedical sciences, a great number of documents have been published to report new scientific findings and advance the process of knowledge discovery. By the end of 2013, the largest biomedical literature database, MEDLINE, has indexed over 23 million abstracts. It is thus not easy for scientific professionals to find experts on a certain topic in the biomedical domain. In contrast to the existing services that use some ad hoc approaches, we developed a novel solution to biomedical expert finding, BMExpert, based on the language model. For finding biomedical experts, who are the most relevant to a specific topic query, BMExpert mines MEDLINE documents by considering three important factors: relevance of documents to the query topic, importance of documents, and associations between documents and experts. The performance of BMExpert was evaluated on a benchmark dataset, which was built by collecting the program committee members of ISMB in the past three years (2012-2014) on 14 different topics. Experimental results show that BMExpert outperformed three existing biomedical expert finding services: JANE, GoPubMed, and eTBLAST, with respect to both MAP (mean average precision) and P@50 (Precision). BMExpert is freely accessed at

  1. Operational Details of the Five Domains Model and Its Key Applications to the Assessment and Management of Animal Welfare (United States)

    Mellor, David J.


    Simple Summary The Five Domains Model is a focusing device to facilitate systematic, structured, comprehensive and coherent assessment of animal welfare; it is not a definition of animal welfare, nor is it intended to be an accurate representation of body structure and function. The purpose of each of the five domains is to draw attention to areas that are relevant to both animal welfare assessment and management. This paper begins by briefly describing the major features of the Model and the operational interactions between the five domains, and then it details seven interacting applications of the Model. These underlie its utility and increasing application to welfare assessment and management in diverse animal use sectors. Abstract In accord with contemporary animal welfare science understanding, the Five Domains Model has a significant focus on subjective experiences, known as affects, which collectively contribute to an animal’s overall welfare state. Operationally, the focus of the Model is on the presence or absence of various internal physical/functional states and external circumstances that give rise to welfare-relevant negative and/or positive mental experiences, i.e., affects. The internal states and external circumstances of animals are evaluated systematically by referring to each of the first four domains of the Model, designated “Nutrition”, “Environment”, “Health” and “Behaviour”. Then affects, considered carefully and cautiously to be generated by factors in these domains, are accumulated into the fifth domain, designated “Mental State”. The scientific foundations of this operational procedure, published in detail elsewhere, are described briefly here, and then seven key ways the Model may be applied to the assessment and management of animal welfare are considered. These applications have the following beneficial objectives—they (1) specify key general foci for animal welfare management; (2) highlight the foundations of

  2. Graph-Theoretic Models of Mutations in the Nucleotide Binding Domain 1 of the Cystic Fibrosis Transmembrane Conductance Regulator

    Directory of Open Access Journals (Sweden)

    Debra J. Knisley


    Full Text Available Cystic fibrosis is one of the most common inherited diseases and is caused by a mutation in a membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR. This protein serves as a chloride channel and regulates the viscosity of mucus lining the ducts of a number of organs. Although much has been learned about the consequences of mutations on the energy landscape and the resulting disrupted folding pathway of CFTR, a level of understanding needed to correct the misfolding has not been achieved. The most common mutations of CFTR are located in one of two nucleotide binding domains, namely, the nucleotide binding domain 1 (NBD1. We model NBD1 using a nested graph model. The vertices in the lowest layer each represent an atom in the structure of an amino acid residue, while the vertices in the mid layer each represent the residue. The vertices in the top layer each represent a subdomain of the nucleotide binding domain. We use this model to quantify the effects of a single point mutation on the protein domain. We compare the wildtype structure with eight of the most common mutations. The graph-theoretic model provides insight into how a single point mutation can have such profound structural consequences.

  3. Effects of temperature on domain-growth kinetics of fourfold-degenerate (2×1) ordering in Ising models

    DEFF Research Database (Denmark)

    Høst-Madsen, Anders; Shah, Peter Jivan; Hansen, Torben


    Computer-simulation techniques are used to study the domain-growth kinetics of (2×1) ordering in a two-dimensional Ising model with nonconserved order parameter and with variable ratio α of next-nearest- and nearest-neighbor interactions. At zero temperature, persistent growth characterized...

  4. Modeling and experimental assessment of a buried Leu–Ile mutation in dengue envelope domain III

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Manjiri R. [Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei-shi, Tokyo, 184-8588 (Japan); Numoto, Nobutaka; Ito, Nobutoshi [Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima Bunkyo-ku, Tokyo, 113-8510 (Japan); Kuroda, Yutaka, E-mail: [Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei-shi, Tokyo, 184-8588 (Japan)


    Envelope protein domain III (ED3) of the dengue virus is important for both antibody binding and host cell interaction. Here, we focused on how a L387I mutation in the protein core could take place in DEN4 ED3, but cannot be accommodated in DEN3 ED3 without destabilizing its structure. To this end, we modeled a DEN4-L387I structure using the Penultimate Rotamer Library and taking the DEN4 ED3 main-chain as a fixed template. We found that three out of seven Ile{sup 387} conformers fit in DEN4 ED3 without introducing the severe atomic clashes that are observed when DEN3 serotype’s ED3 is used as a template. A more extensive search using 273 side-chain rotamers of the residues surrounding Ile{sup 387} confirmed this prediction. In order to assess the prediction, we determined the crystal structure of DEN4-L387I at 2 Å resolution. Ile{sup 387} indeed adopted one of the three predicted rotamers. Altogether, this study demonstrates that the effects of single mutations are to a large extent successfully predicted by systematically modeling the side-chain structures of the mutated as well as those of its surrounding residues using fixed main-chain structures and assessing inter-atomic steric clashes. More accurate and reliable predictions require considering sub-angstrom main-chain deformation, which remains a challenging task. - Highlights: • We mutated L387I of DEN4 ED3 and examined its effects on structure and stability. • We modeled the side-chain of Ile{sup 387} using DEN4 ED3's structure as a template. • We determined the crystal structure of DEN4-L387I and confirmed the modeling. • Side-chain repacking occurring around Ile{sup 387} involved >3 inter-connected residues. • These results explained why L387I mutation in DEN4 ED3 conserves thermostability.

  5. Integrated Landsat Image Analysis and Hydrologic Modeling to Detect Impacts of 25-Year Land-Cover Change on Surface Runoff in a Philippine Watershed

    Directory of Open Access Journals (Sweden)

    Enrico Paringit


    Full Text Available Landsat MSS and ETM+ images were analyzed to detect 25-year land-cover change (1976–2001 in the critical Taguibo Watershed in Mindanao Island, Southern Philippines. This watershed has experienced historical modifications of its land-cover due to the presence of logging industries in the 1950s, and continuous deforestation due to illegal logging and slash-and-burn agriculture in the present time. To estimate the impacts of land-cover change on watershed runoff, land-cover information derived from the Landsat images was utilized to parameterize a GIS-based hydrologic model. The model was then calibrated with field-measured discharge data and used to simulate the responses of the watershed in its year 2001 and year 1976 land-cover conditions. The availability of land-cover information on the most recent state of the watershed from the Landsat ETM+ image made it possible to locate areas for rehabilitation such as barren and logged-over areas. We then created a “rehabilitated” land-cover condition map of the watershed (re-forestation of logged-over areas and agro-forestation of barren areas and used it to parameterize the model and predict the runoff responses of the watershed. Model results showed that changes in land-cover from 1976 to 2001 were directly related to the significant increase in surface runoff. Runoff predictions showed that a full rehabilitation of the watershed, especially in barren and logged-over areas, will be likely to reduce the generation of a huge volume of runoff during rainfall events. The results of this study have demonstrated the usefulness of multi-temporal Landsat images in detecting land-cover change, in identifying areas for rehabilitation, and in evaluating rehabilitation strategies for management of tropical watersheds through its use in hydrologic modeling.

  6. Change of Land Use/Cover in Tianjin City Based on the Markov and Cellular Automata Models

    Directory of Open Access Journals (Sweden)

    Ruci Wang


    Full Text Available In recent years, urban areas have been expanding rapidly in the world, especially in developing countries. With this rapid urban growth, several environmental and social problems have appeared. Better understanding of land use and land cover (LULC change will facilitate urban planning and constrain these potential problems. As one of the four municipalities in China, Tianjin has experienced rapid urbanization and such trend is expected to continue. Relying on remote sensing (RS and geographical information system (GIS tools, this study investigates LULC change in Tianjin city. First, we used RS to generate classification maps for 1995, 2005, and 2015. Then, simulation models were applied to evaluate the LULC changes. Analysis of the 1995, 2005, and 2015 LULC maps shows that more than 10% of the cropland areas were transformed into built-up areas. Finally, by employing the Markov model and cellular automata (CA model, the LULC in 2025 and 2035 were simulated and forecasted. Our analysis contributes to the understanding of the development process in the Tianjin area, which will facilitate future planning, as well as constraining the potential negative consequences brought by future LULC changes.

  7. In vitro encrustation of a semi-permanent polymer-covered nitinol ureter stent: an artificial urine model. (United States)

    Shaheen, Tabassum; Edirisinghe, Thiaga; Gabriel, Melissa; Bourdoumis, Andreas; Buchholz, Noor; Knight, Martin


    To measure and compare the percentage of surface and luminal thickness of encrustation in Allium and conventional double J ureteric stents after exposure for 6 weeks to an accelerated encrustation model. An artificial urine solution was prepared and three stents were immersed into each of six containers allocated to each stent type, representing each week of encrustation. Slight agitation was accomplished by placing a magnetic stirrer at the bottom of each container. Images were obtained by examination under a stereomicroscope and analyzed with the aid of specialized image analysis software (Image J). By week 2, nearly 100 % of the stent surface was covered by a thin layer of encrustation, gradually increasing in thickness through weeks 3-6. On completion of 6 weeks of encrustation, the 10 mm length double J stent specimens did not show visible encrustation, while the 60 mm long Allium stents showed 100 % surface coverage. This was most evident in the mid-section of the stents compared to the ends, suggesting a correlation between stent length and encrustation formation. There was also no blockage of the lumen of either stents between weeks 1-6. The designed accelerated encrustation model was successful and showed 80 % surface coverage after 6 weeks. In our study, there appears to be a slightly reduced level of surface encrustation to that of earlier reports. A correlation between stent length and geometry was suggested. This model may be used to compare encrustation for a variety of polymeric stent materials.

  8. Global land-cover and land-use change of the last 6000 years for climate modelling studies: the PAGES LandCover6k initiative and its first achievements (United States)

    Gaillard, Marie-Jose; Morrison, Kathleen; Madella, Marco; Whitehouse, Nicki J.; Pages Landcover6k Sub-Coordinators


    The goal of the PAGES LandCover6k initiative is to provide relevant, empirical data on past anthropogenic land-cover change (land-use change) to climate modellers (e.g. the CMIP5 initiative). Land-use change is one of many climate forcings and its effect on climate is still badly understood. Among the effects of land-cover change on climate, the best known are the biogeochemical effects, and in particular the influence on the exchange of CO2 between the land surface and the atmosphere. The biogeophysical effects are less well understood, i.e. the net effect of changes in the albedo and evapotranspiration is complex. Moreover, the net effect of both biogeochemical and biogeophysical processes due to land-use change is still a matter of debate. The LandCover6k working group infers land-use data from fossil pollen records from lake sediments and peat deposits, and from historical archives and archaeological records (including pollen and other palaeoecological records such as wood and plant micro/macroremains). The working group is divided into two activities, i) pollen-based reconstructions of past land cover using pollen-vegetation modelling approaches, and mapping of pollen-based land-cover change using spatial statistics (e.g. Trondman et al., 2015; Pirzimanbein et al., 2014), and ii) upscaling and summarizing historical and archaeological data into maps of major land-use categories linked to quantitative attributes. Studies on pollen productivity of major plant taxa are an essential part of activity i). Pollen productivity estimates are available for a large number of the northern hemisphere, major plant taxa, but are still missing for large parts of the tropics for which research is currently in progress. The results of both activities are then used to revise existing Anthropogenic Land-Cover Change (ALCC) scenarios, the HYDE database (Klein-Goldewijk et al.,) and KK (Kaplan et al.,). Climate modellers (e.g. the CMIP5 initiative) can use the LandCover6k products

  9. Self-organization of domain growth in the Ising model with impurities

    DEFF Research Database (Denmark)

    Andersen, Jørgen Vitting; Mouritsen, Ole G.


    in a cascade of spin flips at the domain boundaries. We have analyzed the lifetime and size distribution functions for the avalanches and related the results to the general phenomena of self-organized criticality and to recent experiments on cellular magnetic domain patterns in magnetic garnet films. Our...... results suggest that the self-organized state in this system appears to be subcritical, in agreement with a recent theory....

  10. Modeling land use and land cover changes in a vulnerable coastal region using artificial neural networks and cellular automata. (United States)

    Qiang, Yi; Lam, Nina S N


    As one of the most vulnerable coasts in the continental USA, the Lower Mississippi River Basin (LMRB) region has endured numerous hazards over the past decades. The sustainability of this region has drawn great attention from the international, national, and local communities, wanting to understand how the region as a system develops under intense interplay between the natural and human factors. A major problem in this deltaic region is significant land loss over the years due to a combination of natural and human factors. The main scientific and management questions are what factors contribute to the land use land cover (LULC) changes in this region, can we model the changes, and how would the LULC look like in the future given the current factors? This study analyzed the LULC changes of the region between 1996 and 2006 by utilizing an artificial neural network (ANN) to derive the LULC change rules from 15 human and natural variables. The rules were then used to simulate future scenarios in a cellular automation model. A stochastic element was added in the model to represent factors that were not included in the current model. The analysis was conducted for two sub-regions in the study area for comparison. The results show that the derived ANN models could simulate the LULC changes with a high degree of accuracy (above 92 % on average). A total loss of 263 km(2) in wetlands from 2006 to 2016 was projected, whereas the trend of forest loss will cease. These scenarios provide useful information to decision makers for better planning and management of the region.

  11. Domain wall diffusion and domain wall softening

    International Nuclear Information System (INIS)

    Lee, W T; Salje, E K H; Bismayer, U


    A number of experimental and computational studies of materials have shown that transport rates in domain walls may significantly differ from those in the bulk. One possible explanation for enhanced transport in a domain wall is that the domain wall is elastically soft with respect to the bulk. We investigate the softening of a ferroelastic domain wall in a simple, generic model. We calculate saddle point energies of solute atoms in the bulk and domain wall, using a geometry such that variation in the saddle point energy cannot be attributed to the structural differences of the bulk and the wall, but must instead be attributed to softening of the wall. Our results show a reduction of the saddle point energy in the wall, thus indicating that, in this model at least, domain walls are elastically soft compared with the bulk. A simple analysis based on an Einstein model allows us to explain the observed softening of the wall

  12. Plasmonic Resonances for Spectroscopy Applications using 3D Finite-Difference Time-Domain Models (United States)

    Ravi, Aruna

    Tuning plasmonic extinction resonances of sub-wavelength scale structures is essential to achieve maximum sensitivity and accuracy. These resonances can be controlled with careful design of nanoparticle geometries and incident wave attributes. In the first part of this dissertation, plasmonically enhanced effects on hexagonal-arrays of metal nanoparticles, metal-hole arrays (micro-mesh), and linear-arrays of metal nanorings are analyzed using three-dimensional Finite-Difference Time-Domain (3D-FDTD) simulations. The effect of particle size, lattice spacing, and lack of monodispersity of a self-assembled, hexagonal array layer of silver (Ag) nanoparticles on the extinction resonance is investigated to help determine optimal design specifications for efficient organic solar power harvesting. The enhancement of transmission resonances using plasmonic thin metal films with arrays of holes which enable recording of scatter-free infrared (IR) transmission spectra of individual particles is also explored. This method is quantitative, non-destructive and helps in better understanding the interaction of light with sub-wavelength particles. Next, plasmonically enhanced effects on linear arrays of gold (Au) rings are studied. Simulations employing 3D-FDTD can be used to determine the set of geometrical parameters to attain localized surface plasmon resonance (LSPR). The shifts in resonances due to changes in the effective dielectric of the structure are investigated, which is useful in sensing applications. Computational models enrich experimental studies. In the second part of this dissertation, the effect of particle size, shape and orientation on the IR spectra is investigated using 3D-FDTD and Mie-Bruggeman models. This computational analysis is extended to include clusters of particles of mixed composition. The prediction of extinction and absorption spectra of single particles of mixed composition helps in interpreting their physical properties and predict chemical

  13. An open-source software platform for data management, visualisation, model building and model sharing in water, energy and other resource modelling domains. (United States)

    Knox, S.; Meier, P.; Mohammed, K.; Korteling, B.; Matrosov, E. S.; Hurford, A.; Huskova, I.; Harou, J. J.; Rosenberg, D. E.; Thilmant, A.; Medellin-Azuara, J.; Wicks, J.


    Capacity expansion on resource networks is essential to adapting to economic and population growth and pressures such as climate change. Engineered infrastructure systems such as water, energy, or transport networks require sophisticated and bespoke models to refine management and investment strategies. Successful modeling of such complex systems relies on good data management and advanced methods to visualize and share data.Engineered infrastructure systems are often represented as networks of nodes and links with operating rules describing their interactions. Infrastructure system management and planning can be abstracted to simulating or optimizing new operations and extensions of the network. By separating the data storage of abstract networks from manipulation and modeling we have created a system where infrastructure modeling across various domains is facilitated.We introduce Hydra Platform, a Free Open Source Software designed for analysts and modelers to store, manage and share network topology and data. Hydra Platform is a Python library with a web service layer for remote applications, called Apps, to connect. Apps serve various functions including network or results visualization, data export (e.g. into a proprietary format) or model execution. This Client-Server architecture allows users to manipulate and share centrally stored data. XML templates allow a standardised description of the data structure required for storing network data such that it is compatible with specific models.Hydra Platform represents networks in an abstract way and is therefore not bound to a single modeling domain. It is the Apps that create domain-specific functionality. Using Apps researchers from different domains can incorporate different models within the same network enabling cross-disciplinary modeling while minimizing errors and streamlining data sharing. Separating the Python library from the web layer allows developers to natively expand the software or build web

  14. The Effectiveness of Macros-based Cognitive Domain Evaluation Model in Senior High School Based on the Curriculum 2013


    Purnomo, Djoko; Harjito, Harjito; Setyawati, Rina Dwi; Prayito, Muhammad


    The particular objective of this study was to investigate the effectiveness of implementation of learning device in the form of macros-based cognitive domain evaluation model via E-learning applied at 10th grade of senior high school in the odd semester based on the curriculum 2013. The method of this study followed the procedures of R & D (Research & Development) developed by Borg and Gall. The results of the research and application development of macros-based evaluation model are effective...

  15. Downscaling global land cover projections from an integrated assessment model for use in regional analyses: results and evaluation for the US from 2005 to 2095

    International Nuclear Information System (INIS)

    West, Tristram O; Le Page, Yannick; Wolf, Julie; Thomson, Allison M; Huang, Maoyi


    Projections of land cover change generated from integrated assessment models (IAM) and other economic-based models can be applied for analyses of environmental impacts at sub-regional and landscape scales. For those IAM and economic models that project land cover change at the continental or regional scale, these projections must be downscaled and spatially distributed prior to use in climate or ecosystem models. Downscaling efforts to date have been conducted at the national extent with relatively high spatial resolution (30 m) and at the global extent with relatively coarse spatial resolution (0.5°). We revised existing methods to downscale global land cover change projections for the US to 0.05° resolution using MODIS land cover data as the initial proxy for land class distribution. Land cover change realizations generated here represent a reference scenario and two emissions mitigation pathways (MPs) generated by the global change assessment model (GCAM). Future gridded land cover realizations are constructed for each MODIS plant functional type (PFT) from 2005 to 2095, commensurate with the community land model PFT land classes, and archived for public use. The GCAM land cover realizations provide spatially explicit estimates of potential shifts in croplands, grasslands, shrublands, and forest lands. Downscaling of the MPs indicate a net replacement of grassland by cropland in the western US and by forest in the eastern US. An evaluation of the downscaling method indicates that it is able to reproduce recent changes in cropland and grassland distributions in respective areas in the US, suggesting it could provide relevant insights into the potential impacts of socio-economic and environmental drivers on future changes in land cover. (letters)

  16. Validation of spectral domain optical coherence tomographic Doppler shifts using an in vitro flow model. (United States)

    Kagemann, Larry; Wollstein, Gadi; Ishikawa, Hiroshi; Townsend, Kelly A; Schuman, Joel S


    To validate velocity measurements produced by spectral domain optical coherence tomography (SD-OCT) in an in vitro laminar flow model. A 30-mL syringe filled with skim milk was inserted into a syringe pump. Intravenous (i.v.) tubing connected the syringe within the pump to a glass capillary tube (internal diameter, 0.579 mm) shallowly embedded in agarose gel, then to a collection reservoir. SD-OCT imaging was performed with an anterior segment eye scanner and optics engine coupled with a 100-nm bandwidth broadband superluminescent diode. Scan density of 128 x 128 A-scans was spread over a 4 x 4 mm area, and each A-scan was 2 mm in length. Fifteen sequential stationary A-scans were obtained at each 128 x 128 position, and Doppler shifts were calculated from temporal changes in phase. The beam-to-flow vector Doppler angle was determined from three-dimensional scans. In all reflectance and Doppler images, a clear laminar flow pattern was observed, with v(max) appearing in the center of the flow column. Phase wrapping was observed at all measured flow velocities, and fringe washout progressively shattered reflectance and phase signals beyond the Nyquist limit. The observed percentages of the velocity profile at or below Nyquist frequency was highly correlated with the predicted percentages (R(2)=0.934; P=0.007). SD-OCT provides objective Doppler measurements of laminar fluid flow in an in vitro flow system in a range up to the Nyquist limit.

  17. Magnetic hysteresis at the domain scale of a multi-scale material model for magneto-elastic behaviour

    International Nuclear Information System (INIS)

    Vanoost, D.; Steentjes, S.; Peuteman, J.; Gielen, G.; De Gersem, H.; Pissoort, D.; Hameyer, K.


    This paper proposes a multi-scale energy-based material model for poly-crystalline materials. Describing the behaviour of poly-crystalline materials at three spatial scales of dominating physical mechanisms allows accounting for the heterogeneity and multi-axiality of the material behaviour. The three spatial scales are the poly-crystalline, grain and domain scale. Together with appropriate scale transitions rules and models for local magnetic behaviour at each scale, the model is able to describe the magneto-elastic behaviour (magnetostriction and hysteresis) at the macroscale, although the data input is merely based on a set of physical constants. Introducing a new energy density function that describes the demagnetisation field, the anhysteretic multi-scale energy-based material model is extended to the hysteretic case. The hysteresis behaviour is included at the domain scale according to the micro-magnetic domain theory while preserving a valid description for the magneto-elastic coupling. The model is verified using existing measurement data for different mechanical stress levels. - Highlights: • A ferromagnetic hysteretic energy-based multi-scale material model is proposed. • The hysteresis is obtained by new proposed hysteresis energy density function. • Avoids tedious parameter identification.

  18. Magnetic hysteresis at the domain scale of a multi-scale material model for magneto-elastic behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Vanoost, D., E-mail: [KU Leuven Technology Campus Ostend, ReMI Research Group, Oostende B-8400 (Belgium); KU Leuven Kulak, Wave Propagation and Signal Processing Research Group, Kortrijk B-8500 (Belgium); Steentjes, S. [Institute of Electrical Machines, RWTH Aachen University, Aachen D-52062 (Germany); Peuteman, J. [KU Leuven Technology Campus Ostend, ReMI Research Group, Oostende B-8400 (Belgium); KU Leuven, Department of Electrical Engineering, Electrical Energy and Computer Architecture, Heverlee B-3001 (Belgium); Gielen, G. [KU Leuven, Department of Electrical Engineering, Microelectronics and Sensors, Heverlee B-3001 (Belgium); De Gersem, H. [KU Leuven Kulak, Wave Propagation and Signal Processing Research Group, Kortrijk B-8500 (Belgium); TU Darmstadt, Institut für Theorie Elektromagnetischer Felder, Darmstadt D-64289 (Germany); Pissoort, D. [KU Leuven Technology Campus Ostend, ReMI Research Group, Oostende B-8400 (Belgium); KU Leuven, Department of Electrical Engineering, Microelectronics and Sensors, Heverlee B-3001 (Belgium); Hameyer, K. [Institute of Electrical Machines, RWTH Aachen University, Aachen D-52062 (Germany)


    This paper proposes a multi-scale energy-based material model for poly-crystalline materials. Describing the behaviour of poly-crystalline materials at three spatial scales of dominating physical mechanisms allows accounting for the heterogeneity and multi-axiality of the material behaviour. The three spatial scales are the poly-crystalline, grain and domain scale. Together with appropriate scale transitions rules and models for local magnetic behaviour at each scale, the model is able to describe the magneto-elastic behaviour (magnetostriction and hysteresis) at the macroscale, although the data input is merely based on a set of physical constants. Introducing a new energy density function that describes the demagnetisation field, the anhysteretic multi-scale energy-based material model is extended to the hysteretic case. The hysteresis behaviour is included at the domain scale according to the micro-magnetic domain theory while preserving a valid description for the magneto-elastic coupling. The model is verified using existing measurement data for different mechanical stress levels. - Highlights: • A ferromagnetic hysteretic energy-based multi-scale material model is proposed. • The hysteresis is obtained by new proposed hysteresis energy density function. • Avoids tedious parameter identification.

  19. Discrepancies in the Climatology and Trends of Cloud Cover in Global and Regional Climate Models for the Mediterranean Region (United States)

    Enriquez-Alonso, Aaron; Calbó, Josep; Sanchez-Lorenzo, Arturo; Tan, Elcin


    The present study aims at comparing total cloud cover (TCC) as simulated by regional climate models (RCM) from CORDEX project with the same variable as simulated by the driving global climate models (GCM), which are part of the fifth phase of the Climate Model Intercomparison Project ensemble. The comparison is performed for the Mediterranean region, and for the 1971-2005 period, when results from the "historical" scenario can also be compared with two data sets of ground-based cloud observations. We work with 14 modeling results (resolution, 0.11° × 0.11°), which are a combination of five GCMs and five RCMs. In general, RCMs improve only very slightly the climatic estimation of TCC when compared with observations. Indeed, not all RCMs behave the same, and some indicators (monthly evolution of the relative bias) show an enhancement, while other indices (overall mean bias and annual range difference) improve only very slightly with respect to GCMs. Changes in the estimate of TCC in summer might be the most relevant value added by RCMs, as these should describe in a more proper way several mesoscale processes, which play a more relevant role in summer. Noticeably, RCMs are unable to capture the observed decadal trend in TCC. Thus, TCC simulated by RCMs is almost stable, in contradiction with observations and GCMs, which both show statistically significant decreasing trends in the Mediterranean area. This result is somewhat unsatisfactory, as if RCMs cannot reproduce past trends in TCC, their skill in projecting TCC into the future may be questioned.

  20. Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model

    Directory of Open Access Journals (Sweden)

    S. Bathiany


    Full Text Available Afforestation and reforestation have become popular instruments of climate mitigation policy, as forests are known to store large quantities of carbon. However, they also modify the fluxes of energy, water and momentum at the land surface. Previous studies have shown that these biogeophysical effects can counteract the carbon drawdown and, in boreal latitudes, even overcompensate it due to large albedo differences between forest canopy and snow. This study investigates the role forest cover plays for global climate by conducting deforestation and afforestation experiments with the earth system model of the Max Planck Institute for Meteorology (MPI-ESM. Complete deforestation of the tropics (18.75° S–15° N exerts a global warming of 0.4 °C due to an increase in CO2 concentration by initially 60 ppm and a decrease in evapotranspiration in the deforested areas. In the northern latitudes (45° N–90° N, complete deforestation exerts a global cooling of 0.25 °C after 100 years, while afforestation leads to an equally large warming, despite the counteracting changes in CO2 concentration. Earlier model studies are qualitatively confirmed by these findings. As the response of temperature as well as terrestrial carbon pools is not of equal sign at every land cell, considering forests as cooling in the tropics and warming in high latitudes seems to be true only for the spatial mean, but not on a local scale.

  1. Data mining and model adaptation for the land use and land cover classification of a Worldview 2 image (United States)

    Nascimento, L. C.; Cruz, C. B. M.; Souza, E. M. F. R.


    Forest fragmentation studies have increased since the last 3 decades. Land use and land cover maps (LULC) are important tools for this analysis, as well as other remote sensing techniques. The object oriented analysis classifies the image according to patterns as texture, color, shape, and context. However, there are many attributes to be analyzed, and data mining tools helped us to learn about them and to choose the best ones. In this way, the aim of this paper is to describe data mining techniques and results of a heterogeneous area, as the municipality of Silva Jardim, Rio de Janeiro, Brazil. The municipality has forest, urban areas, pastures, water bodies, agriculture and also some shadows as objects to be represented. Worldview 2 satellite image from 2010 was used and LULC classification was processed using the values that data mining software has provided according to the J48 method. Afterwards, this classification was analyzed, and the verification was made by the confusion matrix, being possible to evaluate the accuracy (58,89%). The best results were in classes "water" and "forest" which have more homogenous reflectance. Because of that, the model has been adapted, in order to create a model for the most homogeneous classes. As result, 2 new classes were created, some values and some attributes changed, and others added. In the end, the accuracy was 89,33%. It is important to highlight this is not a conclusive paper; there are still many steps to develop in highly heterogeneous surfaces.

  2. Application of mixture length turbulence models in the domain of condensation; Application des modeles de turbulence de longueur de melange dans le domaine de la condensation

    Energy Technology Data Exchange (ETDEWEB)

    Louahlia, H.; Panday, P.K. [Institut de Genie Energetique, 90 - Belfort (France)


    This paper presents a comparison between turbulence models based on Prandtl theory and applied to the problem of pure fluids condensation. A theoretical model is defined which allows to determine the physical characteristics of condensation between two vertical or horizontal flat plates. The total heat flux exchanged at the wall and the mean Nusselt number are calculated using several closure models in the liquid and vapor phases. Calculation results obtained for the R123 condensation between two vertical plates show that the Pletcher`s model or the Groenwald and Kroeger`s one applied to the vapor flow and the Von Karman`s model used for the liquid film predict thermal fluxes close to the measured ones. It has been noticed also that the condensation heat transfer is underestimated in the laminar model. In the case of the R113 condensation on an horizontal flat plate, the mean Nusselt numbers estimated in the Pletcher`s model applied to both phases are close to the measurements performed by Lu and Suryanarayana. (J.S.) 12 refs.

  3. P-wave velocity models of continental shelf of East Siberian Sea using the Laplace-domain full waveform inversion (United States)

    Kang, S. G.; Hong, J. K.; Jin, Y. K.; Jang, U.; Niessen, F.; Baranov, B.


    2016 IBRV ARAON Arctic Cruise Leg-2, Expedition ARA07C was a multidisciplinary undertaking carried out in the East Siberian Sea (ESS) from August 25 to September 10, 2016. The program was conducted as a collaboration between the Korea Polar Research Institute (KOPRI), P.P. Shirshov Institute of Oceanology (IORAS), and Alfred Wegener Institute (AWI). During this expedition, the multi-channel seismic (MCS) data were acquired on the continental shelf and the upper slope of the ESS, totaling 3 lines with 660 line-kilometers. The continental shelf of ESS is one of the widest shelf seas in the world and it is believed to cover the largest area of sub-sea permafrost in the Arctic. According to the present knowledge of the glacial history of the western Arctic Ocean, it is likely that during the LGM with a sea level approximately 120 m below present, the entire shelf area of the ESS was exposed to very cold air temperatures so that thick permafrost should have formed. Indeed, in water depths shallower than 80 m, sub-bottom profiles in the ESS recorded from the shelf edge to a latitude of 74°30' N in 60 m water depth exhibited acoustic facies, suggesting that at least relicts of submarine permafrost are present. In order to identify the existence and/or non-existence of subsea permafrost in our study area, we analyze the MCS data using the Laplace domain full waveform inversion (FWI). In case of the Canadian continental shelf of the Beaufort Sea, subsea permafrost has high seismic velocity values (over 2.6 km/sec) and strong refraction events were found in the MCS shotgathers. However, in the EES our proposed P-wave velocity models derived from FWI have neither found high velocity structures (over 2.6 km/sec) nor indicate strong refraction events by subsea permafrost. Instead, in 300 m depth below sea floor higher P-wave velocity structures (1.8 2.2 km/s) than normal subsea sediment layers were found, which are interpreted as cemented strata by glaciation activities.

  4. Semantics-driven modelling of user preferences for information retrieval in the biomedical domain. (United States)

    Gladun, Anatoly; Rogushina, Julia; Valencia-García, Rafael; Béjar, Rodrigo Martínez


    A large amount of biomedical and genomic data are currently available on the Internet. However, data are distributed into heterogeneous biological information sources, with little or even no organization. Semantic technologies provide a consistent and reliable basis with which to confront the challenges involved in the organization, manipulation and visualization of data and knowledge. One of the knowledge representation techniques used in semantic processing is the ontology, which is commonly defined as a formal and explicit specification of a shared conceptualization of a domain of interest. The work presented here introduces a set of interoperable algorithms that can use domain and ontological information to improve information-retrieval processes. This work presents an ontology-based information-retrieval system for the biomedical domain. This system, with which some experiments have been carried out that are described in this paper, is based on the use of domain ontologies for the creation and normalization of lightweight ontologies that represent user preferences in a determined domain in order to improve information-retrieval processes.

  5. Finite-element time-domain modeling of electromagnetic data in general dispersive medium using adaptive Padé series (United States)

    Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin; Zhdanov, Michael S.


    The induced polarization (IP) method has been widely used in geophysical exploration to identify the chargeable targets such as mineral deposits. The inversion of the IP data requires modeling the IP response of 3D dispersive conductive structures. We have developed an edge-based finite-element time-domain (FETD) modeling method to simulate the electromagnetic (EM) fields in 3D dispersive medium. We solve the vector Helmholtz equation for total electric field using the edge-based finite-element method with an unstructured tetrahedral mesh. We adopt the backward propagation Euler method, which is unconditionally stable, with semi-adaptive time stepping for the time domain discretization. We use the direct solver based on a sparse LU decomposition to solve the system of equations. We consider the Cole-Cole model in order to take into account the frequency-dependent conductivity dispersion. The Cole-Cole conductivity model in frequency domain is expanded using a truncated Padé series with adaptive selection of the center frequency of the series for early and late time. This approach can significantly increase the accuracy of FETD modeling.

  6. Couplings in Phase Domain Impedance Modelling of Grid-Connected Converters

    DEFF Research Database (Denmark)

    Dowlatabadi, Mohammadkazem Bakhshizadeh; Wang, Xiongfei; Blaabjerg, Frede


    The output impedance of a power converter plays an important role in the stability assessment of the converter. The impedance can be expressed in different frames such as the stationary frame (phase domain) or in the synchronous frame (dq domain). To treat the three-phase system like a single......-phase system, the system can be divided into positive and negative sequences in the phase domain. This paper demonstrates that there exist couplings between the positive and negative sequences, even in a balanced system due to the PLL, which is important for synchronization. Further it will be shown that even...... though these couplings are very small in magnitude, they are important in the stability of the converter....

  7. MODIS land cover uncertainty in regional climate simulations (United States)

    Li, Xue; Messina, Joseph P.; Moore, Nathan J.; Fan, Peilei; Shortridge, Ashton M.


    MODIS land cover datasets are used extensively across the climate modeling community, but inherent uncertainties and associated propagating impacts are rarely discussed. This paper modeled uncertainties embedded within the annual MODIS Land Cover Type (MCD12Q1) products and propagated these uncertainties through the Regional Atmospheric Mode