WorldWideScience

Sample records for modeling cardiac electrophysiology

  1. Zebrafish heart as a model for human cardiac electrophysiology.

    Science.gov (United States)

    Vornanen, Matti; Hassinen, Minna

    2016-01-01

    The zebrafish (Danio rerio) has become a popular model for human cardiac diseases and pharmacology including cardiac arrhythmias and its electrophysiological basis. Notably, the phenotype of zebrafish cardiac action potential is similar to the human cardiac action potential in that both have a long plateau phase. Also the major inward and outward current systems are qualitatively similar in zebrafish and human hearts. However, there are also significant differences in ionic current composition between human and zebrafish hearts, and the molecular basis and pharmacological properties of human and zebrafish cardiac ionic currents differ in several ways. Cardiac ionic currents may be produced by non-orthologous genes in zebrafish and humans, and paralogous gene products of some ion channels are expressed in the zebrafish heart. More research on molecular basis of cardiac ion channels, and regulation and drug sensitivity of the cardiac ionic currents are needed to enable rational use of the zebrafish heart as an electrophysiological model for the human heart.

  2. Alternans promotion in cardiac electrophysiology models by delay differential equations

    Science.gov (United States)

    Gomes, Johnny M.; dos Santos, Rodrigo Weber; Cherry, Elizabeth M.

    2017-09-01

    Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.

  3. Alternans promotion in cardiac electrophysiology models by delay differential equations.

    Science.gov (United States)

    Gomes, Johnny M; Dos Santos, Rodrigo Weber; Cherry, Elizabeth M

    2017-09-01

    Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.

  4. Incorporating inductances in tissue-scale models of cardiac electrophysiology

    Science.gov (United States)

    Rossi, Simone; Griffith, Boyce E.

    2017-09-01

    In standard models of cardiac electrophysiology, including the bidomain and monodomain models, local perturbations can propagate at infinite speed. We address this unrealistic property by developing a hyperbolic bidomain model that is based on a generalization of Ohm's law with a Cattaneo-type model for the fluxes. Further, we obtain a hyperbolic monodomain model in the case that the intracellular and extracellular conductivity tensors have the same anisotropy ratio. In one spatial dimension, the hyperbolic monodomain model is equivalent to a cable model that includes axial inductances, and the relaxation times of the Cattaneo fluxes are strictly related to these inductances. A purely linear analysis shows that the inductances are negligible, but models of cardiac electrophysiology are highly nonlinear, and linear predictions may not capture the fully nonlinear dynamics. In fact, contrary to the linear analysis, we show that for simple nonlinear ionic models, an increase in conduction velocity is obtained for small and moderate values of the relaxation time. A similar behavior is also demonstrated with biophysically detailed ionic models. Using the Fenton-Karma model along with a low-order finite element spatial discretization, we numerically analyze differences between the standard monodomain model and the hyperbolic monodomain model. In a simple benchmark test, we show that the propagation of the action potential is strongly influenced by the alignment of the fibers with respect to the mesh in both the parabolic and hyperbolic models when using relatively coarse spatial discretizations. Accurate predictions of the conduction velocity require computational mesh spacings on the order of a single cardiac cell. We also compare the two formulations in the case of spiral break up and atrial fibrillation in an anatomically detailed model of the left atrium, and we examine the effect of intracellular and extracellular inductances on the virtual electrode phenomenon.

  5. Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology.

    Science.gov (United States)

    Krishnamoorthi, Shankarjee; Perotti, Luigi E; Borgstrom, Nils P; Ajijola, Olujimi A; Frid, Anna; Ponnaluri, Aditya V; Weiss, James N; Qu, Zhilin; Klug, William S; Ennis, Daniel B; Garfinkel, Alan

    2014-01-01

    We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transmural and apex-to-base gradients of action potential characteristics. We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG) and the activation wavefronts over time. We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential. These include producing a physiologically accurate ECG, a correct ventricular activation sequence, and the inducibility of ventricular fibrillation. Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.

  6. Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology.

    Directory of Open Access Journals (Sweden)

    Shankarjee Krishnamoorthi

    Full Text Available We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transmural and apex-to-base gradients of action potential characteristics. We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG and the activation wavefronts over time. We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential. These include producing a physiologically accurate ECG, a correct ventricular activation sequence, and the inducibility of ventricular fibrillation. Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.

  7. Imaging for cardiac electrophysiology

    Directory of Open Access Journals (Sweden)

    Benoit Desjardins

    2016-11-01

    Full Text Available Clinical cardiac electrophysiology is the study of the origin and treatment of arrhythmia. There has been considerable recent development in this field, where imaging has had a transformational impact. In this invited review, we offer a global overview of the most important developments in the use of imaging in cardiac electrophysiology. We first describe the radiological imaging modalities involved in cardiac electrophysiology, to assess cardiac anatomy, function and scar. We then introduce an imaging modality with which readers are probably unfamiliar (electroanatomical mapping [EAM], but which is routinely used by electrophysiologists to plan and guide cardiac mapping and cardiac ablation therapy by catheter, a therapy which can reduce or even cure arrhythmia. We identify the limitations of EAM and describe how radiological imaging modalities can complement this technique. We then describe and illustrate how imaging has helped the diagnosis of arrhythmogenic conditions, and how imaging is used to plan and guide clinical cardiac electrophysiologic procedures and assess their results and complications. We focus on the two most common arrhythmias for which imaging has the greatest impact: atrial fibrillation and ventricular tachycardia.

  8. On the identification of multiple space dependent ionic parameters in cardiac electrophysiology modelling

    Science.gov (United States)

    Abidi, Yassine; Bellassoued, Mourad; Mahjoub, Moncef; Zemzemi, Nejib

    2018-03-01

    In this paper, we consider the inverse problem of space dependent multiple ionic parameters identification in cardiac electrophysiology modelling from a set of observations. We use the monodomain system known as a state-of-the-art model in cardiac electrophysiology and we consider a general Hodgkin-Huxley formalism to describe the ionic exchanges at the microscopic level. This formalism covers many physiological transmembrane potential models including those in cardiac electrophysiology. Our main result is the proof of the uniqueness and a Lipschitz stability estimate of ion channels conductance parameters based on some observations on an arbitrary subdomain. The key idea is a Carleman estimate for a parabolic operator with multiple coefficients and an ordinary differential equation system.

  9. Myocardial Infarct Segmentation From Magnetic Resonance Images for Personalized Modeling of Cardiac Electrophysiology.

    Science.gov (United States)

    Ukwatta, Eranga; Arevalo, Hermenegild; Li, Kristina; Yuan, Jing; Qiu, Wu; Malamas, Peter; Wu, Katherine C; Trayanova, Natalia A; Vadakkumpadan, Fijoy

    2016-06-01

    Accurate representation of myocardial infarct geometry is crucial to patient-specific computational modeling of the heart in ischemic cardiomyopathy. We have developed a methodology for segmentation of left ventricular (LV) infarct from clinically acquired, two-dimensional (2D), late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) images, for personalized modeling of ventricular electrophysiology. The infarct segmentation was expressed as a continuous min-cut optimization problem, which was solved using its dual formulation, the continuous max-flow (CMF). The optimization objective comprised of a smoothness term, and a data term that quantified the similarity between image intensity histograms of segmented regions and those of a set of training images. A manual segmentation of the LV myocardium was used to initialize and constrain the developed method. The three-dimensional geometry of infarct was reconstructed from its segmentation using an implicit, shape-based interpolation method. The proposed methodology was extensively evaluated using metrics based on geometry, and outcomes of individualized electrophysiological simulations of cardiac dys(function). Several existing LV infarct segmentation approaches were implemented, and compared with the proposed method. Our results demonstrated that the CMF method was more accurate than the existing approaches in reproducing expert manual LV infarct segmentations, and in electrophysiological simulations. The infarct segmentation method we have developed and comprehensively evaluated in this study constitutes an important step in advancing clinical applications of personalized simulations of cardiac electrophysiology.

  10. Mathematical cardiac electrophysiology

    CERN Document Server

    Colli Franzone, Piero; Scacchi, Simone

    2014-01-01

    This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. These techniques are employed in 3D cardiac simulations illustrating the excitation mechanisms, the anisotropic effects on excitation and repolarization wavefronts, the morphology of electrograms in normal and pathological tissue and some reentry phenomena. The overall aim of the book is to present rigorously the mathematica...

  11. Modelling the effect of gap junctions on tissue-level cardiac electrophysiology

    Directory of Open Access Journals (Sweden)

    Doug Bruce

    2012-08-01

    Full Text Available When modelling tissue-level cardiac electrophysiology, continuum approximations to the discrete cell-level equations are used to maintain computational tractability. One of the most commonly used models is represented by the bidomain equations, the derivation of which relies on a homogenisation technique to construct a suitable approximation to the discrete model. This derivation does not explicitly account for the presence of gap junctions connecting one cell to another. It has been seen experimentally [Rohr, Cardiovasc. Res. 2004] that these gap junctions have a marked effect on the propagation of the action potential, specifically as the upstroke of the wave passes through the gap junction. In this paper we explicitly include gap junctions in a both a 2D discrete model of cardiac electrophysiology, and the corresponding continuum model, on a simplified cell geometry. Using these models we compare the results of simulations using both continuum and discrete systems. We see that the form of the action potential as it passes through gap junctions cannot be replicated using a continuum model, and that the underlying propagation speed of the action potential ceases to match up between models when gap junctions are introduced. In addition, the results of the discrete simulations match the characteristics of those shown in Rohr 2004. From this, we suggest that a hybrid model — a discrete system following the upstroke of the action potential, and a continuum system elsewhere — may give a more accurate description of cardiac electrophysiology.

  12. Minimum Information about a Cardiac Electrophysiology Experiment (MICEE): Standardised Reporting for Model Reproducibility, Interoperability, and Data Sharing

    Science.gov (United States)

    Quinn, TA; Granite, S; Allessie, MA; Antzelevitch, C; Bollensdorff, C; Bub, G; Burton, RAB; Cerbai, E; Chen, PS; Delmar, M; DiFrancesco, D; Earm, YE; Efimov, IR; Egger, M; Entcheva, E; Fink, M; Fischmeister, R; Franz, MR; Garny, A; Giles, WR; Hannes, T; Harding, SE; Hunter, PJ; Iribe, G; Jalife, J; Johnson, CR; Kass, RS; Kodama, I; Koren, G; Lord, P; Markhasin, VS; Matsuoka, S; McCulloch, AD; Mirams, GR; Morley, GE; Nattel, S; Noble, D; Olesen, SP; Panfilov, AV; Trayanova, NA; Ravens, U; Richard, S; Rosenbaum, DS; Rudy, Y; Sachs, F; Sachse, FB; Saint, DA; Schotten, U; Solovyova, O; Taggart, P; Tung, L; Varró, A; Volders, PG; Wang, K; Weiss, JN; Wettwer, E; White, E; Wilders, R; Winslow, RL; Kohl, P

    2011-01-01

    Cardiac experimental electrophysiology is in need of a well-defined Minimum Information Standard for recording, annotating, and reporting experimental data. As a step toward establishing this, we present a draft standard, called Minimum Information about a Cardiac Electrophysiology Experiment (MICEE). The ultimate goal is to develop a useful tool for cardiac electrophysiologists which facilitates and improves dissemination of the minimum information necessary for reproduction of cardiac electrophysiology research, allowing for easier comparison and utilisation of findings by others. It is hoped that this will enhance the integration of individual results into experimental, computational, and conceptual models. In its present form, this draft is intended for assessment and development by the research community. We invite the reader to join this effort, and, if deemed productive, implement the Minimum Information about a Cardiac Electrophysiology Experiment standard in their own work. PMID:21745496

  13. Rabbit models as tools for preclinical cardiac electrophysiological safety testing: Importance of repolarization reserve.

    Science.gov (United States)

    Baczkó, István; Jost, Norbert; Virág, László; Bősze, Zsuzsanna; Varró, András

    2016-07-01

    It is essential to more reliably assess the pro-arrhythmic liability of compounds in development. Current guidelines for pre-clinical and clinical testing of drug candidates advocate the use of healthy animals/tissues and healthy individuals and focus on the test compound's ability to block the hERG current and prolong cardiac ventricular repolarization. Also, pre-clinical safety tests utilize several species commonly used in cardiac electrophysiological studies. In this review, important species differences in cardiac ventricular repolarizing ion currents are considered, followed by the discussion on electrical remodeling associated with chronic cardiovascular diseases that leads to altered ion channel and transporter expression and densities in pathological settings. We argue that the choice of species strongly influences experimental outcome and extrapolation of results to human clinical settings. We suggest that based on cardiac cellular electrophysiology, the rabbit is a useful species for pharmacological pro-arrhythmic investigations. In addition to healthy animals and tissues, the use of animal models (e.g. those with impaired repolarization reserve) is suggested that more closely resemble subsets of patients exhibiting increased vulnerability towards the development of ventricular arrhythmias and sudden cardiac death. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Human Atrial Cell Models to Analyse Haemodialysis-Related Effects on Cardiac Electrophysiology: Work in Progress

    Directory of Open Access Journals (Sweden)

    Elisa Passini

    2014-01-01

    Full Text Available During haemodialysis (HD sessions, patients undergo alterations in the extracellular environment, mostly concerning plasma electrolyte concentrations, pH, and volume, together with a modification of sympathovagal balance. All these changes affect cardiac electrophysiology, possibly leading to an increased arrhythmic risk. Computational modeling may help to investigate the impact of HD-related changes on atrial electrophysiology. However, many different human atrial action potential (AP models are currently available, all validated only with the standard electrolyte concentrations used in experiments. Therefore, they may respond in different ways to the same environmental changes. After an overview on how the computational approach has been used in the past to investigate the effect of HD therapy on cardiac electrophysiology, the aim of this work has been to assess the current state of the art in human atrial AP models, with respect to the HD context. All the published human atrial AP models have been considered and tested for electrolytes, volume changes, and different acetylcholine concentrations. Most of them proved to be reliable for single modifications, but all of them showed some drawbacks. Therefore, there is room for a new human atrial AP model, hopefully able to physiologically reproduce all the HD-related effects. At the moment, work is still in progress in this specific field.

  15. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU.

    Science.gov (United States)

    Xia, Yong; Wang, Kuanquan; Zhang, Henggui

    2015-01-01

    Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations.

  16. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU

    Directory of Open Access Journals (Sweden)

    Yong Xia

    2015-01-01

    Full Text Available Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation and the other is the diffusion term of the monodomain model (partial differential equation. Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations.

  17. Using delay differential equations to induce alternans in a model of cardiac electrophysiology.

    Science.gov (United States)

    Eastman, Justin; Sass, Julian; Gomes, Johnny M; Dos Santos, Rodrigo Weber; Cherry, Elizabeth M

    2016-09-07

    Cardiac electrical alternans is a period-2 dynamical behavior with alternating long and short action potential durations (APD) that often precedes dangerous arrhythmias associated with cardiac arrest. Despite the importance of alternans, many current ordinary differential equations models of cardiac electrophysiology do not produce alternans, thereby limiting the use of these models for studying the mechanisms that underlie this condition. Because delay differential equations (DDEs) commonly induce complex dynamics in other biological systems, we investigate whether incorporating DDEs can lead to alternans development in cardiac models by studying the Fox et al. canine ventricular action potential model. After suppressing the alternans in the original model, we show that alternans can be obtained by introducing DDEs in the model gating variables, and we quantitatively compare the DDE-induced alternans with the alternans present in the original model. We analyze the behavior of the voltage, currents, and gating variables of the model to study the effects of the delays and to determine how alternans develops in that setting, and we discuss the mathematical and physiological implications of our findings. In future work, we aim to apply our approach to induce alternans in models that do not naturally exhibit such dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Minimum Information about a Cardiac Electrophysiology Experiment (MICEE): standardised reporting for model reproducibility, interoperability, and data sharing

    NARCIS (Netherlands)

    Quinn, T. A.; Granite, S.; Allessie, M. A.; Antzelevitch, C.; Bollensdorff, C.; Bub, G.; Burton, R. A. B.; Cerbai, E.; Chen, P. S.; Delmar, M.; DiFrancesco, D.; Earm, Y. E.; Efimov, I. R.; Egger, M.; Entcheva, E.; Fink, M.; Fischmeister, R.; Franz, M. R.; Garny, A.; Giles, W. R.; Hannes, T.; Harding, S. E.; Hunter, P. J.; Iribe, G.; Jalife, J.; Johnson, C. R.; Kass, R. S.; Kodama, I.; Koren, G.; Lord, P.; Markhasin, V. S.; Matsuoka, S.; McCulloch, A. D.; Mirams, G. R.; Morley, G. E.; Nattel, S.; Noble, D.; Olesen, S. P.; Panfilov, A. V.; Trayanova, N. A.; Ravens, U.; Richard, S.; Rosenbaum, D. S.; Rudy, Y.; Sachs, F.; Sachse, F. B.; Saint, D. A.; Schotten, U.; Solovyova, O.; Taggart, P.; Tung, L.; Varró, A.; Volders, P. G.; Wang, K.; Weiss, J. N.; Wettwer, E.; White, E.; Wilders, R.; Winslow, R. L.; Kohl, P.

    2011-01-01

    Cardiac experimental electrophysiology is in need of a well-defined Minimum Information Standard for recording, annotating, and reporting experimental data. As a step towards establishing this, we present a draft standard, called Minimum Information about a Cardiac Electrophysiology Experiment

  19. Comparison of Nigella sativa- and exercise-induced models of cardiac hypertrophy: structural and electrophysiological features.

    Science.gov (United States)

    Al-Asoom, Lubna Ibrahim; Al-Shaikh, Basil Abdulrahman; Bamosa, Abdullah Omar; El-Bahai, Mohammad Nabil

    2014-09-01

    Exercise training is employed as supplementary therapeutic intervention for heart failure, due to its ability to induce physiological cardiac hypertrophy. In parallel, supplementation with Nigella sativa (N. sativa) was found to enhance myocardial function and induce cardiac hypertrophy. In this study, we aim to compare the morphological and electrophysiological changes associated with these patterns of cardiac hypertrophy and the possible changes upon administration of N. sativa to exercise-trained animals. Fifty-six adult Wistar rats were divided into: control, Nigella-treated (N), exercise-trained (E), and Nigella-treated-exercise-trained (NE) rats. Daily 800 mg/kg N. sativa was administered orally to N and NE. E and NE ran on treadmill, 2 h/day. At the end of 8 weeks ECG, body weight (BW), heart weight (HW), and left ventricular weight (LVW) were recorded. Hematoxylin and Eosin and periodic acid-Schiff sections were prepared to study the histology of left ventricles and to measure diameter of cardiomyocytes (Cdia). HW/BW, LVW/BW, and mean Cdia were significantly higher in all experimental animals compared to the controls. Histology showed normal cardiomyocytes with no fibrosis. ECG showed significantly lower heart rates, higher QRS amplitude, and ventricular specific potential in NE group compared to control group. Supplementation of N. sativa demonstrated a synergistic effect with exercise training as Nigella-exercise-induced cardiac hypertrophy had lower heart rate and well-matched electrical activity of the heart to its mass. Therefore, this model of cardiac hypertrophy might be introduced as a new therapeutic strategy for treatment for heart failure with superior advantages to exercise training.

  20. Image-based reconstruction of three-dimensional myocardial infarct geometry for patient-specific modeling of cardiac electrophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Ukwatta, Eranga, E-mail: eukwatt1@jhu.edu; Arevalo, Hermenegild; Pashakhanloo, Farhad; Prakosa, Adityo; Vadakkumpadan, Fijoy [Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Rajchl, Martin [Department of Computing, Imperial College London, London SW7 2AZ (United Kingdom); White, James [Stephenson Cardiovascular MR Centre, University of Calgary, Calgary, Alberta T2N 2T9 (Canada); Herzka, Daniel A.; McVeigh, Elliot [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Lardo, Albert C. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Division of Cardiology, Johns Hopkins Institute of Medicine, Baltimore, Maryland 21224 (United States); Trayanova, Natalia A. [Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins Institute of Medicine, Baltimore, Maryland 21205 (United States)

    2015-08-15

    Purpose: Accurate three-dimensional (3D) reconstruction of myocardial infarct geometry is crucial to patient-specific modeling of the heart aimed at providing therapeutic guidance in ischemic cardiomyopathy. However, myocardial infarct imaging is clinically performed using two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) techniques, and a method to build accurate 3D infarct reconstructions from the 2D LGE-CMR images has been lacking. The purpose of this study was to address this need. Methods: The authors developed a novel methodology to reconstruct 3D infarct geometry from segmented low-resolution (Lo-res) clinical LGE-CMR images. Their methodology employed the so-called logarithm of odds (LogOdds) function to implicitly represent the shape of the infarct in segmented image slices as LogOdds maps. These 2D maps were then interpolated into a 3D image, and the result transformed via the inverse of LogOdds to a binary image representing the 3D infarct geometry. To assess the efficacy of this method, the authors utilized 39 high-resolution (Hi-res) LGE-CMR images, including 36 in vivo acquisitions of human subjects with prior myocardial infarction and 3 ex vivo scans of canine hearts following coronary ligation to induce infarction. The infarct was manually segmented by trained experts in each slice of the Hi-res images, and the segmented data were downsampled to typical clinical resolution. The proposed method was then used to reconstruct 3D infarct geometry from the downsampled images, and the resulting reconstructions were compared with the manually segmented data. The method was extensively evaluated using metrics based on geometry as well as results of electrophysiological simulations of cardiac sinus rhythm and ventricular tachycardia in individual hearts. Several alternative reconstruction techniques were also implemented and compared with the proposed method. Results: The accuracy of the LogOdds method in reconstructing 3D

  1. A second-generation computational modeling of cardiac electrophysiology: response of action potential to ionic concentration changes and metabolic inhibition.

    Science.gov (United States)

    Alaa, Nour Eddine; Lefraich, Hamid; El Malki, Imane

    2014-10-21

    Cardiac arrhythmias are becoming one of the major health care problem in the world, causing numerous serious disease conditions including stroke and sudden cardiac death. Furthermore, cardiac arrhythmias are intimately related to the signaling ability of cardiac cells, and are caused by signaling defects. Consequently, modeling the electrical activity of the heart, and the complex signaling models that subtend dangerous arrhythmias such as tachycardia and fibrillation, necessitates a quantitative model of action potential (AP) propagation. Yet, many electrophysiological models, which accurately reproduce dynamical characteristic of the action potential in cells, have been introduced. However, these models are very complex and are very time consuming computationally. Consequently, a large amount of research is consecrated to design models with less computational complexity. This paper is presenting a new model for analyzing the propagation of ionic concentrations and electrical potential in space and time. In this model, the transport of ions is governed by Nernst-Planck flux equation (NP), and the electrical interaction of the species is described by a new cable equation. These set of equations form a system of coupled partial nonlinear differential equations that is solved numerically. In the first we describe the mathematical model. To realize the numerical simulation of our model, we proceed by a finite element discretization and then we choose an appropriate resolution algorithm. We give numerical simulations obtained for different input scenarios in the case of suicide substrate reaction which were compared to those obtained in literature. These input scenarios have been chosen so as to provide an intuitive understanding of dynamics of the model. By accessing time and space domains, it is shown that interpreting the electrical potential of cell membrane at steady state is incorrect. This model is general and applies to ions of any charge in space and time

  2. Minimum Information about a Cardiac Electrophysiology Experiment (MICEE)

    DEFF Research Database (Denmark)

    Quinn, T A; Granite, S; Allessie, M A

    2011-01-01

    Cardiac experimental electrophysiology is in need of a well-defined Minimum Information Standard for recording, annotating, and reporting experimental data. As a step towards establishing this, we present a draft standard, called Minimum Information about a Cardiac Electrophysiology Experiment (M...

  3. Cardiac Electrophysiology: Normal and Ischemic Ionic Currents and the ECG

    Science.gov (United States)

    Klabunde, Richard E.

    2017-01-01

    Basic cardiac electrophysiology is foundational to understanding normal cardiac function in terms of rate and rhythm and initiation of cardiac muscle contraction. The primary clinical tool for assessing cardiac electrical events is the electrocardiogram (ECG), which provides global and regional information on rate, rhythm, and electrical…

  4. Modeling Cardiac Electrophysiology at the Organ Level in the Peta FLOPS Computing Age

    International Nuclear Information System (INIS)

    Mitchell, Lawrence; Bishop, Martin; Hoetzl, Elena; Neic, Aurel; Liebmann, Manfred; Haase, Gundolf; Plank, Gernot

    2010-01-01

    Despite a steep increase in available compute power, in-silico experimentation with highly detailed models of the heart remains to be challenging due to the high computational cost involved. It is hoped that next generation high performance computing (HPC) resources lead to significant reductions in execution times to leverage a new class of in-silico applications. However, performance gains with these new platforms can only be achieved by engaging a much larger number of compute cores, necessitating strongly scalable numerical techniques. So far strong scalability has been demonstrated only for a moderate number of cores, orders of magnitude below the range required to achieve the desired performance boost.In this study, strong scalability of currently used techniques to solve the bidomain equations is investigated. Benchmark results suggest that scalability is limited to 512-4096 cores within the range of relevant problem sizes even when systems are carefully load-balanced and advanced IO strategies are employed.

  5. Magnetic resonance-compatible model of isolated working heart from large animal for multimodal assessment of cardiac function, electrophysiology, and metabolism.

    Science.gov (United States)

    Vaillant, Fanny; Magat, Julie; Bour, Pierre; Naulin, Jérôme; Benoist, David; Loyer, Virginie; Vieillot, Delphine; Labrousse, Louis; Ritter, Philippe; Bernus, Olivier; Dos Santos, Pierre; Quesson, Bruno

    2016-05-15

    To provide a model close to the human heart, and to study intrinsic cardiac function at the same time as electromechanical coupling, we developed a magnetic resonance (MR)-compatible setup of isolated working perfused pig hearts. Hearts from pigs (40 kg, n = 20) and sheep (n = 1) were blood perfused ex vivo in the working mode with and without loaded right ventricle (RV), for 80 min. Cardiac function was assessed by measuring left intraventricular pressure and left ventricular (LV) ejection fraction (LVEF), aortic and mitral valve dynamics, and native T1 mapping with MR imaging (1.5 Tesla). Potential myocardial alterations were assessed at the end of ex vivo perfusion from late-Gadolinium enhancement T1 mapping. The ex vivo cardiac function was stable across the 80 min of perfusion. Aortic flow and LV-dP/dtmin were significantly higher (P pressure, LV-dP/dtmax, LVEF, and kinetics of aortic and mitral valves. T1 mapping analysis showed a spatially homogeneous distribution over the LV. Simultaneous recording of hemodynamics, LVEF, and local cardiac electrophysiological signals were then successfully performed at baseline and during electrical pacing protocols without inducing alteration of MR images. Finally, (31)P nuclear MR spectroscopy (9.4 T) was also performed in two pig hearts, showing phosphocreatine-to-ATP ratio in accordance with data previously reported in vivo. We demonstrate the feasibility to perfuse isolated pig hearts in the working mode, inside an MR environment, allowing simultaneous assessment of cardiac structure, mechanics, and electrophysiology, illustrating examples of potential applications. Copyright © 2016 the American Physiological Society.

  6. Dynamic clamp: a powerful tool in cardiac electrophysiology

    NARCIS (Netherlands)

    Wilders, Ronald

    2006-01-01

    Dynamic clamp is a collection of closely related techniques that have been employed in cardiac electrophysiology to provide direct answers to numerous research questions regarding basic cellular mechanisms of action potential formation, action potential transfer and action potential synchronization

  7. Toward cardiac electrophysiological mapping based on micro-Tesla NMR: a novel modality for localizing the cardiac reentry

    Directory of Open Access Journals (Sweden)

    Kiwoong Kim

    2012-06-01

    Full Text Available Matching the proton magnetic resonance frequency to the frequency of a periodic electrophysiological excitation of myocardium enables direct localization of the cardiac reentry by magnetic resonance imaging techniques. The feasibility of this new idea has been demonstrated by conducting a numerical simulation based on a realistic heart model and experimental parameters in SQUID-based micro-Tesla NMR.

  8. Electrophysiological Monitoring of Brain Injury and Recovery after Cardiac Arrest

    Directory of Open Access Journals (Sweden)

    Ruoxian Deng

    2015-10-01

    Full Text Available Reliable prognostic methods for cerebral functional outcome of post cardiac-arrest (CA patients are necessary, especially since therapeutic hypothermia (TH as a standard treatment. Traditional neurophysiological prognostic indicators, such as clinical examination and chemical biomarkers, may result in indecisive outcome predictions and do not directly reflect neuronal activity, though they have remained the mainstay of clinical prognosis. The most recent advances in electrophysiological methods—electroencephalography (EEG pattern, evoked potential (EP and cellular electrophysiological measurement—were developed to complement these deficiencies, and will be examined in this review article. EEG pattern (reactivity and continuity provides real-time and accurate information for early-stage (particularly in the first 24 h hypoxic-ischemic (HI brain injury patients with high sensitivity. However, the signal is easily affected by external stimuli, thus the measurements of EP should be combined with EEG background to validate the predicted neurologic functional result. Cellular electrophysiology, such as multi-unit activity (MUA and local field potentials (LFP, has strong potential for improving prognostication and therapy by offering additional neurophysiologic information to understand the underlying mechanisms of therapeutic methods. Electrophysiology provides reliable and precise prognostication on both global and cellular levels secondary to cerebral injury in cardiac arrest patients treated with TH.

  9. Stability results for the parameter identification inverse problem in cardiac electrophysiology

    Science.gov (United States)

    Lassoued, Jamila; Mahjoub, Moncef; Zemzemi, Néjib

    2016-11-01

    In this paper we prove a stability estimate of the parameter identification problem in cardiac electrophysiology modeling. We use the monodomain model which is a reaction diffusion parabolic equation where the reaction term is obtained by solving an ordinary differential equation (ODE). We are interested in proving the stability of the identification of the parameter {τ }{in}, which is the parameter that multiplies the cubic term in the reaction term. The proof of the result is based on a new Carleman-type estimate for both partial differential equation (PDE) and ODE problems. As a consequence of the stability result we prove the uniqueness of the parameter {τ }{in} giving some observations of both state variables at a given time t 0 in the whole domain and in the PDE variable in a non empty open subset w 0 of the domain.

  10. Program Code Generator for Cardiac Electrophysiology Simulation with Automatic PDE Boundary Condition Handling.

    Directory of Open Access Journals (Sweden)

    Florencio Rusty Punzalan

    Full Text Available Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs. Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code

  11. Teaching Cardiac Electrophysiology Modeling to Undergraduate Students: Laboratory Exercises and GPU Programming for the Study of Arrhythmias and Spiral Wave Dynamics

    Science.gov (United States)

    Bartocci, Ezio; Singh, Rupinder; von Stein, Frederick B.; Amedome, Avessie; Caceres, Alan Joseph J.; Castillo, Juan; Closser, Evan; Deards, Gabriel; Goltsev, Andriy; Ines, Roumwelle Sta.; Isbilir, Cem; Marc, Joan K.; Moore, Diquan; Pardi, Dana; Sadhu, Sandeep; Sanchez, Samuel; Sharma, Pooja; Singh, Anoopa; Rogers, Joshua; Wolinetz, Aron; Grosso-Applewhite, Terri; Zhao, Kai; Filipski, Andrew B.; Gilmour, Robert F., Jr.; Grosu, Radu; Glimm, James; Smolka, Scott A.; Cherry, Elizabeth M.; Clarke, Edmund M.; Griffeth, Nancy; Fenton, Flavio H.

    2011-01-01

    As part of a 3-wk intersession workshop funded by a National Science Foundation Expeditions in Computing award, 15 undergraduate students from the City University of New York collaborated on a study aimed at characterizing the voltage dynamics and arrhythmogenic behavior of cardiac cells for a broad range of physiologically relevant conditions…

  12. The Cardiac Fibroblast: Functional and Electrophysiological Considerations in Healthy and Diseased Hearts

    Science.gov (United States)

    Vasquez, Carolina; Benamer, Najate; Morley, Gregory E.

    2011-01-01

    Cardiac fibrosis occurs in a number of cardiovascular diseases associated with a high incidence of arrhythmias. A critical event in the development of fibrosis is the transformation of fibroblasts into an active phenotype or myofibroblast. This transformation results in functional changes including increased proliferation and changes in the release of signaling molecules and extracellular matrix deposition. Traditionally fibroblasts have been considered to affect cardiac electrophysiology indirectly by physically isolating myocytes and creating conduction barriers. There is now increasing evidence that cardiac fibroblasts may play a direct role in modulating the electrophysiological substrate in diseased hearts. The purpose of this review is to summarize the functional changes associated with fibroblast activation, the membrane currents that have been identified in adult cardiac fibroblasts and describe recent studies of fibroblast-myocyte electrical interactions with emphasis on the changes that occur with cardiac injury. Further analysis of fibroblast membrane electrophysiology and their interactions with myocytes will lead to a more complete understanding of the arrhythmic substrate. These studies have the potential to generate new therapeutic approaches for the prevention of arrhythmias associated with cardiac fibrosis. PMID:21242811

  13. Cardiac sodium channels and inherited electrophysiologic disorders: a pharmacogenetic overview

    NARCIS (Netherlands)

    Smits, Jeroen P. P.; Blom, Marieke T.; Wilde, Arthur A. M.; Tan, Hanno L.

    2008-01-01

    Sodium (Na) channels are essential for cardiac electrical activity. Cardiac Na channel dysfunction, inherited or acquired, can induce life-threatening conduction and arrhythmia disorders. Inherited Na channel dysfunction may put affected patients at a greater risk for these complications when

  14. Cardiac and electrophysiological responses to valid and invalid feedback in a time-estimation task

    NARCIS (Netherlands)

    Mies, G.W.; van der Veen, F.M.; Tulen, J.H.; Hengeveld, M.W.; van der Molen, M.W.

    2011-01-01

    This study investigated the cardiac and electrophysiological responses to feedback in a time-estimation task in which feedback-validity was manipulated. Participants across a wide age range had to produce 1 s intervals followed by positive and negative feedback that was valid or invalid (i.e.,

  15. Magnetic Assisted Navigation in Electrophysiology and Cardiac Resynchronisation: A Review

    Directory of Open Access Journals (Sweden)

    Thornton AS

    2006-10-01

    Full Text Available Magnetic assisted navigation is a new innovation that may prove useful in catheter ablation of cardiac arrhythmias and cardiac resynchronization therapy. The ability to steer extremely floppy catheters and guidewires may allow for these to be positioned safely in previously inaccessible areas of the heart. The integration of other new technology, such as image integration and electroanatomic mapping systems, should advance our abilities further. Although studies have shown the technology to be feasible, with the advantage to the physician of decreased radiation exposure, studies need to be performed to show additional benefit over standard techniques.

  16. Basic Electrophysiologic Mechanisms of Sudden Cardiac Death Caused by Acute Myocardial Ischemia and Infarction.

    Science.gov (United States)

    Wit, Andrew L

    2017-12-01

    Sudden cardiac death caused by acute ischemia results from electrophysiologic changes in myocardium deprived of its blood supply. These changes include a reduction in resting potential and phase 0 depolarization and an increase in intercellular resistivity that slow conduction, cause conduction block, and lead to reentrant excitation and ventricular fibrillation. Reperfusion of a coronary artery after a short period of occlusion leads to similar changes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A pilot study of cardiac electrophysiology catheters to map and pace bladder electrical activity.

    Science.gov (United States)

    Kelley, Robert S; Vardy, Michael D; Simons, Grant R; Chen, Henry; Ascher-Walsh, Charles; Brodman, Michael

    2017-04-01

    This is a pilot study to evaluate the feasibility of using diagnostic cardiac electrophysiology catheters for recording intrinsic urinary bladder electrical activity and for electrical pacing capture of bladder tissue. During cystoscopy, a curved quadripolar catheter was introduced and contact was made with the right and left halves of the dome and trigone in adult female patients undergoing cystoscopy. Electrical activity was recorded, using a commercially available cardiac electrophysiologic recording system, before and during pacing at 0.5-3.0 Hz. Apparent spontaneous electrical depolarizations were detected in both the trigone and the dome. The amplitude of these depolarizations was in the microVolt range. During pacing, local electrical capture was noted in the trigone, but not in the dome. Spontaneous low-amplitude electrical activity was detected in the bladder through the use of commercially available cardiac electrophysiology equipment. While these low-level signals could represent noise, the voltage, and morphology resemble detrusor muscle action potentials previously seen in animal studies. Pacing induced local electrical capture in the trigone but not the dome. © 2016 Wiley Periodicals, Inc.

  18. Premature Ventricular Contraction Coupling Interval Variability Destabilizes Cardiac Neuronal and Electrophysiological Control: Insights From Simultaneous Cardioneural Mapping.

    Science.gov (United States)

    Hamon, David; Rajendran, Pradeep S; Chui, Ray W; Ajijola, Olujimi A; Irie, Tadanobu; Talebi, Ramin; Salavatian, Siamak; Vaseghi, Marmar; Bradfield, Jason S; Armour, J Andrew; Ardell, Jeffrey L; Shivkumar, Kalyanam

    2017-04-01

    Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system, a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on intrinsic cardiac nervous system function in generating cardiac neuronal and electric instability using a novel cardioneural mapping approach. In a porcine model (n=8), neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli ( P <0.001). Compared with fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response ( P <0.05 versus short CI), particularly on convergent neurons ( P <0.05), as well as neurons receiving sympathetic ( P <0.05) and parasympathetic input ( P <0.05). The greatest cardiac electric instability was also observed after variable (short) CI PVCs. Variable CI PVCs affect critical populations of intrinsic cardiac nervous system neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling, leading to cardiomyopathy. © 2017 American Heart Association, Inc.

  19. Mechanisms of electrical activation and conduction in the gastrointestinal system: lessons from cardiac electrophysiology

    Directory of Open Access Journals (Sweden)

    Gary eTse

    2016-05-01

    Full Text Available The gastrointestinal (GI tract is an electrically excitable organ system containing multiple cell types, which coordinate electrical activity propagating through this tract. Disruption in its normal electrophysiology is observed in a number of GI motility disorders. However, this is not well characterized and the field of GI electrophysiology is much less developed compared to the cardiac field. The aim of this article is to use the established knowledge of cardiac electrophysiology to shed light on the mechanisms of electrical activation and propagation along the GI tract, and how abnormalities in these processes lead to motility disorders and suggest better treatment options based on this improved understanding. In the first part of the article, the ionic contributions to the generation of GI slow wave and the cardiac action potential (AP are reviewed. Propagation of these electrical signals can be described by the core conductor theory in both systems. However, specifically for the GI tract, the following unique properties are observed: changes in slow wave frequency along its length, periods of quiescence, synchronization in short distances and desynchronization over long distances. These are best described by a coupled oscillator theory. Other differences include the diminished role of gap junctions in mediating this conduction in the GI tract compared to the heart. The electrophysiology of conditions such as gastroesophageal reflux disease and gastroparesis, and functional problems such as irritable bowel syndrome are discussed in detail, with reference to ion channel abnormalities and potential therapeutic targets. A deeper understanding of the molecular basis and physiological mechanisms underlying GI motility disorders will enable the development of better diagnostic and therapeutic tools and the advancement of this field.

  20. Encoding and Decoding Models in Cognitive Electrophysiology.

    Science.gov (United States)

    Holdgraf, Christopher R; Rieger, Jochem W; Micheli, Cristiano; Martin, Stephanie; Knight, Robert T; Theunissen, Frederic E

    2017-01-01

    Cognitive neuroscience has seen rapid growth in the size and complexity of data recorded from the human brain as well as in the computational tools available to analyze this data. This data explosion has resulted in an increased use of multivariate, model-based methods for asking neuroscience questions, allowing scientists to investigate multiple hypotheses with a single dataset, to use complex, time-varying stimuli, and to study the human brain under more naturalistic conditions. These tools come in the form of "Encoding" models, in which stimulus features are used to model brain activity, and "Decoding" models, in which neural features are used to generated a stimulus output. Here we review the current state of encoding and decoding models in cognitive electrophysiology and provide a practical guide toward conducting experiments and analyses in this emerging field. Our examples focus on using linear models in the study of human language and audition. We show how to calculate auditory receptive fields from natural sounds as well as how to decode neural recordings to predict speech. The paper aims to be a useful tutorial to these approaches, and a practical introduction to using machine learning and applied statistics to build models of neural activity. The data analytic approaches we discuss may also be applied to other sensory modalities, motor systems, and cognitive systems, and we cover some examples in these areas. In addition, a collection of Jupyter notebooks is publicly available as a complement to the material covered in this paper, providing code examples and tutorials for predictive modeling in python. The aim is to provide a practical understanding of predictive modeling of human brain data and to propose best-practices in conducting these analyses.

  1. Encoding and Decoding Models in Cognitive Electrophysiology

    Directory of Open Access Journals (Sweden)

    Christopher R. Holdgraf

    2017-09-01

    Full Text Available Cognitive neuroscience has seen rapid growth in the size and complexity of data recorded from the human brain as well as in the computational tools available to analyze this data. This data explosion has resulted in an increased use of multivariate, model-based methods for asking neuroscience questions, allowing scientists to investigate multiple hypotheses with a single dataset, to use complex, time-varying stimuli, and to study the human brain under more naturalistic conditions. These tools come in the form of “Encoding” models, in which stimulus features are used to model brain activity, and “Decoding” models, in which neural features are used to generated a stimulus output. Here we review the current state of encoding and decoding models in cognitive electrophysiology and provide a practical guide toward conducting experiments and analyses in this emerging field. Our examples focus on using linear models in the study of human language and audition. We show how to calculate auditory receptive fields from natural sounds as well as how to decode neural recordings to predict speech. The paper aims to be a useful tutorial to these approaches, and a practical introduction to using machine learning and applied statistics to build models of neural activity. The data analytic approaches we discuss may also be applied to other sensory modalities, motor systems, and cognitive systems, and we cover some examples in these areas. In addition, a collection of Jupyter notebooks is publicly available as a complement to the material covered in this paper, providing code examples and tutorials for predictive modeling in python. The aim is to provide a practical understanding of predictive modeling of human brain data and to propose best-practices in conducting these analyses.

  2. Electrophysiological characteristics of pressure overload-induced cardiac hypertrophy and its influence on ventricular arrhythmias.

    Directory of Open Access Journals (Sweden)

    Xiaowei Chen

    Full Text Available To explore the cardiac electrophysiological characteristics of cardiac hypertrophy and its influence on the occurrence of ventricular tachyarrhythmias.Adult C57BL6 mice were randomly divided into a surgery group and a control group. Thoracic aortic constriction was performed on mice in the surgery group, and cardiac anatomical and ultrasonic evaluations were performed to confirm the success of the cardiac hypertrophy model 4 weeks after the operation. Using the Langendorff method of isolated heart perfusion, monophasic action potentials (MAPs and the effective refractory period (ERP at different parts of the heart (including the epi- and endo-myocardium of the left and right ventricles were measured, and the induction rate of ventricular tachyarrhythmias was observed under programmed electrical stimulus (PES and burst stimulus. Whole-cell patch-clamp was used to obtain the I-V characteristics of voltage-gated potassium channels in cardiomyocytes of different parts of the heart (including the epi- and endo-myocardium of the left and right ventricles as well as the channels' properties of steady-state inactivation and recovery from inactivation.The ratio of heart weight to body weight and the ratio of left ventricular weight to body weight in the surgery group were significantly higher than those in the control group (P < 0.05. Ultrasonic evaluation revealed that both interventricular septal diameter (IVSD and left ventricle posterior wall diameter (LVPWD in the surgery group were significantly larger than those in the control group (P < 0.05. Under PES and burst stimuli, the induction rates of arrhythmias in the surgery group significantly increased, reaching 41.2% and 23.5%, respectively. Both the QT interval and action potential duration (APD in the surgery group were significantly longer than in the control group (P<0.01, and the changes showed obvious spatial heterogeneity. Whole-cell patch-clamp recordings demonstrated that the surgery group

  3. Premature Ventricular Contraction Coupling Interval Variability Destabilizes Cardiac Neuronal and Electrophysiological Control: Insights from Simultaneous Cardio-Neural Mapping

    Science.gov (United States)

    Hamon, David; Rajendran, Pradeep S.; Chui, Ray W.; Ajijola, Olujimi A.; Irie, Tadanobu; Talebi, Ramin; Salavatian, Siamak; Vaseghi, Marmar; Bradfield, Jason S.; Armour, J. Andrew; Ardell, Jeffrey L.; Shivkumar, Kalyanam

    2017-01-01

    Background Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system (ICNS), a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on ICNS function in generating cardiac neuronal and electrical instability using a novel cardio-neural mapping approach. Methods and Results In a porcine model (n=8) neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli (P<0.001). Compared to fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response (P<0.05 versus short CI), particularly on convergent neurons (P<0.05), as well as neurons receiving sympathetic (P<0.05) and parasympathetic input (P<0.05). The greatest cardiac electrical instability was also observed following variable (short) CI PVCs. Conclusions Variable CI PVCs affect critical populations of ICNS neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling leading to cardiomyopathy. PMID:28408652

  4. Automated Electrophysiology Makes the Pace for Cardiac Ion Channel Safety Screening

    Directory of Open Access Journals (Sweden)

    Clemens eMoeller

    2011-11-01

    Full Text Available The field of automated patch-clamp electrophysiology has emerged from the tension between the pharmaceutical industry’s need for high-throughput compound screening versus its need to be conservative due to regulatory requirements. On the one hand, hERG channel screening was increasingly requested for new chemical entities, as the correlation between blockade of the ion channel coded by hERG and Torsades de Pointes cardiac arrhythmia gained increasing attention. On the other hand, manual patch-clamping, typically quoted as the gold-standard for understanding ion channel function and modulation, was far too slow (and, consequently, too expensive for keeping pace with the numbers of compounds submitted for hERG channel investigations from pharmaceutical R&D departments. In consequence it became more common for some pharmaceutical companies to outsource safety pharmacological investigations, with a focus on hERG channel interactions. This outsourcing has allowed those pharmaceutical companies to build up operational flexibility and greater independence from internal resources, and allowed them to obtain access to the latest technological developments that emerged in automated patch-clamp electrophysiology – much of which arose in specialized biotech companies. Assays for nearly all major cardiac ion channels are now available by automated patch-clamping using heterologous expression systems, and recently, automated action potential recordings from stem-cell derived cardiomyocytes have been demonstrated. Today, most of the large pharmaceutical companies have acquired automated electrophysiology robots and have established various automated cardiac ion channel safety screening assays on these, in addition to outsourcing parts of their needs for safety screening.

  5. Electrophysiological predictors of sudden cardiac death on physical exercise test in young athletes

    Science.gov (United States)

    Balykova, L. A.; Kotlyarov, A. A.; Ivyanskiy, S. A.; Shirokova, A. A.; Miheeva, K. A.; Makarov, L. M.

    2017-01-01

    The problem of sudden death of young athletes continues to be actual. Among its reasons, primary electric myocardium diseases along with organic heart troubles (cardiomyopathies, cordites, anomalies of coronary arteries) take an important place. The most frequent variant of channelopathesis long QT syndrome (LQTS). Both inherited and acquired LQTS may be the reason of sudden cardiac death during physical activity and have to be revealed prior to sports admission. LQTS diagnostics in young athletes become problematic due to secondary exercise-related QT prolongation. Physical load test may reveal myocardium electric instability and enhance LQTS diagnostics accuracy without genetic testing. The aim was to study electrophysiological parameters of myocardium repolarization and reveal the signs of electrical instability as predictors of the life-threatening arrhythmias in young athletes during physical exercise test. In conclusion, electrophysiological myocardium parameters during physical exercise test noted to be markers of electrical myocardial instability and in combination with the other Schwartz criteria, was evidenced the inherited or acquired LQTS. QTc prolongation in athletes at the peak of exercise as well as in early recovery period were noted to be additional predictor life-threatening arrhythmias and sudden cardiac death in young athletes

  6. Right Atrial Dual-loop Reentry Tachycardia after Cardiac Surgery: Prevalence, Electrophysiologic Characteristics and Ablation Outcomes.

    Science.gov (United States)

    Yang, Jian-du; Sun, Qi; Guo, Xiao-Gang; Zhou, Gong-Bu; Liu, Xu; Luo, Bin; Wei, Hui-Qiang; Santangeli, Pasquale; Liang, Jackson J; Ma, Jian

    2018-04-03

    Right atrial dual-loop reentry tachycardia has been described in patients with open-heart surgery. However, the prevalence, electrophysiologic substrate and ablation outcomes have been poorly characterized. We aimed to investigate the prevalence, electrophysiologic substrate and ablation outcomes for RA dual-loop reentry tachycardia following cardiac surgery. We identified all patients with atrial tachycardia after cardiac surgery. We compared electrophysiologic findings and outcomes of those with RA dual-loop reentry tachycardia versus a control group of patients with RA macro-reentrant arrhythmias in the setting of linear RA free wall (FW) scar. Out of 127 patients with 152 post-surgical atrial tachycardias (ATs), 28 (18.4%) had diagnosis of RA dual-loop reentry and 24/28 (85.7%) had tricuspid annular (TA) reentry combined with FW incisional reentry. An incision length > 51.5mm along the FW predicted the substrate for a second loop. In 22/23 patients (95.7%) with initial ablation in the cavo-tricuspid isthmus, a change in the interval between Halo d to CS p could be recorded, while 15/23 patients (65.2%) had CS activation pattern change. Complete success was achieved in 25/28 (89.3%) and 64/69 (92.8%) in the dual-loop reentry and control groups, respectively. After mean follow-up of 33.9±24.2 months, 24/28 (85.7%) and 60/69 (86.95%) were free of arrhythmias after initial procedure in two groups. The prevalence of RA dual-loop reentry is 18.4% among ATs with prior atriotomy scar. A long incision should alert physician the possibility of the second loop at the FW. Halo and CS activation pattern are important clues for circuit transformation. Copyright © 2018. Published by Elsevier Inc.

  7. Mathematical Models of Cardiac Pacemaking Function

    Directory of Open Access Journals (Sweden)

    Pan eLi

    2013-10-01

    Full Text Available Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.

  8. Radiation exposure of an anaesthesiologist in catheterisation and electrophysiological cardiac procedures

    International Nuclear Information System (INIS)

    Andreoli, Stefano; Moretti, Renzo; Lorini, Ferdinando Luca; Lagrotta, Mariavittoria

    2016-01-01

    Sometimes, cardiac catheterisation and electrophysiological procedures, diagnostic and interventional, require an anaesthesiological support. The anaesthesiologist receives radiation doses depending on various factors, such as type of procedure and exposure modality, anaesthesiological technique, individual protective devices and operator experience. The aim of this study was to investigate the dose per procedure, the exposure inhomogeneity and the effective dose, E, of a senior anaesthesiologist in the haemodynamic laboratory of Ospedali Riuniti, Bergamo. The dose monitoring was routinely performed with sets of several thermoluminescent dosemeters and an electronic personal dosemeter. The study covered 300 consecutive procedures over 1 y. The anaesthesiologist wore a protective apron, a thyroid collar and glasses (0.5 mm lead-equivalent). (authors)

  9. An infrared optical pacing system for high-throughput screening of cardiac electrophysiology in human cardiomyocytes (Conference Presentation)

    Science.gov (United States)

    McPheeters, Matt T.; Wang, Yves T.; Laurita, Kenneth R.; Jenkins, Michael W.

    2017-02-01

    Cardiomyocytes derived from human induced pluripotent stem cells (hiPS-HCM) have the potential to provide individualized therapies for patients and to test drug candidates for cardiac toxicity. In order for hiPS-CM to be useful for such applications, there is a need for high-throughput technology to rapidly assess cardiac electrophysiology parameters. Here, we designed and tested a fully contactless optical mapping (OM) and optical pacing (OP) system capable of imaging and point stimulation of hiPS-CM in small wells. OM allowed us to characterize cardiac electrophysiological parameters (conduction velocity, action potential duration, etc.) using voltage-sensitive dyes with high temporal and spatial resolution over the entire well. To improve OM signal-to-noise ratio, we tested a new voltage-sensitive dye (Fluovolt) for accuracy and phototoxicity. Stimulation is essential because most electrophysiological parameters are rate dependent; however, traditional methods utilizing electrical stimulation is difficult in small wells. To overcome this limitation, we utilized OP (λ = 1464 nm) to precisely control heart rate with spatial precision without the addition of exogenous agents. We optimized OP parameters (e.g., well size, pulse width, spot size) to achieve robust pacing and minimize the threshold radiant exposure. Finally, we tested system sensitivity using Flecainide, a drug with well described action on multiple electrophysiological properties.

  10. NEWBORNS OF HIGH RISK GROUPS AND ELECTROPHYSIOLOGICAL CARDIAC ACTIVITY DURING THE PERIOD OF EARLY ADAPTATION

    Directory of Open Access Journals (Sweden)

    T. S. Tumaeva

    2014-01-01

    Full Text Available Aim: to study characteristics of electrophysiological cardiac activity in children of risk groups and to assess possibilities of Holter-electrocardiography (H-ECG in revealing of cardiac dysfunction during the period of early adaptation. Patients and methods: 250 newborns were examined. The main group consisted of 200 children with cerebral ischemia (CI. This group was divided into 2 subgroups: 100 full-term and 100 premature (at various gestation age infants. Control group contained 50 children born at 38–40th weeks of gestation with physiological course of pregnancy and delivery, APGAR score of 8–9 points. Complex examination included H-ECG according the standard technic with evaluation of the hearth rate (HR during sleep and wakefulness; HRmin, HRmax; arrhythmias, conductivity disorders, duration of the intervals; rhythm variability. Results: according to the ECG children with CI, especially premature ones, and children delivered via Cesarean section more often had ST-T disturbances, arrhythmias (sinus tachycardia, less often — sinus bradycardia and conductivity disorders, Q-Tc prolongation. H-EGC revealed decrease of sleep HR, HRmin and HRmax in children with CI especially in delivered via Cesarean section. The most common arrhythmia was supraventricular extrasystole.  Pauses in rhythms and variability were the highest in premature children delivered via Cesarean section. Conclusions: hypoxia/ischemia is a trigger for development of cardiovascular dysfuncion in newborns. Premature and children delivered via Cesarean section form a group of high risk. H-ECG widens possibilities of revealing of symptoms of cardiac dysfunction (disturbances at the basal level of functioning, of adaptation resources of the sinus node, electric instability of the myocardium and heart rate variability in children of risk group for development of cardiovascular disorders. 

  11. Effect of regional differences in cardiac cellular electrophysiology on the stability of ventricular arrhythmias: a computational study

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Richard H; Holden, Arun V [School of Biomedical Sciences, University of Leeds, Woodhouse Lane, Leeds (United Kingdom)

    2003-01-07

    Re-entry is an important mechanism of cardiac arrhythmias. During re-entry a wave of electrical activation repeatedly propagates into recovered tissue, rotating around a rod-like filament. Breakdown of a single re-entrant wave into multiple waves is believed to underlie the transition from ventricular tachycardia to ventricular fibrillation. Several mechanisms of breakup have been identified including the effect of anisotropic conduction in the ventricular wall. Cells in the inner and outer layers of the ventricular wall have different action potential durations (APD), and support re-entrant waves with different periods. The aim of this study was to use a computational approach to study twisting and breakdown in a transmural re-entrant wave spanning these regions, and examine the relative role of this effect and anisotropic conduction. We used a simplified model of action potential conduction in the ventricular wall that we modified so that it supported stable re-entry in an anisotropic model with uniform APD. We first examined the effect of regional differences on breakdown in an isotropic model with transmural differences in APD, and found that twisting of the re-entrant filament resulted in buckling and breakdown during the second cycle of re-entry. We found that breakdown was amplified in the anisotropic model, resulting in complex activation in the region of longest APD. This study shows that regional differences in cardiac electrophysiology are a potentially important mechanism for destabilizing re-entry and may act synergistically with other mechanisms to mediate the transition from ventricular tachycardia to ventricular fibrillation.

  12. Waveform Integrity in Atrial Fibrillation: The Forgotten Issue of Cardiac Electrophysiology.

    Science.gov (United States)

    Martínez-Iniesta, Miguel; Ródenas, Juan; Alcaraz, Raúl; Rieta, José J

    2017-08-01

    Atrial fibrillation (AF) is the most common arrhythmia in clinical practice with an increasing prevalence of about 15% in the elderly. Despite other alternatives, catheter ablation is currently considered as the first-line therapy for the treatment of AF. This strategy relies on cardiac electrophysiology systems, which use intracardiac electrograms (EGM) as the basis to determine the cardiac structures contributing to sustain the arrhythmia. However, the noise-free acquisition of these recordings is impossible and they are often contaminated by different perturbations. Although suppression of nuisance signals without affecting the original EGM pattern is essential for any other later analysis, not much attention has been paid to this issue, being frequently considered as trivial. The present work introduces the first thorough study on the significant fallout that regular filtering, aimed at reducing acquisition noise, provokes on EGM pattern morphology. This approach has been compared with more refined denoising strategies. Performance has been assessed both in time and frequency by well established parameters for EGM characterization. The study comprised synthesized and real EGMs with unipolar and bipolar recordings. Results reported that regular filtering altered substantially atrial waveform morphology and was unable to remove moderate amounts of noise, thus turning time and spectral characterization of the EGM notably inaccurate. Methods based on Wavelet transform provided the highest ability to preserve EGM morphology with improvements between 20 and beyond 40%, to minimize dominant atrial frequency estimation error with up to 25% reduction, as well as to reduce huge levels of noise with up to 10 dB better reduction. Consequently, these algorithms are recommended as a replacement of regular filtering to avoid significant alterations in the EGMs. This could lead to more accurate and truthful analyses of atrial activity dynamics aimed at understanding and

  13. Performance evaluation of GPU parallelization, space-time adaptive algorithms, and their combination for simulating cardiac electrophysiology.

    Science.gov (United States)

    Sachetto Oliveira, Rafael; Martins Rocha, Bernardo; Burgarelli, Denise; Meira, Wagner; Constantinides, Christakis; Weber Dos Santos, Rodrigo

    2018-02-01

    The use of computer models as a tool for the study and understanding of the complex phenomena of cardiac electrophysiology has attained increased importance nowadays. At the same time, the increased complexity of the biophysical processes translates into complex computational and mathematical models. To speed up cardiac simulations and to allow more precise and realistic uses, 2 different techniques have been traditionally exploited: parallel computing and sophisticated numerical methods. In this work, we combine a modern parallel computing technique based on multicore and graphics processing units (GPUs) and a sophisticated numerical method based on a new space-time adaptive algorithm. We evaluate each technique alone and in different combinations: multicore and GPU, multicore and GPU and space adaptivity, multicore and GPU and space adaptivity and time adaptivity. All the techniques and combinations were evaluated under different scenarios: 3D simulations on slabs, 3D simulations on a ventricular mouse mesh, ie, complex geometry, sinus-rhythm, and arrhythmic conditions. Our results suggest that multicore and GPU accelerate the simulations by an approximate factor of 33×, whereas the speedups attained by the space-time adaptive algorithms were approximately 48. Nevertheless, by combining all the techniques, we obtained speedups that ranged between 165 and 498. The tested methods were able to reduce the execution time of a simulation by more than 498× for a complex cellular model in a slab geometry and by 165× in a realistic heart geometry simulating spiral waves. The proposed methods will allow faster and more realistic simulations in a feasible time with no significant loss of accuracy. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Encoding and decoding models in cognitive electrophysiology

    NARCIS (Netherlands)

    Holdgraf, C.R.; Rieger, J.W.; Micheli, C.; Martin, S.; Knight, R.T.; Theunissen, F.E.

    2017-01-01

    Cognitive neuroscience has seen rapid growth in the size and complexity of data recorded from the human brain as well as in the computational tools available to analyze this data. This data explosion has resulted in an increased use of multivariate, model-based methods for asking neuroscience

  15. Automatic fitting of spiking neuron models to electrophysiological recordings

    Directory of Open Access Journals (Sweden)

    Cyrille Rossant

    2010-03-01

    Full Text Available Spiking models can accurately predict the spike trains produced by cortical neurons in response to somatically injected currents. Since the specific characteristics of the model depend on the neuron, a computational method is required to fit models to electrophysiological recordings. The fitting procedure can be very time consuming both in terms of computer simulations and in terms of code writing. We present algorithms to fit spiking models to electrophysiological data (time-varying input and spike trains that can run in parallel on graphics processing units (GPUs. The model fitting library is interfaced with Brian, a neural network simulator in Python. If a GPU is present it uses just-in-time compilation to translate model equations into optimized code. Arbitrary models can then be defined at script level and run on the graphics card. This tool can be used to obtain empirically validated spiking models of neurons in various systems. We demonstrate its use on public data from the INCF Quantitative Single-Neuron Modeling 2009 competition by comparing the performance of a number of neuron spiking models.

  16. Electrophysiological properties of computational human ventricular cell action potential models under acute ischemic conditions.

    Science.gov (United States)

    Dutta, Sara; Mincholé, Ana; Quinn, T Alexander; Rodriguez, Blanca

    2017-10-01

    Acute myocardial ischemia is one of the main causes of sudden cardiac death. The mechanisms have been investigated primarily in experimental and computational studies using different animal species, but human studies remain scarce. In this study, we assess the ability of four human ventricular action potential models (ten Tusscher and Panfilov, 2006; Grandi et al., 2010; Carro et al., 2011; O'Hara et al., 2011) to simulate key electrophysiological consequences of acute myocardial ischemia in single cell and tissue simulations. We specifically focus on evaluating the effect of extracellular potassium concentration and activation of the ATP-sensitive inward-rectifying potassium current on action potential duration, post-repolarization refractoriness, and conduction velocity, as the most critical factors in determining reentry vulnerability during ischemia. Our results show that the Grandi and O'Hara models required modifications to reproduce expected ischemic changes, specifically modifying the intracellular potassium concentration in the Grandi model and the sodium current in the O'Hara model. With these modifications, the four human ventricular cell AP models analyzed in this study reproduce the electrophysiological alterations in repolarization, refractoriness, and conduction velocity caused by acute myocardial ischemia. However, quantitative differences are observed between the models and overall, the ten Tusscher and modified O'Hara models show closest agreement to experimental data. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. A computationally efficient electrophysiological model of human ventricular cells

    NARCIS (Netherlands)

    Bernus, O.; Wilders, R.; Zemlin, C. W.; Verschelde, H.; Panfilov, A. V.

    2002-01-01

    Recent experimental and theoretical results have stressed the importance of modeling studies of reentrant arrhythmias in cardiac tissue and at the whole heart level. We introduce a six-variable model obtained by a reformulation of the Priebe-Beuckelmann model of a single human ventricular cell. The

  18. Effect of rosiglitazone on cardiac electrophysiology, infarct size and mitochondrial function in ischaemia and reperfusion of swine and rat heart.

    Science.gov (United States)

    Palee, Siripong; Weerateerangkul, Punate; Surinkeaw, Sirirat; Chattipakorn, Siriporn; Chattipakorn, Nipon

    2011-08-01

    Rosiglitazone, a peroxisome proliferator-activated receptor γ agonist, has been used to treat type 2 diabetes. Despite debates regarding its cardioprotection, the effects of rosiglitazone on cardiac electrophysiology are still unclear. This study determined the effect of rosiglitazone on ventricular fibrillation (VF) incidence, VF threshold (VFT), defibrillation threshold (DFT) and mitochondrial function during ischaemia and reperfusion. Twenty-six pigs were used. In each pig, either rosiglitazone (1 mg kg(-1)) or normal saline solution was administered intravenously for 60 min. Then, the left anterior descending coronary artery was ligated for 60 min and released to promote reperfusion for 120 min. The cardiac electrophysiological parameters were determined at the beginning of the study and during the ischaemia and reperfusion periods. The heart was removed, and the area at risk and infarct size in each heart were determined. Cardiac mitochondria were isolated for determination of mitochondrial function. Rosiglitazone did not improve the DFT and VFT during the ischaemia-reperfusion period. In the rosiglitazone group, the VF incidence was increased (58 versus 10%) and the time to the first occurrence of VF was decreased (3 ± 2 versus 19 ± 1 min) in comparison to the vehicle group (P < 0.05). However, the infarct size related to the area at risk in the rosiglitazone group was significantly decreased (P < 0.05). In the cardiac mitochondria, rosiglitazone did not alter the level of production of reactive oxygen species and could not prevent mitochondrial membrane potential changes. Rosiglitazone increased the propensity for VF, and could neither increase defibrillation efficacy nor improve cardiac mitochondrial function.

  19. Real-time x-ray fluoroscopy-based catheter detection and tracking for cardiac electrophysiology interventions

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yingliang; Housden, R. James; Razavi, Reza; Rhode, Kawal S. [Division of Imaging Sciences and Biomedical Engineering, King' s College London, London SE1 7EH (United Kingdom); Gogin, Nicolas; Cathier, Pascal [Medisys Research Group, Philips Healthcare, Paris 92156 (France); Gijsbers, Geert [Interventional X-ray, Philips Healthcare, Best 5680 DA (Netherlands); Cooklin, Michael; O' Neill, Mark; Gill, Jaswinder; Rinaldi, C. Aldo [Department of Cardiology, Guys and St. Thomas' Hospitals NHS Foundation Trust, London SE1 7EH (United Kingdom)

    2013-07-15

    Purpose: X-ray fluoroscopically guided cardiac electrophysiology (EP) procedures are commonly carried out to treat patients with arrhythmias. X-ray images have poor soft tissue contrast and, for this reason, overlay of a three-dimensional (3D) roadmap derived from preprocedural volumetric images can be used to add anatomical information. It is useful to know the position of the catheter electrodes relative to the cardiac anatomy, for example, to record ablation therapy locations during atrial fibrillation therapy. Also, the electrode positions of the coronary sinus (CS) catheter or lasso catheter can be used for road map motion correction.Methods: In this paper, the authors present a novel unified computational framework for image-based catheter detection and tracking without any user interaction. The proposed framework includes fast blob detection, shape-constrained searching and model-based detection. In addition, catheter tracking methods were designed based on the customized catheter models input from the detection method. Three real-time detection and tracking methods are derived from the computational framework to detect or track the three most common types of catheters in EP procedures: the ablation catheter, the CS catheter, and the lasso catheter. Since the proposed methods use the same blob detection method to extract key information from x-ray images, the ablation, CS, and lasso catheters can be detected and tracked simultaneously in real-time.Results: The catheter detection methods were tested on 105 different clinical fluoroscopy sequences taken from 31 clinical procedures. Two-dimensional (2D) detection errors of 0.50 {+-} 0.29, 0.92 {+-} 0.61, and 0.63 {+-} 0.45 mm as well as success rates of 99.4%, 97.2%, and 88.9% were achieved for the CS catheter, ablation catheter, and lasso catheter, respectively. With the tracking method, accuracies were increased to 0.45 {+-} 0.28, 0.64 {+-} 0.37, and 0.53 {+-} 0.38 mm and success rates increased to 100%, 99

  20. A numerical guide to the solution of the bidomain equations of cardiac electrophysiology

    KAUST Repository

    Pathmanathan, Pras

    2010-06-01

    Simulation of cardiac electrical activity using the bidomain equations can be a massively computationally demanding problem. This study provides a comprehensive guide to numerical bidomain modelling. Each component of bidomain simulations-discretisation, ODE-solution, linear system solution, and parallelisation-is discussed, and previously-used methods are reviewed, new methods are proposed, and issues which cause particular difficulty are highlighted. Particular attention is paid to the choice of stimulus currents, compatibility conditions for the equations, the solution of singular linear systems, and convergence of the numerical scheme. © 2010 Elsevier Ltd.

  1. 2010 Canadian Cardiovascular Society/Canadian Heart Rhythm Society Training Standards and Maintenance of Competency in Adult Clinical Cardiac Electrophysiology.

    Science.gov (United States)

    Green, Martin S; Guerra, Peter G; Krahn, Andrew D

    2011-01-01

    The last guidelines on training for adult cardiac electrophysiology (EP) were published by the Canadian Cardiovascular Society in 1996. Since then, substantial changes in the knowledge and practice of EP have mandated a review of the previous guidelines by the Canadian Heart Rhythm Society, an affiliate of the Canadian Cardiovascular Society. Novel tools and techniques also now allow electrophysiologists to map and ablate increasingly complex arrhythmias previously managed with pharmacologic or device therapy. Furthermore, no formal attempt had previously been made to standardize EP training across the country. The 2010 Canadian Cardiovascular Society/Canadian Heart Rhythm Society Training Standards and Maintenance of Competency in Adult Clinical Cardiac Electrophysiology represent a consensus arrived at by panel members from both societies, as well as EP program directors across Canada and other select contributors. In describing program requirements, the technical and cognitive skills that must be acquired to meet training standards, as well as the minimum number of procedures needed in order to acquire these skills, the new guidelines provide EP program directors and committee members with a template to develop an appropriate curriculum for EP training for cardiology fellows here in Canada. Copyright © 2011 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  2. Behavioral, Modeling, and Electrophysiological Evidence for Supramodality in Human Metacognition.

    Science.gov (United States)

    Faivre, Nathan; Filevich, Elisa; Solovey, Guillermo; Kühn, Simone; Blanke, Olaf

    2018-01-10

    Human metacognition, or the capacity to introspect on one's own mental states, has been mostly characterized through confidence reports in visual tasks. A pressing question is to what extent results from visual studies generalize to other domains. Answering this question allows determining whether metacognition operates through shared, supramodal mechanisms or through idiosyncratic, modality-specific mechanisms. Here, we report three new lines of evidence for decisional and postdecisional mechanisms arguing for the supramodality of metacognition. First, metacognitive efficiency correlated among auditory, tactile, visual, and audiovisual tasks. Second, confidence in an audiovisual task was best modeled using supramodal formats based on integrated representations of auditory and visual signals. Third, confidence in correct responses involved similar electrophysiological markers for visual and audiovisual tasks that are associated with motor preparation preceding the perceptual judgment. We conclude that the supramodality of metacognition relies on supramodal confidence estimates and decisional signals that are shared across sensory modalities. SIGNIFICANCE STATEMENT Metacognitive monitoring is the capacity to access, report, and regulate one's own mental states. In perception, this allows rating our confidence in what we have seen, heard, or touched. Although metacognitive monitoring can operate on different cognitive domains, we ignore whether it involves a single supramodal mechanism common to multiple cognitive domains or modality-specific mechanisms idiosyncratic to each domain. Here, we bring evidence in favor of the supramodality hypothesis by showing that participants with high metacognitive performance in one modality are likely to perform well in other modalities. Based on computational modeling and electrophysiology, we propose that supramodality can be explained by the existence of supramodal confidence estimates and by the influence of decisional cues on

  3. Relationships between cardiac innervation/perfusion imbalance and ventricular arrhythmias: impact on invasive electrophysiological parameters and ablation procedures

    Energy Technology Data Exchange (ETDEWEB)

    Gimelli, Alessia [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Menichetti, Francesca; Soldati, Ezio; Liga, Riccardo; Vannozzi, Andrea; Bongiorni, Maria Grazia [University Hospital of Pisa, Cardio-Thoracic and Vascular Department, Pisa (Italy); Marzullo, Paolo [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); CNR, Institute of Clinical Physiology, Pisa (Italy)

    2016-12-15

    To assess the relationship between regional myocardial perfusion and sympathetic innervation parameters at myocardial scintigraphy and intra-cavitary electrophysiological data in patients with ventricular arrhythmias (VA) submitted to invasive electrophysiological study and ablation procedure. Sixteen subjects underwent invasive electrophysiological study with electroanatomical mapping (EAM) followed by trans-catheter ablations of VA. Before ablation all patients were studied with a combined evaluation of regional myocardial perfusion and sympathetic innervation by means of tomographic {sup 99m}Tc-tetrofosmin and {sup 123}I- metaiodobenzylguanidine cadmium-zinc-telluride (CZT) scintigraphies, respectively. Off-line spatial co-registration of CZT perfusion and innervation data with the three-dimensional EAM reconstruction was performed in every patient. CZT revealed the presence of myocardial scar in 55 (20 %) segments. Of the viable myocardial segments, 131 (60 %) presented a preserved adrenergic innervation, while 86 (40 %) showed a significantly depressed innervation (i.e. innervation/perfusion mismatch). On EAM, the invasively measured intra-cavitary voltage was significantly lower in scarred segments than in viable ones (1.7 ± 1.5 mV vs. 4.0 ± 2.2 mV, P < 0.001). Interestingly, among the viable segments, those showing an innervation/perfusion mismatch presented a significantly lower intra-cavitary voltage than those with preserved innervation (1.9 ± 2.5 mV vs. 4.7 ± 2.3 mV, P < 0.001). Intra-cardiac ablation was performed in 63 (23 %) segments. On multivariate analysis, after correction for scar burden, the segments showing an innervation/perfusion mismatch remained the most frequent ablation targets (OR 5.6, 95 % CI 1.5-20.8; P = 0.009). In patients with VA, intra-cavitary electrical abnormalities frequently originate at the level of viable myocardial segments with depressed sympathetic innervation that frequently represents the ultimate ablation target

  4. Cardiac Electromechanical Models: From Cell to Organ

    Directory of Open Access Journals (Sweden)

    Natalia A Trayanova

    2011-08-01

    Full Text Available The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computation physiology and medicine. This review focuses on electromechanical (EM models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single cell models and the second half addresses organ models. At the subcelluar level, myofilament models represent actin-myosin interaction and Ca-based activation. Myofilament models and their refinements represent an overview of the development in the field. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered the cellular basis of the Frank-Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction-diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and

  5. Trpm4 gene invalidation leads to cardiac hypertrophy and electrophysiological alterations.

    Directory of Open Access Journals (Sweden)

    Marie Demion

    Full Text Available RATIONALE: TRPM4 is a non-selective Ca2+-activated cation channel expressed in the heart, particularly in the atria or conduction tissue. Mutations in the Trpm4 gene were recently associated with several human conduction disorders such as Brugada syndrome. TRPM4 channel has also been implicated at the ventricular level, in inotropism or in arrhythmia genesis due to stresses such as ß-adrenergic stimulation, ischemia-reperfusion, and hypoxia re-oxygenation. However, the physiological role of the TRPM4 channel in the healthy heart remains unclear. OBJECTIVES: We aimed to investigate the role of the TRPM4 channel on whole cardiac function with a Trpm4 gene knock-out mouse (Trpm4-/- model. METHODS AND RESULTS: Morpho-functional analysis revealed left ventricular (LV eccentric hypertrophy in Trpm4-/- mice, with an increase in both wall thickness and chamber size in the adult mouse (aged 32 weeks when compared to Trpm4+/+ littermate controls. Immunofluorescence on frozen heart cryosections and qPCR analysis showed no fibrosis or cellular hypertrophy. Instead, cardiomyocytes in Trpm4-/- mice were smaller than Trpm4+/+with a higher density. Immunofluorescent labeling for phospho-histone H3, a mitosis marker, showed that the number of mitotic myocytes was increased 3-fold in the Trpm4-/-neonatal stage, suggesting hyperplasia. Adult Trpm4-/- mice presented multilevel conduction blocks, as attested by PR and QRS lengthening in surface ECGs and confirmed by intracardiac exploration. Trpm4-/-mice also exhibited Luciani-Wenckebach atrioventricular blocks, which were reduced following atropine infusion, suggesting paroxysmal parasympathetic overdrive. In addition, Trpm4-/- mice exhibited shorter action potentials in atrial cells. This shortening was unrelated to modifications of the voltage-gated Ca2+ or K+ currents involved in the repolarizing phase. CONCLUSIONS: TRPM4 has pleiotropic roles in the heart, including the regulation of conduction and cellular

  6. Predicting the outcome in patients with unexplained syncope and suspected cardiac cause: role of electrophysiologic studies.

    Science.gov (United States)

    Assadian Rad, Mohammad; Farahani, Mohammad; Emkanjoo, Zahra; Moladoust, Hassan; Alizadeh, Abolfath

    2015-03-01

    Unexplained syncope is a challenge facing electrophysiologists. The prognosis varies widely depending on underlying causes, specially, cardiac ones. We sought to determine the abnormal electrophysiolgic (EP) study results as predictors of prognosis in syncope patients with suspected cardiac cause and risk factors associated with mortality. A total of 227 consecutive patients with unexplained syncope were prospectively enrolled in this study. EP study was performed in 177 patients in base of inclusion criteria. These patients, in whom a cardiac cause of syncope was suspected, underwent EP study and if negative, head-up tilts test (HUTT). Complete follow-up was obtained for 132 patients for 20.0±10.8 months. A cardiac cause of syncope was established in 35%, a neurally mediated syncope in 35.6%, and in the rest 29.4% the cause of syncope remained unexplained despite a throughout neurologic and cardiologic evaluation. Logistic analysis revealed that the significant predictors of a cardiac cause of syncope were the absence of prodromal symptoms, left bundle branch block (LBBB), sever left ventricle (LV) dysfunction and male gender. At logistic analysis, the presence of LBBB (OR=6.63; 95% CI: 1.09-40) was significantly associated with outcome of death. The present study provides evidence that presence of LBBB, abnormal EP study result and structural heart disease (SHD) have prognostic value in patients with suspected cardiac cause of syncope. The patients with SHD and unexplained syncope who had a negative EP study have a good long-term prognosis even in the presence of LV dysfunction.

  7. Tissue and Animal Models of Sudden Cardiac Death

    Science.gov (United States)

    Sallam, Karim; Li, Yingxin; Sager, Philip T.; Houser, Steven R.; Wu, Joseph C.

    2015-01-01

    Sudden Cardiac Death (SCD) is a common cause of death in patients with structural heart disease, genetic mutations or acquired disorders affecting cardiac ion channels. A wide range of platforms exist to model and study disorders associated with SCD. Human clinical studies are cumbersome and are thwarted by the extent of investigation that can be performed on human subjects. Animal models are limited by their degree of homology to human cardiac electrophysiology including ion channel expression. Most commonly used cellular models are cellular transfection models, which are able to mimic the expression of a single ion channel offering incomplete insight into changes of the action potential profile. Induced pluripotent stem cell derived Cardiomyocytes (iPSC-CMs) resemble, but are not identical, to adult human cardiomyocytes, and provide a new platform for studying arrhythmic disorders leading to SCD. A variety of platforms exist to phenotype cellular models including conventional and automated patch clamp, multi-electrode array, and computational modeling. iPSC-CMs have been used to study Long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, hypertrophic cardiomyopathy and other hereditary cardiac disorders. Although iPSC-CMs are distinct from adult cardiomyocytes, they provide a robust platform to advance the science and clinical care of SCD. PMID:26044252

  8. Electrophysiological Data and the Biophysical Modelling of Local Cortical Circuits

    Directory of Open Access Journals (Sweden)

    Dimitris Pinotsis

    2014-03-01

    neuroscience, see e.g. [2] for a review. In summary, neural fields include horizontal intrinsic connections within layers or laminae of the cortical sheet and prescribe the time evolution of cell activity – such as mean depolarization or (average action potential density. These models characterize current fluxes as continuous processes on the cortical sheet, using partial differential equations (PDEs. The key advance that neural field models offer, over other population models (like neural masses, is that they embody spatial parameters (like the density and extent of lateral connections. This allows one to model responses not just in time but also over space. Conversely, these models are particularly useful for explaining observed cortical responses over different spatial scales; for example, with high-density recordings, at the epidural or intracortical level. However, the impact of spatially extensive dynamics is not restricted to expression over space but can also have profound effects on temporal (e.g., spectral responses at one point (or averaged locally over the cortical surface. This means that neural field models may also play a key role in the modelling of non-invasive electrophysiological data that does not resolve spatial activity directly. Our overview comprises two parts: in the first part, we use neural fields to simulate neural activity and distinguish the effects of post synaptic filtering on predicted responses in terms of synaptic rate constants that correspond to different timescales and distinct neurotransmitters. This application of neural fields follows the tradition of many studies, in which neural fields (and mean field models in general have been used to explain cortical activity based on qualitative changes of models activity induced by changes in model parameters, like synaptic efficacy and connection strengths, see e.g.[3–8] . We will focus on the links between neuronal oscillations – mediated by the lateral propagation of neuronal spiking

  9. Cardiomyocytes Derived From Pluripotent Stem Cells Recapitulate Electrophysiological Characteristics of an Overlap Syndrome of Cardiac Sodium Channel Disease

    NARCIS (Netherlands)

    Davis, Richard P.; Casini, Simona; van den Berg, Cathelijne W.; Hoekstra, Maaike; Remme, Carol Ann; Dambrot, Cheryl; Salvatori, Daniela; Ward-van Oostwaard, Dorien; Wilde, Arthur A. M.; Bezzina, Connie R.; Verkerk, Arie O.; Freund, Christian; Mummery, Christine L.

    2012-01-01

    Background-Pluripotent stem cells (PSCs) offer a new paradigm for modeling genetic cardiac diseases, but it is unclear whether mouse and human PSCs can truly model both gain-and loss-of-function genetic disorders affecting the Na+ current (I-Na) because of the immaturity of the PSC-derived

  10. Effects of magnesium supplementation on electrophysiological remodeling of cardiac myocytes in L-NAME induced hypertensive rats.

    Science.gov (United States)

    Ozturk, Nihal; Olgar, Yusuf; Aslan, Mutay; Ozdemir, Semir

    2016-08-01

    Hypertension is one of the major risk factors of cardiac hypertrophy and magnesium deficiency is suggested to be a contributing factor in the progression of this complication. In this study, we aimed to investigate the relationship between intracellular free Mg(2+) levels and electrophysiological changes developed in the myocardium of L-NAME induced hypertensive rats. Hypertension was induced by administration of 40 mg/kg of L-NAME for 6 weeks, while magnesium treated rats fed with a diet supplemented with 1 g/kg of MgO for the same period. L-NAME administration for 6 weeks elicited a significant increase in blood pressure which was corrected with MgO treatment; thereby cardiac hypertrophy developing secondary to hypertension was prevented. Cytosolic free magnesium levels of ventricular myocytes were significantly decreased with hypertension and magnesium administration restored these changes. Hypertension significantly decreased the fractional shortening with slowing of shortening kinetics in left ventricular myocytes whereas magnesium treatment was capable of restoring hypertension-induced contractile dysfunction. Long-term magnesium treatment significantly restored the hypertension-induced prolongation in action potentials of ventricular myocytes and suppressed Ito and Iss currents. In contrast, hypertension dependent decrement in intracellular Mg(2+) level did not cause a significant change in L-type Ca(2+) currents, SR Ca(2+) content and NCX activity. Nevertheless, hypertension mediated increase in superoxide anion, hydrogen peroxide and protein oxidation mitigated with magnesium treatment. In conclusion, magnesium administration improves mechanical abnormalities observed in hypertensive rat ventricular myocytes due to reduced oxidative stress. It is likely that, changes in intracellular magnesium balance may contribute to the pathophysiology of chronic heart diseases.

  11. Novel experimental results in human cardiac electrophysiology: measurement of the Purkinje fibre action potential from the undiseased human heart.

    Science.gov (United States)

    Nagy, Norbert; Szél, Tamás; Jost, Norbert; Tóth, András; Gy Papp, Julius; Varró, András

    2015-09-01

    Data obtained from canine cardiac electrophysiology studies are often extrapolated to the human heart. However, it has been previously demonstrated that because of the lower density of its K(+) currents, the human ventricular action potential has a less extensive repolarization reserve. Since the relevance of canine data to the human heart has not yet been fully clarified, the aim of the present study was to determine for the first time the action potentials of undiseased human Purkinje fibres (PFs) and to compare them directly with those of dog PFs. All measurements were performed at 37 °C using the conventional microelectrode technique. At a stimulation rate of 1 Hz, the plateau potential of human PFs is more positive (8.0 ± 1.8 vs 8.6 ± 3.4 mV, n = 7), while the amplitude of the spike is less pronounced. The maximal rate of depolarization is significantly lower in human PKs than in canine PFs (406.7 ± 62 vs 643 ± 36 V/s, respectively, n = 7). We assume that the appreciable difference in the protein expression profiles of the 2 species may underlie these important disparities. Therefore, caution is advised when canine PF data are extrapolated to humans, and further experiments are required to investigate the characteristics of human PF repolarization and its possible role in arrhythmogenesis.

  12. Electrophysiological Features of Atrial Flutter in Cardiac Sarcoidosis: A Report of Two Cases

    Directory of Open Access Journals (Sweden)

    Narayanan Namboodiri, MD

    2012-11-01

    Full Text Available We report two cases of systemic sarcoidosis with atrial flutter as the clinical manifestation. In one patient, who had symptoms of shorter duration, the arrhythmia was no longer inducible after a course of glucocorticoid therapy. Electroanatomical mapping in the other case revealed patchy fibrosis of the left atrial myocardium and multiple macro-reentrant circuits. Sinus rhythm could be restored with ablation of these reentrant circuits. To our knowledge, this is the first report on the demonstration of atrial scarring in a patient with sarcoidosis using 3-D electroanatomical mapping. These two cases illustrate that the inflammation of atrial myocardium is the primary mechanism of atrial arrhythmias in patients with cardiac sarcoidosis.

  13. A composite visualization method for electrophysiology-morphous merging of human heart.

    Science.gov (United States)

    Yang, Fei; Zhang, Lei; Lu, Weigang; Zhang, Yue; Zuo, Wangmeng; Wang, Kuanquan; Zhang, Henggui

    2017-06-08

    Electrophysiological behavior is of great importance for analyzing the cardiac functional mechanism under cardiac physiological and pathological condition. Due to the complexity of cardiac structure and biophysiological function, visualization of a cardiac electrophysiological model compositively is still a challenge. The lack of either modality of the whole organ structure or cardiac electrophysiological behaviors makes analysis of the intricate mechanisms of cardiac dynamic function a difficult task. This study aims at exploring 3D conduction of stimulus and electrical excitation reactivity on the level of organ with the authentic fine cardiac anatomy structure. In this paper, a cardiac electrical excitation propagation model is established based on the human cardiac cross-sectional data to explore detailed cardiac electrical activities. A novel biophysical merging visualization method is then presented for biophysical integration of cardiac anatomy and electrophysiological properties in the form of the merging optical model, which provides the corresponding position, spatial relationship and the whole process in 3D space with the context of anatomical structure for representing the biophysical detailed electrophysiological activity. The visualization result present the action potential propagation of the left ventricle within the excitation cycle with the authentic fine cardiac organ anatomy. In the visualized images, all vital organs are identified and distinguished without ambiguity. The three dimensional spatial position, relation and the process of cardiac excitation conduction and re-entry propagation in the anatomical structure during the phase of depolarization and repolarization is also shown in the result images, which exhibits the performance of a more detailed biophysical understanding of the electrophysiological kinetics of human heart in vivo. Results suggest that the proposed merging optical model can merge cardiac electrophysiological activity

  14. An inverse problem for a semilinear parabolic equation arising from cardiac electrophysiology

    Science.gov (United States)

    Beretta, Elena; Cavaterra, Cecilia; Cerutti, M. Cristina; Manzoni, Andrea; Ratti, Luca

    2017-10-01

    In this paper we develop theoretical analysis and numerical reconstruction techniques for the solution of an inverse boundary value problem dealing with the nonlinear, time-dependent monodomain equation, which models the evolution of the electric potential in the myocardial tissue. The goal is the detection of an inhomogeneity \

  15. Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models

    Directory of Open Access Journals (Sweden)

    Lois Choy

    2016-09-01

    Full Text Available The mouse is the second mammalian species, after the human, in which substantial amount of the genomic information has been analyzed. With advances in transgenic technology, mutagenesis is now much easier to carry out in mice. Consequently, an increasing number of transgenic mouse systems have been generated for the study of cardiac arrhythmias in ion channelopathies and cardiomyopathies. Mouse hearts are also amenable to physical manipulation such as coronary artery ligation and transverse aortic constriction to induce heart failure, radiofrequency ablation of the AV node to model complete AV block and even implantation of a miniature pacemaker to induce cardiac dyssynchrony. Last but not least, pharmacological models, despite being simplistic, have enabled us to understand the physiological mechanisms of arrhythmias and evaluate the anti-arrhythmic properties of experimental agents, such as gap junction modulators, that may be exert therapeutic effects in other cardiac diseases. In this article, we examine these in turn, demonstrating that primary inherited arrhythmic syndromes are now recognized to be more complex than abnormality in a particular ion channel, involving alterations in gene expression and structural remodelling. Conversely, in cardiomyopathies and heart failure, mutations in ion channels and proteins have been identified as underlying causes, and electrophysiological remodelling are recognized pathological features. Transgenic techniques causing mutagenesis in mice are extremely powerful in dissecting the relative contributions of different genes play in producing disease phenotypes. Mouse models can serve as useful systems in which to explore how protein defects contribute to arrhythmias and direct future therapy.

  16. Slow [Na+]i dynamics impacts arrhythmogenesis and spiral wave reentry in cardiac myocyte ionic model

    Science.gov (United States)

    Krogh-Madsen, Trine; Christini, David J.

    2017-09-01

    Accumulation of intracellular Na+ is gaining recognition as an important regulator of cardiac myocyte electrophysiology. The intracellular Na+ concentration can be an important determinant of the cardiac action potential duration, can modulate the tissue-level conduction of excitation waves, and can alter vulnerability to arrhythmias. Mathematical models of cardiac electrophysiology often incorporate a dynamic intracellular Na+ concentration, which changes much more slowly than the remaining variables. We investigated the dependence of several arrhythmogenesis-related factors on [Na+]i in a mathematical model of the human atrial action potential. In cell simulations, we found that [Na+]i accumulation stabilizes the action potential duration to variations in several conductances and that the slow dynamics of [Na+]i impacts bifurcations to pro-arrhythmic afterdepolarizations, causing intermittency between different rhythms. In long-lasting tissue simulations of spiral wave reentry, [Na+]i becomes spatially heterogeneous with a decreased area around the spiral wave rotation center. This heterogeneous region forms a functional anchor, resulting in diminished meandering of the spiral wave. Our findings suggest that slow, physiological, rate-dependent variations in [Na+]i may play complex roles in cellular and tissue-level cardiac dynamics.

  17. Simulation data mapping in virtual cardiac model.

    Science.gov (United States)

    Jiquan, Liu; Jingyi, Feng; Duan, Huilong; Siping, Chen

    2004-01-01

    Although 3D heart and torso model with realistic geometry are basis of simulation computation in LFX virtual cardiac model, the simulation results are mostly output in 2D format. To solve such a problem and enhance the virtual reality of LFX virtual cardiac model, the methods of voxel mapping and vertex project mapping were presented. With these methods, excitation isochrone map (EIM) was mapped from heart model with realistic geometry to real visible man heart model, and body surface potential map (BSPM) was mapped from torso model with realistic geometry to real visible man body surface. By visualizing in the 4Dview, which is a real-time 3D medical image visualization platform, the visualization results of EIM and BSPM simulation data before and after mapping were also provided. According to the visualization results, the output format of EIM and BSPM simulation data of LFX virtual cardiac model were extended from 2D to 4D (spatio-temporal) and from cardiac model with realistic geometry to real cardiac model, and more realistic and effective simulation was achieved.

  18. Statistics on the use of cardiac electronic devices and electrophysiological procedures in the European Society of Cardiology countries: 2014 report from the European Heart Rhythm Association.

    Science.gov (United States)

    Raatikainen, M J Pekka; Arnar, David O; Zeppenfeld, Katja; Merino, Jose Luis; Levya, Francisco; Hindriks, Gerhardt; Kuck, Karl-Heinz

    2015-01-01

    There has been large variations in the use of invasive electrophysiological therapies in the member countries of the European Society of Cardiology (ESC). The aim of this analysis was to provide comprehensive information on cardiac implantable electronic device (CIED) and catheter ablation therapy trends in the ESC countries over the last five years. The European Heart Rhythm Association (EHRA) has collected data on CIED and catheter ablation therapy since 2008. Last year 49 of the 56 ESC member countries provided data for the EHRA White Book. This analysis is based on the current and previous editions of the EHRA White Book. Data on procedure rates together with information on economic aspects, local reimbursement systems and training activities are presented for each ESC country and the five geographical ESC regions. In 2013, the electrophysiological procedure rates per million population were highest in Western Europe followed by the Southern and Northern European countries. The CIED implantation and catheter ablation rate was lowest in the Eastern European and in the non-European ESC countries, respectively. However, in some Eastern European countries with relative low gross domestic product procedure rates exceeded those of some wealthier Western countries, suggesting that economic resources are not the only driver for utilization of arrhythmia therapies. These statistics indicate that despite significant improvements, there still is considerable heterogeneity in the availability of arrhythmia therapies across the ESC area. Hopefully, these data will help identify areas for improvement and guide future activities in cardiac arrhythmia management. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  19. Neo: an object model for handling electrophysiology data in multiple formats

    Directory of Open Access Journals (Sweden)

    Samuel eGarcia

    2014-02-01

    Full Text Available Neuroscientists use many different software tools to acquire, analyse and visualise electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs.A common representation of the core data would improve interoperability and facilitate data-sharing.To that end, we propose here a language-independent object model, named Neo, suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language.In addition to representing electrophysiology data in memory for the purposes of analysis and visualisation, the Python implementation provides a set of input/output (IO modules for reading/writing the data from/to a variety of commonly used file formats.Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB.Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation.For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualisation.Software for neurophysiology data analysis and visualisation built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in

  20. Structural and electrical myocardial remodeling in a rodent model of depression

    NARCIS (Netherlands)

    Carnevali, Luca; Trombini, Mimosa; Rossi, Stefano; Graiani, Gallia; Manghi, Massimo; Koolhaas, Jaap M.; Quaini, Federico; Macchi, Emilio; Nalivaiko, Eugene; Sgoifo, Andrea

    Objective: Despite a well-documented association between stress and depression with cardiac morbidity and mortality, there is no satisfactory explanation for the mechanisms linking affective and cardiac disorders. This study investigated cardiac electrophysiological properties in an animal model of

  1. Effect of alectinib on cardiac electrophysiology: results from intensive electrocardiogram monitoring from the pivotal phase II NP28761 and NP28673 studies.

    Science.gov (United States)

    Morcos, Peter N; Bogman, Katrijn; Hubeaux, Stanislas; Sturm-Pellanda, Carolina; Ruf, Thorsten; Bordogna, Walter; Golding, Sophie; Zeaiter, Ali; Abt, Markus; Balas, Bogdana

    2017-03-01

    Alectinib, a central nervous system (CNS)-active ALK inhibitor, has demonstrated efficacy and safety in ALK+ non-small-cell lung cancer that has progressed following crizotinib treatment. Other ALK inhibitors have shown concentration-dependent QTc prolongation and treatment-related bradycardia. Therefore, this analysis evaluated alectinib safety in terms of electrophysiologic parameters. Intensive triplicate centrally read electrocardiogram (ECG) and matched pharmacokinetic data were collected across two alectinib single-arm trials. Analysis of QTcF included central tendency analysis [mean changes from baseline with one-sided upper 95% confidence intervals (CIs)], categorical analyses, and relationship between change in QTcF and alectinib plasma concentrations. Alectinib effects on other ECG parameters (heart rate, PR interval and QRS duration) were also evaluated. Alectinib did not cause a clinically relevant change in QTcF. The maximum mean QTcF change from baseline was 5.3 ms observed pre-dose at week 2. The upper one-sided 95% CI was exposure-dependent decrease in mean heart rate of ~11 to 13 beats per minute at week 2. No clinically relevant effects were seen on other ECG parameters. Approximately 5% of patients reported cardiac adverse events of bradycardia or sinus bradycardia; however, these were all grade 1-2. Alectinib does not prolong the QTc interval or cause changes in cardiac function to a clinically relevant extent, with the exception of a decrease in heart rate which was generally asymptomatic.

  2. A Cell-Based Framework for Numerical Modeling of Electrical Conduction in Cardiac Tissue

    Directory of Open Access Journals (Sweden)

    Aslak Tveito

    2017-10-01

    Full Text Available In this paper, we study a mathematical model of cardiac tissue based on explicit representation of individual cells. In this EMI model, the extracellular (E space, the cell membrane (M, and the intracellular (I space are represented as separate geometrical domains. This representation introduces modeling flexibility needed for detailed representation of the properties of cardiac cells including their membrane. In particular, we will show that the model allows ion channels to be non-uniformly distributed along the membrane of the cell. Such features are difficult to include in classical homogenized models like the monodomain and bidomain models frequently used in computational analyses of cardiac electrophysiology. The EMI model is solved using a finite difference method (FDM and two variants of the finite element method (FEM. We compare the three schemes numerically, reporting on CPU-efforts and convergence rates. Finally, we illustrate the distinctive capabilities of the EMI model compared to classical models by simulating monolayers of cardiac cells with heterogeneous distributions of ionic channels along the cell membrane. Because of the detailed representation of every cell, the computational problems that result from using the EMI model are much larger than for the classical homogenized models, and thus represent a computational challenge. However, our numerical simulations indicate that the FDM scheme is optimal in the sense that the computational complexity increases proportionally to the number of cardiac cells in the model. Moreover, we present simulations, based on systems of equations involving ~117 million unknowns, representing up to ~16,000 cells. We conclude that collections of cardiac cells can be simulated using the EMI model, and that the EMI model enable greater modeling flexibility than the classical monodomain and bidomain models.

  3. Predictive Models for Normal Fetal Cardiac Structures.

    Science.gov (United States)

    Krishnan, Anita; Pike, Jodi I; McCarter, Robert; Fulgium, Amanda L; Wilson, Emmanuel; Donofrio, Mary T; Sable, Craig A

    2016-12-01

    Clinicians rely on age- and size-specific measures of cardiac structures to diagnose cardiac disease. No universally accepted normative data exist for fetal cardiac structures, and most fetal cardiac centers do not use the same standards. The aim of this study was to derive predictive models for Z scores for 13 commonly evaluated fetal cardiac structures using a large heterogeneous population of fetuses without structural cardiac defects. The study used archived normal fetal echocardiograms in representative fetuses aged 12 to 39 weeks. Thirteen cardiac dimensions were remeasured by a blinded echocardiographer from digitally stored clips. Studies with inadequate imaging views were excluded. Regression models were developed to relate each dimension to estimated gestational age (EGA) by dates, biparietal diameter, femur length, and estimated fetal weight by the Hadlock formula. Dimension outcomes were transformed (e.g., using the logarithm or square root) as necessary to meet the normality assumption. Higher order terms, quadratic or cubic, were added as needed to improve model fit. Information criteria and adjusted R 2 values were used to guide final model selection. Each Z-score equation is based on measurements derived from 296 to 414 unique fetuses. EGA yielded the best predictive model for the majority of dimensions; adjusted R 2 values ranged from 0.72 to 0.893. However, each of the other highly correlated (r > 0.94) biometric parameters was an acceptable surrogate for EGA. In most cases, the best fitting model included squared and cubic terms to introduce curvilinearity. For each dimension, models based on EGA provided the best fit for determining normal measurements of fetal cardiac structures. Nevertheless, other biometric parameters, including femur length, biparietal diameter, and estimated fetal weight provided results that were nearly as good. Comprehensive Z-score results are available on the basis of highly predictive models derived from gestational

  4. Conditional shape models for cardiac motion estimation

    DEFF Research Database (Denmark)

    Metz, Coert; Baka, Nora; Kirisli, Hortense

    2010-01-01

    We propose a conditional statistical shape model to predict patient specific cardiac motion from the 3D end-diastolic CTA scan. The model is built from 4D CTA sequences by combining atlas based segmentation and 4D registration. Cardiac motion estimation is, for example, relevant in the dynamic...... alignment of pre-operative CTA data with intra-operative X-ray imaging. Due to a trend towards prospective electrocardiogram gating techniques, 4D imaging data, from which motion information could be extracted, is not commonly available. The prediction of motion from shape information is thus relevant...

  5. Uncertainty and variability in computational and mathematical models of cardiac physiology.

    Science.gov (United States)

    Mirams, Gary R; Pathmanathan, Pras; Gray, Richard A; Challenor, Peter; Clayton, Richard H

    2016-12-01

    Mathematical and computational models of cardiac physiology have been an integral component of cardiac electrophysiology since its inception, and are collectively known as the Cardiac Physiome. We identify and classify the numerous sources of variability and uncertainty in model formulation, parameters and other inputs that arise from both natural variation in experimental data and lack of knowledge. The impact of uncertainty on the outputs of Cardiac Physiome models is not well understood, and this limits their utility as clinical tools. We argue that incorporating variability and uncertainty should be a high priority for the future of the Cardiac Physiome. We suggest investigating the adoption of approaches developed in other areas of science and engineering while recognising unique challenges for the Cardiac Physiome; it is likely that novel methods will be necessary that require engagement with the mathematics and statistics community. The Cardiac Physiome effort is one of the most mature and successful applications of mathematical and computational modelling for describing and advancing the understanding of physiology. After five decades of development, physiological cardiac models are poised to realise the promise of translational research via clinical applications such as drug development and patient-specific approaches as well as ablation, cardiac resynchronisation and contractility modulation therapies. For models to be included as a vital component of the decision process in safety-critical applications, rigorous assessment of model credibility will be required. This White Paper describes one aspect of this process by identifying and classifying sources of variability and uncertainty in models as well as their implications for the application and development of cardiac models. We stress the need to understand and quantify the sources of variability and uncertainty in model inputs, and the impact of model structure and complexity and their consequences for

  6. Patient-specific models of cardiac biomechanics

    Science.gov (United States)

    Krishnamurthy, Adarsh; Villongco, Christopher T.; Chuang, Joyce; Frank, Lawrence R.; Nigam, Vishal; Belezzuoli, Ernest; Stark, Paul; Krummen, David E.; Narayan, Sanjiv; Omens, Jeffrey H.; McCulloch, Andrew D.; Kerckhoffs, Roy C. P.

    2013-07-01

    Patient-specific models of cardiac function have the potential to improve diagnosis and management of heart disease by integrating medical images with heterogeneous clinical measurements subject to constraints imposed by physical first principles and prior experimental knowledge. We describe new methods for creating three-dimensional patient-specific models of ventricular biomechanics in the failing heart. Three-dimensional bi-ventricular geometry is segmented from cardiac CT images at end-diastole from patients with heart failure. Human myofiber and sheet architecture is modeled using eigenvectors computed from diffusion tensor MR images from an isolated, fixed human organ-donor heart and transformed to the patient-specific geometric model using large deformation diffeomorphic mapping. Semi-automated methods were developed for optimizing the passive material properties while simultaneously computing the unloaded reference geometry of the ventricles for stress analysis. Material properties of active cardiac muscle contraction were optimized to match ventricular pressures measured by cardiac catheterization, and parameters of a lumped-parameter closed-loop model of the circulation were estimated with a circulatory adaptation algorithm making use of information derived from echocardiography. These components were then integrated to create a multi-scale model of the patient-specific heart. These methods were tested in five heart failure patients from the San Diego Veteran's Affairs Medical Center who gave informed consent. The simulation results showed good agreement with measured echocardiographic and global functional parameters such as ejection fraction and peak cavity pressures.

  7. Excitation model of pacemaker cardiomyocytes of cardiac conduction system

    Science.gov (United States)

    Grigoriev, M.; Babich, L.

    2015-11-01

    Myocardium includes typical and atypical cardiomyocytes - pacemakers, which form the cardiac conduction system. Excitation from the atrioventricular node in normal conditions is possible only in one direction. Retrograde direction of pulses is impossible. The most important prerequisite for the work of cardiomyocytes is the anatomical integrity of the conduction system. Changes in contractile force of the cardiomyocytes, which appear periodically, are due to two mechanisms of self-regulation - heterometric and homeometric. Graphic course of the excitation pulse propagation along the heart muscle more accurately reveals the understanding of the arrhythmia mechanism. These models have the ability to visualize the essence of excitation dynamics. However, they do not have the proper forecasting function for result estimation. Integrative mathematical model enables further investigation of general laws of the myocardium active behavior, allows for determination of the violation mechanism of electrical and contractile function of cardiomyocytes. Currently, there is no full understanding of the topography of pacemakers and ionic mechanisms. There is a need for the development of direction of mathematical modeling and comparative studies of the electrophysiological arrangement of cells of atrioventricular connection and ventricular conduction system.

  8. Cardiac arrhythmia classification using autoregressive modeling

    Directory of Open Access Journals (Sweden)

    Srinivasan Narayanan

    2002-11-01

    Full Text Available Abstract Background Computer-assisted arrhythmia recognition is critical for the management of cardiac disorders. Various techniques have been utilized to classify arrhythmias. Generally, these techniques classify two or three arrhythmias or have significantly large processing times. A simpler autoregressive modeling (AR technique is proposed to classify normal sinus rhythm (NSR and various cardiac arrhythmias including atrial premature contraction (APC, premature ventricular contraction (PVC, superventricular tachycardia (SVT, ventricular tachycardia (VT and ventricular fibrillation (VF. Methods AR Modeling was performed on ECG data from normal sinus rhythm as well as various arrhythmias. The AR coefficients were computed using Burg's algorithm. The AR coefficients were classified using a generalized linear model (GLM based algorithm in various stages. Results AR modeling results showed that an order of four was sufficient for modeling the ECG signals. The accuracy of detecting NSR, APC, PVC, SVT, VT and VF were 93.2% to 100% using the GLM based classification algorithm. Conclusion The results show that AR modeling is useful for the classification of cardiac arrhythmias, with reasonably high accuracies. Further validation of the proposed technique will yield acceptable results for clinical implementation.

  9. Models of defibrillation of cardiac tissue

    Science.gov (United States)

    Krinsky, V.; Pumir, A.

    1998-03-01

    Heterogeneities, such as gap junctions, defects in periodical cellular lattices, intercellular clefts and fiber curvature allow one to understand the effect of an electric field in cardiac tissue. They induce membrane potential variations even in the bulk of the myocardium, with a characteristic sawtooth shape. The sawtooth potential, induced by heterogeneities at large scales (tissue strands) can be more easily observed, and lead to stronger effects than the one induced at the cellular level. In the generic model of propagation in cardiac tissue (FitzHugh), 4 mechanisms of defibrillation were found, two mechanisms based on excitation (EA,EM), and two—on de-excitation (DA,DM). The lowest electric field is required by an EM mechanism. In the Beeler-Reuter ionic model, mechanism DM is impossible. We critically review the experimental basis of the theory and propose new experiments.

  10. Development of Models for Regional Cardiac Surgery Centers

    Directory of Open Access Journals (Sweden)

    Choon Seon Park

    2016-12-01

    Full Text Available Background: This study aimed to develop the models for regional cardiac surgery centers, which take regional characteristics into consideration, as a policy measure that could alleviate the concentration of cardiac surgery in the metropolitan area and enhance the accessibility for patients who reside in the regions. Methods: To develop the models and set standards for the necessary personnel and facilities for the initial management plan, we held workshops, debates, and conference meetings with various experts. Results: After partitioning the plan into two parts (the operational autonomy and the functional comprehensiveness, three models were developed: the ‘independent regional cardiac surgery center’ model, the ‘satellite cardiac surgery center within hospitals’ model, and the ‘extended cardiac surgery department within hospitals’ model. Proposals on personnel and facility management for each of the models were also presented. A regional cardiac surgery center model that could be applied to each treatment area was proposed, which was developed based on the anticipated demand for cardiac surgery. The independent model or the satellite model was proposed for Chungcheong, Jeolla, North Gyeongsang, and South Gyeongsang area, where more than 500 cardiac surgeries are performed annually. The extended model was proposed as most effective for the Gangwon and Jeju area, where more than 200 cardiac surgeries are performed annually. Conclusion: The operation of regional cardiac surgery centers with high caliber professionals and quality resources such as optimal equipment and facility size, should enhance regional healthcare accessibility and the quality of cardiac surgery in South Korea.

  11. Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias

    Directory of Open Access Journals (Sweden)

    Maaike eHoekstra

    2012-08-01

    Full Text Available Cardiac arrhythmias are a major cause of morbidity and mortality. In younger patients, the majority of sudden cardiac deaths have an underlying Mendelian genetic cause. Over the last 15 years, enormous progress has been made in identifying the distinct clinical phenotypes and in studying the basic cellular and genetic mechanisms associated with the primary Mendelian (monogenic arrhythmia syndromes. Investigation of the electrophysiological consequences of an ion channel mutation is ideally done in the native cardiomyocyte environment. However, the majority of such studies so far have relied on heterologous expression systems in which single ion channel genes are expressed in non-cardiac cells. In some cases, transgenic mouse models haven been generated, but these also have significant shortcomings, primarily related to species differences.The discovery that somatic cells can be reprogrammed to pluripotency as induced pluripotent stem cells (iPSC has generated much interest since it presents an opportunity to generate patient- and disease-specific cell lines from which normal and diseased human cardiomyocytes can be obtained These genetically diverse human model systems can be studied in vitro and used to decipher mechanisms of disease and identify strategies and reagents for new therapies. Here we review the present state of the art with respect to cardiac disease models already generated using IPSC technology and which have been (partially characterized.Human iPSC (hiPSC models have been described for the cardiac arrhythmia syndromes, including LQT1, LQT2, LQT3-Brugada Syndrome, LQT8/Timothy syndrome and catecholaminergic polymorphic ventricular tachycardia. In most cases, the hiPSC-derived cardiomyoctes recapitulate the disease phenotype and have already provided opportunities for novel insight into cardiac pathophysiology. It is expected that the lines will be useful in the development of pharmacological agents for the management of these

  12. Effects of model error on cardiac electrical wave state reconstruction using data assimilation.

    Science.gov (United States)

    LaVigne, Nicholas S; Holt, Nathan; Hoffman, Matthew J; Cherry, Elizabeth M

    2017-09-01

    Reentrant electrical scroll waves have been shown to underlie many cardiac arrhythmias, but the inability to observe locations away from the heart surfaces and the restriction of observations to only one or two state variables have made understanding arrhythmia mechanisms challenging. Recently, we showed that data assimilation from spatiotemporally sparse surrogate observations could be used to reconstruct a reliable time series of state estimates of reentrant cardiac electrical waves including unobserved variables in one and three spatial dimensions. However, real cardiac tissue is unlikely to be described accurately by mathematical models because of errors in model formulation and parameterization as well as intrinsic but poorly described spatial heterogeneity of electrophysiological properties in the heart. Here, we extend our previous work to assess how model error affects the accuracy of cardiac state estimates achieved using data assimilation with the Local Ensemble Transform Kalman Filter. We focus on one-dimensional states of discordant alternans characterized by significant wavelength oscillations. We demonstrate that data assimilation can provide high-quality estimates under a wide range of model error conditions, ranging from varying one or more parameter values to using an entirely different model to generate the truth state. We illustrate how multiplicative and additive inflation can be used to reduce error in the state estimates. Even when the truth state contains underlying spatial heterogeneity, we show that using a homogeneous model in the data assimilation algorithm can achieve good results. Overall, we find data assimilation to be a robust approach for reconstructing complex cardiac electrical states corresponding to arrhythmias even in the presence of model error.

  13. Effects of model error on cardiac electrical wave state reconstruction using data assimilation

    Science.gov (United States)

    LaVigne, Nicholas S.; Holt, Nathan; Hoffman, Matthew J.; Cherry, Elizabeth M.

    2017-09-01

    Reentrant electrical scroll waves have been shown to underlie many cardiac arrhythmias, but the inability to observe locations away from the heart surfaces and the restriction of observations to only one or two state variables have made understanding arrhythmia mechanisms challenging. Recently, we showed that data assimilation from spatiotemporally sparse surrogate observations could be used to reconstruct a reliable time series of state estimates of reentrant cardiac electrical waves including unobserved variables in one and three spatial dimensions. However, real cardiac tissue is unlikely to be described accurately by mathematical models because of errors in model formulation and parameterization as well as intrinsic but poorly described spatial heterogeneity of electrophysiological properties in the heart. Here, we extend our previous work to assess how model error affects the accuracy of cardiac state estimates achieved using data assimilation with the Local Ensemble Transform Kalman Filter. We focus on one-dimensional states of discordant alternans characterized by significant wavelength oscillations. We demonstrate that data assimilation can provide high-quality estimates under a wide range of model error conditions, ranging from varying one or more parameter values to using an entirely different model to generate the truth state. We illustrate how multiplicative and additive inflation can be used to reduce error in the state estimates. Even when the truth state contains underlying spatial heterogeneity, we show that using a homogeneous model in the data assimilation algorithm can achieve good results. Overall, we find data assimilation to be a robust approach for reconstructing complex cardiac electrical states corresponding to arrhythmias even in the presence of model error.

  14. Differential Sarcomere and Electrophysiological Maturation of Human iPSC-Derived Cardiac Myocytes in Monolayer vs. Aggregation-Based Differentiation Protocols

    Directory of Open Access Journals (Sweden)

    Dorota Jeziorowska

    2017-06-01

    Full Text Available Human induced pluripotent stem cells (iPSCs represent a powerful human model to study cardiac disease in vitro, notably channelopathies and sarcomeric cardiomyopathies. Different protocols for cardiac differentiation of iPSCs have been proposed either based on embroid body formation (3D or, more recently, on monolayer culture (2D. We performed a direct comparison of the characteristics of the derived cardiomyocytes (iPSC-CMs on day 27 ± 2 of differentiation between 3D and 2D differentiation protocols with two different Wnt-inhibitors were compared: IWR1 (inhibitor of Wnt response or IWP2 (inhibitor of Wnt production. We firstly found that the level of Troponin T (TNNT2 expression measured by FACS was significantly higher for both 2D protocols as compared to the 3D protocol. In the three methods, iPSC-CM show sarcomeric structures. However, iPSC-CM generated in 2D protocols constantly displayed larger sarcomere lengths as compared to the 3D protocol. In addition, mRNA and protein analyses reveal higher cTNi to ssTNi ratios in the 2D protocol using IWP2 as compared to both other protocols, indicating a higher sarcomeric maturation. Differentiation of cardiac myocytes with 2D monolayer-based protocols and the use of IWP2 allows the production of higher yield of cardiac myocytes that have more suitable characteristics to study sarcomeric cardiomyopathies.

  15. Cardiac conduction system anomalies and sudden cardiac death: insights from murine models

    Directory of Open Access Journals (Sweden)

    Amelia Eva Aranega

    2012-06-01

    Full Text Available The cardiac conduction system (CCS is a series of specialized tissues in the heart responsible for the initiation and co-ordination of the heartbeat. Alterations in the CCS, especially the His-Purkinje system, have been identified as an important player in the generation of lethal arrhythmias. Unstable arrhythmias secondary to channelopathies highly increase the risk of sudden cardiac death (SCD. Sudden cardiac death is a major contributor to mortality in industrialized nations, and most cases of SCD in the young are related to inherited ion channel diseases. In this review we examine how murine transgenic models have contributed to understanding that a broad variety of cardiac arrhythmias involve the cardiac specialized conduction system and may lead to sudden cardiac death.

  16. Neuroprotective effects of riluzole: an electrophysiological and histological analysis in an in vitro model of ischemia.

    Science.gov (United States)

    Siniscalchi, A; Zona, C; Sancesario, G; D'Angelo, E; Zeng, Y C; Mercuri, N B; Bernardi, G

    1999-06-01

    The protective effects of riluzole against the neuronal damage caused by O2 and glucose deprivation (ischemia) was investigated in rat cortical slices by recording electrophysiologically the cortico-cortical field potential and by evaluating histologically the severity of neuronal death. Five minutes of ischemia determined an irreversible depression of the amplitude of the field potential. In addition, this insult caused a clear enhancement of the number of death cells that were specifically colored with trypan blue (a vital colorant which stains altered cells). We found that riluzole, which by itself depressed the synaptic transmission, neuroprotected when perfused 15-20 min before and during ischemia. In fact, due to the treatment with riluzole, the ischemia-induced irreversible depression of the field potential recovered and less cells were stained with trypan blue. These findings demonstrate that riluzole prevents neuronal death in an in vitro model of ischemia and suggest a therapeutic use of this drug in order to reduce the pathophysiological outcomes of stroke.

  17. Comparison of two integration methods for dynamic causal modeling of electrophysiological data.

    Science.gov (United States)

    Lemaréchal, Jean-Didier; George, Nathalie; David, Olivier

    2018-06-01

    Dynamic causal modeling (DCM) is a methodological approach to study effective connectivity among brain regions. Based on a set of observations and a biophysical model of brain interactions, DCM uses a Bayesian framework to estimate the posterior distribution of the free parameters of the model (e.g. modulation of connectivity) and infer architectural properties of the most plausible model (i.e. model selection). When modeling electrophysiological event-related responses, the estimation of the model relies on the integration of the system of delay differential equations (DDEs) that describe the dynamics of the system. In this technical note, we compared two numerical schemes for the integration of DDEs. The first, and standard, scheme approximates the DDEs (more precisely, the state of the system, with respect to conduction delays among brain regions) using ordinary differential equations (ODEs) and solves it with a fixed step size. The second scheme uses a dedicated DDEs solver with adaptive step sizes to control error, making it theoretically more accurate. To highlight the effects of the approximation used by the first integration scheme in regard to parameter estimation and Bayesian model selection, we performed simulations of local field potentials using first, a simple model comprising 2 regions and second, a more complex model comprising 6 regions. In these simulations, the second integration scheme served as the standard to which the first one was compared. Then, the performances of the two integration schemes were directly compared by fitting a public mismatch negativity EEG dataset with different models. The simulations revealed that the use of the standard DCM integration scheme was acceptable for Bayesian model selection but underestimated the connectivity parameters and did not allow an accurate estimation of conduction delays. Fitting to empirical data showed that the models systematically obtained an increased accuracy when using the second

  18. Pregnancy as a cardiac stress model

    Science.gov (United States)

    Chung, Eunhee; Leinwand, Leslie A.

    2014-01-01

    Cardiac hypertrophy occurs during pregnancy as a consequence of both volume overload and hormonal changes. Both pregnancy- and exercise-induced cardiac hypertrophy are generally thought to be similar and physiological. Despite the fact that there are shared transcriptional responses in both forms of cardiac adaptation, pregnancy results in a distinct signature of gene expression in the heart. In some cases, however, pregnancy can induce adverse cardiac events in previously healthy women without any known cardiovascular disease. Peripartum cardiomyopathy is the leading cause of non-obstetric mortality during pregnancy. To understand how pregnancy can cause heart disease, it is first important to understand cardiac adaptation during normal pregnancy. This review provides an overview of the cardiac consequences of pregnancy, including haemodynamic, functional, structural, and morphological adaptations, as well as molecular phenotypes. In addition, this review describes the signalling pathways responsible for pregnancy-induced cardiac hypertrophy and angiogenesis. We also compare and contrast cardiac adaptation in response to disease, exercise, and pregnancy. The comparisons of these settings of cardiac hypertrophy provide insight into pregnancy-associated cardiac adaptation. PMID:24448313

  19. Cardiac cell modelling: Observations from the heart of the cardiac physiome project

    KAUST Repository

    Fink, Martin

    2011-01-01

    In this manuscript we review the state of cardiac cell modelling in the context of international initiatives such as the IUPS Physiome and Virtual Physiological Human Projects, which aim to integrate computational models across scales and physics. In particular we focus on the relationship between experimental data and model parameterisation across a range of model types and cellular physiological systems. Finally, in the context of parameter identification and model reuse within the Cardiac Physiome, we suggest some future priority areas for this field. © 2010 Elsevier Ltd.

  20. Modeling Human Cardiac Hypertrophy in Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Ekaterina Ovchinnikova

    2018-03-01

    Full Text Available Summary: Cardiac hypertrophy accompanies many forms of cardiovascular diseases. The mechanisms behind the development and regulation of cardiac hypertrophy in the human setting are poorly understood, which can be partially attributed to the lack of a human cardiomyocyte-based preclinical test system recapitulating features of diseased myocardium. The objective of our study is to determine whether human embryonic stem cell-derived cardiomyocytes (hESC-CMs subjected to mechanical stretch can be used as an adequate in vitro model for studying molecular mechanisms of cardiac hypertrophy. We show that hESC-CMs subjected to cyclic stretch, which mimics mechanical overload, exhibit essential features of a hypertrophic state on structural, functional, and gene expression levels. The presented hESC-CM stretch approach provides insight into molecular mechanisms behind mechanotransduction and cardiac hypertrophy and lays groundwork for the development of pharmacological approaches as well as for discovering potential circulating biomarkers of cardiac dysfunction. : In this article, Berezikov, van der Meer, and colleagues used stem cell-derived cardiomyocytes to model human cardiac hypertrophy. Their approach provides novel insights into molecular mechanisms behind mechanotransduction and cardiac hypertrophy and lays groundwork for the development of new pharmacological approaches as well as for discovering new potential circulating biomarkers of cardiac dysfunction. Keywords: stem cells, human cardiomyocytes, hypertrophy, in vitro disease modeling, cardiomyocytes stretch response, mechanotransduction

  1. Review: electrophysiology of basal ganglia and cortex in models of Parkinson disease.

    Science.gov (United States)

    Ellens, Damien J; Leventhal, Daniel K

    2013-01-01

    Incomplete understanding of the systems-level pathophysiology of Parkinson Disease (PD) remains a significant barrier to improving its treatment. Substantial progress has been made, however, due to the availability of neurotoxins that selectively target monoaminergic (in particular, dopaminergic) neurons. This review discusses the in vivo electrophysiology of basal ganglia (BG), thalamic, and cortical regions after dopamine-depleting lesions. These include firing rate changes, neuronal burst-firing, neuronal oscillations, and neuronal synchrony that result from a combination of local microanatomic changes and network-level interactions. While much is known of the clinical and electrophysiological phenomenology of dopamine loss, a critical gap in our conception of PD pathophysiology is the link between them. We discuss potential mechanisms by which these systems-level electrophysiological changes may emerge, as well as how they may relate to clinical parkinsonism. Proposals for an updated understanding of BG function are reviewed, with an emphasis on how emerging frameworks will guide future research into the pathophysiology and treatment of PD.

  2. Effect of the small-world structure on encoding performance in the primary visual cortex: an electrophysiological and modeling analysis.

    Science.gov (United States)

    Shi, Li; Niu, Xiaoke; Wan, Hong

    2015-05-01

    The biological networks have been widely reported to present small-world properties. However, the effects of small-world network structure on population's encoding performance remain poorly understood. To address this issue, we applied a small world-based framework to quantify and analyze the response dynamics of cell assemblies recorded from rat primary visual cortex, and further established a population encoding model based on small world-based generalized linear model (SW-GLM). The electrophysiological experimental results show that the small world-based population responses to different topological shapes present significant variation (t test, p 0.8), while no significant variation was found for control networks without considering their spatial connectivity (t test, p > 0.05; effect size: Hedge's g < 0.5). Furthermore, the numerical experimental results show that the predicted response under SW-GLM is more accurate and reliable compared to the control model without small-world structure, and the decoding performance is also improved about 10 % by taking the small-world structure into account. The above results suggest the important role of the small-world neural structure in encoding visual information for the neural population by providing electrophysiological and theoretical evidence, respectively. The study helps greatly to well understand the population encoding mechanisms of visual cortex.

  3. "Just-In-Time" Simulation Training Using 3-D Printed Cardiac Models After Congenital Cardiac Surgery.

    Science.gov (United States)

    Olivieri, Laura J; Su, Lillian; Hynes, Conor F; Krieger, Axel; Alfares, Fahad A; Ramakrishnan, Karthik; Zurakowski, David; Marshall, M Blair; Kim, Peter C W; Jonas, Richard A; Nath, Dilip S

    2016-03-01

    High-fidelity simulation using patient-specific three-dimensional (3D) models may be effective in facilitating pediatric cardiac intensive care unit (PCICU) provider training for clinical management of congenital cardiac surgery patients. The 3D-printed heart models were rendered from preoperative cross-sectional cardiac imaging for 10 patients undergoing congenital cardiac surgery. Immediately following surgical repair, a congenital cardiac surgeon and an intensive care physician conducted a simulation training session regarding postoperative care utilizing the patient-specific 3D model for the PCICU team. After the simulation, Likert-type 0 to 10 scale questionnaire assessed participant perception of impact of the training session. Seventy clinicians participated in training sessions, including 22 physicians, 38 nurses, and 10 ancillary care providers. Average response to whether 3D models were more helpful than standard hand off was 8.4 of 10. Questions regarding enhancement of understanding and clinical ability received average responses of 9.0 or greater, and 90% of participants scored 8 of 10 or higher. Nurses scored significantly higher than other clinicians on self-reported familiarity with the surgery (7.1 vs. 5.8; P = .04), clinical management ability (8.6 vs. 7.7; P = .02), and ability enhancement (9.5 vs. 8.7; P = .02). Compared to physicians, nurses and ancillary providers were more likely to consider 3D models more helpful than standard hand off (8.7 vs. 7.7; P = .05). Higher case complexity predicted greater enhancement of understanding of surgery (P = .04). The 3D heart models can be used to enhance congenital cardiac critical care via simulation training of multidisciplinary intensive care teams. Benefit may be dependent on provider type and case complexity. © The Author(s) 2016.

  4. Six Conductivity Values to Use in the Bidomain Model of Cardiac Tissue.

    Science.gov (United States)

    Johnston, Barbara M

    2016-07-01

    The aim of this work is to produce a consistent set of six conductivity values for use in the bidomain model of cardiac tissue. Studies in 2007 by Hooks et al. and in 2009 by Caldwell et al. have found that, in the directions longitudinal:transverse:normal (l:t:n) to the cardiac fibers, ratios of bulk conductivities and conduction velocities are each approximately in the ratio 4:2:1. These results are used here as the basis for a method that can find sets of six normalized bidomain conductivity values. It is found that the ratios involving transverse and normal conductivities are quite consistent, allowing new light to be shed on conductivity in the normal direction. For example, it is found that the ratio of transverse to normal conductivity is much greater in the intracellular (i) than the extracellular (e) domain. Using parameter values from experimental studies leads to the proposal of a new nominal six conductivity dataset: gil=2.4, gel=2.4, git=0.35, get=2.0, gin=0.08, and gen=1.1 (all in mS/cm). When it is used to model partial thickness ischaemia, this dataset produces epicardial potential distributions in accord with experimental studies in an animal model. It is, therefore, suggested that the dataset is suitable for use in numerical simulations. Since the bidomain approach is the most commonly used method for modeling cardiac electrophysiological phenomena, new information about conductivity in the normal direction, as well as a consistent set of six conductivity values, is valuable for researchers who perform simulation studies.

  5. Cardiac dysfunction in a porcine model of pediatric malnutrition

    DEFF Research Database (Denmark)

    Fabiansen, Christian; Lykke, Mikkel; Nielsen, Anne-Louise Hother

    2015-01-01

    BACKGROUND: Half a million children die annually of severe acute malnutrition and cardiac dysfunction may contribute to the mortality. However, cardiac function remains poorly examined in cases of severe acute malnutrition. OBJECTIVE: To determine malnutrition-induced echocardiographic disturbances...... and longitudinal changes in plasma pro-atrial natriuretic peptide and cardiac troponin-T in a pediatric porcine model. METHODS AND RESULTS: Five-week old piglets (Duroc-x-Danish Landrace-x-Yorkshire) were fed a nutritionally inadequate maize-flour diet to induce malnutrition (MAIZE, n = 12) or a reference diet...... groups. The myocardial performance index was 86% higher in MAIZE vs AGE-REF (pMalnutrition associates with cardiac dysfunction in a pediatric porcine model by increased myocardial performance index and pro-atrial natriuretic peptide...

  6. Electrophysiological characterization of spinal neurons in different models of diabetes type 1- and type 2-induced neuropathy in rats.

    Science.gov (United States)

    Schuelert, N; Gorodetskaya, N; Just, S; Doods, H; Corradini, L

    2015-04-16

    Diabetic polyneuropathy (DPN) is a devastating complication of diabetes. The underlying pathogenesis of DPN is still elusive and an effective treatment devoid of side effects presents a challenge. There is evidence that in type-1 and -2 diabetes, metabolic and morphological changes lead to peripheral nerve damage and altered central nociceptive transmission, which may contribute to neuropathic pain symptoms. We characterized the electrophysiological response properties of spinal wide dynamic range (WDR) neurons in three diabetic models. The streptozotocin (STZ) model was used as a drug-induced model of type-1 diabetes, and the BioBreeding/Worcester (BB/Wor) and Zucker diabetic fatty (ZDF) rat models were used for genetic DPN models. Data were compared to the respective control group (BB/Wor diabetic-resistant, Zucker lean (ZL) and saline-injected Wistar rat). Response properties of WDR neurons to mechanical stimulation and spontaneous activity were assessed. We found abnormal response properties of spinal WDR neurons in all diabetic rats but not controls. Profound differences between models were observed. In BB/Wor diabetic rats evoked responses were increased, while in ZDF rats spontaneous activity was increased and in STZ rats mainly after discharges were increased. The abnormal response properties of neurons might indicate differential pathological, diabetes-induced, changes in spinal neuronal transmission. This study shows for the first time that specific electrophysiological response properties are characteristic for certain models of DPN and that these might reflect the diverse and complex symptomatology of DPN in the clinic. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Sensitivity of reentrant driver localization to electrophysiological parameter variability in image-based computational models of persistent atrial fibrillation sustained by a fibrotic substrate

    Science.gov (United States)

    Deng, Dongdong; Murphy, Michael J.; Hakim, Joe B.; Franceschi, William H.; Zahid, Sohail; Pashakhanloo, Farhad; Trayanova, Natalia A.; Boyle, Patrick M.

    2017-09-01

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, causing morbidity and mortality in millions worldwide. The atria of patients with persistent AF (PsAF) are characterized by the presence of extensive and distributed atrial fibrosis, which facilitates the formation of persistent reentrant drivers (RDs, i.e., spiral waves), which promote fibrillatory activity. Targeted catheter ablation of RD-harboring tissues has shown promise as a clinical treatment for PsAF, but the outcomes remain sub-par. Personalized computational modeling has been proposed as a means of non-invasively predicting optimal ablation targets in individual PsAF patients, but it remains unclear how RD localization dynamics are influenced by inter-patient variability in the spatial distribution of atrial fibrosis, action potential duration (APD), and conduction velocity (CV). Here, we conduct simulations in computational models of fibrotic atria derived from the clinical imaging of PsAF patients to characterize the sensitivity of RD locations to these three factors. We show that RDs consistently anchor to boundaries between fibrotic and non-fibrotic tissues, as delineated by late gadolinium-enhanced magnetic resonance imaging, but those changes in APD/CV can enhance or attenuate the likelihood that an RD will anchor to a specific site. These findings show that the level of uncertainty present in patient-specific atrial models reconstructed without any invasive measurements (i.e., incorporating each individual's unique distribution of fibrotic tissue from medical imaging alongside an average representation of AF-remodeled electrophysiology) is sufficiently high that a personalized ablation strategy based on targeting simulation-predicted RD trajectories alone may not produce the desired result.

  8. Selective arterialization of a cardiac vein in a model of cardiac microangiopathy and macroangiopathy in sheep.

    Science.gov (United States)

    Resetar, Michaela Elisabeth; Ullmann, Cris; Broeske, Petra; Ludwig-Schindler, Kristin; Doll, Nicolas K; Salameh, Aida; Dhein, Stefan; Mohr, Friedrich W

    2007-05-01

    Some patients with significant arteriosclerosis of the heart are not amenable to revascularization of a coronary artery because they have a combination of microangiopathy and significant macroangiopathy. We investigated the benefit of arterialization of a cardiac vein under these circumstances in an acute animal model. In the hearts of 8 sheep, microspheres were injected into the left coronary artery; 60 minutes later, a stenosis of the left anterior descending artery was performed. After 45 minutes, retrograde venous revascularization was performed by sewing the left internal thoracic artery to the concomitant vein of the left anterior descending artery in a beating-heart technique. For flow reversal, the vein was ligated proximally to the anastomosis. The efficiency of the bypass graft was evaluated by coronary angiography and flow measurement. Cardiac output, electrocardiography, and mean arterial blood pressure were assessed in each phase of the experiment. The ischemic state of the myocardium was confirmed by a significant decrease of cardiac output, stroke volume, and mean arterial blood pressure, and a significant elevation of the ST segment in the electrocardiography. After retrograde venous revascularization was established, cardiac output and stroke volume increased and ST elevations decreased. The grafts showed adequate flow (26.15 +/- 2.08 mL/min), and reversed blood flow in the grafted vein was proved by coronary angiography. Retrograde venous revascularization is possible and improves cardiac function in a state of acute ischemia caused by a combination of microangiopathy and macroangiopathy.

  9. Predictive models for acute kidney injury following cardiac surgery.

    Science.gov (United States)

    Demirjian, Sevag; Schold, Jesse D; Navia, Jose; Mastracci, Tara M; Paganini, Emil P; Yared, Jean-Pierre; Bashour, Charles A

    2012-03-01

    Accurate prediction of cardiac surgery-associated acute kidney injury (AKI) would improve clinical decision making and facilitate timely diagnosis and treatment. The aim of the study was to develop predictive models for cardiac surgery-associated AKI using presurgical and combined pre- and intrasurgical variables. Prospective observational cohort. 25,898 patients who underwent cardiac surgery at Cleveland Clinic in 2000-2008. Presurgical and combined pre- and intrasurgical variables were used to develop predictive models. Dialysis therapy and a composite of doubling of serum creatinine level or dialysis therapy within 2 weeks (or discharge if sooner) after cardiac surgery. Incidences of dialysis therapy and the composite of doubling of serum creatinine level or dialysis therapy were 1.7% and 4.3%, respectively. Kidney function parameters were strong independent predictors in all 4 models. Surgical complexity reflected by type and history of previous cardiac surgery were robust predictors in models based on presurgical variables. However, the inclusion of intrasurgical variables accounted for all explained variance by procedure-related information. Models predictive of dialysis therapy showed good calibration and superb discrimination; a combined (pre- and intrasurgical) model performed better than the presurgical model alone (C statistics, 0.910 and 0.875, respectively). Models predictive of the composite end point also had excellent discrimination with both presurgical and combined (pre- and intrasurgical) variables (C statistics, 0.797 and 0.825, respectively). However, the presurgical model predictive of the composite end point showed suboptimal calibration (P predictive models in other cohorts is required before wide-scale application. We developed and internally validated 4 new models that accurately predict cardiac surgery-associated AKI. These models are based on readily available clinical information and can be used for patient counseling, clinical

  10. Block of GABA(A) receptor ion channel by penicillin: electrophysiological and modeling insights toward the mechanism.

    Science.gov (United States)

    Rossokhin, Alexey V; Sharonova, Irina N; Bukanova, Julia V; Kolbaev, Sergey N; Skrebitsky, Vladimir G

    2014-11-01

    GABA(A) receptors (GABA(A)R) mainly mediate fast inhibitory neurotransmission in the central nervous system. Different classes of modulators target GABA(A)R properties. Penicillin G (PNG) belongs to the class of noncompetitive antagonists blocking the open GABA(A)R and is a prototype of β-lactam antibiotics. In this study, we combined electrophysiological and modeling approaches to investigate the peculiarities of PNG blockade of GABA-activated currents recorded from isolated rat Purkinje cells and to predict the PNG binding site. Whole-cell patch-сlamp recording and fast application system was used in the electrophysiological experiments. PNG block developed after channel activation and increased with membrane depolarization suggesting that the ligand binds within the open channel pore. PNG blocked stationary component of GABA-activated currents in a concentration-dependent manner with IC50 value of 1.12mM at -70mV. The termination of GABA and PNG co-application was followed by a transient tail current. Protection of the tail current from bicuculline block and dependence of its kinetic parameters on agonist affinity suggest that PNG acts as a sequential open channel blocker that prevents agonist dissociation while the channel remains blocked. We built the GABA(A)R models based on nAChR and GLIC structures and performed an unbiased systematic search of the PNG binding site. Monte-Carlo energy minimization was used to find the lowest energy binding modes. We have shown that PNG binds close to the intracellular vestibule. In both models the maximum contribution to the energy of ligand-receptor interactions revealed residues located on the level of 2', 6' and 9' rings formed by a bundle of M2 transmembrane segments, indicating that these residues most likely participate in PNG binding. The predicted structural models support the described mechanism of PNG block. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Electrical wave propagation in an anisotropic model of the left ventricle based on analytical description of cardiac architecture.

    Directory of Open Access Journals (Sweden)

    Sergey F Pravdin

    Full Text Available We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the conductivity coefficients along and across the myocardial fibers on wave propagation using the ten Tusscher-Panfilov (2006 ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother rotor mechanism of ventricular fibrillation.

  12. Electrical wave propagation in an anisotropic model of the left ventricle based on analytical description of cardiac architecture.

    Science.gov (United States)

    Pravdin, Sergey F; Dierckx, Hans; Katsnelson, Leonid B; Solovyova, Olga; Markhasin, Vladimir S; Panfilov, Alexander V

    2014-01-01

    We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the conductivity coefficients along and across the myocardial fibers) on wave propagation using the ten Tusscher-Panfilov (2006) ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother rotor mechanism of ventricular fibrillation.

  13. Characterization of Cardiac Patients Based on the Synergy Model

    Directory of Open Access Journals (Sweden)

    Tavangar

    2014-10-01

    Full Text Available Background Cardiac patients need comprehensive support due to the adverse effects of this disease on different aspects of their lives. Synergy intervention is a model that focuses on patients' requirements. Objectives This study aimed to determine the eightfold characteristic of cardiac patients based on the synergy model that represent their clinical requirements. Materials and Methods In this descriptive cross-sectional study, 40 cardiac patients hospitalized at the cardiac care unit (CCU of Yazd Afshar Hospital were randomly selected. The data were collected by using a two-part check-list including demographic characteristics and also by studying eight characteristics of patients through interviewing and reviewing their records. The results were analyzed using descriptive statistics such as frequency (percentage and analytical statistics such as Spearman and Mann-Whitney test with the SPSS software, version 18. Results The results showed that among patients' internal characteristics, reversibility (70.6%, vulnerability (68.6%, and predictability (80.4% at level 1 (the minimum score had the highest frequency and stability (49% and complexity (54.9% were at level 3 (average score. Among external characteristics participation in decision-making (80.4% at level 1 had the highest frequency while care (62.7% and recourses (98% were at level 3. Conclusions Ignoring any of the eightfold characteristics based on the synergy model interferes with comprehensive support of cardiac patients. Therefore, it is necessary for professional health practitioners, especially nurses, to consider patients' eightfold characteristics in order to provide quality care.

  14. Mechano-electric feedback effects in a three-dimensional (3D model of the contracting cardiac ventricle.

    Directory of Open Access Journals (Sweden)

    Ani Amar

    Full Text Available Mechano-electric feedback affects the electrophysiological and mechanical function of the heart and the cellular, tissue, and organ properties. To determine the main factors that contribute to this effect, this study investigated the changes in the action potential characteristics of the ventricle during contraction. A model of stretch-activated channels was incorporated into a three-dimensional multiscale model of the contracting ventricle to assess the effect of different preload lengths on the electrophysiological behavior. The model describes the initiation and propagation of the electrical impulse, as well as the passive (stretch and active (contraction changes in the cardiac mechanics. Simulations were performed to quantify the relationship between the cellular activation and recovery patterns as well as the action potential durations at different preload lengths in normal and heart failure pathological conditions. The simulation results showed that heart failure significantly affected the excitation propagation parameters compared to normal condition. The results showed that the mechano-electrical feedback effects appear to be most important in failing hearts with low ejection fraction.

  15. Simulation study of a magnetocardiogram based on a virtual heart model: effect of a cardiac equivalent source and a volume conductor

    International Nuclear Information System (INIS)

    Shou Guo-Fa; Xia Ling; Dai Ling; Ma Ping; Tang Fa-Kuan

    2011-01-01

    In this paper, we present a magnetocardiogram (MCG) simulation study using the boundary element method (BEM) and based on the virtual heart model and the realistic human volume conductor model. The different contributions of cardiac equivalent source models and volume conductor models to the MCG are deeply and comprehensively investigated. The single dipole source model, the multiple dipoles source model and the equivalent double layer (EDL) source model are analysed and compared with the cardiac equivalent source models. Meanwhile, the effect of the volume conductor model on the MCG combined with these cardiac equivalent sources is investigated. The simulation results demonstrate that the cardiac electrophysiological information will be partly missed when only the single dipole source is taken, while the EDL source is a good option for MCG simulation and the effect of the volume conductor is smallest for the EDL source. Therefore, the EDL source is suitable for the study of MCG forward and inverse problems, and more attention should be paid to it in future MCG studies. (general)

  16. Modern Perspectives on Numerical Modeling of Cardiac Pacemaker Cell

    Science.gov (United States)

    Maltsev, Victor A.; Yaniv, Yael; Maltsev, Anna V.; Stern, Michael D.; Lakatta, Edward G.

    2015-01-01

    Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent “coupled-clock” theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies, such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434

  17. Modelling the cardiac transverse-axial tubular system

    Czech Academy of Sciences Publication Activity Database

    Pásek, Michal; Šimurda, J.; Christé, G.; Orchard, C.

    2008-01-01

    Roč. 96, - (2008), s. 226-246 ISSN 0079-6107 Institutional research plan: CEZ:AV0Z20760514 Keywords : cardiac cell * transverse-axial tubular system * quantitative modelling Subject RIV: BO - Biophysics Impact factor: 6.388, year: 2008

  18. Towards an integrative computational model of the guinea pig cardiac myocyte

    Directory of Open Access Journals (Sweden)

    Laura Doyle Gauthier

    2012-07-01

    Full Text Available The local control theory of excitation-contraction (EC coupling asserts that regulation of calcium (Ca2+ release occurs at the nanodomain level, where openings of single L-type Ca2+ channels (LCCs trigger openings of small clusters of ryanodine receptors (RyRs co-localized within the dyad. A consequence of local control is that the whole-cell Ca2+ transient is a smooth continuous function of influx of Ca2+ through LCCs. While this so-called graded release property has been known for some time, it’s functional importance to the integrated behavior of the cardiac ventricular myocyte has not been fully appreciated. We previously formulated a biophysically-based model, in which LCCs and RyRs interact via a coarse-grained representation of the dyadic space. The model captures key features of local control using a low-dimensional system of ordinary differential equations. Voltage-dependent gain and graded Ca2+ release are emergent properties of this model by virtue of the fact that model formulation is closely based on the sub-cellular basis of local control. In this current work, we have incorporated this graded release model into a prior model of guinea pig ventricular myocyte electrophysiology, metabolism, and isometric force production. The resulting integrative model predicts the experimentally-observed causal relationship between action potential (AP shape and timing of Ca2+ and force transients, a relationship that is not explained by models lacking the graded release property. Model results suggest that even relatively subtle changes in AP morphology that may result, for example, from remodeling of membrane transporter expression in disease or spatial variation in cell properties, may have major impact on the temporal waveform of Ca2+ transients, thus influencing tissue-level electro-mechanical function.

  19. A Roadmap for Reducing Cardiac Device Infections: a Review of Epidemiology, Pathogenesis, and Actionable Risk Factors to Guide the Development of an Infection Prevention Program for the Electrophysiology Laboratory.

    Science.gov (United States)

    Branch-Elliman, Westyn

    2017-08-16

    Cardiovascular implantable electronic device (CIED) infections are highly morbid, common, and costly, and rates are increasing (Sohail et al. Arch Intern Med 171(20):1821-8 2011; Voigt et al. J Am Coll Cardiol 48(3):590-1 2006). Factors that contribute to the development of CIED infections include patient factors (comorbid conditions, self-care, microbiome), procedural details (repeat procedure, contamination during procedure, appropriate pre-procedural prep, and antimicrobial use), environmental and organizational factors (patient safety culture, facility barriers, such as lack of space to store essential supplies, quality of environmental cleaning), and microbial factors (type of organism, virulence of organism). Each of these can be specifically targeted with infection prevention interventions. Basic prevention practices, such as administration of systemic antimicrobials prior to incision and delaying the procedure in the setting of fever or elevated INR, are helpful for day-to-day prevention of cardiac device infections. Small single-center studies provide proof-of-concept that bundled prevention interventions can reduce infections, particularly in outbreak settings. However, data regarding which prevention strategies are the most important is limited as are data regarding the optimal prevention program for day-to-day prevention (Borer et al. Infect Control Hosp Epidemiol 25(6):492-7 2004; Ahsan et al. Europace 16(10):1482-9 2014). Evolution of infection prevention programs to include ambulatory and procedural areas is crucial as healthcare delivery is increasingly provided outside of hospitals and operating rooms. The focus on traditional operating rooms and inpatient care leaves the vast majority of healthcare delivery-including cardiac device implantations in the electrophysiology laboratory-uncovered.

  20. Model Clamp: A Computer Tool to Probe Action Potential Transfer Between Cardiac Cells

    National Research Council Canada - National Science Library

    Wilders, Ronald

    2001-01-01

    In the early nineties, Joyner and coworkers introduced the "coupling clamp" technique in which an isolated cardiac cell can be electrically coupled to either another isolated cardiac cell or to an analog model cell (RC circuit...

  1. Nonlinear mathematical model for predicting long term cardiac remodeling in Chagas' heart disease: introducing the concepts of 'limiting cardiac function' and 'cardiac function deterioration period'.

    Science.gov (United States)

    Benchimol-Barbosa, Paulo Roberto

    2010-11-19

    Cardiac remodeling has been recently investigated in long term follow-up introducing a simple exponential model to describe the time course of cardiac function and dimension changes in Chagas' disease. In the present study, an improved mathematical model to equate time course and cardiac functional changes has been proposed. Present model has been derived from previously validated intuitive assumptions and tested on data set of outpatients with chronic Chagas' disease (51.3±9.4 years old), followed for up to 10 years in Rio de Janeiro, Brazil. The variables representing cardiac status at admission were plotted against respective time derivative, which appropriately fit a second order polynomial (adjusted r(2)=0.956; pconstants: a time-function (2.0·10(-3)±5.4·10(-4) months(-1)·%(-1); p<0.001) and an inferior limit for left ventricular ejection fraction (19.0±0.9%; p<0.001), standing for a limit beyond life expectation is unsustainable, in Chagas' disease. Cardiac function deterioration period was promptly derived from the model, representing the period of time following indeterminate stages of the disease when cardiac function start deteriorating, and ranged from 3 to 15.8 years. An example of data of left ventricular ejection fraction of a subject followed during 10 years illustrated the model, further validating its robustness. Present data confirms that, in chronic Chagas' disease, initial insult is connected to the progression of myocardial remodeling and introduces the concepts of limiting cardiac function and cardiac deterioration period. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  2. Genetically engineered cardiac pacemaker: Stem cells transfected with HCN2 gene and myocytes-A model

    Energy Technology Data Exchange (ETDEWEB)

    Kanani, S. [Institut Genomique Fonctionelle, 141 Rue de la Cardonille, 34396 Montpellier (France); Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France); Pumir, A. [Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France); Laboratoire J.A. Dieudonne, CNRS and Universite de Nice, Parc Valrose, 06108 Nice (France)], E-mail: alain.pumir@unice.fr; Krinsky, V. [Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France)

    2008-01-07

    One of the successfully tested methods to design genetically engineered cardiac pacemaker cells consists in transfecting a human mesenchymal stem cell (hMSC) with a HCN2 gene and connecting it to a myocyte. We develop and study a mathematical model, describing a myocyte connected to a hMSC transfected with a HCN2 gene. The cardiac action potential is described both with the simple Beeler-Reuter model, as well as with the elaborate dynamic Luo-Rudy model. The HCN2 channel is described by fitting electrophysiological records, in the spirit of Hodgkin-Huxley. The model shows that oscillations can occur in a pair myocyte-stem cell, that was not observed in the experiments yet. The model predicted that: (1) HCN pacemaker channels can induce oscillations only if the number of expressed I{sub K1} channels is low enough. At too high an expression level of I{sub K1} channels, oscillations cannot be induced, no matter how many pacemaker channels are expressed. (2) At low expression levels of I{sub K1} channels, a large domain of values in the parameter space (n, N) exists, where oscillations should be observed. We denote N the number of expressed pacemaker channels in the stem cell, and n the number of gap junction channels coupling the stem cell and the myocyte. (3) The expression levels of I{sub K1} channels observed in ventricular myocytes, both in the Beeler-Reuter and in the dynamic Luo-Rudy models are too high to allow to observe oscillations. With expression levels below {approx}1/4 of the original value, oscillations can be observed. The main consequence of this work is that in order to obtain oscillations in an experiment with a myocyte-stem cell pair, increasing the values of n, N is unlikely to be helpful, unless the expression level of I{sub K1} has been reduced enough. The model also allows us to explore levels of gene expression not yet achieved in experiments, and could be useful to plan new experiments, aimed at improving the robustness of the oscillations.

  3. Cardiac magnetic source imaging based on current multipole model

    International Nuclear Information System (INIS)

    Tang Fa-Kuan; Wang Qian; Hua Ning; Lu Hong; Tang Xue-Zheng; Ma Ping

    2011-01-01

    It is widely accepted that the heart current source can be reduced into a current multipole. By adopting three linear inverse methods, the cardiac magnetic imaging is achieved in this article based on the current multipole model expanded to the first order terms. This magnetic imaging is realized in a reconstruction plane in the centre of human heart, where the current dipole array is employed to represent realistic cardiac current distribution. The current multipole as testing source generates magnetic fields in the measuring plane, serving as inputs of cardiac magnetic inverse problem. In the heart-torso model constructed by boundary element method, the current multipole magnetic field distribution is compared with that in the homogeneous infinite space, and also with the single current dipole magnetic field distribution. Then the minimum-norm least-squares (MNLS) method, the optimal weighted pseudoinverse method (OWPIM), and the optimal constrained linear inverse method (OCLIM) are selected as the algorithms for inverse computation based on current multipole model innovatively, and the imaging effects of these three inverse methods are compared. Besides, two reconstructing parameters, residual and mean residual, are also discussed, and their trends under MNLS, OWPIM and OCLIM each as a function of SNR are obtained and compared. (general)

  4. Modeling Unipolar and Bipolar Stimulation of Cardiac Tissue

    Science.gov (United States)

    Galappaththige, Suran Kokila

    Out of all non-communicable diseases, heart diseases have become the leading cause of death and disease burden worldwide. Heart diseases describe a variety of circumstances that affect your heart. One common condition is the heart rhythm problem often called an arrhythmia. The rhythmic beating of the human heart can be altered due to various reasons. This inconsistency in beating can lead to a lethal form of arrhythmia that we call ventricular fibrillation. We treat fibrillation by applying an electrical shock to the heart using a unipolar electrode or bipolar electrodes. To build better pace makers and defibrillators, we must understand how the heart responds to an electrical shock. One way to study cardiac arrhythmias is using a mathematical model. The computational biology of the heart is one of the most important recent applications of mathematical modeling in biology. By using mathematical models, we can understand the mechanisms responsible of the heart's electrical behavior. We investigate if the time-independent, inwardly rectifying potassium current through the cell membrane inhibits the hyperpolarization after a stimulus electrical pulse is applied to the resting heart tissue. The inhibition of hyperpolarization is due to long duration stimulus pulses, but not short duration pulses. We also investigate the minimum conditions required for the dip in strength-interval curves using a simple but not so simple parsimonious ionic current model coupled with the bidomain model. Unipolar anodal stimulations still results in the dip in the strength-interval curves and this explains the minimum conditions for this phenomenon to occur. Bipolar stimulation of cardiac tissue using the parsimonious ionic current model revels that the strength-interval curves are sensitive to the separation between electrodes and the electrode orientation relative to the fiber direction. One of the ionic currents in the parsimonious ionic current model mimics the time

  5. LR-Spring Mass Model for Cardiac Surgical Simulation

    DEFF Research Database (Denmark)

    Mosegaard, Jesper

    2004-01-01

    The purpose of the research conducted was to develop a real-time surgical simulator for preoperative planning of surgery in congenital heart disease. The main problem simulating procedures on cardiac morphology is the need for a large degree of detail and simulation speed. In combination with a d......The purpose of the research conducted was to develop a real-time surgical simulator for preoperative planning of surgery in congenital heart disease. The main problem simulating procedures on cardiac morphology is the need for a large degree of detail and simulation speed. In combination...... with a demand for physically realistic real-time behaviour this gives us tradeoffs not easily balanced. The LR-Spring Mass model handles these constraints by the use of domain specific knowledge....

  6. Two subgroups of antipsychotic-naive, first-episode schizophrenia patients identified with a Gaussian mixture model on cognition and electrophysiology.

    Science.gov (United States)

    Bak, N; Ebdrup, B H; Oranje, B; Fagerlund, B; Jensen, M H; Düring, S W; Nielsen, M Ø; Glenthøj, B Y; Hansen, L K

    2017-04-11

    Deficits in information processing and cognition are among the most robust findings in schizophrenia patients. Previous efforts to translate group-level deficits into clinically relevant and individualized information have, however, been non-successful, which is possibly explained by biologically different disease subgroups. We applied machine learning algorithms on measures of electrophysiology and cognition to identify potential subgroups of schizophrenia. Next, we explored subgroup differences regarding treatment response. Sixty-six antipsychotic-naive first-episode schizophrenia patients and sixty-five healthy controls underwent extensive electrophysiological and neurocognitive test batteries. Patients were assessed on the Positive and Negative Syndrome Scale (PANSS) before and after 6 weeks of monotherapy with the relatively selective D 2 receptor antagonist, amisulpride (280.3±159 mg per day). A reduced principal component space based on 19 electrophysiological variables and 26 cognitive variables was used as input for a Gaussian mixture model to identify subgroups of patients. With support vector machines, we explored the relation between PANSS subscores and the identified subgroups. We identified two statistically distinct subgroups of patients. We found no significant baseline psychopathological differences between these subgroups, but the effect of treatment in the groups was predicted with an accuracy of 74.3% (P=0.003). In conclusion, electrophysiology and cognition data may be used to classify subgroups of schizophrenia patients. The two distinct subgroups, which we identified, were psychopathologically inseparable before treatment, yet their response to dopaminergic blockade was predicted with significant accuracy. This proof of principle encourages further endeavors to apply data-driven, multivariate and multimodal models to facilitate progress from symptom-based psychiatry toward individualized treatment regimens.

  7. Electrophysiological Evidence for a Sensory Recruitment Model of Somatosensory Working Memory.

    Science.gov (United States)

    Katus, Tobias; Grubert, Anna; Eimer, Martin

    2015-12-01

    Sensory recruitment models of working memory assume that information storage is mediated by the same cortical areas that are responsible for the perceptual processing of sensory signals. To test this assumption, we measured somatosensory event-related brain potentials (ERPs) during a tactile delayed match-to-sample task. Participants memorized a tactile sample set at one task-relevant hand to compare it with a subsequent test set on the same hand. During the retention period, a sustained negativity (tactile contralateral delay activity, tCDA) was elicited over primary somatosensory cortex contralateral to the relevant hand. The amplitude of this component increased with memory load and was sensitive to individual limitations in memory capacity, suggesting that the tCDA reflects the maintenance of tactile information in somatosensory working memory. The tCDA was preceded by a transient negativity (N2cc component) with a similar contralateral scalp distribution, which is likely to reflect selection of task-relevant tactile stimuli at the encoding stage. The temporal sequence of N2cc and tCDA components mirrors previous observations from ERP studies of working memory in vision. The finding that the sustained somatosensory delay period activity varies as a function of memory load supports a sensory recruitment model for spatial working memory in touch. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Intestinal ischemia-reperfusion induced diaphragm contractility dysfunction: Electrophysiological and ultrastructural study in a neonatal rat model.

    Science.gov (United States)

    Taşkınlar, Hakan; Naycı, Ali; Çömelekoğlu, Ülkü; Polat, Gürbüz; Zorludemir, Suzan; Avlan, Dinçer

    2016-03-01

    To evaluate the remote effect of intestinal ischemia reperfusion (IR) injury mediated by tumor necrosis factor alpha (TNF-α) on diaphragm contractility functions and whether administration of NAC may counteract the possible detrimental effects in an experimental neonatal rat model. 40 Wistar rat pups were randomized into four groups; ten animals in each. Intestinal ischemia was conducted by obstructing mesentery of intestines by a silk loop. In the control group; only laparotomy was performed. After 1h ischemia, reperfusion was conducted for 1h in 1h group, 24h for 24h group and 24h for 24h+NAC group but administration of NAC (150mg/kg/day) intraperitoneally twice a day was performed. Inflammatory response was evaluated by tissue TNF-α level and contractility functions by mechanic activity studies of the diaphragm. Electrophysiology of the diaphragm and the phrenic nerve was conducted to determine neuropathy or myopathy and transmission electron microscopy was performed to evaluate ultrastructural changes in the phrenic nerve. Diaphragm tissue TNF-α level significantly increased in 1h and 24h groups (P=0.004, P=0.0001; respectively). Diaphragm mechanic activation force and duration significantly decreased at 1h and 24h (P=0.004, P=0.02 and P=0.0001, P=0.0001; respectively). NAC administration significantly prevented decrease in the maximal contraction and the duration (PIntestinal IR induced elevation of TNF-α level in the diaphragm. Impairment in the diaphragm contractility and neuropathic changes in the phrenic nerve occurred even in the first hour of reperfusion. NAC administration prevented these detrimental effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Dose-Escalation Study for Cardiac Radiosurgery in a Porcine Model

    Energy Technology Data Exchange (ETDEWEB)

    Blanck, Oliver, E-mail: oliver.blanck@uksh.de [Department of Radiation Oncology, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); CyberKnife Center Northern Germany, Guestrow (Germany); Bode, Frank [Medical Department II, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Gebhard, Maximilian [Institute of Pathology, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Hunold, Peter [Department of Radiology and Nuclear Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Brandt, Sebastian [Department of Anaesthesiology and Intensive Care Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Bruder, Ralf [Institute for Robotics and Cognitive Systems, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Grossherr, Martin [Department of Anaesthesiology and Intensive Care Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Vonthein, Reinhard [Institute of Medical Biometry and Statistics, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Rades, Dirk [Department of Radiation Oncology, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Dunst, Juergen [Department of Radiation Oncology, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); University Copenhagen (Denmark)

    2014-07-01

    Purpose: To perform a proof-of-principle dose-escalation study to radiosurgically induce scarring in cardiac muscle tissue to block veno-atrial electrical connections at the pulmonary vein antrum, similar to catheter ablation. Methods and Materials: Nine mini-pigs underwent pretreatment magnetic resonance imaging (MRI) evaluation of heart function and electrophysiology assessment by catheter measurements in the right superior pulmonary vein (RSPV). Immediately after examination, radiosurgery with randomized single-fraction doses of 0 and 17.5-35 Gy in 2.5-Gy steps were delivered to the RSPV antrum (target volume 5-8 cm{sup 3}). MRI and electrophysiology were repeated 6 months after therapy, followed by histopathologic examination. Results: Transmural scarring of cardiac muscle tissue was noted with doses ≥32.5 Gy. However, complete circumferential scarring of the RSPV was not achieved. Logistic regressions showed that extent and intensity of fibrosis significantly increased with dose. The 50% effective dose for intense fibrosis was 31.3 Gy (odds ratio 2.47/Gy, P<.01). Heart function was not affected, as verified by MRI and electrocardiogram evaluation. Adjacent critical structures were not damaged, as verified by pathology, demonstrating the short-term safety of small-volume cardiac radiosurgery with doses up to 35 Gy. Conclusions: Radiosurgery with doses >32.5 Gy in the healthy pig heart can induce circumscribed scars at the RSPV antrum noninvasively, mimicking the effect of catheter ablation. In our study we established a significant dose-response relationship for cardiac radiosurgery. The long-term effects and toxicity of such high radiation doses need further investigation in the pursuit of cardiac radiosurgery for noninvasive treatment of atrial fibrillation.

  10. Long-term fish oil supplementation induces cardiac electrical remodeling by changing channel protein expression in the rabbit model.

    Directory of Open Access Journals (Sweden)

    Xulin Xu

    2010-04-01

    Full Text Available Clinical trials and epidemiological studies have suggested that dietary fish oil (FO supplementation can provide an anti-arrhythmic benefit in some patient populations. The underlying mechanisms are not entirely clear. We wanted to understand how FO supplementation (for 4 weeks affected the action potential configuration/duration of ventricular myocytes, and the ionic mechanism(s/molecular basis for these effects. The experiments were conducted on adult rabbits, a widely used animal model for cardiac electrophysiology and pathophysiology. We used gas chromatography-mass spectroscopy to confirm that FO feeding produced a marked increase in the content of n-3 polyunsaturated fatty acids in the phospholipids of rabbit hearts. Left ventricular myocytes were used in current and voltage clamp experiments to monitor action potentials and ionic currents, respectively. Action potentials of myocytes from FO-fed rabbits exhibited much more positive plateau voltages and prolonged durations. These changes could be explained by an increase in the L-type Ca current (I(CaL and a decrease in the transient outward current (I(to in these myocytes. FO feeding did not change the delayed rectifier or inward rectifier current. Immunoblot experiments showed that the FO-feeding induced changes in I(CaL and I(to were associated with corresponding changes in the protein levels of major pore-forming subunits of these channels: increase in Cav1.2 and decrease in Kv4.2 and Kv1.4. There was no change in other channel subunits (Cav1.1, Kv4.3, KChIP2, and ERG1. We conclude that long-term fish oil supplementation can impact on cardiac electrical activity at least partially by changing channel subunit expression in cardiac myocytes.

  11. Mouse models for the study of postnatal cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    A. Del Olmo-Turrubiarte

    2015-06-01

    Full Text Available The main objective of this study was to create a postnatal model for cardiac hypertrophy (CH, in order to explain the mechanisms that are present in childhood cardiac hypertrophy. Five days after implantation, intraperitoneal (IP isoproterenol (ISO was injected for 7 days to pregnant female mice. The fetuses were obtained at 15, 17 and 19 dpc from both groups, also newborns (NB, neonates (7–15 days and young adults (6 weeks of age. Histopathological exams were done on the hearts. Immunohistochemistry and western blot demonstrated GATA4 and PCNA protein expression, qPCR real time the mRNA of adrenergic receptors (α-AR and β-AR, alpha and beta myosins (α-MHC, β-MHC and GATA4. After the administration of ISO, there was no change in the number of offsprings. We observed significant structural changes in the size of the offspring hearts. Morphometric analysis revealed an increase in the size of the left ventricular wall and interventricular septum (IVS. Histopathological analysis demonstrated loss of cellular compaction and presence of left ventricular small fibrous foci after birth. Adrenergic receptors might be responsible for changing a physiological into a pathological hypertrophy. However GATA4 seemed to be the determining factor in the pathology. A new animal model was established for the study of pathologic CH in early postnatal stages.

  12. Design and evaluation of a parametric model for cardiac sounds.

    Science.gov (United States)

    Ibarra-Hernández, Roilhi F; Alonso-Arévalo, Miguel A; Cruz-Gutiérrez, Alejandro; Licona-Chávez, Ana L; Villarreal-Reyes, Salvador

    2017-10-01

    Heart sound analysis plays an important role in the auscultative diagnosis process to detect the presence of cardiovascular diseases. In this paper we propose a novel parametric heart sound model that accurately represents normal and pathological cardiac audio signals, also known as phonocardiograms (PCG). The proposed model considers that the PCG signal is formed by the sum of two parts: one of them is deterministic and the other one is stochastic. The first part contains most of the acoustic energy. This part is modeled by the Matching Pursuit (MP) algorithm, which performs an analysis-synthesis procedure to represent the PCG signal as a linear combination of elementary waveforms. The second part, also called residual, is obtained after subtracting the deterministic signal from the original heart sound recording and can be accurately represented as an autoregressive process using the Linear Predictive Coding (LPC) technique. We evaluate the proposed heart sound model by performing subjective and objective tests using signals corresponding to different pathological cardiac sounds. The results of the objective evaluation show an average Percentage of Root-Mean-Square Difference of approximately 5% between the original heart sound and the reconstructed signal. For the subjective test we conducted a formal methodology for perceptual evaluation of audio quality with the assistance of medical experts. Statistical results of the subjective evaluation show that our model provides a highly accurate approximation of real heart sound signals. We are not aware of any previous heart sound model rigorously evaluated as our proposal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Generation of electrophysiologically functional cardiomyocytes from mouse induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Hongran Wang

    2016-03-01

    Full Text Available Induced pluripotent stem (iPS cells can efficiently differentiate into the three germ layers similar to those formed by differentiated embryonic stem (ES cells. This provides a new source of cells in which to establish preclinical allogeneic transplantation models. Our iPS cells were generated from mouse embryonic fibroblasts (MEFs transfected with the Yamanaka factors, the four transcription factors (Oct4, Sox2, Klf4 and c-Myc, without antibiotic selection or MEF feeders. After the formation of embryoid bodies (EBs, iPS cells spontaneously differentiated into Flk1-positive cardiac progenitors and cardiomyocytes expressing cardiac-specific markers such as alpha sarcomeric actinin (α-actinin, cardiac alpha myosin heavy chain (α-MHC, cardiac troponin T (cTnT, and connexin 43 (CX43, as well as cardiac transcription factors Nk2 homebox 5 (Nkx2.5 and gata binding protein 4 (gata4. The electrophysiological activity of iPS cell-derived cardiomyocytes (iPS-CMs was detected in beating cell clusters with optical mapping and RH237 a voltage-sensitive dye, and in single contracting cells with patch-clamp technology. Incompletely differentiated iPS cells formed teratomas when transplanted into a severe combined immunodeficiency (SCID mouse model of myocardial infarction. Our results show that somatic cells can be reprogrammed into pluripotent stem cells, which in turn spontaneously differentiate into electrophysiologically functional mature cardiomyocytes expressing cardiac-specific makers, and that these cells can potentially be used to repair myocardial infarction (MI in the future.

  14. Electrophysiologic Study of Exhaustive Exercise

    Directory of Open Access Journals (Sweden)

    MA Babaee Bigi

    2010-12-01

    Full Text Available Background: Exhaustive exercise is well known to pose a variety ofhealth hazards, such as sudden cardiac death reported in ultra-marathon runners.Depressed parasympathetic tone is associated with increased risk of suddencardiac death, thus parasympathetic withdrawal in post-exercise phase may be ahigh risk period for sudden death. To date, the effect on cardiacelectrophysiology after exhaustive strenuous exercise has not been described.The aim of this study was to evaluate the impact of severe exhaustive exerciseon cardiac electrophysiology.Methods: The subjects in ranger training were invited to participatein this prospective study. The parameters measured consisted of PR interval, QRSduration, and macro T wave alternans as well as corrected QT, QTc dispersion,Tpeak –Tend interval and Tpeak –Tend dispersion.Results: The study group consisted of 40 consecutive male rangers whocompleted training and the control group (22 healthy age and height matched malesubjects. In regard to electrocardiographic criteria, no differences were foundbetween rangers before and after training program. In respect of therepolarization markers, there were no significant differences between therangers before and after training program.

  15. Validation of Three Postoperative Risk Prediction Models for Intensive Care Unit Mortality after Cardiac Surgery.

    Science.gov (United States)

    Howitt, Samuel Henry; Caiado, Camila; McCollum, Charles; Goldstein, Michael; Malagon, Ignacio; Venkateswaran, Rajamiyer; Grant, Stuart William

    2018-01-09

     Several cardiac surgery risk prediction models based on postoperative data have been developed. However, unlike preoperative cardiac surgery risk prediction models, postoperative models are rarely externally validated or utilized by clinicians. The objective of this study was to externally validate three postoperative risk prediction models for intensive care unit (ICU) mortality after cardiac surgery.  The logistic Cardiac Surgery Scores (logCASUS), Rapid Clinical Evaluation (RACE), and Sequential Organ Failure Assessment (SOFA) scores were calculated over the first 7 postoperative days for consecutive adult cardiac surgery patients between January 2013 and May 2015. Model discrimination was assessed using receiver operating characteristic curve analyses. Calibration was assessed using the Hosmer-Lemeshow (HL) test, calibration plots, and observed to expected ratios. Recalibration of the models was performed.  A total of 2255 patients were included with an ICU mortality rate of 1.8%. Discrimination for all three models on each postoperative day was good with areas under the receiver operating characteristic curve of >0.8. Generally, RACE and logCASUS had better discrimination than SOFA. Calibration of the RACE score was better than logCASUS, but ratios of observed to expected mortality for both were generally prediction after cardiac surgery. If appropriately calibrated, postoperative cardiac surgery risk prediction models have the potential to be useful tools after cardiac surgery. Georg Thieme Verlag KG Stuttgart · New York.

  16. Trigeminal Electrophysiology: a 2 × 2 matrix model for differential diagnosis between temporomandibular disorders and orofacial pain

    Directory of Open Access Journals (Sweden)

    Chessa Giacomo

    2010-07-01

    Full Text Available Abstract Background Pain due to temporomandibular disorders (TMDs often has the same clinical symptoms and signs as other types of orofacial pain (OP. The possible presence of serious neurological and/or systemic organic pathologies makes differential diagnosis difficult, especially in early disease stages. In the present study, we performed a qualitative and quantitative electrophysiological evaluation of the neuromuscular responses of the trigeminal nervous system. Using the jaw jerk reflex (JJ and the motor evoked potentials of the trigeminal roots (bR-MEPs tests, we investigated the functional and organic responses of healthy subjects (control group and patients with TMD symptoms (TMD group. Method Thirty-three patients with temporomandibular disorder (TMD symptoms and 36 control subjects underwent two electromyographic (EMG tests: the jaw jerk reflex test and the motor evoked potentials of the trigeminal roots test using bilateral electrical transcranial stimulation. The mean, standard deviation, median, minimum, and maximum values were computed for the EMG absolute values. The ratio between the EMG values obtained on each side was always computed with the reference side as the numerator. For the TMD group, this side was identified as the painful side (pain side, while for the control group this was taken as the non-preferred masticatory side (non-preferred side. The 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles were also calculated. Results Analysis of the ratios (expressed as percentages between the values obtained on both sides revealed a high degree of symmetry in the bR-MEPs % in the control (0.93 ± 0.12% and TMD (0.91 ± 0.22% groups. This symmetry indicated organic integrity of the trigeminal root motor fibers and correct electrode arrangement. A degree of asymmetry of the jaw jerk's amplitude between sides (ipJJ%, when the mandible was kept in the intercuspal position, was found in the TMD group (0.24% ± 0.14% with a

  17. Characterization of chronic constriction of the saphenous nerve, a model of neuropathic pain in mice showing rapid molecular and electrophysiological changes.

    Science.gov (United States)

    Walczak, Jean-Sébastien; Pichette, Vincent; Leblond, François; Desbiens, Karine; Beaulieu, Pierre

    2006-05-15

    Neuropathic pain is one of the most inextricable problems encountered in clinics, because few facts are known about its etiology. Nerve injury often leads to allodynia and hyperalgesia, which are symptoms of neuropathic pain. The aim of this study was to understand some molecular and electrophysiological mechanisms of neuropathic pain after chronic constriction of the saphenous nerve (CCS) in mice. After surgery, CCS mice displayed significant allodynia and hyperalgesia, which were sensitive to acute systemic injection of morphine (4 mg/kg), gabapentin (50 mg/kg), amitriptyline (10 mg/kg), and the cannabinoid agonist WIN 55,212-2 (5 mg/kg). These behavioral changes were accompanied after surgery by an increase of c-Fos expression and by an overexpression of mu-opioid and cannabinoid CB1 and CB2 receptors in the spinal cord and the dorsal hind paw skin. In combination with the skin-nerve preparation, this model showed a decrease in functional receptive fields downstream to the injury and the apparition of A-fiber ectopic discharges. In conclusion, CCS injury induced behavioral, molecular, and electrophysiological rearrangements that might help us in better understanding the peripheral mechanisms of neuropathic pain. This model takes advantage of the possible use in the future of genetically modified mice and of an exclusively sensory nerve for a comprehensive study of peripheral mechanisms of neuropathic pain. Copyright 2006 Wiley-Liss, Inc.

  18. Visual electrophysiology in children

    Directory of Open Access Journals (Sweden)

    Jelka Brecelj

    2005-10-01

    Full Text Available Background: Electrophysiological assessment of vision in children helps to recognise abnormal development of the visual system when it is still susceptible to medication and eventual correction. Visual electrophysiology provides information about the function of the retina (retinal pigment epithelium, cone and rod receptors, bipolar, amacrine, and ganglion cells, optic nerve, chiasmal and postchiasmal visual pathway, and visual cortex.Methods: Electroretinograms (ERG and visual evoked potentials (VEP are recorded non-invasively; in infants are recorded simultaneously ERG with skin electrodes, while in older children separately ERG with HK loop electrode in accordance with ISCEV (International Society for Clinical Electrophysiology of Vision recommendations.Results: Clinical and electrophysiological changes in children with nystagmus, Leber’s congenital amaurosis, achromatopsia, congenital stationary night blindness, progressive retinal dystrophies, optic nerve hypoplasia, albinism, achiasmia, optic neuritis and visual pathway tumours are presented.Conclusions: Electrophysiological tests can help to indicate the nature and the location of dysfunction in unclear ophthalmological and/or neurological cases.

  19. Historical perspectives on interventional electrophysiology.

    Science.gov (United States)

    Lüderitz, Berndt

    2003-10-01

    The history of interventional electrophysiology is long and fascinating. In the beginning, there is not simply the anatomy and physiology of the heart, but also analysis of the pulse, which indicates the activity of the heart. The analysis of the (peripheral) pulse as a mechanical expression of heart activity goes back several millennia. In China, in 280 B.C., Wang Chu Ho wrote ten books about the pulse. The Greeks called the pulse "sphygmos", and the sphygmology thus deals with a theory of this natural occurrence. In Roman times, Galen interpreted the various types of pulse according to the widespread presumption of the time, that each organ in every disease has its own form of pulse. The basic tool for arrhythmia diagnosis became the electrocardiography introduced by Willem Einthoven who obtained the first human electrogram 1902 in Leiden, The Netherlands. The growing clinical importance of electrical cardiac stimulation has been recognized and renewed as Zoll (1911-1999) in 1952 reported a successful resuscitation in cardiac standstill by external stimulation. Meanwhile all over the world, millions of patients with cardiac arrhythmias have been treated with pacemakers in the last 45 years. The concept of a fully automatic implantable cardioverter-defibrillator system (ICD) for recognition and treatment of ventricular tachyarrhythmias was first suggested in 1970. The first implantation of the device in a human being was performed in February 1980. Further developments concern atrial and atrioventricular defibrillators, radiofrequency ablation, laser therapy and advanced antiarrhythmic surgery, new antiarrhythmic drugs and sophisticated devices for preventive pacing. The advances in the field of diagnostic and therapeutic application of pharmacologic and electrical tools as well as alternative methods will continue as rapidly as before in order to give us further significant aid in taking care of the patient.

  20. Recreating the Cardiac Microenvironment in Pluripotent Stem Cell Models of Human Physiology and Disease.

    Science.gov (United States)

    Atmanli, Ayhan; Domian, Ibrahim John

    2017-05-01

    The advent of human pluripotent stem cell (hPSC) biology has opened unprecedented opportunities for the use of tissue engineering to generate human cardiac tissue for in vitro study. Engineering cardiac constructs that recapitulate human development and disease requires faithful recreation of the cardiac niche in vitro. Here we discuss recent progress in translating the in vivo cardiac microenvironment into PSC models of the human heart. We review three key physiologic features required to recreate the cardiac niche and facilitate normal cardiac differentiation and maturation: the biochemical, biophysical, and bioelectrical signaling cues. Finally, we discuss key barriers that must be overcome to fulfill the promise of stem cell biology in preclinical applications and ultimately in clinical practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Quadratic adaptive algorithm for solving cardiac action potential models.

    Science.gov (United States)

    Chen, Min-Hung; Chen, Po-Yuan; Luo, Ching-Hsing

    2016-10-01

    An adaptive integration method is proposed for computing cardiac action potential models accurately and efficiently. Time steps are adaptively chosen by solving a quadratic formula involving the first and second derivatives of the membrane action potential. To improve the numerical accuracy, we devise an extremum-locator (el) function to predict the local extremum when approaching the peak amplitude of the action potential. In addition, the time step restriction (tsr) technique is designed to limit the increase in time steps, and thus prevent the membrane potential from changing abruptly. The performance of the proposed method is tested using the Luo-Rudy phase 1 (LR1), dynamic (LR2), and human O'Hara-Rudy dynamic (ORd) ventricular action potential models, and the Courtemanche atrial model incorporating a Markov sodium channel model. Numerical experiments demonstrate that the action potential generated using the proposed method is more accurate than that using the traditional Hybrid method, especially near the peak region. The traditional Hybrid method may choose large time steps near to the peak region, and sometimes causes the action potential to become distorted. In contrast, the proposed new method chooses very fine time steps in the peak region, but large time steps in the smooth region, and the profiles are smoother and closer to the reference solution. In the test on the stiff Markov ionic channel model, the Hybrid blows up if the allowable time step is set to be greater than 0.1ms. In contrast, our method can adjust the time step size automatically, and is stable. Overall, the proposed method is more accurate than and as efficient as the traditional Hybrid method, especially for the human ORd model. The proposed method shows improvement for action potentials with a non-smooth morphology, and it needs further investigation to determine whether the method is helpful during propagation of the action potential. Copyright © 2016 Elsevier Ltd. All rights

  2. Prediction for Major Adverse Outcomes in Cardiac Surgery: Comparison of Three Prediction Models

    Directory of Open Access Journals (Sweden)

    Cheng-Hung Hsieh

    2007-09-01

    Conclusion: The Parsonnet score performed as well as the logistic regression models in predicting major adverse outcomes. The Parsonnet score appears to be a very suitable model for clinicians to use in risk stratification of cardiac surgery.

  3. Cardiac spheroids as promising in vitro models to study the human heart microenvironment

    DEFF Research Database (Denmark)

    Polonchuk, Liudmila; Chabria, Mamta; Badi, Laura

    2017-01-01

    Three-dimensional in vitro cell systems are a promising alternative to animals to study cardiac biology and disease. We have generated three-dimensional in vitro models of the human heart ("cardiac spheroids", CSs) by co-culturing human primary or iPSC-derived cardiomyocytes, endothelial cells an...

  4. Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex.

    Science.gov (United States)

    Yang, C R; Seamans, J K; Gorelova, N

    1999-08-01

    This review covers some recent findings of the electrophysiological mechanisms through which mesocortical dopamine modulates prefrontal cortical neurons. Dopamine has been shown to modulate several ionic conductances located along the soma-dendritic axis of prefrontal cortical pyramidal neurons. These ionic currents include high-voltage-activated calcium currents and slowly inactivating Na+ and K+ currents. They contribute actively in processing functionally segregated inputs during synaptic integration. In addition, dopamine mainly depolarizes the fast-spiking subtype of local GABAergic interneurons that connect the pyramidal neurons. This latter action can indirectly control pyramidal cell excitability. These electrophysiological data indicate that the actions of dopamine are neither "excitatory" nor "inhibitory" in pyramidal prefrontal cortex neurons. Rather, the actions of dopamine are dependent on somadendritic loci, timing of the arrival of synaptic inputs, strength of synaptic inputs, as well as the membrane potential range at which the PFC neuron is operating at a given moment. Based on available electrophysiological findings, a neuronal model of the pathophysiology of schizophrenia is presented. This model proposes that episodic hypo- and hyperactivity of the PFC and the associated dysfunctional mesocortical dopamine system (and their interconnected brain regions) may coexist in the same schizophrenic patient in the course of the illness. We hypothesize that the dysfunctional mesocortical dopamine input to the PFC may lead to abnormal modulation of ionic channels distributed in the dendritic-somatic compartments of PFC pyramidal neurons that project to the ventral tegmental area and/or nucleus accumbens. In some schizophrenics, a reduction of mesocortical dopamine to below optimal levels and/or a loss of local GABAergic inputs may result in a dysfunctional integration of extrinsic associative inputs by Ca2+ channel activity in the distal dendrites of PFC

  5. Overexpression of Dyrk1A is implicated in several cognitive, electrophysiological and neuromorphological alterations found in a mouse model of Down syndrome.

    Directory of Open Access Journals (Sweden)

    Susana García-Cerro

    Full Text Available Down syndrome (DS phenotypes result from the overexpression of several dosage-sensitive genes. The DYRK1A (dual-specificity tyrosine-(Y-phosphorylation regulated kinase 1A gene, which has been implicated in the behavioral and neuronal alterations that are characteristic of DS, plays a role in neuronal progenitor proliferation, neuronal differentiation and long-term potentiation (LTP mechanisms that contribute to the cognitive deficits found in DS. The purpose of this study was to evaluate the effect of Dyrk1A overexpression on the behavioral and cognitive alterations in the Ts65Dn (TS mouse model, which is the most commonly utilized mouse model of DS, as well as on several neuromorphological and electrophysiological properties proposed to underlie these deficits. In this study, we analyzed the phenotypic differences in the progeny obtained from crosses of TS females and heterozygous Dyrk1A (+/- male mice. Our results revealed that normalization of the Dyrk1A copy number in TS mice improved working and reference memory based on the Morris water maze and contextual conditioning based on the fear conditioning test and rescued hippocampal LTP. Concomitant with these functional improvements, normalization of the Dyrk1A expression level in TS mice restored the proliferation and differentiation of hippocampal cells in the adult dentate gyrus (DG and the density of GABAergic and glutamatergic synapse markers in the molecular layer of the hippocampus. However, normalization of the Dyrk1A gene dosage did not affect other structural (e.g., the density of mature hippocampal granule cells, the DG volume and the subgranular zone area or behavioral (i.e., hyperactivity/attention alterations found in the TS mouse. These results suggest that Dyrk1A overexpression is involved in some of the cognitive, electrophysiological and neuromorphological alterations, but not in the structural alterations found in DS, and suggest that pharmacological strategies targeting

  6. Electrophysiological Characteristics of Embryonic Stem Cell-Derived Cardiomyocytes are Cell Line-Dependent

    Directory of Open Access Journals (Sweden)

    Tobias Hannes

    2015-01-01

    Full Text Available Background: Modelling of cardiac development, physiology and pharmacology by differentiation of embryonic stem cells (ESCs requires comparability of cardiac differentiation between different ESC lines. To investigate whether the outcome of cardiac differentiation is consistent between different ESC lines, we compared electrophysiological properties of ESC-derived cardiomyocytes (ESC-CMs of different murine ESC lines. Methods: Two wild-type (D3 and R1 and two transgenic ESC lines (D3/aPIG44 and CGR8/AMPIGX-7 were differentiated under identical culture conditions. The transgenic cell lines expressed enhanced green fluorescent protein (eGFP and puromycin-N-acetyltransferase under control of the cardiac specific α-myosin heavy chain (αMHC promoter. Action potentials (APs were recorded using sharp electrodes and multielectrode arrays in beating clusters of ESC-CMs. Results: Spontaneous AP frequency and AP duration (APD as well as maximal upstroke velocity differed markedly between unpurified CMs of the four ESC lines. APD heterogeneity was negligible in D3/aPIG44, moderate in D3 and R1 and extensive in CGR8/AMPIGX-7. Interspike intervals calculated from long-term recordings showed a high degree of variability within and between recordings in CGR8/AMPIGX-7, but not in D3/aPIG44. Purification of the αMHC+ population by puromycin treatment posed only minor changes to APD in D3/aPIG44, but significantly shortened APD in CGR8/AMPIGX-7. Conclusion: Electrophysiological properties of ESC-CMs are strongly cell line-dependent and can be influenced by purification of cardiomyocytes by antibiotic selection. Thus, conclusions on cardiac development, physiology and pharmacology derived from single stem cell lines have to be interpreted carefully.

  7. Protective Effects of Proline-Rich Peptide in a Rat Model of Alzheimer Disease: An Electrophysiological Study.

    Science.gov (United States)

    Khalaji, Naser; Sarkissian, John; Chavushyan, Vergine; Sarkisian, Vaghinak

    2017-01-01

    Alzheimer disease (AD) is the most common form of dementia in the elderly that slowly destroys memory and cognitive functions. The disease has no cure and leads to significant structural and functional brain abnormalities. To facilitate the treatment of this disease, we aimed to investigate proline-rich peptide (PRP-1) action of hypothalamus on hippocampal (HP) neurons and dynamics of their recovery, after intracerebroventricular (ICV) injection of amyloid-β (Aβ). Experiments were carried out on 24 adult, male Albino rats (average weight: 230±30 g). The animals were randomly divided into 3 groups (control, Aβ, and Aβ plus PRP-1). Electrophysiological patterns of hippocampal neurons in response to stimulation of entorhinal cortex (EC) with high frequency stimulation (50 Hz) were studied. It was found that Aβ (25-35) suppresses the electrical activity of hippocampal neurons. The PRP-1 would return this activity to normal levels. In general, PRP-1 has protective effect against AD-related alterations induced by amyloid peptides. This protective effect is probably due to stimulation of the immune and glia system.

  8. Sinoatrial node dysfunction induces cardiac arrhythmias in diabetic mice

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Speerschneider, Tobias; Winther, Sine V

    2014-01-01

    Background: The aim of this study was to probe cardiac complications, including heart-rate control, in a mouse model of type-2 diabetes. Heart-rate development in diabetic patients is not straight forward: In general, patients with diabetes have faster heart rates compared to non......-diabetic individuals, yet diabetic patients are frequently found among patients treated for slow heart rates. Hence, we hypothesized that sinoatrial node (SAN) dysfunction could contribute to our understanding the mechanism behind this conundrum and the consequences thereof.MethodsCardiac hemodynamic...... and electrophysiological characteristics were investigated in diabetic db/db and control db/+mice.ResultsWe found improved contractile function and impaired filling dynamics of the heart in db/db mice, relative to db/+controls. Electrophysiologically, we observed comparable heart rates in the two mouse groups, but SAN...

  9. Myocardial structural, contractile and electrophysiological changes in the guinea-pig heart failure model induced by chronic sympathetic activation

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Osadchiy, Oleg; Olesen, Søren-Peter

    2011-01-01

    at variable dosage and duration using either subcutaneously implanted osmotic minipumps or daily injections, in an attempt to establish the relevant treatment protocol. We found that 3 months of daily ISO injections (final dose of 1 mg kg(-1), i.p.) promote heart failure evidenced by cardiac hypertrophy...... pressure-volume and stress-strain relationships assessed in isolated, perfused heart preparations), reduced contractile reserve in the presence of acute ß-adrenoceptor stimulation, and pulmonary oedema (increased lung weights). These changes were associated with prolongation of LV epicardial action...

  10. Cardiac regeneration using pluripotent stem cells—Progression to large animal models

    Directory of Open Access Journals (Sweden)

    James J.H. Chong

    2014-11-01

    Full Text Available Pluripotent stem cells (PSCs have indisputable cardiomyogenic potential and therefore have been intensively investigated as a potential cardiac regenerative therapy. Current directed differentiation protocols are able to produce high yields of cardiomyocytes from PSCs and studies in small animal models of cardiovascular disease have proven sustained engraftment and functional efficacy. Therefore, the time is ripe for cardiac regenerative therapies using PSC derivatives to be tested in large animal models that more closely resemble the hearts of humans. In this review, we discuss the results of our recent study using human embryonic stem cell derived cardiomyocytes (hESC-CM in a non-human primate model of ischemic cardiac injury. Large scale remuscularization, electromechanical coupling and short-term arrhythmias demonstrated by our hESC-CM grafts are discussed in the context of other studies using adult stem cells for cardiac regeneration.

  11. Three-dimensional echocardiography in the electrophysiology laboratory.

    Science.gov (United States)

    Moukabary, Talal; Faletra, Francesco F; Kronzon, Itzhak; Thomas, Walker; Sorrell, Vincent L

    2012-01-01

    The use of three-dimensional echocardiography (3DE) during electrophysiology (EP) procedures is the end product of years of growth in two diverse cardiology subspecialties; namely, advanced cardiac imaging and the EP. During the past decade, progress in both fields has resulted in many important advances that have culminated in their union for a new area of growth and development. Imaging advances have provided the cardiovascular specialist with enhanced cardiac volume and function data, and more recently, 3DE capabilities with improved spatial and temporal resolution providing unprecedented spatial relationships. This latter development is valued by EP specialists in need of hitherto never required anatomic knowledge as they press forward with extraordinary expansion in their capabilities. It makes sense that by combining these two rapidly growing subspecialties, future capabilities in patient care may be achieved that would otherwise not be possible. This paper discusses the value of 3DE during EP procedures and offers the readers insight into this novel multispecialty hybrid arena. Using this model as a template, it is likely that the readers may identify other areas within their practices where periprocedural advanced imaging may afford significant dividends in patient outcomes. 2011, Wiley Periodicals, Inc

  12. Electrophysiological safety of sertindole in dogs with normal and remodeled hearts

    DEFF Research Database (Denmark)

    Thomsen, Morten Bækgaard; Volders, Paul G A; Stengl, Milan

    2003-01-01

    Inhibition of the potassium current IKr and QT prolongation are associated with drug-induced torsades de pointes arrhythmias (TdP) and sudden cardiac death. We investigated the cardiac electrophysiological effects of sertindole, an antipsychotic drug reported to prolong the QT interval in schizop...

  13. Application of Linear Mixed-Effects Models in Human Neuroscience Research: A Comparison with Pearson Correlation in Two Auditory Electrophysiology Studies

    Directory of Open Access Journals (Sweden)

    Tess K. Koerner

    2017-02-01

    Full Text Available Neurophysiological studies are often designed to examine relationships between measures from different testing conditions, time points, or analysis techniques within the same group of participants. Appropriate statistical techniques that can take into account repeated measures and multivariate predictor variables are integral and essential to successful data analysis and interpretation. This work implements and compares conventional Pearson correlations and linear mixed-effects (LME regression models using data from two recently published auditory electrophysiology studies. For the specific research questions in both studies, the Pearson correlation test is inappropriate for determining strengths between the behavioral responses for speech-in-noise recognition and the multiple neurophysiological measures as the neural responses across listening conditions were simply treated as independent measures. In contrast, the LME models allow a systematic approach to incorporate both fixed-effect and random-effect terms to deal with the categorical grouping factor of listening conditions, between-subject baseline differences in the multiple measures, and the correlational structure among the predictor variables. Together, the comparative data demonstrate the advantages as well as the necessity to apply mixed-effects models to properly account for the built-in relationships among the multiple predictor variables, which has important implications for proper statistical modeling and interpretation of human behavior in terms of neural correlates and biomarkers.

  14. Developing a novel comprehensive framework for the investigation of cellular and whole heart electrophysiology in the in situ human heart: historical perspectives, current progress and future prospects.

    Science.gov (United States)

    Taggart, Peter; Orini, Michele; Hanson, Ben; Hayward, Martin; Clayton, Richard; Dobrzynski, Halina; Yanni, Joseph; Boyett, Mark; Lambiase, Pier D

    2014-08-01

    Understanding the mechanisms of fatal ventricular arrhythmias is of great importance. In view of the many electrophysiological differences that exist between animal species and humans, the acquisition of basic electrophysiological data in the intact human heart is essential to drive and complement experimental work in animal and in-silico models. Over the years techniques have been developed to obtain basic electrophysiological signals directly from the patients by incorporating these measurements into routine clinical procedures which access the heart such as cardiac catheterisation and cardiac surgery. Early recordings with monophasic action potentials provided valuable information including normal values for the in vivo human heart, cycle length dependent properties, the effect of ischaemia, autonomic nervous system activity, and mechano-electric interaction. Transmural recordings addressed the controversial issue of the mid myocardial "M" cell. More recently, the technique of multielectrode mapping (256 electrodes) developed in animal models has been extended to humans, enabling mapping of activation and repolarisation on the entire left and right ventricular epicardium in patients during cardiac surgery. Studies have examined the issue of whether ventricular fibrillation was driven by a "mother" rotor with inhomogeneous and fragmented conduction as in some animal models, or by multiple wavelets as in other animal studies; results showed that both mechanisms are operative in humans. The simpler spatial organisation of human VF has important implications for treatment and prevention. To link in-vivo human electrophysiological mapping with cellular biophysics, multielectrode mapping is now being combined with myocardial biopsies. This technique enables region-specific electrophysiology changes to be related to underlying cellular biology, for example: APD alternans, which is a precursor of VF and sudden death. The mechanism is incompletely understood but related

  15. Cardiac remodeling in the mouse model of Marfan syndrome develops into two distinctive phenotypes.

    Science.gov (United States)

    Tae, Hyun-Jin; Petrashevskaya, Natalia; Marshall, Shannon; Krawczyk, Melissa; Talan, Mark

    2016-01-15

    Marfan syndrome (MFS) is a systemic disorder of connective tissue caused by mutations in fibrillin-1. Cardiac dysfunction in MFS has not been characterized halting the development of therapies of cardiac complication in MFS. We aimed to study the age-dependent cardiac remodeling in the mouse model of MFS FbnC1039G+/- mouse [Marfan heterozygous (HT) mouse] and its association with valvular regurgitation. Marfan HT mice of 2-4 mo demonstrated a mild hypertrophic cardiac remodeling with predominant decline of diastolic function and increased transforming growth factor-β canonical (p-SMAD2/3) and noncanonical (p-ERK1/2 and p-p38 MAPK) signaling and upregulation of hypertrophic markers natriuretic peptides atrium natriuretic peptide and brain natriuretic peptide. Among older HT mice (6-14 mo), cardiac remodeling was associated with two distinct phenotypes, manifesting either dilated or constricted left ventricular chamber. Dilatation of left ventricular chamber was accompanied by biochemical evidence of greater mechanical stress, including elevated ERK1/2 and p38 MAPK phosphorylation and higher brain natriuretic peptide expression. The aortic valve regurgitation was registered in 20% of the constricted group and 60% of the dilated group, whereas mitral insufficiency was observed in 40% of the constricted group and 100% of the dilated group. Cardiac dysfunction was not associated with the increase of interstitial fibrosis and nonmyocyte proliferation. In the mouse model fibrillin-1, haploinsufficiency results in the early onset of nonfibrotic hypertrophic cardiac remodeling and dysfunction, independently from valvular abnormalities. MFS heart is vulnerable to stress-induced cardiac dilatation in the face of valvular regurgitation, and stress-activated MAPK signals represent a potential target for cardiac management in MFS.

  16. Spatiotemporal processing of gated cardiac SPECT images using deformable mesh modeling

    International Nuclear Information System (INIS)

    Brankov, Jovan G.; Yang Yongyi; Wernick, Miles N.

    2005-01-01

    In this paper we present a spatiotemporal processing approach, based on deformable mesh modeling, for noise reduction in gated cardiac single-photon emission computed tomography images. Because of the partial volume effect (PVE), clinical cardiac-gated perfusion images exhibit a phenomenon known as brightening--the myocardium appears to become brighter as the heart wall thickens. Although brightening is an artifact, it serves as an important diagnostic feature for assessment of wall thickening in clinical practice. Our proposed processing algorithm aims to preserve this important diagnostic feature while reducing the noise level in the images. The proposed algorithm is based on the use of a deformable mesh for modeling the cardiac motion in a gated cardiac sequence, based on which the images are processed by smoothing along space-time trajectories of object points while taking into account the PVE. Our experiments demonstrate that the proposed algorithm can yield significantly more-accurate results than several existing methods

  17. GM-CSF primes cardiac inflammation in a mouse model of Kawasaki disease.

    Science.gov (United States)

    Stock, Angus T; Hansen, Jacinta A; Sleeman, Matthew A; McKenzie, Brent S; Wicks, Ian P

    2016-09-19

    Kawasaki disease (KD) is the leading cause of pediatric heart disease in developed countries. KD patients develop cardiac inflammation, characterized by an early infiltrate of neutrophils and monocytes that precipitates coronary arteritis. Although the early inflammatory processes are linked to cardiac pathology, the factors that regulate cardiac inflammation and immune cell recruitment to the heart remain obscure. In this study, using a mouse model of KD (induced by a cell wall Candida albicans water-soluble fraction [CAWS]), we identify an essential role for granulocyte/macrophage colony-stimulating factor (GM-CSF) in orchestrating these events. GM-CSF is rapidly produced by cardiac fibroblasts after CAWS challenge, precipitating cardiac inflammation. Mechanistically, GM-CSF acts upon the local macrophage compartment, driving the expression of inflammatory cytokines and chemokines, whereas therapeutically, GM-CSF blockade markedly reduces cardiac disease. Our findings describe a novel role for GM-CSF as an essential initiating cytokine in cardiac inflammation and implicate GM-CSF as a potential target for therapeutic intervention in KD. © 2016 Stock et al.

  18. GM-CSF primes cardiac inflammation in a mouse model of Kawasaki disease

    Science.gov (United States)

    McKenzie, Brent S.

    2016-01-01

    Kawasaki disease (KD) is the leading cause of pediatric heart disease in developed countries. KD patients develop cardiac inflammation, characterized by an early infiltrate of neutrophils and monocytes that precipitates coronary arteritis. Although the early inflammatory processes are linked to cardiac pathology, the factors that regulate cardiac inflammation and immune cell recruitment to the heart remain obscure. In this study, using a mouse model of KD (induced by a cell wall Candida albicans water-soluble fraction [CAWS]), we identify an essential role for granulocyte/macrophage colony-stimulating factor (GM-CSF) in orchestrating these events. GM-CSF is rapidly produced by cardiac fibroblasts after CAWS challenge, precipitating cardiac inflammation. Mechanistically, GM-CSF acts upon the local macrophage compartment, driving the expression of inflammatory cytokines and chemokines, whereas therapeutically, GM-CSF blockade markedly reduces cardiac disease. Our findings describe a novel role for GM-CSF as an essential initiating cytokine in cardiac inflammation and implicate GM-CSF as a potential target for therapeutic intervention in KD. PMID:27595596

  19. A discrete electromechanical model for human cardiac tissue: effects of stretch-activated currents and stretch conditions on restitution properties and spiral wave dynamics.

    Directory of Open Access Journals (Sweden)

    Louis D Weise

    Full Text Available We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006 and tension development (adjusted Niederer, Hunter, Smith, 2006 model with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material. Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning.

  20. Efficacy of Precordial Percussion Pacing Assessed in a Cardiac Standstill Microminipig Model.

    Science.gov (United States)

    Wada, Takeshi; Ohara, Hiroshi; Nakamura, Yuji; Cao, Xin; Izumi-Nakaseko, Hiroko; Ando, Kentaro; Honda, Mitsuru; Yoshihara, Katsunori; Nakazato, Yuji; Lurie, Keith G; Sugiyama, Atsushi

    2017-07-25

    Potential cardiovascular benefits of precordial percussion pacing (PPP) during cardiac standstill are unknown.Methods and Results:A cardiac standstill model in amicrominipigwas created by inducing complete atrioventricular block with a catheter ablation technique (n=7). Next, the efficacy of cardiopulmonary resuscitation by standard chest compressions (S-CPR), PPP and ventricular electrical pacing in this model were analyzed in series (n=4). To assess the mechanism of PPP, a non-selective, stretch-activated channel blocker, amiloride, was administered during PPP (n=3). Peak systolic and diastolic arterial pressures during S-CPR, PPP and ventricular electrical pacing were statistically similar. However, the duration of developed arterial pressure with PPP was comparable to that with ventricular electrical pacing, and significantly greater than that with S-CPR. Amiloride decreased the induction rate of ventricular electrical activity by PPP in a dose-related manner. Each animal survived without any neurological deficit at 24, 48 h and 1 week, even with up to 2 h of continuous PPP. In amicrominipigmodel of cardiac standstill, PPP can become a novel means to significantly improve physiological outcomes after cardiac standstill or symptomatic bradyarrhythmias in the absence of cardiac pacing. Activation of the non-selective stretch-activated channels may mediate some of the mechanophysiological effects of PPP. Further study of PPP by itself and together with S-CPR is warranted using cardiac arrest models of atrioventricular block and asystole.

  1. Electromechanical models of the ventricles

    OpenAIRE

    Trayanova, Natalia A.; Constantino, Jason; Gurev, Viatcheslav

    2011-01-01

    Computational modeling has traditionally played an important role in dissecting the mechanisms for cardiac dysfunction. Ventricular electromechanical models, likely the most sophisticated virtual organs to date, integrate detailed information across the spatial scales of cardiac electrophysiology and mechanics and are capable of capturing the emergent behavior and the interaction between electrical activation and mechanical contraction of the heart. The goal of this review is to provide an ov...

  2. Electrophysiology of action representation.

    Science.gov (United States)

    Fadiga, Luciano; Craighero, Laila

    2004-01-01

    We continuously act on objects, on other individuals, and on ourselves, and actions represent the only way we have to manifest our own desires and goals. In the last two decades, electrophysiological experiments have demonstrated that actions are stored in the brain according to a goal-related organization. The authors review a series of experimental data showing that this "vocabulary of motor schemata" could also be used for non-strictly motor purposes. In the first section, they present data from monkey experiments describing the functional properties of inferior premotor cortex and, in more detail, the properties of visuomotor neurons responding to objects and others' actions observation (mirror neurons). In the second section, human data are reviewed, with particular regard to electrophysiological experiments aiming to investigate how action representations are stored and addressed. The specific facilitatory effect of motor imagery, action/object observation, and speech listening on motor excitability shown by these experiments provides strong evidence that the motor system is constantly involved whenever the idea of an action is evoked.

  3. Computer modelling for better diagnosis and therapy of patients by cardiac resynchronisation therapy

    NARCIS (Netherlands)

    Pluijmert, Marieke; Lumens, Joost; Potse, Mark; Delhaas, Tammo; Auricchio, Angelo; Prinzen, Frits W

    2015-01-01

    Mathematical or computer models have become increasingly popular in biomedical science. Although they are a simplification of reality, computer models are able to link a multitude of processes to each other. In the fields of cardiac physiology and cardiology, models can be used to describe the

  4. Prediction Models for Prolonged Intensive Care Unit Stay after Cardiac Surgery: Systematic Review and Validation Study

    NARCIS (Netherlands)

    Linda Peelen; Karel Moons; Cor Kalkman; Prof. Dr. Marieke J. Schuurmans; Roelof G.A. Ettema; Arno Nierich

    2010-01-01

    Several models have been developed to predict prolonged stay in the intensive care unit (ICU) after cardiac surgery. However, no extensive quantitative validation of these models has yet been conducted. This study sought to identify and validate existing prediction models for prolonged ICU length of

  5. Dual chamber stent prevents organ malperfusion in a model of donation after cardiac death.

    Science.gov (United States)

    Tillman, Bryan W; Chun, Youngjae; Cho, Sung Kwon; Chen, Yanfei; Liang, Nathan; Maul, Timothy; Demetris, Anthony; Gu, Xinzhu; Wagner, William R; Tevar, Amit D

    2016-10-01

    The paradigm for donation after cardiac death subjects donor organs to ischemic injury. A dual-chamber organ perfusion stent would maintain organ perfusion without affecting natural cardiac death. A center lumen allows uninterrupted cardiac blood flow, while an external chamber delivers oxygenated blood to the visceral vessels. A prototype organ perfusion stent was constructed from commercial stents. In a porcine model, the organ perfusion stent was deployed, followed by a simulated agonal period. Oxygenated blood perfused the external stent chamber. Organ perfusion was compared between controls (n = 3) and organ perfusion stent (n = 6). Finally, a custom, nitinol, dual chamber organ perfusion stent was fabricated using a retrievable "petal and stem" design. Endovascular organ perfusion stent deployment achieved visceral isolation without adverse impact on cardiac parameters. Visceral oxygen delivery was 4.8-fold greater compared with controls. During the agonal period, organs in organ perfusion stent-treated animals appeared well perfused in contrast with the malperfused controls. A custom nitinol and polyurethane organ perfusion stent was recaptured easily with simple sheath advancement. An organ perfusion stent maintained organ perfusion during the agonal phase in a porcine model of donation after cardiac death organ donation without adversely affecting cardiac function. Ultimately, the custom retrievable design of this study may help resolve the critical shortage of donor organs for transplant. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Bayesian Sensitivity Analysis of a Cardiac Cell Model Using a Gaussian Process Emulator

    Science.gov (United States)

    Chang, Eugene T Y; Strong, Mark; Clayton, Richard H

    2015-01-01

    Models of electrical activity in cardiac cells have become important research tools as they can provide a quantitative description of detailed and integrative physiology. However, cardiac cell models have many parameters, and how uncertainties in these parameters affect the model output is difficult to assess without undertaking large numbers of model runs. In this study we show that a surrogate statistical model of a cardiac cell model (the Luo-Rudy 1991 model) can be built using Gaussian process (GP) emulators. Using this approach we examined how eight outputs describing the action potential shape and action potential duration restitution depend on six inputs, which we selected to be the maximum conductances in the Luo-Rudy 1991 model. We found that the GP emulators could be fitted to a small number of model runs, and behaved as would be expected based on the underlying physiology that the model represents. We have shown that an emulator approach is a powerful tool for uncertainty and sensitivity analysis in cardiac cell models. PMID:26114610

  7. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach

    KAUST Repository

    Bueno-Orovio, Alfonso

    2013-05-15

    The sodium-potassium pump is widely recognized as the principal mechanism for active ion transport across the cellular membrane of cardiac tissue, being responsible for the creation and maintenance of the transarcolemmal sodium and potassium gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology, both directly through its electrogenic nature and indirectly via the regulation of cell homeostasis, make it hard to predict the electrophysiological consequences of reduced sodium-potassium pump activity in cardiac repolarization. In this review, we discuss how recent studies adopting the systems biology approach, through the integration of experimental and modeling methodologies, have identified the sodium-potassium pump as one of the most important ionic mechanisms in regulating key properties of cardiac repolarization and its rate dependence, from subcellular to whole organ levels. These include the role of the pump in the biphasic modulation of cellular repolarization and refractoriness, the rate control of intracellular sodium and calcium dynamics and therefore of the adaptation of repolarization to changes in heart rate, as well as its importance in regulating pro-arrhythmic substrates through modulation of dispersion of repolarization and restitution. Theoretical findings are consistent across a variety of cell types and species including human, and widely in agreement with experimental findings. The novel insights and hypotheses on the role of the pump in cardiac electrophysiology obtained through this integrative approach could eventually lead to novel therapeutic and diagnostic strategies. © 2013 Springer-Verlag Berlin Heidelberg.

  8. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach.

    Science.gov (United States)

    Bueno-Orovio, Alfonso; Sánchez, Carlos; Pueyo, Esther; Rodriguez, Blanca

    2014-02-01

    The sodium-potassium pump is widely recognized as the principal mechanism for active ion transport across the cellular membrane of cardiac tissue, being responsible for the creation and maintenance of the transarcolemmal sodium and potassium gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology, both directly through its electrogenic nature and indirectly via the regulation of cell homeostasis, make it hard to predict the electrophysiological consequences of reduced sodium-potassium pump activity in cardiac repolarization. In this review, we discuss how recent studies adopting the systems biology approach, through the integration of experimental and modeling methodologies, have identified the sodium-potassium pump as one of the most important ionic mechanisms in regulating key properties of cardiac repolarization and its rate dependence, from subcellular to whole organ levels. These include the role of the pump in the biphasic modulation of cellular repolarization and refractoriness, the rate control of intracellular sodium and calcium dynamics and therefore of the adaptation of repolarization to changes in heart rate, as well as its importance in regulating pro-arrhythmic substrates through modulation of dispersion of repolarization and restitution. Theoretical findings are consistent across a variety of cell types and species including human, and widely in agreement with experimental findings. The novel insights and hypotheses on the role of the pump in cardiac electrophysiology obtained through this integrative approach could eventually lead to novel therapeutic and diagnostic strategies.

  9. Effect of Nigella sativa supplementation to exercise training in a novel model of physiological cardiac hypertrophy.

    Science.gov (United States)

    Al-Asoom, L I; Al-Shaikh, B A; Bamosa, A O; El-Bahai, M N

    2014-09-01

    Exercise training is employed as supplementary therapy to patients with heart failure due to its multiple beneficial cardiac effects including physiological remodeling of the heart. However, precautions might be taken for the concomitant high oxidant release. Nigella sativa (NS) has been found to induce cardiac hypertrophy and enhance cardiac function. Combination of NS supplementation and exercise training might induce a safer model of cardiac hypertrophy. Our aim was to study biomarkers associated with cardiac hypertrophy induced by NS supplementation of exercise-trained rats. Forty-five adult male Wistar rats (body weight 150-220 g) were divided equally into three groups: control, exercise-trained (ET) and NS-treated-exercise-trained (NSET) groups. Daily 800 mg/kg NS was administered orally to NSET group for 8 weeks. Rats of the ET and NSET groups were subjected to treadmill running sessions for 2 h/day for 8 weeks. By the end of the experiment, the following were recorded: body, heart and left ventricular weights (BW, HW, LVW), cardiomyocyte diameter, serum growth hormone, insulin growth factor-I (IGF-I), thyroid hormones, catecholamines, total nitrate, ICAM and antioxidant capacity. A homogenous cardiac hypertrophy was evidenced by increased HW/BW, LVW/BW ratios and cardiomyocyte diameter in the two groups of exercise-trained compared with control rats. Rats of ET group had higher growth hormone. Those of NSET group developed higher IGF-I and total antioxidant capacity, as well as lower serum thyroxin level. Simultaneous NS supplementation to an exercise training program preserves and augments exercise-induced physiological cardiac hypertrophy with step-forward adaptive signs of increased IGF-I and reduced thyroxin level, and with an added advantage of elevation of total serum antioxidant capacity. Thus, the novel model of NSET-induced cardiac hypertrophy might be introduced as a new therapeutic strategy for the treatment of heart failure with superior

  10. Service and business model for technology enabled and home-based cardiac rehabilitation programs.

    Science.gov (United States)

    Sarela, Antti; Whittaker, Frank; Korhonen, Ilkka

    2009-01-01

    Cardiac rehabilitation programs are comprehensive life-style programs aimed at preventing recurrence of a cardiac event. However, the current programs have globally significantly low levels of uptake. Home-based model can be a viable alternative to hospital-based programs. We developed and analysed a service and business model for home based cardiac rehabilitation based on personal mentoring using mobile phones and web services. We analysed the different organizational and economical aspects of setting up and running the home based program and propose a potential business model for a sustainable and viable service. The model can be extended to management of other chronic conditions to enable transition from hospital and care centre based treatments to sustainable home-based care.

  11. Drosophila in the Heart of Understanding Cardiac Diseases: Modeling Channelopathies and Cardiomyopathies in the Fruitfly

    Directory of Open Access Journals (Sweden)

    Ouarda Taghli-Lamallem

    2016-02-01

    Full Text Available Cardiovascular diseases and, among them, channelopathies and cardiomyopathies are a major cause of death worldwide. The molecular and genetic defects underlying these cardiac disorders are complex, leading to a large range of structural and functional heart phenotypes. Identification of molecular and functional mechanisms disrupted by mutations causing channelopathies and cardiomyopathies is essential to understanding the link between an altered gene and clinical phenotype. The development of animal models has been proven to be efficient for functional studies in channelopathies and cardiomyopathies. In particular, the Drosophila model has been largely applied for deciphering the molecular and cellular pathways affected in these inherited cardiac disorders and for identifying their genetic modifiers. Here we review the utility and the main contributions of the fruitfly models for the better understanding of channelopathies and cardiomyopathies. We also discuss the investigated pathological mechanisms and the discoveries of evolutionarily conserved pathways which reinforce the value of Drosophila in modeling human cardiac diseases.

  12. Enhanced pyruvate dehydrogenase activity improves cardiac outcomes in a murine model of cardiac arrest.

    Directory of Open Access Journals (Sweden)

    Lin Piao

    Full Text Available Post-ischemic changes in cellular metabolism alter myocardial and neurological function. Pyruvate dehydrogenase (PDH, the limiting step in mitochondrial glucose oxidation, is inhibited by increased expression of PDH kinase (PDK during ischemia/reperfusion injury. This results in decreased utilization of glucose to generate cellular ATP. Post-cardiac arrest (CA hypothermia improves outcomes and alters metabolism, but its influence on PDH and PDK activity following CA are unknown. We hypothesized that therapeutic hypothermia (TH following CA is associated with the inhibition of PDK activity and increased PDH activity. We further hypothesized that an inhibitor of PDK activity, dichloroacetate (DCA, would improve PDH activity and post-CA outcomes.Anesthetized and ventilated adult female C57BL/6 wild-type mice underwent a 12-minute KCl-induced CA followed by cardiopulmonary resuscitation. Compared to normothermic (37°C CA controls, administering TH (30°C improved overall survival (72-hour survival rate: 62.5% vs. 28.6%, P<0.001, post-resuscitation myocardial function (ejection fraction: 50.9±3.1% vs. 27.2±2.0%, P<0.001; aorta systolic pressure: 132.7±7.3 vs. 72.3±3.0 mmHg, P<0.001, and neurological scores at 72-hour post CA (9.5±1.3 vs. 5.4±1.3, P<0.05. In both heart and brain, CA increased lactate concentrations (1.9-fold and 3.1-fold increase, respectively, P<0.01, decreased PDH enzyme activity (24% and 50% reduction, respectively, P<0.01, and increased PDK protein expressions (1.2-fold and 1.9-fold, respectively, P<0.01. In contrast, post-CA treatment with TH normalized lactate concentrations (P<0.01 and P<0.05 and PDK expressions (P<0.001 and P<0.05, while increasing PDH activity (P<0.01 and P<0.01 in both the heart and brain. Additionally, treatment with DCA (0.2 mg/g body weight 30 min prior to CA improved both myocardial hemodynamics 2 hours post-CA (aortic systolic pressure: 123±3 vs. 96±4 mmHg, P<0.001 and 72-hour survival rates

  13. Hearing Aid Fitting & Electrophysiologic Procedure

    Directory of Open Access Journals (Sweden)

    Bahram Jalaei

    2001-05-01

    Full Text Available Rehabilitation of deaf individual is one of the important subjects that has attracted attention of many researchers during past centuries. Different opinions have been established in this direction. Electrophysiologic tests were established and developed parallel to developments in rehabilitation. Therefore, opinion of using electrophysiologic test for evaluation and fitting of hearing aid became gradually popular. Ultimately, the electrophysiologic tests are used in evaluation and fitting of hearing aid in two ways: 1-Direct way 2- Indirect way "nIn direct way aided ABR is obtained and special attention is paid to wave V. This technique has many difficulties. Inindirect way, electrophysiologic tests such, ECochG, OAE and ABR, AMLR, ALR and P300 and other objective tests are used, especially in infants and neonates for evaluating the state of hearing. Researches are continuing in this field. It is probable to have aided electrophysiologic responses with speech stimuli in near future.

  14. Renal Denervation Decreases Susceptibility to Arrhythmogenic Cardiac Alternans and Ventricular Arrhythmia in a Rat Model of Post-Myocardial Infarction Heart Failure

    Directory of Open Access Journals (Sweden)

    Sheng-Nan Chang, MD

    2017-04-01

    Full Text Available Summary: Several studies have shown the beneficial effect of renal denervation (RDN in the treatment of ventricular arrhythmia, especially in the setting of heart failure (HF. However, the underlying mechanism of antiarrhythmic effect of RDN is unknown. Arrhythmogenic cardiac alternans, particularly spatially discordant repolarization alternans, characterized by simultaneous prolongation and shortening of action potential duration (APD in different myocardial regions, is central to the genesis of ventricular fibrillation in HF. Whether RDN decreases the susceptibility to arrhythmogenic cardiac alternans in HF has never been addressed before. The authors used a rat model of post-myocardial infarction HF and dual voltage-calcium optical mapping to investigate whether RDN could attenuate arrhythmogenic cardiac alternans that predisposes to ventricular arrhythmias, as well as the hemodynamic effect of RDN in HF. The HF rats had increased body weights, dilated hearts, and lower blood pressure. The HF rats also had longer ventricular APDs and a delay in the decay of the calcium transient, typical electrophysiological features of human HF. Susceptibility to calcium transient alternans, APD alternans, and spatially discordant APD alternans was increased in the HF hearts. RDN significantly attenuated a delay in the decay of the calcium transient, calcium transient and APD alternans, and importantly, the discordant APD alternans, and thereby decreased the incidence of induced ventricular arrhythmia in HF. RDN did not further decrease blood pressure in HF rats. In conclusion, RDN improves calcium cycling and prevents spatially discordant APD alternans and ventricular arrhythmia in HF. RDN does not aggravate hemodynamics in HF. Key Words: alternans, arrhythmia mechanism, heart failure, renal denervation

  15. Anesthesia and Databases: Pediatric Cardiac Disease as a Role Model.

    Science.gov (United States)

    Vener, David F; Pasquali, Sara K; Mossad, Emad B

    2017-02-01

    Large data sets have now become ubiquitous in clinical medicine; they are particularly useful in high-acuity, low-volume conditions such as congenital heart disease where data must be collected from many centers. These data fall into 2 categories: administrative data arising from hospital admissions and charges and clinical data relating to specific diseases or procedures. In congenital cardiac diseases, there are now over a dozen of these data sets or registries focusing on various elements of patient care. Using probabilistic statistic matching, it is possible to marry administrative and clinical data post hoc using common elements to determine valuable information about care patterns, outcomes, and costs. These data sets can also be used in a collaborative fashion between institutions to drive quality improvement (QI). Because these data may include protected health information (PHI), care must be taken to adhere to federal guidelines on their use. A fundamental principle of large data management is the use of a common language and definition (nomenclature) to be effective. In addition, research derived from these information sources must be appropriately balanced to ensure that risk adjustments for preoperative and surgical factors are taken into consideration during the analysis. Care of patients with cardiac disease both in the United States and abroad consistently shows wide variability in mortality, morbidity, and costs, and there has been a tremendous amount of discussion about the benefits of regionalization of care based on center volume and outcome measurements. In the absence of regionalization, collaborative learning techniques have consistently been shown to minimize this variability and improve care at all centers, but before changes can be made it is necessary to accurately measure accurately current patient outcomes. Outcomes measurement generally falls under hospital-based QI initiatives, but more detailed analysis and research require

  16. Understanding post-operative temperature drop in cardiac surgery: a mathematical model

    NARCIS (Netherlands)

    Tindall, M. J.; Peletier, M. A.; Severens, N. M. W.; Veldman, D. J.; de Mol, B. A. J. M.

    2008-01-01

    A mathematical model is presented to understand heat transfer processes during the cooling and re-warming of patients during cardiac surgery. Our compartmental model is able to account for many of the qualitative features observed in the cooling of various regions of the body including the central

  17. Development and Validation of Predictive Models of Cardiac Mortality and Transplantation in Resynchronization Therapy

    Directory of Open Access Journals (Sweden)

    Eduardo Arrais Rocha

    2015-01-01

    Full Text Available Abstract Background: 30-40% of cardiac resynchronization therapy cases do not achieve favorable outcomes. Objective: This study aimed to develop predictive models for the combined endpoint of cardiac death and transplantation (Tx at different stages of cardiac resynchronization therapy (CRT. Methods: Prospective observational study of 116 patients aged 64.8 ± 11.1 years, 68.1% of whom had functional class (FC III and 31.9% had ambulatory class IV. Clinical, electrocardiographic and echocardiographic variables were assessed by using Cox regression and Kaplan-Meier curves. Results: The cardiac mortality/Tx rate was 16.3% during the follow-up period of 34.0 ± 17.9 months. Prior to implantation, right ventricular dysfunction (RVD, ejection fraction < 25% and use of high doses of diuretics (HDD increased the risk of cardiac death and Tx by 3.9-, 4.8-, and 5.9-fold, respectively. In the first year after CRT, RVD, HDD and hospitalization due to congestive heart failure increased the risk of death at hazard ratios of 3.5, 5.3, and 12.5, respectively. In the second year after CRT, RVD and FC III/IV were significant risk factors of mortality in the multivariate Cox model. The accuracy rates of the models were 84.6% at preimplantation, 93% in the first year after CRT, and 90.5% in the second year after CRT. The models were validated by bootstrapping. Conclusion: We developed predictive models of cardiac death and Tx at different stages of CRT based on the analysis of simple and easily obtainable clinical and echocardiographic variables. The models showed good accuracy and adjustment, were validated internally, and are useful in the selection, monitoring and counseling of patients indicated for CRT.

  18. Neural Correlates of Consciousness at Near-Electrocerebral Silence in an Asphyxial Cardiac Arrest Model.

    Science.gov (United States)

    Lee, Donald E; Lee, Lauren G; Siu, Danny; Bazrafkan, Afsheen K; Farahabadi, Maryam H; Dinh, Tin J; Orellana, Josue; Xiong, Wei; Lopour, Beth A; Akbari, Yama

    2017-04-01

    Recent electrophysiological studies have suggested surges in electrical correlates of consciousness (i.e., elevated gamma power and connectivity) after cardiac arrest (CA). This study examines electrocorticogram (ECoG) activity and coherence of the dying brain during asphyxial CA. Male Wistar rats (n = 16) were induced with isoflurane anesthesia, which was washed out before asphyxial CA. Mean phase coherence and ECoG power were compared during different stages of the asphyxial period to assess potential neural correlates of consciousness. After asphyxia, the ECoG progressed through four distinct stages (asphyxial stages 1-4 [AS1-4]), including a transient period of near-electrocerebral silence lasting several seconds (AS3). Electrocerebral silence (AS4) occurred within 1 min of the start of asphyxia, and pulseless electrical activity followed the start of AS4 by 1-2 min. AS3 was linked to a significant increase in frontal coherence between the left and right motor cortices (p neural activity. Specifically, the burst in frontal coherence and posterior shift of ECoG power that we find during this period immediately preceding CA may be a neural correlate of conscious processing.

  19. Marine natural products acting on the acetylcholine-binding protein and nicotinic receptors: from computer modeling to binding studies and electrophysiology.

    Science.gov (United States)

    Kudryavtsev, Denis; Makarieva, Tatyana; Utkina, Natalia; Santalova, Elena; Kryukova, Elena; Methfessel, Christoph; Tsetlin, Victor; Stonik, Valentin; Kasheverov, Igor

    2014-03-28

    For a small library of natural products from marine sponges and ascidians, in silico docking to the Lymnaea stagnalis acetylcholine-binding protein (AChBP), a model for the ligand-binding domains of nicotinic acetylcholine receptors (nAChRs), was carried out and the possibility of complex formation was revealed. It was further experimentally confirmed via competition with radioiodinated α-bungarotoxin ([¹²⁵I]-αBgt) for binding to AChBP of the majority of analyzed compounds. Alkaloids pibocin, varacin and makaluvamines С and G had relatively high affinities (K(i) 0.5-1.3 μM). With the muscle-type nAChR from Torpedo californica ray and human neuronal α7 nAChR, heterologously expressed in the GH4C1 cell line, no competition with [¹²⁵I]-αBgt was detected in four compounds, while the rest showed an inhibition. Makaluvamines (K(i) ~ 1.5 μM) were the most active compounds, but only makaluvamine G and crambescidine 359 revealed a weak selectivity towards muscle-type nAChR. Rhizochalin, aglycone of rhizochalin, pibocin, makaluvamine G, monanchocidin, crambescidine 359 and aaptamine showed inhibitory activities in electrophysiology experiments on the mouse muscle and human α7 nAChRs, expressed in Xenopus laevis oocytes. Thus, our results confirm the utility of the modeling studies on AChBPs in a search for natural compounds with cholinergic activity and demonstrate the presence of the latter in the analyzed marine biological sources.

  20. Marine Natural Products Acting on the Acetylcholine-Binding Protein and Nicotinic Receptors: From Computer Modeling to Binding Studies and Electrophysiology

    Directory of Open Access Journals (Sweden)

    Denis Kudryavtsev

    2014-03-01

    Full Text Available For a small library of natural products from marine sponges and ascidians, in silico docking to the Lymnaea stagnalis acetylcholine-binding protein (AChBP, a model for the ligand-binding domains of nicotinic acetylcholine receptors (nAChRs, was carried out and the possibility of complex formation was revealed. It was further experimentally confirmed via competition with radioiodinated α-bungarotoxin ([125I]-αBgt for binding to AChBP of the majority of analyzed compounds. Alkaloids pibocin, varacin and makaluvamines С and G had relatively high affinities (Ki 0.5–1.3 μM. With the muscle-type nAChR from Torpedo californica ray and human neuronal α7 nAChR, heterologously expressed in the GH4C1 cell line, no competition with [125I]-αBgt was detected in four compounds, while the rest showed an inhibition. Makaluvamines (Ki ~ 1.5 μM were the most active compounds, but only makaluvamine G and crambescidine 359 revealed a weak selectivity towards muscle-type nAChR. Rhizochalin, aglycone of rhizochalin, pibocin, makaluvamine G, monanchocidin, crambescidine 359 and aaptamine showed inhibitory activities in electrophysiology experiments on the mouse muscle and human α7 nAChRs, expressed in Xenopus laevis oocytes. Thus, our results confirm the utility of the modeling studies on AChBPs in a search for natural compounds with cholinergic activity and demonstrate the presence of the latter in the analyzed marine biological sources.

  1. 3D Motion Modeling and Reconstruction of Left Ventricle Wall in Cardiac MRI.

    Science.gov (United States)

    Yang, Dong; Wu, Pengxiang; Tan, Chaowei; Pohl, Kilian M; Axel, Leon; Metaxas, Dimitris

    2017-06-01

    The analysis of left ventricle (LV) wall motion is a critical step for understanding cardiac functioning mechanisms and clinical diagnosis of ventricular diseases. We present a novel approach for 3D motion modeling and analysis of LV wall in cardiac magnetic resonance imaging (MRI). First, a fully convolutional network (FCN) is deployed to initialize myocardium contours in 2D MR slices. Then, we propose an image registration algorithm to align MR slices in space and minimize the undesirable motion artifacts from inconsistent respiration. Finally, a 3D deformable model is applied to recover the shape and motion of myocardium wall. Utilizing the proposed approach, we can visually analyze 3D LV wall motion, evaluate cardiac global function, and diagnose ventricular diseases.

  2. Simulation of cardiac arrhythmias using a 2D heterogeneous whole heart model

    Directory of Open Access Journals (Sweden)

    Minimol eBalakrishnan

    2015-12-01

    Full Text Available Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC, excitability, action potential duration(APD and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV node, bundle of His cells, Purkinje network, atrial and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells and Purkinje cells are represented by the Fitzhugh-Nagumo (FN model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias

  3. A Dual Chamber Stent Prevents Organ Malperfusion in a Model of Donation after Cardiac Death

    Science.gov (United States)

    Tillman, Bryan W.; Chun, Youngjae; Cho, Sung Kwon; Chen, Yanfei; Liang, Nathan; Maul, Timothy; Demetris, Anthony; Gu, Xinzhu; Wagner, William R.; Tevar, Amit D.

    2016-01-01

    Background The paradigm for Donation after Cardiac Death (DCD) subjects donor organs to significant ischemic injury. A dual-chamber Organ Perfusion Stent (OPS) would maintain organ perfusion without impacting natural cardiac death. A center lumen allows uninterrupted cardiac blood flow, while an external chamber delivers oxygenated blood to the visceral vessels. Methods A prototype OPS was constructed from commercial stents. In a porcine model, the OPS was deployed, followed by a simulated agonal period. Oxygenated blood perfused the external stent chamber. Organ perfusion was compared between controls (n=3) and OPS (n=6). Finally, a custom nitinol dual chamber OPS was fabricated using a retrievable “petal and stem” design. Results Endovascular OPS deployment achieved visceral isolation without adverse impact on cardiac parameters. Visceral oxygen delivery was 4.8 fold higher as compared to controls. During the agonal period, organs in OPS treated animals appeared well perfused, contrasting to malperfused controls. A custom nitinol and polyurethane OPS was easily recaptured with simple sheath advancement. Conclusions An OPS maintained organ perfusion during the agonal phase in a model of DCD organ donation without adversely impacting cardiac function. Ultimately, the custom retrievable design of this study may help resolve the critical shortage of donor organs for transplant. PMID:27524434

  4. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model.

    Directory of Open Access Journals (Sweden)

    Jessica Jen-Chu Wang

    2016-07-01

    Full Text Available We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with heritability estimates of left ventricular mass between 61% and 81%. Association analyses of cardiac remodeling traits, corrected for population structure, body size and heart rate, revealed 17 genome-wide significant loci, including several loci containing previously implicated genes. Cardiac tissue gene expression profiling, expression quantitative trait loci, expression-phenotype correlation, and coding sequence variation analyses were performed to prioritize candidate genes and to generate hypotheses for downstream mechanistic studies. Using this approach, we have validated a novel gene, Myh14, as a negative regulator of ISO-induced left ventricular mass hypertrophy in an in vivo mouse model and demonstrated the up-regulation of immediate early gene Myc, fetal gene Nppb, and fibrosis gene Lgals3 in ISO-treated Myh14 deficient hearts compared to controls.

  5. Indications for Electrophysiology Study in children

    Directory of Open Access Journals (Sweden)

    Seshadri Balaji

    2008-05-01

    Full Text Available The advent of electrophysiology (EP testing revolutionized the care of children with arrhythmia. Precise mechanistic and anatomical diagnosis of arrhythmias became possible. The later development of catheter-based ablation transformed the care of these children by allowing many arrhythmias to be cured during the same procedure. Indications for EP testing vary depending on the age of the child, the underlying cardiac anatomy, and the suspected arrhythmia. In the current era, the indications for EPS and for ablation are virtually identical. There are a few situations where EPS is sometimes performed without the use of ablation, and these will be pointed out. This paper will address the common conditions for which EP testing is performed.

  6. Acute retinal ischemia caused by controlled low ocular perfusion pressure in a porcine model. Electrophysiological and histological characterisation

    DEFF Research Database (Denmark)

    Kyhn, Maria Voss; Warfvinge, Karin; Scherfig, Erik

    2009-01-01

    The purpose of this study was to establish, and characterize a porcine model of acute, controlled retinal ischemia. The controlled retinal ischemia was produced by clamping the ocular perfusion pressure (OPP) in the left eye to 5 mm Hg for 2 h. The OPP was defined as mean arterial blood pressure...... of the amplitudes obtained in the experimental, left eye, and the control, right eye. Quantitative histology was performed to measure the survival of ganglion cells, amacrine cells and horizontal cells 2-6 weeks after the ischemic insult. An OPP of 5 mm Hg for 2h induced significant reductions in the amplitudes...... the ischemic insult. This model seems to be suitable for investigations of therapeutic initiatives in diseases involving acute retinal ischemia....

  7. Thoracic 9 Spinal Transection-Induced Model of Muscle Spasticity in the Rat: A Systematic Electrophysiological and Histopathological Characterization.

    Science.gov (United States)

    Corleto, Jose A; Bravo-Hernández, Mariana; Kamizato, Kota; Kakinohana, Osamu; Santucci, Camila; Navarro, Michael R; Platoshyn, Oleksandr; Cizkova, Dasa; Lukacova, Nadezda; Taylor, Julian; Marsala, Martin

    2015-01-01

    The development of spinal hyper-reflexia as part of the spasticity syndrome represents one of the major complications associated with chronic spinal traumatic injury (SCI). The primary mechanism leading to progressive appearance of muscle spasticity is multimodal and may include loss of descending inhibitory tone, alteration of segmental interneuron-mediated inhibition and/or increased reflex activity to sensory input. Here, we characterized a chronic thoracic (Th 9) complete transection model of muscle spasticity in Sprague-Dawley (SD) rats. Isoflurane-anesthetized rats received a Th9 laminectomy and the spinal cord was transected using a scalpel blade. After the transection the presence of muscle spasticity quantified as stretch and cutaneous hyper-reflexia was identified and quantified as time-dependent changes in: i) ankle-rotation-evoked peripheral muscle resistance (PMR) and corresponding electromyography (EMG) activity, ii) Hoffmann reflex, and iii) EMG responses in gastrocnemius muscle after paw tactile stimulation for up to 8 months after injury. To validate the clinical relevance of this model, the treatment potency after systemic treatment with the clinically established anti-spastic agents baclofen (GABAB receptor agonist), tizanidine (α2-adrenergic agonist) and NGX424 (AMPA receptor antagonist) was also tested. During the first 3 months post spinal transection, a progressive increase in ankle rotation-evoked muscle resistance, Hoffmann reflex amplitude and increased EMG responses to peripherally applied tactile stimuli were consistently measured. These changes, indicative of the spasticity syndrome, then remained relatively stable for up to 8 months post injury. Systemic treatment with baclofen, tizanidine and NGX424 led to a significant but transient suppression of spinal hyper-reflexia. These data demonstrate that a chronic Th9 spinal transection model in adult SD rat represents a reliable experimental platform to be used in studying the

  8. Thoracic 9 Spinal Transection-Induced Model of Muscle Spasticity in the Rat: A Systematic Electrophysiological and Histopathological Characterization.

    Directory of Open Access Journals (Sweden)

    Jose A Corleto

    Full Text Available The development of spinal hyper-reflexia as part of the spasticity syndrome represents one of the major complications associated with chronic spinal traumatic injury (SCI. The primary mechanism leading to progressive appearance of muscle spasticity is multimodal and may include loss of descending inhibitory tone, alteration of segmental interneuron-mediated inhibition and/or increased reflex activity to sensory input. Here, we characterized a chronic thoracic (Th 9 complete transection model of muscle spasticity in Sprague-Dawley (SD rats. Isoflurane-anesthetized rats received a Th9 laminectomy and the spinal cord was transected using a scalpel blade. After the transection the presence of muscle spasticity quantified as stretch and cutaneous hyper-reflexia was identified and quantified as time-dependent changes in: i ankle-rotation-evoked peripheral muscle resistance (PMR and corresponding electromyography (EMG activity, ii Hoffmann reflex, and iii EMG responses in gastrocnemius muscle after paw tactile stimulation for up to 8 months after injury. To validate the clinical relevance of this model, the treatment potency after systemic treatment with the clinically established anti-spastic agents baclofen (GABAB receptor agonist, tizanidine (α2-adrenergic agonist and NGX424 (AMPA receptor antagonist was also tested. During the first 3 months post spinal transection, a progressive increase in ankle rotation-evoked muscle resistance, Hoffmann reflex amplitude and increased EMG responses to peripherally applied tactile stimuli were consistently measured. These changes, indicative of the spasticity syndrome, then remained relatively stable for up to 8 months post injury. Systemic treatment with baclofen, tizanidine and NGX424 led to a significant but transient suppression of spinal hyper-reflexia. These data demonstrate that a chronic Th9 spinal transection model in adult SD rat represents a reliable experimental platform to be used in studying the

  9. Two subgroups of antipsychotic-naive, first-episode schizophrenia patients identified with a Gaussian mixture model on cognition and electrophysiology

    DEFF Research Database (Denmark)

    Bak, N.; Ebdrup, B.H.; Oranje, B

    2017-01-01

    and sixty-five healthy controls underwent extensive electrophysiological and neurocognitive test batteries. Patients were assessed on the Positive and Negative Syndrome Scale (PANSS) before and after 6 weeks of monotherapy with the relatively selective D2 receptor antagonist, amisulpride (280.3±159 mg per...

  10. Modeling tissue- and mutation- specific electrophysiological effects in the long QT syndrome: role of the Purkinje fiber.

    Directory of Open Access Journals (Sweden)

    Vivek Iyer

    Full Text Available Congenital long QT syndrome is a heritable family of arrhythmias caused by mutations in 13 genes encoding ion channel complex proteins. Mounting evidence has implicated the Purkinje fiber network in the genesis of ventricular arrhythmias. In this study, we explore the hypothesis that long QT mutations can demonstrate different phenotypes depending on the tissue type of expression. Using computational models of the human ventricular myocyte and the Purkinje fiber cell, the biophysical alteration in channel function in LQT1, LQT2, LQT3, and LQT7 are modeled. We identified that the plateau potential was important in LQT1 and LQT2, in which mutation led to minimal action potential prolongation in Purkinje fiber cells. The phenotype of LQT3 mutation was dependent on the biophysical alteration induced as well as tissue type. The canonical ΔKPQ mutation causes severe action potential prolongation in both tissue types. For LQT3 mutation F1473C, characterized by shifted channel availability, a more severe phenotype was seen in Purkinje fiber cells with action potential prolongation and early afterdepolarizations. The LQT3 mutation S1904L demonstrated striking effects on action potential duration restitution and more severe action potential prolongation in Purkinje fiber cells at higher heart rates. Voltage clamp simulations highlight the mechanism of effect of these mutations in different tissue types, and impact of drug therapy is explored. We conclude that arrhythmia formation in long QT syndrome may depend not only on the basis of mutation and biophysical alteration, but also upon tissue of expression. The Purkinje fiber network may represent an important therapeutic target in the management of patients with heritable channelopathies.

  11. Milrinone ameliorates cardiac mechanical dysfunction after hypothermia in an intact rat model.

    Science.gov (United States)

    Dietrichs, Erik Sveberg; Kondratiev, Timofei; Tveita, Torkjel

    2014-12-01

    Rewarming from hypothermia is often complicated by cardiac dysfunction, characterized by substantial reduction in stroke volume. Previously we have reported that inotropic agents, working via cardiac β-receptor agonism may exert serious side effects when applied to treat cardiac contractile dysfunction during rewarming. In this study we tested whether Milrinone, a phosphodiesterase III inhibitor, is able to ameliorate such dysfunction when given during rewarming. A rat model designed for circulatory studies during experimental hypothermia with cooling to a core temperature of 15°C, stable hypothermia at this temperature for 3h and subsequent rewarming was used, with a total of 3 groups: (1) a normothermic group receiving Milrinone, (2) a hypothermic group receiving Milrinone the last hour of hypothermia and during rewarming, and (3) a hypothermic saline control group. Hemodynamic function was monitored using a conductance catheter introduced to the left ventricle. After rewarming from 15°C, stroke volume and cardiac output returned to within baseline values in Milrinone treated animals, while these variables were significantly reduced in saline controls. Milrinone ameliorated cardiac dysfunction during rewarming from 15°C. The present results suggest that at low core temperatures and during rewarming from such temperatures, pharmacologic efforts to support cardiovascular function is better achieved by substances preventing cyclic AMP breakdown rather than increasing its formation via β-receptor stimulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Modeling and imaging cardiac sympathetic neurodegeneration in Parkinson’s disease

    Science.gov (United States)

    Joers, Valerie; Emborg, Marina E

    2014-01-01

    Parkinson’s disease (PD) is currently recognized as a multisystem disorder affecting several components of the central and peripheral nervous system. This new understanding of PD helps explain the complexity of the patients’ symptoms while challenges researchers to identify new diagnostic and therapeutic strategies. Cardiac neurodegeneration and dysautonomia affect PD patients and are associated with orthostatic hypotension, fatigue, and abnormal control of electrical heart activity. They can seriously impact daily life of PD patients, as these symptoms do not respond to classical anti-parkinsonian medications and can be worsened by them. New diagnostic tools and therapies aiming to prevent cardiac neurodegeneration and dysautonomia are needed. In this manuscript we critically review the relationship between the cardiovascular and nervous system in normal and PD conditions, current animal models of cardiac dysautonomia and the application of molecular imaging methods to visualize cardiac neurodegeneration. Our goal is to highlight current progress in the development of tools to understand cardiac neurodegeneration and dysautonomia and monitor the effects of novel therapies aiming for global neuroprotection. PMID:24753981

  13. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9.

    Science.gov (United States)

    Carroll, Kelli J; Makarewich, Catherine A; McAnally, John; Anderson, Douglas M; Zentilin, Lorena; Liu, Ning; Giacca, Mauro; Bassel-Duby, Rhonda; Olson, Eric N

    2016-01-12

    Clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)9 genomic editing has revolutionized the generation of mutant animals by simplifying the creation of null alleles in virtually any organism. However, most current approaches with this method require zygote injection, making it difficult to assess the adult, tissue-specific functions of genes that are widely expressed or which cause embryonic lethality when mutated. Here, we describe the generation of cardiac-specific Cas9 transgenic mice, which express high levels of Cas9 in the heart, but display no overt defects. In proof-of-concept experiments, we used Adeno-Associated Virus 9 (AAV9) to deliver single-guide RNA (sgRNA) that targets the Myh6 locus exclusively in cardiomyocytes. Intraperitoneal injection of postnatal cardiac-Cas9 transgenic mice with AAV9 encoding sgRNA against Myh6 resulted in robust editing of the Myh6 locus. These mice displayed severe cardiomyopathy and loss of cardiac function, with elevation of several markers of heart failure, confirming the effectiveness of this method of adult cardiac gene deletion. Mice with cardiac-specific expression of Cas9 provide a tool that will allow rapid and accurate deletion of genes following a single injection of AAV9-sgRNAs, thereby circumventing embryonic lethality. This method will be useful for disease modeling and provides a means of rapidly editing genes of interest in the heart.

  14. A Study of the Dynamics of Cardiac Ischemia using Experimental and Modeling Approaches

    NARCIS (Netherlands)

    Shome, Shibaji; Stinstra, J.G.; Hopenfeld, Bruce; Punske, Bonnie B.; Macleod, Rob S.

    2004-01-01

    The dynamics of cardiac ischemia was investigated using experimental studies and computer simulations. An experimental model consisting of an isolated and perfused canine heart with full control over blood flow rate to a targeted coronary artery was used in the experimental study and a realistically

  15. Quantitative modelling of interaction of propafenone with sodium channels in cardiac cells

    Czech Academy of Sciences Publication Activity Database

    Pásek, Michal; Šimurda, J.

    2004-01-01

    Roč. 42, č. 2 (2004), s. 151-157 ISSN 0140-0118 R&D Projects: GA ČR GP204/02/D129 Institutional research plan: CEZ:AV0Z2076919 Keywords : cardiac cell * sodium current block * quantitative modelling Subject RIV: BO - Biophysics Impact factor: 1.070, year: 2004

  16. A quantitative model of the cardiac ventricular cell incorporating the transverse-axial tubular system

    Czech Academy of Sciences Publication Activity Database

    Pásek, Michal; Christé, G.; Šimurda, J.

    2003-01-01

    Roč. 22, č. 3 (2003), s. 355-368 ISSN 0231-5882 R&D Projects: GA ČR GP204/02/D129 Institutional research plan: CEZ:AV0Z2076919 Keywords : cardiac cell * tubular system * quantitative modelling Subject RIV: BO - Biophysics Impact factor: 0.794, year: 2003

  17. Wearable Multi-Channel Microelectrode Membranes for Elucidating Electrophysiological Phenotypes of Injured Myocardium

    Science.gov (United States)

    Cao, Hung; Yu, Fei; Zhao, Yu; Zhang, Xiaoxiao; Tai, Joyce; Lee, Juhyun; Darehzereshki, Ali; Bersohn, Malcolm; Lien, Ching-Ling; Chi, Neil C.; Tai, Yu-Chong; Hsiai, Tzung K.

    2014-01-01

    Understanding the regenerative capacity of small vertebrate models has provided new insights into the plasticity of injured myocardium. Here, we demonstrated the application of flexible microelectrode arrays (MEAs) in elucidating electrophysiological phenotypes of zebrafish and neonatal mouse models of heart regeneration. The 4-electrode MEA membranes were designed to detect electrical signals in the aquatic environment. They were micro-fabricated to adhere to the non-planar body surface of zebrafish and neonatal mice. The acquired signals were processed to display electrocardiogram (ECG) with high signal-to-noise-ratios, and were validated via the use of conventional micro-needle electrodes. The 4-channel MEA provided signal stability and spatial resolution, revealing the site-specific electrical injury currents such as ST-depression in response to ventricular cryo-injury. Thus, our polymer-based and wearable MEA membranes provided electrophysiological insights in long-term conduction phenotypes for small vertebral models of heart injury and regeneration with a translational implication for monitoring cardiac patients. PMID:24945366

  18. Normal Values for Heart Electrophysiology Parameters of Healthy Swine Determined on Electrophysiology Study.

    Science.gov (United States)

    Noszczyk-Nowak, Agnieszka; Cepiel, Alicja; Janiszewski, Adrian; Pasławski, Robert; Gajek, Jacek; Pasławska, Urszula; Nicpoń, Józef

    2016-01-01

    Swine are a well-recognized animal model for human cardiovascular diseases. Despite the widespread use of porcine model in experimental electrophysiology, still no reference values for intracardiac electrical activity and conduction parameters determined during an invasive electrophysiology study (EPS) have been developed in this species thus far. The aim of the study was to develop a set of normal values for intracardiac electrical activity and conduction parameters determined during an invasive EPS of swine. The study included 36 healthy domestic swine (24-40 kg body weight). EPS was performed under a general anesthesia with midazolam, propofol and isoflurane. The reference values for intracardiac electrical activity and conduction parameters were calculated as arithmetic means ± 2 standard deviations. The reference values were determined for AH, HV and PA intervals, interatrial conduction time at its own and imposed rhythm, sinus node recovery time (SNRT), corrected sinus node recovery time (CSNRT), anterograde and retrograde Wenckebach points, atrial, atrioventricular node and ventricular refractory periods. No significant correlations were found between body weight and heart rate of the examined pigs and their electrophysiological parameters. The hereby presented reference values can be helpful in comparing the results of various studies, as well as in more accurately estimating the values of electrophysiological parameters that can be expected in a given experiment.

  19. Incremental value of anemia in cardiac surgical risk prediction with the European System for Cardiac Operative Risk Evaluation (EuroSCORE) II model.

    Science.gov (United States)

    Scrascia, Giuseppe; Guida, Pietro; Caparrotti, Sergio Maria; Capone, Giuseppe; Contini, Marco; Cassese, Mauro; Fanelli, Vitantonio; Martinelli, Gianluca; Mazzei, Valerio; Zaccaria, Salvatore; Paparella, Domenico

    2014-09-01

    Anemia is a risk factor for adverse events after cardiac operations. We evaluated the incremental value of preoperative anemia over the European System for Cardiac Operative Risk Evaluation (EuroSCORE) II to predict hospital death after cardiac operations. Data for 4,594 consecutive adults (1,548 women [33.7%]), aged 67 ± 11 years, who underwent cardiac operations from January 2011 to July 2013 were extracted from the Regional Cardiac Surgery Registry of Puglia. The last preoperative hemoglobin value was used, according to World Health Organization criteria, to classify anemia as mild (hemoglobin 11.0 to 12.9 g/dL in men and 11.0 to 11.9 g/dL in women) in 1,021 patients (22.2%) and as moderate to severe (hemoglobin anemia, with model discrimination quantified by C statistic and risk classification by the use of net reclassification improvement (NRI). Overall expected and observed mortality rates were 4.4% and 5.9%. Anemia was significantly associated with a mortality rate of 3.4% in patients without anemia, 7.7% in mild anemia, and 15.7% in moderate to severe anemia (p anemia was analyzed with EuroSCORE II, the model improved in discrimination (C statistic = 0.852 vs 0.860; p = 0.007) and reclassification (category free-NRI, 0.592; p anemia has strong association with operative death in cardiac surgical patients. Anemia provides significant incremental value over the EuroSCORE II and should be considered for assessment of cardiac surgical risk. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Diet-induced pre-diabetes slows cardiac conductance and promotes arrhythmogenesis

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Callø, Kirstine; Braunstein, Thomas Hartig

    2015-01-01

    BACKGROUND: Type 2 diabetes is associated with abnormal electrical conduction and sudden cardiac death, but the pathogenic mechanism remains unknown. This study describes electrophysiological alterations in a diet-induced pre-diabetic rat model and examines the underlying mechanism. METHODS....... Conduction velocity was examined in isolated tissue strips. Ion channel and gap junction conductances were analyzed by patch-clamp studies in isolated cardiomyocytes. Fibrosis was examined by Masson's Trichrome staining and thin-layer chromatography was used to analyze cardiac lipid content. Connexin43 (Cx43......: Sprague-Dawley rats were fed either high-fat diet and fructose water or normal chow and water for 6 weeks. The electrophysiological properties of the whole heart was analyzed by in vivo surface ECG recordings, as wells as ex vivo in Langendorff perfused hearts during baseline, ischemia and reperfussion...

  1. An enhanced method for real-time modelling of cardiac related biosignals using Gaussian mixtures.

    Science.gov (United States)

    Alqudah, Ali Mohammad

    2017-11-01

    Cardiac related biosignals modelling is very important for detecting, classification, compression and transmission of such health-related signals. This paper introduces a new, fast and accurate method for modelling the cardiac related biosignals (ECG and PPG) based on a mixture of Gaussian waves. For any signal, at first, the start and end of the ECG beat or PPG pulse is detected, then the baseline is detected then subtracted from the original signal, after that the signal is divided into two signals positive and negative, each modelled separately then incorporated together to form the modelled signal. The proposed method is applied in the MIMIC, and MIT-BIH Arrhythmia databases available online at PhysioNet.

  2. Competition model for aperiodic stochastic resonance in a Fitzhugh-Nagumo model of cardiac sensory neurons.

    Science.gov (United States)

    Kember, G C; Fenton, G A; Armour, J A; Kalyaniwalla, N

    2001-04-01

    Regional cardiac control depends upon feedback of the status of the heart from afferent neurons responding to chemical and mechanical stimuli as transduced by an array of sensory neurites. Emerging experimental evidence shows that neural control in the heart may be partially exerted using subthreshold inputs that are amplified by noisy mechanical fluctuations. This amplification is known as aperiodic stochastic resonance (ASR). Neural control in the noisy, subthreshold regime is difficult to see since there is a near absence of any correlation between input and the output, the latter being the average firing (spiking) rate of the neuron. This lack of correlation is unresolved by traditional energy models of ASR since these models are unsuitable for identifying "cause and effect" between such inputs and outputs. In this paper, the "competition between averages" model is used to determine what portion of a noisy, subthreshold input is responsible, on average, for the output of sensory neurons as represented by the Fitzhugh-Nagumo equations. A physiologically relevant conclusion of this analysis is that a nearly constant amount of input is responsible for a spike, on average, and this amount is approximately independent of the firing rate. Hence, correlation measures are generally reduced as the firing rate is lowered even though neural control under this model is actually unaffected.

  3. Identifying cardiac syncope based on clinical history: a literature-based model tested in four independent datasets

    NARCIS (Netherlands)

    Berecki-Gisolf, Janneke; Sheldon, Aaron; Wieling, Wouter; van Dijk, Nynke; Costantino, Giorgio; Furlan, Raffaello; Shen, Win-Kuang; Sheldon, Robert

    2013-01-01

    We aimed to develop and test a literature-based model for symptoms that associate with cardiac causes of syncope. Seven studies (the derivation sample) reporting ≥2 predictors of cardiac syncope were identified (4 Italian, 1 Swiss, 1 Canadian, and 1 from the United States). From these, 10 criteria

  4. Optimizing the phenotyping of rodent ASD models: enrichment analysis of mouse and human neurobiological phenotypes associated with high-risk autism genes identifies morphological, electrophysiological, neurological, and behavioral features

    Directory of Open Access Journals (Sweden)

    Buxbaum Joseph D

    2012-02-01

    Full Text Available Abstract Background There is interest in defining mouse neurobiological phenotypes useful for studying autism spectrum disorders (ASD in both forward and reverse genetic approaches. A recurrent focus has been on high-order behavioral analyses, including learning and memory paradigms and social paradigms. However, well-studied mouse models, including for example Fmr1 knockout mice, do not show dramatic deficits in such high-order phenotypes, raising a question as to what constitutes useful phenotypes in ASD models. Methods To address this, we made use of a list of 112 disease genes etiologically involved in ASD to survey, on a large scale and with unbiased methods as well as expert review, phenotypes associated with a targeted disruption of these genes in mice, using the Mammalian Phenotype Ontology database. In addition, we compared the results with similar analyses for human phenotypes. Findings We observed four classes of neurobiological phenotypes associated with disruption of a large proportion of ASD genes, including: (1 Changes in brain and neuronal morphology; (2 electrophysiological changes; (3 neurological changes; and (4 higher-order behavioral changes. Alterations in brain and neuronal morphology represent quantitative measures that can be more widely adopted in models of ASD to understand cellular and network changes. Interestingly, the electrophysiological changes differed across different genes, indicating that excitation/inhibition imbalance hypotheses for ASD would either have to be so non-specific as to be not falsifiable, or, if specific, would not be supported by the data. Finally, it was significant that in analyses of both mouse and human databases, many of the behavioral alterations were neurological changes, encompassing sensory alterations, motor abnormalities, and seizures, as opposed to higher-order behavioral changes in learning and memory and social behavior paradigms. Conclusions The results indicated that mutations

  5. Modeling CaMKII in cardiac physiology: from molecule to tissue

    Directory of Open Access Journals (Sweden)

    Birce eOnal

    2014-02-01

    Full Text Available Post-translational modification of membrane proteins (e.g. ion channels, receptors by protein kinases is an essential mechanism for control of excitable cell function. Importantly, loss of temporal and/or spatial control of ion channel post-translational modification is common in congenital and acquired forms of cardiac disease and arrhythmia. The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII regulates a number of diverse cellular functions in heart, including excitation-contraction coupling, gene transcription, and apoptosis. Dysregulation of CaMKII signaling has been implicated in human and animal models of disease. Understanding of CaMKII function has been advanced by mathematical modeling approaches well-suited to the study of complex biological systems. Early kinetic models of CaMKII function in the brain characterized this holoenzyme as a bistable molecular switch capable of storing information over a long period of time. Models of CaMKII activity have been incorporated into models of the cell and tissue (particularly in the heart to predict the role of CaMKII in regulating organ function. Disease models that incorporate CaMKII overexpression clearly demonstrate a link between its excessive activity and arrhythmias associated with congenital and acquired heart disease. This review aims at discussing systems biology approaches that have been applied to analyze CaMKII signaling from the single molecule to intact cardiac tissue. In particular, efforts to use computational biology to provide new insight into cardiac disease mechanisms are emphasized.

  6. Towards an atrio-ventricular delay optimization assessed by a computer model for cardiac resynchronization therapy

    Science.gov (United States)

    Ojeda, David; Le Rolle, Virginie; Tse Ve Koon, Kevin; Thebault, Christophe; Donal, Erwan; Hernández, Alfredo I.

    2013-11-01

    In this paper, lumped-parameter models of the cardiovascular system, the cardiac electrical conduction system and a pacemaker are coupled to generate mitral ow pro les for di erent atrio-ventricular delay (AVD) con gurations, in the context of cardiac resynchronization therapy (CRT). First, we perform a local sensitivity analysis of left ventricular and left atrial parameters on mitral ow characteristics, namely E and A wave amplitude, mitral ow duration, and mitral ow time integral. Additionally, a global sensitivity analysis over all model parameters is presented to screen for the most relevant parameters that a ect the same mitral ow characteristics. Results provide insight on the in uence of left ventricle and atrium in uence on mitral ow pro les. This information will be useful for future parameter estimation of the model that could reproduce the mitral ow pro les and cardiovascular hemodynamics of patients undergoing AVD optimization during CRT.

  7. Living with an implantable cardiac defibrillator: a model of chronic uncertainty.

    Science.gov (United States)

    Carroll, Sandra L; McGillion, Michael; Arthur, Heather M

    2014-01-01

    Over the last two decades, the number of patients receiving implantable cardiac defibrillators (ICDs) for the prevention of sudden cardiac death has grown significantly. This growth is largely the result of broadened indication for ICD use because of the success of trials demonstrating efficacy. Early ICD indication centered on secondary prevention, which then advanced to primary prevention in high-risk patients. Nurses delivering care to these patients not only manage this complex technology but also patients' uncertainty about their survival and related psychosocial adjustment to receiving an ICD. To inform practice, theoretical models such as Mishel's (1988) uncertainty in illness model provide insight into such acute phases of illness. This article proposes expansion of the uncertainty in illness model to advance knowledge in this field for nurses caring for patients with ICD.

  8. Establishing a Rodent Model of Ventricular Fibrillation Cardiac Arrest with Graded Histologic and Neurologic Damage with Different Cardiac Arrest Durations.

    Science.gov (United States)

    Ettl, Florian; Magnet, Ingrid A M; Weihs, Wolfgang; Warenits, Alexandra; Grassmann, Daniel; Wagner, Michael; Teubenbacher, Ursula; Högler, Sandra; Sterz, Fritz; Janata, Andreas

    2017-09-28

    To establish a ventricular fibrillation (VF) cardiac arrest (CA) resuscitation model with consistent neurologic and neuropathologic damage as potential therapeutic target. Prospectively randomized groups of experiments in 2 phases. In phase 1 four groups of male Sprague-Dawley rats (n = 5) were resuscitated after 6 min VFCA with 2 and 6 min basic life support durations (BLS) with and without adrenaline. In phase 2 the most promising group regarding return of spontaneous circulation (ROSC) and survival was compared to a group of 8 min CA. Resuscitability, neurologic deficit scores (NDS) and overall performance category (OPC) were assessed daily; histolopathology of the hippocampal CA1 region [hematoxylin and eosin- (viable neurons), Fluoro-Jade- (dying neurons) and Iba-1 Immuno-staining (microglial activation - semiquantitative)] on day 14. Two minutes BLS and with adrenaline as most promising group of phase 1 compared to an 8 min group in phase 2 exhibited ROSC in 8 (80%) vs. 9 (82%) animals and survivors till day 14 in 7 (88%) (all OPC 1, NDS 0 ± 0) vs. 6 (67%) (5 OPC 1, 1 OPC 2, NDS 0.83 ± 2.4) animals. OPC and NDS were only significantly different at day 1 (OPC: p = 0.035 NDS: p = 0.003). Histopathologic results between groups were not significantly different, however a smaller variance of extent of lesions was found in the 8 min group. Both CA durations caused graded neurologic, overall, such as histopathologic damage. This dynamic global ischemia model offers the possibility to evaluate further cognitive and novel neuroprotective therapy testing after CA.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0.

  9. Estimating the probabilities of rare arrhythmic events in multiscale computational models of cardiac cells and tissue.

    Directory of Open Access Journals (Sweden)

    Mark A Walker

    2017-11-01

    Full Text Available Ectopic heartbeats can trigger reentrant arrhythmias, leading to ventricular fibrillation and sudden cardiac death. Such events have been attributed to perturbed Ca2+ handling in cardiac myocytes leading to spontaneous Ca2+ release and delayed afterdepolarizations (DADs. However, the ways in which perturbation of specific molecular mechanisms alters the probability of ectopic beats is not understood. We present a multiscale model of cardiac tissue incorporating a biophysically detailed three-dimensional model of the ventricular myocyte. This model reproduces realistic Ca2+ waves and DADs driven by stochastic Ca2+ release channel (RyR gating and is used to study mechanisms of DAD variability. In agreement with previous experimental and modeling studies, key factors influencing the distribution of DAD amplitude and timing include cytosolic and sarcoplasmic reticulum Ca2+ concentrations, inwardly rectifying potassium current (IK1 density, and gap junction conductance. The cardiac tissue model is used to investigate how random RyR gating gives rise to probabilistic triggered activity in a one-dimensional myocyte tissue model. A novel spatial-average filtering method for estimating the probability of extreme (i.e. rare, high-amplitude stochastic events from a limited set of spontaneous Ca2+ release profiles is presented. These events occur when randomly organized clusters of cells exhibit synchronized, high amplitude Ca2+ release flux. It is shown how reduced IK1 density and gap junction coupling, as observed in heart failure, increase the probability of extreme DADs by multiple orders of magnitude. This method enables prediction of arrhythmia likelihood and its modulation by alterations of other cellular mechanisms.

  10. Diesel Exhaust Inhalation Increases Cardiac Output, Bradyarrhythmias, and Parasympathetic Tone in Aged Heart Failure-Prone Rats

    Science.gov (United States)

    Acute air pollutant inhalation is linked to adverse cardiac events and death, and hospitalizations for heart failure. Diesel exhaust (DE) is a major air pollutant suspected to exacerbate preexisting cardiac conditions, in part, through autonomic and electrophysiologic disturbance...

  11. Image-Based Structural Modeling of the Cardiac Purkinje Network

    Directory of Open Access Journals (Sweden)

    Benjamin R. Liu

    2015-01-01

    Full Text Available The Purkinje network is a specialized conduction system within the heart that ensures the proper activation of the ventricles to produce effective contraction. Its role during ventricular arrhythmias is less clear, but some experimental studies have suggested that the Purkinje network may significantly affect the genesis and maintenance of ventricular arrhythmias. Despite its importance, few structural models of the Purkinje network have been developed, primarily because current physical limitations prevent examination of the intact Purkinje network. In previous modeling efforts Purkinje-like structures have been developed through either automated or hand-drawn procedures, but these networks have been created according to general principles rather than based on real networks. To allow for greater realism in Purkinje structural models, we present a method for creating three-dimensional Purkinje networks based directly on imaging data. Our approach uses Purkinje network structures extracted from photographs of dissected ventricles and projects these flat networks onto realistic endocardial surfaces. Using this method, we create models for the combined ventricle-Purkinje system that can fully activate the ventricles through a stimulus delivered to the Purkinje network and can produce simulated activation sequences that match experimental observations. The combined models have the potential to help elucidate Purkinje network contributions during ventricular arrhythmias.

  12. Applications of Dynamic Clamp to Cardiac Arrhythmia Research: Role in Drug Target Discovery and Safety Pharmacology Testing.

    Science.gov (United States)

    Ortega, Francis A; Grandi, Eleonora; Krogh-Madsen, Trine; Christini, David J

    2017-01-01

    Dynamic clamp, a hybrid-computational-experimental technique that has been used to elucidate ionic mechanisms underlying cardiac electrophysiology, is emerging as a promising tool in the discovery of potential anti-arrhythmic targets and in pharmacological safety testing. Through the injection of computationally simulated conductances into isolated cardiomyocytes in a real-time continuous loop, dynamic clamp has greatly expanded the capabilities of patch clamp outside traditional static voltage and current protocols. Recent applications include fine manipulation of injected artificial conductances to identify promising drug targets in the prevention of arrhythmia and the direct testing of model-based hypotheses. Furthermore, dynamic clamp has been used to enhance existing experimental models by addressing their intrinsic limitations, which increased predictive power in identifying pro-arrhythmic pharmacological compounds. Here, we review the recent advances of the dynamic clamp technique in cardiac electrophysiology with a focus on its future role in the development of safety testing and discovery of anti-arrhythmic drugs.

  13. Molecular Alterations in a Mouse Cardiac Model of Friedreich Ataxia

    DEFF Research Database (Denmark)

    Anzovino, Amy; Chiang, Shannon; Brown, Bronwyn E

    2017-01-01

    Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a master regulator of the antioxidant response. However, studies in models of Friedreich ataxia, a neurodegenerative and cardiodegenerative disease associated with oxidative stress, reported decreased Nrf2 expression attributable to unknown me...

  14. Finite element model to study two dimensional unsteady state calcium distribution in cardiac myocytes

    Directory of Open Access Journals (Sweden)

    Kunal Pathak

    2016-09-01

    Full Text Available The calcium signaling plays a crucial role in expansion and contraction of cardiac myocytes. This calcium signaling is achieved by calcium diffusion, buffering mechanisms and influx in cardiac myocytes. The various calcium distribution patterns required for achieving calcium signaling in myocytes are still not well understood. In this paper an attempt has been made to develop a model of calcium distribution in myocytes incorporating diffusion of calcium, point source and excess buffer approximation. The model has been developed for a two dimensional unsteady state case. Appropriate boundary conditions and initial condition have been framed. The finite element method has been employed to obtain the solution. The numerical results have been used to study the effect of buffers and source amplitude on calcium distribution in myocytes.

  15. Low Cardiac Output Leads Hepatic Fibrosis in Right Heart Failure Model Rats

    Science.gov (United States)

    Fujimoto, Yoshitaka; Urashima, Takashi; Shimura, Daisuke; Ito, Reiji; Kawachi, Sadataka; Kajimura, Ichige; Akaike, Toru; Kusakari, Yoichiro; Fujiwara, Masako; Ogawa, Kiyoshi; Goda, Nobuhito; Ida, Hiroyuki; Minamisawa, Susumu

    2016-01-01

    Background Hepatic fibrosis progresses with right heart failure, and becomes cardiac cirrhosis in a severe case. Although its causal factor still remains unclear. Here we evaluated the progression of hepatic fibrosis using a pulmonary artery banding (PAB)-induced right heart failure model and investigated whether cardiac output (CO) is responsible for the progression of hepatic fibrosis. Methods and Results Five-week-old Sprague-Dawley rats divided into the PAB and sham-operated control groups. After 4 weeks from operation, we measured CO by echocardiography, and hepatic fibrosis ratio by pathological examination using a color analyzer. In the PAB group, CO was significantly lower by 48% than that in the control group (78.2±27.6 and 150.1±31.2 ml/min, Pright failure heart model rats. PMID:26863419

  16. Modeling of cardiac muscle thin films: pre-stretch, passive and active behavior.

    Science.gov (United States)

    Shim, Jongmin; Grosberg, Anna; Nawroth, Janna C; Parker, Kevin Kit; Bertoldi, Katia

    2012-03-15

    Recent progress in tissue engineering has made it possible to build contractile bio-hybrid materials that undergo conformational changes by growing a layer of cardiac muscle on elastic polymeric membranes. Further development of such muscular thin films for building actuators and powering devices requires exploring several design parameters, which include the alignment of the cardiac myocytes and the thickness/Young's modulus of elastomeric film. To more efficiently explore these design parameters, we propose a 3-D phenomenological constitutive model, which accounts for both the passive deformation including pre-stretch and the active behavior of the cardiomyocytes. The proposed 3-D constitutive model is implemented within a finite element framework, and can be used to improve the current design of bio-hybrid thin films and help developing bio-hybrid constructs capable of complex conformational changes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Electrophysiological properties and calcium handling of embryonic stem cell-derived cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Jae Boum Youm

    2016-03-01

    Full Text Available Embryonic stem cell-derived cardiomyocytes (ESC-CMs hold great interest in many fields of research including clinical applications such as stem cell and gene therapy for cardiac repair or regeneration. ESC-CMs are also used as a platform tool for pharmacological tests or for investigations of cardiac remodeling. ESC-CMs have many different aspects of morphology, electrophysiology, calcium handling, and bioenergetics compared with adult cardiomyocytes. They are immature in morphology, similar to sinus nodal-like in the electrophysiology, higher contribution of trans-sarcolemmal Ca2+ influx to Ca2+ handling, and higher dependence on anaerobic glycolysis. Here, I review a detailed electrophysiology and Ca2+ handling features of ESC-CMs during differentiation into adult cardiomyocytes to gain insights into how all the developmental changes are related to each other to display cardinal features of developing cardiomyocytes.

  18. Pseudoxanthoma elasticum: cardiac findings in patients and Abcc6-deficient mouse model.

    Directory of Open Access Journals (Sweden)

    Fabrice Prunier

    Full Text Available Pseudoxanthoma elasticum (PXE, caused by mutations in the ABCC6 gene, is a rare multiorgan disease characterized by the mineralization and fragmentation of elastic fibers in connective tissue. Cardiac complications reportedly associated with PXE are mainly based on case reports.A cohort of 67 PXE patients was prospectively assessed. Patients underwent physical examination, electrocardiogram, transthoracic echocardiography, cardiac magnetic resonance imaging (CMR, treadmill testing, and perfusion myocardial scintigraphy (SPECT. Additionally, the hearts of a PXE mouse models (Abcc6(-/- and wild-type controls (WT were analyzed.Three patients had a history of proven coronary artery disease. In total, 40 patients underwent exercise treadmill tests, and 28 SPECT. The treadmill tests were all negative. SPECT showed mild perfusion abnormalities in two patients. Mean left ventricular (LV dimension and function values were within the normal range. LV hypertrophy was found in 7 (10.4% patients, though the hypertrophy etiology was unknown for 3 of those patients. Echocardiography revealed frequent but insignificant mitral and tricuspid valvulopathies. Mitral valve prolapse was present in 3 patients (4.5%. Two patients exhibited significant aortic stenosis (3.0%. While none of the functional and histological parameters diverged significantly between the Abcc6(-/- and WT mice groups at age of 6 and 12 months, the 24-month-old Abcc6(-/- mice developed cardiac hypertrophy without contractile dysfunction.Despite sporadic cases, PXE does not appear to be associated with frequent cardiac complications. However, the development of cardiac hypertrophy in the 24-month-old Abcc6(-/- mice suggests that old PXE patients might be prone to developing late cardiopathy.

  19. Post-hypothermic cardiac left ventricular systolic dysfunction after rewarming in an intact pig model.

    Science.gov (United States)

    Filseth, Ole Magnus; How, Ole-Jakob; Kondratiev, Timofei; Gamst, Tor Magne; Tveita, Torkjel

    2010-01-01

    We developed a minimally invasive, closed chest pig model with the main aim to describe hemodynamic function during surface cooling, steady state severe hypothermia (one hour at 25°C) and surface rewarming. Twelve anesthetized juvenile pigs were acutely catheterized for measurement of left ventricular (LV) pressure-volume loops (conductance catheter), cardiac output (Swan-Ganz), and for vena cava inferior occlusion. Eight animals were surface cooled to 25°C, while four animals were kept as normothermic time-matched controls. During progressive cooling and steady state severe hypothermia (25°C) cardiac output (CO), stroke volume (SV), mean arterial pressure (MAP), maximal deceleration of pressure in the cardiac cycle (dP/dt(min)), indexes of LV contractility (preload recruitable stroke work, PRSW, and maximal acceleration of pressure in the cardiac cycle, dP/dt(max)) and LV end diastolic and systolic volumes (EDV and ESV) were significantly reduced. Systemic vascular resistance (SVR), isovolumetric relaxation time (Tau), and oxygen content in arterial and mixed venous blood increased significantly. LV end diastolic pressure (EDP) remained constant. After rewarming all the above mentioned hemodynamic variables that were depressed during 25°C remained reduced, except for CO that returned to pre-hypothermic values due to an increase in heart rate. Likewise, SVR and EDP were significantly reduced after rewarming, while Tau, EDV, ESV and blood oxygen content normalized. Serum levels of cardiac troponin T (TnT) and tumor necrosis factor-alpha (TNF-α) were significantly increased. Progressive cooling to 25°C followed by rewarming resulted in a reduced systolic, but not diastolic left ventricular function. The post-hypothermic increase in heart rate and the reduced systemic vascular resistance are interpreted as adaptive measures by the organism to compensate for a hypothermia-induced mild left ventricular cardiac failure. A post-hypothermic increase in TnT indicates

  20. Standardized echocardiographic assessment of cardiac function in normal adult zebrafish and heart disease models

    Directory of Open Access Journals (Sweden)

    Louis W. Wang

    2017-01-01

    Full Text Available The zebrafish (Danio rerio is an increasingly popular model organism in cardiovascular research. Major insights into cardiac developmental processes have been gained by studies of embryonic zebrafish. However, the utility of zebrafish for modeling adult-onset heart disease has been limited by a lack of robust methods for in vivo evaluation of cardiac function. We established a physiological protocol for underwater zebrafish echocardiography using high frequency ultrasound, and evaluated its reliability in detecting altered cardiac function in two disease models. Serial assessment of cardiac function was performed in wild-type zebrafish aged 3 to 12 months and the effects of anesthetic agents, age, sex and background strain were evaluated. There was a varying extent of bradycardia and ventricular contractile impairment with different anesthetic drugs and doses, with tricaine 0.75 mmol l−1 having a relatively more favorable profile. When compared with males, female fish were larger and had more measurement variability. Although age-related increments in ventricular chamber size were greater in females than males, there were no sex differences when data were normalized to body size. Systolic ventricular function was similar in both sexes at all time points, but differences in diastolic function were evident from 6 months onwards. Wild-type fish of both sexes showed a reliance on atrial contraction for ventricular diastolic filling. Echocardiographic evaluation of adult zebrafish with diphtheria toxin-induced myocarditis or anemia-induced volume overload accurately identified ventricular dilation and altered contraction, with suites of B-mode, ventricular strain, pulsed-wave Doppler and tissue Doppler indices showing concordant changes indicative of myocardial hypocontractility or hypercontractility, respectively. Repeatability, intra-observer and inter-observer correlations for echocardiographic measurements were high. We demonstrate that

  1. Four-dimensional modeling of the heart for image guidance of minimally invasive cardiac surgeries

    Science.gov (United States)

    Wierzbicki, Marcin; Drangova, Maria; Guiraudon, Gerard; Peters, Terry

    2004-05-01

    Minimally invasive surgery of the beating heart can be associated with two major limitations: selecting port locations for optimal target coverage from x-rays and angiograms, and navigating instruments in a dynamic and confined 3D environment using only an endoscope. To supplement the current surgery planning and guidance strategies, we continue developing VCSP - a virtual reality, patient-specific, thoracic cavity model derived from 3D pre-procedural images. In this work, we apply elastic image registration to 4D cardiac images to model the dynamic heart. Our method is validated on two image modalities, and for different parts of the cardiac anatomy. In a helical CT dataset of an excised heart phantom, we found that the artificial motion of the epicardial surface can be extracted to within 0.93 +/- 0.33 mm. For an MR dataset of a human volunteer, the error for different heart structures such as the myocardium, right and left atria, right ventricle, aorta, vena cava, and pulmonary artery, ranged from 1.08 +/- 0.18 mm to 1.14 +/- 0.22 mm. These results indicate that our method of modeling the motion of the heart is not only easily adaptable but also sufficiently accurate to meet the requirements for reliable cardiac surgery training, planning, and guidance.

  2. Comprehensive Modeling and Visualization of Cardiac Anatomy and Physiology from CT Imaging and Computer Simulations.

    Science.gov (United States)

    Xiong, Guanglei; Sun, Peng; Zhou, Haoyin; Ha, Seongmin; Hartaigh, Briain O; Truong, Quynh A; Min, James K

    2017-02-01

    In clinical cardiology, both anatomy and physiology are needed to diagnose cardiac pathologies. CT imaging and computer simulations provide valuable and complementary data for this purpose. However, it remains challenging to gain useful information from the large amount of high-dimensional diverse data. The current tools are not adequately integrated to visualize anatomic and physiologic data from a complete yet focused perspective. We introduce a new computer-aided diagnosis framework, which allows for comprehensive modeling and visualization of cardiac anatomy and physiology from CT imaging data and computer simulations, with a primary focus on ischemic heart disease. The following visual information is presented: (1) Anatomy from CT imaging: geometric modeling and visualization of cardiac anatomy, including four heart chambers, left and right ventricular outflow tracts, and coronary arteries; (2) Function from CT imaging: motion modeling, strain calculation, and visualization of four heart chambers; (3) Physiology from CT imaging: quantification and visualization of myocardial perfusion and contextual integration with coronary artery anatomy; (4) Physiology from computer simulation: computation and visualization of hemodynamics (e.g., coronary blood velocity, pressure, shear stress, and fluid forces on the vessel wall). Substantially, feedback from cardiologists have confirmed the practical utility of integrating these features for the purpose of computer-aided diagnosis of ischemic heart disease.

  3. Efficient parameterization of cardiac action potential models using a genetic algorithm.

    Science.gov (United States)

    Cairns, Darby I; Fenton, Flavio H; Cherry, E M

    2017-09-01

    Finding appropriate values for parameters in mathematical models of cardiac cells is a challenging task. Here, we show that it is possible to obtain good parameterizations in as little as 30-40 s when as many as 27 parameters are fit simultaneously using a genetic algorithm and two flexible phenomenological models of cardiac action potentials. We demonstrate how our implementation works by considering cases of "model recovery" in which we attempt to find parameter values that match model-derived action potential data from several cycle lengths. We assess performance by evaluating the parameter values obtained, action potentials at fit and non-fit cycle lengths, and bifurcation plots for fidelity to the truth as well as consistency across different runs of the algorithm. We also fit the models to action potentials recorded experimentally using microelectrodes and analyze performance. We find that our implementation can efficiently obtain model parameterizations that are in good agreement with the dynamics exhibited by the underlying systems that are included in the fitting process. However, the parameter values obtained in good parameterizations can exhibit a significant amount of variability, raising issues of parameter identifiability and sensitivity. Along similar lines, we also find that the two models differ in terms of the ease of obtaining parameterizations that reproduce model dynamics accurately, most likely reflecting different levels of parameter identifiability for the two models.

  4. Efficient parameterization of cardiac action potential models using a genetic algorithm

    Science.gov (United States)

    Cairns, Darby I.; Fenton, Flavio H.; Cherry, E. M.

    2017-09-01

    Finding appropriate values for parameters in mathematical models of cardiac cells is a challenging task. Here, we show that it is possible to obtain good parameterizations in as little as 30-40 s when as many as 27 parameters are fit simultaneously using a genetic algorithm and two flexible phenomenological models of cardiac action potentials. We demonstrate how our implementation works by considering cases of "model recovery" in which we attempt to find parameter values that match model-derived action potential data from several cycle lengths. We assess performance by evaluating the parameter values obtained, action potentials at fit and non-fit cycle lengths, and bifurcation plots for fidelity to the truth as well as consistency across different runs of the algorithm. We also fit the models to action potentials recorded experimentally using microelectrodes and analyze performance. We find that our implementation can efficiently obtain model parameterizations that are in good agreement with the dynamics exhibited by the underlying systems that are included in the fitting process. However, the parameter values obtained in good parameterizations can exhibit a significant amount of variability, raising issues of parameter identifiability and sensitivity. Along similar lines, we also find that the two models differ in terms of the ease of obtaining parameterizations that reproduce model dynamics accurately, most likely reflecting different levels of parameter identifiability for the two models.

  5. A Mathematical Spline-Based Model of Cardiac Left Ventricle Anatomy and Morphology

    Directory of Open Access Journals (Sweden)

    Sergei Pravdin

    2016-10-01

    Full Text Available Computer simulation of normal and diseased human heart activity requires a 3D anatomical model of the myocardium, including myofibers. For clinical applications, such a model has to be constructed based on routine methods of cardiac visualization, such as sonography. Symmetrical models are shown to be too rigid, so an analytical non-symmetrical model with enough flexibility is necessary. Based on previously-made anatomical models of the left ventricle, we propose a new, much more flexible spline-based analytical model. The model is fully described and verified against DT-MRI data. We show a way to construct it on the basis of sonography data. To use this model in further physiological simulations, we propose a numerical method to utilize finite differences in solving the reaction-diffusion problem together with an example of scroll wave dynamics simulation.

  6. Histotripsy for Pediatric Cardiac Applications: In Vivo Neonatal Pig Model

    Science.gov (United States)

    Miller, Ryan M.; Owens, Gabe; Ensing, Gregory; Ludomirsky, Achiau; Cain, Charles; Xu, Zhen

    2010-03-01

    This study investigated the in vivo feasibility of using histotripsy to non-invasively create a flow channel between the ventricles by generating a perforation of the ventricular septum, clinically referred to as a ventricular septum defect (VSD). The overall goal is to develop a non-invasive procedure to aid in the treatment of neonatal patients with complex congenital heart diseases such as Hypoplastic Left Heart Syndrome (HLHS). Histotripsy is a therapeutic ultrasound technique that produces mechanical fractionation of soft tissue through controlled cavitation. The study was conducted in a live and intact neonatal pig model. The ventricular septum in the neonatal pig heart was treated with histotripsy delivered by a spherically focused 1 MHz transducer positioned outside the chest wall. Histotripsy treatment was applied using 5-cycle ultrasound pulses at 1 kHz pulse repetition frequency with 12-18 MPa peak negative pressure. The treatment was guided and monitored with ultrasound imaging. In all nine subjects treated, a bubble cloud was generated on the ventricular septum using histotripsy, and visualized with ultrasound imaging. Within 20 seconds to 4 minutes following the initiation of a bubble cloud, a VSD was created in all nine pigs and confirmed by the detection of blood flow through the ventricular septum with color Doppler ultrasound. Gross morphology and histology on all hearts showed a demarcated perforation in the ventricular septum. This study shows that a VSD can be created in an intact neonatal animal using extracorporeal histotripsy under real-time ultrasound guidance.

  7. Cardiac Meets Skeletal: What’s New in Microfluidic Models for Muscle Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Roberta Visone

    2016-08-01

    Full Text Available In the last few years microfluidics and microfabrication technique principles have been extensively exploited for biomedical applications. In this framework, organs-on-a-chip represent promising tools to reproduce key features of functional tissue units within microscale culture chambers. These systems offer the possibility to investigate the effects of biochemical, mechanical, and electrical stimulations, which are usually applied to enhance the functionality of the engineered tissues. Since the functionality of muscle tissues relies on the 3D organization and on the perfect coupling between electrochemical stimulation and mechanical contraction, great efforts have been devoted to generate biomimetic skeletal and cardiac systems to allow high-throughput pathophysiological studies and drug screening. This review critically analyzes microfluidic platforms that were designed for skeletal and cardiac muscle tissue engineering. Our aim is to highlight which specific features of the engineered systems promoted a typical reorganization of the engineered construct and to discuss how promising design solutions exploited for skeletal muscle models could be applied to improve cardiac tissue models and vice versa.

  8. Biventricular Pacing Cardiac Contractility Modulation Improves Cardiac Contractile Function via Upregulating SERCA2 and miR-133 in a Rabbit Model of Congestive Heart Failure

    Directory of Open Access Journals (Sweden)

    Bin Ning

    2014-05-01

    Full Text Available Objective: To compare the effects of biventricular electrical pacing and conventional single-ventricular pacing for cardiac contractility modulation (CCM on cardiac contractile function and to delineate the underlying molecular mechanisms. Methods: Forty rabbits were divided into four groups before surgery: healthy control, HF sham, HF left ventricular pacing CCM (LVP-CCM, and HF biventricular pacing CCM (BVP-CCM groups with n=10 for each group. A rabbit model of chronic heart failure was established by ligating ascending aortic root of rabbits. Then electrical stimulations during the absolute refractory period were delivered to the anterior wall of left ventricle in the LVP-CCM group and on the anterior wall of both left and right ventricles in the BVP-CCM group lasting six hours per day for seven days. Changes in ventricular structure, cardiac function and electrocardiogram were monitored before and after CCM stimulation. Results: Compared with the sham-operated group, heart weight, heart weight index, LV end-systolic diameter (LVESD, LV end-diastolic diameter (LVEDD in the LVP-CCM and BVP-CCM groups were significantly decreased (ppp2+-ATPase (SERCA2a protein levels were upregulated by 1.7 and 2.4 fold, along with simultaneous upregulation of a cardiac-enriched microRNA miR-133 levels by 2.6 and 3.3 fold, in LVP-CCM and BVP-CCM, respectively, compared to sham. Conclusions: Biventricular pacing CCM is superior to conventional monoventricular pacing CCM, producing greater improvement cardiac contractile function. Greater upregulation of SERCA2 and miR-133 may account, at least partially, for the improvement by BVP-CCM.

  9. Reliability of pulse oximetry during cardiopulmonary resuscitation in a piglet model of neonatal cardiac arrest.

    Science.gov (United States)

    Hassan, Mohammad Ahmad; Mendler, Marc; Maurer, Miriam; Waitz, Markus; Huang, Li; Hummler, Helmut D

    2015-01-01

    Pulse oximetry is widely used in intensive care and emergency conditions to monitor arterial oxygenation and to guide oxygen therapy. To study the reliability of pulse oximetry in comparison with CO-oximetry in newborn piglets during cardiopulmonary resuscitation (CPR). In a prospective cohort study in 30 healthy newborn piglets, cardiac arrest was induced, and thereafter each piglet received CPR for 20 min. Arterial oxygen saturation was monitored continuously by pulse oximetry (SpO2). Arterial blood was analyzed for functional oxygenation (SaO2) every 2 min. SpO2 was compared with coinciding SaO2 values and bias considered whenever the difference (SpO2 - SaO2) was beyond ±5%. Bias values were decreased at the baseline measurements (mean: 2.5 ± 4.6%) with higher precision and accuracy compared with values across the experiment. Two minutes after cardiac arrest, there was a marked decrease in precision and accuracy as well as an increase in bias up to 13 ± 34%, reaching a maximum of 45.6 ± 28.3% after 10 min over a mean SaO2 range of 29-58%. Pulse oximetry showed increased bias and decreased accuracy and precision during CPR in a model of neonatal cardiac arrest. We recommend further studies to clarify the exact mechanisms of these false readings to improve reliability of pulse oximetry during the marked desaturation and hypoperfusion found during CPR. © 2014 S. Karger AG, Basel.

  10. Evaluation of exercise tolerance patients in cardiac rehabilitation D model based on 6 Minute Walk Test

    Directory of Open Access Journals (Sweden)

    Bielawa Lukasz.

    2012-12-01

    Full Text Available Evaluation of the results of 6-minute walk test depending on gender, age, left ventricular ejection fraction, the primary disease and BMI. Patients underwent assessment of Cardiac Rehabilitation Department in Szymbark in 2012 (80 people. Duration of rehabilitation for all patients was 21 days. The test was performed at the beginning and end of the cycle. Following the 3-week cardiac rehabilitation in the model D in a group of 80 patients with a mean age of 72 years achieved a statistically significant improvement in exercise capacity, expressed in the increase in test 6MWT distance by an average of 52 meters. In the study, men received final results statistically superior to women. The largest increase in the distance gained to patients after aortic valve prosthesis. People who are obese with a body mass index BMI over 30 have an average trip distance underperform both at baseline, final, and in the resulting increase of the distance than those with a BMI under 30. Prevention of obesity, one of the modifiable risk factors for cardiovascular disease should be the goal of training during cardiac rehabilitation patient education.

  11. Computational cardiology: the bidomain based modified Hill model incorporating viscous effects for cardiac defibrillation

    Science.gov (United States)

    Cansız, Barış; Dal, Hüsnü; Kaliske, Michael

    2017-10-01

    Working mechanisms of the cardiac defibrillation are still in debate due to the limited experimental facilities and one-third of patients even do not respond to cardiac resynchronization therapy. With an aim to develop a milestone towards reaching the unrevealed mechanisms of the defibrillation phenomenon, we propose a bidomain based finite element formulation of cardiac electromechanics by taking into account the viscous effects that are disregarded by many researchers. To do so, the material is deemed as an electro-visco-active material and described by the modified Hill model (Cansız et al. in Comput Methods Appl Mech Eng 315:434-466, 2017). On the numerical side, we utilize a staggered solution method, where the elliptic and parabolic part of the bidomain equations and the mechanical field are solved sequentially. The comparative simulations designate that the viscoelastic and elastic formulations lead to remarkably different outcomes upon an externally applied electric field to the myocardial tissue. Besides, the achieved framework requires significantly less computational time and memory compared to monolithic schemes without loss of stability for the presented examples.

  12. A comparative study of four intensive care outcome prediction models in cardiac surgery patients

    Directory of Open Access Journals (Sweden)

    Lehmann Thomas

    2011-03-01

    Full Text Available Abstract Background Outcome prediction scoring systems are increasingly used in intensive care medicine, but most were not developed for use in cardiac surgery patients. We compared the performance of four intensive care outcome prediction scoring systems (Acute Physiology and Chronic Health Evaluation II [APACHE II], Simplified Acute Physiology Score II [SAPS II], Sequential Organ Failure Assessment [SOFA], and Cardiac Surgery Score [CASUS] in patients after open heart surgery. Methods We prospectively included all consecutive adult patients who underwent open heart surgery and were admitted to the intensive care unit (ICU between January 1st 2007 and December 31st 2008. Scores were calculated daily from ICU admission until discharge. The outcome measure was ICU mortality. The performance of the four scores was assessed by calibration and discrimination statistics. Derived variables (Mean- and Max- scores were also evaluated. Results During the study period, 2801 patients (29.6% female were included. Mean age was 66.9 ± 10.7 years and the ICU mortality rate was 5.2%. Calibration tests for SOFA and CASUS were reliable throughout (p-value not Conclusions CASUS and SOFA are reliable ICU mortality risk stratification models for cardiac surgery patients. SAPS II and APACHE II did not perform well in terms of calibration and discrimination statistics.

  13. Liénard-type models for the simulation of the action potential of cardiac nodal cells

    Science.gov (United States)

    Podziemski, P.; Żebrowski, J. J.

    2013-10-01

    Existing models of cardiac cells which include multi-variable cardiac transmembrane current are too complex to simulate the long time dynamical properties of the heart rhythm. The large number of parameters that need to be defined and set for such models make them not only cumbersome to use but also require a large computing power. Consequently, the application of such models for the bedside analysis of heart rate of a specific patient may be difficult. Other ways of modelling need to be investigated. We consider the general problem of developing a model of cardiac pacemaker tissue that allows to combine the investigation of phenomena at a time scale of thousands of heart beats with the ability to reproduce realistic tissue-level characteristics of cell dynamics. We propose a modified van der Pol-Duffing equation-a Liénard-type oscillator-as a phenomenological model for cardiac nodal tissue, with certain important physiological similarities to ion-channel models of cardiac pacemaker cells. The model presented here is specifically designed to qualitatively reproduce mesoscopic characteristics of cell dynamics, including action potential duration (APD) restitution properties, phase response characteristics, and phase space structure. We show that these characteristics agree qualitatively with the extensive ionic models and experimental results in the literature [Anumonwo et al., 1991, [33], Cao et al., 1999, [49], Coster and Celler, 2003, [31], Qu, 2004, [45], Tsalikakis et al., 2007, [32], Inada et al., 2009, [14], Qu et al., 2010, [50

  14. Moving domain computational fluid dynamics to interface with an embryonic model of cardiac morphogenesis.

    Directory of Open Access Journals (Sweden)

    Juhyun Lee

    Full Text Available Peristaltic contraction of the embryonic heart tube produces time- and spatial-varying wall shear stress (WSS and pressure gradients (∇P across the atrioventricular (AV canal. Zebrafish (Danio rerio are a genetically tractable system to investigate cardiac morphogenesis. The use of Tg(fli1a:EGFP (y1 transgenic embryos allowed for delineation and two-dimensional reconstruction of the endocardium. This time-varying wall motion was then prescribed in a two-dimensional moving domain computational fluid dynamics (CFD model, providing new insights into spatial and temporal variations in WSS and ∇P during cardiac development. The CFD simulations were validated with particle image velocimetry (PIV across the atrioventricular (AV canal, revealing an increase in both velocities and heart rates, but a decrease in the duration of atrial systole from early to later stages. At 20-30 hours post fertilization (hpf, simulation results revealed bidirectional WSS across the AV canal in the heart tube in response to peristaltic motion of the wall. At 40-50 hpf, the tube structure undergoes cardiac looping, accompanied by a nearly 3-fold increase in WSS magnitude. At 110-120 hpf, distinct AV valve, atrium, ventricle, and bulbus arteriosus form, accompanied by incremental increases in both WSS magnitude and ∇P, but a decrease in bi-directional flow. Laminar flow develops across the AV canal at 20-30 hpf, and persists at 110-120 hpf. Reynolds numbers at the AV canal increase from 0.07±0.03 at 20-30 hpf to 0.23±0.07 at 110-120 hpf (p< 0.05, n=6, whereas Womersley numbers remain relatively unchanged from 0.11 to 0.13. Our moving domain simulations highlights hemodynamic changes in relation to cardiac morphogenesis; thereby, providing a 2-D quantitative approach to complement imaging analysis.

  15. FVB/NJ Mice Are a Useful Model for Examining Cardiac Adaptations to Treadmill Exercise.

    Science.gov (United States)

    Gibb, Andrew A; McNally, Lindsey A; Riggs, Daniel W; Conklin, Daniel J; Bhatnagar, Aruni; Hill, Bradford G

    2016-01-01

    Mice are commonly used to examine the mechanisms by which exercise improves cardiometabolic health; however, exercise compliance and adaptations are often strain-dependent or are variable due to inconsistency in exercise training protocols. In this study, we examined nocturnal/diurnal behavior, treadmill exercise compliance, and systemic as well as cardiac-specific exercise adaptations in two commonly used mouse strains, C57BL/6J, and FVB/NJ mice. Metabolic cage analysis indicated a strong nocturnal nature of C57BL/6J mice, whereas FVB/NJ mice showed no circadian element to activity, food or water intake, VO 2 , or VCO 2 . Initial exercise capacity tests revealed that, compared with C57BL/6J mice, FVB/NJ mice are capable of achieving nearly 2-fold higher workloads prior to exhaustion. FVB/NJ mice tested during the day were capable of achieving significantly more work compared with their night-tested counterparts. Following 4 weeks of training, FVB/NJ mice showed significant increases in exercise capacity as well as physiologic cardiac growth characterized by enlarged myocytes and higher mitochondrial DNA content. C57BL/6J mice showed no increases in exercise capacity or cardiac growth regardless of whether they exercised during the day or the night. This lack of adaptation in C57BL/6J mice was attributable, at least in part, to their progressive loss of compliance to the treadmill training protocol. We conclude that the FVB/NJ strain is a useful and robust mouse model for examining cardiac adaptations to treadmill exercise and that treadmill training during daytime hours does not negatively affect exercise compliance or capacity.

  16. Electrophysiologic and cellular characteristics of cardiomyocytes after X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Frieß, Johannes L., E-mail: johannes.friess@h-ab.de [University for Applied Sciences Aschaffenburg, biomems lab, Würzburger Straße 45, 63743 Aschaffenburg (Germany); Heselich, Anja [Technische Universität Darmstadt, Developmental Biology and Neurogenetics, Schnittspahnstraße 13, 64287 Darmstadt (Germany); Ritter, Sylvia [Helmholtz Institute for Heavy Ion Research (GSI), Biophysics Department, Planckstraße 1, 64291 Darmstadt (Germany); Haber, Angelina; Kaiser, Nicole; Layer, Paul G. [Technische Universität Darmstadt, Developmental Biology and Neurogenetics, Schnittspahnstraße 13, 64287 Darmstadt (Germany); Thielemann, Christiane [University for Applied Sciences Aschaffenburg, biomems lab, Würzburger Straße 45, 63743 Aschaffenburg (Germany)

    2015-07-15

    Highlights: • Electrophysiologic and cellular effects of X-rays on primary cardiac cell cultures. • X-ray doses between 0.5 and 7 Gy. • Higher beat rate at reduced field action potential durations 7 days after exposure. • More increased cell cycle checkpoint arrest in G2/M than in G1/S phase. • Induced DSBs were mostly repaired within 24 h after irradiation. - Abstract: The aim of this study was to investigate possible effects of ionizing irradiation on the electrophysiological functionality of cardiac myocytes in vitro. Primary chicken cardiomyocytes with spontaneous beating activity were irradiated with X-rays (dose range of 0.5–7 Gy). Functional alterations of cardiac cell cultures were evaluated up to 7 days after irradiation using microelectrode arrays. As examined endpoints, cell proliferation, apoptosis, reactive oxygen species (ROS) and DNA damage were evaluated. The beat rate of the cardiac networks increased in a dose-dependent manner over one week. The duration of single action potentials was slightly shortened. Additionally, we observed lower numbers of mitotic and S-phase cells at certain time points after irradiation. Also, the number of cells with γH2AX foci increased as a function of the dose. No significant changes in the level of ROS were detected. Induction of apoptosis was generally negligibly low. This is the first report to directly show alterations in cardiac electrophysiology caused by ionizing radiation, which were detectable up to one week after irradiation.

  17. Electrophysiologic and cellular characteristics of cardiomyocytes after X-ray irradiation

    International Nuclear Information System (INIS)

    Frieß, Johannes L.; Heselich, Anja; Ritter, Sylvia; Haber, Angelina; Kaiser, Nicole; Layer, Paul G.; Thielemann, Christiane

    2015-01-01

    Highlights: • Electrophysiologic and cellular effects of X-rays on primary cardiac cell cultures. • X-ray doses between 0.5 and 7 Gy. • Higher beat rate at reduced field action potential durations 7 days after exposure. • More increased cell cycle checkpoint arrest in G2/M than in G1/S phase. • Induced DSBs were mostly repaired within 24 h after irradiation. - Abstract: The aim of this study was to investigate possible effects of ionizing irradiation on the electrophysiological functionality of cardiac myocytes in vitro. Primary chicken cardiomyocytes with spontaneous beating activity were irradiated with X-rays (dose range of 0.5–7 Gy). Functional alterations of cardiac cell cultures were evaluated up to 7 days after irradiation using microelectrode arrays. As examined endpoints, cell proliferation, apoptosis, reactive oxygen species (ROS) and DNA damage were evaluated. The beat rate of the cardiac networks increased in a dose-dependent manner over one week. The duration of single action potentials was slightly shortened. Additionally, we observed lower numbers of mitotic and S-phase cells at certain time points after irradiation. Also, the number of cells with γH2AX foci increased as a function of the dose. No significant changes in the level of ROS were detected. Induction of apoptosis was generally negligibly low. This is the first report to directly show alterations in cardiac electrophysiology caused by ionizing radiation, which were detectable up to one week after irradiation

  18. Risk prediction models for major adverse cardiac event (MACE) following percutaneous coronary intervention (PCI): A review

    Science.gov (United States)

    Manan, Norhafizah A.; Abidin, Basir

    2015-02-01

    Five percent of patients who went through Percutaneous Coronary Intervention (PCI) experienced Major Adverse Cardiac Events (MACE) after PCI procedure. Risk prediction of MACE following a PCI procedure therefore is helpful. This work describes a review of such prediction models currently in use. Literature search was done on PubMed and SCOPUS database. Thirty literatures were found but only 4 studies were chosen based on the data used, design, and outcome of the study. Particular emphasis was given and commented on the study design, population, sample size, modeling method, predictors, outcomes, discrimination and calibration of the model. All the models had acceptable discrimination ability (C-statistics >0.7) and good calibration (Hosmer-Lameshow P-value >0.05). Most common model used was multivariate logistic regression and most popular predictor was age.

  19. Intracardiac Echocardiography for Structural Heart and Electrophysiological Interventions.

    Science.gov (United States)

    Basman, Craig; Parmar, Yuvrajsinh J; Kronzon, Itzhak

    2017-09-06

    With an increasing number of interventional procedures performed for structural heart disease and cardiac arrhythmias each year, echocardiographic guidance is necessary for safe and efficient results. The purpose of this review article is to overview the principles of intracardiac echocardiography (ICE) and describes the peri-interventional role of ICE in a variety of structural heart disease and electrophysiological interventions. Both transthoracic (TTE) and transesophageal echocardiography have limitations. ICE provides the advantage of imaging from within the heart, providing shorter image distances and higher resolution. ICE may be performed without sedation and avoids esophageal intubation as with transesophageal echocardiography (TEE). Limitations of ICE include the need for additional venous access with possibility of vascular complications, potentially higher costs, and a learning curve for new operators. Data supports the use of ICE in guiding device closure of interatrial shunts, transseptal puncture, and electrophysiologic procedures. This paper reviews the more recent reports that ICE may be used for primary guidance or as a supplement to TEE in patients undergoing left atrial appendage (LAA) closure, interatrial shunt closure, transaortic valve implantation (TAVI), percutaneous mitral valve repair (PMVR), paravalvular leak (PVL) closure, aortic interventions, transcatheter pulmonary valve replacement (tPVR), ventricular septal defect (VSD), and patent ductus arteriosus (PDA) closure. ICE imaging technology will continue to expand and help improve structural heart and electrophysiology interventions.

  20. Reprocessing single-use cardiac catheters for interventional cardiology. A cost-minimization model for estimating potential saving at departmental scale and national level

    Directory of Open Access Journals (Sweden)

    Francesco Tessarolo

    2009-06-01

    Full Text Available

    Background: The utilization of single-use percutaneous catheters (SUDs is a common practice in interventional cardiology, but the increasing of cardiac interventions and the consequent economic load demand for assessing SUDs’ reuse. The study aimed at estimating the potential saving for Italian cardiology departments in the hypothesis that reprocessing and reuse of SUD is performed by guaranteeing safety and efficiency of the reconditioned device as high as the new marketed one.

    Methods: A cost-minimization model was applied from the perspective of the health national service. Input parameters for the model were settled by reviewing published data on technical, hygiene and functional properties of reprocessed electrophysiology (EP and percutaneous transluminal coronary angioplasty (PTCA catheters. Potential saving at department level was calculated as percentage of the actual expenditure for purchasing single-use devices. Two-ways sensitivity analysis was conducted on main cost drivers. Finally, saving at national level was estimated.

    Results: The revision of technical and safety data showed the feasibility of reprocessing and reuse of EP and PTCA catheters under determined constrains. Potential savings of 39%, and 12% were calculated at department level for EP and PTCA catheters, respectively. Sensitivity analysis showed saving was dependent primarily on departmental workload. Major variations in saving occurred in the range between one and 200 catheters per year. The cut-off between benefit and charges was also related to regeneration rate and maximum number of uses. The estimate of potential saving at national level ranged in the interval from €19.85M to €24.24M.

    Conclusions:When safety and efficiency is assured by certified reuse processing, substantial saving could be achieved both at departmental and national level contributing to optimize budget

  1. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology.

    Science.gov (United States)

    Abbott, Jeffrey; Ye, Tianyang; Ham, Donhee; Park, Hongkun

    2018-03-20

    , clarifying how the nanoelectrode attains intracellular access. This understanding will be translated into a circuit model for the nanobio interface, which we will then use to lay out the strategies for improving the interface. The intracellular interface of the nanoelectrode is currently inferior to that of the patch clamp electrode; reaching this benchmark will be an exciting challenge that involves optimization of electrode geometries, materials, chemical modifications, electroporation protocols, and recording/stimulation electronics, as we describe in the Account. Another important theme of this Account, beyond the optimization of the individual nanoelectrode-cell interface, is the scalability of the nanoscale electrodes. We will discuss this theme using a recent development from our groups as an example, where an array of ca. 1000 nanoelectrode pixels fabricated on a CMOS integrated circuit chip performs parallel intracellular recording from a few hundreds of cardiomyocytes, which marks a new milestone in electrophysiology.

  2. Biomechanics Simulations Using Cubic Hermite Meshes with Extraordinary Nodes for Isogeometric Cardiac Modeling

    Science.gov (United States)

    Gonzales, Matthew J.; Sturgeon, Gregory; Segars, W. Paul; McCulloch, Andrew D.

    2016-01-01

    Cubic Hermite hexahedral finite element meshes have some well-known advantages over linear tetrahedral finite element meshes in biomechanical and anatomic modeling using isogeometric analysis. These include faster convergence rates as well as the ability to easily model rule-based anatomic features such as cardiac fiber directions. However, it is not possible to create closed complex objects with only regular nodes; these objects require the presence of extraordinary nodes (nodes with 3 or >= 5 adjacent elements in 2D) in the mesh. The presence of extraordinary nodes requires new constraints on the derivatives of adjacent elements to maintain continuity. We have developed a new method that uses an ensemble coordinate frame at the nodes and a local-to-global mapping to maintain continuity. In this paper, we make use of this mapping to create cubic Hermite models of the human ventricles and a four-chamber heart. We also extend the methods to the finite element equations to perform biomechanics simulations using these meshes. The new methods are validated using simple test models and applied to anatomically accurate ventricular meshes with valve annuli to simulate complete cardiac cycle simulations. PMID:27182096

  3. Risk Factor Analyses for the Return of Spontaneous Circulation in the Asphyxiation Cardiac Arrest Porcine Model

    Directory of Open Access Journals (Sweden)

    Cai-Jun Wu

    2015-01-01

    Full Text Available Background: Animal models of asphyxiation cardiac arrest (ACA are frequently used in basic research to mirror the clinical course of cardiac arrest (CA. The rates of the return of spontaneous circulation (ROSC in ACA animal models are lower than those from studies that have utilized ventricular fibrillation (VF animal models. The purpose of this study was to characterize the factors associated with the ROSC in the ACA porcine model. Methods: Forty-eight healthy miniature pigs underwent endotracheal tube clamping to induce CA. Once induced, CA was maintained untreated for a period of 8 min. Two minutes following the initiation of cardiopulmonary resuscitation (CPR, defibrillation was attempted until ROSC was achieved or the animal died. To assess the factors associated with ROSC in this CA model, logistic regression analyses were performed to analyze gender, the time of preparation, the amplitude spectrum area (AMSA from the beginning of CPR and the pH at the beginning of CPR. A receiver-operating characteristic (ROC curve was used to evaluate the predictive value of AMSA for ROSC. Results: ROSC was only 52.1% successful in this ACA porcine model. The multivariate logistic regression analyses revealed that ROSC significantly depended on the time of preparation, AMSA at the beginning of CPR and pH at the beginning of CPR. The area under the ROC curve in for AMSA at the beginning of CPR was 0.878 successful in predicting ROSC (95% confidence intervals: 0.773∼0.983, and the optimum cut-off value was 15.62 (specificity 95.7% and sensitivity 80.0%. Conclusions: The time of preparation, AMSA and the pH at the beginning of CPR were associated with ROSC in this ACA porcine model. AMSA also predicted the likelihood of ROSC in this ACA animal model.

  4. Coupled iterated map models of action potential dynamics in a one-dimensional cable of cardiac cells

    International Nuclear Information System (INIS)

    Wang Shihong; Xie Yuanfang; Qu Zhilin

    2008-01-01

    Low-dimensional iterated map models have been widely used to study action potential dynamics in isolated cardiac cells. Coupled iterated map models have also been widely used to investigate action potential propagation dynamics in one-dimensional (1D) coupled cardiac cells, however, these models are usually empirical and not carefully validated. In this study, we first developed two coupled iterated map models which are the standard forms of diffusively coupled maps and overcome the limitations of the previous models. We then determined the coupling strength and space constant by quantitatively comparing the 1D action potential duration profile from the coupled cardiac cell model described by differential equations with that of the coupled iterated map models. To further validate the coupled iterated map models, we compared the stability conditions of the spatially uniform state of the coupled iterated maps and those of the 1D ionic model and showed that the coupled iterated map model could well recapitulate the stability conditions, i.e. the spatially uniform state is stable unless the state is chaotic. Finally, we combined conduction into the developed coupled iterated map model to study the effects of coupling strength on wave stabilities and showed that the diffusive coupling between cardiac cells tends to suppress instabilities during reentry in a 1D ring and the onset of discordant alternans in a periodically paced 1D cable

  5. Ventricular Fibrillation-Induced Cardiac Arrest Results in Regional Cardiac Injury Preferentially in Left Anterior Descending Coronary Artery Territory in Piglet Model

    Directory of Open Access Journals (Sweden)

    Giridhar Kaliki Venkata

    2016-01-01

    Full Text Available Objective. Decreased cardiac function after resuscitation from cardiac arrest (CA results from global ischemia of the myocardium. In the evolution of postarrest myocardial dysfunction, preferential involvement of any coronary arterial territory is not known. We hypothesized that there is no preferential involvement of any coronary artery during electrical induced ventricular fibrillation (VF in piglet model. Design. Prospective, randomized controlled study. Methods. 12 piglets were randomized to baseline and electrical induced VF. After 5 min, the animals were resuscitated according to AHA PALS guidelines. After return of spontaneous circulation (ROSC, animals were observed for an additional 4 hours prior to cardiac MRI. Data (mean ± SD was analyzed using unpaired t-test; p value ≤ 0.05 was considered statistically significant. Results. Segmental wall motion (mm; baseline versus postarrest group in segment 7 (left anterior descending (LAD was 4.68±0.54 versus 3.31±0.64, p=0.0026. In segment 13, it was 3.82±0.96 versus 2.58±0.82, p=0.02. In segment 14, it was 2.42±0.44 versus 1.29±0.99, p=0.028. Conclusion. Postarrest myocardial dysfunction resulted in segmental wall motion defects in the LAD territory. There were no perfusion defects in the involved segments.

  6. Complex restitution behavior and reentry in a cardiac tissue model for neonatal mice.

    Science.gov (United States)

    Mayer, Andreas; Bittihn, Philip; Luther, Stefan

    2017-10-01

    Spatiotemporal dynamics in cardiac tissue emerging from the coupling of individual cardiomyocytes underlie the heart's normal rhythm as well as undesired and possibly life-threatening arrhythmias. While single cells and their transmembrane currents have been studied extensively, systematically investigating spatiotemporal dynamics is complicated by the nontrivial relationship between single-cell and emergent tissue properties. Mathematical models have been employed to bridge this gap and contribute to a deepened understanding of the onset, development, and termination of arrhythmias. However, no such tissue-level model currently exists for neonatal mice. Here, we build on a recent single-cell model of neonatal mouse cardiomyocytes by Wang and Sobie ( Am. J. Physiol. Heart Circ. Physiol 294:H2565) to predict properties that are commonly used to gauge arrhythmogenicity of cardiac substrates. We modify the model to yield well-defined behavior for common experimental protocols and construct a spatially extended version to study emergent tissue dynamics. We find a complex action potential duration (APD) restitution behavior characterized by a nonmonotonic dependence on pacing frequency. Electrotonic coupling in tissue leads not only to changes in action potential morphology but can also induce spatially concordant and discordant alternans not observed in the single-cell model. In two-dimensional tissue, our results show that the model supports stable functional reentry, whose frequency is in good agreement with that observed in adult mice. Our results can be used to further constrain and validate the mathematical model of neonatal mouse cardiomyocytes with future experiments. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  7. A novel cardiac MR chamber volume model for mechanical dyssynchrony assessment

    Science.gov (United States)

    Song, Ting; Fung, Maggie; Stainsby, Jeffrey A.; Hood, Maureen N.; Ho, Vincent B.

    2009-02-01

    A novel cardiac chamber volume model is proposed for the assessment of left ventricular mechanical dyssynchrony. The tool is potentially useful for assessment of regional cardiac function and identification of mechanical dyssynchrony on MRI. Dyssynchrony results typically from a contraction delay between one or more individual left ventricular segments, which in turn leads to inefficient ventricular function and ultimately heart failure. Cardiac resynchronization therapy has emerged as an electrical treatment of choice for heart failure patients with dyssynchrony. Prior MRI techniques have relied on assessments of actual cardiac wall changes either using standard cine MR images or specialized pulse sequences. In this abstract, we detail a semi-automated method that evaluates dyssynchrony based on segmental volumetric analysis of the left ventricular (LV) chamber as illustrated on standard cine MR images. Twelve sectors each were chosen for the basal and mid-ventricular slices and 8 sectors were chosen for apical slices for a total of 32 sectors. For each slice (i.e. basal, mid and apical), a systolic dyssynchrony index (SDI) was measured. SDI, a parameter used for 3D echocardiographic analysis of dyssynchrony, was defined as the corrected standard deviation of the time at which minimal volume is reached in each sector. The SDI measurement of a healthy volunteer was 3.54%. In a patient with acute myocardial infarction, the SDI measurements 10.98%, 16.57% and 1.41% for basal, mid-ventricular and apical LV slices, respectively. Based on published 3D echocardiogram reference threshold values, the patient's SDI corresponds to moderate basal dysfunction, severe mid-ventricular dysfunction, and normal apical LV function, which were confirmed on echocardiography. The LV chamber segmental volume analysis model and SDI is feasible using standard cine MR data and may provide more reliable assessment of patients with dyssynchrony especially if the LV myocardium is thin or if

  8. Systematic reduction of a detailed atrial myocyte model

    Science.gov (United States)

    Lombardo, Daniel M.; Rappel, Wouter-Jan

    2017-09-01

    Cardiac arrhythmias are a major health concern and often involve poorly understood mechanisms. Mathematical modeling is able to provide insights into these mechanisms which might result in better treatment options. A key element of this modeling is a description of the electrophysiological properties of cardiac cells. A number of electrophysiological models have been developed, ranging from highly detailed and complex models, containing numerous parameters and variables, to simplified models in which variables and parameters no longer directly correspond to electrophysiological quantities. In this study, we present a systematic reduction of the complexity of the detailed model of Koivumaki et al. using the recently developed manifold boundary approximation method. We reduce the original model, containing 42 variables and 37 parameters, to a model with only 11 variables and 5 parameters and show that this reduced model can accurately reproduce the action potential shape and restitution curve of the original model. The reduced model contains only five currents and all variables and parameters can be directly linked to electrophysiological quantities. Due to its reduction in complexity, simulation times of our model are decreased more than three-fold. Furthermore, fitting the reduced model to clinical data is much more efficient, a potentially important step towards patient-specific modeling.

  9. Molecular and Subcellular-Scale Modeling of Nucleotide Diffusion in the Cardiac Myofilament Lattice

    Science.gov (United States)

    Kekenes-Huskey, Peter M.; Liao, Tao; Gillette, Andrew K.; Hake, Johan E.; Zhang, Yongjie; Michailova, Anushka P.; McCulloch, Andrew D.; McCammon, J. Andrew

    2013-01-01

    Contractile function of cardiac cells is driven by the sliding displacement of myofilaments powered by the cycling myosin crossbridges. Critical to this process is the availability of ATP, which myosin hydrolyzes during the cross-bridge cycle. The diffusion of adenine nucleotides through the myofilament lattice has been shown to be anisotropic, with slower radial diffusion perpendicular to the filament axis relative to parallel, and is attributed to the periodic hexagonal arrangement of the thin (actin) and thick (myosin) filaments. We investigated whether atomistic-resolution details of myofilament proteins can refine coarse-grain estimates of diffusional anisotropy for adenine nucleotides in the cardiac myofibril, using homogenization theory and atomistic thin filament models from the Protein Data Bank. Our results demonstrate considerable anisotropy in ATP and ADP diffusion constants that is consistent with experimental measurements and dependent on lattice spacing and myofilament overlap. A reaction-diffusion model of the half-sarcomere further suggests that diffusional anisotropy may lead to modest adenine nucleotide gradients in the myoplasm under physiological conditions. PMID:24209858

  10. Association of ADAMTS-7 Levels with Cardiac Function in a Rat Model of Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Wenjing Wu

    2016-03-01

    Full Text Available Background/Aims: High ADAMTS-7 levels are associated with acute myocardial infarction (AMI, although its involvement in ventricular remodeling is unclear. In this study, we investigated the association between ADAMTS-7 expression and cardiac function in a rat AMI model. Methods: Sprague-Dawley rats were randomized into AMI (n = 40 and sham (n = 20 groups. The left anterior descending artery was sutured to model AMI. Before surgery and 7, 14, 28, and 42 days post-surgery, ADAMTS-7 and brain natriuretic peptide (BNP, and cartilage oligomeric matrix protein (COMP were assessed by ELISA, western blot, real-time RT-PCR, and/or immunohistochemistry. Cardiac functional and structural parameters were assessed by M-mode echocardiography. Results: After AMI, plasma ADAMTS-7 levels increased, peaking on day 28 (AMI: 13.2 ± 6.3 vs. sham: 3.4 ± 1.3 ng/ml, P P = 0.025, left ventricular end-diastolic diameter (r = 0.695, P = 0.041, left ventricular end-systolic diameter (r = 0.710, P = 0.039, left ventricular ejection fraction (r = 0.695, P = 0.036, and left ventricular short-axis fractional shortening (r = 0.721, P = 0.024. Conclusions: ADAMTS-7 levels may reflect the degree of ventricular remodeling after AMI.

  11. Induced KCNQ1 autoimmunity accelerates cardiac repolarization in rabbits: potential significance in arrhythmogenesis and antiarrhythmic therapy.

    Science.gov (United States)

    Li, Jin; Maguy, Ange; Duverger, James Elber; Vigneault, Patrick; Comtois, Philippe; Shi, Yanfen; Tardif, Jean-Claude; Thomas, Dierk; Nattel, Stanley

    2014-11-01

    Autoantibodies directed against various cardiac receptors have been implicated in cardiomyopathy and heart rhythm disturbances. In a previous study among patients with dilated cardiomyopathy, autoantibodies targeting the cardiac voltage-gated KCNQ1 K(+) channel were associated with shortened corrected QT intervals (QTc). However, the electrophysiologic actions of KCNQ1 autoimmunity have not been assessed experimentally in a direct fashion. The purpose of this study was to investigate the cardiac electrophysiologic effects of KCNQ1 autoantibody production induced by vaccination in a rabbit model. Rabbits were immunized with KCNQ1 channel peptide. ECG recordings were obtained during a 1-month follow-up period. Rabbits then underwent in vivo electrophysiologic study, after which cardiomyocytes were isolated for analysis of slow delayed rectifier current (IKs) and action potential properties via patch-clamp. KCNQ1-immunized rabbits exhibited shortening of QTc compared to sham-immunized controls. Reduced ventricular effective refractory periods and increased susceptibility to ventricular tachyarrhythmia induction were noted in KCNQ1-immunized rabbits upon programmed ventricular stimulation. Action potential durations were shortened in cardiomyocytes isolated from KCNQ1-immunized rabbits compared to the sham group. IKs step and tail current densities were enhanced after KCNQ1 immunization. Functional and structural changes of the heart were not observed. The potential therapeutic significance of KCNQ1 immunization was then explored in a dofetilide-induced long QT rabbit model. KCNQ1 immunization prevented dofetilide-induced QTc prolongation and attenuated long QT-related arrhythmias. Induction of KCNQ1 autoimmunity accelerates cardiac repolarization and increases susceptibility to ventricular tachyarrhythmia induction through IKs enhancement. On the other hand, vaccination against KCNQ1 ameliorates drug-induced QTc prolongation and might be useful therapeutically to

  12. Is a Three-Dimensional Printing Model Better Than a Traditional Cardiac Model for Medical Education? A Pilot Randomized Controlled Study.

    Science.gov (United States)

    Wang, Zhongmin; Liu, Yuhao; Luo, Hongxing; Gao, Chuanyu; Zhang, Jing; Dai, Yuya

    2017-11-01

    Three-dimensional (3D) printing is a newly-emerged technology converting a series of two-dimensional images to a touchable 3D model, but no studies have investigated whether or not a 3D printing model is better than a traditional cardiac model for medical education. A 3D printing cardiac model was generated using multi-slice computed tomography datasets. Thirty-four medical students were randomized to either the 3D Printing Group taught with the aid of a 3D printing cardiac model or the Traditional Model Group with a commonly used plastic cardiac model. Questionnaires with 10 medical questions and 3 evaluative questions were filled in by the students. A 3D printing cardiac model was successfully generated. Students in the 3D Printing Group were slightly quicker to answer all questions when compared with the Traditional Model Group (224.53 ± 44.13 s vs. 238.71 ± 68.46 s, p = 0.09), but the total score was not significantly different (6.24 ± 1.30 vs. 7.18 ± 1.70, p = 0.12). Neither the students'satisfaction (p = 0.48) nor their understanding of cardiac structures (p = 0.24) was significantly different between two groups. More students in the 3D Printing Group believed that they had understood at least 90% of teaching content (6 vs. 1). Both groups had 12 (70.6%) students who preferred a 3D printing model for medical education. A 3D printing model was not significantly superior to a traditional model in teaching cardiac diseases in our pilot randomized controlled study, yet more studies may be conducted to validate the real effect of 3D printing on medical education.

  13. A comparative study of four intensive care outcome prediction models in cardiac surgery patients.

    Science.gov (United States)

    Doerr, Fabian; Badreldin, Akmal Ma; Heldwein, Matthias B; Bossert, Torsten; Richter, Markus; Lehmann, Thomas; Bayer, Ole; Hekmat, Khosro

    2011-03-01

    Outcome prediction scoring systems are increasingly used in intensive care medicine, but most were not developed for use in cardiac surgery patients. We compared the performance of four intensive care outcome prediction scoring systems (Acute Physiology and Chronic Health Evaluation II [APACHE II], Simplified Acute Physiology Score II [SAPS II], Sequential Organ Failure Assessment [SOFA], and Cardiac Surgery Score [CASUS]) in patients after open heart surgery. We prospectively included all consecutive adult patients who underwent open heart surgery and were admitted to the intensive care unit (ICU) between January 1st 2007 and December 31st 2008. Scores were calculated daily from ICU admission until discharge. The outcome measure was ICU mortality. The performance of the four scores was assessed by calibration and discrimination statistics. Derived variables (Mean- and Max- scores) were also evaluated. During the study period, 2801 patients (29.6% female) were included. Mean age was 66.9 ± 10.7 years and the ICU mortality rate was 5.2%. Calibration tests for SOFA and CASUS were reliable throughout (p-value not predicted and observed outcome for SAPS II (days 1, 2, 3 and 5) and APACHE II (days 2 and 3). CASUS, and its mean- and maximum-derivatives, discriminated better between survivors and non-survivors than the other scores throughout the study (area under curve ≥ 0.90). In order of best discrimination, CASUS was followed by SOFA, then SAPS II, and finally APACHE II. SAPS II and APACHE II derivatives had discrimination results that were superior to those of the SOFA derivatives. CASUS and SOFA are reliable ICU mortality risk stratification models for cardiac surgery patients. SAPS II and APACHE II did not perform well in terms of calibration and discrimination statistics.

  14. Identifying cardiac syncope based on clinical history: a literature-based model tested in four independent datasets.

    Science.gov (United States)

    Berecki-Gisolf, Janneke; Sheldon, Aaron; Wieling, Wouter; van Dijk, Nynke; Costantino, Giorgio; Furlan, Raffaello; Shen, Win-Kuang; Sheldon, Robert

    2013-01-01

    We aimed to develop and test a literature-based model for symptoms that associate with cardiac causes of syncope. Seven studies (the derivation sample) reporting ≥2 predictors of cardiac syncope were identified (4 Italian, 1 Swiss, 1 Canadian, and 1 from the United States). From these, 10 criteria were identified as diagnostic predictors. The conditional probability of each predictor was calculated by summation of the reported frequencies. A model of conditional probabilities and a priori probabilities of cardiac syncope was constructed. The model was tested in four datasets of patients with syncope (the test sample) from Calgary (n=670; 21% had cardiac syncope), Amsterdam (n=503; 9%), Milan (n=689; 5%) and Rochester (3877; 11%). In the derivation sample ten variables were significantly associated with cardiac syncope: age, gender, structural heart disease, low number of spells, brief or absent prodrome, supine syncope, effort syncope, and absence of nausea, diaphoresis and blurred vision. Fitting the test datasets to the full model gave C-statistics of 0.87 (Calgary), 0.84 (Amsterdam), 0.72 (Milan) and 0.71 (Rochester). Model sensitivity and specificity were 92% and 68% for Calgary, 86% and 67% for Amsterdam, 76% and 59% for Milan, and 73% and 52% for Rochester. A model with 5 variables (age, gender, structural heart disease, low number of spells, and lack of prodromal symptoms) was as accurate as the total set. A simple literature-based Bayesian model of historical criteria can distinguish patients with cardiac syncope from other patients with syncope with moderate accuracy.

  15. Identifying cardiac syncope based on clinical history: a literature-based model tested in four independent datasets.

    Directory of Open Access Journals (Sweden)

    Janneke Berecki-Gisolf

    Full Text Available BACKGROUND: We aimed to develop and test a literature-based model for symptoms that associate with cardiac causes of syncope. METHODS AND RESULTS: Seven studies (the derivation sample reporting ≥2 predictors of cardiac syncope were identified (4 Italian, 1 Swiss, 1 Canadian, and 1 from the United States. From these, 10 criteria were identified as diagnostic predictors. The conditional probability of each predictor was calculated by summation of the reported frequencies. A model of conditional probabilities and a priori probabilities of cardiac syncope was constructed. The model was tested in four datasets of patients with syncope (the test sample from Calgary (n=670; 21% had cardiac syncope, Amsterdam (n=503; 9%, Milan (n=689; 5% and Rochester (3877; 11%. In the derivation sample ten variables were significantly associated with cardiac syncope: age, gender, structural heart disease, low number of spells, brief or absent prodrome, supine syncope, effort syncope, and absence of nausea, diaphoresis and blurred vision. Fitting the test datasets to the full model gave C-statistics of 0.87 (Calgary, 0.84 (Amsterdam, 0.72 (Milan and 0.71 (Rochester. Model sensitivity and specificity were 92% and 68% for Calgary, 86% and 67% for Amsterdam, 76% and 59% for Milan, and 73% and 52% for Rochester. A model with 5 variables (age, gender, structural heart disease, low number of spells, and lack of prodromal symptoms was as accurate as the total set. CONCLUSION: A simple literature-based Bayesian model of historical criteria can distinguish patients with cardiac syncope from other patients with syncope with moderate accuracy.

  16. Development of a swine model of left bundle branch block for experimental studies of cardiac resynchronization therapy.

    Science.gov (United States)

    Rigol, Montserrat; Solanes, Núria; Fernandez-Armenta, Juan; Silva, Etelvino; Doltra, Adelina; Duchateau, Nicolas; Barcelo, Aina; Gabrielli, Luigi; Bijnens, Bart; Berruezo, Antonio; Brugada, Josep; Sitges, Marta

    2013-08-01

    Animal models that mimic human electrical and mechanical dyssynchrony often associated with chronic heart failure would provide an essential tool to investigate factors influencing response to cardiac resynchronization therapy. A standardized closed-chest porcine model of left bundle branch block (LBBB) was developed using 16 pigs. Radiofrequency applications were performed to induce LBBB, which was confirmed by QRS widening, a surface electrocardiogram pattern concordant with LBBB, and a prolonged activation time from endocardial. Echocardiography confirmed abnormal motion of the septum, which was not present at the baseline echocardiogram. High susceptibility of pigs to ventricular fibrillation during the endocardial ablation was overcome by applying high-rate pacing during radiofrequency applications. This is the first study to devise a closed-chest porcine model of LBBB that closely reproduces abnormalities found in patients with electrical and mechanical cardiac dyssynchrony, and provides a useful tool to investigate the basic mechanisms underlying cardiac resynchronization therapy benefits in heart failure.

  17. Ion Channel ElectroPhysiology Ontology (ICEPO) - a case study of text mining assisted ontology development.

    Science.gov (United States)

    Elayavilli, Ravikumar Komandur; Liu, Hongfang

    2016-01-01

    Computational modeling of biological cascades is of great interest to quantitative biologists. Biomedical text has been a rich source for quantitative information. Gathering quantitative parameters and values from biomedical text is one significant challenge in the early steps of computational modeling as it involves huge manual effort. While automatically extracting such quantitative information from bio-medical text may offer some relief, lack of ontological representation for a subdomain serves as impedance in normalizing textual extractions to a standard representation. This may render textual extractions less meaningful to the domain experts. In this work, we propose a rule-based approach to automatically extract relations involving quantitative data from biomedical text describing ion channel electrophysiology. We further translated the quantitative assertions extracted through text mining to a formal representation that may help in constructing ontology for ion channel events using a rule based approach. We have developed Ion Channel ElectroPhysiology Ontology (ICEPO) by integrating the information represented in closely related ontologies such as, Cell Physiology Ontology (CPO), and Cardiac Electro Physiology Ontology (CPEO) and the knowledge provided by domain experts. The rule-based system achieved an overall F-measure of 68.93% in extracting the quantitative data assertions system on an independently annotated blind data set. We further made an initial attempt in formalizing the quantitative data assertions extracted from the biomedical text into a formal representation that offers potential to facilitate the integration of text mining into ontological workflow, a novel aspect of this study. This work is a case study where we created a platform that provides formal interaction between ontology development and text mining. We have achieved partial success in extracting quantitative assertions from the biomedical text and formalizing them in ontological

  18. Characterization of microminipigs as an in vivo experimental model for cardiac safety pharmacology

    Directory of Open Access Journals (Sweden)

    Suchitra Matsukura

    2017-02-01

    Full Text Available We pharmacologically characterized microminipigs as an in vivo experimental model by assessing cardiovascular effects of pilsicainide, verapamil and E-4031, which can preferentially inhibit cardiac Na+, Ca2+ and K+ channels, respectively. Intravenous infusion of 1 mg/kg of pilsicainide (n = 4, 0.1 mg/kg of verapamil (n = 4 and 0.01 followed by 0.1 mg/kg of E-4031 (n = 5 over 10 min decreased the heart rate, mean blood pressure and ventricular contractility. Moreover, pilsicainide prolonged the PR interval, QRS width and QTc; verapamil prolonged the PR interval, but shortened the QRS width and QTc; and E-4031 prolonged the QTc, whereas no substantial change was detected in the PR interval or QRS width. Peak plasma concentrations of pilsicainide, verapamil and E-4031 in microminipigs were 1.7–4.8 times higher than those expected in humans and dogs, possibly due to smaller effective volume of drug distribution. The extent of the drug-induced cardiovascular responses was generally greater in microminipigs than in humans and dogs, which could be explained by the following possibilities; namely unique pharmacokinetic profile, less great reflex-mediated increase of sympathetic tone and/or smaller repolarization reserve in microminipigs. These information may make it feasible to apply this new-type animal to a tool for assessing cardiac safety profiles of new chemical entities.

  19. [Acute kidney injury after pediatric cardiac surgery: risk factors and outcomes. Proposal for a predictive model].

    Science.gov (United States)

    Cardoso, Bárbara; Laranjo, Sérgio; Gomes, Inês; Freitas, Isabel; Trigo, Conceição; Fragata, Isabel; Fragata, José; Pinto, Fátima

    2016-02-01

    To characterize the epidemiology and risk factors for acute kidney injury (AKI) after pediatric cardiac surgery in our center, to determine its association with poor short-term outcomes, and to develop a logistic regression model that will predict the risk of AKI for the study population. This single-center, retrospective study included consecutive pediatric patients with congenital heart disease who underwent cardiac surgery between January 2010 and December 2012. Exclusion criteria were a history of renal disease, dialysis or renal transplantation. Of the 325 patients included, median age three years (1 day-18 years), AKI occurred in 40 (12.3%) on the first postoperative day. Overall mortality was 13 (4%), nine of whom were in the AKI group. AKI was significantly associated with length of intensive care unit stay, length of mechanical ventilation and in-hospital death (p<0.01). Patients' age and postoperative serum creatinine, blood urea nitrogen and lactate levels were included in the logistic regression model as predictor variables. The model accurately predicted AKI in this population, with a maximum combined sensitivity of 82.1% and specificity of 75.4%. AKI is common and is associated with poor short-term outcomes in this setting. Younger age and higher postoperative serum creatinine, blood urea nitrogen and lactate levels were powerful predictors of renal injury in this population. The proposed model could be a useful tool for risk stratification of these patients. Copyright © 2015 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  20. Black-box modeling to estimate tissue temperature during radiofrequency catheter cardiac ablation: feasibility study on an agar phantom model

    International Nuclear Information System (INIS)

    Blasco-Gimenez, Ramón; Lequerica, Juan L; Herrero, Maria; Hornero, Fernando; Berjano, Enrique J

    2010-01-01

    The aim of this work was to study linear deterministic models to predict tissue temperature during radiofrequency cardiac ablation (RFCA) by measuring magnitudes such as electrode temperature, power and impedance between active and dispersive electrodes. The concept involves autoregressive models with exogenous input (ARX), which is a particular case of the autoregressive moving average model with exogenous input (ARMAX). The values of the mode parameters were determined from a least-squares fit of experimental data. The data were obtained from radiofrequency ablations conducted on agar models with different contact pressure conditions between electrode and agar (0 and 20 g) and different flow rates around the electrode (1, 1.5 and 2 L min −1 ). Half of all the ablations were chosen randomly to be used for identification (i.e. determination of model parameters) and the other half were used for model validation. The results suggest that (1) a linear model can be developed to predict tissue temperature at a depth of 4.5 mm during RF cardiac ablation by using the variables applied power, impedance and electrode temperature; (2) the best model provides a reasonably accurate estimate of tissue temperature with a 60% probability of achieving average errors better than 5 °C; (3) substantial errors (larger than 15 °C) were found only in 6.6% of cases and were associated with abnormal experiments (e.g. those involving the displacement of the ablation electrode) and (4) the impact of measuring impedance on the overall estimate is negligible (around 1 °C)

  1. Unique electrophysiological and impedance signatures between encapsulation types: An analysis of biological Utah array failure and benefit of a biomimetic coating in a rat model.

    Science.gov (United States)

    Cody, Patrick A; Eles, James R; Lagenaur, Carl F; Kozai, Takashi D Y; Cui, X Tracy

    2018-04-01

    Intracortical microelectrode arrays, especially the Utah array, remain the most common choice for obtaining high dimensional recordings of spiking neural activity for brain computer interface and basic neuroscience research. Despite the widespread use and established design, mechanical, material and biological challenges persist that contribute to a steady decline in recording performance (as evidenced by both diminished signal amplitude and recorded cell population over time) or outright array failure. Device implantation injury causes acute cell death and activation of inflammatory microglia and astrocytes that leads to a chronic neurodegeneration and inflammatory glial aggregation around the electrode shanks and often times fibrous tissue growth above the pia along the bed of the array within the meninges. This multifaceted deleterious cascade can result in substantial variability in performance even under the same experimental conditions. We track both impedance signatures and electrophysiological performance of 4 × 4 floating microelectrode Utah arrays implanted in the primary monocular visual cortex (V1m) of Long-Evans rats over a 12-week period. We employ a repeatable visual stimulation method to compare signal-to-noise ratio as well as single- and multi-unit yield from weekly recordings. To explain signal variability with biological response, we compare arrays categorized as either Type 1, partial fibrous encapsulation, or Type 2, complete fibrous encapsulation and demonstrate performance and impedance signatures unique to encapsulation type. We additionally assess benefits of a biomolecule coating intended to minimize distance to recordable units and observe a temporary improvement on multi-unit recording yield and single-unit amplitude. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Electrophysiological and morphological properties of neurons in the prepositus hypoglossi nucleus that express both ChAT and VGAT in a double-transgenic rat model.

    Science.gov (United States)

    Saito, Yasuhiko; Zhang, Yue; Yanagawa, Yuchio

    2015-04-01

    Although it has been proposed that neurons that contain both acetylcholine (ACh) and γ-aminobutyric acid (GABA) are present in the prepositus hypoglossi nucleus (PHN), these neurons have not been characterized because of the difficulty in identifying them. In the present study, PHN neurons that express both choline acetyltransferase and the vesicular GABA transporter (VGAT) were identified using double-transgenic rats, in which the cholinergic and inhibitory neurons express the fluorescent proteins tdTomato and Venus, respectively. To characterize the neurons that express both tdTomato and Venus (D+ neurons), the afterhyperpolarization (AHP) profiles and firing patterns of these neurons were investigated via whole-cell recordings of brainstem slice preparations. Regarding the three AHP profiles and four firing patterns that the D+ neurons exhibited, an AHP with an afterdepolarization and a firing pattern that exhibited a delay in the generation of the first spike were the preferential properties of these neurons. In the three morphological types classified, the multipolar type that exhibited radiating dendrites was predominant among the D+ neurons. Immunocytochemical analysis revealed that the VGAT-immunopositive axonal boutons that expressed tdTomato were primarily located in the dorsal cap of inferior olive (IO) and the PHN. Although the PHN receives cholinergic inputs from the pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus, D+ neurons were absent from these brain areas. Together, these results suggest that PHN neurons that co-express ACh and GABA exhibit specific electrophysiological and morphological properties, and innervate the dorsal cap of the IO and the PHN. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart

    Science.gov (United States)

    Fonseca, Carissa G.; Backhaus, Michael; Bluemke, David A.; Britten, Randall D.; Chung, Jae Do; Cowan, Brett R.; Dinov, Ivo D.; Finn, J. Paul; Hunter, Peter J.; Kadish, Alan H.; Lee, Daniel C.; Lima, Joao A. C.; Medrano−Gracia, Pau; Shivkumar, Kalyanam; Suinesiaputra, Avan; Tao, Wenchao; Young, Alistair A.

    2011-01-01

    Motivation: Integrative mathematical and statistical models of cardiac anatomy and physiology can play a vital role in understanding cardiac disease phenotype and planning therapeutic strategies. However, the accuracy and predictive power of such models is dependent upon the breadth and depth of noninvasive imaging datasets. The Cardiac Atlas Project (CAP) has established a large-scale database of cardiac imaging examinations and associated clinical data in order to develop a shareable, web-accessible, structural and functional atlas of the normal and pathological heart for clinical, research and educational purposes. A goal of CAP is to facilitate collaborative statistical analysis of regional heart shape and wall motion and characterize cardiac function among and within population groups. Results: Three main open-source software components were developed: (i) a database with web-interface; (ii) a modeling client for 3D + time visualization and parametric description of shape and motion; and (iii) open data formats for semantic characterization of models and annotations. The database was implemented using a three-tier architecture utilizing MySQL, JBoss and Dcm4chee, in compliance with the DICOM standard to provide compatibility with existing clinical networks and devices. Parts of Dcm4chee were extended to access image specific attributes as search parameters. To date, approximately 3000 de-identified cardiac imaging examinations are available in the database. All software components developed by the CAP are open source and are freely available under the Mozilla Public License Version 1.1 (http://www.mozilla.org/MPL/MPL-1.1.txt). Availability: http://www.cardiacatlas.org Contact: a.young@auckland.ac.nz Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21737439

  4. Effect of heart rate on CT angiography using the enhanced cardiac model of the 4D NCAT

    Science.gov (United States)

    Segars, W. P.; Taguchi, K.; Fung, G. S. K.; Fishman, E. K.; Tsui, B. M. W.

    2006-03-01

    We investigate the effect of heart rate on the quality and artifact generation in coronary artery images obtained using multi-slice computed tomography (MSCT) with the purpose of finding the optimal time resolution for data acquisition. To perform the study, we used the 4D NCAT phantom, a computer model of the normal human anatomy and cardiac and respiratory motions developed in our laboratory. Although capable of being far more realistic, the 4D NCAT cardiac model was originally designed for low-resolution imaging research, and lacked the anatomical detail to be applicable to high-resolution CT. In this work, we updated the cardiac model to include a more detailed anatomy and physiology based on high-resolution clinical gated MSCT data. To demonstrate its utility in high-resolution dynamic CT imaging research, the enhanced 4D NCAT was then used in a pilot simulation study to investigate the effect of heart rate on CT angiography. The 4D NCAT was used to simulate patients with different heart rates (60-120 beats/minute) and with various cardiac plaques of known size and location within the coronary arteries. For each simulated patient, MSCT projection data was generated with data acquisition windows ranging from 100 to 250 ms centered within the quiet phase (mid-diastole) of the heart using an analytical CT projection algorithm. CT images were reconstructed from the projection data, and the contrast of the plaques was then measured to assess the effect of heart rate and to determine the optimal time resolution required for each case. The 4D NCAT phantom with its realistic model for the cardiac motion was found to provide a valuable tool from which to optimize CT cardiac applications. Our results indicate the importance of optimizing the time resolution with regard to heart rate and plaque location for improved CT images at a reduced patient dose.

  5. Three-dimensional patient-specific cardiac model for surgical planning in Nikaidoh procedure.

    Science.gov (United States)

    Valverde, Israel; Gomez, Gorka; Gonzalez, Antonio; Suarez-Mejias, Cristina; Adsuar, Alejandro; Coserria, Jose Felix; Uribe, Sergio; Gomez-Cia, Tomas; Hosseinpour, Amir Reza

    2015-04-01

    To explore the use of three-dimensional patient-specific cardiovascular models using rapid prototyping techniques (fused deposition modelling) to improve surgical planning in patients with complex congenital heart disease. Rapid prototyping techniques are used to print accurate three-dimensional replicas of patients' cardiovascular anatomy based on magnetic resonance images using computer-aided design systems. Models are printed using a translucent polylactic acid polymer. As a proof of concept, a model of the heart of a 1.5-year-old boy with transposition of the great arteries, ventricular septal defect and pulmonary stenosis was constructed to help planning the surgical correction. The cardiac model allowed the surgeon to evaluate the location and dimensions of the ventricular septal defect as well as its relationship with the aorta and pulmonary artery. Cardiovascular models constructed by rapid prototyping techniques are extremely helpful for planning corrective surgery in patients with complex congenital malformations. Therefore they may potentially reduce operative time and morbi-mortality.

  6. Signaling molecules, transcription growth factors and other regulators revealed from in-vivo and in-vitro models for the regulation of cardiac development.

    Science.gov (United States)

    Meganathan, Kesavan; Sotiriadou, Isaia; Natarajan, Karthick; Hescheler, Jürgen; Sachinidis, Agapios

    2015-03-15

    Several in-vivo heart developmental models have been applied to decipher the cardiac developmental patterning encompassing early, dorsal, cardiac and visceral mesoderm as well as various transcription factors such as Gata, Hand, Tin, Dpp, Pnr. The expression of cardiac specific transcription factors, such as Gata4, Tbx5, Tbx20, Tbx2, Tbx3, Mef2c, Hey1 and Hand1 are of fundamental significance for the in-vivo cardiac development. Not only the transcription factors, but also the signaling molecules involved in cardiac development were conserved among various species. Enrichment of the bone morphogenic proteins (BMPs) in the anterior lateral plate mesoderm is essential for the initiation of myocardial differentiation and the cardiac developmental process. Moreover, the expression of a number of cardiac transcription factors and structural genes initiate cardiac differentiation in the medial mesoderm. Other signaling molecules such as TGF-beta, IGF-1/2 and the fibroblast growth factor (FGF) play a significant role in cardiac repair/regeneration, ventricular heart development and specification of early cardiac mesoderm, respectively. The role of the Wnt signaling in cardiac development is still controversial discussed, as in-vitro results differ dramatically in relation to the animal models. Embryonic stem cells (ESC) were utilized as an important in-vitro model for the elucidation of the cardiac developmental processes since they can be easily manipulated by numerous signaling molecules, growth factors, small molecules and genetic manipulation. Finally, in the present review the dynamic role of the long noncoding RNA and miRNAs in the regulation of cardiac development are summarized and discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Adult human heart slices are a multicellular system suitable for electrophysiological and pharmacological studies.

    Science.gov (United States)

    Camelliti, Patrizia; Al-Saud, Sara Abou; Smolenski, Ryszard T; Al-Ayoubi, Samha; Bussek, Alexandra; Wettwer, Erich; Banner, Nicholas R; Bowles, Christopher T; Yacoub, Magdi H; Terracciano, Cesare M

    2011-09-01

    Electrophysiological and pharmacological data from the human heart are limited due to the absence of simple but representative experimental model systems of human myocardium. The aim of this study was to establish and characterise adult human myocardial slices from small patients' heart biopsies as a simple, reproducible and relevant preparation suitable for the study of human cardiac tissue at the multicellular level. Vibratome-cut myocardial slices were prepared from left ventricular biopsies obtained from end-stage heart failure patients undergoing heart transplant or ventricular assist device implantation, and from hearts of normal dogs. Multiple slices were prepared from each biopsy. Regular contractility was observed at a range of stimulation frequencies (0.1-2 Hz), and stable electrical activity, monitored using multi-electrode arrays (MEA), was maintained for at least 8 h from slice preparation. ATP/ADP and phosphocreatine/creatine ratios were comparable to intact organ values, and morphology and gap junction distribution were representative of native myocardium. MEA recordings showed that field potential duration (FPD) and conduction velocity (CV) in human and dog slices were similar to the values previously reported for papillary muscles, ventricular wedges and whole hearts. Longitudinal CV was significantly faster than transversal CV, with an anisotropic ratio of 3:1 for human and 2.3:1 for dog slices. Importantly, slices responded to the application of E-4031, chromanol and 4-aminopyridine, three potassium channel blockers known to affect action potential duration, with an increase in FPD. We conclude that viable myocardial slices with preserved structural, biochemical and electrophysiological properties can be prepared from adult human and canine heart biopsies and offer a novel preparation suitable for the study of heart failure and drug screening. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Biodesign of a skeletal muscle flap as a model for cardiac assistance.

    Science.gov (United States)

    Nikolaychik, V V; Chekanov, V S; Hernandez, I; Silverman, M D; Lelkes, P I

    2000-02-01

    In using autologous muscles for cardiac assistance, it is crucial to reduce ischemia-reperfusion injury in the surgically traumatized skeletal muscle. In adult sheep, we developed a simple model of surgically designed 2 latissimus dorsi muscle leaflets by modifying the vascular supply to these leaflets. Three pockets with graded injury were established, and muscle morphology and vascular remodeling were monitored in 3 experimental groups: muscle leaflets without any treatment (Group 1, n = 6) that served as controls; muscle leaflets integrated with a fibrin interlayer (Group 2, n = 6); and leaflets integrated with fibrin and entrapped pyrrolostatin (Group 3, n = 6). We applied the fibrinogen and thrombin solutions, which polymerize to form a three-dimensional meshwork joining the tissues, creating a provisional matrix for angiogenesis, and acting as a delivery depot for agents aimed at minimizing ischemia-reperfusion lesion formation. After 2 months, the muscle leaflets biointegrated with the fibrin interface showed none of the signs of necrosis or ischemia-reperfusion lesions seen in the controls. Although no angiogenic factors were incorporated, the fibrin interlayer rapidly (<2 weeks) became a densely vascularized tissue replete with a voluminous capillary network. In contrast, controls showed poor bonding between the tissues, muscle fiber deterioration, and a compromised vascular network. Muscle structure was best preserved and angiogenesis was greatest when pyrrolostatin, a free radical scavenger, was added to the fibrin meshwork to reduce damage caused by overproduction of free radicals. This newly designed model will be useful to study many current approaches in cardiovascular biology, from pharmaceuticals to gene therapy, which might prove advantageous in muscle-designed cardiac assistance.

  9. Diclofenac plasma protein binding: PK-PD modelling in cardiac patients submitted to cardiopulmonary bypass

    Directory of Open Access Journals (Sweden)

    J.O. Auler Jr.

    1997-03-01

    Full Text Available Twenty-four surgical patients of both sexes without cardiac, hepatic, renal or endocrine dysfunctions were divided into two groups: 10 cardiac surgical patients submitted to myocardial revascularization and cardiopulmonary bypass (CPB, 3 females and 7 males aged 65 ± 11 years, 74 ± 16 kg body weight, 166 ± 9 cm height and 1.80 ± 0.21 m2 body surface area (BSA, and control, 14 surgical patients not submitted to CPB, 11 female and 3 males aged 41 ± 14 years, 66 ± 14 kg body weight, 159 ± 9 cm height and 1.65 ± 0.16 m2 BSA (mean ± SD. Sodium diclofenac (1 mg/kg, im Voltaren 75® twice a day was administered to patients in the Recovery Unit 48 h after surgery. Venous blood samples were collected during a period of 0-12 h and analgesia was measured by the visual analogue scale (VAS during the same period. Plasma diclofenac levels were measured by high performance liquid chromatography. A two-compartment open model was applied to obtain the plasma decay curve and to estimate kinetic parameters. Plasma diclofenac protein binding decreased whereas free plasma diclofenac levels were increased five-fold in CPB patients. Data obtained for analgesia reported as the maximum effect (EMAX were: 25% VAS (CPB vs 10% VAS (control, P<0.05, median measured by the visual analogue scale where 100% is equivalent to the highest level of pain. To correlate the effect versus plasma diclofenac levels, the EMAX sigmoid model was applied. A prolongation of the mean residence time for maximum effect (MRTEMAX was observed without any change in lag-time in CPB in spite of the reduced analgesia reported for these patients, during the time-dose interval. In conclusion, the extent of plasma diclofenac protein binding was influenced by CPB with clinically relevant kinetic-dynamic consequences

  10. Comparison of defibrillation efficacy between two pads placements in a pediatric porcine model of cardiac arrest.

    Science.gov (United States)

    Ristagno, Giuseppe; Yu, Tao; Quan, Weilun; Freeman, Gary; Li, Yongqin

    2012-06-01

    The placement of defibrillation pads at ideal anatomical sites is one of the major determinants of transthoracic defibrillation success. However, the optimal pads position for ventricular defibrillation is still undetermined. In the present study, we compared the effects of two different pads positions on defibrillation success rate in a pediatric porcine model of cardiac arrest. Eight domestic male pigs weighing 12-15 kg were randomized to receive shocks using either the anterior-posterior (AP) or the anterior-lateral (AL) position with pediatric pads. Ventricular fibrillation (VF) was electrically induced and untreated for 30 s. A sequence of randomized biphasic electrical shocks ranging from 10 to 100 J was attempted. If the defibrillation failed to terminate VF, a 100 J rescuer shock was then delivered. After a recovery interval of 5 min, the sequence was repeated for a total of approximately 30 test shocks were attempted for each animal. The dose response curves were constructed and the defibrillation thresholds were compared between groups. The aggregated success rate was 65.6% for AP placement and 43.0% for AL one (p=0.0005) when shock energy was between 10 and 70 J. A significantly lower 50% defibrillation threshold was obtained for AP pads placement compared with traditional AL pads position (2.1±0.4 J/kg vs. 3.6±0.9 J/kg, p=0.041). In this pediatric porcine model of cardiac arrest, the anterior-posterior placement of pediatric pads yielded a higher success rate by lowering defibrillation threshold compared to the anterior-lateral position. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Strong scaling and speedup to 16,384 processors in cardiac electro-mechanical simulations.

    Science.gov (United States)

    Reumann, Matthias; Fitch, Blake G; Rayshubskiy, Aleksandr; Keller, David U J; Seemann, Gunnar; Dossel, Olaf; Pitman, Michael C; Rice, John J

    2009-01-01

    High performance computing is required to make feasible simulations of whole organ models of the heart with biophysically detailed cellular models in a clinical setting. Increasing model detail by simulating electrophysiology and mechanical models increases computation demands. We present scaling results of an electro - mechanical cardiac model of two ventricles and compare them to our previously published results using an electrophysiological model only. The anatomical data-set was given by both ventricles of the Visible Female data-set in a 0.2 mm resolution. Fiber orientation was included. Data decomposition for the distribution onto the distributed memory system was carried out by orthogonal recursive bisection. Load weight ratios for non-tissue vs. tissue elements used in the data decomposition were 1:1, 1:2, 1:5, 1:10, 1:25, 1:38.85, 1:50 and 1:100. The ten Tusscher et al. (2004) electrophysiological cell model was used and the Rice et al. (1999) model for the computation of the calcium transient dependent force. Scaling results for 512, 1024, 2048, 4096, 8192 and 16,384 processors were obtained for 1 ms simulation time. The simulations were carried out on an IBM Blue Gene/L supercomputer. The results show linear scaling from 512 to 16,384 processors with speedup factors between 1.82 and 2.14 between partitions. The most optimal load ratio was 1:25 for on all partitions. However, a shift towards load ratios with higher weight for the tissue elements can be recognized as can be expected when adding computational complexity to the model while keeping the same communication setup. This work demonstrates that it is potentially possible to run simulations of 0.5 s using the presented electro-mechanical cardiac model within 1.5 hours.

  12. 3-OST-7 regulates BMP-dependent cardiac contraction.

    Directory of Open Access Journals (Sweden)

    Shiela C Samson

    2013-12-01

    Full Text Available The 3-O-sulfotransferase (3-OST family catalyzes rare modifications of glycosaminoglycan chains on heparan sulfate proteoglycans, yet their biological functions are largely unknown. Knockdown of 3-OST-7 in zebrafish uncouples cardiac ventricular contraction from normal calcium cycling and electrophysiology by reducing tropomyosin4 (tpm4 expression. Normal 3-OST-7 activity prevents the expansion of BMP signaling into ventricular myocytes, and ectopic activation of BMP mimics the ventricular noncontraction phenotype seen in 3-OST-7 depleted embryos. In 3-OST-7 morphants, ventricular contraction can be rescued by overexpression of tropomyosin tpm4 but not by troponin tnnt2, indicating that tpm4 serves as a lynchpin for ventricular sarcomere organization downstream of 3-OST-7. Contraction can be rescued by expression of 3-OST-7 in endocardium, or by genetic loss of bmp4. Strikingly, BMP misregulation seen in 3-OST-7 morphants also occurs in multiple cardiac noncontraction models, including potassium voltage-gated channel gene, kcnh2, affected in Romano-Ward syndrome and long-QT syndrome, and cardiac troponin T gene, tnnt2, affected in human cardiomyopathies. Together these results reveal 3-OST-7 as a key component of a novel pathway that constrains BMP signaling from ventricular myocytes, coordinates sarcomere assembly, and promotes cardiac contractile function.

  13. Antivenom Evaluation by Electrophysiological Analysis

    Directory of Open Access Journals (Sweden)

    Rita Restano-Cassulini

    2017-02-01

    Full Text Available Scorpion stings on humans are medically relevant because they may contain toxins that specifically target ion channels. During antivenom production, pharmaceutical companies must use a large number of experimental animals to ensure the antivenom’s efficacy according to pharmacopeia methods. Here we present an electrophysiological alternative for the evaluation of horse antivenoms produced against two species of Moroccan scorpions: Buthus mardochei and Androctonus mauretanicus. Human sodium and potassium channels and acetylcholine nicotinic receptors were analyzed by standard patch-clamp techniques. The results showed that the antivenom is capable of reversing ion current disruption caused by the venom application. We propose the use of this in vitro technique for antivenom evaluation as an alternative to using a large number of live animals.

  14. Cardiac gated ventilation

    Science.gov (United States)

    Hanson, C. William, III; Hoffman, Eric A.

    1995-05-01

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. We evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50msec scan aperture. Multislice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. We observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a nonfailing model of the heart.

  15. From teeth, skin, blood to heart : induced pluripotent stem cells as an in vitro model for cardiac disease

    NARCIS (Netherlands)

    Dambrot, Cheryl Susan

    2014-01-01

    Since the first reports of human induced pluripotent stem cells (hiPSC), the field of pluripotent stem cell (PSC) research has grown in leap and bounds, particularly in the area of (cardiac) disease modeling. This is in part because it is fairly easy to produce cardiomyocytes from hPSC and also

  16. A model of the guinea-pig ventricular cardiac myocyte incorporating a transverse–axial tubular system

    Czech Academy of Sciences Publication Activity Database

    Pásek, Michal; Šimurda, J.; Orchard, C.; Christé, G.

    2008-01-01

    Roč. 96, 1-3 (2008), s. 258-280 ISSN 0079-6107 Institutional research plan: CEZ:AV0Z20760514 Keywords : guinea pig * cardiac cell * transverse-axial tubular system * quantitative model Subject RIV: BO - Biophysics Impact factor: 6.388, year: 2008

  17. Modeling cardiac β-adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model

    Directory of Open Access Journals (Sweden)

    Saucerman Jeffrey J

    2010-11-01

    Full Text Available Abstract Background New approaches are needed for large-scale predictive modeling of cellular signaling networks. While mass action and enzyme kinetic approaches require extensive biochemical data, current logic-based approaches are used primarily for qualitative predictions and have lacked direct quantitative comparison with biochemical models. Results We developed a logic-based differential equation modeling approach for cell signaling networks based on normalized Hill activation/inhibition functions controlled by logical AND and OR operators to characterize signaling crosstalk. Using this approach, we modeled the cardiac β1-adrenergic signaling network, including 36 reactions and 25 species. Direct comparison of this model to an extensively characterized and validated biochemical model of the same network revealed that the new model gave reasonably accurate predictions of key network properties, even with default parameters. Normalized Hill functions improved quantitative predictions of global functional relationships compared with prior logic-based approaches. Comprehensive sensitivity analysis revealed the significant role of PKA negative feedback on upstream signaling and the importance of phosphodiesterases as key negative regulators of the network. The model was then extended to incorporate recently identified protein interaction data involving integrin-mediated mechanotransduction. Conclusions The normalized-Hill differential equation modeling approach allows quantitative prediction of network functional relationships and dynamics, even in systems with limited biochemical data.

  18. Modeling cardiac β-adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model.

    Science.gov (United States)

    Kraeutler, Matthew J; Soltis, Anthony R; Saucerman, Jeffrey J

    2010-11-18

    New approaches are needed for large-scale predictive modeling of cellular signaling networks. While mass action and enzyme kinetic approaches require extensive biochemical data, current logic-based approaches are used primarily for qualitative predictions and have lacked direct quantitative comparison with biochemical models. We developed a logic-based differential equation modeling approach for cell signaling networks based on normalized Hill activation/inhibition functions controlled by logical AND and OR operators to characterize signaling crosstalk. Using this approach, we modeled the cardiac β1-adrenergic signaling network, including 36 reactions and 25 species. Direct comparison of this model to an extensively characterized and validated biochemical model of the same network revealed that the new model gave reasonably accurate predictions of key network properties, even with default parameters. Normalized Hill functions improved quantitative predictions of global functional relationships compared with prior logic-based approaches. Comprehensive sensitivity analysis revealed the significant role of PKA negative feedback on upstream signaling and the importance of phosphodiesterases as key negative regulators of the network. The model was then extended to incorporate recently identified protein interaction data involving integrin-mediated mechanotransduction. The normalized-Hill differential equation modeling approach allows quantitative prediction of network functional relationships and dynamics, even in systems with limited biochemical data.

  19. Risk prediction models for delirium in the intensive care unit after cardiac surgery: a systematic review and independent external validation.

    Science.gov (United States)

    Lee, A; Mu, J L; Joynt, G M; Chiu, C H; Lai, V K W; Gin, T; Underwood, M J

    2017-03-01

    Numerous risk prediction models are available for predicting delirium after cardiac surgery, but few have been directly compared with one another or been validated in an independent data set. We conducted a systematic review to identify validated risk prediction models of delirium (using the Confusion Assessment Method-Intensive Care Unit tool) after cardiac surgery and assessed the transportability of the risk prediction models on a prospective cohort of 600 consecutive patients undergoing cardiac surgery at a university hospital in Hong Kong from July 2013 to July 2015. The discrimination (c-statistic), calibration (GiViTI calibration belt), and clinical usefulness (decision curve analysis) of the risk prediction models were examined in a stepwise manner. Three published high-quality intensive care unit delirium risk prediction models (n=5939) were identified: Katznelson, the original PRE-DELIRIC, and the international recalibrated PRE-DELIRIC model. Delirium occurred in 83 patients (13.8%, 95% CI: 11.2-16.9%). After updating the intercept and regression coefficients in the Katznelson model, there was fair discrimination (0.62, 95% CI: 0.58-0.66) and good calibration. As the original PRE-DELIRIC model was already validated externally and recalibrated in six countries, we performed a logistic calibration on the recalibrated model and found acceptable discrimination (0.75, 95% CI: 0.72-0.79) and good calibration. Decision curve analysis demonstrated that the recalibrated PRE-DELIRIC risk model was marginally more clinically useful than the Katznelson model. Current models predict delirium risk in the intensive care unit after cardiac surgery with only fair to moderate accuracy and are insufficient for routine clinical use. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators

    Science.gov (United States)

    Shin, Su Ryon; Jung, Sung Mi; Zalabany, Momen; Kim, Keekyoung; Zorlutuna, Pinar; Kim, Sang bok; Nikkhah, Mehdi; Khabiry, Masoud; Azize, Mohamed; Kong, Jing; Wan, Kai-tak; Palacios, Tomas; Dokmeci, Mehmet R.; Bae, Hojae; Tang, Xiaowu (Shirley); Khademhosseini, Ali

    2013-01-01

    We engineered functional cardiac patches by seeding neonatal rat cardiomyocytes onto carbon nanotube (CNT) incorporated photocrosslinkable gelatin methacrylate (GelMA) hydrogel. The resulting cardiac constructs showed excellent mechanical integrity and advanced electrophysiological functions. Specifically, myocardial tissues cultured on 50 μm thick CNT-GelMA showed 3 times higher spontaneous synchronous beating rates and 85% lower excitation threshold, compared to those cultured on pristine GelMA hydrogels. Our results indicate that the electrically conductive and nanofibrous networks formed by CNTs within a porous gelatin framework is the key characteristics of CNT-GelMA leading to improved cardiac cell adhesion, organization, and cell-cell coupling. Centimeter-scale patches were released from glass substrates to form 3D biohybrid actuators, which showed controllable linear cyclic contraction/extension, pumping, and swimming actuations. In addition, we demonstrate for the first time that cardiac tissues cultured on CNT-GelMA resist damage by a model cardiac inhibitor as well as a cytotoxic compound. Therefore, incorporation of CNTs into gelatin, and potentially other biomaterials, could be useful in creating multifunctional cardiac scaffolds for both therapeutic purposes and in vitro studies. These hybrid materials could also be used for neuron and other muscle cells to create tissue constructs with improved organization, electroactivity, and mechanical integrity. PMID:23363247

  1. Human Mesenchymal Stromal Cells Improve Cardiac Perfusion in an Ovine Immunocompetent Animal Model.

    Science.gov (United States)

    Dayan, Victor; Sotelo, Veronica; Delfina, Valentina; Delgado, Natalia; Rodriguez, Carlos; Suanes, Carol; Langhain, María; Ferrando, Rodolfo; Keating, Armand; Benech, Alejandro; Touriño, Cristina

    2016-08-01

    Mesenchymal stromal cells (MSCs) hold considerable promise in the treatment of ischemic heart disease. Most preclinical studies of MSCs for acute myocardial infarction (AMI) have been performed either in syngeneic animal models or with human cells in xenogeneic immunodeficient animals. A preferable pre-clinical model, however, would involve human MSCs in an immunocompetent animal. AMI was generated in adult sheep by inducing ischemia reperfusion of the second diagonal branch. Sheep (n = 10) were randomized to receive an intravenous injection of human MSCs (1 × 10(6) cells/kg) or phosphate buffered saline. Cardiac function and remodeling were evaluated with echocardiography. Perfusion scintigraphy was used to identify sustained myocardial ischemia. Interaction between human MSCs and ovine lymphocytes was assessed by a mixed lymphocyte response (MLR). Sheep receiving human MSCs showed significant improvement in myocardial perfusion at 1 month compared with baseline measurements. There was no change in ventricular dimensions in either group after 1 month of AMI. No adverse events or symptoms were observed in the sheep receiving human MSCs. The MLR was negative. The immunocompetent ovine AMI model demonstrates the clinical safety and efficacy of human MSCs. The human cells do not appear to be immunogenic, further suggesting that immunocompetent sheep may serve as a suitable pre-clinical large animal model for testing human MSCs.

  2. Software and Hardware Infrastructure for Research in Electrophysiology

    Directory of Open Access Journals (Sweden)

    Roman eMouček

    2014-03-01

    Full Text Available As in other areas of experimental science, operation of electrophysiological laboratory, design and performance of electrophysiological experiments, collection, storage and sharing of experimental data and metadata, analysis and interpretation of these data, and publication of results are time consuming activities. If these activities are well organized and supported by a suitable infrastructure, work efficiency of researchers increases significantly.This article deals with the main concepts, design, and development of software and hardware infrastructure for research in electrophysiology. The described infrastructure has been primarily developed for the needs of neuroinformatics laboratory at the University of West Bohemia, the Czech Republic. However, from the beginning it has been also designed and developed to be open and applicable in laboratories that do similar research.After introducing the laboratory and the whole architectural concept the individual parts of the infrastructure are described. The central element of the software infrastructure is a web-based portal that enables community researchers to store, share, download and search data and metadata from electrophysiological experiments. The data model, domain ontology and usage of semantic web languages and technologies are described. Current data publication policy used in the portal is briefly introduced. The registration of the portal within Neuroscience Information Framework is described. Then the methods used for processing of electrophysiological signals are presented. The specific modifications of these methods introduced by laboratory researches are summarized; the methods are organized into a laboratory workflow. Other parts of the software infrastructure include mobile and offline solutions for data/metadata storing and a hardware stimulator communicating with an EEG amplifier and recording software.

  3. Characterization of an investigative safety pharmacology model to assess comprehensive cardiac function and structure in chronically instrumented conscious beagle dogs.

    Science.gov (United States)

    Regan, Christopher P; Stump, Gary L; Detwiler, Theodore J; Chen, Li; Regan, Hillary K; Gilberto, David B; DeGeorge, Joseph J; Sannajust, Frederick J

    2016-01-01

    There has been an increasing need to conduct investigative safety pharmacology studies to complement regulatory-required studies, particularly as it applies to a comprehensive assessment of cardiovascular (CV) risk. We describe refined methodology using a combination of telemetry and direct signal acquisition to record concomitant peripheral hemodynamics, ECG, and left ventricular (LV) structure (LV chamber size and LV wall thickness) and function, including LV pressure-volume (PV) loops to determine load independent measures of contractility (end systolic elastance, Ees, and preload recruitable stroke work, PRSW) in conscious beagle dogs. Following baseline characterization, 28days of chronic rapid ventricular pacing (RVP) was performed and cardiac function monitored: both as a way to compare measures during development of dysfunction and to characterize feasibility of a model to assess CV safety in animals with underlying cardiac dysfunction. While ±dP/dT decreased within a few days of RVP and remained stable, more comprehensive cardiac function measurements, including Ees and PRSW, provided a more sensitive assessment confirming the value of such endpoints for a more clear functional assessment. After 28days of RVP, the inodilator pimobendan was administered to further demonstrate the ability to detect changes in cardiac function. Expectedly pimobendan caused a leftward shift in the PV loop, improved ejection fraction (EF) and significantly improved Ees and PRSW. In summary, the data show the feasibility and importance in measuring enhanced cardiac functional parameters in conscious normal beagle dogs and further describe a relatively stable cardiac dysfunction model that could be used as an investigative safety pharmacology risk assessment tool. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Evaluation of coronary blood flow velocity during cardiac arrest with circulation maintained through mechanical chest compressions in a porcine model

    Directory of Open Access Journals (Sweden)

    Wagner Henrik

    2011-12-01

    Full Text Available Abstract Background Mechanical chest compressions (CCs have been shown capable of maintaining circulation in humans suffering cardiac arrest for extensive periods of time. Reports have documented a visually normalized coronary blood flow during angiography in such cases (TIMI III flow, but it has never been actually measured. Only indirect measurements of the coronary circulation during cardiac arrest with on-going mechanical CCs have been performed previously through measurement of the coronary perfusion pressure (CPP. In this study our aim was to correlate average peak coronary flow velocity (APV to CPP during mechanical CCs. Methods In a closed chest porcine model, cardiac arrest was established through electrically induced ventricular fibrillation (VF in eleven pigs. After one minute, mechanical chest compressions were initiated and then maintained for 10 minutes upon which the pigs were defibrillated. Measurements of coronary blood flow in the left anterior descending artery were made at baseline and during VF with a catheter based Doppler flow fire measuring APV. Furthermore measurements of central (thoracic venous and arterial pressures were also made in order to calculate the theoretical CPP. Results Average peak coronary flow velocity was significantly higher compared to baseline during mechanical chests compressions and this was observed during the entire period of mechanical chest compressions (12 - 39% above baseline. The APV slowly declined during the 10 min period of mechanical chest compressions, but was still higher than baseline at the end of mechanical chest compressions. CPP was simultaneously maintained at > 20 mmHg during the 10 minute episode of cardiac arrest. Conclusion Our study showed good correlation between CPP and APV which was highly significant, during cardiac arrest with on-going mechanical CCs in a closed chest porcine model. In addition APV was even higher during mechanical CCs compared to baseline. Mechanical

  5. Long-term clinical response to cardiac resynchronisation therapy under a multidisciplinary model.

    Science.gov (United States)

    O'Donnell, D; Lin, T; Swale, M; Rae, P; Flannery, D; Srivastava, P M

    2013-11-01

    Cardiac resynchronisation therapy (CRT) is established in the management of cardiac failure in patients with systolic dysfunction. Clinical response to CRT is not uniform, and response has been difficult to predict. Patient management within a high volume, multidisciplinary service focused on optimal delivery of CRT would improve response rates. Four hundred and thirty-five consecutive patients who underwent CRT under a multidisciplinary heart failure service were enrolled prospectively over a 5-year period. Medically optimised, symptomatic patients with an ejection fraction (EF) mechanical activation, and electrically to a site with maximal intrinsic intracardiac electrogram separation. Routine device and clinical follow up, as well as CRT optimisations, were performed at baseline and at 3-monthly intervals. Responders were defined as having an absolute reduction in left ventricular end-diastolic diameter >10% and an improvement in EF >5%. With a mean follow up of 53 ± 11 months, response rate to CRT was 81%. Mean EF improved from 26 ± 10% to 37 ± 11%, and mean left ventricular end-diastolic diameter reduced from 68.6 ± 9.2 mm to 57.8 ± 9.3 mm. Predictors of response were sinus rhythm, high dyssynchrony index and intrinsic electrical dyssynchrony >80 ms. Successful LV lead implantation at initial procedure was achieved in 99.1%, and at latest follow up 94.6% of initial LV leads were still active. CRT undertaken with a unit focus on optimal LV lead positioning and device optimisation, along with a multidisciplinary follow-up model, results in an excellent response rate to CRT. © 2013 The Authors; Internal Medicine Journal © 2013 Royal Australasian College of Physicians.

  6. Characterization of microminipigs as an in vivo experimental model for cardiac safety pharmacology.

    Science.gov (United States)

    Matsukura, Suchitra; Nakamura, Yuji; Cao, Xin; Wada, Takeshi; Izumi-Nakaseko, Hiroko; Ando, Kentaro; Yamazaki, Hiroshi; Sugiyama, Atsushi

    2017-02-01

    We pharmacologically characterized microminipigs as an in vivo experimental model by assessing cardiovascular effects of pilsicainide, verapamil and E-4031, which can preferentially inhibit cardiac Na + , Ca 2+ and K + channels, respectively. Intravenous infusion of 1 mg/kg of pilsicainide (n = 4), 0.1 mg/kg of verapamil (n = 4) and 0.01 followed by 0.1 mg/kg of E-4031 (n = 5) over 10 min decreased the heart rate, mean blood pressure and ventricular contractility. Moreover, pilsicainide prolonged the PR interval, QRS width and QTc; verapamil prolonged the PR interval, but shortened the QRS width and QTc; and E-4031 prolonged the QTc, whereas no substantial change was detected in the PR interval or QRS width. Peak plasma concentrations of pilsicainide, verapamil and E-4031 in microminipigs were 1.7-4.8 times higher than those expected in humans and dogs, possibly due to smaller effective volume of drug distribution. The extent of the drug-induced cardiovascular responses was generally greater in microminipigs than in humans and dogs, which could be explained by the following possibilities; namely unique pharmacokinetic profile, less great reflex-mediated increase of sympathetic tone and/or smaller repolarization reserve in microminipigs. These information may make it feasible to apply this new-type animal to a tool for assessing cardiac safety profiles of new chemical entities. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  7. Current concepts in nuclear pore electrophysiology.

    Science.gov (United States)

    Bustamante, José Omar

    2006-01-01

    Over 4 decades ago, microelectrode studies of in situ nuclei showed that, under certain conditions, the nuclear envelope (NE) behaves as a barrier opposing the nucleocytoplasmic flow of physiological ions. As the nuclear pore complexes (NPCs) of the NE are the only pathways for direct nucleocytoplasmic flow, those experiments implied that the NPCs are capable of restricting ion flow. These early studies validated electrophysiology as a useful approach to quantify some of the mechanisms by which NPCs mediate gene activity and expression. Since electron microscopy (EM) and other non-electrophysiological investigations, showed that the NPC lumen is a nanochannel, the opinion prevailed that the NPC could not oppose the flow of ions and, therefore, that electrophysiological observations resulted from technical artifacts. Consequently, the initial enthusiasm with nuclear electrophysiology faded out in less than a decade. In 1990, nuclear electrophysiology was revisited with patch-clamp, the most powerful electrophysiological technique to date. Patch-clamp has consistently demonstrated that the NE has intrinsic ion channel activity. Direct demonstrations of the NPC on-off ion channel gating behavior were published for artificial conditions in 1995 and for intact living nuclei in 2002. This on-off switching/gating behavior can be interpreted in terms of a metastable energy barrier. In the hope of advancing nuclear electrophysiology, and to complement the other papers contained in this special issue of the journal, here I review some of the main technical, experimental, and theoretical issues of the field, with special focus on NPCs.

  8. A 2D Electromechanical Model of Human Atrial Tissue Using the Discrete Element Method

    Directory of Open Access Journals (Sweden)

    Paul Brocklehurst

    2015-01-01

    Full Text Available Cardiac tissue is a syncytium of coupled cells with pronounced intrinsic discrete nature. Previous models of cardiac electromechanics often ignore such discrete properties and treat cardiac tissue as a continuous medium, which has fundamental limitations. In the present study, we introduce a 2D electromechanical model for human atrial tissue based on the discrete element method (DEM. In the model, single-cell dynamics are governed by strongly coupling the electrophysiological model of Courtemanche et al. to the myofilament model of Rice et al. with two-way feedbacks. Each cell is treated as a viscoelastic body, which is physically represented by a clump of nine particles. Cell aggregations are arranged so that the anisotropic nature of cardiac tissue due to fibre orientations can be modelled. Each cell is electrically coupled to neighbouring cells, allowing excitation waves to propagate through the tissue. Cell-to-cell mechanical interactions are modelled using a linear contact bond model in DEM. By coupling cardiac electrophysiology with mechanics via the intracellular Ca2+ concentration, the DEM model successfully simulates the conduction of cardiac electrical waves and the tissue’s corresponding mechanical contractions. The developed DEM model is numerically stable and provides a powerful method for studying the electromechanical coupling problem in the heart.

  9. A computational model-based validation of Guyton's analysis of cardiac output and venous return curves

    Science.gov (United States)

    Mukkamala, R.; Cohen, R. J.; Mark, R. G.

    2002-01-01

    Guyton developed a popular approach for understanding the factors responsible for cardiac output (CO) regulation in which 1) the heart-lung unit and systemic circulation are independently characterized via CO and venous return (VR) curves, and 2) average CO and right atrial pressure (RAP) of the intact circulation are predicted by graphically intersecting the curves. However, this approach is virtually impossible to verify experimentally. We theoretically evaluated the approach with respect to a nonlinear, computational model of the pulsatile heart and circulation. We developed two sets of open circulation models to generate CO and VR curves, differing by the manner in which average RAP was varied. One set applied constant RAPs, while the other set applied pulsatile RAPs. Accurate prediction of intact, average CO and RAP was achieved only by intersecting the CO and VR curves generated with pulsatile RAPs because of the pulsatility and nonlinearity (e.g., systemic venous collapse) of the intact model. The CO and VR curves generated with pulsatile RAPs were also practically independent. This theoretical study therefore supports the validity of Guyton's graphical analysis.

  10. Optimization of cardiac defibrillation by three-dimensional finite element modeling of the human thorax

    Energy Technology Data Exchange (ETDEWEB)

    Panescu, D. (EP Technologies, Inc., Sunnyvale, CA (United States)); Webster, J.G.; Tompkins, W.J. (Univ. of Wisconsin, Madison, WI (United States)); Stratbucker, R.A. (Radiation Health Center of the State of Nebraska, Omaha, NE (United States))

    1995-02-01

    The goal of this study was to determine the optimal electrode placement and size to minimize myocardial damage during defibrillation while rendering refractory a critical mass of cardiac tissue of 100%. For this purpose, we developed a 3-D finite element model with 55 388 nodes, 50 913 hexahedral elements, and simulated 16 different organs and tissues, as well as the properties of the electrolyte. The model used a nonuniform mesh with an average spatial resolution of 0.8 cm in all three dimensions. To validate this model, we measured the voltage across 3-cm[sup 2] Ag-AgCl electrodes when currents of 5 mA at 50 kHz were injected into a human subject's thorax through the same electrodes. For the same electrode placements and sizes and the same injected current, the finite element analysis produced results in good agreement with the experimental data. For the optimization of defibrillation, we tested 12 different electrode placements and seven different electrode sizes. The finite element analyses showed that the anterior-posterior electrode placement and an electrode size of about 90 cm[sup 2] offered the least chance of potential myocardial damage and required a shock energy of less than 350 J for 5-ms defibrillation pulses to achieve 100% critical mass. 47 refs., 8 figs., 4 tabs.

  11. Atrio-hisian fibers anatomy and electrophysiology.

    Science.gov (United States)

    Brechenmacher, Claude J

    2013-02-01

    In this case, electrophysiology and histology could be studied in the same heart. Clinical investigation, clinical electrophysiology, and postmortem serial histological sections of the septum were analyzed. A patient with repeated seizures and a short PR interval with narrow QRS complex underwent electrophysiologic studies. The patient died while experiencing a very rapid supraventricular tachycardia and histologic examination showed a atrio-hisian bypass tract. In our study, the lack of lengthening of the PR interval in spite of progressively premature atrial stimulation connected with the presence of atrio-hisian bypass tract. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  12. Automatic left-atrial segmentation from cardiac 3D ultrasound: a dual-chamber model-based approach

    Science.gov (United States)

    Almeida, Nuno; Sarvari, Sebastian I.; Orderud, Fredrik; Gérard, Olivier; D'hooge, Jan; Samset, Eigil

    2016-04-01

    In this paper, we present an automatic solution for segmentation and quantification of the left atrium (LA) from 3D cardiac ultrasound. A model-based framework is applied, making use of (deformable) active surfaces to model the endocardial surfaces of cardiac chambers, allowing incorporation of a priori anatomical information in a simple fashion. A dual-chamber model (LA and left ventricle) is used to detect and track the atrio-ventricular (AV) plane, without any user input. Both chambers are represented by parametric surfaces and a Kalman filter is used to fit the model to the position of the endocardial walls detected in the image, providing accurate detection and tracking during the whole cardiac cycle. This framework was tested in 20 transthoracic cardiac ultrasound volumetric recordings of healthy volunteers, and evaluated using manual traces of a clinical expert as a reference. The 3D meshes obtained with the automatic method were close to the reference contours at all cardiac phases (mean distance of 0.03+/-0.6 mm). The AV plane was detected with an accuracy of -0.6+/-1.0 mm. The LA volumes assessed automatically were also in agreement with the reference (mean +/-1.96 SD): 0.4+/-5.3 ml, 2.1+/-12.6 ml, and 1.5+/-7.8 ml at end-diastolic, end-systolic and pre-atrial-contraction frames, respectively. This study shows that the proposed method can be used for automatic volumetric assessment of the LA, considerably reducing the analysis time and effort when compared to manual analysis.

  13. A new magneto-cardiogram study using a vector model with a virtual heart and the boundary element method

    International Nuclear Information System (INIS)

    Zhang Chen; Lu Hong; Hua Ning; Tang Xue-Zheng; Tang Fa-Kuan; Shou Guo-Fa; Xia Ling; Ma Ping

    2013-01-01

    A cardiac vector model is presented and verified, and then the forward problem for cardiac magnetic fields and electric potential are discussed based on this model and the realistic human torso volume conductor model, including lungs. A torso—cardiac vector model is used for a 12-lead electrocardiographic (ECG) and magneto-cardiogram (MCG) simulation study by using the boundary element method (BEM). Also, we obtain the MCG wave picture using a compound four-channel HT c ·SQUID system in a magnetically shielded room. By comparing the simulated results and experimental results, we verify the cardiac vector model and then do a preliminary study of the forward problem of MCG and ECG. Therefore, the results show that the vector model is reasonable in cardiac electrophysiology. (general)

  14. SU-F-T-405: Development of a Rapid Cardiac Contouring Tool Using Landmark-Driven Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, C; Jung, J [East Carolina University Greenville, NC (United States); Mosher, E; Lee, C [National Cancer Institute, Rockville, MD (United States); Lee, C [University of Michigan, Ann Arbor, MI (United States)

    2016-06-15

    Purpose: This study aims to develop a tool to rapidly delineate cardiac substructures for use in dosimetry for large-scale clinical trial or epidemiological investigations. The goal is to produce a system that can semi-automatically delineate nine cardiac structures to a reasonable accuracy within a couple of minutes. Methods: The cardiac contouring tool employs a Most Similar Atlas method, where a selection criterion is used to pre-select the most similar model to the patient from a library of pre-defined atlases. Sixty contrast-enhanced cardiac computed tomography angiography (CTA) scans (30 male and 30 female) were manually contoured to serve as the atlas library. For each CTA 12 structures were delineated. Kabsch algorithm was used to compute the optimum rotation and translation matrices between the patient and atlas. Minimum root mean squared distance between the patient and atlas after transformation was used to select the most-similar atlas. An initial study using 10 CTA sets was performed to assess system feasibility. Leave-one patient out method was performed, and fit criteria were calculated to evaluate the fit accuracy compared to manual contours. Results: For the pilot study, mean dice indices of .895 were achieved for the whole heart, .867 for the ventricles, and .802 for the atria. In addition, mean distance was measured via the chord length distribution (CLD) between ground truth and the atlas structures for the four coronary arteries. The mean CLD for all coronary arteries was below 14mm, with the left circumflex artery showing the best agreement (7.08mm). Conclusion: The cardiac contouring tool is able to delineate cardiac structures with reasonable accuracy in less than 90 seconds. Pilot data indicates that the system is able to delineate the whole heart and ventricles within a reasonable accuracy using even a limited library. We are extending the atlas sets to 60 adult males and females in total.

  15. SU-F-T-405: Development of a Rapid Cardiac Contouring Tool Using Landmark-Driven Modeling

    International Nuclear Information System (INIS)

    Pelletier, C; Jung, J; Mosher, E; Lee, C; Lee, C

    2016-01-01

    Purpose: This study aims to develop a tool to rapidly delineate cardiac substructures for use in dosimetry for large-scale clinical trial or epidemiological investigations. The goal is to produce a system that can semi-automatically delineate nine cardiac structures to a reasonable accuracy within a couple of minutes. Methods: The cardiac contouring tool employs a Most Similar Atlas method, where a selection criterion is used to pre-select the most similar model to the patient from a library of pre-defined atlases. Sixty contrast-enhanced cardiac computed tomography angiography (CTA) scans (30 male and 30 female) were manually contoured to serve as the atlas library. For each CTA 12 structures were delineated. Kabsch algorithm was used to compute the optimum rotation and translation matrices between the patient and atlas. Minimum root mean squared distance between the patient and atlas after transformation was used to select the most-similar atlas. An initial study using 10 CTA sets was performed to assess system feasibility. Leave-one patient out method was performed, and fit criteria were calculated to evaluate the fit accuracy compared to manual contours. Results: For the pilot study, mean dice indices of .895 were achieved for the whole heart, .867 for the ventricles, and .802 for the atria. In addition, mean distance was measured via the chord length distribution (CLD) between ground truth and the atlas structures for the four coronary arteries. The mean CLD for all coronary arteries was below 14mm, with the left circumflex artery showing the best agreement (7.08mm). Conclusion: The cardiac contouring tool is able to delineate cardiac structures with reasonable accuracy in less than 90 seconds. Pilot data indicates that the system is able to delineate the whole heart and ventricles within a reasonable accuracy using even a limited library. We are extending the atlas sets to 60 adult males and females in total.

  16. Period doubling cascades of limit cycles in cardiac action potential models as precursors to chaotic early Afterdepolarizations.

    Science.gov (United States)

    Kügler, Philipp; Bulelzai, M A K; Erhardt, André H

    2017-04-04

    Early afterdepolarizations (EADs) are pathological voltage oscillations during the repolarization phase of cardiac action potentials (APs). EADs are caused by drugs, oxidative stress or ion channel disease, and they are considered as potential precursors to cardiac arrhythmias in recent attempts to redefine the cardiac drug safety paradigm. The irregular behaviour of EADs observed in experiments has been previously attributed to chaotic EAD dynamics under periodic pacing, made possible by a homoclinic bifurcation in the fast subsystem of the deterministic AP system of differential equations. In this article we demonstrate that a homoclinic bifurcation in the fast subsystem of the action potential model is neither a necessary nor a sufficient condition for the genesis of chaotic EADs. We rather argue that a cascade of period doubling (PD) bifurcations of limit cycles in the full AP system paves the way to chaotic EAD dynamics across a variety of models including a) periodically paced and spontaneously active cardiomyocytes, b) periodically paced and non-active cardiomyocytes as well as c) unpaced and spontaneously active cardiomyocytes. Furthermore, our bifurcation analysis reveals that chaotic EAD dynamics may coexist in a stable manner with fully regular AP dynamics, where only the initial conditions decide which type of dynamics is displayed. EADs are a potential source of cardiac arrhythmias and hence are of relevance both from the viewpoint of drug cardiotoxicity testing and the treatment of cardiomyopathies. The model-independent association of chaotic EADs with period doubling cascades of limit cycles introduced in this article opens novel opportunities to study chaotic EADs by means of bifurcation control theory and inverse bifurcation analysis. Furthermore, our results may shed new light on the synchronization and propagation of chaotic EADs in homogeneous and heterogeneous multicellular and cardiac tissue preparations.

  17. Modeling beta-adrenergic control of cardiac myocyte contractility in silico

    Science.gov (United States)

    Saucerman, Jeffrey J.; Brunton, Laurence L.; Michailova, Anushka P.; McCulloch, Andrew D.; McCullough, A. D. (Principal Investigator)

    2003-01-01

    The beta-adrenergic signaling pathway regulates cardiac myocyte contractility through a combination of feedforward and feedback mechanisms. We used systems analysis to investigate how the components and topology of this signaling network permit neurohormonal control of excitation-contraction coupling in the rat ventricular myocyte. A kinetic model integrating beta-adrenergic signaling with excitation-contraction coupling was formulated, and each subsystem was validated with independent biochemical and physiological measurements. Model analysis was used to investigate quantitatively the effects of specific molecular perturbations. 3-Fold overexpression of adenylyl cyclase in the model allowed an 85% higher rate of cyclic AMP synthesis than an equivalent overexpression of beta 1-adrenergic receptor, and manipulating the affinity of Gs alpha for adenylyl cyclase was a more potent regulator of cyclic AMP production. The model predicted that less than 40% of adenylyl cyclase molecules may be stimulated under maximal receptor activation, and an experimental protocol is suggested for validating this prediction. The model also predicted that the endogenous heat-stable protein kinase inhibitor may enhance basal cyclic AMP buffering by 68% and increasing the apparent Hill coefficient of protein kinase A activation from 1.0 to 2.0. Finally, phosphorylation of the L-type calcium channel and phospholamban were found sufficient to predict the dominant changes in myocyte contractility, including a 2.6x increase in systolic calcium (inotropy) and a 28% decrease in calcium half-relaxation time (lusitropy). By performing systems analysis, the consequences of molecular perturbations in the beta-adrenergic signaling network may be understood within the context of integrative cellular physiology.

  18. Characterization of the cardiac Na+/K+ pump by development of a comprehensive and mechanistic model.

    Science.gov (United States)

    Oka, Chiaki; Cha, Chae Young; Noma, Akinori

    2010-07-07

    A large amount of experimental data on the characteristics of the cardiac Na(+)/K(+) pump have been accumulated, but it remains difficult to predict the quantitative contribution of the pump in an intact cell because most measurements have been made under non-physiological conditions. To extrapolate the experimental findings to intact cells, we have developed a comprehensive Na(+)/K(+) pump model based on the thermodynamic framework (Smith and Crampin, 2004) of the Post-Albers reaction cycle combined with access channel mechanisms. The new model explains a variety of experimental results for the Na(+)/K(+) pump current (I(NaK)), including the dependency on the concentrations of Na(+) and K(+), the membrane potential and the free energy of ATP hydrolysis. The model demonstrates that both the apparent affinity and the slope of the substrate-I(NaK) relationship measured experimentally are affected by the composition of ions in the extra- and intracellular solutions, indirectly through alteration in the probability distribution of individual enzyme intermediates. By considering the voltage dependence in the Na(+)- and K(+)-binding steps, the experimental voltage-I(NaK) relationship could be reconstructed with application of experimental ionic compositions in the model, and the view of voltage-dependent K(+) binding was supported. Re-evaluation of charge movements accompanying Na(+) and K(+) translocations gave a reasonable number for the site density of the Na(+)/K(+) pump on the membrane. The new model is relevant for simulation of cellular functions under various interventions, such as depression of energy metabolism. (c) 2010 Elsevier Ltd. All rights reserved.

  19. Multi-scale modeling of chemo-mechanical coupling in muscle contraction and applications to cardiac modeling

    Directory of Open Access Journals (Sweden)

    Chapelle Dominique

    2016-01-01

    Full Text Available We propose a muscle chemo-mechanical model by which myosin heads - that can chemically bind to actin, thus creating so-called cross-bridges producing contraction forces in sarcomeres at the subcellular level - are considered as special chemical entities having internal mechanical variables pertaining to the actual geometric configuration. This provides a thermodynamical basis for modeling the complex interplay of chemical and mechanical phenomena at the sarcomere level. The resulting model is in the form of stochastic equations governing the dynamics of these microscopic mechanical variables in a Langevin framework. Equivalently, Fokker-Planck equations can be derived to describe the evolution of the associated probability densities. Under certain assumptions the corresponding moment equations can be closed, thus directly providing access to macroscopic quantities that can be incorporated in the overall constitutive equations of the muscle tissue. The underlying thermodynamical framework also enables the derivation of compatible numerical schemes, in particular in terms of energy balances. These modeling and discretization ingredients can be integrated in a global model of the cardiac system, to represent physiological and pathological phenomena in various medical applications.

  20. Nicotinamide Riboside Preserves Cardiac Function in a Mouse Model of Dilated Cardiomyopathy.

    Science.gov (United States)

    Diguet, Nicolas; Trammell, Samuel A J; Tannous, Cynthia; Deloux, Robin; Piquereau, Jérôme; Mougenot, Nathalie; Gouge, Anne; Gressette, Mélanie; Manoury, Boris; Blanc, Jocelyne; Breton, Marie; Decaux, Jean-François; Lavery, Gareth; Baczkó, István; Zoll, Joffrey; Garnier, Anne; Li, Zhenlin; Brenner, Charles; Mericskay, Mathias

    2017-12-07

    Background -Myocardial metabolic impairment is a major feature in chronic heart failure (HF). As the major coenzyme in fuel oxidation and oxidative phosphorylation and a substrate for enzymes signaling energy stress and oxidative stress response, NAD + is emerging as a metabolic target in a number of diseases including HF. Little is known on mechanisms regulating homeostasis of NAD + in the failing heart. Methods -To explore possible alterations of NAD + homeostasis in the failing heart, we quantified expression of NAD + biosynthetic enzymes in human failing heart and in the heart of a mouse model of dilated cardiomyopathy (DCM) triggered by SRF transcription factor depletion in the heart (SRF HKO ) or of cardiac hypertrophy triggered by transverse aorta constriction (TAC). We studied the impact of NAD + precursor supplementation on cardiac function in both mouse models. Results -We observed a 30% loss in levels of NAD + in the murine failing heart of both DCM and TAC mice that was accompanied by a decrease in expression of the NAMPT enzyme that recycles the nicotinamide (NAM) precursor whereas the nicotinamide riboside kinase 2 (NMRK2) that phosphorylates the nicotinamide riboside (NR) precursor is increased, to a higher level in the DCM (40 fold) than in TAC (4 fold). This shift was also observed in human failing heart biopsies compared to non-failing controls. We show that the Nmrk2 gene is an AMPK and PPARalpha responsive gene that is activated by energy stress and NAD + depletion in isolated rat cardiomyocytes. NR efficiently rescues NAD + synthesis in response to FK866-mediated inhibition of NAMPT and stimulates glycolysis in cardiomyocytes. Accordingly, we show that NR supplementation in food attenuates the development of HF in mice, more robustly in DCM, and partially after TAC, by stabilizing myocardial NAD + levels in the failing heart. NR treatment also robustly increases the myocardial levels of three metabolites, nicotinic acid adenine dinucleotide

  1. Quantitative modeling of the accuracy in registering preoperative patient-specific anatomic models into left atrial cardiac ablation procedures.

    Science.gov (United States)

    Rettmann, Maryam E; Holmes, David R; Kwartowitz, David M; Gunawan, Mia; Johnson, Susan B; Camp, Jon J; Cameron, Bruce M; Dalegrave, Charles; Kolasa, Mark W; Packer, Douglas L; Robb, Richard A

    2014-02-01

    In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and electroanatomic maps are important guidance tools, they lack information regarding detailed patient anatomy which can be obtained from high resolution imaging techniques. For this reason, there has been significant effort in incorporating detailed, patient-specific models generated from preoperative imaging datasets into the procedure. Both clinical and animal studies have investigated registration and targeting accuracy when using preoperative models; however, the effect of various error sources on registration accuracy has not been quantitatively evaluated. Data from phantom, canine, and patient studies are used to model and evaluate registration accuracy. In the phantom studies, data are collected using a magnetically tracked catheter on a static phantom model. Monte Carlo simulation studies were run to evaluate both baseline errors as well as the effect of different sources of error that would be present in a dynamic in vivo setting. Error is simulated by varying the variance parameters on the landmark fiducial, physical target, and surface point locations in the phantom simulation studies. In vivo validation studies were undertaken in six canines in which metal clips were placed in the left atrium to serve as ground truth points. A small clinical evaluation was completed in three patients. Landmark-based and combined landmark and surface-based registration algorithms were evaluated in all studies. In the phantom and canine studies, both target registration error and point-to-surface error are used to assess accuracy. In the patient studies, no ground truth is available and registration accuracy is quantified using point-to-surface error only. The phantom simulation studies demonstrated that combined landmark and surface-based registration improved landmark-only registration

  2. Quantitative modeling of the accuracy in registering preoperative patient-specific anatomic models into left atrial cardiac ablation procedures

    Energy Technology Data Exchange (ETDEWEB)

    Rettmann, Maryam E., E-mail: rettmann.maryam@mayo.edu; Holmes, David R.; Camp, Jon J.; Cameron, Bruce M.; Robb, Richard A. [Biomedical Imaging Resource, Mayo Clinic College of Medicine, Rochester, Minnesota 55905 (United States); Kwartowitz, David M. [Department of Bioengineering, Clemson University, Clemson, South Carolina 29634 (United States); Gunawan, Mia [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington D.C. 20057 (United States); Johnson, Susan B.; Packer, Douglas L. [Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota 55905 (United States); Dalegrave, Charles [Clinical Cardiac Electrophysiology, Cardiology Division Hospital Sao Paulo, Federal University of Sao Paulo, 04024-002 Brazil (Brazil); Kolasa, Mark W. [David Grant Medical Center, Fairfield, California 94535 (United States)

    2014-02-15

    Purpose: In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and electroanatomic maps are important guidance tools, they lack information regarding detailed patient anatomy which can be obtained from high resolution imaging techniques. For this reason, there has been significant effort in incorporating detailed, patient-specific models generated from preoperative imaging datasets into the procedure. Both clinical and animal studies have investigated registration and targeting accuracy when using preoperative models; however, the effect of various error sources on registration accuracy has not been quantitatively evaluated. Methods: Data from phantom, canine, and patient studies are used to model and evaluate registration accuracy. In the phantom studies, data are collected using a magnetically tracked catheter on a static phantom model. Monte Carlo simulation studies were run to evaluate both baseline errors as well as the effect of different sources of error that would be present in a dynamicin vivo setting. Error is simulated by varying the variance parameters on the landmark fiducial, physical target, and surface point locations in the phantom simulation studies. In vivo validation studies were undertaken in six canines in which metal clips were placed in the left atrium to serve as ground truth points. A small clinical evaluation was completed in three patients. Landmark-based and combined landmark and surface-based registration algorithms were evaluated in all studies. In the phantom and canine studies, both target registration error and point-to-surface error are used to assess accuracy. In the patient studies, no ground truth is available and registration accuracy is quantified using point-to-surface error only. Results: The phantom simulation studies demonstrated that combined landmark and surface-based registration improved

  3. The importance of mechano-electrical feedback and inertia in cardiac electromechanics.

    Science.gov (United States)

    Costabal, Francisco Sahli; Concha, Felipe A; Hurtado, Daniel E; Kuhl, Ellen

    2017-06-15

    In the past years, a number cardiac electromechanics models have been developed to better understand the excitation-contraction behavior of the heart. However, there is no agreement on whether inertial forces play a role in this system. In this study, we assess the influence of mass in electromechanical simulations, using a fully coupled finite element model. We include the effect of mechano-electrical feedback via stretch activated currents. We compare five different models: electrophysiology, electromechanics, electromechanics with mechano-electrical feedback, electromechanics with mass, and electromechanics with mass and mechano-electrical feedback. We simulate normal conduction to study conduction velocity and spiral waves to study fibrillation. During normal conduction, mass in conjunction with mechano-electrical feedback increased the conduction velocity by 8.12% in comparison to the plain electrophysiology case. During the generation of a spiral wave, mass and mechano-electrical feedback generated secondary wavefronts, which were not present in any other model. These secondary wavefronts were initiated in tensile stretch regions that induced electrical currents. We expect that this study will help the research community to better understand the importance of mechanoelectrical feedback and inertia in cardiac electromechanics.

  4. TGF-β1(Transforming Growth Factor-β1) Plays a Pivotal Role in Cardiac Myofibroblast Arrhythmogenicity.

    Science.gov (United States)

    Salvarani, Nicolò; Maguy, Ange; De Simone, Stefano A; Miragoli, Michele; Jousset, Florian; Rohr, Stephan

    2017-05-01

    TGF-β 1 (transforming growth factor-β 1 ) importantly contributes to cardiac fibrosis by controlling differentiation, migration, and collagen secretion of cardiac myofibroblasts. It is still elusive, however, to which extent TGF-β 1 alters the electrophysiological phenotype of myofibroblasts and cardiomyocytes and whether it affects proarrhythmic myofibroblast-cardiomyocyte crosstalk observed in vitro. Patch-clamp recordings of cultured neonatal rat ventricular myofibroblasts revealed that TGF-β 1 , applied for 24 to 48 hours at clinically relevant concentrations (≤2.5 ng/mL), causes substantial membrane depolarization concomitant with a several-fold increase of transmembrane currents. Transcriptome analysis revealed TGF-β 1 -dependent changes in 29 of 63 ion channel/pump/connexin transcripts, indicating a pleiotropic effect on the electrical phenotype of myofibroblasts. Whereas not affecting cardiomyocyte membrane potentials and cardiomyocyte-cardiomyocyte gap junctional coupling, TGF-β 1 depolarized cardiomyocytes coupled to myofibroblasts by ≈20 mV and increased gap junctional coupling between myofibroblasts and cardiomyocytes >5-fold as reflected by elevated connexin 43 and consortin transcripts. TGF-β 1 -dependent cardiomyocyte depolarization resulted from electrotonic crosstalk with myofibroblasts as demonstrated by immediate normalization of cardiomyocyte electrophysiology after targeted disruption of coupled myofibroblasts and by cessation of ectopic activity of cardiomyocytes coupled to myofibroblasts during pharmacological gap junctional uncoupling. In cardiac fibrosis models exhibiting slow conduction and ectopic activity, block of TGF-β 1 signaling completely abolished both arrhythmogenic conditions. TGF-β 1 profoundly alters the electrophysiological phenotype of cardiac myofibroblasts. Apart from possibly contributing to the control of cell function in general, the changes proved to be pivotal for proarrhythmic myofibroblast

  5. Non-invasive volumetric optoacoustic imaging of cardiac cycles in acute myocardial infarction model in real-time

    Science.gov (United States)

    Lin, Hasiao-Chun Amy; Déan-Ben, Xosé Luís.; Kimm, Melanie; Kosanke, Katja; Haas, Helena; Meier, Reinhard; Lohöfer, Fabian; Wildgruber, Moritz; Razansky, Daniel

    2017-03-01

    Extraction of murine cardiac functional parameters on a beat-by-beat basis remains challenging with the existing imaging modalities. Novel methods enabling in vivo characterization of functional parameters at a high temporal resolution are poised to advance cardiovascular research and provide a better understanding of the mechanisms underlying cardiac diseases. We present a new approach based on analyzing contrast-enhanced optoacoustic (OA) images acquired at high volumetric frame rate without using cardiac gating or other approaches for motion correction. Acute myocardial infarction was surgically induced in murine models, and the method was modified to optimize for acquisition of artifact-free optoacoustic data. Infarcted hearts could be differentiated from healthy controls based on a significantly higher pulmonary transit time (PTT: infarct 2.07 s vs. healthy 1.34 s), while no statistically significant difference was observed in the heart rate (318 bpm vs. 309 bpm). In combination with the proven ability of optoacoustics to track targeted probes within the injured myocardium, our method is capable of depicting cardiac anatomy, function, and molecular signatures on a beat-by-beat basis, both with high spatial and temporal resolution, thus providing new insights into the study of myocardial ischemia.

  6. Examining motivations and barriers for attending maintenance community-based cardiac rehabilitation using the health-belief model.

    Science.gov (United States)

    Horwood, Hayley; Williams, Michael J A; Mandic, Sandra

    2015-10-01

    Reasons for low attendance at maintenance cardiac rehabilitation (CR) programs remain largely unknown. Using the Health Belief Model as a theoretical framework, this study compared the motivations and barriers for attending a community-based CR maintenance program in high attenders (HA), low attenders (LA) and non-attenders (NA) with coronary artery disease (CAD). Forty-four older adults with CAD (70.5% males; age: 72.7±6.9 years; 11 HA, 16 LA and 17 NA) completed questionnaires examining reasons for attending CR: perceived threat (symptoms of CAD; the Revised Illness Perception Questionnaire), perceived benefits (Multi-dimensional Outcomes Expectations for Exercise Scale), perceived barriers (Cardiac Rehabilitation Barriers Scale) and cues to action questionnaire. Sociodemographic characteristics and perceived threat were not different between the groups. Compared to LA and NA, HA perceived greater social and physical (vs NA only) benefits of participation in maintenance CR and had fewer barriers to attending (all phealth concerns and others having heart problems were stronger cues to action for HA versus NA (all p<0.05). Participants perceived greater benefits from attending CR, had fewer barriers and perceived stronger cues to action compared to non-attenders. Promoting CR maintenance programs should emphasise physical and social benefits and provide encouragement. Copyright © 2015 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  7. Effects of Intraosseous Tibial vs. Intravenous Vasopressin in a Hypovolemic Cardiac Arrest Model

    Directory of Open Access Journals (Sweden)

    Justin Fulkerson, MSN

    2016-03-01

    Full Text Available Introduction: This study compared the effects of vasopressin via tibial intraosseous (IO and intravenous (IV routes on maximum plasma concentration (Cmax, the time to maximum concentration (Tmax, return of spontaneous circulation (ROSC, and time to ROSC in a hypovolemic cardiac arrest model. Methods: This study was a randomized prospective, between-subjects experimental design. A computer program randomly assigned 28 Yorkshire swine to one of four groups: IV (n=7, IO tibia (n=7, cardiopulmonary resuscitation (CPR + defibrillation (n=7, and a control group that received just CPR (n=7. Ventricular fibrillation was induced, and subjects remained in arrest for two minutes. CPR was initiated and 40 units of vasopressin were administered via IO or IV routes. Blood samples were collected at 0.5, 1, 1.5, 2, 2.5, 3, and 4 minutes. CPR and defibrillation were initiated for 20 minutes or until ROSC was achieved. We measured vasopressin concentrations using highperformance liquid chromatography. Results: There was no significant difference between the IO and IV groups relative to achieving ROSC (p=1.0 but a significant difference between the IV compared to the CPR+ defibrillation group (p=0.031 and IV compared to the CPR-only group (p=0.001. There was a significant difference between the IO group compared to the CPR+ defibrillation group (p=0.031 and IO compared to the CPR-only group (p=0.001. There was no significant difference between the CPR + defibrillation group and the CPR group (p=0.127. There was no significant difference in Cmax between the IO and IV groups (p=0.079. The mean ± standard deviation of Cmax of the IO group was 58,709±25,463pg/mL compared to the IV group, which was 106,198±62,135pg/mL. There was no significant difference in mean Tmax between the groups (p=0.084. There were no significant differences in odds of ROSC between the tibial IO and IV groups. Conclusion: Prompt access to the vascular system using the IO route can circumvent

  8. Differential Effects of Colchicine on Cardiac Cell Viability in an in vitro Model Simulating Myocardial Infarction.

    Science.gov (United States)

    Margolis, Gilad; Hertzberg-Bigelman, Einat; Levy, Ran; Ben-Shoshan, Jeremy; Keren, Gad; Entin-Meer, Michal

    2016-01-01

    We aimed to examine the effects of colchicine, currently in clinical trials for acute myocardial infarction (AMI), on the viability of cardiac cells using a cell line model of AMI. HL-1, a murine cardiomyocyte cell line, and H9C2, a rat cardiomyoblast cell line, were incubated with TNFα or sera derived from rats that underwent AMI or sham operation followed by addition of colchicine. In another experiment, HL-1/H9C2 cells were exposed to anoxia with or without subsequent addition of colchicine. Cell morphology and viability were assessed by light microscopy, flow cytometry and Western blot analyses for apoptotic markers. Cellular viability was similar in both sera; however, exposing both cell lines to anoxia reduced their viability. Adding colchicine to anoxic H9C2, but not to anoxic HL-1, further increased their mortality, at least in part via enhanced apoptosis. Under any condition, colchicine induced detachment of H9C2 cells from their culture plates. This phenomenon did not apply to HL-1 cells. Colchicine enhanced cardiomyoblast mortality under in vitro conditions mimicking AMI and reduced their adherence capability. HL-1 was not affected by colchicine; nevertheless, no salvage effect was observed. We thus conclude that colchicine may not inhibit myocardial apoptosis following AMI. © 2016 S. Karger AG, Basel.

  9. Modelling far field pacing for terminating spiral waves pinned to ischaemic heterogeneities in cardiac tissue

    Science.gov (United States)

    Boccia, E.; Luther, S.; Parlitz, U.

    2017-05-01

    In cardiac tissue, electrical spiral waves pinned to a heterogeneity can be unpinned (and eventually terminated) using electric far field pulses and recruiting the heterogeneity as a virtual electrode. While for isotropic media the process of unpinning is much better understood, the case of an anisotropic substrate with different conductivities in different directions still needs intensive investigation. To study the impact of anisotropy on the unpinning process, we present numerical simulations based on the bidomain formulation of the phase I of the Luo and Rudy action potential model modified due to the occurrence of acute myocardial ischaemia. Simulating a rotating spiral wave pinned to an ischaemic heterogeneity, we compare the success of sequences of far field pulses in the isotropic and the anisotropic case for spirals still in transient or in steady rotation states. Our results clearly indicate that the range of pacing parameters resulting in successful termination of pinned spiral waves is larger in anisotropic tissue than in an isotropic medium. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.

  10. Monitoring of immune activation using biochemical changes in a porcine model of cardiac arrest

    Directory of Open Access Journals (Sweden)

    Anton Amann

    2001-01-01

    Full Text Available In animal models, immune activation is often difficult to assess because of the limited availability of specific assays to detect cytokine activities. In human monocytes/macrophages, interferon-γ induces increased production of neopterin and an enhanced activity of indoleamine 2,3-dioxygenase, which degrades tryptophan via the kynurenine pathway. Therefore, monitoring of neopterin concentrations and of tryptophan degradation can serve to detect the extent of T helper cell 1-type immune activation during cellular immune response in humans. In a porcine model of cardiac arrest, we examined the potential use of neopterin measurements and determination of the tryptophan degradation rate as a means of estimating the extent of immune activation. Urinary neopterin concentrations were measured with high-performance liquid chromatography (HPLC and radioimmunoassay (RIA (BRAHMS Diagnostica, Berlin, Germany. Serum and plasma tryptophan and kynurenine concentrations were also determined using HPLC. Serum and urine neopterin concentrations were not detectable with HPLC in these specimens, whereas RIA gave weakly (presumably false positive results. The mean serum tryptophan concentration was 39.0 Ī 6.2 μmol/l, and the mean kynurenine concentration was 0.85 Ī 0.33 μmol/l. The average kynurenine-per-tryptophan quotient in serum was 21.7Ī 8.4 nmol/μmol, and that in plasma was 20.7Ī 9.5 nmol/μmol (n = 7, which corresponds well to normal values in humans. This study provides preliminary data to support the monitoring of tryptophan degradation but not neopterin concentrations as a potential means of detecting immune activation in a porcine model. The kynurenine-per-tryptophan quotient may serve as a short-term measurement of immune activation and hence permit an estimate of the extent of immune activation.

  11. Testing a Longitudinal Integrated Self-Efficacy and Self-Determination Theory Model for Physical Activity Post-Cardiac Rehabilitation.

    Science.gov (United States)

    Sweet, Shane N; Fortier, Michelle S; Strachan, Shaelyn M; Blanchard, Chris M; Boulay, Pierre

    2014-01-13

    Self-determination theory and self-efficacy theory are prominent theories in the physical activity literature, and studies have begun integrating their concepts. Sweet, Fortier, Strachan and Blanchard (2012) have integrated these two theories in a cross-sectional study. Therefore, this study sought to test a longitudinal integrated model to predict physical activity at the end of a 4-month cardiac rehabilitation program based on theory, research and Sweet et al.'s cross-sectional model. Participants from two cardiac rehabilitation programs (N=109) answered validated self-report questionnaires at baseline, two and four months. Data were analyzed using Amos to assess the path analysis and model fit. Prior to integration, perceived competence and self-efficacy were combined, and labeled as confidence. After controlling for 2-month physical activity and cardiac rehabilitation site, no motivational variables significantly predicted residual change in 4-month physical activity. Although confidence at two months did not predict residual change in 4-month physical activity, it had a strong positive relationship with 2-month physical activity (β=0.30, Pmodel retained good fit indices. In conclusion, results diverged from theoretical predictions of physical activity, but self-determination and self-efficacy theory were still partially supported. Because the model had good fit, this study demonstrated that theoretical integration is feasible.

  12. Testing a Longitudinal Integrated Self-Efficacy and Self-Determination Theory Model for Physical Activity Post-Cardiac Rehabilitation

    Science.gov (United States)

    Sweet, Shane N.; Fortier, Michelle S.; Strachan, Shaelyn M.; Blanchard, Chris M.; Boulay, Pierre

    2014-01-01

    Self-determination theory and self-efficacy theory are prominent theories in the physical activity literature, and studies have begun integrating their concepts. Sweet, Fortier, Strachan and Blanchard (2012) have integrated these two theories in a cross-sectional study. Therefore, this study sought to test a longitudinal integrated model to predict physical activity at the end of a 4-month cardiac rehabilitation program based on theory, research and Sweet et al.’s cross-sectional model. Participants from two cardiac rehabilitation programs (N=109) answered validated self-report questionnaires at baseline, two and four months. Data were analyzed using Amos to assess the path analysis and model fit. Prior to integration, perceived competence and self-efficacy were combined, and labeled as confidence. After controlling for 2-month physical activity and cardiac rehabilitation site, no motivational variables significantly predicted residual change in 4-month physical activity. Although confidence at two months did not predict residual change in 4-month physical activity, it had a strong positive relationship with 2-month physical activity (β=0.30, Pphysical activity, but self-determination and self-efficacy theory were still partially supported. Because the model had good fit, this study demonstrated that theoretical integration is feasible. PMID:26973926

  13. Free Tools and Strategies for the Generation of 3D Finite Element Meshes: Modeling of the Cardiac Structures

    Directory of Open Access Journals (Sweden)

    E. Pavarino

    2013-01-01

    Full Text Available The Finite Element Method is a well-known technique, being extensively applied in different areas. Studies using the Finite Element Method (FEM are targeted to improve cardiac ablation procedures. For such simulations, the finite element meshes should consider the size and histological features of the target structures. However, it is possible to verify that some methods or tools used to generate meshes of human body structures are still limited, due to nondetailed models, nontrivial preprocessing, or mainly limitation in the use condition. In this paper, alternatives are demonstrated to solid modeling and automatic generation of highly refined tetrahedral meshes, with quality compatible with other studies focused on mesh generation. The innovations presented here are strategies to integrate Open Source Software (OSS. The chosen techniques and strategies are presented and discussed, considering cardiac structures as a first application context.

  14. External validation of predictive models for acute kidney injury following cardiac surgery: A prospective multicentre cohort study.

    Science.gov (United States)

    Echarri, Gemma; Duque-Sosa, Paula; Callejas, Raquel; Garcia-Fernandez, Nuria; Nunez-Cordoba, Jorge M; Iribarren, Maria J; Monedero, Pablo

    2017-02-01

    Four predictive models for acute kidney injury associated with cardiac surgery were developed by Demirjian in the United States in 2012. However, the usefulness of these models in clinical practice needs to be established in different populations independent of that used to develop the models. Our aim was to evaluate the predictive performance of these models in a Spanish population. A multicentre, prospective observational study. Twenty-three Spanish hospitals in 2012 and 2013. Of 1067 consecutive cardiac patients recruited for the study, 1014 patients remained suitable for the final analysis. Dialysis therapy, and a composite outcome of either a doubling of the serum creatinine level or dialysis therapy, in the 2 weeks (or until discharge, if sooner) after cardiac surgery. Of the 1014 patients analysed, 34 (3.4%) required dialysis and 95 (9.4%) had either dialysis or doubled their serum creatinine level. The areas under the receiver operating characteristic curves of the two predictive models for dialysis therapy, which include either presurgical variables only, or combined presurgical and intrasurgical variables, were 0.79 and 0.80, respectively. The model for the composite endpoint that combined presurgical and intrasurgical variables showed better discriminatory ability than the model that included only presurgical variables: the areas under the receiver operating characteristic curves were 0.76 and 0.70, respectively. All four models lacked calibration for their respective outcomes in our Spanish population. Overall, the lack of calibration of these models and the difficulty in using the models clinically because of the large number of variables limit their applicability.

  15. Endocardial left ventricular pacing improves cardiac resynchronization therapy in chronic asynchronous infarction and heart failure models.

    Science.gov (United States)

    Strik, Marc; Rademakers, Leonard M; van Deursen, Caroline J M; van Hunnik, Arne; Kuiper, Marion; Klersy, Catherine; Auricchio, Angelo; Prinzen, Frits W

    2012-02-01

    Studies in canine hearts with acute left bundle branch block (LBBB) showed that endocardial left ventricular (LV) pacing improves the efficacy of cardiac resynchronization therapy (CRT) compared with conventional epicardial LV pacing. The present study explores the efficacy of endocardial CRT in more compromised hearts and the mechanisms of such beneficial effects. Measurements were performed in 22 dogs, 9 with acute LBBB, 7 with chronic LBBB combined with infarction (embolization; LBBB plus myocardial infarction, and concentric remodeling), and 6 with chronic LBBB and heart failure (rapid pacing, LBBB+HF, and eccentric remodeling). A head-to-head comparison was performed of the effects of endocardial and epicardial LV pacing at 8 sites. LV activation times were measured using ≈100 endocardial and epicardial electrodes and noncontact mapping. Pump function was assessed from right ventricular and LV pressures. Endocardial CRT resulted in better electric resynchronization than epicardial CRT in all models, although the benefit was larger in concentrically remodeled LBBB plus myocardial infarction than in eccentrically remodeled LBBB+HF hearts (19% versus 10%). In LBBB and LBBB+HF animals, endocardial conduction was ≈50% faster than epicardial conduction; in all models, transmural impulse conduction was ≈25% faster when pacing from the endocardium than from the epicardium. Hemodynamic effects were congruent with electric effects. Endocardial CRT improves electric synchrony of activation and LV pump function compared with conventional epicardial CRT in compromised canine LBBB hearts. This benefit can be explained by a shorter path length along the endocardium and by faster circumferential and transmural impulse conduction during endocardial LV pacing.

  16. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability.

    Directory of Open Access Journals (Sweden)

    Paul W Burridge

    2011-04-01

    Full Text Available The production of cardiomyocytes from human induced pluripotent stem cells (hiPSC holds great promise for patient-specific cardiotoxicity drug testing, disease modeling, and cardiac regeneration. However, existing protocols for the differentiation of hiPSC to the cardiac lineage are inefficient and highly variable. We describe a highly efficient system for differentiation of human embryonic stem cells (hESC and hiPSC to the cardiac lineage. This system eliminated the variability in cardiac differentiation capacity of a variety of human pluripotent stem cells (hPSC, including hiPSC generated from CD34(+ cord blood using non-viral, non-integrating methods.We systematically and rigorously optimized >45 experimental variables to develop a universal cardiac differentiation system that produced contracting human embryoid bodies (hEB with an improved efficiency of 94.7±2.4% in an accelerated nine days from four hESC and seven hiPSC lines tested, including hiPSC derived from neonatal CD34(+ cord blood and adult fibroblasts using non-integrating episomal plasmids. This cost-effective differentiation method employed forced aggregation hEB formation in a chemically defined medium, along with staged exposure to physiological (5% oxygen, and optimized concentrations of mesodermal morphogens BMP4 and FGF2, polyvinyl alcohol, serum, and insulin. The contracting hEB derived using these methods were composed of high percentages (64-89% of cardiac troponin I(+ cells that displayed ultrastructural properties of functional cardiomyocytes and uniform electrophysiological profiles responsive to cardioactive drugs.This efficient and cost-effective universal system for cardiac differentiation of hiPSC allows a potentially unlimited production of functional cardiomyocytes suitable for application to hPSC-based drug development, cardiac disease modeling, and the future generation of clinically-safe nonviral human cardiac cells for regenerative medicine.

  17. Electrophysiologic consequences of KATP gain of function in the heart: Conduction abnormalities in Cantu syndrome.

    Science.gov (United States)

    Levin, Mark D; Zhang, Haixia; Uchida, Keita; Grange, Dorothy K; Singh, Gautam K; Nichols, Colin G

    2015-11-01

    Gain-of-function (GOF) mutations in the KATP channel subunits Kir6.1 and SUR2 cause Cantu syndrome (CS), a disease characterized by multiple cardiovascular abnormalities. The purpose of this study was to better determine the electrophysiologic consequences of such GOF mutations in the heart. We generated transgenic mice (Kir6.1-GOF) expressing ATP-insensitive Kir6.1[G343D] subunits under α-myosin heavy chain (α-MHC) promoter control, to target gene expression specifically in cardiomyocytes, and performed patch-clamp experiments on isolated ventricular myocytes and invasive electrophysiology on anesthetized mice. In Kir6.1-GOF ventricular myocytes, KATP channels showed decreased ATP sensitivity but no significant change in current density. Ambulatory ECG recordings on Kir6.1-GOF mice revealed AV nodal conduction abnormalities and junctional rhythm. Invasive electrophysiologic analyses revealed slowing of conduction and conduction failure through the AV node but no increase in susceptibility to atrial or ventricular ectopic activity. Surface ECGs recorded from CS patients also demonstrated first-degree AV block and fascicular block. The primary electrophysiologic consequence of cardiac KATP GOF is on the conduction system, particularly the AV node, resulting in conduction abnormalities in CS patients who carry KATP GOF mutations. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  18. Length of intensive care unit stay following cardiac surgery: is it impossible to find a universal prediction model?

    Science.gov (United States)

    Widyastuti, Yunita; Stenseth, Roar; Wahba, Alexander; Pleym, Hilde; Videm, Vibeke

    2012-11-01

    Accurate models for prediction of a prolonged intensive care unit (ICU) stay following cardiac surgery may be developed using Cox proportional hazards regression. Our aims were to develop a preoperative and intraoperative model to predict the length of the ICU stay and to compare our models with published risk models, including the EuroSCORE II. Models were developed using data from all patients undergoing cardiac surgery at St. Olavs Hospital, Trondheim, Norway from 2000-2007 (n = 4994). Internal validation and calibration were performed by bootstrapping. Discrimination was assessed by areas under the receiver operating characteristics curves and calibration for the published logistic regression models with the Hosmer-Lemeshow test. Despite a diverse risk profile, 93.7% of the patients had an ICU stay prediction of a prolonged stay of more than 2, 5 or 7 days. Discrimination by the EuroSCORE II and other published models was good, but calibration was poor (Hosmer-Lemeshow test: P prediction of ICU stay in individual patients because most patients in all risk categories of all models had short ICU stays (75th percentiles: 1 day). A universal model for prediction of ICU stay may be difficult to develop, as the distribution of length of stay may depend on both medical factors and institutional policies governing ICU discharge.

  19. Cardiac sodium channelopathies.

    Science.gov (United States)

    Amin, Ahmad S; Asghari-Roodsari, Alaleh; Tan, Hanno L

    2010-07-01

    Cardiac sodium channel are protein complexes that are expressed in the sarcolemma of cardiomyocytes to carry a large inward depolarizing current (INa) during phase 0 of the cardiac action potential. The importance of INa for normal cardiac electrical activity is reflected by the high incidence of arrhythmias in cardiac sodium channelopathies, i.e., arrhythmogenic diseases in patients with mutations in SCN5A, the gene responsible for the pore-forming ion-conducting alpha-subunit, or in genes that encode the ancillary beta-subunits or regulatory proteins of the cardiac sodium channel. While clinical and genetic studies have laid the foundation for our understanding of cardiac sodium channelopathies by establishing links between arrhythmogenic diseases and mutations in genes that encode various subunits of the cardiac sodium channel, biophysical studies (particularly in heterologous expression systems and transgenic mouse models) have provided insights into the mechanisms by which INa dysfunction causes disease in such channelopathies. It is now recognized that mutations that increase INa delay cardiac repolarization, prolong action potential duration, and cause long QT syndrome, while mutations that reduce INa decrease cardiac excitability, reduce electrical conduction velocity, and induce Brugada syndrome, progressive cardiac conduction disease, sick sinus syndrome, or combinations thereof. Recently, mutation-induced INa dysfunction was also linked to dilated cardiomyopathy, atrial fibrillation, and sudden infant death syndrome. This review describes the structure and function of the cardiac sodium channel and its various subunits, summarizes major cardiac sodium channelopathies and the current knowledge concerning their genetic background and underlying molecular mechanisms, and discusses recent advances in the discovery of mutation-specific therapies in the management of these channelopathies.

  20. A prediction model for 5-year cardiac mortality in patients with chronic heart failure using {sup 123}I-metaiodobenzylguanidine imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Kenichi; Matsuo, Shinro [Kanazawa University Hospital, Department of Nuclear Medicine, Kanazawa (Japan); Nakata, Tomoaki [Sapporo Medical University School of Medicine, Second Department of Internal Medicine (Cardiology), Sapporo (Japan); Hakodate-Goryoukaku Hospital, Department of Cardiology, Hakodate (Japan); Yamada, Takahisa [Osaka Prefectural General Medical Center, Department of Cardiology, Osaka (Japan); Yamashina, Shohei [Toho University Omori Medical Center, Department of Cardiovascular Medicine, Tokyo (Japan); Momose, Mitsuru [Tokyo Women' s Medical University, Department of Nuclear Medicine, Tokyo (Japan); Kasama, Shu [Cardiovascular Hospital of Central Japan, Department of Cardiology, Shibukawa (Japan); Matsui, Toshiki [Social Insurance Shiga General Hospital, Department of Cardiology, Otsu (Japan); Travin, Mark I. [Albert Einstein Medical College, Department of Cardiology and Nuclear Medicine, Montefiore Medical Center, Bronx, NY (United States); Jacobson, Arnold F. [GE Healthcare, Medical Diagnostics, Princeton, NJ (United States)

    2014-09-15

    Prediction of mortality risk is important in the management of chronic heart failure (CHF). The aim of this study was to create a prediction model for 5-year cardiac death including assessment of cardiac sympathetic innervation using data from a multicenter cohort study in Japan. The original pooled database consisted of cohort studies from six sites in Japan. A total of 933 CHF patients who underwent {sup 123}I-metaiodobenzylguanidine (MIBG) imaging and whose 5-year outcomes were known were selected from this database. The late MIBG heart-to-mediastinum ratio (HMR) was used for quantification of cardiac uptake. Cox proportional hazard and logistic regression analyses were used to select appropriate variables for predicting 5-year cardiac mortality. The formula for predicting 5-year mortality was created using a logistic regression model. During the 5-year follow-up, 205 patients (22 %) died of a cardiac event including heart failure death, sudden cardiac death and fatal acute myocardial infarction (64 %, 30 % and 6 %, respectively). Multivariate logistic analysis selected four parameters, including New York Heart Association (NYHA) functional class, age, gender and left ventricular ejection fraction, without HMR (model 1) and five parameters with the addition of HMR (model 2). The net reclassification improvement analysis for all subjects was 13.8 % (p < 0.0001) by including HMR and its inclusion was most effective in the downward reclassification of low-risk patients. Nomograms for predicting 5-year cardiac mortality were created from the five-parameter regression model. Cardiac MIBG imaging had a significant additive value for predicting cardiac mortality. The prediction formula and nomograms can be used for risk stratifying in patients with CHF. (orig.)

  1. Electrophysiological functional recovery in a rat model of spinal cord hemisection injury following bone marrow-derived mesenchymal stem cell transplantation under hypothermia.

    Science.gov (United States)

    Wang, Dong; Zhang, Jianjun

    2012-04-05

    Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under normal temperature, rats transplanted with bone marrow stem cells under hypothermia showed increased numbers of proliferating cells (bromodeoxyuridine-positive cells), better recovery of somatosensory-evoked and motor-evoked potentials, greater Basso, Beattie, and Bresnahan locomotor rating scores, and an increased degree of angle in the incline plate test. These findings suggested that hypothermia combined with bone marrow mesenchymal stem cells transplantation effectively promoted electrical conduction and nerve functional repair in a rat model of spinal cord hemisection injury.

  2. Drug interaction at hERG channel: In vitro assessment of the electrophysiological consequences of drug combinations and comparison against theoretical models.

    Science.gov (United States)

    Wiśniowska, Barbara; Lisowski, Bartosz; Kulig, Magdalena; Polak, Sebastian

    2018-04-01

    Drugs carry a proarrhythmic risk, which gets even greater when they are used in combination. In vitro assessment of the proarrhythmic potential of drugs is limited to one compound and thus neglects the potential of drug-drug interactions, including those involving active metabolites. Here we present the results of an in vitro study of potential drug-drug interactions at the level of the hERG channel for the combination of up to three compounds: loratadine, desloratadine and ketoconazole. Experiments were performed at room temperature on an automated patch-clamp device CytoPatch 2, with the use of heterogeneously, stably transfected HEK cells. Single drugs, pairs and triplets were used. The results provided as the inhibition of the I Kr current for pairs were compared against the calculated theoretical interaction. Models applied to calculate the combined effect of inhibitory actions of simultaneously given drugs include: (1) simple additive model with a maximal inhibition limit of 1 (all channels blocked in 100%); (2) Bliss independence; and (3) Loewe additivity. The observed IC 50 values for loratadine, desloratadine and ketoconazole were 5.15, 1.95 and 0.74 μm respectively. For the combination of drugs tested in pairs, the effect was concentration dependent. In lower concentrations, the synergistic effect was observed, while for the highest tested concentrations it was subadditive. To triple the effect, it was subadditive regardless of concentrations. The square root of sum of squares of differences between the observed and predicted total inhibition was calculated to assess the theoretical interaction models. For most of the drugs, the allotopic model offered the best fit. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Cardiac rehabilitation

    Science.gov (United States)

    ... rehab; Heart failure - cardiac rehab References Anderson L, Taylor RS. Cardiac rehabilitation for people with heart disease: ... of Medicine, Division of Cardiology, Harborview Medical Center, University of Washington Medical School, Seattle, WA. Also reviewed ...

  4. An Experimental Model Using Cultured Cardiac Myocytes for a Study of the Generation of Premature Ventricular Contractions Under Ultrasound Exposure

    Science.gov (United States)

    Kudo, Nobuki; Yamamoto, Masaya

    2011-09-01

    It is known that use of a contrast agents in echocardiography increases the probability of generation of premature ventricular contractions (PVCs). As a basic study to elucidate the mechanisms and to reduce adverse effects, the generation of PVCs was investigated using cultured cardiac myocytes instead of the intact heart in vivo. Cardiac myocytes were isolated from neonatal rats and cultured on a cover slip. The myocyte sample was exposed to pulsed ultrasound with microbubbles adjacent to the myocytes, and generation of PVCs was examined with ultrasound exposure at various delay times after onset of myocyte contraction. The experimental results showed that generation of PVCs had a stable threshold delay time and that PVCs were generated only when myocytes were exposed to ultrasound with delay times longer than the threshold. The results indicate that the model used in this study is useful for revealing the mechanisms by which PVCs are induced by ultrasound exposure.

  5. NASA Model of "Threat and Error" in Pediatric Cardiac Surgery: Patterns of Error Chains.

    Science.gov (United States)

    Hickey, Edward; Pham-Hung, Eric; Nosikova, Yaroslavna; Halvorsen, Fredrik; Gritti, Michael; Schwartz, Steven; Caldarone, Christopher A; Van Arsdell, Glen

    2017-04-01

    We introduced the National Aeronautics and Space Association threat-and-error model to our surgical unit. All admissions are considered flights, which should pass through stepwise deescalations in risk during surgical recovery. We hypothesized that errors significantly influence risk deescalation and contribute to poor outcomes. Patient flights (524) were tracked in real time for threats, errors, and unintended states by full-time performance personnel. Expected risk deescalation was wean from mechanical support, sternal closure, extubation, intensive care unit (ICU) discharge, and discharge home. Data were accrued from clinical charts, bedside data, reporting mechanisms, and staff interviews. Infographics of flights were openly discussed weekly for consensus. In 12% (64 of 524) of flights, the child failed to deescalate sequentially through expected risk levels; unintended increments instead occurred. Failed deescalations were highly associated with errors (426; 257 flights; p associated with a 29% rate of failed deescalation versus 4% in flights with no consequential error (p < 0.0001). The most dangerous errors were apical errors typically (84%) occurring in the operating room, which caused chains of propagating unintended states (n = 110): these had a 43% (47 of 110) rate of failed deescalation (versus 4%; p < 0.0001). Chains of unintended state were often (46%) amplified by additional (up to 7) errors in the ICU that would worsen clinical deviation. Overall, failed deescalations in risk were extremely closely linked to brain injury (n = 13; p < 0.0001) or death (n = 7; p < 0.0001). Deaths and brain injury after pediatric cardiac surgery almost always occur from propagating error chains that originate in the operating room and are often amplified by additional ICU errors. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Metoprolol Inhibits Cardiac Apoptosis and Fibrosis in a Canine Model of Chronic Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Wenpeng Li

    2015-06-01

    Full Text Available Aims: Emerging evidence suggested that obstructive sleep apnea (OSA was independently associated with the development of heart failure. In this study, we explored the influence of chronic OSA on left ventricular structural remodeling in canines, and the potential therapeutical role of metoprolol. Methods: Chronic OSA model was established by stopping the ventilator and closing the airway for 4 h/day apnea-ventilation cycles every other day for 12 weeks while metoprolol (5 mg· kg-1· day-1 were administered continuously. Norepinephrine concentration was measured by Enzyme Linked Immunosorbent Assay. Transmission electron microscopy, Hematoxylin and eosin, TUNEL and Masson trichrome staining were employed to detect the morphology, apoptosis and fibrosis of cardiomyocytes. Protein expression of apoptosis and fibrosis-related factors including apoptosis-inducing factor (AIF, caspase 3, Bcl-2, Bax, α-smooth muscle actin (α-SMA, transforming growth factor-β1 (TGF-β1, and p38 mitogen-activated protein kinase (MAPK were examined by Western blotting. Results: Norepinephrine concentration was markedly increased in chronic OSA dogs and reduced by metoprolol. Both the apoptotic ratio and collagen volume fraction were significantly increased in left ventricular myocytes of chronic OSA dogs, and was reversed by metoprolol. Moreover, chronic OSA-induced upregulation of AIF, cleaved caspase 3, Bax, α-SMA, and TGF-β1 as well as downregulation of Bcl-2 was markedly recovered by metoprolol, which was mediated by p38 MAPK. Conclusion: Metoprolol protects against chronic OSA-induced cardiac apoptosis and fibrosis in left ventricular myocytes of canines, which may provide new potential strategy for drug therapy of OSA.

  7. Highly purified eicosapentaenoic acid ameliorates cardiac injury and adipose tissue inflammation in a rat model of metabolic syndrome

    Science.gov (United States)

    Ito, S.; Sano, Y.; Nagasawa, K.; Matsuura, N.; Yamada, Y.; Uchinaka, A.; Murohara, T.

    2016-01-01

    Summary Introduction n‐3 Polyunsaturated fatty acids such as eicosapentaenoic acid (EPA), which are abundant in fish oil, have been shown to delay the onset of cardiovascular events. We previously established DahlS.Z‐Lepr fa/Lepr fa (DS/obese) rats, which are derived from a cross between Dahl salt‐sensitive and Zucker rats, as a model of metabolic syndrome. This study has now explored the influence of highly purified EPA on cardiac and adipose tissue pathophysiology in this animal model. Materials and methods DS/obese rats were administered EPA (300 or 1,000 mg kg−1 d−1, per os) or vehicle from age 9 to 13 weeks. Homozygous lean (DahlS.Z‐Lepr +/Lepr +, or DS/lean) littermates were studied as controls. Results Whereas EPA had no effect on body weight, food intake or systolic blood pressure in DS/obese rats, it attenuated cardiac fibrosis, diastolic dysfunction, oxidative stress and inflammation in these animals. In addition, EPA did not affect insulin resistance but reduced adipocyte hypertrophy and inflammation in visceral fat of DS/obese rats. Moreover, EPA increased circulating levels of adiponectin as well as attenuated both the down‐regulation of AMP‐activated protein kinase phosphorylation and the up‐regulation of phosphorylation of the p65 subunit of nuclear factor‐kB in the heart of DS/obese rats. Conclusions Treatment of DS/obese rats with EPA did not affect hypertension but reduced cardiac fibrosis and diastolic dysfunction, with the latter effects being accompanied by AMP‐activated protein kinase activation and inactivation of nuclear factor‐kB signalling in the heart, possibly as a result of an increase in adiponectin secretion. EPA may be suitable for the treatment of cardiac injury associated with metabolic syndrome. PMID:27708849

  8. sGC(alpha)1(beta)1 attenuates cardiac dysfunction and mortality in murine inflammatory shock models.

    Science.gov (United States)

    Buys, Emmanuel S; Cauwels, Anje; Raher, Michael J; Passeri, Jonathan J; Hobai, Ion; Cawley, Sharon M; Rauwerdink, Kristen M; Thibault, Helene; Sips, Patrick Y; Thoonen, Robrecht; Scherrer-Crosbie, Marielle; Ichinose, Fumito; Brouckaert, Peter; Bloch, Kenneth D

    2009-08-01

    Altered cGMP signaling has been implicated in myocardial depression, morbidity, and mortality associated with sepsis. Previous studies, using inhibitors of soluble guanylate cyclase (sGC), suggested that cGMP generated by sGC contributed to the cardiac dysfunction and mortality associated with sepsis. We used sGC(alpha)(1)-deficient (sGC(alpha)(1)(-/-)) mice to unequivocally determine the role of sGC(alpha)(1)beta(1) in the development of cardiac dysfunction and death associated with two models of inflammatory shock: endotoxin- and TNF-induced shock. At baseline, echocardiographic assessment and invasive hemodynamic measurements of left ventricular (LV) dimensions and function did not differ between wild-type (WT) mice and sGC(alpha)(1)(-/-) mice on the C57BL/6 background (sGC(alpha)(1)(-/-B6) mice). At 14 h after endotoxin challenge, cardiac dysfunction was more pronounced in sGC(alpha)(1)(-/-B6) than WT mice, as assessed using echocardiographic and hemodynamic indexes of LV function. Similarly, Ca(2+) handling and cell shortening were impaired to a greater extent in cardiomyocytes isolated from sGC(alpha)(1)(-/-B6) than WT mice after endotoxin challenge. Importantly, morbidity and mortality associated with inflammatory shock induced by endotoxin or TNF were increased in sGC(alpha)(1)(-/-B6) compared with WT mice. Together, these findings suggest that cGMP generated by sGC(alpha)(1)beta(1) protects against cardiac dysfunction and mortality in murine inflammatory shock models.

  9. Effects of Heme Oxygenase-1 Upregulation on Blood Pressure and Cardiac Function in an Animal Model of Hypertensive Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Lin Liu

    2013-01-01

    Full Text Available In this study, we evaluate the effect of HO-1 upregulation on blood pressure and cardiac function in the new model of infarct spontaneous hypertensive rats (ISHR. Male spontaneous hypertensive rats (SHR at 13 weeks (n = 40 and age-matched male Wistar (WT rats (n = 20 were divided into six groups: WT (sham + normal saline (NS, WT (sham + Co(III Protoporphyrin IX Chloride (CoPP, SHR (myocardial infarction (MI + NS, SHR (MI + CoPP, SHR (MI + CoPP + Tin Mesoporphyrin IX Dichloride (SnMP, SHR (sham + NS; CoPP 4.5 mg/kg, SnMP 15 mg/kg, for six weeks, one/week, i.p., n = 10/group. At the sixth week, echocardiography (UCG and hemodynamics were performed. Then, blood samples and heart tissue were collected. Copp treatment in the SHR (MI + CoPP group lowered blood pressure, decreased infarcted area, restored cardiac function (left ventricular ejection fraction (LVEF, left ventricular fraction shortening (LVFS, +dp/dtmax, (−dp/dtmax/left ventricular systolic pressure (LVSP, inhibited cardiac hypertrophy and ventricular enlargement (downregulating left ventricular end-systolic diameter (LVEDD, left ventricular end-systolic diameter (LVESD and heart weight/body weight (HW/BW, lowered serum CRP, IL-6 and Glu levels and increased serum TB, NO and PGI2 levels. Western blot and immunohistochemistry showed that HO-1 expression was elevated in the SHR (MI + CoPP group, while co-administration with SnMP suppressed the benefit functions mentioned above. In conclusion, HO-1 upregulation can lower blood pressure and improve post-infarct cardiac function in the ISHR model. These functions may be involved in the inhibition of inflammation and the ventricular remodeling process and in the amelioration of glucose metabolism and endothelial dysfunction.

  10. Computerized prediction of intensive care unit discharge after cardiac surgery: development and validation of a Gaussian processes model.

    Science.gov (United States)

    Meyfroidt, Geert; Güiza, Fabian; Cottem, Dominiek; De Becker, Wilfried; Van Loon, Kristien; Aerts, Jean-Marie; Berckmans, Daniël; Ramon, Jan; Bruynooghe, Maurice; Van den Berghe, Greet

    2011-10-25

    The intensive care unit (ICU) length of stay (LOS) of patients undergoing cardiac surgery may vary considerably, and is often difficult to predict within the first hours after admission. The early clinical evolution of a cardiac surgery patient might be predictive for his LOS. The purpose of the present study was to develop a predictive model for ICU discharge after non-emergency cardiac surgery, by analyzing the first 4 hours of data in the computerized medical record of these patients with Gaussian processes (GP), a machine learning technique. Non-interventional study. Predictive modeling, separate development (n = 461) and validation (n = 499) cohort. GP models were developed to predict the probability of ICU discharge the day after surgery (classification task), and to predict the day of ICU discharge as a discrete variable (regression task). GP predictions were compared with predictions by EuroSCORE, nurses and physicians. The classification task was evaluated using aROC for discrimination, and Brier Score, Brier Score Scaled, and Hosmer-Lemeshow test for calibration. The regression task was evaluated by comparing median actual and predicted discharge, loss penalty function (LPF) ((actual-predicted)/actual) and calculating root mean squared relative errors (RMSRE). Median (P25-P75) ICU length of stay was 3 (2-5) days. For classification, the GP model showed an aROC of 0.758 which was significantly higher than the predictions by nurses, but not better than EuroSCORE and physicians. The GP had the best calibration, with a Brier Score of 0.179 and Hosmer-Lemeshow p-value of 0.382. For regression, GP had the highest proportion of patients with a correctly predicted day of discharge (40%), which was significantly better than the EuroSCORE (p < 0.001) and nurses (p = 0.044) but equivalent to physicians. GP had the lowest RMSRE (0.408) of all predictive models. A GP model that uses PDMS data of the first 4 hours after admission in the ICU of scheduled adult cardiac

  11. Changes in the action potential and transient outward potassium current in cardiomyocytes during acute cardiac rejection in rats.

    Science.gov (United States)

    Luo, Wenqi; Jia, Yixin; Zheng, Shuai; Li, Yan; Han, Jie; Meng, Xu

    2017-01-01

    Acute cardiac rejection contributes to the changes in the electrophysiological properties of grafted hearts. However, the electrophysiological changes of cardiomyocytes during acute cardiac rejection are still unknown. An understanding of the electrophysiological mechanisms of cardiomyocytes could improve the diagnosis and treatment of acute cardiac rejection. So it is important to characterize the changes in the action potential ( AP ) and the transient outward potassium current ( I to ) in cardiomyocytes during acute cardiac rejection. Heterotopic heart transplantation was performed in allogeneic [Brown Norway (BN)-to-Lewis] and isogeneic (BN-to-BN) rats. Twenty models were established in each group. Ten recipients were sacrificed at the 2nd day and the other ten recipients were sacrificed at the 4 th day after the operation in each group. Histopathological examinations of the grafted hearts were performed in half of the recipients in each group randomly. The other half of the grafted hearts were excised rapidly and enzymatically dissociated to obtain single cardiomyocytes. The AP and I to current were recorded using the whole cell patch-clamp technique. Forty grafted hearts were successfully harvested and used in experiments. Histologic examination showed mild rejection at the 2 nd day and moderate rejection at the 4 th day in the allogeneic group after cardiac transplantation, while no evidence of histologic lesions of rejection were observed in the isogeneic group. Compared with the isogeneic group, the action potential duration ( APD ) of cardiomyocytes in the allogeneic group was significantly prolonged ( APD 90 was 49.28±5.621 mV in the isogeneic group and 88.08±6.445 mV in the allogeneic group at the 2 nd day, P=0.0016; APD 90 was 59.34±5.183 mV in the isogeneic group and 104.0±9.523 mV in the allogeneic group at the 4 th day, P=0.0064). The current density of I to was significantly decreased at the 4 th day after cardiac transplantation. The APD of

  12. A model-based time-reversal of left ventricular motion improves cardiac motion analysis using tagged MRI data

    Directory of Open Access Journals (Sweden)

    Cook Larry T

    2008-05-01

    Full Text Available Abstract Background Myocardial motion is an important observable for the assessment of heart condition. Accurate estimates of ventricular (LV wall motion are required for quantifying myocardial deformation and assessing local tissue function and viability. Harmonic Phase (HARP analysis was developed for measuring regional LV motion using tagged magnetic resonance imaging (tMRI data. With current computer-aided postprocessing tools including HARP analysis, large motions experienced by myocardial tissue are, however, often intractable to measure. This paper addresses this issue and provides a solution to make such measurements possible. Methods To improve the estimation performance of large cardiac motions while analyzing tMRI data sets, we propose a two-step solution. The first step involves constructing a model to describe average systolic motion of the LV wall within a subject group. The second step involves time-reversal of the model applied as a spatial coordinate transformation to digitally relax the contracted LV wall in the experimental data of a single subject to the beginning of systole. Cardiac tMRI scans were performed on four healthy rats and used for developing the forward LV model. Algorithms were implemented for preprocessing the tMRI data, optimizing the model parameters and performing the HARP analysis. Slices from the midventricular level were then analyzed for all systolic phases. Results The time-reversal operation derived from the LV model accounted for the bulk portion of the myocardial motion, which was the average motion experienced within the overall subject population. In analyzing the individual tMRI data sets, removing this average with the time-reversal operation left small magnitude residual motion unique to the case. This remaining residual portion of the motion was estimated robustly using the HARP analysis. Conclusion Utilizing a combination of the forward LV model and its time reversal improves the performance of

  13. Blood Pool Segmentation Results in Superior Virtual Cardiac Models than Myocardial Segmentation for 3D Printing.

    Science.gov (United States)

    Farooqi, Kanwal M; Lengua, Carlos Gonzalez; Weinberg, Alan D; Nielsen, James C; Sanz, Javier

    2016-08-01

    The method of cardiac magnetic resonance (CMR) three-dimensional (3D) image acquisition and post-processing which should be used to create optimal virtual models for 3D printing has not been studied systematically. Patients (n = 19) who had undergone CMR including both 3D balanced steady-state free precession (bSSFP) imaging and contrast-enhanced magnetic resonance angiography (MRA) were retrospectively identified. Post-processing for the creation of virtual 3D models involved using both myocardial (MS) and blood pool (BP) segmentation, resulting in four groups: Group 1-bSSFP/MS, Group 2-bSSFP/BP, Group 3-MRA/MS and Group 4-MRA/BP. The models created were assessed by two raters for overall quality (1-poor; 2-good; 3-excellent) and ability to identify predefined vessels (1-5: superior vena cava, inferior vena cava, main pulmonary artery, ascending aorta and at least one pulmonary vein). A total of 76 virtual models were created from 19 patient CMR datasets. The mean overall quality scores for Raters 1/2 were 1.63 ± 0.50/1.26 ± 0.45 for Group 1, 2.12 ± 0.50/2.26 ± 0.73 for Group 2, 1.74 ± 0.56/1.53 ± 0.61 for Group 3 and 2.26 ± 0.65/2.68 ± 0.48 for Group 4. The numbers of identified vessels for Raters 1/2 were 4.11 ± 1.32/4.05 ± 1.31 for Group 1, 4.90 ± 0.46/4.95 ± 0.23 for Group 2, 4.32 ± 1.00/4.47 ± 0.84 for Group 3 and 4.74 ± 0.56/4.63 ± 0.49 for Group 4. Models created using BP segmentation (Groups 2 and 4) received significantly higher ratings than those created using MS for both overall quality and number of vessels visualized (p 3D printers with good quality and accurate representation of the virtual 3D models. We recommend using BP segmentation with either MRA or bSSFP source datasets to create virtual 3D models for 3D printing. Desktop 3D printers can offer good quality printed models with accurate representation of anatomic detail.

  14. Computerized prediction of intensive care unit discharge after cardiac surgery: development and validation of a Gaussian processes model

    Directory of Open Access Journals (Sweden)

    Meyfroidt Geert

    2011-10-01

    Full Text Available Abstract Background The intensive care unit (ICU length of stay (LOS of patients undergoing cardiac surgery may vary considerably, and is often difficult to predict within the first hours after admission. The early clinical evolution of a cardiac surgery patient might be predictive for his LOS. The purpose of the present study was to develop a predictive model for ICU discharge after non-emergency cardiac surgery, by analyzing the first 4 hours of data in the computerized medical record of these patients with Gaussian processes (GP, a machine learning technique. Methods Non-interventional study. Predictive modeling, separate development (n = 461 and validation (n = 499 cohort. GP models were developed to predict the probability of ICU discharge the day after surgery (classification task, and to predict the day of ICU discharge as a discrete variable (regression task. GP predictions were compared with predictions by EuroSCORE, nurses and physicians. The classification task was evaluated using aROC for discrimination, and Brier Score, Brier Score Scaled, and Hosmer-Lemeshow test for calibration. The regression task was evaluated by comparing median actual and predicted discharge, loss penalty function (LPF ((actual-predicted/actual and calculating root mean squared relative errors (RMSRE. Results Median (P25-P75 ICU length of stay was 3 (2-5 days. For classification, the GP model showed an aROC of 0.758 which was significantly higher than the predictions by nurses, but not better than EuroSCORE and physicians. The GP had the best calibration, with a Brier Score of 0.179 and Hosmer-Lemeshow p-value of 0.382. For regression, GP had the highest proportion of patients with a correctly predicted day of discharge (40%, which was significantly better than the EuroSCORE (p Conclusions A GP model that uses PDMS data of the first 4 hours after admission in the ICU of scheduled adult cardiac surgery patients was able to predict discharge from the ICU as a

  15. Cigarette Smoking-Induced Cardiac Hypertrophy, Vascular Inflammation and Injury Are Attenuated by Antioxidant Supplementation in an Animal Model.

    Science.gov (United States)

    Al Hariri, Moustafa; Zibara, Kazem; Farhat, Wissam; Hashem, Yasmine; Soudani, Nadia; Al Ibrahim, Farah; Hamade, Eva; Zeidan, Asad; Husari, Ahmad; Kobeissy, Firas

    2016-01-01

    Background: Cardiovascular diseases are the leading causes of morbidity and mortality worldwide. Cigarette smoking remains a global health epidemic with associated detrimental effects on the cardiovascular system. In this work, we investigated the effects of cigarette smoke exposure on cardiovascular system in an animal model. The study then evaluated the effects of antioxidants (AO), represented by pomegranate juice, on cigarette smoke induced cardiovascular injury. This study aims at evaluating the effect of pomegranate juice supplementation on the cardiovascular system of an experimental rat model of smoke exposure. Methods: Adult rats were divided into four different groups: Control, Cigarette smoking (CS), AO, and CS + AO. Cigarette smoke exposure was for 4 weeks (5 days of exposure/week) and AO group received pomegranate juice while other groups received placebo. Assessment of cardiovascular injury was documented by assessing different parameters of cardiovascular injury mediators including: (1) cardiac hypertrophy, (2) oxidative stress, (3) expression of inflammatory markers, (4) expression of Bradykinin receptor 1 (Bdkrb1), Bradykinin receptor 2 (Bdkrb2), and (5) altered expression of fibrotic/atherogenic markers [(Fibronectin (Fn1) and leptin receptor (ObR))]. Results: Data from this work demonstrated that cigarette smoke exposure induced cardiac hypertrophy, which was reduced upon administration of pomegranate in CS + AO group. Cigarette smoke exposure was associated with elevation in oxidative stress, significant increase in the expression of IL-1β, TNFα, Fn1, and ObR in rat's aorta. In addition, an increase in aortic calcification was observed after 1 month of cigarette smoke exposure. Furthermore, cigarette smoke induced a significant up regulation in Bdkrb1 expression level. Finally, pomegranate supplementation exhibited cardiovascular protection assessed by the above findings and partly contributed to ameliorating cardiac hypertrophy in cigarette

  16. Cigarette Smoking-Induced Cardiac Hypertrophy, Vascular Inflammation and Injury are Attenuated by Antioxidant Supplementation in An Animal Model

    Directory of Open Access Journals (Sweden)

    Moustafa Al Hariri

    2016-11-01

    Full Text Available BackgroundCardiovascular diseases are the leading causes of morbidity and mortality worldwide. Cigarette smoking remains a global health epidemic with associated detrimental effects on the cardiovascular system. In this work, we investigated the effects of cigarette smoke exposure on cardiovascular system in an animal model. The study then evaluated the effects of antioxidants (AO, represented by pomegranate juice, on cigarette smoke induced cardiovascular injury. This study aims at evaluating the effect of pomegranate juice supplementation on the cardiovascular system of an experimental rat model of smoke exposure.Methods Adult rats were divided into four different groups: Control, Cigarette smoking (CS, AO, and CS + AO. Cigarette smoke exposure was for 4 weeks (5 days of exposure/week and AO group received pomegranate juice while other groups received placebo. Assessment of cardiovascular injury was documented by assessing different parameters of cardiovascular injury mediators including: 1 cardiac hypertrophy, 2 oxidative stress (OS, 3 expression of inflammatory markers, 3 expression of Bradykinin receptor 1 (Bdkrb1, Bradykinin receptor 2 (Bdkrb2, and 4 altered expression expression of fibrotic/atherogenic markers [(Fibronectin (Fn1 and leptin receptor (ObR].ResultsData from this work demonstrated that cigarette smoke exposure induced cardiac hypertrophy, which was reduced upon administration of pomegranate in CS + AO group. Cigarette smoke exposure was associated with elevation in oxidative stress, significant increase in the expression of IL-1β, TNFα, Fn1 and ObR in rat’s aorta. In addition, an increase in aortic calcification was observed after one month of Cigarette smoke exposure. Furthermore, Cigarette smoke induced a significant up regulation in Bdkrb1 and Bdkrb2 expression levels. Finally, pomegranate supplementation exhibited cardiovascular protection assessed by the above findings and partly contributed to ameliorating cardiac

  17. Cellular models and viral vectors for skeletal and cardiac muscle research

    NARCIS (Netherlands)

    Neshati, Zeinab

    2014-01-01

    Skeletal and cardiac muscle disorders are associated with substantial morbidity and mortality. Despite many improvements in the medical and surgical management of these disorders, development of effective treatments has proven to be challenging. This is because of the limited suitability of existing

  18. Radiologist model for cardiac rest period determination based on fuzzy rule.

    Science.gov (United States)

    Arief, Zainal; Sato, Tetsuo; Okada, Tomohisa; Kuhara, Shigehide; Kanao, Shotaro; Togashi, Kaori; Minato, Kotaro

    2010-01-01

    Image data acquisition for the coronary arteries is generally implemented during the diastole rest period, in order to suppress blurring due to cardiac movement. The purpose of this study is to improve the semi-automated application to determine the cardiac rest period based on fuzzy logic. The cardiac rest period from 25 subjects were determined based on their normalized cross-correlation of consecutive frame images as well as normalized frame number as the measured variables. The fuzzy set and membership are generated based on the measured variables from the radiologist's visual assessment. That visual assessment is also regarded as a gold standard for verification. The distance difference between the proposed method and visual assessment was analyzed. The fuzzy logic approach for cardiac rest period determination has no significant difference compared to the visual assessment (p>0.05) in terms of start frame and end frame. The algorithm could be extended easily in case of there are some necessary variables should be added to accommodate rest period definition from different radiologist.

  19. Complementary processing of haptic information by slowly and rapidly adapting neurons in the trigeminothalamic pathway. Electrophysiology, mathematical modeling and simulations of vibrissae-related neurons.

    Directory of Open Access Journals (Sweden)

    Abel eSanchez-Jimenez

    2013-06-01

    Full Text Available Tonic (slowly adapting and phasic (rapidly adapting primary afferents convey complementary aspects of haptic information to the central nervous system: object location and texture the former, shape the latter. Tonic and phasic neural responses are also recorded in all relay stations of the somatosensory pathway, yet it is unknown their role in both, information processing and information transmission to the cortex: we don’t know if tonic and phasic neurons process complementary aspects of haptic information and/or if these two types constitute two separate channels that convey complementary aspects of tactile information to the cortex. Here we propose to elucidate these two questions in the fast trigeminal pathway of the rat (PrV-VPM: principal trigeminal nucleus-ventroposteromedial thalamic nucleus. We analyze early and global behavior, latencies and stability of the responses of individual cells in PrV and medial lemniscus under 1-40 Hz stimulation of the whiskers in control and decorticated animals and we use stochastic spiking models and extensive simulations. Our results strongly suggest that in the first relay station of the somatosensory system (PrV: 1 tonic and phasic neurons process complementary aspects of whisker-related tactile information 2 tonic and phasic responses are not originated from two different types of neurons 3 the two responses are generated by the differential action of the somatosensory cortex on a unique type of PrV cell 4 tonic and phasic neurons do not belong to two different channels for the transmission of tactile information to the thalamus 5 trigeminothalamic transmission is exclusively performed by tonically firing neurons and 6 all aspects of haptic information are coded into low-pass, band-pass and high-pass filtering profiles of tonically firing neurons. Our results are important for both, basic research on neural circuits and information processing, and development of sensory neuroprostheses.

  20. Effects of sildenafil on the gastrocnemius and cardiac muscles of rats in a model of prolonged moderate exercise training.

    Directory of Open Access Journals (Sweden)

    Barbara Rinaldi

    Full Text Available Moderate exercise training improves energetic metabolism, tissue perfusion and induces cardiac and skeletal muscle remodeling. Sildenafil, a potent phosphodiesterase-5 inhibitor used to treat erectile dysfunction, reduces infarct size and increases tissue oxygenation in experimental models of cardiovascular disease. We have evaluated the effects of prolonged moderate exercise training and a repeat administration of sildenafil on the rat gastrocnemius and cardiac muscles. Animals were divided into two groups: sedentary and trained. Each group was subdivided into animals treated with vehicle or with two doses of sildenafil (10 or 15 mg/kg/day during the last week of training. Physical exercise did not induce cardiac hypertrophy, whereas it increased mRNA levels of the PGC-1α, HIF-1α and VEGF genes, which are involved in mitochondrial biogenesis and angiogenesis, and reduced mRNA levels of FoxO3a, MuRF-1 and Atrogin-1. Sildenafil dose-dependently promoted both angiogenesis, as shown by increased capillary density, and muscle atrophy, as shown by muscle fibre size. These effects were more pronounced in trained animals. Our data confirm the beneficial effects of a moderate and prolonged training on cardiovascular and skeletal systems and document the positive and negative effects of sildenafil on these tissues at doses higher than those used in clinical practice. This report may impact on the use of sildenafil as a substance able to influence sports performance.

  1. Effects of Sildenafil on the Gastrocnemius and Cardiac Muscles of Rats in a Model of Prolonged Moderate Exercise Training

    Science.gov (United States)

    Rinaldi, Barbara; Donniacuo, Maria; Sodano, Loredana; Gritti, Giulia; Signoriello, Simona; Parretta, Elisabetta; Berrino, Liberato; Urbanek, Konrad; Capuano, Annalisa; Rossi, Francesco

    2013-01-01

    Moderate exercise training improves energetic metabolism, tissue perfusion and induces cardiac and skeletal muscle remodeling. Sildenafil, a potent phosphodiesterase-5 inhibitor used to treat erectile dysfunction, reduces infarct size and increases tissue oxygenation in experimental models of cardiovascular disease. We have evaluated the effects of prolonged moderate exercise training and a repeat administration of sildenafil on the rat gastrocnemius and cardiac muscles. Animals were divided into two groups: sedentary and trained. Each group was subdivided into animals treated with vehicle or with two doses of sildenafil (10 or 15 mg/kg/day) during the last week of training. Physical exercise did not induce cardiac hypertrophy, whereas it increased mRNA levels of the PGC-1α, HIF-1α and VEGF genes, which are involved in mitochondrial biogenesis and angiogenesis, and reduced mRNA levels of FoxO3a, MuRF-1 and Atrogin-1. Sildenafil dose-dependently promoted both angiogenesis, as shown by increased capillary density, and muscle atrophy, as shown by muscle fibre size. These effects were more pronounced in trained animals. Our data confirm the beneficial effects of a moderate and prolonged training on cardiovascular and skeletal systems and document the positive and negative effects of sildenafil on these tissues at doses higher than those used in clinical practice. This report may impact on the use of sildenafil as a substance able to influence sports performance. PMID:23922868

  2. Cardiac Tissue Slice Transplantation as a Model to Assess Tissue-Engineered Graft Thickness, Survival, and Function

    Science.gov (United States)

    Riegler, Johannes; Gillich, Astrid; Shen, Qi; Gold, Joseph D.; Wu, Joseph C.

    2015-01-01

    Background Cell therapies offer the potential to improve cardiac function after myocardial infarction. Although injection of single-cell suspensions has proven safe, cell retention and survival rates are low. Tissue-engineered grafts allow cell delivery with minimal initial cell loss and mechanical support to the heart. However, graft performance cannot be easily compared, and optimal construct thickness, vascularization, and survival kinetics are unknown. Methods and Results Cardiac tissue slices (CTS) were generated by sectioning mouse hearts (n=40) expressing firefly luciferase and green fluorescent protein into slices of defined size and thickness using a vibrating blade microtome. Bioluminescence imaging of CTS transplanted onto hearts of immunodeficient mice demonstrated survival of ≤30% of transplanted cells. Cardiac slice perfusion was re-established within 3 days, likely through anastomosis of pre-existing vessels with the host vasculature and invasion of vessels from the host. Immunofluorescence showed a peak in cell death 3 days after transplantation and a gradual decline thereafter. MRI revealed preservation of contractile function and an improved ejection fraction 1 month after transplantation of CTS (28±2% CTS versus 22±2% control; P=0.05). Importantly, this effect was specific to CTS because transplantation of skeletal muscle tissue slices led to faster dilative remodeling and higher animal mortality. Conclusions In summary, this is the first study to use CTS as a benchmark to validate and model tissue-engineered graft studies. CTS transplantation improved cell survival, established reperfusion, and enhanced cardiac function after myocardial infarction. These findings also confirm that dilative remodeling can be attenuated by topical transplantation of CTS but not skeletal muscle tissue grafts. PMID:25200059

  3. Pediatric 320-row cardiac computed tomography using electrocardiogram-gated model-based full iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Shirota, Go; Maeda, Eriko; Namiki, Yoko; Bari, Razibul; Abe, Osamu [The University of Tokyo, Department of Radiology, Graduate School of Medicine, Tokyo (Japan); Ino, Kenji [The University of Tokyo Hospital, Imaging Center, Tokyo (Japan); Torigoe, Rumiko [Toshiba Medical Systems, Tokyo (Japan)

    2017-10-15

    Full iterative reconstruction algorithm is available, but its diagnostic quality in pediatric cardiac CT is unknown. To compare the imaging quality of two algorithms, full and hybrid iterative reconstruction, in pediatric cardiac CT. We included 49 children with congenital cardiac anomalies who underwent cardiac CT. We compared quality of images reconstructed using the two algorithms (full and hybrid iterative reconstruction) based on a 3-point scale for the delineation of the following anatomical structures: atrial septum, ventricular septum, right atrium, right ventricle, left atrium, left ventricle, main pulmonary artery, ascending aorta, aortic arch including the patent ductus arteriosus, descending aorta, right coronary artery and left main trunk. We evaluated beam-hardening artifacts from contrast-enhancement material using a 3-point scale, and we evaluated the overall image quality using a 5-point scale. We also compared image noise, signal-to-noise ratio and contrast-to-noise ratio between the algorithms. The overall image quality was significantly higher with full iterative reconstruction than with hybrid iterative reconstruction (3.67±0.79 vs. 3.31±0.89, P=0.0072). The evaluation scores for most of the gross structures were higher with full iterative reconstruction than with hybrid iterative reconstruction. There was no significant difference between full and hybrid iterative reconstruction for the presence of beam-hardening artifacts. Image noise was significantly lower in full iterative reconstruction, while signal-to-noise ratio and contrast-to-noise ratio were significantly higher in full iterative reconstruction. The diagnostic quality was superior in images with cardiac CT reconstructed with electrocardiogram-gated full iterative reconstruction. (orig.)

  4. Safety and feasibility for pediatric cardiac regeneration using epicardial delivery of autologous umbilical cord blood-derived mononuclear cells established in a porcine model system.

    Science.gov (United States)

    Cantero Peral, Susana; Burkhart, Harold M; Oommen, Saji; Yamada, Satsuki; Nyberg, Scott L; Li, Xing; O'Leary, Patrick W; Terzic, Andre; Cannon, Bryan C; Nelson, Timothy J

    2015-02-01

    Congenital heart diseases (CHDs) requiring surgical palliation mandate new treatment strategies to optimize long-term outcomes. Despite the mounting evidence of cardiac regeneration, there are no long-term safety studies of autologous cell-based transplantation in the pediatric setting. We aimed to establish a porcine pipeline to evaluate the feasibility and long-term safety of autologous umbilical cord blood mononuclear cells (UCB-MNCs) transplanted into the right ventricle (RV) of juvenile porcine hearts. Piglets were born by caesarean section to enable UCB collection. Upon meeting release criteria, 12 animals were randomized in a double-blinded fashion prior to surgical delivery of test article (n=6) or placebo (n=6). The UCB-MNC (3×10(6) cells per kilogram) or control (dimethyl sulfoxide, 10%) products were injected intramyocardially into the RV under direct visualization. The cohorts were monitored for 3 months after product delivery with assessments of cardiac performance, rhythm, and serial cardiac biochemical markers, followed by terminal necropsy. No mortalities were associated with intramyocardial delivery of UCB-MNCs or placebo. Two animals from the placebo group developed local skin infection after surgery that responded to antibiotic treatment. Electrophysiological assessments revealed no arrhythmias in either group throughout the 3-month study. Two animals in the cell-therapy group had transient, subclinical dysrhythmia in the perioperative period, likely because of an exaggerated response to anesthesia. Overall, this study demonstrated that autologous UCB-MNCs can be safely collected and surgically delivered in a pediatric setting. The safety profile establishes the foundation for cell-based therapy directed at the RV of juvenile hearts and aims to accelerate cell-based therapies toward clinical trials for CHD. ©AlphaMed Press.

  5. Therapy with mesenchymal stromal cells or conditioned medium reverse cardiac alterations in a high-fat diet-induced obesity model.

    Science.gov (United States)

    Daltro, P S; Barreto, B C; Silva, P G; Neto, P Chenaud; Sousa Filho, P H F; Santana Neta, D; Carvalho, G B; Silva, D N; Paredes, B D; de Alcantara, A C; Freitas, L A R; Couto, R D; Santos, R R; Souza, B S F; Soares, M B P; Macambira, S G

    2017-10-01

    Obesity is associated with numerous cardiac complications, including arrhythmias, cardiac fibrosis, remodeling and heart failure. Here we evaluated the therapeutic potential of mesenchymal stromal cells (MSCs) and their conditioned medium (CM) to treat cardiac complications in a mouse model of high-fat diet (HFD)-induced obesity. After obesity induction and HFD withdrawal, obese mice were treated with MSCs, CM or vehicle. Cardiac function was assessed using electrocardiography, echocardiography and treadmill test. Body weight and biochemical parameters were evaluated. Cardiac tissue was used for real time (RT)-polymerase chain reaction (PCR) and histopathologic analysis. Characterization of CM by protein array showed the presence of different cytokines and growth factors, including chemokines, osteopontin, cystatin C, Serpin E1 and Gas 6. HFD-fed mice presented cardiac arrhythmias, altered cardiac gene expression and fibrosis reflected in physical exercise incapacity associated with obesity and diabetes. Administration of MSCs or CM improved arrhythmias and exercise capacity. This functional improvement correlated with normalization of GATA4 gene expression in the hearts of MSC- or CM-treated mice. The gene expression of connexin 43, troponin I, adiponectin, transforming growth factor (TGF) β, peroxisome proliferator activated receptor gamma (PPARγ), insulin-like growth factor 1 (IGF-1), matrix metalloproteinase-9 (MMP9) and tissue inhibitor of metalloproteinases 1 (TIMP1) were significantly reduced in MSCs, but not in CM-treated mice. Moreover, MSC or CM administration reduced the intensity of cardiac fibrosis. Our results suggest that MSCs and CM have a recovery effect on cardiac disturbances due to obesity and corroborate to the paracrine action of MSCs in heart disease models. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. Ca2+ alternans in a cardiac myocyte model that uses moment equations to represent heterogeneous junctional SR Ca2+.

    Science.gov (United States)

    Huertas, Marco A; Smith, Gregory D; Györke, Sándor

    2010-07-21

    Multiscale whole-cell models that accurately represent local control of Ca2+-induced Ca2+ release in cardiac myocytes can reproduce high-gain Ca2+ release that is graded with changes in membrane potential. Using a recently introduced formalism that represents heterogeneous local Ca2+ using moment equations, we present a model of cardiac myocyte Ca2+ cycling that exhibits alternating sarcoplasmic reticulum (SR) Ca2+ release when periodically stimulated by depolarizing voltage pulses. The model predicts that the distribution of junctional SR [Ca2+] across a large population of Ca2+ release units is distinct on alternating cycles. Load-release and release-uptake functions computed from this model give insight into how Ca2+ fluxes and stimulation frequency combine to determine the presence or absence of Ca2+ alternans. Our results show that the conditions for the onset of Ca2+ alternans cannot be explained solely by the steepness of the load-release function, but that changes in the release-uptake process also play an important role. We analyze the effect of the junctional SR refilling time constant on Ca2+ alternans and conclude that physiologically realistic models of defective Ca2+ cycling must represent the dynamics of heterogeneous junctional SR [Ca2+] without assuming rapid equilibration of junctional and network SR [Ca2+]. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Assessment of cardiac safety for PPARγ agonists in rodent models of heart failure: a translational medicine perspective.

    Science.gov (United States)

    Wang, Xinkang

    2012-06-01

    PPARγ-modulators, a class of anti-diabetic drugs as represented by thiazolidinediones (TZD), have been associated with cardiovascular risks in type-2 diabetes in humans but a similar liability has not been demonstrated in preclinical models. This gap between clinical and preclinical observations may reflect the lack of a translational model for cardiac safety assessment because preclinical efficacy for glycemic control for PPARγ-modulators is routinely conducted in animals with diabetic background while drug safety study is performed in young and health animals with little risk of heart failure, in contrast to the complex pathophysiological conditions of patients subjected to the treatment of TZDs. Therefore, some key steps are important to address this translational gap. First, it is essential to use an appropriate translational model that mimics most of human pathophysiology for the assessment of cardiovascular safety for TZDs. Second, it calls for the discovery of a translational biomarker (most likely a collection of biomarkers due to multiple risk factors contributed to the complex disease) to be able to sensitively detect the disease progression and in response to therapy. Specific examples are provided in this review for the use of a rodent model of myocardial infarction-induced heart failure to address the cardiac safety concern in response to chronic treatment of rosiglitazone. Multiple biomarkers, including physiological, biochemical, pharmacogenomic and imaging biomarkers, were applied to assess the cardiovascular risk in this heart failure model. The data and strategic approach are discussed from translational medicine perspectives.

  8. Sedation in cardiac arrhythmias management.

    Science.gov (United States)

    Guerra, Federico; Stronati, Giulia; Capucci, Alessandro

    2018-03-01

    Procedural sedation is of paramount importance for a plethora of electrophysiological procedures. From electrical cardioversion to electrophysiology studies, device implantations, and catheter ablations, intraprocedural sedation and anesthesia have a pivotal role in allowing procedural success while ensuring patient safety and avoiding discomfort. Areas covered: The present review will discuss the current state-of-the-art in sedation and anesthesia during electrical cardioversion, cardiac implantable electronic device implantation, catheter ablation and electrophysiology studies. Specific information will be provided for each procedure in order to reach the core of this important clinical issue, and specific protocols will be compared. The main pro-arrhythmic and anti-arrhythmic effects of the most commonly used sedatives will also be discussed. Expert commentary: According to much recent evidence, the cardiologist can be the only person responsible for sedation administration in many settings, highlighting few safety issues associated with the absence of a dedicated anesthesiologist thus a concomitant reduction in costs. However, many concerns have been raised in allowing non-anesthesiologists to manage sedatives, as adverse events, while rare, could have catastrophic consequences. The present paper will highlight when a cardiologist-directed sedation is considered safe, how it should be performed, and the pros and cons related to this strategy.

  9. A Comparison of a Machine Learning Model with EuroSCORE II in Predicting Mortality after Elective Cardiac Surgery: A Decision Curve Analysis.

    Science.gov (United States)

    Allyn, Jérôme; Allou, Nicolas; Augustin, Pascal; Philip, Ivan; Martinet, Olivier; Belghiti, Myriem; Provenchere, Sophie; Montravers, Philippe; Ferdynus, Cyril

    2017-01-01

    The benefits of cardiac surgery are sometimes difficult to predict and the decision to operate on a given individual is complex. Machine Learning and Decision Curve Analysis (DCA) are recent methods developed to create and evaluate prediction models. We conducted a retrospective cohort study using a prospective collected database from December 2005 to December 2012, from a cardiac surgical center at University Hospital. The different models of prediction of mortality in-hospital after elective cardiac surgery, including EuroSCORE II, a logistic regression model and a machine learning model, were compared by ROC and DCA. Of the 6,520 patients having elective cardiac surgery with cardiopulmonary bypass, 6.3% died. Mean age was 63.4 years old (standard deviation 14.4), and mean EuroSCORE II was 3.7 (4.8) %. The area under ROC curve (IC95%) for the machine learning model (0.795 (0.755-0.834)) was significantly higher than EuroSCORE II or the logistic regression model (respectively, 0.737 (0.691-0.783) and 0.742 (0.698-0.785), p machine learning model, in this monocentric study, has a greater benefit whatever the probability threshold. According to ROC and DCA, machine learning model is more accurate in predicting mortality after elective cardiac surgery than EuroSCORE II. These results confirm the use of machine learning methods in the field of medical prediction.

  10. Induced pluripotent stem cell-derived cardiac progenitors differentiate to cardiomyocytes and form biosynthetic tissues.

    Directory of Open Access Journals (Sweden)

    Nicolas Christoforou

    Full Text Available The mammalian heart has little capacity to regenerate, and following injury the myocardium is replaced by non-contractile scar tissue. Consequently, increased wall stress and workload on the remaining myocardium leads to chamber dilation, dysfunction, and heart failure. Cell-based therapy with an autologous, epigenetically reprogrammed, and cardiac-committed progenitor cell source could potentially reverse this process by replacing the damaged myocardium with functional tissue. However, it is unclear whether cardiac progenitor cell-derived cardiomyocytes are capable of attaining levels of structural and functional maturity comparable to that of terminally-fated cardiomyocytes. Here, we first describe the derivation of mouse induced pluripotent stem (iPS cells, which once differentiated allow for the enrichment of Nkx2-5(+ cardiac progenitors, and the cardiomyocyte-specific expression of the red fluorescent protein. We show that the cardiac progenitors are multipotent and capable of differentiating into endothelial cells, smooth muscle cells and cardiomyocytes. Moreover, cardiac progenitor selection corresponds to cKit(+ cell enrichment, while cardiomyocyte cell-lineage commitment is concomitant with dual expression of either cKit/Flk1 or cKit/Sca-1. We proceed to show that the cardiac progenitor-derived cardiomyocytes are capable of forming electrically and mechanically coupled large-scale 2D cell cultures with mature electrophysiological properties. Finally, we examine the cell progenitors' ability to form electromechanically coherent macroscopic tissues, using a physiologically relevant 3D culture model and demonstrate that following long-term culture the cardiomyocytes align, and form robust electromechanical connections throughout the volume of the biosynthetic tissue construct. We conclude that the iPS cell-derived cardiac progenitors are a robust cell source for tissue engineering applications and a 3D culture platform for pharmacological

  11. Pelvic floor electrophysiology patterns associated with faecal ...

    African Journals Online (AJOL)

    Hussein Al-Moghazy Sultan

    2012-12-28

    Dec 28, 2012 ... a Physical Medicine, Rheumatology and Rehabilitation Department, Faculty of Medicine, University of Alexandria, Egypt ... Aim: The present study was conducted to determine the patterns of pelvic floor electrophysiology that are associated ..... decision of the appropriate therapy whether conservative or.

  12. Electrophysiological Correlates of Observational Learning in Children

    Science.gov (United States)

    Rodriguez Buritica, Julia M.; Eppinger, Ben; Schuck, Nicolas W.; Heekeren, Hauke R.; Li, Shu-Chen

    2016-01-01

    Observational learning is an important mechanism for cognitive and social development. However, the neurophysiological mechanisms underlying observational learning in children are not well understood. In this study, we used a probabilistic reward-based observational learning paradigm to compare behavioral and electrophysiological markers of…

  13. Study progress of clinical electrophysiology on amblyopia

    Directory of Open Access Journals (Sweden)

    Ao Zhang

    2016-07-01

    Full Text Available Electrophysiology examination is an important technique in studying amblyopia, which mainly includes electrooculography(EOG, electroretinography(ERG, visual evoked potential(VEP. This study does not only summarizes the definition, the mechanisms and the meaning of these indexes in the relevant research progress in recent years, but also makes a comment on the controversies among the relevant research conclusions.

  14. THE ROLE OF NEURO-ELECTROPHYSIOLOGICAL DIAGNOSTIC ...

    African Journals Online (AJOL)

    hi-tech

    2006-01-01

    Jan 1, 2006 ... Objective: To summarise and discuss the role of neuro-electrophysiological diagnostic tests in clinical medicine. Data Sources: Published original research and reviews to date. Study Selection: The review was with emphasis on diagnosis of peripheral neuropathic and neuromuscular disorders.

  15. Partnership models for the establishment of sustainable paediatric cardiac surgical and cardiac intensive care programmes in low- and middle-income countries.

    Science.gov (United States)

    Bastero, Patricia; Staveski, Sandra L; Zheleva, Bistra; Scanlan, Emma; Cabrera, Antonio G; Araujo, Aric; Reyes, Guillermo; Mery, Carlos M; Palacios-Macedo, Alexis; Brizard, Christian P

    2017-12-01

    The care of patients with CHD remains a challenge in low- and middle-income countries. Their health systems have not been able to achieve consistently high performance in this field. The large volume of patients, manpower constraints, inconsistencies in the level and type of background training of the teams caring for this patient population, and the inadequate quality control systems are some of the barriers to achieving excellence of care. We describe three different international projects supporting the paediatric cardiac surgical and paediatric cardiac intensive care programmes in Latin America, Asia, and the Caribbean.

  16. Electrophysiological studies of malaria parasite-infected erythrocytes: Current status

    Science.gov (United States)

    Staines, Henry M.; Alkhalil, Abdulnaser; Allen, Richard J.; De Jonge, Hugo R.; Derbyshire, Elvira; Egée, Stéphane; Ginsburg, Hagai; Hill, David A.; Huber, Stephan M.; Kirk, Kiaran; Lang, Florian; Lisk, Godfrey; Oteng, Eugene; Pillai, Ajay D.; Rayavara, Kempaiah; Rouhani, Sherin; Saliba, Kevin J.; Shen, Crystal; Solomon, Tsione; Thomas, Serge L. Y.; Verloo, Patrick; Desai, Sanjay A.

    2009-01-01

    The altered permeability characteristics of erythrocytes infected with malaria parasites have been a source of interest for over 30 years. Recent electrophysiological studies have provided strong evidence that these changes reflect transmembrane transport through ion channels in the host erythrocyte plasma membrane. However, conflicting results and differing interpretations of the data have led to confusion in this field. In an effort to unravel these issues, the groups involved recently came together for a week of discussion and experimentation. In this article, the various models for altered transport are reviewed, together with the areas of consensus in the field and those that require a better understanding. PMID:17292372

  17. Seminars in Cell and Developmental Biology Model Systems for the Study of Heart Development and Disease Cardiac Neural Crest and Conotruncal Malformations

    Science.gov (United States)

    Hutson, Mary R.; Kirby, Margaret L.

    2007-01-01

    Neural crest cells are multipotential cells that delaminate from the dorsal neural tube and migrate widely throughout the body. A subregion of the cranial neural crest originating between the otocyst and somite 3 has been called “cardiac neural crest” because of the importance of these cells in heart development. Much of what we know about the contribution and function of the cardiac neural crest in cardiovascular development has been learned in the chick embryo using quail-chick chimeras to study neural crest migration and derivatives and using ablation of premigratory neural crest cells to study their function. These studies show that cardiac crest cells are absolutely required to form the aorticopulmonary septum dividing the cardiac arterial pole into systemic and pulmonary circulations. They support the normal development and patterning of derivatives of the caudal pharyngeal arches and pouches, including the great arteries and the thymus, thyroid and parathyroids. Recently, cardiac neural crest cells have been shown to modulate signaling in the pharynx during the lengthening of the outflow tract by the secondary heart field. Most of the genes associated with cardiac neural crest function have been identified using mouse models. These studies show that the neural crest cells may not be the direct cause of abnormal cardiovascular development but they are a major component in the complex tissue interactions in the caudal pharynx and outflow tract. Since cardiac neural crest cells span from the caudal pharynx into the outflow tract, they are especially susceptible to any perturbation in or by other cells in these regions. Thus, understanding congenital cardiac outflow malformations in human sequences of malformations as represented by the DiGeorge syndrome will necessarily require understanding development of the cardiac neural crest. PMID:17224285

  18. Drosophila KCNQ channel displays evolutionarily conserved electrophysiology and pharmacology with mammalian KCNQ channels.

    Directory of Open Access Journals (Sweden)

    Sonia Cavaliere

    Full Text Available Of the five human KCNQ (Kv7 channels, KCNQ1 with auxiliary subunit KCNE1 mediates the native cardiac I(Ks current with mutations causing short and long QT cardiac arrhythmias. KCNQ4 mutations cause deafness. KCNQ2/3 channels form the native M-current controlling excitability of most neurons, with mutations causing benign neonatal febrile convulsions. Drosophila contains a single KCNQ (dKCNQ that appears to serve alone the functions of all the duplicated mammalian neuronal and cardiac KCNQ channels sharing roughly 50-60% amino acid identity therefore offering a route to investigate these channels. Current information about the functional properties of dKCNQ is lacking therefore we have investigated these properties here. Using whole cell patch clamp electrophysiology we compare the biophysical and pharmacological properties of dKCNQ with the mammalian neuronal and cardiac KCNQ channels expressed in HEK cells. We show that Drosophila KCNQ (dKCNQ is a slowly activating and slowly-deactivating K(+ current open at sub-threshold potentials that has similar properties to neuronal KCNQ2/3 with some features of the cardiac KCNQ1/KCNE1 accompanied by conserved sensitivity to a number of clinically relevant KCNQ blockers (chromanol 293B, XE991, linopirdine and opener (zinc pyrithione. We also investigate the molecular basis of the differential selectivity of KCNQ channels to the opener retigabine and show a single amino acid substitution (M217W can confer sensitivity to dKCNQ. We show dKCNQ has similar electrophysiological and pharmacological properties as the mammalian KCNQ channels, allowing future study of physiological and pathological roles of KCNQ in Drosophila and whole organism screening for new modulators of KCNQ channelopathies.

  19. Animal models of cachexia and sarcopenia in chronic illness: Cardiac function, body composition changes and therapeutic results.

    Science.gov (United States)

    Ishida, Junichi; Saitoh, Masakazu; Doehner, Wolfram; von Haehling, Stephan; Anker, Markus; Anker, Stefan D; Springer, Jochen

    2017-07-01

    Cachexia is defined as a complex metabolic syndrome associated with underlying illness that is characterized by the loss of body weight consisting of muscle and fat mass wasting. Sarcopenia is defined as the ageing related loss of muscle mass in health and disease that may not have an effect on body weight. As millions of patients are in cachectic or sarcopenic states, both conditions contribute to high numbers to death worldwide. A number of treatments have been proposed for cachexia and sarcopenia, but these are either in the preclinical stage or in clinical trials and hence not available to the general population. Particularly in cachexia there is a massive problem of recruiting patients for trials and also with the follow-up, due to the seriousness of the disease. This underlines the importance of well-characterized animal models. Obviously, most of the widely used cachexia and sarcopenia animal models have limitations in reproducibility of the condition and novel models are warranted in this context. The key findings of developing models in the field of cachexia and sarcopenia are that more types of the conditions have been taken into the researchers' interest. In cardiac cachexia, technical issues, which limit the preciseness and reproducibility in surgical heart failure models, have been overcome by a combination of surgery and the use of transgenic mouse models or salt sensitive rat models. Fatigue is the most pronounced symptom of cachexia and may be caused by reduced cardiac function independent of the underlying disease. Sarcopenia models often suffer from the use of young animals, due to the limited availability and very high costs of using aged animals. This review will focus on rodent models designed to mimic cachexia and sarcopenia including co-morbidities such as cancer, heart failure, as well as other diseases and conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Predictive Score Model for Delayed Graft Function Based on Easily Available Variables before Kidney Donation after Cardiac Death.

    Science.gov (United States)

    Ding, Chen-Guang; Tai, Qian-Hui; Han, Feng; Li, Yang; Tian, Xiao-Hui; Tian, Pu-Xun; Ding, Xiao-Ming; Pan, Xiao-Ming; Zheng, Jin; Xiang, He-Li; Xue, Wu-Jun

    2017-10-20

    How to evaluate the quality of donation after cardiac death (DCD) kidneys has become a critical problem in kidney transplantation in China. Hence, the aim of this study was to develop a simple donor risk score model to evaluate the quality of DCD kidneys before DCD. A total of 543 qualified kidneys were randomized in a 2:1 manner to create the development and validation cohorts. The donor variables in the development cohort were considered as candidate univariate predictors of delayed graft function (DGF). Multivariate logistic regression was then used to identify independent predictors of DGF with P donation and potentially useful for physicians to make optimal decisions about donor organ offers.

  1. Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy

    OpenAIRE

    Tardiff, Jil C.; Hewett, Timothy E.; Palmer, Bradley M.; Olsson, Charlotte; Factor, Stephen M.; Moore, Russell L.; Robbins, Jeffrey; Leinwand, Leslie A.

    1999-01-01

    Multiple mutations in cardiac troponin T (cTnT) can cause familial hypertrophic cardiomyopathy (FHC). Patients with cTnT mutations generally exhibit mild or no ventricular hypertrophy, yet demonstrate a high frequency of early sudden death. To understand the functional basis of these phenotypes, we created transgenic mouse lines expressing 30%, 67%, and 92% of their total cTnT as a missense (R92Q) allele analogous to one found in FHC. Similar to a mouse FHC model expressing a truncated cTnT p...

  2. The Impact of CRISPR/Cas9 Technology on Cardiac Research: From Disease Modelling to Therapeutic Approaches

    Science.gov (United States)

    Pramstaller, Peter P.; Hicks, Andrew A.; Rossini, Alessandra

    2017-01-01

    Genome-editing technology has emerged as a powerful method that enables the generation of genetically modified cells and organisms necessary to elucidate gene function and mechanisms of human diseases. The clustered regularly interspaced short palindromic repeats- (CRISPR-) associated 9 (Cas9) system has rapidly become one of the most popular approaches for genome editing in basic biomedical research over recent years because of its simplicity and adaptability. CRISPR/Cas9 genome editing has been used to correct DNA mutations ranging from a single base pair to large deletions in both in vitro and in vivo model systems. CRISPR/Cas9 has been used to increase the understanding of many aspects of cardiovascular disorders, including lipid metabolism, electrophysiology and genetic inheritance. The CRISPR/Cas9 technology has been proven to be effective in creating gene knockout (KO) or knockin in human cells and is particularly useful for editing induced pluripotent stem cells (iPSCs). Despite these progresses, some biological, technical, and ethical issues are limiting the therapeutic potential of genome editing in cardiovascular diseases. This review will focus on various applications of CRISPR/Cas9 genome editing in the cardiovascular field, for both disease research and the prospect of in vivo genome-editing therapies in the future. PMID:29434642

  3. The Impact of CRISPR/Cas9 Technology on Cardiac Research: From Disease Modelling to Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Benedetta M. Motta

    2017-01-01

    Full Text Available Genome-editing technology has emerged as a powerful method that enables the generation of genetically modified cells and organisms necessary to elucidate gene function and mechanisms of human diseases. The clustered regularly interspaced short palindromic repeats- (CRISPR- associated 9 (Cas9 system has rapidly become one of the most popular approaches for genome editing in basic biomedical research over recent years because of its simplicity and adaptability. CRISPR/Cas9 genome editing has been used to correct DNA mutations ranging from a single base pair to large deletions in both in vitro and in vivo model systems. CRISPR/Cas9 has been used to increase the understanding of many aspects of cardiovascular disorders, including lipid metabolism, electrophysiology and genetic inheritance. The CRISPR/Cas9 technology has been proven to be effective in creating gene knockout (KO or knockin in human cells and is particularly useful for editing induced pluripotent stem cells (iPSCs. Despite these progresses, some biological, technical, and ethical issues are limiting the therapeutic potential of genome editing in cardiovascular diseases. This review will focus on various applications of CRISPR/Cas9 genome editing in the cardiovascular field, for both disease research and the prospect of in vivo genome-editing therapies in the future.

  4. DIGE proteome analysis reveals suitability of ischemic cardiac in vitro model for studying cellular response to acute ischemia and regeneration.

    Directory of Open Access Journals (Sweden)

    Sina Haas

    Full Text Available Proteomic analysis of myocardial tissue from patient population is suited to yield insights into cellular and molecular mechanisms taking place in cardiovascular diseases. However, it has been limited by small sized biopsies and complicated by high variances between patients. Therefore, there is a high demand for suitable model systems with the capability to simulate ischemic and cardiotoxic effects in vitro, under defined conditions. In this context, we established an in vitro ischemia/reperfusion cardiac disease model based on the contractile HL-1 cell line. To identify pathways involved in the cellular alterations induced by ischemia and thereby defining disease-specific biomarkers and potential target structures for new drug candidates we used fluorescence 2D-difference gel electrophoresis. By comparing spot density changes in ischemic and reperfusion samples we detected several protein spots that were differentially abundant. Using MALDI-TOF/TOF-MS and ESI-MS the proteins were identified and subsequently grouped by functionality. Most prominent were changes in apoptosis signalling, cell structure and energy-metabolism. Alterations were confirmed by analysis of human biopsies from patients with ischemic cardiomyopathy.With the establishment of our in vitro disease model for ischemia injury target identification via proteomic research becomes independent from rare human material and will create new possibilities in cardiac research.

  5. Nonlinear diffusion and thermo-electric coupling in a two-variable model of cardiac action potential

    Science.gov (United States)

    Gizzi, A.; Loppini, A.; Ruiz-Baier, R.; Ippolito, A.; Camassa, A.; La Camera, A.; Emmi, E.; Di Perna, L.; Garofalo, V.; Cherubini, C.; Filippi, S.

    2017-09-01

    This work reports the results of the theoretical investigation of nonlinear dynamics and spiral wave breakup in a generalized two-variable model of cardiac action potential accounting for thermo-electric coupling and diffusion nonlinearities. As customary in excitable media, the common Q10 and Moore factors are used to describe thermo-electric feedback in a 10° range. Motivated by the porous nature of the cardiac tissue, in this study we also propose a nonlinear Fickian flux formulated by Taylor expanding the voltage dependent diffusion coefficient up to quadratic terms. A fine tuning of the diffusive parameters is performed a priori to match the conduction velocity of the equivalent cable model. The resulting combined effects are then studied by numerically simulating different stimulation protocols on a one-dimensional cable. Model features are compared in terms of action potential morphology, restitution curves, frequency spectra, and spatio-temporal phase differences. Two-dimensional long-run simulations are finally performed to characterize spiral breakup during sustained fibrillation at different thermal states. Temperature and nonlinear diffusion effects are found to impact the repolarization phase of the action potential wave with non-monotone patterns and to increase the propensity of arrhythmogenesis.

  6. Humanin prevents brain mitochondrial dysfunction in a cardiac ischaemia-reperfusion injury model.

    Science.gov (United States)

    Kumfu, Sirinart; Charununtakorn, Savitree T; Jaiwongkam, Thidarat; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2016-06-01

    What is the central question of this study? Myocardial ischaemia-reperfusion (I/R) injury causes interference in the systemic circulation and damages not only the heart but also several vital organs, including the brain. Recently, a novel peptide called humanin has been shown to exert potent neuroprotective effects. However, the effect of humanin on the brain during cardiac I/R injury has not yet been investigated. What is the main finding and its importance? The I/R injury caused blood-brain barrier breakdown, increased brain oxidative stress and resulted in mitochondrial dysfunction. Only the humanin treatment before ischaemia attenuated brain mitochondrial dysfunction, but it did not prevent blood-brain barrier breakdown or brain oxidative stress. Humanin treatment during ischaemia and in the reperfusion period provided no neuroprotection. These findings indicate that humanin exerted neuroprotection during cardiac I/R injury via improved brain mitochondrial function. Myocardial ischaemia-reperfusion (I/R) injury causes interference in the systemic circulation and damages not only the heart but also several vital organs, including the brain. Nevertheless, limited information is available regarding the effect of cardiac I/R injury on the brain, including blood-brain barrier (BBB) breakdown, brain oxidative stress and mitochondrial function. Recently, a novel peptide called humanin has been shown to exert potent neuroprotective effects. However, the effect of humanin on the brain during cardiac I/R injury has not yet been investigated. Forty-two male Wistar rats were divided into the following two groups: an I/R group, which was subjected to a 30 min left anterior descending coronary artery occlusion followed by 120 min reperfusion (I/R group; n = 36); and a sham group (n = 6). The I/R group was divided into six subgroups. Each subgroup was given either vehicle or humanin analogue (84 μg kg(-1) , i.v.) at three different time points, namely before

  7. Particles Alter Diesel Exhaust Gases-Induced Hypotension, Cardiac Arrhythmia,Conduction Disturbance, and Autonomic Imbalance in Heart Failure-Prone Rats

    Science.gov (United States)

    Epidemiologic studies indicate that acute exposures to vehicular traffic and particulate matter (PM) air pollution are key causes of fatal cardiac arrhythmia, especially in those with preexisting cardiovascular disease. Researchers point to electrophysiologic dysfunction and auto...

  8. Beneficial effect of methylprednisolone on cardiac myocytes in a rat model of severe brain injury.

    Science.gov (United States)

    Emir, Mustafa; Ozisik, Kanat; Cagli, Kerim; Ozisik, Pinar; Tuncer, Serdar; Bakuy, Vedat; Yildirim, Erkan; Kilinc, Kamer; Gol, Kamil

    2005-10-01

    Cardiac injury, occurred after traumatic brain injury (TBI), has been recognized for more than a century. Bcl-2 is a key regulatory component of the mitochondrial cell death pathway, and its overexpression is cytoprotective in many cell types. The therapeutic agents, which induce the expression of bcl-2 protein, might provide a new therapy to prevent cardiac myocyte damage following TBI. In this study, we investigated whether methylprednisolone sodium succinate (MPSS) influences the expression of bcl-2 in the heart. Wistar-Albino female rats underwent TBI (300 g/cm) generated by the weight-drop method, and were left untreated (n = 6) or treated with either MPSS (30 mg/kg) (n = 6) or vehicle (albumin solution) (n = 6). The heart was isolated from each animal with TBI. For comparison, the hearts were isolated from sham-operated (n = 6) and control rats (n = 6). The relative expression of bcl-2 mRNA in the heart was quantitated by real-time polymerase chain reaction. We also assessed lipid peroxidation in the heart tissue by determining the concentration of thiobarbituric acid-reactive substances (TBARs) as an indicator of tissue damage. The bcl-2 expression level was significantly higher in the hearts of MPSS-treated rats compared to that of other TBI groups (p < 0.0001). Moreover, TBI increased the lipid peroxidation in the heart, which was significantly reduced by the treatment with MPSS (p < 0.0001). These findings provide evidence for the efficacy of MPSS in protection of cardiac myocytes to achieve optimal heart donation after TBI in heart transplantation.

  9. Dasatinib Attenuates Pressure Overload Induced Cardiac Fibrosis in a Murine Transverse Aortic Constriction Model.

    Directory of Open Access Journals (Sweden)

    Sundaravadivel Balasubramanian

    Full Text Available Reactive cardiac fibrosis resulting from chronic pressure overload (PO compromises ventricular function and contributes to congestive heart failure. We explored whether nonreceptor tyrosine kinases (NTKs play a key role in fibrosis by activating cardiac fibroblasts (CFb, and could potentially serve as a target to reduce PO-induced cardiac fibrosis. Our studies were carried out in PO mouse myocardium induced by transverse aortic constriction (TAC. Administration of a tyrosine kinase inhibitor, dasatinib, via an intraperitoneally implanted mini-osmotic pump at 0.44 mg/kg/day reduced PO-induced accumulation of extracellular matrix (ECM proteins and improved left ventricular geometry and function. Furthermore, dasatinib treatment inhibited NTK activation (primarily Pyk2 and Fak and reduced the level of FSP1 positive cells in the PO myocardium. In vitro studies using cultured mouse CFb showed that dasatinib treatment at 50 nM reduced: (i extracellular accumulation of both collagen and fibronectin, (ii both basal and PDGF-stimulated activation of Pyk2, (iii nuclear accumulation of Ki67, SKP2 and histone-H2B and (iv PDGF-stimulated CFb proliferation and migration. However, dasatinib did not affect cardiomyocyte morphologies in either the ventricular tissue after in vivo administration or in isolated cells after in vitro treatment. Mass spectrometric quantification of dasatinib in cultured cells indicated that the uptake of dasatinib by CFb was greater that that taken up by cardiomyocytes. Dasatinib treatment primarily suppressed PDGF but not insulin-stimulated signaling (Erk versus Akt activation in both CFb and cardiomyocytes. These data indicate that dasatinib treatment at lower doses than that used in chemotherapy has the capacity to reduce hypertrophy-associated fibrosis and improve ventricular function.

  10. Molecular and electrical characterization of the canine cardiac ventricular septum

    NARCIS (Netherlands)

    Ramakers, Christian; Stengl, Milan; Spätjens, Roel L. H. M. G.; Moorman, Antoon F. M.; Vos, Marc A.

    2005-01-01

    Electrophysiological heterogeneity in the ventricular septum (VS) has been poorly addressed. In this study we investigated the electrophysiological and molecular composition of the VS in control sinus rhythm (SR) and chronic, complete atrio-ventricular block (CAVB) dogs. In the latter model, we

  11. A New Transgenic Mouse Model of Heart Failure and Cardiac Cachexia Raised by Sustained Activation of Met Tyrosine Kinase in the Heart

    Directory of Open Access Journals (Sweden)

    Valentina Sala

    2016-01-01

    Full Text Available Among other diseases characterized by the onset of cachexia, congestive heart failure takes a place of relevance, considering the high prevalence of this pathology in most European countries and in the United States, and is undergoing a rapid increase in developing countries. Actually, only few models of cardiac cachexia exist. Difficulties in the recruitment and follow-up of clinical trials implicate that new reproducible and well-characterized animal models are pivotal in developing therapeutic strategies for cachexia. We generated a new model of cardiac cachexia: a transgenic mouse expressing Tpr-Met receptor, the activated form of c-Met receptor of hepatocyte growth factor, specifically in the heart. We showed that the cardiac-specific induction of Tpr-Met raises a cardiac hypertrophic remodelling, which progresses into concentric hypertrophy with concomitant increase in Gdf15 mRNA levels. Hypertrophy progresses to congestive heart failure with preserved ejection fraction, characterized by reduced body weight gain and food intake and skeletal muscle wasting. Prevention trial by suppressing Tpr-Met showed that loss of body weight could be prevented. Skeletal muscle wasting was also associated with altered gene expression profiling. We propose transgenic Tpr-Met mice as a new model of cardiac cachexia, which will constitute a powerful tool to understand such complex pathology and test new drugs/approaches at the preclinical level.

  12. Constant DI pacing suppresses cardiac alternans formation in numerical cable models

    Science.gov (United States)

    Zlochiver, S.; Johnson, C.; Tolkacheva, E. G.

    2017-09-01

    Cardiac repolarization alternans describe the sequential alternation of the action potential duration (APD) and can develop during rapid pacing. In the ventricles, such alternans may rapidly turn into life risking arrhythmias under conditions of spatial heterogeneity. Thus, suppression of alternans by artificial pacing protocols, or alternans control, has been the subject of numerous theoretical, numerical, and experimental studies. Yet, previous attempts that were inspired by chaos control theories were successful only for a short spatial extent (implanted pacemakers, in order to reduce the risk of life-threatening arrhythmias. Future research should be conducted in order to experimentally validate these promising results.

  13. Reliability of Pulse Oximetry during Progressive Hypoxia, Cardiopulmonary Resuscitation, and Recovery in a Piglet Model of Neonatal Hypoxic Cardiac Arrest.

    Science.gov (United States)

    Hassan, Mohammad Ahmad; Weber, Claudia; Waitz, Markus; Huang, Li; Hummler, Helmut D; Mendler, Marc Robin

    2017-01-01

    Pulse oximetry is widely used in intensive care and emergency conditions to monitor arterial oxygenation and to guide oxygen therapy. To study the reliability of pulse oximetry in comparison with CO-oximetry in newborn piglets during progressive hypoxia, cardiac arrest, cardiopulmonary resuscitation (CPR), and after return of spontaneous circulation (ROSC). Thirty-three newborn piglets were exposed to hypoxia until asystole occurred and then resuscitated until ROSC. Arterial oxygen saturation was monitored continuously by pulse oximetry (SpO2) with one sensor applied to the wrist of the right forelimb (FL) and another to the thigh of the left hind limb (HL). Arterial functional oxygen saturation (SaO2) was measured at baseline and at predefined intervals during each phase of the experiment. SpO2 was compared with coinciding SaO2 values and bias considered whenever the difference (SpO2 - SaO2) was beyond ±5%. Bias values were lower at the baseline measurements (-3.7 ± 2.3% in FL and -4.1 ± 3.4% in HL) as well as after ROSC (1.5 ± 4.2% in FL and 0.2 ± 4.6% in HL) with higher precision and accuracy than during other experiment phases. During hypoxia induction, cardiac arrest, and CPR, there was a marked decrease in precision and accuracy as well as an increase in bias up to 43 ± 26 and 56 ± 27% in FL and HL, respectively, over a range of SaO2 from 13 to 51%. Pulse oximetry showed increased bias and decreased accuracy and precision during marked hypoxemia in a model of neonatal hypoxic cardiac arrest. © 2017 S. Karger AG, Basel.

  14. Intestinal Conditioning After Cardiac Arrest: The Use of Normothermic Extracorporeal Membrane Oxygenation in the Non-Heart-Beating Animal Model.

    Science.gov (United States)

    Guo, Mingxiao; Yao, Danhua; Li, Linlin; Lu, Chunlei; Li, Yousheng; Li, Jieshou

    2016-08-01

    The effect of normothermic extracorporeal membrane oxygenation (NECMO) on small bowel preservation in a clinically relevant large animal model of expected donation after cardiac death (eDCD) was evaluated. Thirty domestic crossbred donor pigs were divided into five groups. The first group served as the live donation (LD) group, the second group served as the donation after cardiac death (DCD) group, and the remaining were further assigned into three subgroups: E1 group (1 h NECMO support), E3 group (3 h NECMO support), and E5 group (5 h NECMO support). Pathology, electron microscopy, energy metabolism, cell apoptosis, and tight junction (TJ) protein expression level of intestinal mucosa and the level of plasma d-lactic acid were evaluated in normal, cardiac death and at the end of extracorporeal support, respectively. The mean arterial pressure and PaO2 were maintained over 60 and 267 mm Hg during NECMO support, respectively. One hour of extracorporeal support could improve the energy status in intestines of the DCD group. Although the histologic damage and apoptosis of the E1 group had no significant difference with those of the LD and DCD groups (P > 0.05), the levels of intestinal mucosa TJ protein decreased (P intestinal mucosa damage and intestinal permeability gradually increased, as well as the content of adenosine triphosphate in intestinal mucosa. The normothermic extracorporeal support for 1 h in DCD is beneficial for improving the energy status and viability of the bowel. However, the integrity of intestinal mucosa was destroyed gradually as extracorporeal support time went by. And the activation of intestinal epithelial apoptosis and hyperoxia might be the factors that lead to intestinal mucosa injury. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. In vivo T2* weighted MRI visualizes cardiac lesions in murine models of acute and chronic viral myocarditis.

    Directory of Open Access Journals (Sweden)

    Xavier Helluy

    Full Text Available Acute and chronic forms of myocarditis are mainly induced by virus infections. As a consequence of myocardial damage and inflammation dilated cardiomyopathy and chronic heart failure may develop. The gold standard for the diagnosis of myocarditis is endomyocardial biopsies which are required to determine the etiopathogenesis of cardiac inflammatory processes. However, new non-invasive MRI techniques hold great potential in visualizing cardiac non-ischemic inflammatory lesions at high spatial resolution, which could improve the investigation of the pathophysiology of viral myocarditis.Here we present the discovery of a novel endogenous T2* MRI contrast of myocardial lesions in murine models of acute and chronic CVB3 myocarditis. The evaluation of infected hearts ex vivo and in vivo by 3D T2w and T2*w MRI allowed direct localization of virus-induced myocardial lesions without any MRI tracer or contrast agent. T2*w weighted MRI is able to detect both small cardiac lesions of acute myocarditis and larger necrotic areas at later stages of chronic myocarditis, which was confirmed by spatial correlation of MRI hypointensity in myocardium with myocardial lesions histologically. Additional in vivo and ex vivo MRI analysis proved that the contrast mechanism was due to a strong paramagnetic tissue alteration in the vicinity of myocardial lesions, effectively pointing towards iron deposits as the primary contributor of contrast. The evaluation of the biological origin of the MR contrast by specific histological staining and transmission electron microscopy revealed that impaired iron metabolism primarily in mitochondria caused iron deposits within necrotic myocytes, which induces strong magnetic susceptibility in myocardial lesions and results in strong T2* contrast.This T2*w MRI technique provides a fast and sensitive diagnostic tool to determine the patterns and the severity of acute and chronic enteroviral myocarditis and the precise localization of

  16. Detection of spontaneous pulse using the acceleration signals acquired from CPR feedback sensor in a porcine model of cardiac arrest.

    Science.gov (United States)

    Wei, Liang; Chen, Gang; Yang, Zhengfei; Yu, Tao; Quan, Weilun; Li, Yongqin

    2017-01-01

    Reliable detection of return of spontaneous circulation with minimal interruptions of chest compressions is part of high-quality cardiopulmonary resuscitation (CPR) and routinely done by checking pulsation of carotid arteries. However, manual palpation was time-consuming and unreliable even if performed by expert clinicians. Therefore, automated accurate pulse detection with minimal interruptions of chest compression is highly desirable during cardiac arrest especially in out-of-hospital settings. To investigate whether the acceleration (ACC) signals acquired from accelerometer-based CPR feedback sensor can be used to distinguish perfusing rhythm (PR) from pulseless electrical activity (PEA) in a porcine model of cardiac arrest. Cardiac arrest was induced in 49 male adult pigs. ECG, arterial blood pressure (ABP) and ACC waveforms were simultaneously recorded during CPR. 3-second segments containing compression-free signals during chest compression pauses were extracted and only those segments with organized rhythm were used for analysis. PR was defined as systolic arterial pressure >60 mmHg and pulse pressure >10 mmHg, while PEA was defined as an organized rhythm that does not meet the above criteria for PR. Peak correlation coefficient (CCp) of the cross-correlation function between pre-processed ECG and ACC, was used to discriminate PR and PEA. 63 PR and 153 PEA were identified from the total of 1025 extracted segments. CCp was significantly higher for PR as compared to PEA (0.440±0.176 vs. 0.067±0.042, pfeedback sensor can be used to detect the presence of spontaneous pulse with high accuracy.

  17. A Parametric Computational Model of the Action Potential of Pacemaker Cells.

    Science.gov (United States)

    Ai, Weiwei; Patel, Nitish D; Roop, Partha S; Malik, Avinash; Andalam, Sidharta; Yip, Eugene; Allen, Nathan; Trew, Mark L

    2018-01-01

    A flexible, efficient, and verifiable pacemaker cell model is essential to the design of real-time virtual hearts that can be used for closed-loop validation of cardiac devices. A new parametric model of pacemaker action potential is developed to address this need. The action potential phases are modeled using hybrid automaton with one piecewise-linear continuous variable. The model can capture rate-dependent dynamics, such as action potential duration restitution, conduction velocity restitution, and overdrive suppression by incorporating nonlinear update functions. Simulated dynamics of the model compared well with previous models and clinical data. The results show that the parametric model can reproduce the electrophysiological dynamics of a variety of pacemaker cells, such as sinoatrial node, atrioventricular node, and the His-Purkinje system, under varying cardiac conditions. This is an important contribution toward closed-loop validation of cardiac devices using real-time heart models.

  18. Conceptual models of coronary perfusion pressure and their relationship to defibrillation success in a porcine model of prolonged out-of-hospital cardiac arrest

    Science.gov (United States)

    Reynolds, Joshua C.; Salcido, David D.; Menegazzi, James J.

    2012-01-01

    Introduction The amount of myocardial perfusion required for successful defibrillation after cardiac arrest is unknown. Coronary perfusion pressure (CPP) is a surrogate for myocardial perfusion. One limited clinical study identifies a threshold of 15 mmHg required for return of spontaneous circulation (ROSC). Our exploration of threshold and dose models of CPP during the initial bout of CPR indicates higher levels than previously demonstrated are required. CPP required for shock success throughout on-going resuscitation is unknown and other conceptual models of CPP have not been explored. Hypothesis An array of conceptual models of CPP is associated with and predicts defibrillation success throughout resuscitation. Methods Data from 6 porcine cardiac arrest studies were pooled. Mean and area under the curve (AUC) CPP were derived for 30-second epochs. Five conceptual models of CPP were analyzed: threshold, delta, cumulative delta, dose, and cumulative dose. Comparative statistics were performed with one-way ANOVA and two-tailed t-test. Regression models assessed CPP trends and prediction of ROSC. Results For 316 defibrillation attempts in 124 animals, those resulting in ROSC (n=75) had significantly higher threshold, delta, cumulative delta, dose, and cumulative dose CPP than those without. All conceptual models except delta CPP had significantly different values across successive defibrillation attempts and all five models were significant predictors of ROSC, along with experimental design. Conclusions Threshold, delta, cumulative delta, dose, and cumulative dose CPP predict individual defibrillation success throughout resuscitation. PMID:22266069

  19. Evaluation of paediatric cardiosurgical model in Croatia by using the Aristotle basic complexity score and the risk adjustment for congenital cardiac surgery-1 method.

    Science.gov (United States)

    Dilber, Daniel; Malcic, Ivan

    2010-08-01

    The Aristotle basic complexity score and the risk adjustment in congenital cardiac surgery-1 method were developed and used to compare outcomes of congenital cardiac surgery. Both methods were used to compare results of procedures performed on our patients in Croatian cardiosurgical centres and results of procedures were taken abroad. The study population consisted of all patients with congenital cardiac disease born to Croatian residents between 1 October, 2002 and 1 October, 2007 undergoing a cardiovascular operation during this period. Of the 556 operations, the Aristotle basic complexity score could be assigned to 553 operations and the risk adjustment in congenital cardiac surgery-1 method to 536 operations. Procedures were performed in two institutions in Croatia and seven institutions abroad. The average complexity for cardiac procedures performed in Croatia was significantly lower. With both systems, along with the increase in complexity, there is also an increase in mortality before discharge and postoperative length of stay. Only after the adjustment for complexity there are marked differences in mortality and occurrence of postoperative complications. Both, the Aristotle basic complexity score and the risk adjustment in congenital cardiac surgery-1 method were predictive of in-hospital mortality as well as prolonged postoperative length to stay, and can be used as a tool in our country to evaluate a cardiosurgical model and recognise potential problems.

  20. On the electrophysiology of aesthetic processing.

    Science.gov (United States)

    Jacobsen, Thomas

    2013-01-01

    One important method that can be applied for gaining an understanding of the underpinning of aesthetics in the brain is that of electrophysiology. Cognitive electrophysiology, in particular, allows the identification of components in a mental processing architecture. The present chapter reviews findings in the neurocognitive psychology of aesthetics, or neuroaesthetics, that have been obtained with the method of event-related brain potentials, as derived from the human electroencephalogram. The cognitive-perceptual bases as well as affective substages of aesthetic processing have been investigated and those are described here. The event-related potential method allows for the identification of mental processing modes in cognitive and aesthetic processing. It also provides an assessment of the mental chronometry of cognitive and affective stages in aesthetic appreciation. As the work described here shows, distinct processes in the brain are engaged in aesthetic judgments. © 2013 Elsevier B.V. All rights reserved.

  1. Electromechanical models of the ventricles.

    Science.gov (United States)

    Trayanova, Natalia A; Constantino, Jason; Gurev, Viatcheslav

    2011-08-01

    Computational modeling has traditionally played an important role in dissecting the mechanisms for cardiac dysfunction. Ventricular electromechanical models, likely the most sophisticated virtual organs to date, integrate detailed information across the spatial scales of cardiac electrophysiology and mechanics and are capable of capturing the emergent behavior and the interaction between electrical activation and mechanical contraction of the heart. The goal of this review is to provide an overview of the latest advancements in multiscale electromechanical modeling of the ventricles. We first detail the general framework of multiscale ventricular electromechanical modeling and describe the state of the art in computational techniques and experimental validation approaches. The powerful utility of ventricular electromechanical models in providing a better understanding of cardiac function is then demonstrated by reviewing the latest insights obtained by these models, focusing primarily on the mechanisms by which mechanoelectric coupling contributes to ventricular arrythmogenesis, the relationship between electrical activation and mechanical contraction in the normal heart, and the mechanisms of mechanical dyssynchrony and resynchronization in the failing heart. Computational modeling of cardiac electromechanics will continue to complement basic science research and clinical cardiology and holds promise to become an important clinical tool aiding the diagnosis and treatment of cardiac disease.

  2. Electrophysiological studies in healthy subjects involving caffeine

    OpenAIRE

    Carvalho, Mamede de; Marcelino, Erica; Mendonça, Alexandre de

    2010-01-01

    Copyright ©2012 IOS Press All rights reserved. We review the electrophysiological studies concerning the effects of caffeine on muscle, lower and upper motor neuron excitability and cognition. Several different methods have been used, such as electromyography, recruitment analysis, H-reflex, transcranial magnetic stimulation (TMS), electroencephalography and event-related potentials. The positive effect of caffeine on vigilance, attention, speed of reaction, information processing and arou...

  3. The reliability of commonly used electrophysiology measures.

    Science.gov (United States)

    Brown, K E; Lohse, K R; Mayer, I M S; Strigaro, G; Desikan, M; Casula, E P; Meunier, S; Popa, T; Lamy, J-C; Odish, O; Leavitt, B R; Durr, A; Roos, R A C; Tabrizi, S J; Rothwell, J C; Boyd, L A; Orth, M

    Electrophysiological measures can help understand brain function both in healthy individuals and in the context of a disease. Given the amount of information that can be extracted from these measures and their frequent use, it is essential to know more about their inherent reliability. To understand the reliability of electrophysiology measures in healthy individuals. We hypothesized that measures of threshold and latency would be the most reliable and least susceptible to methodological differences between study sites. Somatosensory evoked potentials from 112 control participants; long-latency reflexes, transcranial magnetic stimulation with resting and active motor thresholds, motor evoked potential latencies, input/output curves, and short-latency sensory afferent inhibition and facilitation from 84 controls were collected at 3 visits over 24 months at 4 Track-On HD study sites. Reliability was assessed using intra-class correlation coefficients for absolute agreement, and the effects of reliability on statistical power are demonstrated for different sample sizes and study designs. Measures quantifying latencies, thresholds, and evoked responses at high stimulator intensities had the highest reliability, and required the smallest sample sizes to adequately power a study. Very few between-site differences were detected. Reliability and susceptibility to between-site differences should be evaluated for electrophysiological measures before including them in study designs. Levels of reliability vary substantially across electrophysiological measures, though there are few between-site differences. To address this, reliability should be used in conjunction with theoretical calculations to inform sample size and ensure studies are adequately powered to detect true change in measures of interest. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Validation of Algorithms to Identify Invasive Electrophysiology Procedures Using Administrative Data in Ontario, Canada.

    Science.gov (United States)

    Singh, Sheldon M; Webster, Lauren; Calzavara, Andrew; Wijeysundera, Harindra C

    2017-06-01

    Administrative database research can provide insight into the real-world effectiveness of invasive electrophysiology procedures. However, no validated algorithm to identify these procedures within administrative data currently exists. To develop and validate algorithms to identify atrial fibrillation (AF), atrial flutter (AFL), supraventricular tachycardia (SVT) catheter ablation procedures, and diagnostic electrophysiology studies (EPS) within administrative data. Algorithms consisting of physician procedural billing codes and their associated most responsible hospital diagnosis codes were used to identify potential AF, AFL, SVT catheter ablation procedures and diagnostic EPS within large administrative databases in Ontario, Canada. The potential procedures were then limited to those performed between October 1, 2011 and March 31, 2013 at a single large regional cardiac center (Sunnybrook Health Sciences Center) in Ontario, Canada. These procedures were compared with a gold-standard cohort of patients known to have undergone invasive electrophysiology procedures during the same time period at the same institution. The sensitivity, specificity, positive and negative predictive values of each algorithm was determined. Algorithms specific to each of AF, AFL, and SVT ablation were associated with a moderate sensitivity (75%-86%), high specificity (95%-98%), positive (95%-98%), and negative (99%) predictive values. The best algorithm to identify diagnostic EPS was less optimal with a sensitivity of 61% and positive predictive value of 88%. Algorithms using a combination of physician procedural billing codes and accompanying most responsible hospital diagnosis may identify catheter ablation procedures within administrative data with a high degree of accuracy. Diagnostic EPS may be identified with reduced accuracy.

  5. Myocyte-Fibroblast Communication in Cardiac Fibrosis and Arrhythmias: Mechanisms and Model Systems

    Science.gov (United States)

    Pellman, Jason; Zhang, Jing; Sheikh, Farah

    2016-01-01

    Development of cardiac fibrosis and arrhythmias is controlled by the activity of and communication between cardiomyocytes and fibroblasts in the heart. Myocyte-fibroblast interactions occur via both direct and indirect means including paracrine mediators, extracellular matrix interactions, electrical modulators, mechanical junctions, and membrane nanotubes. In the diseased heart, cardiomyocyte and fibroblast ratios and activity, and thus myocyte-fibroblast interactions, change and are thought to contribute to the course of disease including development of fibrosis and arrhythmogenic activity. Fibroblasts have a developing role in modulating cardiomyocyte electrical and hypertrophic activity, however gaps in knowledge regarding these interactions still exist. Research in this field has necessitated the development of unique approaches to isolate and control myocyte-fibroblast interactions. Numerous methods for 2D and 3D co-culture systems have been developed, while a growing part of this field is in the use of better tools for in vivo systems including cardiomyocyte and fibroblast specific Cre mouse lines for cell type specific genetic ablation. This review will focus on (i) mechanisms of myocyte-fibroblast communication and their effects on disease features such as cardiac fibrosis and arrhythmias as well as (ii) methods being used and currently developed in this field. PMID:26996756

  6. Comparative immunohistologic studies in an adoptive transfer model of acute rat cardiac allograft rejection

    International Nuclear Information System (INIS)

    Forbes, R.D.; Lowry, R.P.; Gomersall, M.; Blackburn, J.

    1985-01-01

    It has been shown that fulminant acute rejection of rat cardiac allografts across a full haplotype disparity may occur as a direct result of adoptive transfer of sensitized W3/25+ MRC OX8- SIg- T helper/DTH syngeneic spleen cells to sublethally irradiated recipients. In order to establish the immunohistologic parameters of this form of rejection, allografts and recipient lymphoid tissue were analyzed using a panel of monoclonal antibodies of known cellular distribution. These data were compared with those obtained following reconstitution of irradiated allograft recipients with unseparated sensitized spleen cells, with unreconstituted irradiated donor recipient pairs, with unmodified first-set rejection, and with induced myocardial infarction of syngeneic heart grafts transplanted to normal and to sublethally irradiated recipients. Rejecting cardiac allografts transplanted to all reconstituted irradiated recipients were characterized by extensive infiltration with MRC OX8+ (T cytotoxic-suppressor, natural killer) cells even when this subset was virtually excluded from the reconstituting inocula. A similar proportional accumulation of MRC OX8+ cells observed at the infarct margins of syngeneic heart grafts transplanted to irradiated unreconstituted recipients greatly exceeded that present in normal nonirradiated controls. These data provide evidence that under conditions of heavy recipient irradiation, MRC OX8+ cells may be sequestered within heart grafts in response to nonspecific injury unrelated to the rejection process

  7. Applications of Dynamic Clamp to Cardiac Arrhythmia Research: Role in Drug Target Discovery and Safety Pharmacology Testing

    Directory of Open Access Journals (Sweden)

    Francis A. Ortega

    2018-01-01

    Full Text Available Dynamic clamp, a hybrid-computational-experimental technique that has been used to elucidate ionic mechanisms underlying cardiac electrophysiology, is emerging as a promising tool in the discovery of potential anti-arrhythmic targets and in pharmacological safety testing. Through the injection of computationally simulated conductances into isolated cardiomyocytes in a real-time continuous loop, dynamic clamp has greatly expanded the capabilities of patch clamp outside traditional static voltage and current protocols. Recent applications include fine manipulation of injected artificial conductances to identify promising drug targets in the prevention of arrhythmia and the direct testing of model-based hypotheses. Furthermore, dynamic clamp has been used to enhance existing experimental models by addressing their intrinsic limitations, which increased predictive power in identifying pro-arrhythmic pharmacological compounds. Here, we review the recent advances of the dynamic clamp technique in cardiac electrophysiology with a focus on its future role in the development of safety testing and discovery of anti-arrhythmic drugs.

  8. Renal Doppler and Novel Biomarkers to Assess Acute Kidney Injury in a Swine Model of Ventricular Fibrillation Cardiac Arrest

    Directory of Open Access Journals (Sweden)

    Xue Mei

    2015-01-01

    Full Text Available Background: Majority of the research on cardiac arrest (CA have focused on post-CA brain injury and myocardial dysfunction, the renal dysfunction and acute kidney injury (AKI in other critical illnesses after CA have not been well described. This study was designed to assess AKI with renal Doppler and novel AKI biomarkers in a swine model of ventricular fibrillation cardiac arrest (VFCA. Methods: Thirty healthy piglets were divided into VFCA group (n = 22 and Sham group (n = 8 in a blinded manner. Mean arterial pressure, heart rate, and cardiac output were recorded continuously. Cardiac arrest (CA was induced by programmed electric stimulation in the VFCA group, and then cardiopulmonary resuscitation was performed. Twenty piglets returned of spontaneous circulation (ROSC and received intensive care. Blood and urine samples were collected for AKI biomarkers testing, and Color Doppler flow imaging was performed at baseline, 6 h, 12 h, and 24 h, respectively after ROSC. At ROSC 24 h, the animals were sacrificed and a semi-quantitative evaluation of pathologic kidney injury was performed. Results: In the VFCA group, corrected resistive index (cRI increased from 0.47 ± 0.03 to 0.64 ± 0.06, and pulsatility index (PI decreased from 0.82 ± 0.03 to 0.68 ± 0.04 after ROSC. Cystatin C (CysC in both serum and urine samples increased at ROSC 6 h, but neutrophil gelatinase-associated lipocalin (NGAL in serum increased to 5.34 ± 1.68 ng/ml at ROSC 6 h, and then decreased to 3.16 ± 0.69 ng/ml at ROSC 24 h while CysC increasing constantly. According to the renal histopathology, 18 of 20 animals suffered from kidney injury. The grade of renal injury was highly correlated with RI, cRI, NGAL, and CysC. Linear regression equation was established: Grade of renal injury = 0.002 × serum CysC + 6.489 × PI + 4.544 × cRI - 8.358 (r2 = 0.698, F = 18.506, P < 0.001. Conclusions: AKI is common in post-CA syndrome. Renal Doppler and novel AKI biomarkers in serum and

  9. Collaborative care model improves self-care ability, quality of life and cardiac function of patients with chronic heart failure.

    Science.gov (United States)

    Hua, C Y; Huang, Y; Su, Y H; Bu, J Y; Tao, H M

    2017-09-21

    Chronic heart failure (CHF) is a common chronic disease that requires much care. This study aimed to explore the effects of collaborative care model (CCM) on patients with CHF. A total of 114 CHF patients were enrolled in this study, and were randomly and equally divided into two groups: control and experimental. Patients in the two groups received either usual care or CCM for 3 continuous months. The impacts of CCM on the self-care ability and quality of life were assessed using self-care of heart failure index and short form health survey 12, respectively. Further, cardiac function was assessed by measuring left ventricular ejection fraction (LVEF) and the level of N-terminal pro-B-type natriuretic peptide (NT-proBNP), and by the 6-min walking test. Clinical and demographic characteristics of patients in the control and CCM groups were statistically equivalent. Compared with usual care, CCM significantly enhanced self-care abilities of patients with CHF, including self-care maintenance, self-care management and self-care confidence (all Pself-care, quality of life and cardiac function of patients with CHF compared with usual care.

  10. Electrophysiological, vasoactive, and gastromodulatory effects of stevia in healthy Wistar rats.

    Science.gov (United States)

    Yesmine, Saquiba; Connolly, Kylie; Hill, Nicholas; Coulson, Fiona R; Fenning, Andrew S

    2013-07-01

    Antihypertensive and antidiabetic effects of stevia, Stevia rebaudiana (Asteraceae), have been demonstrated in several human and animal models. The current study aims to define stevia's role in modifying the electrophysiological and mechanical properties of cardiomyocytes, blood vessels, and gastrointestinal smooth muscle. Tissues from thoracic aorta, mesenteric arteries, ileum, and left ventricular papillary muscles were excised from 8-week-old healthy Wistar rats. The effects of stevia (1 × 10-9 M to 1 × 10-4 M) were measured on these tissues. Stevia's effects in the presence of verapamil, 4-AP, and L-NAME were also assessed. In cardiomyocytes, stevia attenuated the force of contraction, decreased the average peak amplitude, and shortened the repolarisation phase of action potential - repolarisation phase of action potential20 by 25 %, repolarisation phase of action potential50 by 34 %, and repolarisation phase of action potential90 by 36 %. Stevia caused relaxation of aortic tissues which was significantly potentiated in the presence of verapamil. In mesenteric arteries, incubation with L-NAME failed to block stevia-induced relaxation indicating the mechanism of action may not be fully via nitric oxide-dependent pathways. Stevia concentration-dependently reduced electrical field stimulated and carbachol-induced contractions in the isolated ileum. This study is the first to show the effectiveness of stevia in reducing cardiac action potential duration at 20 %, 50 %, and 90 % of repolarisation. Stevia also showed beneficial modulatory effects on cardiovascular and gastrointestinal tissues via calcium channel antagonism, activation of the M2 muscarinic receptor function, and enhanced nitric oxide release. Georg Thieme Verlag KG Stuttgart · New York.

  11. Myofibroblasts in diseased hearts: new players in cardiac arrhythmias?

    Science.gov (United States)

    Rohr, Stephan

    2009-06-01

    Cardiac pathologies leading to the development of organ fibrosis typically are associated with the appearance of interstitial myofibroblasts. This cell type plays a central role in excessive extracellular matrix deposition, thereby contributing to arrhythmogenic slow and discontinuous conduction by causing disorganization of the three-dimensional network of electrically coupled cardiomyocytes. Besides this involvement in structural remodeling, myofibroblasts recently have been discovered in-vitro to promote arrhythmogenesis by direct modification of cardiomyocyte electrophysiology following establishment of heterocellular electrical coupling. In particular, myofibroblasts were found to rescue impulse conduction between disjoined cardiac tissues by acting as passive electrical conduits for excitatory current flow. Although, in principle, such recovery of blocked conduction might be beneficial, propagation across myofibroblast conduits is substantially delayed, thereby promoting arrhythmogenic slow and discontinuous conduction. Second, moderately polarized myofibroblasts were found to induce cell density-dependent depolarization of cardiomyocytes, which causes arrhythmogenic slow conduction due to the reduction of fast inward currents. Finally, critical depolarization of cardiomyocytes by myofibroblasts was discovered to lead to the appearance of ectopic activity in a model of the infarct border zone. These findings obtained in vitro suggest that electrotonic interactions following gap junctional coupling between myofibroblasts and cardiomyocytes in structurally remodeled fibrotic hearts might directly initiate the main mechanisms underlying arrhythmogenesis, that is, abnormal automaticity and abnormal impulse conduction. If, in the future, similar arrhythmogenic mechanisms can be shown to be operational in intact hearts, myofibroblasts might emerge as a novel noncardiomyocyte target for antiarrhythmic therapy.

  12. Evaluation of Optogenetic Electrophysiology Tools in Human Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Susann Björk

    2017-11-01

    Full Text Available Current cardiac drug safety assessments focus on hERG channel block and QT prolongation for evaluating arrhythmic risks, whereas the optogenetic approach focuses on the action potential (AP waveform generated by a monolayer of human cardiomyocytes beating synchronously, thus assessing the contribution of several ion channels on the overall drug effect. This novel tool provides arrhythmogenic sensitizing by light-induced pacing in combination with non-invasive, all-optical measurements of cardiomyocyte APs and will improve assessment of drug-induced electrophysiological aberrancies. With the help of patch clamp electrophysiology measurements, we aimed to investigate whether the optogenetic modifications alter human cardiomyocytes' electrophysiology and how well the optogenetic analyses perform against this gold standard. Patch clamp electrophysiology measurements of non-transduced stem cell-derived cardiomyocytes compared to cells expressing the commercially available optogenetic constructs Optopatch and CaViar revealed no significant changes in action potential duration (APD parameters. Thus, inserting the optogenetic constructs into cardiomyocytes does not significantly affect the cardiomyocyte's electrophysiological properties. When comparing the two methods against each other (patch clamp vs. optogenetic imaging we found no significant differences in APD parameters for the Optopatch transduced cells, whereas the CaViar transduced cells exhibited modest increases in APD-values measured with optogenetic imaging. Thus, to broaden the screen, we combined optogenetic measurements of membrane potential and calcium transients with contractile motion measured by video motion tracking. Furthermore, to assess how optogenetic measurements can predict changes in membrane potential, or early afterdepolarizations (EADs, cells were exposed to cumulating doses of E-4031, a hERG potassium channel blocker, and drug effects were measured at both spontaneous and

  13. Cardiac function improved by sarcoplasmic reticulum Ca2+-ATPase overexpression in a heart failure model induced by chronic myocardial ischemia

    Directory of Open Access Journals (Sweden)

    Wei XIN

    2011-04-01

    Full Text Available Objective Chronic myocardial ischemia(CMI has become an important cause of heart failure(HF.The aim of present study was to examine the effects of Sarco-endoplasmic reticulum calcium ATPase(SERCA2a gene transfer in HF model in large animal induced by CMI.Methods HF was reproduced in minipigs by ligating the initial segment of proximal left anterior descending(LAD coronary artery with an ameroid constrictor to produce progressive vessel occlusion and ischemia.After confirmation of myocardial perfusion defect and cardiac function impairment by SPECT and echocardiography in the model,animals were divided into 4 groups: HF group;HF+enhanced green fluorescent protein(EGFP group;HF+SERCA2a group;and sham operation group as control.rAAV1-EGFP and rAAV1-SERCA2a(1×1012 vg for each animal were directly and intramyocardially injected to the animals of HF+EGFP and HF+SERCA2a groups.Sixty days after the gene transfer,the expression of SERCA2a at the protein level was examined by Western blotting and immunohistochemistry,the changes in cardiac function were determined by echocardiographic and hemodynamic analysis,and the changes in serum inflammatory and neuro-hormonal factors(including BNP,TNF-a,IL-6,ET-1 and Ang II were determined by radioimmunoassay.Results Sixty days after gene transfer,LVEF,Ev/Av and ±dp/dtmax increased significantly(P < 0.05,along with an increase of SERCA2a protein expression in the ischemic myocardium(PP < 0.05,accompanied by a significant decrease of inflammatory and neural-hormonal factors(PP < 0.05 in HF+SERCA2a group as compared with HF/HF+EGFP group.Conclusions Overexpression of SERCA2a may significantly improve the cardiac function of the ischemic myocardium of HF model induced by CMI and reverse the activation of neural-hormonal factors,implying that it has a potential therapeutic significance in CMI related heart failure.

  14. Influence of Chest Compressions on Circulation during the Peri-Cardiac Arrest Period in Porcine Models.

    Directory of Open Access Journals (Sweden)

    Jun Xu

    Full Text Available Starting chest compressions immediately after a defibrillation shock might be harmful, if the victim already had a return of spontaneous circulation (ROSC and yet was still being subjected to external compressions at the same time. The objective of this study was to study the influence of chest compressions on circulation during the peri-cardiac arrest period.Prospective, randomized controlled study.Animal experimental center in Peking Union Medical Collage Hospital, Beijing, China.Healthy 3-month-old male domestic pigs.44 pigs (28±2 kg were randomly assigned to three groups: Group I (non-arrested with compressions (n = 12; Group II (arrested with compressions only (n = 12; Group III (ROSC after compressions and defibrillation (n = 20. In Groups I and II, compressions were performed to a depth of 5cm (Ia and IIa, n = 6 or a depth of 3cm (Ib and IIb, n = 6 respectively, while in Group III, the animals which had just achieved ROSC (n = 18 were compressed to a depth of 5cm (IIIa, n = 6, a depth of 3cm (IIIb, n = 6, or had no compressions (IIIc, n = 6. Hemodynamic parameters were collected and analyzed.Hemodynamics were statistically different between Groups Ia and Ib when different depths of compressions were performed (p < 0.05. In Group II, compressions were beneficial and hemodynamics correlated with the depth of compressions (p < 0.05. In Group III, compressions that continued after ROSC produced a reduction in arterial pressure (p < 0.05.Chest compressions might be detrimental to hemodynamics in the early post-ROSC stage. The deeper the compressions were, the better the effect on hemodynamics during cardiac arrest, but the worse the effect on hemodynamics after ROSC.

  15. The use of pneumoperitoneum during laparoscopic surgery as a model to study pathophysiologic phenomena: the correlation of cardiac functionality with computerized acoustic indices--preliminary data.

    Science.gov (United States)

    Bickel, Amitai; Eitan, Arieh; Melnik, Dimitry; Weiss, Atalia; Gavrieli, Noam; Kniaz, David; Intrator, Nathan

    2012-05-01

    Induction of pneumoperitoneum during laparoscopic surgery leads to diverse cardiovascular changes that can be used as a model to study pathophysiologic phenomena. Application of novel signal processing and figure extraction enabled searching for correlation between various signals and pathophysiologic setting. Our aim was to quantitatively correlate cardiac functionality (as expressed by cardiac output) with the spectral energy of the first heart sound (S1) obtained from the phonocardiogram, during laparoscopic surgery. Patients who were scheduled for elective laparoscopic operations were enrolled in the study. Cardiac output was maximally changed during anesthesia and abdominal insufflation and was obtained from the arterial pressure wave (FloTrac™ sensor and Vigileo™ monitor [Edwards Lifesciences Ltd.]). Heart signals were recorded during surgery from each subject by a computerized digital data acquisition system. The automatic analysis of the heart sounds included segmentation that was based on the energy envelope of the heart sounds together with analysis of the electrocardiogram signal. We analyzed the morphology of the sounds using hierarchial cluster analysis to remove those sounds that were not reliably recorded. The magnitude of the amplitude of heart sounds was obtained by using the Hilbert transform for each heartbeat. Statistical analysis was based on linear regression. Following exclusion of 3 patients (mainly because of technical reasons), we were left with 7 patients who demonstrated statistically significant positive correlation between cardiac index and the amplitude of S1 (regression coefficient between 0.4 and 0.9, Pfunctionality, through sophisticated computerized analysis, using the pneumoperitoneum model for changing the cardiac output.

  16. Electrophysiological changes in patients with liver cirrhosis in a tertiary care hospital in karachi, pakistan

    International Nuclear Information System (INIS)

    Parkash, O.; Mohyuddin, G.R.; Ayub, A.; Nazir, I.

    2017-01-01

    Electrophysiological changes in cirrhosis are well known but least investigated especially in our country hence we wanted to see electrophysiological changes especially QT interval in cirrhotic patients. Methods: A cross-sectional study was conducted at Aga Khan University Hospital Karachi (AKUH) in which medical records (duration 2008-2010) of cirrhotic patients were reviewed. Results: Three hundred and eighty cirrhotic patients' charts were studied, 227 (59.7 percent) were male and mean age of this cohort was 52.8+-12.6 years. The most common cause for CLD was Hepatitis C (CHC) in 260 (68.4 percent), NBNC in 56(14.7 percent) and HBV in 51 (13.4 percent). Only 225 had complete ECG workup, the mean corrected QT interval was 0.44+-0.067 sec. Among the electrophysiological abnormalities, 79 (35 percent) had a prolonged corrected QT interval, 7 (3.1 percent) had a prolonged PR interval (>0.22s) and prolonged QRS duration was seen in 23 (10.4 percent) patients. QT prolongation was seen in 1 of the 5 patients with Child Class A (20 percent), 22 of the 73 patients with Child Class B (30.1 percent), and 25 of the 61 patients with Child Class C (41 percent). However, this difference however was not statistically significant. (p value=.331). Conclusion: We conclude that QT prolongation is more frequent in patients with liver cirrhosis especially when the disease is more advanced like in Child C hence these patients are more prone to sudden cardiac death. Moreover, this study shows that the risk associated with QT prolongation is present through all classes of liver cirrhosis. We recommend that routine cardiac screening with ECG of all cirrhotic patients be performed. (author)

  17. Magnetic resonance imaging guided transatrial electrophysiological studies in swine using active catheter tracking - experience with 14 cases

    Energy Technology Data Exchange (ETDEWEB)

    Grothoff, Matthias; Gutberlet, Matthias [University of Leipzig - Heart Center, Department of Radiology, Leipzig (Germany); Hindricks, Gerhard; Sommer, Philipp; Hilbert, Sebastian [University of Leipzig - Heart Center, Department of Electrophysiology, Leipzig (Germany); Fleiter, Christian [Helios Klinikum Berlin-Buch, Department of Orthopaedic Surgery, Berlin (Germany); Schnackenburg, Bernhard [Philips Healthcare, Hamburg (Germany); Weiss, Steffen; Krueger, Sascha [Philips Innovative Technologies, Hamburg (Germany); Piorkowski, Christopher; Gaspar, Thomas [University of Dresden - Heart Center, Department of Electrophysiology, Dresden (Germany); Wedan, Steve; Lloyd, Thomas [Imricor Medical Systems, Burnsville, MN (United States)

    2017-05-15

    To evaluate the feasibility of performing comprehensive Cardiac Magnetic resonance (CMR) guided electrophysiological (EP) interventions in a porcine model encompassing left atrial access. After introduction of two femoral sheaths 14 swine (41 ± 3.6 kg) were transferred to a 1.5 T MR scanner. A three-dimensional whole-heart sequence was acquired followed by segmentation and the visualization of all heart chambers using an image-guidance platform. Two MR conditional catheters were inserted. The interventional protocol consisted of intubation of the coronary sinus, activation mapping, transseptal left atrial access (n = 4), generation of ablation lesions and eventually ablation of the atrioventricular (AV) node. For visualization of the catheter tip active tracking was used. Catheter positions were confirmed by passive real-time imaging. Total procedure time was 169 ± 51 minutes. The protocol could be completed in 12 swine. Two swine died from AV-ablation induced ventricular fibrillation. Catheters could be visualized and navigated under active tracking almost exclusively. The position of the catheter tips as visualized by active tracking could reliably be confirmed with passive catheter imaging. Comprehensive CMR-guided EP interventions including left atrial access are feasible in swine using active catheter tracking. (orig.)

  18. Electrophysiologic Validation of Diffusion Tensor Imaging Tractography during Deep Brain Stimulation Surgery.

    Science.gov (United States)

    Coenen, V A; Jenkner, C; Honey, C R; Mädler, B

    2016-08-01

    Diffusion tensor imaging fiber tractography-assisted planning of deep brain stimulation is an emerging technology. We investigated its accuracy by using electrophysiology under clinical conditions. We hypothesized that a level of concordance between electrophysiology and DTI fiber tractography can be reached, comparable with published modeling approaches for deep brain stimulation surgery. Eleven patients underwent subthalamic nucleus deep brain stimulation. DTI scans and high-resolution T1- and T2-weighted MR imaging was performed at 3T. Corticospinal tracts were traced. We studied electrode positions and current amplitudes that elicited corticospinal tract effects during the operation to determine relative corticospinal tract distance. Postoperatively, 3D deep brain stimulation electrode contact locations and stimulation patterns were applied for the same corticospinal tract distance estimation. Intraoperative electrophysiologic (n = 40) clinical effects in 11 patients were detected. The mean intraoperative electrophysiologic corticospinal tract distance was 3.0 ± 0.6 mm; the mean image-derived corticospinal tract distance (DTI fiber tractography) was 3.0 ± 1.3 mm. The 95% limits of agreement were ±2.4 mm. Postoperative electrophysiology (n = 44) corticospinal tract activation effects were encountered in 9 patients; 39 were further evaluated. Mean electrophysiologic corticospinal tract distance was 3.7 ± 0.7 mm; for DTI fiber tractography, it was 3.2 ± 1.9 mm. The 95% limits of agreement were ±2.5 mm. DTI fiber tractography depicted the medial corticospinal tract border with proved concordance. Although the overall range of measurements was relatively small and variance was high, we believe that further use of DTI fiber tractography to assist deep brain stimulation procedures is advisable if inherent limitations are respected. These results confirm our previously published electric field simulation studies. © 2016 by American Journal of Neuroradiology.

  19. Cardiac Rehabilitation

    Science.gov (United States)

    ... may also do muscle-strengthening exercises, such as lifting weights or other resistance training exercises, two or three ... health concerns. Education about nutrition, lifestyle and healthy weight ... the most benefits from cardiac rehabilitation, make sure your exercise and ...

  20. Cardiac MRI

    Science.gov (United States)

    ... such as coronary heart disease, heart valve problems, pericarditis, cardiac tumors, or damage from a heart attack. ... Palpitations Heart Valve Disease Implantable Cardioverter Defibrillators Pacemakers Pericarditis Stress Testing RELATED NEWS April 26, 2013 | News ...

  1. Detection of spontaneous pulse using the acceleration signals acquired from CPR feedback sensor in a porcine model of cardiac arrest.

    Directory of Open Access Journals (Sweden)

    Liang Wei

    Full Text Available Reliable detection of return of spontaneous circulation with minimal interruptions of chest compressions is part of high-quality cardiopulmonary resuscitation (CPR and routinely done by checking pulsation of carotid arteries. However, manual palpation was time-consuming and unreliable even if performed by expert clinicians. Therefore, automated accurate pulse detection with minimal interruptions of chest compression is highly desirable during cardiac arrest especially in out-of-hospital settings.To investigate whether the acceleration (ACC signals acquired from accelerometer-based CPR feedback sensor can be used to distinguish perfusing rhythm (PR from pulseless electrical activity (PEA in a porcine model of cardiac arrest.Cardiac arrest was induced in 49 male adult pigs. ECG, arterial blood pressure (ABP and ACC waveforms were simultaneously recorded during CPR. 3-second segments containing compression-free signals during chest compression pauses were extracted and only those segments with organized rhythm were used for analysis. PR was defined as systolic arterial pressure >60 mmHg and pulse pressure >10 mmHg, while PEA was defined as an organized rhythm that does not meet the above criteria for PR. Peak correlation coefficient (CCp of the cross-correlation function between pre-processed ECG and ACC, was used to discriminate PR and PEA.63 PR and 153 PEA were identified from the total of 1025 extracted segments. CCp was significantly higher for PR as compared to PEA (0.440±0.176 vs. 0.067±0.042, p<0.01 and highly correlated with ABP (r = 0.848, p<0.001. The area under the receiver operating characteristic curve, sensitivity, specificity and accuracy were 0.965, 93.6%, 97.5% and 96.7% for the ACC-based automatic spontaneous pulse detection.In this animal model, the ACC signals acquired from an accelerometer-based CPR feedback sensor can be used to detect the presence of spontaneous pulse with high accuracy.

  2. Improvement of cardiac contractile function by peptide-based inhibition of NF-κB in the utrophin/dystrophin-deficient murine model of muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Guttridge Denis C

    2011-05-01

    that NBD can significantly improve cardiac contractile dysfunction in the dko mouse model of DMD and may thus provide a novel therapeutic treatment for heart failure.

  3. Cardiac Angiosarcoma

    Directory of Open Access Journals (Sweden)

    Monique Esteves Cardoso

    2011-01-01

    Full Text Available Despite cardiac metastases are found in about 20% of cancer deaths, the presence of primary cardiac tumors is rare. Most primary tumors are benign, and malignant tumors comprise about 15%. We report a 21-year-old man with fever, dyspnea, and hemoptysis that was diagnosed with angiosarcoma of the right atrium and pulmonary metastasis. Patient was submitted to surgical tumor resection without adjuvant therapy and died four months after diagnosis.

  4. Cardiac Angiosarcoma

    OpenAIRE

    Cardoso, Monique Esteves; Canale, Leonardo Secchin; Ramos, Rosana Grandelle; Salvador Junior, Edson da Silva; Lachtermacher, Stephan

    2011-01-01

    Despite cardiac metastases are found in about 20% of cancer deaths, the presence of primary cardiac tumors is rare. Most primary tumors are benign, and malignant tumors comprise about 15%. We report a 21-year-old man with fever, dyspnea, and hemoptysis that was diagnosed with angiosarcoma of the right atrium and pulmonary metastasis. Patient was submitted to surgical tumor resection without adjuvant therapy and died four months after diagnosis.

  5. Cardiac Angiosarcoma

    Science.gov (United States)

    Cardoso, Monique Esteves; Canale, Leonardo Secchin; Ramos, Rosana Grandelle; Salvador Junior, Edson da Silva; Lachtermacher, Stephan

    2011-01-01

    Despite cardiac metastases are found in about 20% of cancer deaths, the presence of primary cardiac tumors is rare. Most primary tumors are benign, and malignant tumors comprise about 15%. We report a 21-year-old man with fever, dyspnea, and hemoptysis that was diagnosed with angiosarcoma of the right atrium and pulmonary metastasis. Patient was submitted to surgical tumor resection without adjuvant therapy and died four months after diagnosis. PMID:24826214

  6. A Metabolite-Sensitive, Thermodynamically Constrained Model of Cardiac Cross-Bridge Cycling: Implications for Force Development during Ischemia

    KAUST Repository

    Tran, Kenneth

    2010-01-01

    We present a metabolically regulated model of cardiac active force generation with which we investigate the effects of ischemia on maximum force production. Our model, based on a model of cross-bridge kinetics that was developed by others, reproduces many of the observed effects of MgATP, MgADP, Pi, and H(+) on force development while retaining the force/length/Ca(2+) properties of the original model. We introduce three new parameters to account for the competitive binding of H(+) to the Ca(2+) binding site on troponin C and the binding of MgADP within the cross-bridge cycle. These parameters, along with the Pi and H(+) regulatory steps within the cross-bridge cycle, were constrained using data from the literature and validated using a range of metabolic and sinusoidal length perturbation protocols. The placement of the MgADP binding step between two strongly-bound and force-generating states leads to the emergence of an unexpected effect on the force-MgADP curve, where the trend of the relationship (positive or negative) depends on the concentrations of the other metabolites and [H(+)]. The model is used to investigate the sensitivity of maximum force production to changes in metabolite concentrations during the development of ischemia.

  7. Role of pharmacotherapy in cardiac ion channelopathies.

    Science.gov (United States)

    El-Sherif, Nabil; Boutjdir, Mohamed

    2015-11-01

    In the last decade, there have been considerable advances in the understanding of the pathophysiology of malignant ventricular tachyarrhythmias (VT) and sudden cardiac death (SCD). Over 80% of SCD occurs in patients with organic heart disease. However, approximately 10%-15% of SCD occurs in the presence of structurally normal heart, and the majority of these patients are young. In this group of patients, changes in genes encoding cardiac ion channels produce modifications of the function of the channel resulting in an electrophysiological substrate of VT and SCD. Collectively, these disorders are referred to as cardiac ion channelopathies. The four major syndromes in this group are: the long QT syndrome (LQTS), the Brugada syndrome (BrS), the short QT syndrome (SQTS), and the catecholaminergic polymorphic ventricular tachycardia (CPVT). Each of these syndromes includes multiple subtypes with different and sometimes complex cardiac ion channel genetic abnormalities. Many are associated with other somatic and neurological abnormalities besides the risk of VT and SCD. The current management of cardiac ion channelopathies can be summarized as follows: (1) in symptomatic patients, the implantable cardioverter defibrillator (ICD) is the only viable option; (2) in asymptomatic patients, risk stratification is necessary, followed by either the ICD, pharmacotherapy, or a combination of both. A genotype-specific approach to pharmacotherapy requires a thorough understanding of the molecular-cellular basis of arrhythmogenesis in cardiac ion channelopathies as well as the specific drug profile. Copyright © 2015. Published by Elsevier Inc.

  8. Arrhythmogenic remodeling in murine models of deoxycorticosterone acetate-salt-induced and 5/6-subtotal nephrectomy-salt-induced cardiorenal disease

    NARCIS (Netherlands)

    Fontes, Magda S C; Papazova, Diana A.; Van Koppen, Arianne; De Jong, Sanne; Korte, Sanne M.; Bongartz, Lennart G.; Nguyen, Tri Q.; Bierhuizen, Marti F A; De Boer, Teun P.; van Veen, Toon A. B.; Verhaar, Marianne C.; Joles, Jaap A.; Van Rijen, Harold V M

    2015-01-01

    Background: Renal failure is associated with adverse cardiac remodeling and sudden cardiac death. The mechanism leading to enhanced arrhythmogenicity in the cardiorenal syndrome is unclear. The aim of this study was to characterize electrophysiological and tissue alterations correlated with enhanced

  9. High-dose stabilized chlorite matrix WF10 prolongs cardiac xenograft survival in the hamster-to-rat model without inducing ultrastructural or biochemical signs of cardiotoxicity

    DEFF Research Database (Denmark)

    Hansen, A; Kemp, K; Kemp, E

    2001-01-01

    of high dose WF10 as a single drug regimen in the hamster-to-rat xenotransplantation model and searched for possible cardiotoxic side effects. WF10 prolonged cardiac xenograft survival, but did not induce tolerence or inhibit pathological signs of acute rejection. Hamsters from the donor population...

  10. Role of t-tubules in the control of trans-sarcolemmal ion flux and intracellular Ca2+ in a model of the rat cardiac ventricular myocyte

    Czech Academy of Sciences Publication Activity Database

    Pásek, Michal; Šimurda, J.; Orchard, C.

    2012-01-01

    Roč. 41, č. 6 (2012), s. 491-503 ISSN 0175-7571 Institutional research plan: CEZ:AV0Z20760514 Keywords : t-tubules * rat * cardiac myocyte * computer model * calcium Subject RIV: BO - Biophysics Impact factor: 2.274, year: 2012

  11. Use of 3D Printed Models in Medical Education: A Randomized Control Trial Comparing 3D Prints versus Cadaveric Materials for Learning External Cardiac Anatomy

    Science.gov (United States)

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J.; Adams, Justin W.; McMenamin, Paul G.

    2016-01-01

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized…

  12. Mechanisms of Cardiac Regeneration

    Science.gov (United States)

    Uygur, Aysu; Lee, Richard T.

    2016-01-01

    Adult humans fail to regenerate their hearts following injury, and this failure to regenerate myocardium is a leading cause of heart failure and death worldwide. Although all adult mammals appear to lack significant cardiac regeneration potential, some vertebrates can regenerate myocardium throughout life. In addition, new studies indicate that mammals have cardiac regeneration potential during development and very soon after birth. The mechanisms of heart regeneration among model organisms, including neonatal mice, appear remarkably similar. Orchestrated waves of inflammation, matrix deposition and remodeling, and cardiomyocyte proliferation are commonly seen in heart regeneration models. Understanding why adult mammals develop extensive scarring instead of regeneration is a crucial goal for regenerative biology. PMID:26906733

  13. Endogenous osteopontin induces myocardial CCL5 and MMP-2 activation that contributes to inflammation and cardiac remodeling in a mouse model of chronic Chagas heart disease.

    Science.gov (United States)

    Caballero, Eugenia Pérez; Santamaría, Miguel H; Corral, Ricardo S

    2018-01-01

    Cardiac dysfunction with progressive inflammation and fibrosis is a hallmark of Chagas disease caused by persistent Trypanosoma cruzi infection. Osteopontin (OPN) is a pro-inflammatory cytokine that orchestrates mechanisms controlling cell recruitment and cardiac architecture. Our main goal was to study the role of endogenous OPN as a modulator of myocardial CCL5 chemokine and MMP-2 metalloproteinase, and its pathological impact in a murine model of Chagas heart disease. Wild-type (WT) and OPN-deficient (spp1 -/-) mice were parasite-infected (Brazil strain) for 100days. Both groups developed chronic myocarditis with similar parasite burden and survival rates. However, spp1 -/- infection showed lower heart-to-body ratio (PChagas heart disease, through the upregulation of myocardial CCL5/MMP-2 expression and activities resulting in pro-inflammatory and pro-hypertrophic events, cardiac remodeling and interstitial fibrosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Modeling a Complex Biological Network with Temporal Heterogeneity: Cardiac Myocyte Plasticity as a Case Study

    Science.gov (United States)

    Mazloom, Amin R.; Basu, Kalyan; Mandal, Subhrangsu S.; Das, Sajal K.

    Complex biological systems often characterize nonlinear dynamics. Employing traditional deterministic or stochastic approaches to quantify these dynamics either fail to capture their existing deviant effects or lead to combinatorial explosion. In this work we devised a novel approach that projects the biological functions within a pathway to a network of stochastic events that are random in time and space. By applying this approach recursively to the object system we build the event network of the entire system. The dynamics of the system evolves through the execution of the event network by a simulation engine which comprised of a time prioritized event queue. As a case study we utilized the current method and conducted an in-silico experiment on the metabolic plasticity of a cardiac myocyete. We aimed to quantify the down stream effects of insulin signaling that predominantly controls the plasticity in myocardium. Intriguingly, our in-silico results on transcription regulatory effect of insulin showed a good agreement with experimental data. Meanwhile we were able to characterize the flux change across major metabolic pathways over 48 hours of the in-silico experiment. Our simulation performed a remarkable efficiency by conducting 48 hours of simulation-time in less that 2 hours of processor time.

  15. A longitudinal study on cardiac effects of deconditioning and physical reconditioning using the anterior cruciate ligament injury as a model.

    Science.gov (United States)

    Steding-Ehrenborg, Katarina; Hedén, Bo; Herbertsson, Pär; Arheden, Håkan

    2013-11-01

    Studies of cardiovascular deconditioning are primarily carried out after experimental bed rest. No previous study has followed the cardiovascular effects of decreased and resumed physical activity in athletes after acute physical injury and convalescence. Anterior cruciate ligament (ACL) injury causes a significantly decreased activity level over a long period, making it an ideal model for studying effects of deconditioning and reconditioning. Therefore, the aim of this study was to investigate how cardiac dimensions and maximal exercise capacity change after an ACL-injury. Seventeen athletes (5 women) were included. Cardiac magnetic resonance (CMR) was performed within 5 days of the injury (CMR1), before endurance training was resumed (CMR2) and 6 months after the second scan (CMR3). Maximal exercise testing was performed on the same day as CMR2 and 3. The deconditioning phase between CMR1 and CMR2 was 59 ± 28 days. Total heart volume (THV) decreased with -3·1 ± 6·7%, P = 0·056. Between CMR2 and 3 (reconditioning), THV increased significantly (2·5 ± 4·6%, P<0·05). Left and right ventricular EDV decreased during deconditioning (-3·0 ± 5·6% and -4·7 ± 6·6%) and increased during reconditioning (1·7 ± 3·9% and 2·6 ± 6·2%) however not statistically significant. Left ventricular mass (LVM) remained unchanged. VO2 peak (mlmin(-1) kg(-1) ) increased significantly during the reconditioning phase (6·1 ± 5·3%, P<0·001). Physiological cardiac adaptation to deconditioning and reconditioning caused by severe knee injury with maintained normal daily living during convalescence was smaller than previously shown in bed rest studies. Total heart volume and VO2 peak were significantly affected by reconditioning whilst LVEDV, RVEDV and LVM remained unchanged over the study period. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  16. NeuroElectro: a window to the world's neuron electrophysiology data.

    Science.gov (United States)

    Tripathy, Shreejoy J; Savitskaya, Judith; Burton, Shawn D; Urban, Nathaniel N; Gerkin, Richard C

    2014-01-01

    The behavior of neural circuits is determined largely by the electrophysiological properties of the neurons they contain. Understanding the relationships of these properties requires the ability to first identify and catalog each property. However, information about such properties is largely locked away in decades of closed-access journal articles with heterogeneous conventions for reporting results, making it difficult to utilize the underlying data. We solve this problem through the NeuroElectro project: a Python library, RESTful API, and web application (at http://neuroelectro.org) for the extraction, visualization, and summarization of published data on neurons' electrophysiological properties. Information is organized both by neuron type (using neuron definitions provided by NeuroLex) and by electrophysiological property (using a newly developed ontology). We describe the techniques and challenges associated with the automated extraction of tabular electrophysiological data and methodological metadata from journal articles. We further discuss strategies for how to best combine, normalize and organize data across these heterogeneous sources. NeuroElectro is a valuable resource for experimental physiologists attempting to supplement their own data, for computational modelers looking to constrain their model parameters, and for theoreticians searching for undiscovered relationships among neurons and their properties.

  17. NeuroElectro: A Window to the World's Neuron Electrophysiology Data

    Directory of Open Access Journals (Sweden)

    Shreejoy J Tripathy

    2014-04-01

    Full Text Available The behavior of neural circuits is determined largely by the electrophysiological properties of the neurons they contain. Understanding the relationships of these properties requires the ability to first identify and catalog each property. However, information about such properties is largely locked away in decades of closed-access journal articles with heterogeneous conventions for reporting results, making it difficult to utilize the underlying data. We solve this problem through the NeuroElectro project: a Python library, RESTful API, and web application (at http://neuroelectro.org for the extraction, visualization, and summarization of published data on neurons' electrophysiological properties. Information is organized both by neuron type (using neuron definitions provided by NeuroLex and by electrophysiological property (using a newly developed ontology. We describe the techniques and challenges associated with the automated extraction of tabular electrophysiological data and methodological metadata from journal articles. We further discuss strategies for how to best combine, normalize and organize data across these heterogeneous sources. NeuroElectro is a valuable resource for experimental physiologists looking to supplement their own data, for computational modelers looking to constrain their model parameters, and for theoreticians searching for undiscovered relationships among neurons and their properties.

  18. Collaborative care model improves self-care ability, quality of life and cardiac function of patients with chronic heart failure

    Directory of Open Access Journals (Sweden)

    C.Y. Hua

    2017-09-01

    Full Text Available Chronic heart failure (CHF is a common chronic disease that requires much care. This study aimed to explore the effects of collaborative care model (CCM on patients with CHF. A total of 114 CHF patients were enrolled in this study, and were randomly and equally divided into two groups: control and experimental. Patients in the two groups received either usual care or CCM for 3 continuous months. The impacts of CCM on the self-care ability and quality of life were assessed using self-care of heart failure index and short form health survey 12, respectively. Further, cardiac function was assessed by measuring left ventricular ejection fraction (LVEF and the level of N-terminal pro-B-type natriuretic peptide (NT-proBNP, and by the 6-min walking test. Clinical and demographic characteristics of patients in the control and CCM groups were statistically equivalent. Compared with usual care, CCM significantly enhanced self-care abilities of patients with CHF, including self-care maintenance, self-care management and self-care confidence (all P<0.05. The physical and mental quality of life was also significantly improved by CCM (P<0.01 or P<0.05. Compared with usual care, CCM significantly increased the LVEF (P<0.01, decreased the NT-proBNP level (P<0.01, and enhanced exercise capacity (P<0.001. In conclusion, CCM improved the self-care, quality of life and cardiac function of patients with CHF compared with usual care.

  19. Therapeutic hypothermia activates the endothelin and nitric oxide systems after cardiac arrest in a pig model of cardiopulmonary resuscitation.

    Directory of Open Access Journals (Sweden)

    Frank Zoerner

    Full Text Available Post-cardiac arrest myocardial dysfunction is a major cause of mortality in patients receiving successful cardiopulmonary resuscitation (CPR. Mild therapeutic hypothermia (MTH is the recommended treatment after resuscitation from cardiac arrest (CA and is known to exert neuroprotective effects and improve short-term survival. Yet its cytoprotective mechanisms are not fully understood. In this study, our aim was to determine the possible effect of MTH on vasoactive mediators belonging to the endothelin/nitric oxide axis in our porcine model of CA and CPR. Pigs underwent either untreated CA or CA with subsequent CPR. After state-of-the-art resuscitation, the animals were either left untreated, cooled between 32-34 °C after ROSC or treated with a bolus injection of S-PBN (sodium 4-[(tert-butylimino methyl]benzene-3-sulfonate N-oxide until 180 min after ROSC, respectively. The expression of endothelin 1 (ET-1, endothelin converting enzyme 1 (ECE-1, and endothelin A and B receptors (ETAR and ETBR transcripts were measured using quantitative real-time PCR while protein levels for the ETAR, ETBR and nitric oxide synthases (NOS were assessed using immunohistochemistry and Western Blot. Our results indicated that the endothelin system was not upregulated at 30, 60 and 180 min after ROSC in untreated postcardiac arrest syndrome. Post-resuscitative 3 hour-long treatments either with MTH or S-PBN stimulated ET-1, ECE-1, ETAR and ETBR as well as neuronal NOS and endothelial NOS in left ventricular cardiomyocytes. Our data suggests that the endothelin and nitric oxide pathways are activated by MTH in the heart.

  20. Ex-vivo and live animal models are equally effective training for the management of a penetrating cardiac injury.

    Science.gov (United States)

    Izawa, Yoshimitsu; Hishikawa, Shuji; Muronoi, Tomohiro; Yamashita, Keisuke; Maruyama, Hiroyuki; Suzukawa, Masayuki; Lefor, Alan Kawarai

    2016-01-01

    Live tissue models are considered the most useful simulation for training in the management for hemostasis of penetrating injuries. However, these models are expensive, with limited opportunities for repetitive training. Ex-vivo models using tissue and a fluid pump are less expensive, allow repetitive training and respect ethical principles in animal research. The purpose of this study is to objectively evaluate the effectiveness of ex-vivo training with a pump, compared to live animal model training. Staff surgeons and residents were divided into live tissue training and ex-vivo training groups. Training in the management of a penetrating cardiac injury was conducted for each group, separately. One week later, all participants were formally evaluated in the management of a penetrating cardiac injury in a live animal. There are no differences between the two groups regarding average years of experience or previous trauma surgery experience. All participants achieved hemostasis, with no difference between the two groups in the Global Rating Scale score (ex-vivo: 25.2 ± 6.3, live: 24.7 ± 6.3, p = 0.646), blood loss (1.6 ± 0.7, 2.0 ± 0.6, p = 0.051), checklist score (3.7 ± 0.6, 3.6 ± 0.9, p = 0.189), or time required for repair (101 s ± 31, 107 s ± 15, p = 0.163), except overall evaluation (3.8 ± 0.9, 3.4 ± 0.9, p = 0.037). The internal consistency reliability and inter-rater reliability in the Global Rating Scale were excellent (0.966 and 0.953 / 0.719 and 0.784, respectively), and for the checklist were moderate (0.570 and 0.636 / 0.651 and 0.607, respectively). The validity is rated good for both the Global Rating Scale (Residents: 21.7 ± 5.6, Staff: 28.9 ± 4.7, p = 0.000) and checklist (Residents: 3.4 ± 0.9, Staff Surgeons: 3.9 ± 0.3, p = 0.003). The results of self-assessment questionnaires were similarly high (4.2-4.9) with scores in self-efficacy increased after

  1. Electrophysiological studies in healthy subjects involving caffeine.

    Science.gov (United States)

    de Carvalho, Mamede; Marcelino, Erica; de Mendonça, Alexandre

    2010-01-01

    We review the electrophysiological studies concerning the effects of caffeine on muscle, lower and upper motor neuron excitability and cognition. Several different methods have been used, such as electromyography, recruitment analysis, H-reflex, transcranial magnetic stimulation (TMS), electroencephalography and event-related potentials. The positive effect of caffeine on vigilance, attention, speed of reaction, information processing and arousal is supported by a number of electrophysiological studies. The evidence in favor of an increased muscle fiber resistance is not definitive, but higher or lower motor neuron excitability can occur as a consequence of a greater excitation of the descending input from the brainstem and upper motor neurons. TMS can address the influence of caffeine on the upper motor neuron. Previous studies showed that cortico-motor threshold and intracortical excitatory and inhibitory pathways are not influenced by caffeine. Nonetheless, our results indicate that cortical silent period (CSP) is reduced in resting muscles after caffeine consumption, when stimulating the motor cortex with intensities slightly above threshold. We present new data demonstrating that this effect is also observed in fatigued muscle. We conclude that CSP can be considered a surrogate marker of the effect of caffeine in the brain, in particular of its central ergogenic effect.

  2. Ultraconformable Temporary Tattoo Electrodes for Electrophysiology

    Science.gov (United States)

    Ferrari, Laura M.; Sudha, Sudha; Tarantino, Sergio; Esposti, Roberto; Bolzoni, Francesco; Cavallari, Paolo; Cipriani, Christian

    2018-01-01

    Abstract Electrically interfacing the skin for monitoring personal health condition is the basis of skin‐contact electrophysiology. In the clinical practice the use of stiff and bulky pregelled or dry electrodes, in contrast to the soft body tissues, imposes severe restrictions to user comfort and mobility while limiting clinical applications. Here, in this work dry, unperceivable temporary tattoo electrodes are presented. Customized single or multielectrode arrays are readily fabricated by inkjet printing of conducting polymer onto commercial decal transfer paper, which allows for easy transfer on the user's skin. Conformal adhesion to the skin is provided thanks to their ultralow thickness (Tattoo electrode–skin contact impedance is characterized on short‐ (1 h) and long‐term (48 h) and compared with standard pregelled and dry electrodes. The viability in electrophysiology is validated by surface electromyography and electrocardiography recordings on various locations on limbs and face. A novel concept of tattoo as perforable skin‐contact electrode, through which hairs can grow, is demonstrated, thus permitting to envision very long‐term recordings on areas with high hair density. The proposed materials and patterning strategy make this technology amenable for large‐scale production of low‐cost sensing devices. PMID:29593975

  3. Pelvic floor electrophysiology in spinal cord injury.

    Science.gov (United States)

    Tankisi, H; Pugdahl, K; Rasmussen, M M; Clemmensen, D; Rawashdeh, Y F; Christensen, P; Krogh, K; Fuglsang-Frederiksen, A

    2016-05-01

    The study aimed to investigate sacral peripheral nerve function and continuity of pudendal nerve in patients with chronic spinal cord injury (SCI) using pelvic floor electrophysiological tests. Twelve patients with low cervical or thoracic SCI were prospectively included. Quantitative external anal sphincter (EAS) muscle electromyography (EMG), pudendal nerve terminal motor latency (PNTML) testing, bulbocavernosus reflex (BCR) testing and pudendal short-latency somatosensory-evoked potential (SEP) measurement were performed. In EAS muscle EMG, two patients had abnormal increased spontaneous activity and seven prolonged motor unit potential duration. PNTML was normal in 10 patients. BCR was present with normal latency in 11 patients and with prolonged latency in one. The second component of BCR could be recorded in four patients. SEPs showed absent cortical responses in 11 patients and normal latency in one. Pudendal nerve and sacral lower motor neuron involvement are significantly associated with chronic SCI, most prominently in EAS muscle EMG. The frequent finding of normal PNTML latencies supports earlier concerns on the utility of this test; however, BCR and pudendal SEPs may have clinical relevance. As intact peripheral nerves including pudendal nerve are essential for efficient supportive therapies, pelvic floor electrophysiological testing prior to these interventions is highly recommended. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Biomagnetic study of cardiac arrhythmias.

    Science.gov (United States)

    Fenici, R R; Melillo, G

    1991-01-01

    Clinical magnetocardiographic mapping was initiated in the Cardiovascular Biomagnetism Unit of the Catholic University of Rome about 10 years ago. Since then several hundred patients have been investigated. However, the most interesting data have been collected after the development, in 1984, of the present laboratory configuration, which allows simultaneous MCG mapping and invasive electrophysiological procedures. Perspective studies have been carried out to validate the accuracy of MCG for localisation of arrhythmogenic structures and for early detection of patients at risk of sudden death. Although the diagnostic applicability of the method is still under evaluation, preliminary results are reported, concerning 120 patients, investigated between 1985 and 1990, with cardiac arrhythmias associated with ventricular pre-excitation, ischaemic heart disease or cardiomyopathies.

  5. Coupling primary and stem cell–derived cardiomyocytes in an in vitro model of cardiac cell therapy

    Science.gov (United States)

    Aratyn-Schaus, Yvonne; Pasqualini, Francesco S.; Yuan, Hongyan; McCain, Megan L.; Ye, George J.C.; Sheehy, Sean P.; Campbell, Patrick H.

    2016-01-01

    The efficacy of cardiac cell therapy depends on the integration of existing and newly formed cardiomyocytes. Here, we developed a minimal in vitro model of this interface by engineering two cell microtissues (μtissues) containing mouse cardiomyocytes, representing spared myocardium after injury, and cardiomyocytes generated from embryonic and induced pluripotent stem cells, to model newly formed cells. We demonstrated that weaker stem cell–derived myocytes coupled with stronger myocytes to support synchronous contraction, but this arrangement required focal adhesion-like structures near the cell–cell junction that degrade force transmission between cells. Moreover, we developed a computational model of μtissue mechanics to demonstrate that a reduction in isometric tension is sufficient to impair force transmission across the cell–cell boundary. Together, our in vitro and in silico results suggest that mechanotransductive mechanisms may contribute to the modest functional benefits observed in cell-therapy studies by regulating the amount of contractile force effectively transmitted at the junction between newly formed and spared myocytes. PMID:26858266

  6. An electrophysiological signature for proactive interference resolution in working memory.

    Science.gov (United States)

    Du, Yingchun; Xiao, Zhuangwei; Song, Yan; Fan, Silu; Wu, Renhua; Zhang, John X

    2008-08-01

    We used event-related potentials (ERPs) to study the temporal dynamics of proactive interference in working memory. Participants performed a Sternberg item-recognition task to determine whether a probe was in a target memory set. Familiar negative probes were found to be more difficult to reject than less familiar ones. A fronto-central N2 component peaking around 300 ms post-probe-onset differentiated among target probes, familiar and less familiar non-target probes. The study identifies N2 as the ERP signature for proactive interference resolution. It also indicates that the resolution process occurs in the same time window as target/non-target discrimination and provides the first piece of electrophysiological evidence supporting a recent interference resolution model based on localization data [Jonides, J., Nee, D.E., 2006. Brain mechanisms of proactive interference in working memory. Neuroscience 139, 181-193].

  7. Electrophysiological Techniques for Studying Synaptic Activity In Vivo.

    Science.gov (United States)

    Jeggo, Ross; Zhao, Fei-Yue; Spanswick, David

    2014-03-03

    Understanding the physiology, pharmacology, and plasticity associated with synaptic function is a key goal of neuroscience research and is fundamental to identifying the processes involved in the development and manifestation of neurological disease. A diverse range of electrophysiological methodologies are used to study synaptic function. Described in this unit is a technique for recording electrical activity from a single component of the central nervous system that is used to investigate pre- and post-synaptic elements of synaptic function. A strength of this technique is that it can be used on live animals, although the effect of anesthesia must be taken into consideration when interpreting the results. This methodology can be employed not only in naïve animals for studying normal physiological synaptic function, but also in a variety of disease models, including transgenic animals, to examine dysfunctional synaptic plasticity associated with neurological pathologies. Copyright © 2013 John Wiley & Sons, Inc. All rights reserved.

  8. Tolerance in a rat cardiac allograft model after short-term treatment with LF 08-0299. Absence of clonal deletion and evidence of CD4+ suppressor cells.

    Science.gov (United States)

    Andoins, C; de Fornel, D; Annat, J; Dutartre, P

    1996-12-15

    LF 08-0299 is a new immunosuppressive compound. In a fully mismatched rat cardiac allograft model (Dark Agouti [DA]-->Lewis [LEW]), long-term unresponsiveness was observed after LF 08-0299 short-term treatment (20 days). Survival of additional cardiac and skin DA allografts, and rejection of third-party (Brown Norway [BN]) skin allografts demonstrated induction of a donor-specific tolerance state. The aim of this study was to investigate mechanisms of cardiac acceptance in this model. LEW rats with long-term surviving heart grafts (LTS LEW) were examined for their immune proliferative and cytotoxic responses toward donors (DA) and third-party (BN) antigens. Normal proliferative responses were observed and limiting dilution analysis did not reveal a reduction of T cytotoxic cell precursors. In our model, tolerance exists despite the presence of cells reactive with donor alloantigens. In vivo adoptive transfer of serum from LTS LEW failed to transfer unresponsiveness, indicating that serum factors do not seem to be involved in tolerance maintenance. Transfer of spleen cells, obtained from LTS LEW, showed specific prolongation of DA cardiac allografts in syngeneic hosts. Moreover, these cells were able to induce the rejection of third-party BN grafts. These results suggest that although LTS LEW possessed suppressor cells, they remained immunocompetent in recognizing and responding to third-party alloantigens. Purified CD4+ cells transferred unresponsiveness to secondary hosts, but CD8+ cells did not. Taken together, these results suggest that tolerance to donor alloantigens after treatment with LF 08-0299 in the rat cardiac allograft model is most likely due to induction of specific CD4+ suppressor cell activity, rather than induction of suppressive serum factor and selective elimination of antidonor helper or cytotoxic cell precursors (clonal deletion).

  9. Bayesian networks for multivariate data analysis and prognostic modelling in cardiac surgery

    NARCIS (Netherlands)

    Peek, Niels; Verduijn, Marion; Rosseel, Peter M. J.; de Jonge, Evert; de Mol, Bas A.

    2007-01-01

    Prognostic models are tools to predict the outcome of disease and disease treatment. These models are traditionally built with supervised machine learning techniques, and consider prognosis as a static, one-shot activity. This paper presents a new type of prognostic model that builds on the Bayesian

  10. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.

    2002-01-01

    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  11. [Cardiac amyloidosis].

    Science.gov (United States)

    Boussabah, Elhem; Zakhama, Lilia; Ksontini, Iméne; Ibn Elhadj, Zied; Boukhris, Besma; Naffeti, Sana; Thameur, Moez; Ben Youssef, Soraya

    2008-09-01

    PREREQUIS: Amyloidosis is a rare infiltrative disease characterized by multiple clinical features. Various organs are involved and the cardiovascular system is a common target of amyloidosis. Cardiac involvement may occur with or without clinical manifestations and is considered as a major prognostic factor. To analyze the clinical features of cardiac involvement, to review actual knowledgement concerning echocardiographic diagnostic and to evaluate recent advances in treatment of the disease. An electronic search of the relevant literature was carried out using Medline and Pubmed. Keys words used for the final search were amyloidosis, cardiopathy and echocardiography. We considered for analysis reviews, studies and articles between 1990 and 2007. Amyloidosis represents 5 to 10% of non ischemic cardiomyoparhies. Cardiac involvement is the first cause of restrictive cardiomyopathy witch must be evoked in front of every inexplained cardiopathy after the age of forty. The amyloid nature of cardiopathy is suggered if some manifestations were associated as a peripheric neuropathy, a carpal tunnel sydrome and proteinuria > 3g/day. Echocardiography shows dilated atria, a granular sparkling appearance of myocardium, diastolic dysfunction and thickened left ventricle contrasting with a low electric voltage. The proof of amyloidosis is brought by an extra-cardiac biopsy, the indications of endomyocardial biopsy are very limited. The identification of the amyloid nature of cardiopathy has an direct therapeutic implication: it indicates the use of digitalis, calcium channel blockers and beta-blockers. Today the treatment of amyloidosis remains very unsatisfactory especially in the cardiac involvement. An early diagnosis before the cardiac damage may facilitate therapy and improve prognosis.

  12. Benefits of Cardiac Resynchronization Therapy in an Asynchronous Heart Failure Model Induced by Left Bundle Branch Ablation and Rapid Pacing.

    Science.gov (United States)

    Wang, Jingfeng; Nie, Zhenning; Chen, Haiyan; Shu, Xianhong; Yang, Zhaohua; Yao, Ruiming; Su, Yangang; Ge, Junbo

    2017-12-11

    It is now well recognized that heart failure (HF) patients with left bundle branch block (LBBB) derive substantial clinical benefits from cardiac resynchronization therapy (CRT), and LBBB has become one of the important predictors for CRT response. The conventional tachypacing-induced HF model has several major limitations, including absence of stable LBBB and rapid reversal of left ventricular (LV) dysfunction after cessation of pacing. Hence, it is essential to establish an optimal model of chronic HF with isolated LBBB for studying CRT benefits. In the present study, a canine model of asynchronous HF induced by left bundle branch (LBB) ablation and 4 weeks of rapid right ventricular (RV) pacing is established. The RV and right atrial (RA) pacing electrodes via the jugular vein approach, together with an epicardial LV pacing electrode, were implanted for CRT performance. Presented here are the detailed protocols of radiofrequency (RF) catheter ablation, pacing leads implantation, and rapid pacing strategy. Intracardiac and surface electrograms during operation were also provided for a better understanding of LBB ablation. Two-dimensional speckle tracking imaging and aortic velocity time integral (aVTI) were acquired to validate the chronic stable HF model with LV asynchrony and CRT benefits. By coordinating ventricular activation and contraction, CRT uniformed the LV mechanical work and restored LV pump function, which was followed by reversal of LV dilation. Moreover, the histopathological study revealed a significant restoration of cardiomyocyte diameter and collagen volume fraction (CVF) after CRT performance, indicating a histologic and cellular reverse remodeling elicited by CRT. In this report, we described a feasible and valid method to develop a chronic asynchronous HF model, which was suitable for studying structural and biologic reverse remodeling following CRT.

  13. Therapeutic association of atorvastatin and insulin in cardiac ischemia: study in a model of type 2 diabetes with hyperlipidemia.

    Science.gov (United States)

    Matafome, P; Monteiro, P; Nunes, E; Louro, T; Amaral, C; Moedas, A R; Gonçalves, L; Providência, L; Seiça, R

    2008-01-01

    Combination therapy recently emerged as a potential therapeutic option in order to improve cardiovascular risk in diabetics, since therapies commonly used in monotherapy failed in significantly optimizing this risk. A type 2 diabetes animal model was used to test the effects of a high-fat diet, atorvastatin and insulin (isolated or in association), in glycemic, lipid and inflammatory profiles, oxidative stress markers and cardiac mitochondrial function in ischemia-reperfusion conditions. High-fat diets significantly worsened fasting glycemia and lipid profile; it also increased C-reactive protein (CRP) and oxidative stress and compromised mitochondrial response to ischemia. Insulin decreased fasting glucose and free fatty acid levels and insulin resistance, while increasing HDL-cholesterol, but had no effect in inflammatory markers. Atorvastatin decreased circulating adiponectin levels and did not improve inflammatory markers, although it improved fasting glycemia, glucose tolerance, free fatty acids and HDL-cholesterol. The combined use of atorvastatin and insulin improved several parameters, as did each of the treatments separately. However, treatment association went beyond these results, by decreasing atherogenicity index and circulating CRP levels. Insulin and its association with atorvastatin significantly prevented mitochondrial dysfunction observed in the high-fat diet group, while atorvastatin showed some beneficial effects but in much less extent. Altogether, these results show that administration of an high-fat diet in a model of type 2 diabetes increases cardiovascular risk and combined use of atorvastatin and insulin provides a superior control of cardiovascular risk markers in diabetic and hyperlipidemic subjects.

  14. 2D Echocardiographic Evaluation of Right Ventricular Function Correlates With 3D Volumetric Models in Cardiac Surgery Patients.

    Science.gov (United States)

    Magunia, Harry; Schmid, Eckhard; Hilberath, Jan N; Häberle, Leo; Grasshoff, Christian; Schlensak, Christian; Rosenberger, Peter; Nowak-Machen, Martina

    2017-04-01

    The early diagnosis and treatment of right ventricular (RV) dysfunction are of critical importance in cardiac surgery patients and impact clinical outcome. Two-dimensional (2D) transesophageal echocardiography (TEE) can be used to evaluate RV function using surrogate parameters due to complex RV geometry. The aim of this study was to evaluate whether the commonly used visual evaluation of RV function and size using 2D TEE correlated with the calculated three-dimensional (3D) volumetric models of RV function. Retrospective study, single center, University Hospital. Seventy complete datasets were studied consisting of 2D 4-chamber view loops (2-3 beats) and the corresponding 4-chamber view 3D full-volume loop of the right ventricle. RV function and RV size of the 2D loops then were assessed retrospectively purely qualitatively individually by 4 clinician echocardiographers certified in perioperative TEE. Corresponding 3D volumetric models calculating RV ejection fraction and RV end-diastolic volumes then were established and compared with the 2D assessments. 2D assessment of RV function correlated with 3D volumetric calculations (Spearman's rho -0.5; pright ventricular function based on visual estimation as frequently used in clinical practice appeared to be a reliable method of RV functional evaluation. However, 2D assessment of RV size seemed unreliable and should be used with caution. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. PRINCIPLES OF DEVELOPMENT MATHEMATICAL MODEL FOR RESEARCHING OF NONPULSATILE FLOW PUMP AND CARDIAC SYSTEM

    Directory of Open Access Journals (Sweden)

    I. V. Bykov

    2013-01-01

    Full Text Available Aim. The presented research uncovers the using of mathematical modeling methods for cardio-vascular system and axial blood pump interaction analysis under heart failure with combined valve pathology. The research will pro- vide data for automated pump control algorithm synthesis. Materials and methods. Mathematical model is build up by using experiments results from mock cardio-vascular circulation loop and mathematical representation of Newtonian fluid dynamics in pulsing circulation loop. The model implemented in modeling environment Simulink (Matlab. Results. Authors implemented mathematical model which describe cardio-vascular system and left-ven- tricular assistive device interaction for intact conditions. Values of parameters for intact conditions were acquired in the experiments on animals with implanted axial pump, experiments were conducted in FRCTAO. The model was verified by comparison of instantaneous blood flowrate values in experiments and in model. Conclusion. The paper present implemented mathematical model of cardio-vascular system and axial pump interaction for intact conditions, where the pump connected between left ventricle and aorta. In the next part of research authors will use the presented model to evaluate using the biotechnical system in conditions of heart failure and valve pathology. 

  16. 3D active shape modeling for cardiac MR and CT image segmentation

    NARCIS (Netherlands)

    Assen, Hans Christiaan van

    2006-01-01

    3D Active Shape Modeling is a technique to capture shape information from a training set containing characteristic shapes of, e.g., a heart. The description contains a mean shape, and shape variations (e.g. eigen deformations and eigen values). Many models based on these statistics, and used for

  17. DFA on Cardiac Rhythm: Fluctuation of the Heartbeat Interval Contain Useful Information for the Risk of Mortality in Both, Animal Models and Humans

    Directory of Open Access Journals (Sweden)

    Toru Yazawa

    2007-02-01

    Full Text Available We analyzed the heartbeat interval to test the possibility that the detrended fluctuation analysis (DFA distinguishes a sick condition from a healthy condition of the cardiac control network. The healthy heart exhibited exponents ranging from 0.8 to 1.0 in both, animal models and humans. In the sick animal models, the exponents declined with an approaching very low range leading to a natural death (~0.6 in the end. Other models, which had a myocardial injury, exhibited extremely high exponents (~1.4. The high exponent was maintained until they died. Human arrhythmic hearts exhibited low exponent (~0.7. A human subject who has an abnormally high heart rate exhibited high exponents (as high as 1.4. A Human transplanted heart, which has no nervous controls, exhibited exponent 1.2. The fluctuation of the heartbeat interval contains information for the risk of a cardiac cessation or mortality.

  18. Cardiac Pacemakers

    International Nuclear Information System (INIS)

    Fiandra, O.; Espasandin, W.; Fiandra, H.

    1984-01-01

    A complete survey of physiological biophysical,clinical and engineering aspects of cardiac facing,including the history and an assessment of possible future developments.Among the topics studied are: pacemakers, energy search, heart stimulating with pacemakers ,mathematical aspects of the electric cardio stimulation chronic, pacemaker implants,proceeding,treatment and control

  19. The earliest electrophysiological correlate of visual awareness?

    DEFF Research Database (Denmark)

    Koivisto, Mika; Lähteenmäki, Mikko; Sørensen, Thomas Alrik

    2008-01-01

    To examine the neural correlates and timing of human visual awareness, we recorded event-related potentials (ERPs) in two experiments while the observers were detecting a grey dot that was presented near subjective threshold. ERPs were averaged for conscious detections of the stimulus (hits......) and nondetections (misses) separately. Our results revealed that hits, as compared to misses, showed a negativity around 180-350 ms at occipital and posterior temporal sites. It was followed by a positive wave after 400-500 ms, peaking at parietal sites. These correlates were not affected by a manipulation...... of attention. The early negativity, called 'visual awareness negativity' (VAN), may be a general, primary electrophysiological correlate of visual awareness. The present data show that it can be observed in response to appearance of a stimulus in visual awareness and that it generalizes across different...

  20. Biofeedback in psychomotor training. Electrophysiological basis.

    Science.gov (United States)

    Bazanova, O M; Mernaya, E M; Shtark, M B

    2009-06-01

    The influences of individual musical practice and the same practice supplemented with biofeedback using electrophysiological markers for optimum music-performing activity were studied in 39 music students. Traditional technical practice produced increases in integral EMG power and decreases in alpha activity in most of the students with initially low maximum alpha activity peak frequencies. Similar practice but combined with individual sessions of alpha-EEG/EMG biofeedback were accompanied by increases in the frequency, bandwidth, and activation responses of EEG alpha rhythms in all subjects, along with decreases in EEG integral power. The efficacy of training with biofeedback and the ability to experience psychomotor learning depended on the initial individual characteristics of EEG alpha activity.