WorldWideScience

Sample records for model wrf weather

  1. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the islands of Samoa at...

  2. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the island of Guam at...

  3. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 3.5-day hourly forecast for the region surrounding the Hawaiian island of Oahu at...

  4. Weather Research and Forecasting (WRF) Regional Atmospheric Model: CNMI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Commonwealth of the Northern...

  5. WRF-Fire: coupled weather-wildland fire modeling with the weather research and forecasting model

    Science.gov (United States)

    Janice L. Coen; Marques Cameron; John Michalakes; Edward G. Patton; Philip J. Riggan; Kara M. Yedinak

    2012-01-01

    A wildland fire behavior module (WRF-Fire) was integrated into the Weather Research and Forecasting (WRF) public domain numerical weather prediction model. The fire module is a surface fire behavior model that is two-way coupled with the atmospheric model. Near-surface winds from the atmospheric model are interpolated to a finer fire grid and used, with fuel properties...

  6. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Maui-Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Hawaiian islands of Oahu,...

  7. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Main Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Main Hawaiian Islands (MHI)...

  8. Mapping Nuclear Fallout Using the Weather Research & Forecasting (WRF) Model

    Science.gov (United States)

    2012-09-01

    Meterological Magazine, 47, pp. 295-308, 1998. [17] Air Resources Laboratory. (2012, April) Air Resources Laboratory. [Online]. http://www.arl.noaa.gov...Reanalysis Project," Bulletin of the American Meterological Society, pp. 437-471, 1996. [25] Steve Warner, Nathan Platt, and James F. Heagy, "User...Oriented Two-Dimensional Measure of Effectiveness for the Evaluation of Transport and Dispersion Models," Journal of Applied Meterology Vol. 43, pp. 58

  9. How reliable is the offline linkage of Weather Research & Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) model?

    Science.gov (United States)

    The aim for this research is to evaluate the ability of the offline linkage of Weather Research & Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) model to produce hydrological, e.g. evaporation (ET), soil moisture (SM), runoff, and baseflow. First, the VIC mo...

  10. Numerical simulation for regional ozone concentrations: A case study by weather research and forecasting/chemistry (WRF/Chem) model

    Energy Technology Data Exchange (ETDEWEB)

    Habib Al Razi, Khandakar Md; Hiroshi, Moritomi [Environmental and Renewable Energy System, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu City, 501-1193 (Japan)

    2013-07-01

    The objective of this research is to better understand and predict the atmospheric concentration distribution of ozone and its precursor (in particular, within the Planetary Boundary Layer (Within 110 km to 12 km) over Kasaki City and the Greater Tokyo Area using fully coupled online WRF/Chem (Weather Research and Forecasting/Chemistry) model. In this research, a serious and continuous high ozone episode in the Greater Tokyo Area (GTA) during the summer of 14–18 August 2010 was investigated using the observation data. We analyzed the ozone and other trace gas concentrations, as well as the corresponding weather conditions in this high ozone episode by WRF/Chem model. The simulation results revealed that the analyzed episode was mainly caused by the impact of accumulation of pollution rich in ozone over the Greater Tokyo Area. WRF/Chem has shown relatively good performance in modeling of this continuous high ozone episode, the simulated and the observed concentrations of ozone, NOx and NO2 are basically in agreement at Kawasaki City, with best correlation coefficients of 0.87, 0.70 and 0.72 respectively. Moreover, the simulations of WRF/Chem with WRF preprocessing software (WPS) show a better agreement with meteorological observations such as surface winds and temperature profiles in the ground level of this area. As a result the surface ozone simulation performances have been enhanced in terms of the peak ozone and spatial patterns, whereas WRF/Chem has been succeeded to generate meteorological fields as well as ozone, NOx, NO2 and NO.

  11. Understanding land use change impacts on microclimate using Weather Research and Forecasting (WRF) model

    Science.gov (United States)

    Li, Xia; Mitra, Chandana; Dong, Li; Yang, Qichun

    2018-02-01

    To explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under the urbanization scenario, but expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. This study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region.

  12. Numerical simulation of rainfall and temperature over Kenya using weather research and forecasting-environmental modelling system (WRF-EMS

    Directory of Open Access Journals (Sweden)

    Sagero Obaigwa Philip

    2016-01-01

    Full Text Available This paper focuses on one of the high resolution models used for weather forecasting at Kenya Meteorological Department (KMD. It reviews the skill and accuracy of the Weather Research and Forecasting (WRF - Environmental Modeling System (EMS model, in simulating weather over Kenya. The study period was March to May 2011, during the rainy season over Kenya. The model output was compared with the observed data from 27 synoptic stations spread over the study area, to determine the performance of the model in terms of its skill and accuracy in forecasting. The spatial distribution of rainfall and temperature showed that the WRF model was capable of reproducing the observed general pattern especially for temperature. The model has skill in forecasting both rainfall and temperature over the study area. However, the model may underestimate rainfall of more than 10 mm/day and displace its location and overestimate rainfall of less than 1 mm/day. Therefore, during the period of enhanced rainfall especially in the month of April and part of May the model forecast needs to be complemented by other models or forecasting methods before giving a forecast. There is need to improve its performance over the domain through review of the parameterization of small scale physical processes and more observed data need to be simulated into the model.

  13. Analysis of Hurricane Irene’s Wind Field Using the Advanced Research Weather Research and Forecast (WRF-ARW Model

    Directory of Open Access Journals (Sweden)

    Alfred M. Klausmann

    2014-01-01

    Full Text Available Hurricane Irene caused widespread and significant impacts along the U.S. east coast during 27–29 August 2011. During this period, the storm moved across eastern North Carolina and then tracked northward crossing into Long Island and western New England. Impacts included severe flooding from the mid-Atlantic states into eastern New York and western New England, widespread wind damage and power outages across a large portion of southern and central New England, and a major storm surge along portions of the Long Island coast. The objective of this study was to conduct retrospective simulations using the Advanced Research Weather Research and Forecast (WRF-ARW model in an effort to reconstruct the storm’s surface wind field during the period of 27–29 August 2011. The goal was to evaluate how to use the WRF modeling system as a tool for reconstructing the surface wind field from historical storm events to support storm surge studies. The results suggest that, with even modest data assimilation applied to these simulations, the model was able to resolve the detailed structure of the storm, the storm track, and the spatial surface wind field pattern very well. The WRF model shows real potential for being used as a tool to analyze historical storm events to support storm surge studies.

  14. Predicting favorable conditions for early leaf spot of peanut using output from the Weather Research and Forecasting (WRF) model

    Science.gov (United States)

    Olatinwo, Rabiu O.; Prabha, Thara V.; Paz, Joel O.; Hoogenboom, Gerrit

    2012-03-01

    Early leaf spot of peanut ( Arachis hypogaea L.), a disease caused by Cercospora arachidicola S. Hori, is responsible for an annual crop loss of several million dollars in the southeastern United States alone. The development of early leaf spot on peanut and subsequent spread of the spores of C. arachidicola relies on favorable weather conditions. Accurate spatio-temporal weather information is crucial for monitoring the progression of favorable conditions and determining the potential threat of the disease. Therefore, the development of a prediction model for mitigating the risk of early leaf spot in peanut production is important. The specific objective of this study was to demonstrate the application of the high-resolution Weather Research and Forecasting (WRF) model for management of early leaf spot in peanut. We coupled high-resolution weather output of the WRF, i.e. relative humidity and temperature, with the Oklahoma peanut leaf spot advisory model in predicting favorable conditions for early leaf spot infection over Georgia in 2007. Results showed a more favorable infection condition in the southeastern coastline of Georgia where the infection threshold were met sooner compared to the southwestern and central part of Georgia where the disease risk was lower. A newly introduced infection threat index indicates that the leaf spot threat threshold was met sooner at Alma, GA, compared to Tifton and Cordele, GA. The short-term prediction of weather parameters and their use in the management of peanut diseases is a viable and promising technique, which could help growers make accurate management decisions, and lower disease impact through optimum timing of fungicide applications.

  15. Assessment of the Weather Research and Forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin

    Science.gov (United States)

    Chawla, Ila; Osuri, Krishna K.; Mujumdar, Pradeep P.; Niyogi, Dev

    2018-02-01

    Reliable estimates of extreme rainfall events are necessary for an accurate prediction of floods. Most of the global rainfall products are available at a coarse resolution, rendering them less desirable for extreme rainfall analysis. Therefore, regional mesoscale models such as the advanced research version of the Weather Research and Forecasting (WRF) model are often used to provide rainfall estimates at fine grid spacing. Modelling heavy rainfall events is an enduring challenge, as such events depend on multi-scale interactions, and the model configurations such as grid spacing, physical parameterization and initialization. With this background, the WRF model is implemented in this study to investigate the impact of different processes on extreme rainfall simulation, by considering a representative event that occurred during 15-18 June 2013 over the Ganga Basin in India, which is located at the foothills of the Himalayas. This event is simulated with ensembles involving four different microphysics (MP), two cumulus (CU) parameterizations, two planetary boundary layers (PBLs) and two land surface physics options, as well as different resolutions (grid spacing) within the WRF model. The simulated rainfall is evaluated against the observations from 18 rain gauges and the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) 3B42RT version 7 data. From the analysis, it should be noted that the choice of MP scheme influences the spatial pattern of rainfall, while the choice of PBL and CU parameterizations influences the magnitude of rainfall in the model simulations. Further, the WRF run with Goddard MP, Mellor-Yamada-Janjic PBL and Betts-Miller-Janjic CU scheme is found to perform best in simulating this heavy rain event. The selected configuration is evaluated for several heavy to extremely heavy rainfall events that occurred across different months of the monsoon season in the region. The model performance improved through incorporation

  16. WRF Model Output

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains WRF model output. There are three months of data: July 2012, July 2013, and January 2013. For each month, several simulations were made: A...

  17. Investigating Lateral Boundary Forcing of Weather Research and Forecasting (WRF) Model Forecasts for Artillery Mission Support

    Science.gov (United States)

    2013-01-01

    the internal variability, such as the storm track or rainfall pattern (8). Arguments have emerged for the use of small domains in certain cases as...Sensitivity experiments were performed with the WRF-ARW over Meiningen, Germany for two strong wintertime extratropical cyclones. These cases were chosen

  18. Revisiting Intel Xeon Phi optimization of Thompson cloud microphysics scheme in Weather Research and Forecasting (WRF) model

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen

    2015-10-01

    The Thompson cloud microphysics scheme is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Thompson scheme incorporates a large number of improvements. Thus, we have optimized the speed of this important part of WRF. Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the Thompson microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. New optimizations for an updated Thompson scheme are discusses in this paper. The optimizations improved the performance of the original Thompson code on Xeon Phi 7120P by a factor of 1.8x. Furthermore, the same optimizations improved the performance of the Thompson on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 1.8x compared to the original Thompson code.

  19. Representation of the Saharan atmospheric boundary layer in the Weather and Research Forecast (WRF) model: A sensitivity analysis.

    Science.gov (United States)

    Todd, Martin; Cavazos, Carolina; Wang, Yi

    2013-04-01

    The Saharan atmospheric boundary layer (SABL) during summer is one of the deepest on Earth, and is crucial in controlling the vertical redistribution and long-range transport of dust in the Sahara. The SABL is typically made up of an actively growing convective layer driven by high sensible heating at the surface, with a deep, near-neutrally stratified Saharan residual layer (SRL) above it, which is mostly well mixed in humidity and temperature and reaches a height of ˜5-6km. These two layers are usually separated by a weak (≤1K) temperature inversion. Model representation of the SPBL structure and evolution is important for accurate weather/climate and aerosol prediction. In this work, we evaluate model performance of the Weather Research and Forecasting (WRF) to represent key multi-scale processes in the SABL during summer 2011, including depiction of the diurnal cycle. For this purpose, a sensitivity analysis is performed to examine the performance of seven PBL schemes (YSU, MYJ, QNSE, MYNN, ACM, Boulac and MRF) and two land-surface model (Noah and RUC) schemes. In addition, the sensitivity to the choice of lateral boundary conditions (ERA-Interim and NCEP) and land use classification maps (USGS and MODIS-based) is tested. Model outputs were confronted upper-air and surface observations from the Fennec super-site at Bordj Moktar and automatic weather station (AWS) in Southern Algeria Vertical profiles of wind speed, potential temperature and water vapour mixing ratio were examined to diagnose differences in PBL heights and model efficacy to reproduce the diurnal cycle of the SABL. We find that the structure of the model SABL is most sensitive the choice of land surface model and lateral boundary conditions and relatively insensitive to the PBL scheme. Overall the model represents well the diurnal cycle in the structure of the SABL. Consistent model biases include (i) a moist (1-2 gkg-1) and slightly cool (~1K) bias in the daytime convective boundary layer (ii

  20. Hydrologic Modeling at the National Water Center: Operational Implementation of the WRF-Hydro Model to support National Weather Service Hydrology

    Science.gov (United States)

    Cosgrove, B.; Gochis, D.; Clark, E. P.; Cui, Z.; Dugger, A. L.; Fall, G. M.; Feng, X.; Fresch, M. A.; Gourley, J. J.; Khan, S.; Kitzmiller, D.; Lee, H. S.; Liu, Y.; McCreight, J. L.; Newman, A. J.; Oubeidillah, A.; Pan, L.; Pham, C.; Salas, F.; Sampson, K. M.; Smith, M.; Sood, G.; Wood, A.; Yates, D. N.; Yu, W.; Zhang, Y.

    2015-12-01

    The National Weather Service (NWS) National Water Center(NWC) is collaborating with the NWS National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) to implement a first-of-its-kind operational instance of the Weather Research and Forecasting (WRF)-Hydro model over the Continental United States (CONUS) and contributing drainage areas on the NWS Weather and Climate Operational Supercomputing System (WCOSS) supercomputer. The system will provide seamless, high-resolution, continuously cycling forecasts of streamflow and other hydrologic outputs of value from both deterministic- and ensemble-type runs. WRF-Hydro will form the core of the NWC national water modeling strategy, supporting NWS hydrologic forecast operations along with emergency response and water management efforts of partner agencies. Input and output from the system will be comprehensively verified via the NWC Water Resource Evaluation Service. Hydrologic events occur on a wide range of temporal scales, from fast acting flash floods, to long-term flow events impacting water supply. In order to capture this range of events, the initial operational WRF-Hydro configuration will feature 1) hourly analysis runs, 2) short-and medium-range deterministic forecasts out to two day and ten day horizons and 3) long-range ensemble forecasts out to 30 days. All three of these configurations are underpinned by a 1km execution of the NoahMP land surface model, with channel routing taking place on 2.67 million NHDPlusV2 catchments covering the CONUS and contributing areas. Additionally, the short- and medium-range forecasts runs will feature surface and sub-surface routing on a 250m grid, while the hourly analyses will feature this same 250m routing in addition to nudging-based assimilation of US Geological Survey (USGS) streamflow observations. A limited number of major reservoirs will be configured within the model to begin to represent the first-order impacts of

  1. Intel Xeon Phi accelerated Weather Research and Forecasting (WRF) Goddard microphysics scheme

    Science.gov (United States)

    Mielikainen, J.; Huang, B.; Huang, A. H.-L.

    2014-12-01

    The Weather Research and Forecasting (WRF) model is a numerical weather prediction system designed to serve both atmospheric research and operational forecasting needs. The WRF development is a done in collaboration around the globe. Furthermore, the WRF is used by academic atmospheric scientists, weather forecasters at the operational centers and so on. The WRF contains several physics components. The most time consuming one is the microphysics. One microphysics scheme is the Goddard cloud microphysics scheme. It is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The Goddard microphysics scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Goddard scheme incorporates a large number of improvements. Thus, we have optimized the Goddard scheme code. In this paper, we present our results of optimizing the Goddard microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The Intel MIC is capable of executing a full operating system and entire programs rather than just kernels as the GPU does. The MIC coprocessor supports all important Intel development tools. Thus, the development environment is one familiar to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discussed in this paper. The results show that the optimizations improved performance of Goddard microphysics scheme on Xeon Phi 7120P by a factor of 4.7×. In addition, the optimizations reduced the Goddard microphysics scheme's share of the total WRF processing time from 20.0 to 7.5%. Furthermore, the same optimizations

  2. Simulating the meteorology and PM10 concentrations in Arizona dust storms using the Weather Research and Forecasting model with Chemistry (Wrf-Chem).

    Science.gov (United States)

    Hyde, Peter; Mahalov, Alex; Li, Jialun

    2018-03-01

    Nine dust storms in south-central Arizona were simulated with the Weather Research and Forecasting with Chemistry model (WRF-Chem) at 2 km resolution. The windblown dust emission algorithm was the Air Force Weather Agency model. In comparison with ground-based PM 10 observations, the model unevenly reproduces the dust-storm events. The model adequately estimates the location and timing of the events, but it is unable to precisely replicate the magnitude and timing of the elevated hourly concentrations of particles 10 µm and smaller ([PM 10 ]).Furthermore, the model underestimated [PM 10 ] in highly agricultural Pinal County because it underestimated surface wind speeds and because the model's erodible fractions of the land surface data were too coarse to effectively resolve the active and abandoned agricultural lands. In contrast, the model overestimated [PM 10 ] in western Arizona along the Colorado River because it generated daytime sea breezes (from the nearby Gulf of California) for which the surface-layer speeds were too strong. In Phoenix, AZ, the model's performance depended on the event, with both under- and overestimations partly due to incorrect representation of urban features. Sensitivity tests indicate that [PM 10 ] highly relies on meteorological forcing. Increasing the fraction of erodible surfaces in the Pinal County agricultural areas improved the simulation of [PM 10 ] in that region. Both 24-hr and 1-hr measured [PM 10 ] were, for the most part, and especially in Pinal County, extremely elevated, with the former exceeding the health standard by as much as 10-fold and the latter exceeding health-based guidelines by as much as 70-fold. Monsoonal thunderstorms not only produce elevated [PM 10 ], but also cause urban flash floods and disrupt water resource deliveries. Given the severity and frequency of these dust storms, and conceding that the modeling system applied in this work did not produce the desired agreement between simulations and

  3. Study of atmospheric condition during the heavy rain event in Bojonegoro using weather research and forecasting (WRF) model: case study 9 February 2017

    Science.gov (United States)

    Saragih, I. J. A.; Meygatama, A. G.; Sugihartati, F. M.; Sidauruk, M.; Mulsandi, A.

    2018-03-01

    During 2016, there are frequent heavy rains in the Bojonegoro region, one of which is rain on 9 February 2016. The occurrence of heavy rainfall can cause the floods that inundate the settlements, rice fields, roads, and public facilities. This makes it important to analyze the atmospheric conditions during the heavy rainfall events in Bojonegoro. One of the analytical methods that can be used is using WRF-Advanced Research WRF (WRF-ARW) model. This study was conducted by comparing the rain analysis from WRF-ARW model with the Himawari-8 satellite imagery. The data used are Final Analysis (FNL) data for the WRF-ARW model and infrared (IR) channel for Himawari-8 satellite imagery. The data are processed into the time-series images and then analyzed descriptively. The meteorological parameters selected to be analyzed are relative humidity, vortices, divergences, air stability index, and precipitation. These parameters are expected to indicate the existence of a convective activity in Bojonegoro during the heavy rainfall event. The Himawari-8 satellite imagery shows that there is a cluster of convective clouds in Bojonegoro during the heavy rainfall event. The lowest value of the cloud top temperature indicates that the cluster of convective clouds is a cluster of Cumulonimbus cloud (CB).

  4. Evaluation of a seven-year air quality simulation using the Weather Research and Forecasting (WRF)/Community Multiscale Air Quality (CMAQ) models in the eastern United States.

    Science.gov (United States)

    Zhang, Hongliang; Chen, Gang; Hu, Jianlin; Chen, Shu-Hua; Wiedinmyer, Christine; Kleeman, Michael; Ying, Qi

    2014-03-01

    The performance of the Weather Research and Forecasting (WRF)/Community Multi-scale Air Quality (CMAQ) system in the eastern United States is analyzed based on results from a seven-year modeling study with a 4-km spatial resolution. For 2-m temperature, the monthly averaged mean bias (MB) and gross error (GE) values are generally within the recommended performance criteria, although temperature is over-predicted with MB values up to 2K. Water vapor at 2-m is well-predicted but significant biases (>2 g kg(-1)) were observed in wintertime. Predictions for wind speed are satisfactory but biased towards over-prediction with 0nitrate and sulfate concentrations are also well reproduced. The other unresolved PM2.5 components (OTHER) are significantly overestimated by more than a factor of two. No conclusive explanations can be made regarding the possible cause of this universal overestimation, which warrants a follow-up study to better understand this problem. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Change in Weather Research and Forecasting (WRF) Model Accuracy with Age of Input Data from the Global Forecast System (GFS)

    Science.gov (United States)

    2016-09-01

    were downloaded from the University of Wyoming’s weather website (http://www.weather.uwyo.edu/upperair/sounding.html). An alternative site is the RAOB...Midwest US Amarillo, TX AMA 2016-01-02-12 37.12, –98.66 Dodge City, KS DDC and Lamont, OK LMN 2016-02-10-12 Norman, OK OUN...0-, 24-, 48-, 72-, or 96-h forecast from the same day, 1, 2, 3, or 4 days earlier, respectively. For example, for a 12 Coordinated Universal Time

  6. Development of extended WRF variational data assimilation system (WRFDA) for WRF non-hydrostatic mesoscale model

    Science.gov (United States)

    Pattanayak, Sujata; Mohanty, U. C.

    2018-06-01

    The paper intends to present the development of the extended weather research forecasting data assimilation (WRFDA) system in the framework of the non-hydrostatic mesoscale model core of weather research forecasting system (WRF-NMM), as an imperative aspect of numerical modeling studies. Though originally the WRFDA provides improved initial conditions for advanced research WRF, we have successfully developed a unified WRFDA utility that can be used by the WRF-NMM core, as well. After critical evaluation, it has been strategized to develop a code to merge WRFDA framework and WRF-NMM output. In this paper, we have provided a few selected implementations and initial results through single observation test, and background error statistics like eigenvalues, eigenvector and length scale among others, which showcase the successful development of extended WRFDA code for WRF-NMM model. Furthermore, the extended WRFDA system is applied for the forecast of three severe cyclonic storms: Nargis (27 April-3 May 2008), Aila (23-26 May 2009) and Jal (4-8 November 2010) formed over the Bay of Bengal. Model results are compared and contrasted within the analysis fields and later on with high-resolution model forecasts. The mean initial position error is reduced by 33% with WRFDA as compared to GFS analysis. The vector displacement errors in track forecast are reduced by 33, 31, 30 and 20% to 24, 48, 72 and 96 hr forecasts respectively, in data assimilation experiments as compared to control run. The model diagnostics indicates successful implementation of WRFDA within the WRF-NMM system.

  7. Improved Near Real Time WRF-Chem Volcanic Emission Prediction and Impacts of Ash Aerosol on Weather.

    Science.gov (United States)

    Stuefer, M.; Webley, P. W.; Hirtl, M.

    2017-12-01

    We use the numerical Weather Research Forecasting (WRF) model with online Chemistry (WRF-Chem) to investigate the regional effects of volcanic aerosol on weather. A lot of observational data have become available since the Icelandic eruption of Eyjafjallajökull in spring 2010. The observed plume characteristics and meteorological data have been exploited for volcanic WRF-Chem case studies. We concluded that the Eyjafjallajökull ash plume resulted in significant direct aerosol effects altering the state of the atmosphere over large parts of Europe. The WRF-Chem model runs show near surface temperature differences up to 3ºC, altered vertical stability, changed pressure- and wind fields within the atmosphere loaded with ash aerosol. The modeled results have been evaluated with lidar network data, and ground and balloon based observations all over Europe. Besides case studies, we use WRF-Chem to build an improved volcanic ash decision support system that NOAA can use within the Volcanic Ash Advisory Center (VAAC) system. Realistic eruption source parameter (ESP) estimates are a main challenge in predicting volcanic emission dispersion in near real time. We implemented historic ESP into the WRF-Chem preprocessing routine, which can be used as a first estimate to assess a volcanic plume once eruption activity is reported. In a second step, a range of varying plume heights has been associated with the different ash variables within WRF-Chem, resulting in an assembly of different plume scenarios within one WRF-Chem model run. Once there is plume information available from ground or satellite observations, the forecaster has the option to select the corresponding ash variable that best matches the observations. In addition we added an automatic domain generation tool to create near real time WRF-Chem model runs anywhere on the globe by reducing computing expenses at the same time.

  8. Investigating Surface Bias Errors in the Weather Research and Forecasting (WRF) Model using a Geographic Information System (GIS)

    Science.gov (United States)

    2015-02-01

    Computational and Information Sciences Directorate Battlefield Environment Division (ATTN: RDRL- CIE -M) White Sands Missile Range, NM 88002-5501 8. PERFORMING...meteorological parameters, which became our focus. We found that elevation accounts for a significant portion of the variance in the model error. The...found that elevation accounts for a significant portion of the variance in the model error of surface temperature and relative humidity predictions

  9. Application of Weather Research and Forecasting Model with Chemistry (WRF/Chem) over northern China: Sensitivity study, comparative evaluation, and policy implications

    Science.gov (United States)

    Wang, Litao; Zhang, Yang; Wang, Kai; Zheng, Bo; Zhang, Qiang; Wei, Wei

    2016-01-01

    An extremely severe and persistent haze event occurred over the middle and eastern China in January 2013, with the record-breaking high concentrations of fine particulate matter (PM2.5). In this study, an online-coupled meteorology-air quality model, the Weather Research and Forecasting Model with Chemistry (WRF/Chem), is applied to simulate this pollution episode over East Asia and northern China at 36- and 12-km grid resolutions. A number of simulations are conducted to examine the sensitivities of the model predictions to various physical schemes. The results show that all simulations give similar predictions for temperature, wind speed, wind direction, and humidity, but large variations exist in the prediction for precipitation. The concentrations of PM2.5, particulate matter with aerodynamic diameter of 10 μm or less (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2) are overpredicted partially due to the lack of wet scavenging by the chemistry-aerosol option with the 1999 version of the Statewide Air Pollution Research Center (SAPRC-99) mechanism with the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) and the Volatility Basis Set (VBS) for secondary organic aerosol formation. The optimal set of configurations with the best performance is the simulation with the Gorddard shortwave and RRTM longwave radiation schemes, the Purdue Lin microphysics scheme, the Kain-Fritsch cumulus scheme, and a nudging coefficient of 1 × 10-5 for water vapor mixing ratio. The emission sensitivity simulations show that the PM2.5 concentrations are most sensitive to nitrogen oxide (NOx) and SO2 emissions in northern China, but to NOx and ammonia (NH3) emissions in southern China. 30% NOx emission reductions may result in an increase in PM2.5 concentrations in northern China because of the NH3-rich and volatile organic compound (VOC) limited conditions over this area. VOC emission reductions will lead to a decrease in PM2.5 concentrations in eastern China

  10. WRF4G project: Adaptation of WRF Model to Distributed Computing Infrastructures

    Science.gov (United States)

    Cofino, Antonio S.; Fernández Quiruelas, Valvanuz; García Díez, Markel; Blanco Real, Jose C.; Fernández, Jesús

    2013-04-01

    demonstrate the ability of Grid infrastructures in solving a scientific problem with interest and relevance on the meteorology area (implying a high computational cost) we will perform a high resolution hindcast on Southwestern Europe with ERA-Interim re-analysis as boundary and initial conditions. The production of an atmospheric hindcast at high resolution, will provide an appropriate assessment of the possibilities and uncertainties of the WRF model for the evaluation and forecasting of weather, energy and natural hazards. [1] http://www.meteo.unican.es/software/wrf4g

  11. Improved meteorology from an updated WRF/CMAQ modeling system with MODIS vegetation and albedo

    Science.gov (United States)

    Realistic vegetation characteristics and phenology from the Moderate Resolution Imaging Spectroradiometer (MODIS) products improve the simulation for the meteorology and air quality modeling system WRF/CMAQ (Weather Research and Forecasting model and Community Multiscale Air Qual...

  12. Assessing High-Resolution Weather Research and Forecasting (WRF) Forecasts Using an Object-Based Diagnostic Evaluation

    Science.gov (United States)

    2014-02-01

    Operational Model Archive and Distribution System ( NOMADS ). The RTMA product was generated using a 2-D variational method to assimilate point weather...observations and satellite-derived measurements (National Weather Service, 2013). The products were downloaded using the NOMADS General Regularly...of the completed WRF run" read Start_Date echo $Start_Date echo " " echo "Enter 2- digit , zulu, observation hour (HH) for remapping" read oHH

  13. Examining Interior Grid Nudging Techniques Using Two-Way Nesting in the WRF Model for Regional Climate Modeling

    Science.gov (United States)

    This study evaluates interior nudging techniques using the Weather Research and Forecasting (WRF) model for regional climate modeling over the conterminous United States (CONUS) using a two-way nested configuration. NCEP–Department of Energy Atmospheric Model Intercomparison Pro...

  14. Evaluating transport in the WRF model along the California coast

    OpenAIRE

    C. E. Yver; H. D. Graven; D. D. Lucas; P. J. Cameron-Smith; R. F. Keeling; R. F. Weiss

    2013-01-01

    This paper presents a step in the development of a top-down method to complement the bottom-up inventories of halocarbon emissions in California using high frequency observations, forward simulations and inverse methods. The Scripps Institution of Oceanography high-frequency atmospheric halocarbons measurement sites are located along the California coast and therefore the evaluation of transport in the chosen Weather Research Forecast (WRF) model at these sites is crucial fo...

  15. Evaluating transport in the WRF model along the California coast

    OpenAIRE

    C. Yver; H. Graven; D. D. Lucas; P. Cameron-Smith; R. Keeling; R. Weiss

    2012-01-01

    This paper presents a step in the development of a top-down method to complement the bottom-up inventories of halocarbon emissions in California using high frequency observations, forward simulations and inverse methods. The Scripps Institution of Oceanography high-frequency atmospheric halocarbon measurement sites are located along the California coast and therefore the evaluation of transport in the chosen Weather Research Forecast (WRF) model at these sites is crucial for inverse mo...

  16. The Another Assimilation System for WRF-Chem (AAS4WRF): a new mass-conserving emissions pre-processor for WRF-Chem regional modelling

    Science.gov (United States)

    Vara Vela, A. L.; Muñoz, A.; Lomas, A., Sr.; González, C. M.; Calderon, M. G.; Andrade, M. D. F.

    2017-12-01

    The Weather Research and Forecasting with Chemistry (WRF-Chem) community model have been widely used for the study of pollutants transport, formation of secondary pollutants, as well as for the assessment of air quality policies implementation. A key factor to improve the WRF-Chem air quality simulations over urban areas is the representation of anthropogenic emission sources. There are several tools that are available to assist users in creating their own emissions based on global emissions information (e.g. anthro_emiss, prep_chem_src); however, there is no single tool that will construct local emissions input datasets for any particular domain at this time. Because the official emissions pre-processor (emiss_v03) is designed to work with domains located over North America, this work presents the Another Assimilation System for WRF-Chem (AAS4WRF), a ncl based mass-conserving emissions pre-processor designed to create WRF-Chem ready emissions files from local inventories on a lat/lon projection. AAS4WRF is appropriate to scale emission rates from both surface and elevated sources, providing the users an alternative way to assimilate their emissions to WRF-Chem. Since it was successfully tested for the first time for the city of Lima, Peru in 2014 (managed by SENAMHI, the National Weather Service of the country), several studies on air quality modelling have applied this utility to convert their emissions to those required for WRF-Chem. Two case studies performed in the metropolitan areas of Sao Paulo and Manizales in Brazil and Colombia, respectively, are here presented in order to analyse the influence of using local or global emission inventories in the representation of regulated air pollutants such as O3 and PM2.5. Although AAS4WRF works with local emissions information at the moment, further work is being conducted to make it compatible with global/regional emissions data file format. The tool is freely available upon request to the corresponding author.

  17. Hydrological Modeling in Alaska with WRF-Hydro

    Science.gov (United States)

    Elmer, N. J.; Zavodsky, B.; Molthan, A.

    2017-12-01

    The operational National Water Model (NWM), implemented in August 2016, is an instantiation of the Weather Research and Forecasting hydrological extension package (WRF-Hydro). Currently, the NWM only covers the contiguous United States, but will be expanded to include an Alaska domain in the future. It is well known that Alaska presents several hydrological modeling challenges, including unique arctic/sub-arctic hydrological processes not observed elsewhere in the United States and a severe lack of in-situ observations for model initialization. This project sets up an experimental version of WRF-Hydro in Alaska mimicking the NWM to gauge the ability of WRF-Hydro to represent hydrological processes in Alaska and identify model calibration challenges. Recent and upcoming launches of hydrology-focused NASA satellite missions such as the Soil Moisture Active Passive (SMAP) and Surface Water Ocean Topography (SWOT) expand the spatial and temporal coverage of observations in Alaska, so this study also lays the groundwork for assimilating these NASA datasets into WRF-Hydro in the future.

  18. Using AIRS retrievals in the WRF-LETKF system to improve regional numerical weather prediction

    Directory of Open Access Journals (Sweden)

    Takemasa Miyoshi

    2012-09-01

    Full Text Available In addition to conventional observations, atmospheric temperature and humidity profile data from the Atmospheric Infrared Sounder (AIRS Version 5 retrieval products are assimilated into the Weather Research and Forecasting (WRF model, using the local ensemble transform Kalman filter (LETKF. Although a naive assimilation of all available quality-controlled AIRS retrieval data yields an inferior analysis, the additional enhancements of adaptive inflation and horizontal data thinning result in a general improvement of numerical weather prediction skill due to AIRS data. In particular, the adaptive inflation method is enhanced so that it no longer assumes temporal homogeneity of the observing network and allows for a better treatment of the temporally inhomogeneous AIRS data. Results indicate that the improvements due to AIRS data are more significant in longer-lead forecasts. Forecasts of Typhoons Sinlaku and Jangmi in September 2008 show improvements due to AIRS data.

  19. Influence of bulk microphysics schemes upon Weather Research and Forecasting (WRF) version 3.6.1 nor'easter simulations

    Science.gov (United States)

    Nicholls, Stephen D.; Decker, Steven G.; Tao, Wei-Kuo; Lang, Stephen E.; Shi, Jainn J.; Mohr, Karen I.

    2017-03-01

    This study evaluated the impact of five single- or double-moment bulk microphysics schemes (BMPSs) on Weather Research and Forecasting model (WRF) simulations of seven intense wintertime cyclones impacting the mid-Atlantic United States; 5-day long WRF simulations were initialized roughly 24 h prior to the onset of coastal cyclogenesis off the North Carolina coastline. In all, 35 model simulations (five BMPSs and seven cases) were run and their associated microphysics-related storm properties (hydrometer mixing ratios, precipitation, and radar reflectivity) were evaluated against model analysis and available gridded radar and ground-based precipitation products. Inter-BMPS comparisons of column-integrated mixing ratios and mixing ratio profiles reveal little variability in non-frozen hydrometeor species due to their shared programming heritage, yet their assumptions concerning snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities led to considerable variability in both simulated frozen hydrometeor species and radar reflectivity. WRF-simulated precipitation fields exhibit minor spatiotemporal variability amongst BMPSs, yet their spatial extent is largely conserved. Compared to ground-based precipitation data, WRF simulations demonstrate low-to-moderate (0.217-0.414) threat scores and a rainfall distribution shifted toward higher values. Finally, an analysis of WRF and gridded radar reflectivity data via contoured frequency with altitude diagrams (CFADs) reveals notable variability amongst BMPSs, where better performing schemes favored lower graupel mixing ratios and better underlying aggregation assumptions.

  20. Inclusion of biomass burning in WRF-Chem: impact of wildfires on weather forecasts

    Directory of Open Access Journals (Sweden)

    G. Grell

    2011-06-01

    Full Text Available A plume rise algorithm for wildfires was included in WRF-Chem, and applied to look at the impact of intense wildfires during the 2004 Alaska wildfire season on weather simulations using model resolutions of 10 km and 2 km. Biomass burning emissions were estimated using a biomass burning emissions model. In addition, a 1-D, time-dependent cloud model was used online in WRF-Chem to estimate injection heights as well as the vertical distribution of the emission rates. It was shown that with the inclusion of the intense wildfires of the 2004 fire season in the model simulations, the interaction of the aerosols with the atmospheric radiation led to significant modifications of vertical profiles of temperature and moisture in cloud-free areas. On the other hand, when clouds were present, the high concentrations of fine aerosol (PM2.5 and the resulting large numbers of Cloud Condensation Nuclei (CCN had a strong impact on clouds and cloud microphysics, with decreased precipitation coverage and precipitation amounts during the first 12 h of the integration. During the afternoon, storms were of convective nature and appeared significantly stronger, probably as a result of both the interaction of aerosols with radiation (through an increase in CAPE as well as the interaction with cloud microphysics.

  1. Application of an integrated Weather Research and Forecasting (WRF)/CALPUFF modeling tool for source apportionment of atmospheric pollutants for air quality management: A case study in the urban area of Benxi, China.

    Science.gov (United States)

    Wu, Hao; Zhang, Yan; Yu, Qi; Ma, Weichun

    2018-04-01

    In this study, the authors endeavored to develop an effective framework for improving local urban air quality on meso-micro scales in cities in China that are experiencing rapid urbanization. Within this framework, the integrated Weather Research and Forecasting (WRF)/CALPUFF modeling system was applied to simulate the concentration distributions of typical pollutants (particulate matter with an aerodynamic diameter air quality to different degrees. According to the type-based classification, which categorized the pollution sources as belonging to the Bengang Group, large point sources, small point sources, and area sources, the source apportionment showed that the Bengang Group, the large point sources, and the area sources had considerable impacts on urban air quality. Finally, combined with the industrial characteristics, detailed control measures were proposed with which local policy makers could improve the urban air quality in Benxi. In summary, the results of this study showed that this framework has credibility for effectively improving urban air quality, based on the source apportionment of atmospheric pollutants. The authors endeavored to build up an effective framework based on the integrated WRF/CALPUFF to improve the air quality in many cities on meso-micro scales in China. Via this framework, the integrated modeling tool is accurately used to study the characteristics of meteorological fields, concentration fields, and source apportionments of pollutants in target area. The impacts of classified sources on air quality together with the industrial characteristics can provide more effective control measures for improving air quality. Through the case study, the technical framework developed in this study, particularly the source apportionment, could provide important data and technical support for policy makers to assess air pollution on the scale of a city in China or even the world.

  2. Performance tuning Weather Research and Forecasting (WRF) Goddard longwave radiative transfer scheme on Intel Xeon Phi

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2015-10-01

    Next-generation mesoscale numerical weather prediction system, the Weather Research and Forecasting (WRF) model, is a designed for dual use for forecasting and research. WRF offers multiple physics options that can be combined in any way. One of the physics options is radiance computation. The major source for energy for the earth's climate is solar radiation. Thus, it is imperative to accurately model horizontal and vertical distribution of the heating. Goddard solar radiative transfer model includes the absorption duo to water vapor,ozone, ozygen, carbon dioxide, clouds and aerosols. The model computes the interactions among the absorption and scattering by clouds, aerosols, molecules and surface. Finally, fluxes are integrated over the entire longwave spectrum.In this paper, we present our results of optimizing the Goddard longwave radiative transfer scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The optimizations improved the performance of the original Goddard longwave radiative transfer scheme on Xeon Phi 7120P by a factor of 2.2x. Furthermore, the same optimizations improved the performance of the Goddard longwave radiative transfer scheme on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 2.1x compared to the original Goddard longwave radiative transfer scheme code.

  3. An Automated Weather Research and Forecasting (WRF)-Based Nowcasting System: Software Description

    Science.gov (United States)

    2013-10-01

    14. ABSTRACT A Web service /Web interface software package has been engineered to address the need for an automated means to run the Weather Research...An Automated Weather Research and Forecasting (WRF)- Based Nowcasting System: Software Description by Stephen F. Kirby, Brian P. Reen, and...Based Nowcasting System: Software Description Stephen F. Kirby, Brian P. Reen, and Robert E. Dumais Jr. Computational and Information Sciences

  4. A strategy for representing the effects of convective momentum transport in multiscale models: Evaluation using a new superparameterized version of the Weather Research and Forecast model (SP-WRF)

    Science.gov (United States)

    Tulich, S. N.

    2015-06-01

    This paper describes a general method for the treatment of convective momentum transport (CMT) in large-scale dynamical solvers that use a cyclic, two-dimensional (2-D) cloud-resolving model (CRM) as a "superparameterization" of convective-system-scale processes. The approach is similar in concept to traditional parameterizations of CMT, but with the distinction that both the scalar transport and diagnostic pressure gradient force are calculated using information provided by the 2-D CRM. No assumptions are therefore made concerning the role of convection-induced pressure gradient forces in producing up or down-gradient CMT. The proposed method is evaluated using a new superparameterized version of the Weather Research and Forecast model (SP-WRF) that is described herein for the first time. Results show that the net effect of the formulation is to modestly reduce the overall strength of the large-scale circulation, via "cumulus friction." This statement holds true for idealized simulations of two types of mesoscale convective systems, a squall line, and a tropical cyclone, in addition to real-world global simulations of seasonal (1 June to 31 August) climate. In the case of the latter, inclusion of the formulation is found to improve the depiction of key synoptic modes of tropical wave variability, in addition to some aspects of the simulated time-mean climate. The choice of CRM orientation is also found to importantly affect the simulated time-mean climate, apparently due to changes in the explicit representation of wide-spread shallow convective regions.

  5. WRF-Chem Model Simulations of Arizona Dust Storms

    Science.gov (United States)

    Mohebbi, A.; Chang, H. I.; Hondula, D.

    2017-12-01

    The online Weather Research and Forecasting model with coupled chemistry module (WRF-Chem) is applied to simulate the transport, deposition and emission of the dust aerosols in an intense dust outbreak event that took place on July 5th, 2011 over Arizona. Goddard Chemistry Aerosol Radiation and Transport (GOCART), Air Force Weather Agency (AFWA), and University of Cologne (UoC) parameterization schemes for dust emission were evaluated. The model was found to simulate well the synoptic meteorological conditions also widely documented in previous studies. The chemistry module performance in reproducing the atmospheric desert dust load was evaluated using the horizontal field of the Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectro (MODIS) radiometer Terra/Aqua and Aerosol Robotic Network (AERONET) satellites employing standard Dark Target (DT) and Deep Blue (DB) algorithms. To assess the temporal variability of the dust storm, Particulate Matter mass concentration data (PM10 and PM2.5) from Arizona Department of Environmental Quality (AZDEQ) ground-based air quality stations were used. The promising performance of WRF-Chem indicate that the model is capable of simulating the right timing and loading of a dust event in the planetary-boundary-layer (PBL) which can be used to forecast approaching severe dust events and to communicate an effective early warning.

  6. Evaluating transport in the WRF model along the California coast

    Directory of Open Access Journals (Sweden)

    C. E. Yver

    2013-02-01

    Full Text Available This paper presents a step in the development of a top-down method to complement the bottom-up inventories of halocarbon emissions in California using high frequency observations, forward simulations and inverse methods. The Scripps Institution of Oceanography high-frequency atmospheric halocarbons measurement sites are located along the California coast and therefore the evaluation of transport in the chosen Weather Research Forecast (WRF model at these sites is crucial for inverse modeling. The performance of the transport model has been investigated by comparing the wind direction and speed and temperature at four locations using aircraft weather reports as well at all METAR weather stations in our domain for hourly variations. Different planetary boundary layer (PBL schemes, horizontal resolutions (achieved through nesting and two meteorological datasets have been tested. Finally, simulated concentration of an inert tracer has been briefly investigated. All the PBL schemes present similar results that generally agree with observations, except in summer when the model sea breeze is too strong. At the coarse 12 km resolution, using ERA-interim (ECMWF Re-Analysis as initial and boundary conditions leads to improvements compared to using the North American Model (NAM dataset. Adding higher resolution nests also improves the match with the observations. However, no further improvement is observed from increasing the nest resolution from 4 km to 0.8 km. Once optimized, the model is able to reproduce tracer measurements during typical winter California large-scale events (Santa Ana. Furthermore, with the WRF/CHEM chemistry module and the European Database for Global Atmospheric Research (EDGAR version 4.1 emissions for HFC-134a, we find that using a simple emission scaling factor is not sufficient to infer emissions, which highlights the need for more complex inversions.

  7. Wind lidar profile measurements in the coastal boundary layer: comparison with WRF modelling

    DEFF Research Database (Denmark)

    Floors, Rogier; Pena Diaz, Alfredo; Vincent, Claire Louise

    2012-01-01

    the sensitivity of PBL schemes of mesoscale models to both lower and upper boundary conditions. We therefore run the mesoscale weather research and forecasting (WRF) model using two different roughness descriptions, two different synoptic forcings and two different PBL schemes at two vertical resolutions. When...... in the amount of observed low level jet. The wind speed predicted by WRF does not improve when a higher resolution is used. Therefore, both the inhomogeneous (westerly) and homogeneous (easterly) flow contribute to a large negative bias in the mean wind speed profile at heights between 100 and 200 m....

  8. A high resolution WRF model for wind energy forecasting

    Science.gov (United States)

    Vincent, Claire Louise; Liu, Yubao

    2010-05-01

    The increasing penetration of wind energy into national electricity markets has increased the demand for accurate surface layer wind forecasts. There has recently been a focus on forecasting the wind at wind farm sites using both statistical models and numerical weather prediction (NWP) models. Recent advances in computing capacity and non-hydrostatic NWP models means that it is possible to nest mesoscale models down to Large Eddy Simulation (LES) scales over the spatial area of a typical wind farm. For example, the WRF model (Skamarock 2008) has been run at a resolution of 123 m over a wind farm site in complex terrain in Colorado (Liu et al. 2009). Although these modelling attempts indicate a great hope for applying such models for detailed wind forecasts over wind farms, one of the obvious challenges of running the model at this resolution is that while some boundary layer structures are expected to be modelled explicitly, boundary layer eddies into the inertial sub-range can only be partly captured. Therefore, the amount and nature of sub-grid-scale mixing that is required is uncertain. Analysis of Liu et al. (2009) modelling results in comparison to wind farm observations indicates that unrealistic wind speed fluctuations with a period of around 1 hour occasionally occurred during the two day modelling period. The problem was addressed by re-running the same modelling system with a) a modified diffusion constant and b) two-way nesting between the high resolution model and its parent domain. The model, which was run with horizontal grid spacing of 370 m, had dimensions of 505 grid points in the east-west direction and 490 points in the north-south direction. It received boundary conditions from a mesoscale model of resolution 1111 m. Both models had 37 levels in the vertical. The mesoscale model was run with a non-local-mixing planetary boundary layer scheme, while the 370 m model was run with no planetary boundary layer scheme. It was found that increasing the

  9. Atmospheric stability and turbulence fluxes at Horns Rev—an intercomparison of sonic, bulk and WRF model data

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Hahmann, Andrea N.

    2012-01-01

    anemometer at 15 m height and potential temperature differences between the water and the air above. Surface flux estimations from the advanced weather research and forecast (WRF) model are also validated against the sonic and bulk data. The correlation between the sonic and bulk estimates of friction...... to the surface, not only from a systematic bulk and WRF under‐prediction of the friction velocity when compared with the sonic value but also because of the lower magnitude of the sonic heat flux compared with that from the WRF simulations. Although they are not measured but parameterized or estimated, the bulk......–WRF comparisons of friction velocity and 10 m wind speed show good agreement. It is also shown that on a long‐term basis, the WRF and bulk estimates of stability are nearly equal and that a correction towards a slightly stable atmospheric condition has to be applied to the long‐term wind profile at Horns Rev...

  10. An Integrated High Resolution Hydrometeorological Modeling Testbed using LIS and WRF

    Science.gov (United States)

    Kumar, Sujay V.; Peters-Lidard, Christa D.; Eastman, Joseph L.; Tao, Wei-Kuo

    2007-01-01

    Scientists have made great strides in modeling physical processes that represent various weather and climate phenomena. Many modeling systems that represent the major earth system components (the atmosphere, land surface, and ocean) have been developed over the years. However, developing advanced Earth system applications that integrates these independently developed modeling systems have remained a daunting task due to limitations in computer hardware and software. Recently, efforts such as the Earth System Modeling Ramework (ESMF) and Assistance for Land Modeling Activities (ALMA) have focused on developing standards, guidelines, and computational support for coupling earth system model components. In this article, the development of a coupled land-atmosphere hydrometeorological modeling system that adopts these community interoperability standards, is described. The land component is represented by the Land Information System (LIS), developed by scientists at the NASA Goddard Space Flight Center. The Weather Research and Forecasting (WRF) model, a mesoscale numerical weather prediction system, is used as the atmospheric component. LIS includes several community land surface models that can be executed at spatial scales as fine as 1km. The data management capabilities in LIS enable the direct use of high resolution satellite and observation data for modeling. Similarly, WRF includes several parameterizations and schemes for modeling radiation, microphysics, PBL and other processes. Thus the integrated LIS-WRF system facilitates several multi-model studies of land-atmosphere coupling that can be used to advance earth system studies.

  11. Quantitative precipitation estimation based on high-resolution numerical weather prediction and data assimilation with WRF – a performance test

    Directory of Open Access Journals (Sweden)

    Hans-Stefan Bauer

    2015-04-01

    Full Text Available Quantitative precipitation estimation and forecasting (QPE and QPF are among the most challenging tasks in atmospheric sciences. In this work, QPE based on numerical modelling and data assimilation is investigated. Key components are the Weather Research and Forecasting (WRF model in combination with its 3D variational assimilation scheme, applied on the convection-permitting scale with sophisticated model physics over central Europe. The system is operated in a 1-hour rapid update cycle and processes a large set of in situ observations, data from French radar systems, the European GPS network and satellite sensors. Additionally, a free forecast driven by the ECMWF operational analysis is included as a reference run representing current operational precipitation forecasting. The verification is done both qualitatively and quantitatively by comparisons of reflectivity, accumulated precipitation fields and derived verification scores for a complex synoptic situation that developed on 26 and 27 September 2012. The investigation shows that even the downscaling from ECMWF represents the synoptic situation reasonably well. However, significant improvements are seen in the results of the WRF QPE setup, especially when the French radar data are assimilated. The frontal structure is more defined and the timing of the frontal movement is improved compared with observations. Even mesoscale band-like precipitation structures on the rear side of the cold front are reproduced, as seen by radar. The improvement in performance is also confirmed by a quantitative comparison of the 24-hourly accumulated precipitation over Germany. The mean correlation of the model simulations with observations improved from 0.2 in the downscaling experiment and 0.29 in the assimilation experiment without radar data to 0.56 in the WRF QPE experiment including the assimilation of French radar data.

  12. Operational on-line coupled chemical weather forecasts for Europe with WRF/Chem

    Science.gov (United States)

    Hirtl, Marcus; Mantovani, Simone; Krüger, Bernd C.; Flandorfer, Claudia; Langer, Matthias

    2014-05-01

    Air quality is a key element for the well-being and quality of life of European citizens. Air pollution measurements and modeling tools are essential for the assessment of air quality according to EU legislation. The responsibilities of ZAMG as the national weather service of Austria include the support of the federal states and the public in questions connected to the protection of the environment in the frame of advisory and counseling services as well as expert opinions. ZAMG conducts daily Air-Quality forecasts using the on-line coupled model WRF/Chem. Meteorology is simulated simultaneously with the emissions, turbulent mixing, transport, transformation, and fate of trace gases and aerosols. The emphasis of the application is on predicting pollutants over Austria. Two domains are used for the simulations: the mother domain covers Europe with a resolution of 12 km, the inner domain includes the alpine region with a horizontal resolution of 4 km; 45 model levels are used in the vertical direction. The model runs 2 times per day for a period of 72 hours and is initialized with ECMWF forecasts. On-line coupled models allow considering two-way interactions between different atmospheric processes including chemistry (both gases and aerosols), clouds, radiation, boundary layer, emissions, meteorology and climate. In the operational set-up direct-, indirect and semi-direct effects between meteorology and air chemistry are enabled. The model is running on the HPCF (High Performance Computing Facility) of the ZAMG. In the current set-up 1248 CPUs are used. As the simulations need a big amount of computing resources, a method to safe I/O-time was implemented. Every MPI task writes all its output into the shared memory filesystem of the compute nodes. Once the WRF/Chem integration is finished, all split NetCDF-files are merged and saved on the global file system. The merge-routine is based on parallel-NetCDF. With this method the model runs about 30% faster on the SGI

  13. Meteorological Modeling Using the WRF-ARW Model for Grand Bay Intensive Studies of Atmospheric Mercury

    Directory of Open Access Journals (Sweden)

    Fong Ngan

    2015-02-01

    Full Text Available Measurements at the Grand Bay National Estuarine Research Reserve support a range of research activities aimed at improving the understanding of the atmospheric fate and transport of mercury. Routine monitoring was enhanced by two intensive measurement periods conducted at the site in summer 2010 and spring 2011. Detailed meteorological data are required to properly represent the weather conditions, to determine the transport and dispersion of plumes and to understand the wet and dry deposition of mercury. To describe the mesoscale features that might influence future plume calculations for mercury episodes during the Grand Bay Intensive campaigns, fine-resolution meteorological simulations using the Weather Research and Forecasting (WRF model were conducted with various initialization and nudging configurations. The WRF simulations with nudging generated reasonable results in comparison with conventional observations in the region and measurements obtained at the Grand Bay site, including surface and sounding data. The grid nudging, together with observational nudging, had a positive effect on wind prediction. However, the nudging of mass fields (temperature and moisture led to overestimates of precipitation, which may introduce significant inaccuracies if the data were to be used for subsequent atmospheric mercury modeling. The regional flow prediction was also influenced by the reanalysis data used to initialize the WRF simulations. Even with observational nudging, the summer case simulation results in the fine resolution domain inherited features of the reanalysis data, resulting in different regional wind patterns. By contrast, the spring intensive period showed less influence from the reanalysis data.

  14. WRF model sensitivity to choice of parameterization: a study of the `York Flood 1999'

    Science.gov (United States)

    Remesan, Renji; Bellerby, Tim; Holman, Ian; Frostick, Lynne

    2015-10-01

    Numerical weather modelling has gained considerable attention in the field of hydrology especially in un-gauged catchments and in conjunction with distributed models. As a consequence, the accuracy with which these models represent precipitation, sub-grid-scale processes and exceptional events has become of considerable concern to the hydrological community. This paper presents sensitivity analyses for the Weather Research Forecast (WRF) model with respect to the choice of physical parameterization schemes (both cumulus parameterisation (CPSs) and microphysics parameterization schemes (MPSs)) used to represent the `1999 York Flood' event, which occurred over North Yorkshire, UK, 1st-14th March 1999. The study assessed four CPSs (Kain-Fritsch (KF2), Betts-Miller-Janjic (BMJ), Grell-Devenyi ensemble (GD) and the old Kain-Fritsch (KF1)) and four MPSs (Kessler, Lin et al., WRF single-moment 3-class (WSM3) and WRF single-moment 5-class (WSM5)] with respect to their influence on modelled rainfall. The study suggests that the BMJ scheme may be a better cumulus parameterization choice for the study region, giving a consistently better performance than other three CPSs, though there are suggestions of underestimation. The WSM3 was identified as the best MPSs and a combined WSM3/BMJ model setup produced realistic estimates of precipitation quantities for this exceptional flood event. This study analysed spatial variability in WRF performance through categorical indices, including POD, FBI, FAR and CSI during York Flood 1999 under various model settings. Moreover, the WRF model was good at predicting high-intensity rare events over the Yorkshire region, suggesting it has potential for operational use.

  15. Implementation of a gust front head collapse scheme in the WRF numerical model

    Science.gov (United States)

    Lompar, Miloš; Ćurić, Mladjen; Romanic, Djordje

    2018-05-01

    Gust fronts are thunderstorm-related phenomena usually associated with severe winds which are of great importance in theoretical meteorology, weather forecasting, cloud dynamics and precipitation, and wind engineering. An important feature of gust fronts demonstrated through both theoretical and observational studies is the periodic collapse and rebuild of the gust front head. This cyclic behavior of gust fronts results in periodic forcing of vertical velocity ahead of the parent thunderstorm, which consequently influences the storm dynamics and microphysics. This paper introduces the first gust front pulsation parameterization scheme in the WRF-ARW model (Weather Research and Forecasting-Advanced Research WRF). The influence of this new scheme on model performances is tested through investigation of the characteristics of an idealized supercell cumulonimbus cloud, as well as studying a real case of thunderstorms above the United Arab Emirates. In the ideal case, WRF with the gust front scheme produced more precipitation and showed different time evolution of mixing ratios of cloud water and rain, whereas the mixing ratios of ice and graupel are almost unchanged when compared to the default WRF run without the parameterization of gust front pulsation. The included parameterization did not disturb the general characteristics of thunderstorm cloud, such as the location of updraft and downdrafts, and the overall shape of the cloud. New cloud cells in front of the parent thunderstorm are also evident in both ideal and real cases due to the included forcing of vertical velocity caused by the periodic collapse of the gust front head. Despite some differences between the two WRF simulations and satellite observations, the inclusion of the gust front parameterization scheme produced more cumuliform clouds and seem to match better with real observations. Both WRF simulations gave poor results when it comes to matching the maximum composite radar reflectivity from radar

  16. WRF-Fire Applied in Bulgaria

    OpenAIRE

    Dobrinkova, Nina; Jordanov, Georgi; Mandel, Jan

    2010-01-01

    WRF-Fire consists of the WRF (Weather Research and Forecasting Model) coupled with a fire spread model, based on the level-set method. We describe a preliminary application of WRF-Fire to a forest fire in Bulgaria, oportunities for research of forest fire models for Bulgaria, and plans for the development of an Environmental Decision Support Systems which includes computational modeling of fire behavior.

  17. Extending flood forecasting lead time in a large watershed by coupling WRF QPF with a distributed hydrological model

    Science.gov (United States)

    Li, Ji; Chen, Yangbo; Wang, Huanyu; Qin, Jianming; Li, Jie; Chiao, Sen

    2017-03-01

    Long lead time flood forecasting is very important for large watershed flood mitigation as it provides more time for flood warning and emergency responses. The latest numerical weather forecast model could provide 1-15-day quantitative precipitation forecasting products in grid format, and by coupling this product with a distributed hydrological model could produce long lead time watershed flood forecasting products. This paper studied the feasibility of coupling the Liuxihe model with the Weather Research and Forecasting quantitative precipitation forecast (WRF QPF) for large watershed flood forecasting in southern China. The QPF of WRF products has three lead times, including 24, 48 and 72 h, with the grid resolution being 20 km  × 20 km. The Liuxihe model is set up with freely downloaded terrain property; the model parameters were previously optimized with rain gauge observed precipitation, and re-optimized with the WRF QPF. Results show that the WRF QPF has bias with the rain gauge precipitation, and a post-processing method is proposed to post-process the WRF QPF products, which improves the flood forecasting capability. With model parameter re-optimization, the model's performance improves also. This suggests that the model parameters be optimized with QPF, not the rain gauge precipitation. With the increasing of lead time, the accuracy of the WRF QPF decreases, as does the flood forecasting capability. Flood forecasting products produced by coupling the Liuxihe model with the WRF QPF provide a good reference for large watershed flood warning due to its long lead time and rational results.

  18. The Lagrangian particle dispersion model FLEXPART-WRF VERSION 3.1

    Energy Technology Data Exchange (ETDEWEB)

    Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, Don; Seibert, P.; Angevine, W. M.; Evan, S.; Dingwell, A.; Fast, Jerome D.; Easter, Richard C.; Pisso, I.; Bukhart, J.; Wotawa, G.

    2013-11-01

    The Lagrangian particle dispersion model FLEXPART was originally designed for cal- culating long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. In the meantime FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis at different scales. This multiscale need from the modeler community has encouraged new developments in FLEXPART. In this document, we present a version that works with the Weather Research and Forecasting (WRF) mesoscale meteoro- logical model. Simple procedures on how to run FLEXPART-WRF are presented along with special options and features that differ from its predecessor versions. In addition, test case data, the source code and visualization tools are provided to the reader as supplementary material.

  19. Comparison of Thunderstorm Simulations from WRF-NMM and WRF-ARW Models over East Indian Region

    Directory of Open Access Journals (Sweden)

    A. J. Litta

    2012-01-01

    Full Text Available The thunderstorms are typical mesoscale systems dominated by intense convection. Mesoscale models are essential for the accurate prediction of such high-impact weather events. In the present study, an attempt has been made to compare the simulated results of three thunderstorm events using NMM and ARW model core of WRF system and validated the model results with observations. Both models performed well in capturing stability indices which are indicators of severe convective activity. Comparison of model-simulated radar reflectivity imageries with observations revealed that NMM model has simulated well the propagation of the squall line, while the squall line movement was slow in ARW. From the model-simulated spatial plots of cloud top temperature, we can see that NMM model has better captured the genesis, intensification, and propagation of thunder squall than ARW model. The statistical analysis of rainfall indicates the better performance of NMM than ARW. Comparison of model-simulated thunderstorm affected parameters with that of the observed showed that NMM has performed better than ARW in capturing the sharp rise in humidity and drop in temperature. This suggests that NMM model has the potential to provide unique and valuable information for severe thunderstorm forecasters over east Indian region.

  20. Quantifying the effects of LUCCs on local temperatures, precipitation, and wind using the WRF model.

    Science.gov (United States)

    Lian, Lishu; Li, Baofu; Chen, Yaning; Chu, Cuicui; Qin, Yanhua

    2017-09-11

    Land use/cover changes (LUCCs) are an important cause of regional climate changes, but the contribution of LUCCs to regional climate changes is not clear. In this study, the Weather Research and Forecasting (WRF) model and statistical methods were used to investigate changes in meteorologic variables in January, April, July, and October 2013 due to local LUCCs from 1990 to 2010 in southern Shandong province, China. The results indicate that the WRF model simulates temperatures in the region well, with high correlation coefficients (0.86-0.97, p wind speed and direction substantially during these four months: average wind speeds increased by 0.02 and 0.01 m/s in January and October, respectively, and decreased by 0.02 and 0.05 m/s in April and July, respectively. Overall, The LUCCs affected spring temperatures the least and summer precipitation the most.

  1. Water resources management using the WRF-Hydro modelling system: Case-study of the Tono dam in West Africa

    Directory of Open Access Journals (Sweden)

    E. Naabil

    2017-08-01

    Full Text Available Water resources are a major source of economic development for most West African (WA countries. There is, however inadequate information on these resources for the purposes of planning, decision-making and management. This paper explores the potential for using a state of the art hydrological model (WRF-Hydro in a fully coupled (i.e. land surface hydrology-atmosphere mode to assess these water resources, particularly the Tono basin in Ghana. The WRF-Hydro model is an enhanced version of the Weather Research and Forecasting model (WRF which allows simulating river discharge. A 2-domain configuration is chosen: an outer domain at 25 km horizontal resolution encompassing the West African Region and an inner domain at 5 km horizontal resolution centered on the Tono basin. The infiltration partition parameter and Manning’s roughness parameter were calibrated to fit the WRF-Hydro simulated discharge with the observed data. The simulations were done from 1999 to 2003, using 1999 as a spin-up period. The results were compared with TRMM precipitation, CRU temperature and available observed hydrological data. The WRF-Hydro model captured the attributes of the “observed” streamflow estimate; with Nash-Sutcliff efficiency (NSE of 0.78 and Pearson’s correlation of 0.89. Further validation of model results is based on using the output from the WRF-Hydro model as input into a water balance model to simulate the dam levels. WRF-Hydro has shown the potential for use in water resource planning (i.e. with respect to streamflow and dam level estimation. However, the model requires further improvement with respect to calibration of model parameters (e.g. baseflow and saturated hydraulic conductivity considering the effect of the accumulation of model bias in dam level estimation.

  2. Comparison of Two Grid Refinement Approaches for High Resolution Regional Climate Modeling: MPAS vs WRF

    Science.gov (United States)

    Leung, L.; Hagos, S. M.; Rauscher, S.; Ringler, T.

    2012-12-01

    This study compares two grid refinement approaches using global variable resolution model and nesting for high-resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales (MPAS), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context with a focus on the spatial and temporal characteristics of tropical precipitation simulated by the models using the same physics package from the Community Atmosphere Model (CAM4). For MPAS, simulations have been performed with a quasi-uniform resolution global domain at coarse (1 degree) and high (0.25 degree) resolution, and a variable resolution domain with a high-resolution region at 0.25 degree configured inside a coarse resolution global domain at 1 degree resolution. Similarly, WRF has been configured to run on a coarse (1 degree) and high (0.25 degree) resolution tropical channel domain as well as a nested domain with a high-resolution region at 0.25 degree nested two-way inside the coarse resolution (1 degree) tropical channel. The variable resolution or nested simulations are compared against the high-resolution simulations that serve as virtual reality. Both MPAS and WRF simulate 20-day Kelvin waves propagating through the high-resolution domains fairly unaffected by the change in resolution. In addition, both models respond to increased resolution with enhanced precipitation. Grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. However, there are important differences between the anomalous patterns in MPAS and WRF due to differences in the grid refinement approaches and sensitivity of model physics to grid resolution. This study highlights the need for "scale aware" parameterizations in variable resolution and nested regional models.

  3. Application of WRF - SWAT OpenMI 2.0 based models integration for real time hydrological modelling and forecasting

    Science.gov (United States)

    Bugaets, Andrey; Gonchukov, Leonid

    2014-05-01

    Intake of deterministic distributed hydrological models into operational water management requires intensive collection and inputting of spatial distributed climatic information in a timely manner that is both time consuming and laborious. The lead time of the data pre-processing stage could be essentially reduced by coupling of hydrological and numerical weather prediction models. This is especially important for the regions such as the South of the Russian Far East where its geographical position combined with a monsoon climate affected by typhoons and extreme heavy rains caused rapid rising of the mountain rivers water level and led to the flash flooding and enormous damage. The objective of this study is development of end-to-end workflow that executes, in a loosely coupled mode, an integrated modeling system comprised of Weather Research and Forecast (WRF) atmospheric model and Soil and Water Assessment Tool (SWAT 2012) hydrological model using OpenMI 2.0 and web-service technologies. Migration SWAT into OpenMI compliant involves reorganization of the model into a separate initialization, performing timestep and finalization functions that can be accessed from outside. To save SWAT normal behavior, the source code was separated from OpenMI-specific implementation into the static library. Modified code was assembled into dynamic library and wrapped into C# class implemented the OpenMI ILinkableComponent interface. Development of WRF OpenMI-compliant component based on the idea of the wrapping web-service clients into a linkable component and seamlessly access to output netCDF files without actual models connection. The weather state variables (precipitation, wind, solar radiation, air temperature and relative humidity) are processed by automatic input selection algorithm to single out the most relevant values used by SWAT model to yield climatic data at the subbasin scale. Spatial interpolation between the WRF regular grid and SWAT subbasins centroid (which are

  4. Wind waves modelling on the water body with coupled WRF and WAVEWATCH III models

    Science.gov (United States)

    Kuznetsova, Alexandra; Troitskaya, Yuliya; Kandaurov, Alexander; Baydakov, Georgy; Vdovin, Maxim; Papko, Vladislav; Sergeev, Daniil

    2015-04-01

    Simulation of ocean and sea waves is an accepted instrument for the improvement of the weather forecasts. Wave modelling, coupled models modelling is applied to open seas [1] and is less developed for moderate and small inland water reservoirs and lakes, though being of considerable interest for inland navigation. Our goal is to tune the WAVEWATCH III model to the conditions of the inland reservoir and to carry out the simulations of surface wind waves with coupled WRF (Weather Research and Forecasting) and WAVEWATCH III models. Gorky Reservoir, an artificial lake in the central part of the Volga River formed by a hydroelectric dam, was considered as an example of inland reservoir. Comparing to [2] where moderate constant winds (u10 is up to 9 m/s) of different directions blowing steadily all over the surface of the reservoir were considered, here we apply atmospheric model WRF to get wind input to WAVEWATCH III. WRF computations were held on the Yellowstone supercomputer for 4 nested domains with minimum scale of 1 km. WAVEWATCH III model was tuned for the conditions of the Gorky Reservoir. Satellite topographic data on altitudes ranged from 56,6° N to 57,5° N and from 42.9° E to 43.5° E with increments 0,00833 ° in both directions was used. 31 frequencies ranged from 0,2 Hz to 4 Hz and 30 directions were considered. The minimal significant wave height was changed to the lower one. The waves in the model were developing from some initial seeding spectral distribution (Gaussian in frequency and space, cosine in direction). The range of the observed significant wave height in the numerical experiment was from less than 1 cm up to 30 cm. The field experiments were carried out in the south part of the Gorky reservoir from the boat [2, 3]. 1-D spectra of the field experiment were compared with those obtained in the numerical experiments with different parameterizations of flux provided in WAVEWATCH III both with constant wind input and WRF wind input. For all the

  5. Numerical simulations of an advection fog event over Shanghai Pudong International Airport with the WRF model

    Science.gov (United States)

    Lin, Caiyan; Zhang, Zhongfeng; Pu, Zhaoxia; Wang, Fengyun

    2017-10-01

    A series of numerical simulations is conducted to understand the formation, evolution, and dissipation of an advection fog event over Shanghai Pudong International Airport (ZSPD) with the Weather Research and Forecasting (WRF) model. Using the current operational settings at the Meteorological Center of East China Air Traffic Management Bureau, the WRF model successfully predicts the fog event at ZSPD. Additional numerical experiments are performed to examine the physical processes associated with the fog event. The results indicate that prediction of this particular fog event is sensitive to microphysical schemes for the time of fog dissipation but not for the time of fog onset. The simulated timing of the arrival and dissipation of the fog, as well as the cloud distribution, is substantially sensitive to the planetary boundary layer and radiation (both longwave and shortwave) processes. Moreover, varying forecast lead times also produces different simulation results for the fog event regarding its onset and duration, suggesting a trade-off between more accurate initial conditions and a proper forecast lead time that allows model physical processes to spin up adequately during the fog simulation. The overall outcomes from this study imply that the complexity of physical processes and their interactions within the WRF model during fog evolution and dissipation is a key area of future research.

  6. Evaluation of the WRF model for precipitation downscaling on orographic complex islands

    Science.gov (United States)

    Díaz, Juan P.; González, Albano; Expósito, Francisco; Pérez, Juan C.

    2010-05-01

    General Circulation Models (GCMs) have proven to be an effective tool to simulate many aspects of large-scale and global climate. However, their applicability to climate impact studies is limited by their capabilities to resolve regional scale situations. In this sense, dynamical downscaling techniques are an appropriate alternative to estimate high resolution regional climatologies. In this work, the Weather Research and Forecasting model (WRF) has been used to simulate precipitations over the Canary Islands region during 2009. The precipitation patterns over Canary Islands, located at North Atlantic region, show large gradients over a relatively small geographical area due to large scale factors such as Trade Winds regime predominant in the area and mesoscale factors mainly due to the complex terrain. Sensitivity study of simulated WRF precipitations to variations in model setup and parameterizations was carried out. Thus, WRF experiments were performed using two way nesting at 3 km horizontal grid spacing and 28 vertical levels in the Canaries inner domain. The initial and lateral and lower boundary conditions for the outer domain were provided at 6 hourly intervals by NCEP FNL (Final) Operational Global Analysis data on 1.0x1.0 degree resolution interpolated onto the WRF model grid. Numerous model options have been tested, including different microphysics schemes, cumulus parameterizations and nudging configuration Positive-definite moisture advection condition was also checked. Two integration approaches were analyzed: a 1-year continuous long-term integration and a consecutive short-term monthly reinitialized integration. To assess the accuracy of our simulations, model results are compared against observational datasets obtained from a network of meteorological stations in the region. In general, we can observe that the regional model is able to reproduce the spatial distribution of precipitation, but overestimates rainfall, mainly during strong

  7. Regional modelling of polycyclic aromatic hydrocarbons: WRF-Chem-PAH model development and East Asia case studies

    Science.gov (United States)

    Mu, Qing; Lammel, Gerhard; Gencarelli, Christian N.; Hedgecock, Ian M.; Chen, Ying; Přibylová, Petra; Teich, Monique; Zhang, Yuxuan; Zheng, Guangjie; van Pinxteren, Dominik; Zhang, Qiang; Herrmann, Hartmut; Shiraiwa, Manabu; Spichtinger, Peter; Su, Hang; Pöschl, Ulrich; Cheng, Yafang

    2017-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are hazardous pollutants, with increasing emissions in pace with economic development in East Asia, but their distribution and fate in the atmosphere are not yet well understood. We extended the regional atmospheric chemistry model WRF-Chem (Weather Research Forecast model with Chemistry module) to comprehensively study the atmospheric distribution and the fate of low-concentration, slowly degrading semivolatile compounds. The WRF-Chem-PAH model reflects the state-of-the-art understanding of current PAHs studies with several new or updated features. It was applied for PAHs covering a wide range of volatility and hydrophobicity, i.e. phenanthrene, chrysene and benzo[a]pyrene, in East Asia. Temporally highly resolved PAH concentrations and particulate mass fractions were evaluated against observations. The WRF-Chem-PAH model is able to reasonably well simulate the concentration levels and particulate mass fractions of PAHs near the sources and at a remote outflow region of East Asia, in high spatial and temporal resolutions. Sensitivity study shows that the heterogeneous reaction with ozone and the homogeneous reaction with the nitrate radical significantly influence the fate and distributions of PAHs. The methods to implement new species and to correct the transport problems can be applied to other newly implemented species in WRF-Chem.

  8. NASA SPoRT Modeling and Data Assimilation Research and Transition Activities Using WRF, LIS and GSI

    Science.gov (United States)

    Case, Jonathan L.; Blankenship, Clay B.; Zavodsky, Bradley T.; Srikishen, Jayanthi; Berndt, Emily B.

    2014-01-01

    weather research and forecasting ===== The NASA Short-term Prediction Research and Transition (SPoRT) program has numerous modeling and data assimilation (DA) activities in which the WRF model is a key component. SPoRT generates realtime, research satellite products from the MODIS and VIIRS instruments, making the data available to NOAA/NWS partners running the WRF/EMS, including: (1) 2-km northwestern-hemispheric SST composite, (2) daily, MODIS green vegetation fraction (GVF) over CONUS, and (3) NASA Land Information System (LIS) runs of the Noah LSM over the southeastern CONUS. Each of these datasets have been utilized by specific SPoRT partners in local EMS model runs, with select offices evaluating the impacts using a set of automated scripts developed by SPoRT that manage data acquisition and run the NCAR Model Evaluation Tools verification package. SPoRT is engaged in DA research with the Gridpoint Statistical Interpolation (GSI) and Ensemble Kalman Filter in LIS for soil moisture DA. Ongoing DA projects using GSI include comparing the impacts of assimilating Atmospheric Infrared Sounder (AIRS) radiances versus retrieved profiles, and an analysis of extra-tropical cyclones with intense non-convective winds. As part of its Early Adopter activities for the NASA Soil Moisture Active Passive (SMAP) mission, SPoRT is conducting bias correction and soil moisture DA within LIS to improve simulations using the NASA Unified-WRF (NU-WRF) for both the European Space Agency's Soil Moisture Ocean Salinity and upcoming SMAP mission data. SPoRT has also incorporated real-time global GVF data into LIS and WRF from the VIIRS product being developed by NOAA/NESDIS. This poster will highlight the research and transition activities SPoRT conducts using WRF, NU-WRF, EMS, LIS, and GSI.

  9. Optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme for Intel Many Integrated Core (MIC) architecture

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The co-processor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of Xeon Phi will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.3x.

  10. Predicting future US water yield and ecosystem productivity by linking an ecohydrological model to WRF dynamically downscaled climate projections

    Science.gov (United States)

    S. Sun; Ge Sun; Erika Cohen Mack; Steve McNulty; Peter Caldwell; K. Duan; Y. Zhang

    2015-01-01

    Quantifying the potential impacts of climate change on water yield and ecosystem productivity (i.e., carbon balances) is essential to developing sound watershed restoration plans, and climate change adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and Stress Index, WaSSI) with WRF (Weather Research and Forecasting Model)...

  11. Application of WRF/Chem-MADRID and WRF/Polyphemus in Europe - Part 1: Model description and evaluation of meteorological predictions

    Science.gov (United States)

    Zhang, Y.; Sartelet, K.; Wu, S.-Y.; Seigneur, C.

    2013-02-01

    Comprehensive model evaluation and comparison of two 3-D air quality modeling systems (i.e. the Weather Research and Forecast model (WRF)/Polyphemus and WRF with chemistry and the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) (WRF/Chem-MADRID) are conducted over western Europe. Part 1 describes the background information for the model comparison and simulation design, as well as the application of WRF for January and July 2001 over triple-nested domains in western Europe at three horizontal grid resolutions: 0.5°, 0.125°, and 0.025°. Six simulated meteorological variables (i.e. temperature at 2 m (T2), specific humidity at 2 m (Q2), relative humidity at 2 m (RH2), wind speed at 10 m (WS10), wind direction at 10 m (WD10), and precipitation (Precip)) are evaluated using available observations in terms of spatial distribution, domainwide daily and site-specific hourly variations, and domainwide performance statistics. WRF demonstrates its capability in capturing diurnal/seasonal variations and spatial gradients of major meteorological variables. While the domainwide performance of T2, Q2, RH2, and WD10 at all three grid resolutions is satisfactory overall, large positive or negative biases occur in WS10 and Precip even at 0.025°. In addition, discrepancies between simulations and observations exist in T2, Q2, WS10, and Precip at mountain/high altitude sites and large urban center sites in both months, in particular, during snow events or thunderstorms. These results indicate the model's difficulty in capturing meteorological variables in complex terrain and subgrid-scale meteorological phenomena, due to inaccuracies in model initialization parameterization (e.g. lack of soil temperature and moisture nudging), limitations in the physical parameterizations of the planetary boundary layer (e.g. cloud microphysics, cumulus parameterizations, and ice nucleation treatments) as well as limitations in surface heat and moisture budget

  12. Assessment of the Aerosol Optics Component of the Coupled WRF-CMAQ Model usingCARES Field Campaign data and a Single Column Model

    Science.gov (United States)

    The Carbonaceous Aerosols and Radiative Effects Study (CARES), a field campaign held in central California in June 2010, provides a unique opportunity to assess the aerosol optics modeling component of the two-way coupled Weather Research and Forecasting (WRF) – Community Multisc...

  13. Dynamical Downscaling of NASA/GISS ModelE: Continuous, Multi-Year WRF Simulations

    Science.gov (United States)

    Otte, T.; Bowden, J. H.; Nolte, C. G.; Otte, M. J.; Herwehe, J. A.; Faluvegi, G.; Shindell, D. T.

    2010-12-01

    The WRF Model is being used at the U.S. EPA for dynamical downscaling of the NASA/GISS ModelE fields to assess regional impacts of climate change in the United States. The WRF model has been successfully linked to the ModelE fields in their raw hybrid vertical coordinate, and continuous, multi-year WRF downscaling simulations have been performed. WRF will be used to downscale decadal time slices of ModelE for recent past, current, and future climate as the simulations being conducted for the IPCC Fifth Assessment Report become available. This presentation will focus on the sensitivity to interior nudging within the RCM. The use of interior nudging for downscaled regional climate simulations has been somewhat controversial over the past several years but has been recently attracting attention. Several recent studies that have used reanalysis (i.e., verifiable) fields as a proxy for GCM input have shown that interior nudging can be beneficial toward achieving the desired downscaled fields. In this study, the value of nudging will be shown using fields from ModelE that are downscaled using WRF. Several different methods of nudging are explored, and it will be shown that the method of nudging and the choices made with respect to how nudging is used in WRF are critical to balance the constraint of ModelE against the freedom of WRF to develop its own fields.

  14. Sensitivity of an Integrated Mesoscale Atmosphere and Agriculture Land Modeling System (WRF/CMAQ-EPIC) to MODIS Vegetation and Lightning Assimilation

    Science.gov (United States)

    The combined meteorology and air quality modeling system composed of the Weather Research and Forecast (WRF) model and Community Multiscale Air Quality (CMAQ) model is an important decision support tool that is used in research and regulatory decisions related to emissions, meteo...

  15. Intel Many Integrated Core (MIC) architecture optimization strategies for a memory-bound Weather Research and Forecasting (WRF) Goddard microphysics scheme

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Goddard cloud microphysics scheme is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The WRF is a widely used weather prediction system in the world. It development is a done in collaborative around the globe. The Goddard microphysics scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Goddard scheme incorporates a large number of improvements. Thus, we have optimized the code of this important part of WRF. In this paper, we present our results of optimizing the Goddard microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The Intel MIC is capable of executing a full operating system and entire programs rather than just kernels as the GPU do. The MIC coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 4.7x. Furthermore, the same optimizations improved performance on a dual socket Intel Xeon E5-2670 system by a factor of 2.8x compared to the original code.

  16. Evaluation of snowmelt simulation in the Weather Research and Forecasting model

    Science.gov (United States)

    Jin, Jiming; Wen, Lijuan

    2012-05-01

    The objective of this study is to better understand and improve snowmelt simulations in the advanced Weather Research and Forecasting (WRF) model by coupling it with the Community Land Model (CLM) Version 3.5. Both WRF and CLM are developed by the National Center for Atmospheric Research. The automated Snow Telemetry (SNOTEL) station data over the Columbia River Basin in the northwestern United States are used to evaluate snowmelt simulations generated with the coupled WRF-CLM model. These SNOTEL data include snow water equivalent (SWE), precipitation, and temperature. The simulations cover the period of March through June 2002 and focus mostly on the snowmelt season. Initial results show that when compared to observations, WRF-CLM significantly improves the simulations of SWE, which is underestimated when the release version of WRF is coupled with the Noah and Rapid Update Cycle (RUC) land surface schemes, in which snow physics is oversimplified. Further analysis shows that more realistic snow surface energy allocation in CLM is an important process that results in improved snowmelt simulations when compared to that in Noah and RUC. Additional simulations with WRF-CLM at different horizontal spatial resolutions indicate that accurate description of topography is also vital to SWE simulations. WRF-CLM at 10 km resolution produces the most realistic SWE simulations when compared to those produced with coarser spatial resolutions in which SWE is remarkably underestimated. The coupled WRF-CLM provides an important tool for research and forecasts in weather, climate, and water resources at regional scales.

  17. Projecting water yield and ecosystem productivity across the United States by linking an ecohydrological model to WRF dynamically downscaled climate data

    Science.gov (United States)

    Shanlei Sun; Ge Sun; Erika Cohen Mack; Steve McNulty; Peter V. Caldwell; Kai Duan; Yang Zhang

    2016-01-01

    Quantifying the potential impacts of climatechange on water yield and ecosystem productivity is essential to developing sound watershed restoration plans, andecosystem adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and StressIndex, WaSSI) with WRF (Weather Research and Forecasting Model) using dynamically downscaled...

  18. Air Quality Modeling for the Urban Jackson, Mississippi Region Using a High Resolution WRF/Chem Model

    Directory of Open Access Journals (Sweden)

    Shelton J. Swanier

    2011-06-01

    Full Text Available In this study, an attempt was made to simulate the air quality with reference to ozone over the Jackson (Mississippi region using an online WRF/Chem (Weather Research and Forecasting–Chemistry model. The WRF/Chem model has the advantages of the integration of the meteorological and chemistry modules with the same computational grid and same physical parameterizations and includes the feedback between the atmospheric chemistry and physical processes. The model was designed to have three nested domains with the inner-most domain covering the study region with a resolution of 1 km. The model was integrated for 48 hours continuously starting from 0000 UTC of 6 June 2006 and the evolution of surface ozone and other precursor pollutants were analyzed. The model simulated atmospheric flow fields and distributions of NO2 and O3 were evaluated for each of the three different time periods. The GIS based spatial distribution maps for ozone, its precursors NO, NO2, CO and HONO and the back trajectories indicate that all the mobile sources in Jackson, Ridgeland and Madison contributing significantly for their formation. The present study demonstrates the applicability of WRF/Chem model to generate quantitative information at high spatial and temporal resolution for the development of decision support systems for air quality regulatory agencies and health administrators.

  19. Implementation of a WRF-CMAQ Air Quality Modeling System in Bogotá, Colombia

    Science.gov (United States)

    Nedbor-Gross, R.; Henderson, B. H.; Pachon, J. E.; Davis, J. R.; Baublitz, C. B.; Rincón, A.

    2014-12-01

    Due to a continuous economic growth Bogotá, Colombia has experienced air pollution issues in recent years. The local environmental authority has implemented several strategies to curb air pollution that have resulted in the decrease of PM10 concentrations since 2010. However, more activities are necessary in order to meet international air quality standards in the city. The University of Florida Air Quality and Climate group is collaborating with the Universidad de La Salle to prioritize regulatory strategies for Bogotá using air pollution simulations. To simulate pollution, we developed a modeling platform that combines the Weather Research and Forecasting Model (WRF), local emissions, and the Community Multi-scale Air Quality model (CMAQ). This platform is the first of its kind to be implemented in the megacity of Bogota, Colombia. The presentation will discuss development and evaluation of the air quality modeling system, highlight initial results characterizing photochemical conditions in Bogotá, and characterize air pollution under proposed regulatory strategies. The WRF model has been configured and applied to Bogotá, which resides in a tropical climate with complex mountainous topography. Developing the configuration included incorporation of local topography and land-use data, a physics sensitivity analysis, review, and systematic evaluation. The threshold, however, was set based on synthesis of model performance under less mountainous conditions. We will evaluate the impact that differences in autocorrelation contribute to the non-ideal performance. Air pollution predictions are currently under way. CMAQ has been configured with WRF meteorology, global boundary conditions from GEOS-Chem, and a locally produced emission inventory. Preliminary results from simulations show promising performance of CMAQ in Bogota. Anticipated results include a systematic performance evaluation of ozone and PM10, characterization of photochemical sensitivity, and air

  20. The Transition of High-Resolution NASA MODIS Sea Surface Temperatures into the WRF Environmental Modeling System

    Science.gov (United States)

    Case, Jonathan L.; Jedlove, Gary J.; Santos, Pablo; Medlin, Jeffrey M.; Rozumalski, Robert A.

    2009-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) composite at 2-km resolution that has been implemented in version 3 of the National Weather Service (NWS) Weather Research and Forecasting (WRF) Environmental Modeling System (EMS). The WRF EMS is a complete, full physics numerical weather prediction package that incorporates dynamical cores from both the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). The installation, configuration, and execution of either the ARW or NMM models is greatly simplified by the WRF EMS to encourage its use by NWS Weather Forecast Offices (WFOs) and the university community. The WRF EMS is easy to run on most Linux workstations and clusters without the need for compilers. Version 3 of the WRF EMS contains the most recent public release of the WRF-NMM and ARW modeling system (version 3 of the ARW is described in Skamarock et al. 2008), the WRF Pre-processing System (WPS) utilities, and the WRF Post-Processing program. The system is developed and maintained by the NWS National Science Operations Officer Science and Training Resource Coordinator. To initialize the WRF EMS with high-resolution MODIS SSTs, SPoRT developed the composite product consisting of MODIS SSTs over oceans and large lakes with the NCEP Real-Time Global (RTG) filling data over land points. Filling the land points is required due to minor inconsistencies between the WRF land-sea mask and that used to generate the MODIS SST composites. This methodology ensures a continuous field that adequately initializes all appropriate arrays in WRF. MODIS composites covering the Gulf of Mexico, western Atlantic Ocean and the Caribbean are generated daily at 0400, 0700, 1600, and 1900 UTC corresponding to overpass times of the NASA Aqua and Terra polar orbiting satellites. The MODIS SST product is output in gridded binary-1 (GRIB-1) data

  1. Forecasting summertime surface temperature and precipitation in the Mexico City metropolitan area: sensitivity of the WRF model to land cover changes

    Science.gov (United States)

    López-Bravo, Clemente; Caetano, Ernesto; Magaña, Víctor

    2018-02-01

    Changes in the frequency and intensity of severe hydrometeorological events in recent decades in the Mexico City Metropolitan Area have motivated the development of weather warning systems. The weather forecasting system for this region was evaluated in sensitivity studies using the Weather Research and Forecasting Model (WRF) for July 2014, a summer time month. It was found that changes in the extent of the urban area and associated changes in thermodynamic and dynamic variables have induced local circulations that affect the diurnal cycles of temperature, precipitation, and wind fields. A newly implemented configuration (land cover update and Four-Dimensional Data Assimilation (FDDA)) of the WRF model has improved the adjustment of the precipitation field to the orography. However, errors related to the depiction of convection due to parameterizations and microphysics remains a source of uncertainty in weather forecasting in this region.

  2. The WRF model forecast-derived low-level wind shear climatology over the United States great plains

    Energy Technology Data Exchange (ETDEWEB)

    Storm, B. [Wind Science and Engineering Research Center, Texas Tech University, Lubbock, TX (United States); Basu, S. [Atmospheric Science Group, Department of Geosciences, Texas Tech University, Lubbock, TX (United States)

    2010-07-01

    For wind resource assessment projects, it is common practice to use a power-law relationship (U(z) {proportional_to} z{sup {alpha}}) and a fixed shear exponent ({alpha} = 1/7) to extrapolate the observed wind speed from a low measurement level to high turbine hub-heights. However, recent studies using tall-tower observations have found that the annual average shear exponents at several locations over the United States Great Plains (USGP) are significantly higher than 1/7. These findings highlight the critical need for detailed spatio-temporal characterizations of wind shear climatology over the USGP, where numerous large wind farms will be constructed in the foreseeable future. In this paper, a new generation numerical weather prediction model - the Weather Research and Forecasting (WRF) model, a fast and relatively inexpensive alternative to time-consuming and costly tall-tower projects, is utilized to determine whether it can reliably estimate the shear exponent and the magnitude of the directional shear at any arbitrary location over the USGP. Our results indicate that the WRF model qualitatively captures several low-level wind shear characteristics. However, there is definitely room for physics parameterization improvements for the WRF model to reliably represent the lower part of the atmospheric boundary layer. (author)

  3. Multirule Based Diagnostic Approach for the Fog Predictions Using WRF Modelling Tool

    Directory of Open Access Journals (Sweden)

    Swagata Payra

    2014-01-01

    Full Text Available The prediction of fog onset remains difficult despite the progress in numerical weather prediction. It is a complex process and requires adequate representation of the local perturbations in weather prediction models. It mainly depends upon microphysical and mesoscale processes that act within the boundary layer. This study utilizes a multirule based diagnostic (MRD approach using postprocessing of the model simulations for fog predictions. The empiricism involved in this approach is mainly to bridge the gap between mesoscale and microscale variables, which are related to mechanism of the fog formation. Fog occurrence is a common phenomenon during winter season over Delhi, India, with the passage of the western disturbances across northwestern part of the country accompanied with significant amount of moisture. This study implements the above cited approach for the prediction of occurrences of fog and its onset time over Delhi. For this purpose, a high resolution weather research and forecasting (WRF model is used for fog simulations. The study involves depiction of model validation and postprocessing of the model simulations for MRD approach and its subsequent application to fog predictions. Through this approach model identified foggy and nonfoggy days successfully 94% of the time. Further, the onset of fog events is well captured within an accuracy of 30–90 minutes. This study demonstrates that the multirule based postprocessing approach is a useful and highly promising tool in improving the fog predictions.

  4. Application of WRF/Chem-MADRID and WRF/Polyphemus in Europe - Part 1: Model description, evaluation of meteorological predictions, and aerosol-meteorology interactions

    Science.gov (United States)

    Zhang, Y.; Sartelet, K.; Wu, S.-Y.; Seigneur, C.

    2013-07-01

    Comprehensive model evaluation and comparison of two 3-D air quality modeling systems (i.e., the Weather Research and Forecast model (WRF)/Polyphemus and WRF with chemistry and the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) (WRF/Chem-MADRID)) are conducted over Western Europe. Part 1 describes the background information for the model comparison and simulation design, the application of WRF for January and July 2001 over triple-nested domains in Western Europe at three horizontal grid resolutions: 0.5°, 0.125°, and 0.025°, and the effect of aerosol/meteorology interactions on meteorological predictions. Nine simulated meteorological variables (i.e., downward shortwave and longwave radiation fluxes (SWDOWN and LWDOWN), outgoing longwave radiation flux (OLR), temperature at 2 m (T2), specific humidity at 2 m (Q2), relative humidity at 2 m (RH2), wind speed at 10 m (WS10), wind direction at 10 m (WD10), and precipitation (Precip)) are evaluated using available observations in terms of spatial distribution, domainwide daily and site-specific hourly variations, and domainwide performance statistics. The vertical profiles of temperature, dew points, and wind speed/direction are also evaluated using sounding data. WRF demonstrates its capability in capturing diurnal/seasonal variations and spatial gradients and vertical profiles of major meteorological variables. While the domainwide performance of LWDOWN, OLR, T2, Q2, and RH2 at all three grid resolutions is satisfactory overall, large positive or negative biases occur in SWDOWN, WS10, and Precip even at 0.125° or 0.025° in both months and in WD10 in January. In addition, discrepancies between simulations and observations exist in T2, Q2, WS10, and Precip at mountain/high altitude sites and large urban center sites in both months, in particular, during snow events or thunderstorms. These results indicate the model's difficulty in capturing meteorological variables in complex terrain and

  5. Application of WRF/Chem-MADRID and WRF/Polyphemus in Europe – Part 1: Model description, evaluation of meteorological predictions, and aerosol–meteorology interactions

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2013-07-01

    Full Text Available Comprehensive model evaluation and comparison of two 3-D air quality modeling systems (i.e., the Weather Research and Forecast model (WRF/Polyphemus and WRF with chemistry and the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID (WRF/Chem-MADRID are conducted over Western Europe. Part 1 describes the background information for the model comparison and simulation design, the application of WRF for January and July 2001 over triple-nested domains in Western Europe at three horizontal grid resolutions: 0.5°, 0.125°, and 0.025°, and the effect of aerosol/meteorology interactions on meteorological predictions. Nine simulated meteorological variables (i.e., downward shortwave and longwave radiation fluxes (SWDOWN and LWDOWN, outgoing longwave radiation flux (OLR, temperature at 2 m (T2, specific humidity at 2 m (Q2, relative humidity at 2 m (RH2, wind speed at 10 m (WS10, wind direction at 10 m (WD10, and precipitation (Precip are evaluated using available observations in terms of spatial distribution, domainwide daily and site-specific hourly variations, and domainwide performance statistics. The vertical profiles of temperature, dew points, and wind speed/direction are also evaluated using sounding data. WRF demonstrates its capability in capturing diurnal/seasonal variations and spatial gradients and vertical profiles of major meteorological variables. While the domainwide performance of LWDOWN, OLR, T2, Q2, and RH2 at all three grid resolutions is satisfactory overall, large positive or negative biases occur in SWDOWN, WS10, and Precip even at 0.125° or 0.025° in both months and in WD10 in January. In addition, discrepancies between simulations and observations exist in T2, Q2, WS10, and Precip at mountain/high altitude sites and large urban center sites in both months, in particular, during snow events or thunderstorms. These results indicate the model's difficulty in capturing meteorological variables in complex

  6. Offshore Wind Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea

    Directory of Open Access Journals (Sweden)

    Rui Chang

    2015-01-01

    Full Text Available Using accurate inputs of wind speed is crucial in wind resource assessment, as predicted power is proportional to the wind speed cubed. This study outlines a methodology for combining multiple ocean satellite winds and winds from WRF simulations in order to acquire the accurate reconstructed offshore winds which can be used for offshore wind resource assessment. First, wind speeds retrieved from Synthetic Aperture Radar (SAR and Scatterometer ASCAT images were validated against in situ measurements from seven coastal meteorological stations in South China Sea (SCS. The wind roses from the Navy Operational Global Atmospheric Prediction System (NOGAPS and ASCAT agree well with these observations from the corresponding in situ measurements. The statistical results comparing in situ wind speed and SAR-based (ASCAT-based wind speed for the whole co-located samples show a standard deviation (SD of 2.09 m/s (1.83 m/s and correlation coefficient of R 0.75 (0.80. When the offshore winds (i.e., winds directed from land to sea are excluded, the comparison results for wind speeds show an improvement of SD and R, indicating that the satellite data are more credible over the open ocean. Meanwhile, the validation of satellite winds against the same co-located mast observations shows a satisfactory level of accuracy which was similar for SAR and ASCAT winds. These satellite winds are then assimilated into the Weather Research and Forecasting (WRF Model by WRF Data Assimilation (WRFDA system. Finally, the wind resource statistics at 100 m height based on the reconstructed winds have been achieved over the study area, which fully combines the offshore wind information from multiple satellite data and numerical model. The findings presented here may be useful in future wind resource assessment based on satellite data.

  7. Intercomparison of Streamflow Simulations between WRF-Hydro and Hydrology Laboratory-Research Distributed Hydrologic Model Frameworks

    Science.gov (United States)

    KIM, J.; Smith, M. B.; Koren, V.; Salas, F.; Cui, Z.; Johnson, D.

    2017-12-01

    The National Oceanic and Atmospheric Administration (NOAA)-National Weather Service (NWS) developed the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) framework as an initial step towards spatially distributed modeling at River Forecast Centers (RFCs). Recently, the NOAA/NWS worked with the National Center for Atmospheric Research (NCAR) to implement the National Water Model (NWM) for nationally-consistent water resources prediction. The NWM is based on the WRF-Hydro framework and is run at a 1km spatial resolution and 1-hour time step over the contiguous United States (CONUS) and contributing areas in Canada and Mexico. In this study, we compare streamflow simulations from HL-RDHM and WRF-Hydro to observations from 279 USGS stations. For streamflow simulations, HL-RDHM is run on 4km grids with the temporal resolution of 1 hour for a 5-year period (Water Years 2008-2012), using a priori parameters provided by NOAA-NWS. The WRF-Hydro streamflow simulations for the same time period are extracted from NCAR's 23 retrospective run of the NWM (version 1.0) over CONUS based on 1km grids. We choose 279 USGS stations which are relatively less affected by dams or reservoirs, in the domains of six different RFCs. We use the daily average values of simulations and observations for the convenience of comparison. The main purpose of this research is to evaluate how HL-RDHM and WRF-Hydro perform at USGS gauge stations. We compare daily time-series of observations and both simulations, and calculate the error values using a variety of error functions. Using these plots and error values, we evaluate the performances of HL-RDHM and WRF-Hydro models. Our results show a mix of model performance across geographic regions.

  8. Dust modeling over East Asia during the summer of 2010 using the WRF-Chem model

    Science.gov (United States)

    Zhang, B.; Huang, J.; Chen, S.

    2017-12-01

    An intense summer dust storm over East Asia during June 24-27, 2010, was systematically analyzed using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and a variety of in situ measurements and satellite retrievals. The results showed that the WRF-Chem model captured the spatial and temporal distributions of meteorological factors and dust aerosols over East Asia. This summer dust storm was initiated by the approach of a transverse trough in the northwestern Xinjiang. Because of the passage of the cutoff-low, a large amount of cold air was transported southward and further enhanced in the narrow valleys of the Altai and Tianshan Mountains, which resulted in higher wind speeds and huge dust emissions over the Taklimakan Desert (TD). Dust emission fluxes over the TD were as high as 54 μg m-2 s-1 on June 25th. The dust aerosols from the TD then swept across Inner Mongolia, Ningxia and Mongolia, and some were also transported eastward to Beijing, Tianjin, the Hebei region, and even South Korea and Japan. The simulations further showed that summer dust over East Asia exerts an important influence on the radiation budget in the Earth-atmosphere system. Dust heat the atmosphere at a maximum heating rate of 0.14 k day-1, effectively changing the vertical stability of the atmosphere and affecting climate change at regional and even global scales. The dust event-averaged direct radiative forcing induced by dust particles over the TD at all-sky was -6.0, -16.8 and 10.8 W m-2 at the top of the atmosphere, the surface, and in the atmosphere, respectively.

  9. Sensitivity of the Community Multiscale Air Quality (CMAQ model v4.7 results for the eastern United States to MM5 and WRF meteorological drivers

    Directory of Open Access Journals (Sweden)

    K. W. Appel

    2010-02-01

    Full Text Available This paper presents a comparison of the operational performances of two Community Multiscale Air Quality (CMAQ model v4.7 simulations that utilize input data from the 5th-generation Mesoscale Model (MM5 and the Weather Research and Forecasting (WRF meteorological models. Two sets of CMAQ model simulations were performed for January and August 2006. One set utilized MM5 meteorology (MM5-CMAQ and the other utilized WRF meteorology (WRF-CMAQ, while all other model inputs and options were kept the same. For January, predicted ozone (O3 mixing ratios were higher in the Southeast and lower Mid-west regions in the WRF-CMAQ simulation, resulting in slightly higher bias and error as compared to the MM5-CMAQ simulations. The higher predicted O3 mixing ratios are attributed to less dry deposition of O3 in the WRF-CMAQ simulation due to differences in the calculation of the vegetation fraction between the MM5 and WRF models. The WRF-CMAQ results showed better performance for particulate sulfate (SO42−, similar performance for nitrate (NO3, and slightly worse performance for nitric acid (HNO3, total carbon (TC and total fine particulate (PM2.5 mass than the corresponding MM5-CMAQ results. For August, predictions of O3 were notably higher in the WRF-CMAQ simulation, particularly in the southern United States, resulting in increased model bias. Concentrations of predicted particulate SO42− were lower in the region surrounding the Ohio Valley and higher along the Gulf of Mexico in the WRF-CMAQ simulation, contributing to poorer model performance. The primary causes of the differences in the MM5-CMAQ and WRF-CMAQ simulations appear to be due to differences in the calculation of wind speed, planetary boundary layer height, cloud cover and the friction velocity (u in the MM5 and WRF model simulations, while

  10. A framework for WRF to WRF-IBM grid nesting to enable multiscale simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wiersema, David John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Berkeley, CA (United States); Lundquist, Katherine A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chow, Fotini Katapodes [Univ. of California, Berkeley, CA (United States)

    2016-09-29

    With advances in computational power, mesoscale models, such as the Weather Research and Forecasting (WRF) model, are often pushed to higher resolutions. As the model’s horizontal resolution is refined, the maximum resolved terrain slope will increase. Because WRF uses a terrain-following coordinate, this increase in resolved terrain slopes introduces additional grid skewness. At high resolutions and over complex terrain, this grid skewness can introduce large numerical errors that require methods, such as the immersed boundary method, to keep the model accurate and stable. Our implementation of the immersed boundary method in the WRF model, WRF-IBM, has proven effective at microscale simulations over complex terrain. WRF-IBM uses a non-conforming grid that extends beneath the model’s terrain. Boundary conditions at the immersed boundary, the terrain, are enforced by introducing a body force term to the governing equations at points directly beneath the immersed boundary. Nesting between a WRF parent grid and a WRF-IBM child grid requires a new framework for initialization and forcing of the child WRF-IBM grid. This framework will enable concurrent multi-scale simulations within the WRF model, improving the accuracy of high-resolution simulations and enabling simulations across a wide range of scales.

  11. Dynamical and statistical-dynamical modelling of wind farm flows with WRF

    DEFF Research Database (Denmark)

    Volker, Patrick; Badger, Jake; Hahmann, Andrea N.

    2016-01-01

    the power production of a target wind farm and (II) how large wind farms can get if they are to remain efficient and productive power generators. The modelling of wind farm wake flows is challenging, since it includes processes from the micro- to mesoscale meteorology. We use the Weather Research......A pledge to increase the share of renewable energies has led to a focus on offshore wind energy in many western European countries. With an increasing number of offshore wind farms to be installed it becomes important to understand (I) the degree to which wakes from neighbouring wind farms affect...... and Forecast (WRF) model that allows us to simulate mesoscale features of wind farm wakes. Its limited horizontal resolution – in microscale terms – however, requires flow characteristics, such as single turbine wakes, to be parametrised....

  12. Regional Modeling of Dust Mass Balance and Radiative Forcing over East Asia using WRF-Chem

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Siyu; Zhao, Chun; Qian, Yun; Leung, Lai-Yung R.; Huang, J.; Huang, Zhongwei; Bi, Jianrong; Zhang, Wu; Shi, Jinsen; Yang, Lei; Li, Deshuai; Li, Jinxin

    2014-12-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) is used to investigate the seasonal and annual variations of mineral dust over East Asia during 2007-2011, with a focus on the dust mass balance and radiative forcing. A variety of measurements from in-stu and satellite observations have been used to evaluate simulation results. Generally, WRF-Chem reproduces not only the column variability but also the vertical profile and size distribution of mineral dust over and near the dust source regions of East Asia. We investigate the dust lifecycle and the factors that control the seasonal and spatial variations of dust mass balance and radiative forcing over the seven sub-regions of East Asia, i.e. source regions, the Tibetan Plateau, Northern China, Southern China, the ocean outflow region, and Korea-Japan regions. Results show that, over the source regions, transport and dry deposition are the two dominant sinks. Transport contributes to ~30% of the dust sink over the source regions. Dust results in a surface cooling of up to -14 and -10 W m-2, atmospheric warming of up to 20 and 15 W m-2, and TOA cooling of -5 and -8 W m-2 over the two major dust source regions of East Asia, respectively. Over the Tibetan Plateau, transport is the dominant source with a peak in summer. Over identified outflow regions, maximum dust mass loading in spring is contributed by the transport. Dry and wet depositions are the comparably dominant sinks, but wet deposition is larger than dry deposition over the Korea-Japan region, particularly in spring (70% versus 30%). The WRF-Chem simulations can generally capture the measured features of dust aerosols and its radaitve properties and dust mass balance over East Asia, which provides confidence for use in further investigation of dust impact on climate over East Asia.

  13. Investigating the Effects of Grid Resolution of WRF Model for Simulating the Atmosphere for use in the Study of Wake Turbulence

    Science.gov (United States)

    Prince, Alyssa; Trout, Joseph; di Mercurio, Alexis

    2017-01-01

    The Weather Research and Forecasting (WRF) Model is a nested-grid, mesoscale numerical weather prediction system maintained by the Developmental Testbed Center. The model simulates the atmosphere by integrating partial differential equations, which use the conservation of horizontal momentum, conservation of thermal energy, and conservation of mass along with the ideal gas law. This research investigated the possible use of WRF in investigating the effects of weather on wing tip wake turbulence. This poster shows the results of an investigation into the accuracy of WRF using different grid resolutions. Several atmospheric conditions were modeled using different grid resolutions. In general, the higher the grid resolution, the better the simulation, but the longer the model run time. This research was supported by Dr. Manuel A. Rios, Ph.D. (FAA) and the grant ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA'' (13-G-006). Dr. Manuel A. Rios, Ph.D. (FAA), and the grant ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA''

  14. Prediction of tropical cyclone over North Indian Ocean using WRF model: sensitivity to scatterometer winds, ATOVS and ATMS radiances

    KAUST Repository

    Dodla, Venkata B.

    2016-05-03

    Tropical cyclone prediction, in terms of intensification and movement, is important for disaster management and mitigation. Hitherto, research studies were focused on this issue that lead to improvement in numerical models, initial data with data assimilation, physical parameterizations and application of ensemble prediction. Weather Research and Forecasting (WRF) model is the state-of-art model for cyclone prediction. In the present study, prediction of tropical cyclone (Phailin, 2013) that formed in the North Indian Ocean (NIO) with and without data assimilation using WRF model has been made to assess impacts of data assimilation. WRF model was designed to have nested two domains of 15 and 5 km resolutions. In the present study, numerical experiments are made without and with the assimilation of scatterometer winds, and radiances from ATOVS and ATMS. The model performance was assessed in respect to the movement and intensification of cyclone. ATOVS data assimilation experiment had produced the best prediction with least errors less than 100 km up to 60 hours and producing pre-deepening and deepening periods accurately. The Control and SCAT wind assimilation experiments have shown good track but the errors were 150-200 km and gradual deepening from the beginning itself instead of sudden deepening.

  15. PENGGUNAAN SKEMA KONVEKTIF MODEL CUACA WRF (BETTS MILLER JANJIC, KAIN FRITSCH DAN GRELL 3D ENSEMBLE (Studi kasus: Surabaya dan Jakarta

    Directory of Open Access Journals (Sweden)

    Roni Kurniawan

    2015-01-01

    Full Text Available Pada kajian ini dilakukan evaluasi penggunaan beberapa skema konvektif pada model WRF (Weather Research and Forecasting untuk prediksi cuaca di wilayah Indonesia. Terdapat tiga skema konvektif yang akan dievaluasi yaitu; skema konvektif cumulus BMJ (Betts Miller Janjic, KF (Kain Fritsch, dan GD (Grell 3D ensemble. Data yang digunakan untuk evaluasi adalah data curah hujan per 3 jam dan data angin per 12 jam (level ketinggian; permukaan, 850, 500, 250 mb dari hasil pengolahan model WRF dan observasi selama periode bulan Agustus 2011 dan Februari 2012 di stasiun Juanda-Surabaya dan Cengkareng-Jakarta. Hasil verifikasi dari tiga skema konvektif pada model WRF terhadap data observasi menunjukkan bahwa untuk prakiraan curah hujan, penggunaan skema konvektif BMJ lebih baik dari skema KF dan GD, dan untuk prakiraan arah dan kecepatan angin skema BMJ dan GD relatif lebih baik dari skema KF. Berdasarkan analisis hasil verifikasi yang diperoleh, pemilihan skema konvektif cumulus BMJ cenderung lebih baik dari skema konvektif KF dan GD untuk di aplikasikan pada model WRF.   In this study, the use of some convective schemes on the model WRF (Weather Research and Forecasting for weather prediction in Indonesian region has been evaluated. There are two models evaluated; BMJ cumulus convective scheme (Betts Miller Janjic, KF (Kain Fritsch, and GD (Grell 3D ensemble. The data used in the evaluation are the 3 hourly rainfall data, and the 12 hourly wind data (level height; surface, 850, 500, 250mb from the WRF models and observation processing during August 2011 and February 2012 period at the Juanda-Surabaya and Cengkareng-Jakarta stations. The results of the verification of the three convective schemes in WRF models against observation data indicate that for precipitation forecasts, the application of the BMJ convective scheme is better than the KF and GD schemes, and for direction and wind speed forecast, BMJ and GD schemes is relatively better than the KF

  16. Downscaling with a nested regional climate model in near-surface fields over the contiguous United States: WRF dynamical downscaling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiali [Environmental Science Division, Argonne National Laboratory, Argonne Illinois USA; Kotamarthi, Veerabhadra R. [Environmental Science Division, Argonne National Laboratory, Argonne Illinois USA

    2014-07-27

    The Weather Research and Forecasting (WRF) model is used for dynamic downscaling of 2.5 degree National Centers for Environmental Prediction-U.S. Department of Energy Reanalysis II (NCEP-R2) data for 1980-2010 at 12 km resolution over most of North America. The model's performance for surface air temperature and precipitation is evaluated by comparison with high-resolution observational data sets. The model's ability to add value is investigated by comparison with NCEP-R2 data and a 50 km regional climate simulation. The causes for major model bias are studied through additional sensitivity experiments with various model setup/integration approaches and physics representations. The WRF captures the main features of the spatial patterns and annual cycles of air temperature and precipitation over most of the contiguous United States. However, simulated air temperatures over the south central region and precipitation over the Great Plains and the Southwest have significant biases. Allowing longer spin-up time, reducing the nudging strength, or replacing the WRF Single-Moment 6-class microphysics with Morrison microphysics reduces the bias over some subregions. However, replacing the Grell-Devenyi cumulus parameterization with Kain-Fritsch shows no improvement. The 12 km simulation does add value above the NCEP-R2 data and the 50 km simulation over mountainous and coastal zones.

  17. Preliminary validation of WRF model in two Arctic fjords, Hornsund and Porsanger

    Science.gov (United States)

    Aniskiewicz, Paulina; Stramska, Małgorzata

    2017-04-01

    Our research is focused on development of efficient modeling system for arctic fjords. This tool should include high-resolution meteorological data derived using downscaling approach. In this presentation we have focused on modeling, with high spatial resolution, of the meteorological conditions in two Arctic fjords: Hornsund (H), located in the western part of Svalbard archipelago and Porsanger (P) located in the coastal waters of the Barents Sea. The atmospheric downscaling is based on The Weather Research and Forecasting Model (WRF, www.wrf-model.org) with polar stereographic projection. We have created two parent domains with grid point distances of about 3.2 km (P) and 3.0 km (H) and with nested domains (almost 5 times higher resolution than parent domains). We tested what is the impact of the spatial resolution of the model on derived meteorological quantities. For both fjords the input topography data resolution is 30 sec. To validate the results we have used meteorological data from the Norwegian Meteorological Institute for stations Lakselv (L) and Honningsvåg (Ho) located in the inner and outer parts of the Porsanger fjord as well as from station in the outer part of the Hornsund fjord. We have estimated coefficients of determination (r2), statistical errors (St) and systematic errors (Sy) between measured and modelled air temperature and wind speed at each station. This approach will allow us to create high resolution spatially variable meteorological fields that will serve as forcing for numerical models of the fjords. We will investigate the role of different meteorological quantities (e. g. wind, solar insolation, precipitation) on hydrohraphic processes in fjords. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018. This work was also funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support comes from the

  18. (WRFDA) for WRF non-hydrostatic mesoscale model

    Indian Academy of Sciences (India)

    Sujata Pattanayak

    2018-05-22

    May 22, 2018 ... Keywords. WRF-NMM; WRFDA; single observation test; eigenvalues; eigenvector; correlation; tropical .... The per- turbation variables here are defined as deviations ..... Synop, Sound, Metar, Pilot, Buoy, Ships, Airep,. Geoamv ...

  19. Confronting the WRF and RAMS mesoscale models with innovative observations in the Netherlands: Evaluating the boundary layer heat budget

    Science.gov (United States)

    Steeneveld, G. J.; Tolk, L. F.; Moene, A. F.; Hartogensis, O. K.; Peters, W.; Holtslag, A. A. M.

    2011-12-01

    The Weather Research and Forecasting Model (WRF) and the Regional Atmospheric Mesoscale Model System (RAMS) are frequently used for (regional) weather, climate and air quality studies. This paper covers an evaluation of these models for a windy and calm episode against Cabauw tower observations (Netherlands), with a special focus on the representation of the physical processes in the atmospheric boundary layer (ABL). In addition, area averaged sensible heat flux observations by scintillometry are utilized which enables evaluation of grid scale model fluxes and flux observations at the same horizontal scale. Also, novel ABL height observations by ceilometry and of the near surface longwave radiation divergence are utilized. It appears that WRF in its basic set-up shows satisfactory model results for nearly all atmospheric near surface variables compared to field observations, while RAMS needed refining of its ABL scheme. An important inconsistency was found regarding the ABL daytime heat budget: Both model versions are only able to correctly forecast the ABL thermodynamic structure when the modeled surface sensible heat flux is much larger than both the eddy-covariance and scintillometer observations indicate. In order to clarify this discrepancy, model results for each term of the heat budget equation is evaluated against field observations. Sensitivity studies and evaluation of radiative tendencies and entrainment reveal that possible errors in these variables cannot explain the overestimation of the sensible heat flux within the current model infrastructure.

  20. Effect of land cover on atmospheric processes and air quality over the continental United States – a NASA Unified WRF (NU-WRF model study

    Directory of Open Access Journals (Sweden)

    Z. Tao

    2013-07-01

    Full Text Available The land surface plays a crucial role in regulating water and energy fluxes at the land–atmosphere (L–A interface and controls many processes and feedbacks in the climate system. Land cover and vegetation type remains one key determinant of soil moisture content that impacts air temperature, planetary boundary layer (PBL evolution, and precipitation through soil-moisture–evapotranspiration coupling. In turn, it will affect atmospheric chemistry and air quality. This paper presents the results of a modeling study of the effect of land cover on some key L–A processes with a focus on air quality. The newly developed NASA Unified Weather Research and Forecast (NU-WRF modeling system couples NASA's Land Information System (LIS with the community WRF model and allows users to explore the L–A processes and feedbacks. Three commonly used satellite-derived land cover datasets – i.e., from the US Geological Survey (USGS and University of Maryland (UMD, which are based on the Advanced Very High Resolution Radiometer (AVHRR, and from the Moderate Resolution Imaging Spectroradiometer (MODIS – bear large differences in agriculture, forest, grassland, and urban spatial distributions in the continental United States, and thus provide an excellent case to investigate how land cover change would impact atmospheric processes and air quality. The weeklong simulations demonstrate the noticeable differences in soil moisture/temperature, latent/sensible heat flux, PBL height, wind, NO2/ozone, and PM2.5 air quality. These discrepancies can be traced to associate with the land cover properties, e.g., stomatal resistance, albedo and emissivity, and roughness characteristics. It also implies that the rapid urban growth may have complex air quality implications with reductions in peak ozone but more frequent high ozone events.

  1. Study of thermal environment in Jingjintang urban agglomeration based on WRF model and Landsat data

    International Nuclear Information System (INIS)

    Huang, Q N; Cao, Z Q; Guo, H D; Xi, X H; Li, X W

    2014-01-01

    In recent decades, unprecedented urban expansion has taken place in developing countries resulting in the emergence of megacities or urban agglomeration. It has been highly concerned by many countries about a variety of urban environmental issues such as greenhouse gas emissions and urban heat island phenomenon associated with urbanization. Generally, thermal environment is monitored by remote sensing satellite data. This method is usually limited by weather and repeated cycle. Another approach is relied on numerical simulation based on models. In the study, these two means are combined to study the thermal environment of Jingjintang urban agglomeration. The high temperature processes of the study area in 2009 and 1990s are simulated by using WRF (the Weather Research and Forecasting Model) coupled with UCM (Urban Canopy Model) and the urban impervious surface estimated from Landsat-5 TM data using support vector machine. Results show that the trend of simulated air temperature (2 meter) is in accord with observed air temperature. Moreover, it indicates the differences of air temperature and Land Surface Temperature caused by the urbanization efficiently. The UHI effect at night is stronger than that in the day. The maximum difference of LST reaches to 8–10°C for new build-up area at night. The method provided in this research can be used to analyze impacts on urban thermal environment caused by urbanization and it also provides means on thermal environment monitoring and prediction which will benefit the coping capacity of extreme event

  2. How reliable is the offline couple of WRF and VIC model? And how does high quality land cover data impact the VIC model simulation?

    Science.gov (United States)

    Tang, C.; Dennis, R. L.

    2012-12-01

    First, the ability of the offline coupling of Weather Research & Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) model to produce hydrological and climate variables was evaluated. The performance of the offline couple of WRF and VIC was assessed with respect to key simulated variables through a comparison with the calibrated VIC model simulation. A spatiotemporal comparison of the simulated evaporation (ET), soil moisture (SM), runoff, and baseflow produced by the VIC calibrated run (base data) and by the offline coupling run was conducted. The results showed that the offline couple of VIC with WRF was able to achieve good agreement in the simulation of monthly and daily soil moisture, and monthly evaporation. This suggests the VIC coupling should function without causing a large change in the moisture budget. However, the offline coupling showed most disagreement in daily and monthly runoff, and baseflow which is related to errors in WRF precipitation. Second, the sensitivity of the VIC model to the land cover was assessed by performing a sensitivity simulation using the National Land Cover Database (NLCD) instead of the older NLDAS/AVHRR data. Improved land cover is shown to achieve more accurate simulation of the streamflow.

  3. A Distributed Hydrological model Forced by DIMP2 Data and the WRF Mesoscale model

    Science.gov (United States)

    Wayand, N. E.

    2010-12-01

    Forecasted warming over the next century will drastically reduce seasonal snowpack that provides 40% of the world’s drinking water. With increased climate warming, droughts may occur more frequently, which will increase society’s reliance on this same summer snowpack as a water supply. This study aims to reduce driving data errors that lead to poor simulations of snow ablation and accumulation, and streamflow. Results from the Distributed Hydrological Model Intercomparison Project Phase 2 (DMIP2) project using the Distributed Hydrology Soil and Vegetation Model (DHSVM) highlighted the critical need for accurate driving data that distributed models require. Currently, the meteorological driving data for distributed hydrological models commonly rely on interpolation techniques between a network of observational stations, as well as historical monthly means. This method is limited by two significant issues: snowpack is stored at high elevations, where interpolation techniques perform poorly due to sparse observations, and historic climatological means may be unsuitable in a changing climate. Mesoscale models may provide a physically-based approach to supplement surface observations over high-elevation terrain. Initial results have shown that while temperature lapse rates are well represented by multiple mesoscale models, significant precipitation biases are dependent on the particular model microphysics. We evaluate multiple methods of downscaling surface variables from the Weather and Research Forecasting (WRF) model that are then used to drive DHSVM over the North Fork American River basin in California. A comparison between each downscaled driving data set and paired DHSVM results to observations will determine how much improvement in simulated streamflow and snowpack are gained at the expense of each additional degree of downscaling. Our results from DMIP2 will be used as a benchmark for the best available DHSVM run using all available observational data. The

  4. WRF-based fire risk modelling and evaluation for years 2010 and 2012 in Poland

    Science.gov (United States)

    Stec, Magdalena; Szymanowski, Mariusz; Kryza, Maciej

    2016-04-01

    Wildfires are one of the main ecosystems' disturbances for forested, seminatural and agricultural areas. They generate significant economic loss, especially in forest management and agriculture. Forest fire risk modeling is therefore essential e.g. for forestry administration. In August 2015 a new method of forest fire risk forecasting entered into force in Poland. The method allows to predict a fire risk level in a 4-degree scale (0 - no risk, 3 - highest risk) and consists of a set of linearized regression equations. Meteorological information is used as predictors in regression equations, with air temperature, relative humidity, average wind speed, cloudiness and rainfall. The equations include also pine litter humidity as a measure of potential fuel characteristics. All these parameters are measured routinely in Poland at 42 basic and 94 auxiliary sites. The fire risk level is estimated for a current (basing on morning measurements) or next day (basing on midday measurements). Entire country is divided into 42 prognostic zones, and fire risk level for each zone is taken from the closest measuring site. The first goal of this work is to assess if the measurements needed for fire risk forecasting may be replaced by the data from mesoscale meteorological model. Additionally, the use of a meteorological model would allow to take into account much more realistic spatial differentiation of weather elements determining the fire risk level instead of discrete point-made measurements. Meteorological data have been calculated using the Weather Research and Forecasting model (WRF). For the purpose of this study the WRF model is run in the reanalysis mode allowing to estimate all required meteorological data in a 5-kilometers grid. The only parameter that cannot be directly calculated using WRF is the litter humidity, which has been estimated using empirical formula developed by Sakowska (2007). The experiments are carried out for two selected years: 2010 and 2012. The

  5. WRF model for precipitation simulation and its application in real-time flood forecasting in the Jinshajiang River Basin, China

    Science.gov (United States)

    Zhou, Jianzhong; Zhang, Hairong; Zhang, Jianyun; Zeng, Xiaofan; Ye, Lei; Liu, Yi; Tayyab, Muhammad; Chen, Yufan

    2017-07-01

    An accurate flood forecasting with long lead time can be of great value for flood prevention and utilization. This paper develops a one-way coupled hydro-meteorological modeling system consisting of the mesoscale numerical weather model Weather Research and Forecasting (WRF) model and the Chinese Xinanjiang hydrological model to extend flood forecasting lead time in the Jinshajiang River Basin, which is the largest hydropower base in China. Focusing on four typical precipitation events includes: first, the combinations and mode structures of parameterization schemes of WRF suitable for simulating precipitation in the Jinshajiang River Basin were investigated. Then, the Xinanjiang model was established after calibration and validation to make up the hydro-meteorological system. It was found that the selection of the cloud microphysics scheme and boundary layer scheme has a great impact on precipitation simulation, and only a proper combination of the two schemes could yield accurate simulation effects in the Jinshajiang River Basin and the hydro-meteorological system can provide instructive flood forecasts with long lead time. On the whole, the one-way coupled hydro-meteorological model could be used for precipitation simulation and flood prediction in the Jinshajiang River Basin because of its relatively high precision and long lead time.

  6. Weather models as virtual sensors to data-driven rainfall predictions in urban watersheds

    Science.gov (United States)

    Cozzi, Lorenzo; Galelli, Stefano; Pascal, Samuel Jolivet De Marc; Castelletti, Andrea

    2013-04-01

    Weather and climate predictions are a key element of urban hydrology where they are used to inform water management and assist in flood warning delivering. Indeed, the modelling of the very fast dynamics of urbanized catchments can be substantially improved by the use of weather/rainfall predictions. For example, in Singapore Marina Reservoir catchment runoff processes have a very short time of concentration (roughly one hour) and observational data are thus nearly useless for runoff predictions and weather prediction are required. Unfortunately, radar nowcasting methods do not allow to carrying out long - term weather predictions, whereas numerical models are limited by their coarse spatial scale. Moreover, numerical models are usually poorly reliable because of the fast motion and limited spatial extension of rainfall events. In this study we investigate the combined use of data-driven modelling techniques and weather variables observed/simulated with a numerical model as a way to improve rainfall prediction accuracy and lead time in the Singapore metropolitan area. To explore the feasibility of the approach, we use a Weather Research and Forecast (WRF) model as a virtual sensor network for the input variables (the states of the WRF model) to a machine learning rainfall prediction model. More precisely, we combine an input variable selection method and a non-parametric tree-based model to characterize the empirical relation between the rainfall measured at the catchment level and all possible weather input variables provided by WRF model. We explore different lead time to evaluate the model reliability for different long - term predictions, as well as different time lags to see how past information could improve results. Results show that the proposed approach allow a significant improvement of the prediction accuracy of the WRF model on the Singapore urban area.

  7. Development of a methodology for probable maximum precipitation estimation over the American River watershed using the WRF model

    Science.gov (United States)

    Tan, Elcin

    A new physically-based methodology for probable maximum precipitation (PMP) estimation is developed over the American River Watershed (ARW) using the Weather Research and Forecast (WRF-ARW) model. A persistent moisture flux convergence pattern, called Pineapple Express, is analyzed for 42 historical extreme precipitation events, and it is found that Pineapple Express causes extreme precipitation over the basin of interest. An average correlation between moisture flux convergence and maximum precipitation is estimated as 0.71 for 42 events. The performance of the WRF model is verified for precipitation by means of calibration and independent validation of the model. The calibration procedure is performed only for the first ranked flood event 1997 case, whereas the WRF model is validated for 42 historical cases. Three nested model domains are set up with horizontal resolutions of 27 km, 9 km, and 3 km over the basin of interest. As a result of Chi-square goodness-of-fit tests, the hypothesis that "the WRF model can be used in the determination of PMP over the ARW for both areal average and point estimates" is accepted at the 5% level of significance. The sensitivities of model physics options on precipitation are determined using 28 microphysics, atmospheric boundary layer, and cumulus parameterization schemes combinations. It is concluded that the best triplet option is Thompson microphysics, Grell 3D ensemble cumulus, and YSU boundary layer (TGY), based on 42 historical cases, and this TGY triplet is used for all analyses of this research. Four techniques are proposed to evaluate physically possible maximum precipitation using the WRF: 1. Perturbations of atmospheric conditions; 2. Shift in atmospheric conditions; 3. Replacement of atmospheric conditions among historical events; and 4. Thermodynamically possible worst-case scenario creation. Moreover, climate change effect on precipitation is discussed by emphasizing temperature increase in order to determine the

  8. Impact of Urbanization on Spatial Variability of Rainfall-A case study of Mumbai city with WRF Model

    Science.gov (United States)

    Mathew, M.; Paul, S.; Devanand, A.; Ghosh, S.

    2015-12-01

    Urban precipitation enhancement has been identified over many cities in India by previous studies conducted. Anthropogenic effects such as change in land cover from hilly forest areas to flat topography with solid concrete infrastructures has certain effect on the local weather, the same way the greenhouse gas has on climate change. Urbanization could alter the large scale forcings to such an extent that it may bring about temporal and spatial changes in the urban weather. The present study investigate the physical processes involved in urban forcings, such as the effect of sudden increase in wind velocity travelling through the channel space in between the dense array of buildings, which give rise to turbulence and air mass instability in urban boundary layer and in return alters the rainfall distribution as well as rainfall initiation. A numerical model study is conducted over Mumbai metropolitan city which lies on the west coast of India, to assess the effect of urban morphology on the increase in number of extreme rainfall events in specific locations. An attempt has been made to simulate twenty extreme rainfall events that occurred over the summer monsoon period of the year 2014 using high resolution WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to assess the urban land cover mechanisms that influences precipitation variability over this spatially varying urbanized region. The result is tested against simulations with altered land use. The correlation of precipitation with spatial variability of land use is found using a detailed urban land use classification. The initial and boundary conditions for running the model were obtained from the global model ECMWF(European Centre for Medium Range Weather Forecast) reanalysis data having a horizontal resolution of 0.75 °x 0.75°. The high resolution simulations show significant spatial variability in the accumulated rainfall, within a few kilometers itself. Understanding the spatial

  9. Comparison of Grid Nudging and Spectral Nudging Techniques for Dynamical Climate Downscaling within the WRF Model

    Science.gov (United States)

    Fan, X.; Chen, L.; Ma, Z.

    2010-12-01

    Climate downscaling has been an active research and application area in the past several decades focusing on regional climate studies. Dynamical downscaling, in addition to statistical methods, has been widely used in downscaling as the advanced modern numerical weather and regional climate models emerge. The utilization of numerical models enables that a full set of climate variables are generated in the process of downscaling, which are dynamically consistent due to the constraints of physical laws. While we are generating high resolution regional climate, the large scale climate patterns should be retained. To serve this purpose, nudging techniques, including grid analysis nudging and spectral nudging, have been used in different models. There are studies demonstrating the benefit and advantages of each nudging technique; however, the results are sensitive to many factors such as nudging coefficients and the amount of information to nudge to, and thus the conclusions are controversy. While in a companion work of developing approaches for quantitative assessment of the downscaled climate, in this study, the two nudging techniques are under extensive experiments in the Weather Research and Forecasting (WRF) model. Using the same model provides fair comparability. Applying the quantitative assessments provides objectiveness of comparison. Three types of downscaling experiments were performed for one month of choice. The first type is serving as a base whereas the large scale information is communicated through lateral boundary conditions only; the second is using the grid analysis nudging; and the third is using spectral nudging. Emphases are given to the experiments of different nudging coefficients and nudging to different variables in the grid analysis nudging; while in spectral nudging, we focus on testing the nudging coefficients, different wave numbers on different model levels to nudge.

  10. Improved simulation of precipitation in the tropics using a modified BMJ scheme in the WRF model

    Science.gov (United States)

    Fonseca, R. M.; Zhang, T.; Yong, K.-T.

    2015-09-01

    The successful modelling of the observed precipitation, a very important variable for a wide range of climate applications, continues to be one of the major challenges that climate scientists face today. When the Weather Research and Forecasting (WRF) model is used to dynamically downscale the Climate Forecast System Reanalysis (CFSR) over the Indo-Pacific region, with analysis (grid-point) nudging, it is found that the cumulus scheme used, Betts-Miller-Janjić (BMJ), produces excessive rainfall suggesting that it has to be modified for this region. Experimentation has shown that the cumulus precipitation is not very sensitive to changes in the cloud efficiency but varies greatly in response to modifications of the temperature and humidity reference profiles. A new version of the scheme, denoted "modified BMJ" scheme, where the humidity reference profile is more moist, was developed. In tropical belt simulations it was found to give a better estimate of the observed precipitation as given by the Tropical Rainfall Measuring Mission (TRMM) 3B42 data set than the default BMJ scheme for the whole tropics and both monsoon seasons. In fact, in some regions the model even outperforms CFSR. The advantage of modifying the BMJ scheme to produce better rainfall estimates lies in the final dynamical consistency of the rainfall with other dynamical and thermodynamical variables of the atmosphere.

  11. Initial results on computational performance of Intel Many Integrated Core (MIC) architecture: implementation of the Weather and Research Forecasting (WRF) Purdue-Lin microphysics scheme

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    Purdue-Lin scheme is a relatively sophisticated microphysics scheme in the Weather Research and Forecasting (WRF) model. The scheme includes six classes of hydro meteors: water vapor, cloud water, raid, cloud ice, snow and graupel. The scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. In this paper, we accelerate the Purdue Lin scheme using Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi is a high performance coprocessor consists of up to 61 cores. The Xeon Phi is connected to a CPU via the PCI Express (PICe) bus. In this paper, we will discuss in detail the code optimization issues encountered while tuning the Purdue-Lin microphysics Fortran code for Xeon Phi. In particularly, getting a good performance required utilizing multiple cores, the wide vector operations and make efficient use of memory. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 4.2x. Furthermore, the same optimizations improved performance on Intel Xeon E5-2603 CPU by a factor of 1.2x compared to the original code.

  12. A simple nudging scheme to assimilate ASCAT soil moisture data in the WRF model

    Science.gov (United States)

    Capecchi, V.; Gozzini, B.

    2012-04-01

    The present work shows results obtained in a numerical experiment using the WRF (Weather and Research Forecasting, www.wrf-model.org) model. A control run where soil moisture is constrained by GFS global analysis is compared with a test run where soil moisture analysis is obtained via a simple nudging scheme using ASCAT data. The basic idea of the assimilation scheme is to "nudge" the first level (0-10 cm below ground in NOAH model) of volumetric soil moisture of the first-guess (say θ(b,1) derived from global model) towards the ASCAT derived value (say ^θ A). The soil moisture analysis θ(a,1) is given by: { θ + K (^θA - θ ) l = 1 θ(a,1) = θ(b,l) (b,l) l > 1 (b,l) (1) where l is the model soil level. K is a constant scalar value that is user specified and in this study it is equal to 0.2 (same value as in similar studies). Soil moisture is critical for estimating latent and sensible heat fluxes as well as boundary layer structure. This parameter is, however, poorly assimilated in current global and regional numerical models since no extensive soil moisture observation network exists. Remote sensing technologies offer a synoptic view of the dynamics and spatial distribution of soil moisture with a frequent temporal coverage and with a horizontal resolution similar to mesoscale NWP model. Several studies have shown that measurements of normalized backscatter (surface soil wetness) from the Advanced Scatterometer (ASCAT) operating at microwave frequencies and boarded on the meteorological operational (Metop) satellite, offer quality information about surface soil moisture. Recently several studies deal with the implementation of simple assimilation procedures (nudging, Extended Kalman Filter, etc...) to integrate ASCAT data in NWP models. They found improvements in screen temperature predictions, particularly in areas such as North-America and in the Tropics, where it is strong the land-atmosphere coupling. The ECMWF (Newsletter No. 127) is currently

  13. Urban Heat Island Simulations in Guangzhou, China, Using the Coupled WRF/UCM Model with a Land Use Map Extracted from Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Guang Chen

    2016-07-01

    Full Text Available The Weather Research and Forecasting (WRF model coupled with an Urban Canopy Model (UCM was used for studying urban environmental issues. Because land use data employed in the WRF model do not agree with the current situation around Guangzhou, China, the performance of WRF/UCM with new land-use data extracted from Remote Sensing (RS data was evaluated in early August 2012. Results from simulations reveal that experiments with the extracted data are capable of reasonable reproductions of the majority of the observed temporal characteristics of the 2-m temperature, and can capture the characteristics of Urban Heat Island (UHI. The “UCM_12” simulation, which employed the extracted land-use data with the WRF/UCM model, provided the best reproduction of the 2-m temperature data evolution and the smallest minimum absolute average error when compared with the other two experiments without coupled UCM. The contributions of various factors to the UHI effect were analyzed by comparing the energy equilibrium processes of “UCM_12” in urban and suburban areas. Analysis revealed that energy equilibrium processes with new land use data can explain the diurnal character of the UHI intensity variation. Furthermore, land use data extracted from RS can be used to simulate the UHI.

  14. Comparison of Analysis and Spectral Nudging Techniques for Dynamical Downscaling with the WRF Model over China

    Directory of Open Access Journals (Sweden)

    Yuanyuan Ma

    2016-01-01

    Full Text Available To overcome the problem that the horizontal resolution of global climate models may be too low to resolve features which are important at the regional or local scales, dynamical downscaling has been extensively used. However, dynamical downscaling results generally drift away from large-scale driving fields. The nudging technique can be used to balance the performance of dynamical downscaling at large and small scales, but the performances of the two nudging techniques (analysis nudging and spectral nudging are debated. Moreover, dynamical downscaling is now performed at the convection-permitting scale to reduce the parameterization uncertainty and obtain the finer resolution. To compare the performances of the two nudging techniques in this study, three sensitivity experiments (with no nudging, analysis nudging, and spectral nudging covering a period of two months with a grid spacing of 6 km over continental China are conducted to downscale the 1-degree National Centers for Environmental Prediction (NCEP dataset with the Weather Research and Forecasting (WRF model. Compared with observations, the results show that both of the nudging experiments decrease the bias of conventional meteorological elements near the surface and at different heights during the process of dynamical downscaling. However, spectral nudging outperforms analysis nudging for predicting precipitation, and analysis nudging outperforms spectral nudging for the simulation of air humidity and wind speed.

  15. Application of WRF/Chem over East Asia: Part I. Model evaluation and intercomparison with MM5/CMAQ

    Science.gov (United States)

    Zhang, Yang; Zhang, Xin; Wang, Litao; Zhang, Qiang; Duan, Fengkui; He, Kebin

    2016-01-01

    In this work, the application of the online-coupled Weather Research and Forecasting model with chemistry (WRF/Chem) version 3.3.1 is evaluated over East Asia for January, April, July, and October 2005 and compared with results from a previous application of an offline model system, i.e., the Mesoscale Model and Community Multiple Air Quality modeling system (MM5/CMAQ). The evaluation of WRF/Chem is performed using multiple observational datasets from satellites and surface networks in mainland China, Hong Kong, Taiwan, and Japan. WRF/Chem simulates well specific humidity (Q2) and downward longwave and shortwave radiation (GLW and GSW) with normalized mean biases (NMBs) within 24%, but shows moderate to large biases for temperature at 2-m (T2) (NMBs of -9.8% to 75.6%) and precipitation (NMBs of 11.4-92.7%) for some months, and wind speed at 10-m (WS10) (NMBs of 66.5-101%), for all months, indicating some limitations in the YSU planetary boundary layer scheme, the Purdue Lin cloud microphysics, and the Grell-Devenyi ensemble scheme. WRF/Chem can simulate the column abundances of gases reasonably well with NMBs within 30% for most months but moderately to significantly underpredicts the surface concentrations of major species at all sites in nearly all months with NMBs of -72% to -53.8% for CO, -99.4% to -61.7% for NOx, -84.2% to -44.5% for SO2, -63.9% to -25.2% for PM2.5, and -68.9% to 33.3% for PM10, and aerosol optical depth in all months except for October with NMBs of -38.7% to -16.2%. The model significantly overpredicts surface concentrations of O3 at most sites in nearly all months with NMBs of up to 160.3% and NO3- at the Tsinghua site in all months. Possible reasons for large underpredictions include underestimations in the anthropogenic emissions of CO, SO2, and primary aerosol, inappropriate vertical distributions of emissions of SO2 and NO2, uncertainties in upper boundary conditions (e.g., for O3 and CO), missing or inaccurate model representations (e

  16. Effects of 4D-Var Data Assimilation Using Remote Sensing Precipitation Products in a WRF Model over the Complex Terrain of an Arid Region River Basin

    Directory of Open Access Journals (Sweden)

    Xiaoduo Pan

    2017-09-01

    Full Text Available Individually, ground-based, in situ observations, remote sensing, and regional climate modeling cannot provide the high-quality precipitation data required for hydrological prediction, especially over complex terrains. Data assimilation techniques can be used to bridge the gap between observations and models by assimilating ground observations and remote sensing products into models to improve precipitation simulation and forecasting. However, only a small portion of satellite-retrieved precipitation products assimilation research has been implemented over complex terrains in an arid region. Here, we used the weather research and forecasting (WRF model to assimilate two satellite precipitation products (The Tropical Rainfall Measuring Mission: TRMM 3B42 and Fengyun-2D: FY-2D using the 4D-Var data assimilation method for a typical inland river basin in northwest China’s arid region, the Heihe River Basin, where terrains are very complex. The results show that the assimilation of remote sensing precipitation products can improve the initial WRF fields of humidity and temperature, thereby improving precipitation forecasting and decreasing the spin-up time. Hence, assimilating TRMM and FY-2D remote sensing precipitation products using WRF 4D-Var can be viewed as a positive step toward improving the accuracy and lead time of numerical weather prediction models, particularly over regions with complex terrains.

  17. Radiative effects of black carbon aerosols on Indian monsoon: a study using WRF-Chem model

    Science.gov (United States)

    Soni, Pramod; Tripathi, Sachchida Nand; Srivastava, Rajesh

    2018-04-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) is utilized to examine the radiative effects of black carbon (BC) aerosols on the Indian monsoon, for the year 2010. Five ensemble simulations with different initial conditions (1st to 5th December, 2009) were performed and simulation results between 1st January, 2010 to 31st December, 2010 were used for analysis. Most of the BC which stays near the surface during the pre-monsoon season gets transported to higher altitudes with the northward migration of the Inter Tropical Convergence Zone (ITCZ) during the monsoon season. In both the seasons, strong negative SW anomalies are present at the surface along with positive anomalies in the atmosphere, which results in the surface cooling and lower tropospheric heating, respectively. During the pre-monsoon season, lower troposphere heating causes increased convection and enhanced meridional wind circulation, bringing moist air from Indian Ocean and Bay of Bengal to the North-East India, leading to increased rainfall there. However, during the monsoon season, along with cooling over the land regions, a warming over the Bay of Bengal is simulated. This differential heating results in an increased westerly moisture flux anomaly over central India, leading to increased rainfall over northern parts of India but decreased rainfall over southern parts. Decreased rainfall over southern India is also substantiated by the presence of increased evaporation over Bay of Bengal and decrease over land regions.

  18. Simulated cold bias being improved by using MODIS time-varying albedo in the Tibetan Plateau in WRF model

    Science.gov (United States)

    Meng, X.; Lyu, S.; Zhang, T.; Zhao, L.; Li, Z.; Han, B.; Li, S.; Ma, D.; Chen, H.; Ao, Y.; Luo, S.; Shen, Y.; Guo, J.; Wen, L.

    2018-04-01

    Systematic cold biases exist in the simulation for 2 m air temperature in the Tibetan Plateau (TP) when using regional climate models and global atmospheric general circulation models. We updated the albedo in the Weather Research and Forecasting (WRF) Model lower boundary condition using the Global LAnd Surface Satellite Moderate-Resolution Imaging Spectroradiometer albedo products and demonstrated evident improvement for cold temperature biases in the TP. It is the large overestimation of albedo in winter and spring in the WRF model that resulted in the large cold temperature biases. The overestimated albedo was caused by the simulated precipitation biases and over-parameterization of snow albedo. Furthermore, light-absorbing aerosols can result in a large reduction of albedo in snow and ice cover. The results suggest the necessity of developing snow albedo parameterization using observations in the TP, where snow cover and melting are very different from other low-elevation regions, and the influence of aerosols should be considered as well. In addition to defining snow albedo, our results show an urgent call for improving precipitation simulation in the TP.

  19. The Development of a Customization Framework for the WRF Model over the Lake Victoria Basin, Eastern Africa on Seasonal Timescales

    Directory of Open Access Journals (Sweden)

    R. Argent

    2015-01-01

    Full Text Available Lake Victoria, Africa, supports millions of people. To produce reliable climate projections, it is desirable to successfully model the rainfall over the lake accurately. An initial step is taken here with customization of the Weather, Research, and Forecast (WRF model. Of particular interest is an asymmetrical rainfall pattern across the lake basin, due to a diurnal land-lake breeze. The main aim is to present a customization framework for use over the lake. This framework is developed by conducting several series of model runs to investigate aspects of the customization. The runs are analyzed using Tropical Rainfall Measuring Mission rainfall data and Climatic Research Unit temperature data. The study shows that the choice of parameters and lake surface temperature initialization can significantly alter the results. Also, the optimal physics combinations for the climatology may not necessarily be suitable for all circumstances, such as extreme years. The study concludes that WRF is unable to reproduce the pattern across the lake. The temperature of the lake is too cold and this prevents the diurnal land-lake breeze reversal. Overall, this study highlights the importance of customizing a model to the region of research and presents a framework through which this may be achieved.

  20. The Comparison of Point Data Models for the Output of WRF Hydro Model in the IDV

    Science.gov (United States)

    Ho, Y.; Weber, J.

    2017-12-01

    WRF Hydro netCDF output files contain streamflow, flow depth, longitude, latitude, altitude and stream order values for each forecast point. However, the data are not CF compliant. The total number of forecast points for the US CONUS is approximately 2.7 million and it is a big challenge for any visualization and analysis tool. The IDV point cloud display shows point data as a set of points colored by parameter. This display is very efficient compared to a standard point type display for rendering a large number of points. The one problem we have is that the data I/O can be a bottleneck issue when dealing with a large collection of point input files. In this presentation, we will experiment with different point data models and their APIs to access the same WRF Hydro model output. The results will help us construct a CF compliant netCDF point data format for the community.

  1. Numberical Calculations of Atmospheric Conditions over Tibetan Plateau by Using WRF Model

    International Nuclear Information System (INIS)

    Qian, Xuan; Yao, Yongqiang; Wang, Hongshuai; Liu, Liyong; Li, Junrong; Yin, Jia

    2015-01-01

    The wind field, precipitable water vapor are analyzed by using the mesoscale numerical model WRF over Tibetan Plateau, and the aerosol is analyzed by using WRF- CHEM model. The spatial and vertical distributions of the relevant atmospheric factors are summarized, providing truth evidence for selecting and further evaluating an astronomical site. It has been showed that this method could provide good evaluation of atmospheric conditions. This study serves as a further demonstration towards astro-climate regionalization, and provides with essential database for astronomical site survey over Tibetan Plateau. (paper)

  2. Air pollution modeling over very complex terrain: An evaluation of WRF-Chem over Switzerland for two 1-year periods

    Science.gov (United States)

    Ritter, Mathias; Müller, Mathias D.; Tsai, Ming-Yi; Parlow, Eberhard

    2013-10-01

    The fully coupled chemistry module (WRF-Chem) within the Weather Research and Forecasting (WRF) model has been implemented over a Swiss domain for the years 2002 and 1991. The very complex terrain requires a high horizontal resolution (2 × 2 km2), which is achieved by nesting the Swiss domain into a coarser European one. The temporal and spatial distribution of O3, NO2 and PM10 as well as temperature and solar radiation are evaluated against ground-based measurements. The model performs well for the meteorological parameters with Pearson correlation coefficients of 0.92 for temperature and 0.88-0.89 for solar radiation. Temperature has root mean square errors (RMSE) of 3.30 K and 3.51 K for 2002 and 1991 and solar radiation has RMSEs of 122.92 and 116.35 for 2002 and 1991, respectively. For the modeled air pollutants, a multi-linear regression post-processing was used to eliminate systematic bias. Seasonal variations of post-processed air pollutants are represented correctly. However, short-term peaks of several days are not captured by the model. Averaged daily maximum and daily values of O3 achieved Pearson correlation coefficients of 0.69-0.77 whereas averaged NO2 and PM10 had the highest correlations for yearly average values (0.68-0.78). The spatial distribution reveals the importance of PM10 advection from the Po valley to southern Switzerland (Ticino). The absolute errors are ranging from - 10 to 15 μg/m3 for ozone, - 9 to 3 μg/m3 for NO2 and - 4 to 3 μg/m3 for PM10. However, larger errors occur along heavily trafficked roads, in street canyons or on mountains. We also compare yearly modeled results against a dedicated Swiss dispersion model for NO2 and PM10. The dedicated dispersion model has a slightly better statistical performance, but WRF-Chem is capable of computing the temporal evolution of three-dimensional data for a variety of air pollutants and meteorological parameters. Overall, WRF-Chem with the application of post-processing algorithms can

  3. High-resolution dynamical downscaling of re-analysis data over the Kerguelen Islands using the WRF model

    Science.gov (United States)

    Fonseca, Ricardo; Martín-Torres, Javier

    2018-03-01

    We have used the Weather Research and Forecasting (WRF) model to simulate the climate of the Kerguelen Islands (49° S, 69° E) and investigate its inter-annual variability. Here, we have dynamically downscaled 30 years of the Climate Forecast System Reanalysis (CFSR) over these islands at 3-km horizontal resolution. The model output is found to agree well with the station and radiosonde data at the Port-aux-Français station, the only location in the islands for which observational data is available. An analysis of the seasonal mean WRF data showed a general increase in precipitation and decrease in temperature with elevation. The largest seasonal rainfall amounts occur at the highest elevations of the Cook Ice Cap in winter where the summer mean temperature is around 0 °C. Five modes of variability are considered: conventional and Modoki El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), Subtropical IOD (SIOD) and Southern Annular Mode (SAM). It is concluded that a key mechanism by which these modes impact the local climate is through interaction with the diurnal cycle in particular in the summer season when it has a larger magnitude. One of the most affected regions is the area just to the east of the Cook Ice Cap extending into the lower elevations between the Gallieni and Courbet Peninsulas. The WRF simulation shows that despite the small annual variability, the atmospheric flow in the Kerguelen Islands is rather complex which may also be the case for the other islands located in the Southern Hemisphere at similar latitudes.

  4. Simulating Flow and Dispersion by Using WRF-CFD Coupled Model in a Built-Up Area of Shenyang, China

    Directory of Open Access Journals (Sweden)

    Yijia Zheng

    2015-01-01

    Full Text Available Results are presented from a series of numerical studies designed to investigate the atmospheric boundary layer structure, ambient wind, and pollutant source location and their impacts on the wind field and pollutant distribution within the built-up areas of Shenyang, China. Two models, namely, Open Source Field Operation and Manipulation (OpenFOAM software package and Weather Research and Forecasting (WRF model, are used in the present study. Then the high resolution computational fluid dynamics (CFD numerical experiments were performed under the typical simulated atmospheric boundary conditions. It was found that the atmospheric boundary structure played a crucial role in the pollution within the building cluster, which determined the potential turbulent diffusion ability of the atmospheric surface layer; the change of the ambient wind direction can significantly affect the dispersion pattern of pollutants, which was a more sensitive factor than the ambient wind speed; under a given atmospheric state, the location of the pollution sources would dramatically determine the pollution patterns within built-up areas. The WRF-CFD numerical evaluation is a reliable method to understand the complicated flow and dispersion within built-up areas.

  5. Performance Assessment of New Land-Surface and Planetary Boundary Layer Physics in the WRF-ARW

    Science.gov (United States)

    The Pleim-Xiu land surface model, Pleim surface layer scheme, and Asymmetric Convective Model (version 2) are now options in version 3.0 of the Weather Research and Forecasting model (WRF) Advanced Research WRF (ARW) core. These physics parameterizations were developed for the f...

  6. Sensitivity analysis of WRF model PBL schemes in simulating boundary-layer variables in southern Italy: An experimental campaign

    DEFF Research Database (Denmark)

    Avolio, E.; Federico, S.; Miglietta, M.

    2017-01-01

    the surface, where the model uncertainties are, usually, smaller than at the surface. A general anticlockwise rotation of the simulated flow with height is found at all levels. The mixing height is overestimated by all schemes and a possible role of the simulated sensible heat fluxes for this mismatching......The sensitivity of boundary layer variables to five (two non-local and three local) planetary boundary-layer (PBL) parameterization schemes, available in the Weather Research and Forecasting (WRF) mesoscale meteorological model, is evaluated in an experimental site in Calabria region (southern...... is investigated. On a single-case basis, significantly better results are obtained when the atmospheric conditions near the measurement site are dominated by synoptic forcing rather than by local circulations. From this study, it follows that the two first order non-local schemes, ACM2 and YSU, are the schemes...

  7. Urban Surface Temperature Reduction via the Urban Aerosol Direct Effect: A Remote Sensing and WRF Model Sensitivity Study

    Directory of Open Access Journals (Sweden)

    Menglin Jin

    2010-01-01

    Full Text Available The aerosol direct effect, namely, scattering and absorption of sunlight in the atmosphere, can lower surface temperature by reducing surface insolation. By combining National Aeronautics and Space Administration (NASA AERONET (AErosol RObotic NETwork observations in large cities with Weather Research and Forecasting (WRF model simulations, we find that the aerosol direct reduction of surface insolation ranges from 40–100Wm−2, depending on aerosol loading and land-atmosphere conditions. To elucidate the maximum possible effect, values are calculated using a radiative transfer model based on the top quartile of the multiyear instantaneous aerosol data observed by AERONET sites. As a result, surface skin temperature can be reduced by 1°C-2°C while 2-m surface air temperature reductions are generally on the order of 0.5°C–1°C.

  8. Sensitivity analysis of ground level ozone in India using WRF-CMAQ models

    NARCIS (Netherlands)

    Sharma, Sumit; Chatani, Satoru; Mahtta, Richa; Goel, Anju; Kumar, Atul

    2016-01-01

    Ground level ozone is emerging as a pollutant of concern in India. Limited surface monitoring data reveals that ozone concentrations are well above the prescribed national standards. This study aims to simulate the regional and urban scale ozone concentrations in India using WRF-CMAQ models.

  9. Evaluation of the atmospheric model WRF on the Qatar peninsula for a converging sea-breeze event

    Science.gov (United States)

    Balan Sobhana, Sandeepan; Nayak, Sashikant; Panchang, Vijay

    2016-04-01

    Qatar, a narrow peninsula covering an area of 11437 sq km, extends northwards into the Arabian Gulf for about 160km and has a maximum width of 88km. The convex shape of the coast-line and narrowness of the peninsula results in the Qatar region experiencing complex wind patterns. The geometry is favorable for formation of the land-sea breeze from both coastal sides of the peninsula. This can lead to the development of sea breeze convergence zones in the middle of the country. Although circulations arising from diurnal thermal contrast of land and water are amongst most intensively studied meteorological phenomena, there is no reported study for the Qatar peninsula and very few studies are reported for the Arabian Gulf region as whole. It is necessary to characterize the wind field for applications such as assessing air pollution, renewable energy etc. A non-hydrostatic mesoscale model, Weather Research and Forecast (WRF) with a nested high resolution grid permits the investigation of such fine scale phenomena. Data from eighteen land based Automated Weather Stations (AWS) and two offshore buoys deployed and maintained by the Qatar Meteorological Department were analyzed. Based on the analysis a clear case of sea breeze convergence were seen on 18 September 2015. Model simulations were used to investigate the synoptic conditions associated with the formation of this event. The season is characterized by week ambient north westerly wind over the Arabian Gulf. The WRF model performance is validated using observed in-situ data. Model simulations show that vertical extent of sea breeze cell was up to 1 km and the converging sea breeze regions were characterized with high vertical velocities. The WRF simulation also revealed that with high resolution, the model is capable of reproducing the fine scale patterns accurately. The error of predictions in the inner domain (highest resolution) are found to be relatively lower than coarse resolution domain. The maximum wind speed

  10. Observation of a tropopause fold by MARA VHF wind-profiler radar and ozonesonde at Wasa, Antarctica: comparison with ECMWF analysis and a WRF model simulation

    Directory of Open Access Journals (Sweden)

    M. Mihalikova

    2012-09-01

    Full Text Available Tropopause folds are one of the mechanisms of stratosphere–troposphere exchange, which can bring ozone rich stratospheric air to low altitudes in the extra-tropical regions. They have been widely studied at northern mid- or high latitudes, but so far almost no studies have been made at mid- or high southern latitudes. The Moveable Atmospheric Radar for Antarctica (MARA, a 54.5 MHz wind-profiler radar, has operated at the Swedish summer station Wasa, Antarctica (73° S, 13.5° W during austral summer seasons from 2007 to 2011 and has observed on several occasions signatures similar to those caused by tropopause folds at comparable Arctic latitudes. Here a case study is presented of one of these events when an ozonesonde successfully sampled the fold. Analysis from European Center for Medium Range Weather Forecasting (ECMWF is used to study the circumstances surrounding the event, and as boundary conditions for a mesoscale simulation using the Weather Research and Forecasting (WRF model. The fold is well resolved by the WRF simulation, and occurs on the poleward side of the polar jet stream. However, MARA resolves fine-scale layering associated with the fold better than the WRF simulation.

  11. Comparative Evaluation of the Impact of WRF-NMM and WRF-ARW Meteorology on CMAQ Simulations for O3 and Related Species During the 2006 TexAQS/GoMACCS Campaign

    Science.gov (United States)

    In this paper, impact of meteorology derived from the Weather, Research and Forecasting (WRF)– Non–hydrostatic Mesoscale Model (NMM) and WRF–Advanced Research WRF (ARW) meteorological models on the Community Multiscale Air Quality (CMAQ) simulations for ozone and its related prec...

  12. Improved cyberinfrastructure for integrated hydrometeorological predictions within the fully-coupled WRF-Hydro modeling system

    Science.gov (United States)

    gochis, David; hooper, Rick; parodi, Antonio; Jha, Shantenu; Yu, Wei; Zaslavsky, Ilya; Ganapati, Dinesh

    2014-05-01

    The community WRF-Hydro system is currently being used in a variety of flood prediction and regional hydroclimate impacts assessment applications around the world. Despite its increasingly wide use certain cyberinfrastructure bottlenecks exist in the setup, execution and post-processing of WRF-Hydro model runs. These bottlenecks result in wasted time, labor, data transfer bandwidth and computational resource use. Appropriate development and use of cyberinfrastructure to setup and manage WRF-Hydro modeling applications will streamline the entire workflow of hydrologic model predictions. This talk will present recent advances in the development and use of new open-source cyberinfrastructure tools for the WRF-Hydro architecture. These tools include new web-accessible pre-processing applications, supercomputer job management applications and automated verification and visualization applications. The tools will be described successively and then demonstrated in a set of flash flood use cases for recent destructive flood events in the U.S. and in Europe. Throughout, an emphasis on the implementation and use of community data standards for data exchange is made.

  13. Effect of the Initial Vortex Size on Intensity Change in the WRF-ROMS Coupled Model

    Science.gov (United States)

    Zhao, Xiaohui; Chan, Johnny C. L.

    2017-12-01

    Numerous studies have demonstrated that the tropical cyclone (TC) induced sea surface temperature (SST) cooling strongly depends on the preexisting oceanic condition and TC characteristics. However, very few focused on the correlation of SST cooling and the subsequent intensity with TC size. Therefore, a series of idealized numerical experiments are conducted using the Weather Research Forecasting (WRF) model coupled with the Regional Ocean Model System (ROMS) model to understand how the vortex size is related to SST cooling and subsequent intensity changes of a stationary TC-like vortex. In the uncoupled experiments, the radius of maximum wind (RMW) and size (radius of gale-force wind (R17)) both depend on the initial size within the 72 h simulation. The initially small vortex is smaller than the medium and large vortices throughout its life cycle and is the weakest. In other words, thermodynamic processes do not contribute as much to the R17 change as the dynamic processes proposed (e.g., angular momentum transport) in previous studies. In the coupled experiments, the area-averaged SST cooling induced by medium and large TCs within the inner-core region is comparable due to the similar surface winds and thus mixing in the ocean. Although a stronger SST cooling averaged within a larger region outside the inner-core is induced by the larger TC, the intensity of the larger TC is more intense. This is because that the enthalpy flux in the inner-core region is higher in the larger TC than that in the medium and small TCs.

  14. The Community WRF-Hydro Modeling System Version 4 Updates: Merging Toward Capabilities of the National Water Model

    Science.gov (United States)

    McAllister, M.; Gochis, D.; Dugger, A. L.; Karsten, L. R.; McCreight, J. L.; Pan, L.; Rafieeinasab, A.; Read, L. K.; Sampson, K. M.; Yu, W.

    2017-12-01

    The community WRF-Hydro modeling system is publicly available and provides researchers and operational forecasters a flexible and extensible capability for performing multi-scale, multi-physics options for hydrologic modeling that can be run independent or fully-interactive with the WRF atmospheric model. The core WRF-Hydro physics model contains very high-resolution descriptions of terrestrial hydrologic process representations such as land-atmosphere exchanges of energy and moisture, snowpack evolution, infiltration, terrain routing, channel routing, basic reservoir representation and hydrologic data assimilation. Complementing the core physics components of WRF-Hydro are an ecosystem of pre- and post-processing tools that facilitate the preparation of terrain and meteorological input data, an open-source hydrologic model evaluation toolset (Rwrfhydro), hydrologic data assimilation capabilities with DART and advanced model visualization capabilities. The National Center for Atmospheric Research (NCAR), through collaborative support from the National Science Foundation and other funding partners, provides community support for the entire WRF-Hydro system through a variety of mechanisms. This presentation summarizes the enhanced user support capabilities that are being developed for the community WRF-Hydro modeling system. These products and services include a new website, open-source code repositories, documentation and user guides, test cases, online training materials, live, hands-on training sessions, an email list serve, and individual user support via email through a new help desk ticketing system. The WRF-Hydro modeling system and supporting tools which now include re-gridding scripts and model calibration have recently been updated to Version 4 and are merging toward capabilities of the National Water Model.

  15. An evaluation of WRF's ability to reproduce the surface wind over complex terrain based on typical circulation patterns.

    NARCIS (Netherlands)

    Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Montávez, J.P.; Garcia-Bustamante, E.; Navarro, J.; Vilà-Guerau de Arellano, J.; Munoz-Roldán, A.

    2013-01-01

    [1] The performance of the Weather Research and Forecasting (WRF) model to reproduce the surface wind circulations over complex terrain is examined. The atmospheric evolution is simulated using two versions of the WRF model during an over 13¿year period (1992 to 2005) over a complex terrain region

  16. Evaluation of Extratropical Cyclone Precipitation in the North Atlantic Basin: An analysis of ERA-Interim, WRF, and two CMIP5 models.

    Science.gov (United States)

    Booth, James F; Naud, Catherine M; Willison, Jeff

    2018-03-01

    The representation of extratropical cyclones (ETCs) precipitation in general circulation models (GCMs) and a weather research and forecasting (WRF) model is analyzed. This work considers the link between ETC precipitation and dynamical strength and tests if parameterized convection affects this link for ETCs in the North Atlantic Basin. Lagrangian cyclone tracks of ETCs in ERA-Interim reanalysis (ERAI), the GISS and GFDL CMIP5 models, and WRF with two horizontal resolutions are utilized in a compositing analysis. The 20-km resolution WRF model generates stronger ETCs based on surface wind speed and cyclone precipitation. The GCMs and ERAI generate similar composite means and distributions for cyclone precipitation rates, but GCMs generate weaker cyclone surface winds than ERAI. The amount of cyclone precipitation generated by the convection scheme differs significantly across the datasets, with GISS generating the most, followed by ERAI and then GFDL. The models and reanalysis generate relatively more parameterized convective precipitation when the total cyclone-averaged precipitation is smaller. This is partially due to the contribution of parameterized convective precipitation occurring more often late in the ETC life cycle. For reanalysis and models, precipitation increases with both cyclone moisture and surface wind speed, and this is true if the contribution from the parameterized convection scheme is larger or not. This work shows that these different models generate similar total ETC precipitation despite large differences in the parameterized convection, and these differences do not cause unexpected behavior in ETC precipitation sensitivity to cyclone moisture or surface wind speed.

  17. Implementation of Bessel's method for solar eclipses prediction in the WRF-ARW model

    Directory of Open Access Journals (Sweden)

    A. Montornès

    2016-05-01

    Full Text Available Solar eclipses are predictable astronomical events that abruptly reduce the incoming solar radiation into the Earth's atmosphere, which frequently results in non-negligible changes in meteorological fields. The meteorological impacts of these events have been analyzed in many studies since the late 1960s. The recent growth in the solar energy industry has greatly increased the interest in providing more detail in the modeling of solar radiation variations in numerical weather prediction (NWP models for the use in solar resource assessment and forecasting applications. The significant impact of the recent partial and total solar eclipses that occurred in the USA (23 October 2014 and Europe (20 March 2015 on solar power generation have provided additional motivation and interest for including these astronomical events in the current solar parameterizations.Although some studies added solar eclipse episodes within NWP codes in the 1990s and 2000s, they used eclipse parameterizations designed for a particular case study. In contrast to these earlier implementations, this paper documents a new package for the Weather Research and Forecasting–Advanced Research WRF (WRF-ARW model that can simulate any partial, total or hybrid solar eclipse for the period 1950 to 2050 and is also extensible to a longer period. The algorithm analytically computes the trajectory of the Moon's shadow and the degree of obscuration of the solar disk at each grid point of the domain based on Bessel's method and the Five Millennium Catalog of Solar Eclipses provided by NASA, with a negligible computational time. Then, the incoming radiation is modified accordingly at each grid point of the domain.This contribution is divided in three parts. First, the implementation of Bessel's method is validated for solar eclipses in the period 1950–2050, by comparing the shadow trajectory with values provided by NASA. Latitude and longitude are determined with a bias lower than 5

  18. High-resolution precipitation data derived from dynamical downscaling using the WRF model for the Heihe River Basin, northwest China

    Science.gov (United States)

    Zhang, Xuezhen; Xiong, Zhe; Zheng, Jingyun; Ge, Quansheng

    2018-02-01

    The community of climate change impact assessments and adaptations research needs regional high-resolution (spatial) meteorological data. This study produced two downscaled precipitation datasets with spatial resolutions of as high as 3 km by 3 km for the Heihe River Basin (HRB) from 2011 to 2014 using the Weather Research and Forecast (WRF) model nested with Final Analysis (FNL) from the National Center for Environmental Prediction (NCEP) and ERA-Interim from the European Centre for Medium-Range Weather Forecasts (ECMWF) (hereafter referred to as FNLexp and ERAexp, respectively). Both of the downscaling simulations generally reproduced the observed spatial patterns of precipitation. However, users should keep in mind that the two downscaled datasets are not exactly the same in terms of observations. In comparison to the remote sensing-based estimation, the FNLexp produced a bias of heavy precipitation centers. In comparison to the ground gauge-based measurements, for the warm season (May to September), the ERAexp produced more precipitation (root-mean-square error (RMSE) = 295.4 mm, across the 43 sites) and more heavy rainfall days, while the FNLexp produced less precipitation (RMSE = 115.6 mm) and less heavy rainfall days. Both the ERAexp and FNLexp produced considerably more precipitation for the cold season (October to April) with RMSE values of 119.5 and 32.2 mm, respectively, and more heavy precipitation days. Along with simulating a higher number of heavy precipitation days, both the FNLexp and ERAexp also simulated stronger extreme precipitation. Sensitivity experiments show that the bias of these simulations is much more sensitive to micro-physical parameterizations than to the spatial resolution of topography data. For the HRB, application of the WSM3 scheme may improve the performance of the WRF model.

  19. An Observation-base investigation of nudging in WRF for downscaling surface climate information to 12-km Grid Spacing

    Science.gov (United States)

    Previous research has demonstrated the ability to use the Weather Research and Forecast (WRF) model and contemporary dynamical downscaling methods to refine global climate modeling results to a horizontal resolution of 36 km. Environmental managers and urban planners have expre...

  20. Assessment of the aerosol optics component of the coupled WRF-CMAQ model using CARES field campaign data and a single column model

    Science.gov (United States)

    Gan, Chuen Meei; Binkowski, Francis; Pleim, Jonathan; Xing, Jia; Wong, David; Mathur, Rohit; Gilliam, Robert

    2015-08-01

    The Carbonaceous Aerosols and Radiative Effects Study (CARES), a field campaign held in central California in June 2010, provides a unique opportunity to assess the aerosol optics modeling component of the two-way coupled Weather Research and Forecasting (WRF) - Community Multiscale Air Quality (CMAQ) model. This campaign included comprehensive measurements of aerosol composition and optical properties at two ground sites and aloft from instrumentation on-board two aircraft. A single column model (SCM) was developed to evaluate the accuracy and consistency of the coupled model using both observation and model information. Two cases (June 14 and 24, 2010) are examined in this study. The results show that though the coupled WRF-CMAQ estimates of aerosol extinction were underestimated relative to these measurements, when measured concentrations and characteristics of ambient aerosols were used as input to constrain the SCM calculations, the estimated extinction profiles agreed well with aircraft observations. One of the possible causes of the WRF-CMAQ extinction errors is that the simulated sea-salt (SS) in the accumulation mode in WRF-CMAQ is very low in both cases while the observations indicate a considerable amount of SS. Also, a significant amount of organic carbon (OC) is present in the measurement. However, in the current WRF-CMAQ model all OC is considered to be insoluble whereas most secondary organic aerosol is water soluble. In addition, the model does not consider external mixing and hygroscopic effects of water soluble OC which can impact the extinction calculations. In conclusion, the constrained SCM results indicate that the scattering portion of the aerosol optics calculations is working well, although the absorption calculation could not be effectively evaluated. However, a few factors such as greatly underestimated accumulation mode SS, misrepresentation of water soluble OC, and incomplete mixing state representation in the full coupled model

  1. The Role of Surface Energy Exchange for Simulating Wind Inflow: An Evaluation of Multiple Land Surface Models in WRF for the Southern Great Plains Site Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, Sonia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Osuna, Jessica [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Newman, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biraud, Sebastien [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    The Weather Research and Forecasting (WRF) model is used to investigate choice of land surface model (LSM) on the near-surface wind profile, including heights reached by multi-megawatt wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil-plant-atmosphere feedbacks for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) Central Facility in Oklahoma. Surface-flux and wind-profile measurements were available for validation. The WRF model was run for three two-week periods during which varying canopy and meteorological conditions existed. The LSMs predicted a wide range of energy-flux and wind-shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil-plant-atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear also were sensitive to LSM choice and were partially related to the accuracy of energy flux data. The variability of LSM performance was relatively high, suggesting that LSM representation of energy fluxes in the WRF model remains a significant source of uncertainty for simulating wind turbine inflow conditions.

  2. Comparison of the new intermediate complex atmospheric research (ICAR) model with the WRF model in a mesoscale catchment in Central Europe

    Science.gov (United States)

    Härer, Stefan; Bernhardt, Matthias; Gutmann, Ethan; Bauer, Hans-Stefan; Schulz, Karsten

    2017-04-01

    Until recently, a large gap existed in the atmospheric downscaling strategies. On the one hand, computationally efficient statistical approaches are widely used, on the other hand, dynamic but CPU-intensive numeric atmospheric models like the weather research and forecast (WRF) model exist. The intermediate complex atmospheric research (ICAR) model developed at NCAR (Boulder, Colorado, USA) addresses this gap by combining the strengths of both approaches: the process-based structure of a dynamic model and its applicability in a changing climate as well as the speed of a parsimonious modelling approach which facilitates the modelling of ensembles and a straightforward way to test new parametrization schemes as well as various input data sources. However, the ICAR model has not been tested in Europe and on slightly undulated terrain yet. This study now evaluates for the first time the ICAR model to WRF model runs in Central Europe comparing a complete year of model results in the mesoscale Attert catchment (Luxembourg). In addition to these modelling results, we also describe the first implementation of ICAR on an Intel Phi architecture and consequently perform speed tests between the Vienna cluster, a standard workstation and the use of an Intel Phi coprocessor. Finally, the study gives an outlook on sensitivity studies using slightly different input data sources.

  3. Simulation of Flash-Flood-Producing Storm Events in Saudi Arabia Using the Weather Research and Forecasting Model

    KAUST Repository

    Deng, Liping; McCabe, Matthew; Stenchikov, Georgiy L.; Evans, Jason P.; Kucera, Paul A.

    2015-01-01

    The challenges of monitoring and forecasting flash-flood-producing storm events in data-sparse and arid regions are explored using the Weather Research and Forecasting (WRF) Model (version 3.5) in conjunction with a range of available satellite

  4. Updated vegetation information in high resolution WRF simulations

    DEFF Research Database (Denmark)

    Nielsen, Joakim Refslund; Dellwik, Ebba; Hahmann, Andrea N.

    2013-01-01

    modify the energy distribution at the land surface. In weather and climate models it is important to represent the vegetation variability accurately to obtain reliable results. The weather research and forecasting (WRF) model uses green vegetation fraction (GVF) time series to represent vegetation...... seasonality. The GVF of each grid cell is additionally used to scale other parameters such as LAI, roughness, emissivity and albedo within predefined intervals. However, the default GYP used by WRF does not reflect recent climatic changes or change in management practices since it was derived more than 20...

  5. Improving snow albedo processes in WRF/SSiB regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western U.S.

    OpenAIRE

    Oaida, CM; Xue, Y; Flanner, MG; Skiles, SMK; De Sales, F; Painter, TH

    2015-01-01

    © 2015. American Geophysical Union. All Rights Reserved. Two important factors that control snow albedo are snow grain growth and presence of light-absorbing impurities (aerosols) in snow. However, current regional climate models do not include such processes in a physically based manner in their land surface models. We improve snow albedo calculations in the Simplified Simple Biosphere (SSiB) land surface model coupled with the Weather Research and Forecasting (WRF) regional climate model (R...

  6. ASSIMILATION OF DOPPLER RADAR DATA INTO NUMERICAL WEATHER MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Chiswell, S.; Buckley, R.

    2009-01-15

    During the year 2008, the United States National Weather Service (NWS) completed an eight fold increase in sampling capability for weather radars to 250 m resolution. This increase is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current NWS operational model domains utilize grid spacing an order of magnitude larger than the radar data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of radar reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution was investigated under a Laboratory Directed Research and Development (LDRD) 'quick hit' grant to determine the impact of improved data resolution on model predictions with specific initial proof of concept application to daily Savannah River Site operations and emergency response. Development of software to process NWS radar reflectivity and radial velocity data was undertaken for assimilation of observations into numerical models. Data values within the radar data volume undergo automated quality control (QC) analysis routines developed in support of this project to eliminate empty/missing data points, decrease anomalous propagation values, and determine error thresholds by utilizing the calculated variances among data values. The Weather Research and Forecasting model (WRF) three dimensional variational data assimilation package (WRF-3DVAR) was used to incorporate the QC'ed radar data into input and boundary conditions. The lack of observational data in the vicinity of SRS available to NWS operational models signifies an important data void where radar observations can provide significant input. These observations greatly enhance the knowledge of storm structures and the environmental conditions which influence their development. As the increase in computational power and availability has

  7. A Study of the Oklahoma City Urban Heat Island Effect Using a WRF/Single-Layer Urban Canopy Model, a Joint Urban 2003 Field Campaign, and MODIS Satellite Observations

    Directory of Open Access Journals (Sweden)

    Hengyue Zhang

    2017-09-01

    Full Text Available The urban heat island effect (UHI for inner land regions was investigated using satellite data, ground observations, and simulations with an Single-Layer Urban Canopy Parameterization (SLUCP coupled into the regional Weather Research Forecasting model (WRF, http://wrf-model.org/index.php. Specifically, using the satellite-observed surface skin temperatures (Tskin, the intensity of the UHI was first compared for two inland cities (Xi’an City, China, and Oklahoma City (OKC, which have different city populations and building densities. The larger population density and larger building density in Xi’an lead to a stronger skin-level UHI by 2 °C. However, the ground observed 2 m surface air temperature (Tair observations showed an urban cooling island effect (UCI over the downtown region in OKC during the daytime of 19 July 2003, from a DOE field campaign (Joint Urban 2003. To understand this contrast between satellite-based Tskin and ground-based Tair, a sensitivity study using WRF/SLUCP was analyzed. The model reproduced a UCI in OKC. Furthermore, WRF/Noah/SLUCM simulations were also compared with the Joint Urban 2003 ground observations, including wind speeds, wind directions, and energy fluxes. Although the WRF/SLUCM model failed to simulate these variables accurately, it reproduced the diurnal variations of surface temperatures, wind speeds, wind directions, and energy fluxes reasonably well.

  8. Development and Implementation of Dynamic Scripts to Support Local Model Verification at National Weather Service Weather Forecast Offices

    Science.gov (United States)

    Zavodsky, Bradley; Case, Jonathan L.; Gotway, John H.; White, Kristopher; Medlin, Jeffrey; Wood, Lance; Radell, Dave

    2014-01-01

    Local modeling with a customized configuration is conducted at National Weather Service (NWS) Weather Forecast Offices (WFOs) to produce high-resolution numerical forecasts that can better simulate local weather phenomena and complement larger scale global and regional models. The advent of the Environmental Modeling System (EMS), which provides a pre-compiled version of the Weather Research and Forecasting (WRF) model and wrapper Perl scripts, has enabled forecasters to easily configure and execute the WRF model on local workstations. NWS WFOs often use EMS output to help in forecasting highly localized, mesoscale features such as convective initiation, the timing and inland extent of lake effect snow bands, lake and sea breezes, and topographically-modified winds. However, quantitatively evaluating model performance to determine errors and biases still proves to be one of the challenges in running a local model. Developed at the National Center for Atmospheric Research (NCAR), the Model Evaluation Tools (MET) verification software makes performing these types of quantitative analyses easier, but operational forecasters do not generally have time to familiarize themselves with navigating the sometimes complex configurations associated with the MET tools. To assist forecasters in running a subset of MET programs and capabilities, the Short-term Prediction Research and Transition (SPoRT) Center has developed and transitioned a set of dynamic, easily configurable Perl scripts to collaborating NWS WFOs. The objective of these scripts is to provide SPoRT collaborating partners in the NWS with the ability to evaluate the skill of their local EMS model runs in near real time with little prior knowledge of the MET package. The ultimate goal is to make these verification scripts available to the broader NWS community in a future version of the EMS software. This paper provides an overview of the SPoRT MET scripts, instructions for how the scripts are run, and example use

  9. Ensemble using different Planetary Boundary Layer schemes in WRF model for wind speed and direction prediction over Apulia region

    Science.gov (United States)

    Tateo, Andrea; Marcello Miglietta, Mario; Fedele, Francesca; Menegotto, Micaela; Monaco, Alfonso; Bellotti, Roberto

    2017-04-01

    The Weather Research and Forecasting mesoscale model (WRF) was used to simulate hourly 10 m wind speed and direction over the city of Taranto, Apulia region (south-eastern Italy). This area is characterized by a large industrial complex including the largest European steel plant and is subject to a Regional Air Quality Recovery Plan. This plan constrains industries in the area to reduce by 10 % the mean daily emissions by diffuse and point sources during specific meteorological conditions named wind days. According to the Recovery Plan, the Regional Environmental Agency ARPA-PUGLIA is responsible for forecasting these specific meteorological conditions with 72 h in advance and possibly issue the early warning. In particular, an accurate wind simulation is required. Unfortunately, numerical weather prediction models suffer from errors, especially for what concerns near-surface fields. These errors depend primarily on uncertainties in the initial and boundary conditions provided by global models and secondly on the model formulation, in particular the physical parametrizations used to represent processes such as turbulence, radiation exchange, cumulus and microphysics. In our work, we tried to compensate for the latter limitation by using different Planetary Boundary Layer (PBL) parameterization schemes. Five combinations of PBL and Surface Layer (SL) schemes were considered. Simulations are implemented in a real-time configuration since our intention is to analyze the same configuration implemented by ARPA-PUGLIA for operational runs; the validation is focused over a time range extending from 49 to 72 h with hourly time resolution. The assessment of the performance was computed by comparing the WRF model output with ground data measured at a weather monitoring station in Taranto, near the steel plant. After the analysis of the simulations performed with different PBL schemes, both simple (e.g. average) and more complex post-processing methods (e.g. weighted average

  10. Evaluation of Heavy Precipitation Simulated by the WRF Model Using 4D-Var Data Assimilation with TRMM 3B42 and GPM IMERG over the Huaihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Lu Yi

    2018-04-01

    Full Text Available To obtain independent, consecutive, and high-resolution precipitation data, the four-dimensional variational (4D-Var method was applied to directly assimilate satellite precipitation products into the Weather Research and Forecasting (WRF model. The precipitation products of the Tropical Rainfall Measuring Mission 3B42 (TRMM 3B42 and its successor, the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM IMERG were assimilated in this study. Two heavy precipitation events that occurred over the Huaihe River basin in eastern China were studied. Before assimilation, the WRF model simulations were first performed with different forcing data to select more suitable forcing data and determine the control experiments for the subsequent assimilation experiments. Then, TRMM 3B42 and GPM IMERG were separately assimilated into the WRF. The simulated precipitation results in the outer domain (D01, with a 27-km resolution, and the inner domain (D02, with a 9-km resolution, were evaluated in detail. The assessments showed that (1 4D-Var with TRMM 3B42 or GPM IMERG could both significantly improve WRF precipitation predictions at a time interval of approximately 12 h; (2 the WRF simulated precipitation assimilated with GPM IMERG outperformed the one with TRMM 3B42; (3 for the WRF output precipitation assimilated with GPM IMERG over D02, which has spatiotemporal resolutions of 9 km and 50 s, the correlation coefficients of the studied events in August and November were 0.74 and 0.51, respectively, at the point and daily scales, and the mean Heidke skill scores for the two studied events both reached 0.31 at the grid and hourly scales. This study can provide references for the assimilation of TRMM 3B42 or GPM IMERG into the WRF model using 4D-Var, which is especially valuable for hydrological applications of GPM IMERG during the transition period from the TRMM era into the GPM era.

  11. Implementation of 5-layer thermal diffusion scheme in weather research and forecasting model with Intel Many Integrated Cores

    Science.gov (United States)

    Huang, Melin; Huang, Bormin; Huang, Allen H.

    2014-10-01

    For weather forecasting and research, the Weather Research and Forecasting (WRF) model has been developed, consisting of several components such as dynamic solvers and physical simulation modules. WRF includes several Land- Surface Models (LSMs). The LSMs use atmospheric information, the radiative and precipitation forcing from the surface layer scheme, the radiation scheme, and the microphysics/convective scheme all together with the land's state variables and land-surface properties, to provide heat and moisture fluxes over land and sea-ice points. The WRF 5-layer thermal diffusion simulation is an LSM based on the MM5 5-layer soil temperature model with an energy budget that includes radiation, sensible, and latent heat flux. The WRF LSMs are very suitable for massively parallel computation as there are no interactions among horizontal grid points. The features, efficient parallelization and vectorization essentials, of Intel Many Integrated Core (MIC) architecture allow us to optimize this WRF 5-layer thermal diffusion scheme. In this work, we present the results of the computing performance on this scheme with Intel MIC architecture. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.1x. Accordingly, the same CPU-based optimizations improved the performance on Intel Xeon E5- 2603 by a factor of 1.6x as compared to the first version of multi-threaded code.

  12. Evaluation of the WRF-Urban Modeling System Coupled to Noah and Noah-MP Land Surface Models Over a Semiarid Urban Environment

    Science.gov (United States)

    Salamanca, Francisco; Zhang, Yizhou; Barlage, Michael; Chen, Fei; Mahalov, Alex; Miao, Shiguang

    2018-03-01

    We have augmented the existing capabilities of the integrated Weather Research and Forecasting (WRF)-urban modeling system by coupling three urban canopy models (UCMs) available in the WRF model with the new community Noah with multiparameterization options (Noah-MP) land surface model (LSM). The WRF-urban modeling system's performance has been evaluated by conducting six numerical experiments at high spatial resolution (1 km horizontal grid spacing) during a 15 day clear-sky summertime period for a semiarid urban environment. To assess the relative importance of representing urban surfaces, three different urban parameterizations are used with the Noah and Noah-MP LSMs, respectively, over the two major cities of Arizona: Phoenix and Tucson metropolitan areas. Our results demonstrate that Noah-MP reproduces somewhat better than Noah the daily evolution of surface skin temperature and near-surface air temperature (especially nighttime temperature) and wind speed. Concerning the urban areas, bulk urban parameterization overestimates nighttime 2 m air temperature compared to the single-layer and multilayer UCMs that reproduce more accurately the daily evolution of near-surface air temperature. Regarding near-surface wind speed, only the multilayer UCM was able to reproduce realistically the daily evolution of wind speed, although maximum winds were slightly overestimated, while both the single-layer and bulk urban parameterizations overestimated wind speed considerably. Based on these results, this paper demonstrates that the new community Noah-MP LSM coupled to an UCM is a promising physics-based predictive modeling tool for urban applications.

  13. Distribution and transport of water vapor in the UTLS over the Tibetan Plateau as inferred from the MLS satellite data and WRF model simulations

    Science.gov (United States)

    Jain, S.; Kar, S. C.

    2016-12-01

    Water vapor is an important minor constituent in the lower stratosphere as it influences the stratospheric chemistry and total radiation budget. The spatial distribution of water vapor mixing ratio (WVMR) obtained from Aura Microwave Limb Sounder (MLS) satellite at 100 hPa level shows prominent maxima over the Tibetan Plateau during August 2015. The Asian monsoon upper level anticyclone is also known to occur over this region during this period. The Indian Meteorological Department (IMD) and National Centre of Medium Range Weather Forecasting (NCMRWF) observed daily gridded rainfall data shows moderate to heavy rainfall over the Tibetan Plateau, suggesting active convection from 26 July to 10 August 2015. The atmospheric conditions are simulated over the Asian region for the 15-day period using the Weather Research Forecasting (WRF) model. The simulations are carried out using two nested domains with resolution of 12 km and 4 km. The initial and boundary conditions are taken from the NGFS (up-graded version of the NCEP GFS) data. The WRF WVMR profiles are observed to be comparatively moist than the MLS profiles in the UTLS region over the Tibetan Plateau. This may be due to the relatively higher temperatures (1-2 K) simulated in the WRF model near 100 hPa level. It is noted that the WRF model has a drying tendency at all the levels. The UTLS WVMR and temperatures show poor sensitivity to the convective schemes. The parent domain and the explicit convective scheme simulate almost same moisture over time in the inner domain. The cloud micro-physics is observed to play a rather important role in controlling the UTLS water vapor content. The WSM-6 convective scheme is observed to simulate the UTLS moisture comparatively well and therefore the processes associated with the formation of ice, snow and graupel formation may be of much more importance in controlling the UTLS WVMR in the WRF model. The 24 hr, 48 hr and 72 hr forecast averaged for the 15-day period shows that

  14. Recent Advances in Modeling of the Atmospheric Boundary Layer and Land Surface in the Coupled WRF-CMAQ Model

    Science.gov (United States)

    Advances in the land surface model (LSM) and planetary boundary layer (PBL) components of the WRF-CMAQ coupled meteorology and air quality modeling system are described. The aim of these modifications was primarily to improve the modeling of ground level concentrations of trace c...

  15. Assessment of the ARW-WRF model over complex terrain: the case of the Stellenbosch Wine of Origin district of South Africa

    Science.gov (United States)

    Soltanzadeh, Iman; Bonnardot, Valérie; Sturman, Andrew; Quénol, Hervé; Zawar-Reza, Peyman

    2017-08-01

    Global warming has implications for thermal stress for grapevines during ripening, so that wine producers need to adapt their viticultural practices to ensure optimum physiological response to environmental conditions in order to maintain wine quality. The aim of this paper is to assess the ability of the Weather Research and Forecasting (WRF) model to accurately represent atmospheric processes at high resolution (500 m) during two events during the grapevine ripening period in the Stellenbosch Wine of Origin district of South Africa. Two case studies were selected to identify areas of potentially high daytime heat stress when grapevine photosynthesis and grape composition were expected to be affected. The results of high-resolution atmospheric model simulations were compared to observations obtained from an automatic weather station (AWS) network in the vineyard region. Statistical analysis was performed to assess the ability of the WRF model to reproduce spatial and temporal variations of meteorological parameters at 500-m resolution. The model represented the spatial and temporal variation of meteorological variables very well, with an average model air temperature bias of 0.1 °C, while that for relative humidity was -5.0 % and that for wind speed 0.6 m s-1. Variation in model performance varied between AWS and with time of day, as WRF was not always able to accurately represent effects of nocturnal cooling within the complex terrain. Variations in performance between the two case studies resulted from effects of atmospheric boundary layer processes in complex terrain under the influence of the different synoptic conditions prevailing during the two periods.

  16. Assessment of the Suitability of High Resolution Numerical Weather Model Outputs for Hydrological Modelling in Mountainous Cold Regions

    Science.gov (United States)

    Rasouli, K.; Pomeroy, J. W.; Hayashi, M.; Fang, X.; Gutmann, E. D.; Li, Y.

    2017-12-01

    The hydrology of mountainous cold regions has a large spatial variability that is driven both by climate variability and near-surface process variability associated with complex terrain and patterns of vegetation, soils, and hydrogeology. There is a need to downscale large-scale atmospheric circulations towards the fine scales that cold regions hydrological processes operate at to assess their spatial variability in complex terrain and quantify uncertainties by comparison to field observations. In this research, three high resolution numerical weather prediction models, namely, the Intermediate Complexity Atmosphere Research (ICAR), Weather Research and Forecasting (WRF), and Global Environmental Multiscale (GEM) models are used to represent spatial and temporal patterns of atmospheric conditions appropriate for hydrological modelling. An area covering high mountains and foothills of the Canadian Rockies was selected to assess and compare high resolution ICAR (1 km × 1 km), WRF (4 km × 4 km), and GEM (2.5 km × 2.5 km) model outputs with station-based meteorological measurements. ICAR with very low computational cost was run with different initial and boundary conditions and with finer spatial resolution, which allowed an assessment of modelling uncertainty and scaling that was difficult with WRF. Results show that ICAR, when compared with WRF and GEM, performs very well in precipitation and air temperature modelling in the Canadian Rockies, while all three models show a fair performance in simulating wind and humidity fields. Representation of local-scale atmospheric dynamics leading to realistic fields of temperature and precipitation by ICAR, WRF, and GEM makes these models suitable for high resolution cold regions hydrological predictions in complex terrain, which is a key factor in estimating water security in western Canada.

  17. Sensitivity of an Integrated Mesoscale Atmosphere and Agriculture Land Modeling System (WRF/CMAQ-EPIC) to MODIS Vegetation and Lightning Assimilation

    Science.gov (United States)

    Ran, L.; Cooter, E. J.; Gilliam, R. C.; Foroutan, H.; Kang, D.; Appel, W.; Wong, D. C.; Pleim, J. E.; Benson, V.; Pouliot, G.

    2017-12-01

    The combined meteorology and air quality modeling system composed of the Weather Research and Forecast (WRF) model and Community Multiscale Air Quality (CMAQ) model is an important decision support tool that is used in research and regulatory decisions related to emissions, meteorology, climate, and chemical transport. The Environmental Policy Integrated Climate (EPIC) is a cropping model which has long been used in a range of applications related to soil erosion, crop productivity, climate change, and water quality around the world. We have integrated WRF/CMAQ with EPIC using the Fertilizer Emission Scenario Tool for CMAQ (FEST-C) to estimate daily soil N information with fertilization for CMAQ bi-directional ammonia flux modeling. Driven by the weather and N deposition from WRF/CMAQ, FEST-C EPIC simulations are conducted on 22 different agricultural production systems ranging from managed grass lands (e.g. hay and alfalfa) to crop lands (e.g. corn grain and soybean) with rainfed and irrigated information across any defined conterminous United States (U.S.) CMAQ domain and grid resolution. In recent years, this integrated system has been enhanced and applied in many different air quality and ecosystem assessment projects related to land-water-atmosphere interactions. These enhancements have advanced this system to become a valuable tool for integrated assessments of air, land and water quality in light of social drivers and human and ecological outcomes. This presentation will focus on evaluating the sensitivity of precipitation and N deposition in the integrated system to MODIS vegetation input and lightning assimilation and their impacts on agricultural production and fertilization. We will describe the integrated modeling system and evaluate simulated precipitation and N deposition along with other weather information (e.g. temperature, humidity) for 2011 over the conterminous U.S. at 12 km grids from a coupled WRF/CMAQ with MODIS and lightning assimilation

  18. Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA

    Science.gov (United States)

    Watson, Leela R.; Bauman, William H., III; Hoeth, Brian

    2009-01-01

    This abstract describes work that will be done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting "wind cycling" cases at Edwards Air Force Base, CA (EAFB), in which the wind speeds and directions oscillate among towers near the EAFB runway. The Weather Research and Forecasting (WRF) model allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. The goal of this project is to assess the different configurations available and determine which configuration will best predict surface wind speed and direction at EAFB.

  19. UPDATE ON DEVELOPMENT OF NUDGING FDDA FOR ADVANCED RESEARCH WRF

    Science.gov (United States)

    A nudging-based four-dimensional data assimilation (FDDA) system is being developed for the Weather Research and Forecasting (WRF) Model. This effort represents a collaboration between The Pennsylvania State University (i.e., Penn State), the National Center for Atmospheric Rese...

  20. Wind climate estimation using WRF model output: method and model sensitivities over the sea

    DEFF Research Database (Denmark)

    Hahmann, Andrea N.; Vincent, Claire Louise; Peña, Alfredo

    2015-01-01

    setup parameters. The results of the year-long sensitivity simulations show that the long-term mean wind speed simulated by the WRF model offshore in the region studied is quite insensitive to the global reanalysis, the number of vertical levels, and the horizontal resolution of the sea surface...... temperature used as lower boundary conditions. Also, the strength and form (grid vs spectral) of the nudging is quite irrelevant for the mean wind speed at 100 m. Large sensitivity is found to the choice of boundary layer parametrization, and to the length of the period that is discarded as spin-up to produce...... a wind climatology. It is found that the spin-up period for the boundary layer winds is likely larger than 12 h over land and could affect the wind climatology for points offshore for quite a distance downstream from the coast....

  1. Short-term Wind Forecasting at Wind Farms using WRF-LES and Actuator Disk Model

    Science.gov (United States)

    Kirkil, Gokhan

    2017-04-01

    Short-term wind forecasts are obtained for a wind farm on a mountainous terrain using WRF-LES. Multi-scale simulations are also performed using different PBL parameterizations. Turbines are parameterized using Actuator Disc Model. LES models improved the forecasts. Statistical error analysis is performed and ramp events are analyzed. Complex topography of the study area affects model performance, especially the accuracy of wind forecasts were poor for cross valley-mountain flows. By means of LES, we gain new knowledge about the sources of spatial and temporal variability of wind fluctuations such as the configuration of wind turbines.

  2. Ecosystem feedbacks to climate change in California: Development, testing, and analysis using a coupled regional atmosphere and land-surface model (WRF3-CLM3.5)

    Energy Technology Data Exchange (ETDEWEB)

    Subin, Z.M.; Riley, W.J.; Kueppers, L.M.; Jin, J.; Christianson, D.S.; Torn, M.S.

    2010-11-01

    A regional atmosphere model [Weather Research and Forecasting model version 3 (WRF3)] and a land surface model [Community Land Model, version 3.5 (CLM3.5)] were coupled to study the interactions between the atmosphere and possible future California land-cover changes. The impact was evaluated on California's climate of changes in natural vegetation under climate change and of intentional afforestation. The ability of WRF3 to simulate California's climate was assessed by comparing simulations by WRF3-CLM3.5 and WRF3-Noah to observations from 1982 to 1991. Using WRF3-CLM3.5, the authors performed six 13-yr experiments using historical and future large-scale climate boundary conditions from the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL CM2.1). The land-cover scenarios included historical and future natural vegetation from the Mapped Atmosphere-Plant-Soil System-Century 1 (MC1) dynamic vegetation model, in addition to a future 8-million-ha California afforestation scenario. Natural vegetation changes alone caused summer daily-mean 2-m air temperature changes of -0.7 to +1 C in regions without persistent snow cover, depending on the location and the type of vegetation change. Vegetation temperature changes were much larger than the 2-m air temperature changes because of the finescale spatial heterogeneity of the imposed vegetation change. Up to 30% of the magnitude of the summer daily-mean 2-m air temperature increase and 70% of the magnitude of the 1600 local time (LT) vegetation temperature increase projected under future climate change were attributable to the climate-driven shift in land cover. The authors projected that afforestation could cause local 0.2-1.2 C reductions in summer daily-mean 2-m air temperature and 2.0-3.7 C reductions in 1600 LT vegetation temperature for snow-free regions, primarily because of increased evapotranspiration. Because some of these temperature changes are of comparable magnitude to those

  3. Statistical Studies of Mesoscale Forecast Models MM5 and WRF

    National Research Council Canada - National Science Library

    Henmi, Teizi

    2004-01-01

    ... models were carried out and the results were compared with surface observation data. Both models tended to overforecast temperature and dew-point temperature, although the correlation coefficients between forecast and observations were fairly high...

  4. Sensitivity of the WRF model to the lower boundary in an extreme precipitation event - Madeira island case study

    Science.gov (United States)

    Teixeira, J. C.; Carvalho, A. C.; Carvalho, M. J.; Luna, T.; Rocha, A.

    2014-08-01

    The advances in satellite technology in recent years have made feasible the acquisition of high-resolution information on the Earth's surface. Examples of such information include elevation and land use, which have become more detailed. Including this information in numerical atmospheric models can improve their results in simulating lower boundary forced events, by providing detailed information on their characteristics. Consequently, this work aims to study the sensitivity of the weather research and forecast (WRF) model to different topography as well as land-use simulations in an extreme precipitation event. The test case focused on a topographically driven precipitation event over the island of Madeira, which triggered flash floods and mudslides in the southern parts of the island. Difference fields between simulations were computed, showing that the change in the data sets produced statistically significant changes to the flow, the planetary boundary layer structure and precipitation patterns. Moreover, model results show an improvement in model skill in the windward region for precipitation and in the leeward region for wind, in spite of the non-significant enhancement in the overall results with higher-resolution data sets of topography and land use.

  5. An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS

    OpenAIRE

    W. R. Sessions; H. E. Fuelberg; R. A. Kahn; D. M. Winker

    2010-01-01

    The Weather Research and Forecasting Model (WRF) is considered a "next generation" mesoscale meteorology model. The inclusion of a chemistry module (WRF-Chem) allows transport simulations of chemical and aerosol species such as those observed during NASA's Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) in 2008. The ARCTAS summer deployment phase during June and July coincided with large boreal wildfires in Saskatchewan and Eastern Russia.

  6. Box photosynthesis modeling results for WRF/CMAQ LSM

    Data.gov (United States)

    U.S. Environmental Protection Agency — Box Photosynthesis model simulations for latent heat and ozone at 6 different FLUXNET sites. This dataset is associated with the following publication: Ran, L., J....

  7. WRF modeling of PM2.5 remediation by SALSCS and its clean air flow over Beijing terrain.

    Science.gov (United States)

    Cao, Qingfeng; Shen, Lian; Chen, Sheng-Chieh; Pui, David Y H

    2018-06-01

    Atmospheric simulations were carried out over the terrain of entire Beijing, China, to investigate the effectiveness of an air-pollution cleaning system named Solar-Assisted Large-Scale Cleaning System (SALSCS) for PM 2.5 mitigation by using the Weather Research and Forecasting (WRF) model. SALSCS was proposed to utilize solar energy to generate airflow therefrom the airborne particulate pollution of atmosphere was separated by filtration elements. Our model used a derived tendency term in the potential temperature equation to simulate the buoyancy effect of SALSCS created with solar radiation on its nearby atmosphere. PM 2.5 pollutant and SALSCS clean air were simulated in the model domain by passive tracer scalars. Simulation conditions with two system flow rates of 2.64 × 10 5  m 3 /s and 3.80 × 10 5  m 3 /s were tested for seven air pollution episodes of Beijing during the winters of 2015-2017. The numerical results showed that with eight SALSCSs installed along the 6 th Ring Road of the city, 11.2% and 14.6% of PM 2.5 concentrations were reduced under the two flow-rate simulation conditions, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Heikkilae, U. [Bjerknes Centre for Climate Research, Uni Bjerknes Centre, Bergen (Norway); Sandvik, A. [Bjerknes Centre for Climate Research, Institute for Marine Research (IMR), Bergen (Norway); Sorteberg, A. [University of Bergen, Geophysical Institute, Bergen (Norway)

    2011-10-15

    Results from a first-time employment of the WRF regional climate model to climatological simulations in Europe are presented. The ERA-40 reanalysis (resolution 1 ) has been downscaled to a horizontal resolution of 30 and 10 km for the period of 1961-1990. This model setup includes the whole North Atlantic in the 30 km domain and spectral nudging is used to keep the large scales consistent with the driving ERA-40 reanalysis. The model results are compared against an extensive observational network of surface variables in complex terrain in Norway. The comparison shows that the WRF model is able to add significant detail to the representation of precipitation and 2-m temperature of the ERA-40 reanalysis. Especially the geographical distribution, wet day frequency and extreme values of precipitation are highly improved due to the better representation of the orography. Refining the resolution from 30 to 10 km further increases the skill of the model, especially in case of precipitation. Our results indicate that the use of 10-km resolution is advantageous for producing regional future climate projections. Use of a large domain and spectral nudging seems to be useful in reproducing the extreme precipitation events due to the better resolved synoptic scale features over the North Atlantic, and also helps to reduce the large regional temperature biases over Norway. This study presents a high-resolution, high-quality climatological data set useful for reference climate impact studies. (orig.)

  9. Application and evaluation of the WRF-CMAQ modeling system to the 2011 DISCOVER-AQ Baltimore-Washington D.C. study

    Science.gov (United States)

    Appel, W.; Gilliam, R. C.; Pouliot, G. A.; Godowitch, J. M.; Pleim, J.; Hogrefe, C.; Kang, D.; Roselle, S. J.; Mathur, R.

    2013-12-01

    The DISCOVER-AQ project (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality), is a joint collaboration between NASA, U.S. EPA and a number of other local organizations with the goal of characterizing air quality in urban areas using satellite, aircraft, vertical profiler and ground based measurements (http://discover-aq.larc.nasa.gov). In July 2011, the DISCOVER-AQ project conducted intensive air quality measurements in the Baltimore, MD and Washington, D.C. area in the eastern U.S. To take advantage of these unique data, the Community Multiscale Air Quality (CMAQ) model, coupled with the Weather Research and Forecasting (WRF) model is used to simulate the meteorology and air quality in the same region using 12-km, 4-km and 1-km horizontal grid spacings. The goal of the modeling exercise is to demonstrate the capability of the coupled WRF-CMAQ modeling system to simulate air quality at fine grid spacings in an urban area. Development of new data assimilation techniques and the use of higher resolution input data for the WRF model have been implemented to improve the meteorological results, particularly at the 4-km and 1-km grid resolutions. In addition, a number of updates to the CMAQ model were made to enhance the capability of the modeling system to accurately represent the magnitude and spatial distribution of pollutants at fine model resolutions. Data collected during the 2011 DISCOVER-AQ campaign, which include aircraft transects and spirals, ship measurements in the Chesapeake Bay, ozonesondes, tethered balloon measurements, DRAGON aerosol optical depth measurements, LIDAR measurements, and intensive ground-based site measurements, are used to evaluate results from the WRF-CMAQ modeling system for July 2011 at the three model grid resolutions. The results of the comparisons of the model results to these measurements will be presented, along with results from the various sensitivity simulations

  10. Wind Farm parametrization in the mesoscale model WRF

    DEFF Research Database (Denmark)

    Volker, Patrick; Badger, Jake; Hahmann, Andrea N.

    2012-01-01

    , but are parametrized as another sub-grid scale process. In order to appropriately capture the wind farm wake recovery and its direction, two properties are important, among others, the total energy extracted by the wind farm and its velocity deficit distribution. In the considered parametrization the individual...... the extracted force is proportional to the turbine area interfacing a grid cell. The sub-grid scale wake expansion is achieved by adding turbulence kinetic energy (proportional to the extracted power) to the flow. The validity of both wind farm parametrizations has been verified against observational data. We...... turbines produce a thrust dependent on the background velocity. For the sub-grid scale velocity deficit, the entrainment from the free atmospheric flow into the wake region, which is responsible for the expansion, is taken into account. Furthermore, since the model horizontal distance is several times...

  11. Models of Weather Impact on Air Traffic

    Science.gov (United States)

    Kulkarni, Deepak; Wang, Yao

    2017-01-01

    Flight delays have been a serious problem in the national airspace system costing about $30B per year. About 70 of the delays are attributed to weather and upto two thirds of these are avoidable. Better decision support tools would reduce these delays and improve air traffic management tools. Such tools would benefit from models of weather impacts on the airspace operations. This presentation discusses use of machine learning methods to mine various types of weather and traffic data to develop such models.

  12. Photochemical Pollution Modeling of Ozone at Metropolitan Area of Porto Alegre - RS/Brazil using WRF/Chem

    Science.gov (United States)

    Cuchiara, G. C.; Carvalho, J.

    2013-05-01

    One of the main problems related to air pollution in urban areas is caused by photochemical oxidants, particularly troposphere ozone (O3), which is considered a harmful substance. The O3 precursors (carbon monoxide CO, nitrogen oxides NOx and hydrocarbons HCs) are predominantly of anthropogenic origin in these areas, and vehicles are the main emission sources. Due to the increased urbanization and industrial development in recent decades, air pollutant emissions have increased likewise, mainly by mobile sources in the highly urbanized and developed areas, such as the Metropolitan Area of Porto Alegre-RS (MAPA). According to legal regulations implemented in Brazil in 2005, which aimed at increasing the fraction of biofuels in the national energy matrix, 2% biodiesel were supposed to be added to the fuel mixture within three years, and up to 5% after eight years of implementation of these regulations. Our work performs an analysis of surface concentrations for O3, NOx, CO, and HCs through numerical simulations with WRF/Chem (Weather Research and Forecasting model with Chemistry). The model is validated against observational data obtained from the local urban air quality network for the period from January 5 to 9, 2009 (96 hours). One part of the study focused on the comparison of simulated meteorological variables, to observational data from two stations in MAPA. The results showed that the model simulates well the diurnal evolution of pressure and temperature at the surface, but is much less accurate for wind speed. Another part included the evaluation of model results of WRF/Chem for O3 versus observed data at air quality stations Esteio and Porto Alegre. Comparisons between simulated and observed O3 revealed that the model simulates well the evolution of the observed values, but on many occasions the model did not reproduce well the maximum and minimum concentrations. Finally, a preliminary quantitative sensitivity study on the impact of biofuel on the

  13. Optimizing meridional advection of the Advanced Research WRF (ARW) dynamics for Intel Xeon Phi coprocessor

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    The most widely used community weather forecast and research model in the world is the Weather Research and Forecast (WRF) model. Two distinct varieties of WRF exist. The one we are interested is the Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we optimize a meridional (north-south direction) advection subroutine for Intel Xeon Phi coprocessor. Advection is of the most time consuming routines in the ARW dynamics core. It advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.2x.

  14. Optimizing zonal advection of the Advanced Research WRF (ARW) dynamics for Intel MIC

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecast (WRF) model is the most widely used community weather forecast and research model in the world. There are two distinct varieties of WRF. The Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we will use Intel Intel Many Integrated Core (MIC) architecture to substantially increase the performance of a zonal advection subroutine for optimization. It is of the most time consuming routines in the ARW dynamics core. Advection advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 2.4x.

  15. Modelling regional climate change and urban planning scenarios and their impacts on the urban environment in two cities with WRF-ACASA

    Science.gov (United States)

    Falk, M.; Pyles, R. D.; Marras, S.; Spano, D.; Paw U, K. T.

    2011-12-01

    The number of urban metabolism studies has increased in recent years, due to the important impact that energy, water and carbon exchange over urban areas have on climate change. Urban modeling is therefore crucial in the future design and management of cities. This study presents the ACASA model coupled to the Weather Research and Forecasting (WRF-ARW) mesoscale model to simulate urban fluxes at a horizontal resolution of 200 meters for urban areas of roughly 100 km^2. As part of the European Project "BRIDGE", these regional simulations were used in combination with remotely sensed data to provide constraints on the land surface types and the exchange of carbon and energy fluxes from urban centers. Surface-atmosphere exchanges of mass and energy were simulated using the Advanced Canopy Atmosphere Soil Algorithm (ACASA). ACASA is a multi-layer high-order closure model, recently modified to work over natural, agricultural as well as urban environments. In particular, improvements were made to account for the anthropogenic contribution to heat and carbon production. For two cities four climate change and four urban planning scenarios were simulated: The climate change scenarios include a base scenario (Sc0: 2008 Commit in IPCC), a medium emission scenario (Sc1: IPCC A2), a worst case emission scenario (Sce2: IPCC A1F1) and finally a best case emission scenario (Sce3: IPCC B1). The urban planning scenarios include different development scenarios such as smart growth. The two cities are a high latitude city, Helsinki (Finland) and an historic city, Florence (Italy). Helsinki is characterized by recent, rapid urbanization that requires a substantial amount of energy for heating, while Florence is representative of cities in lower latitudes, with substantial cultural heritage and a comparatively constant architectural footprint over time. In general, simulated fluxes matched the point observations well and showed consistent improvement in the energy partitioning over

  16. Weather model performance on extreme rainfall events simulation's over Western Iberian Peninsula

    Science.gov (United States)

    Pereira, S. C.; Carvalho, A. C.; Ferreira, J.; Nunes, J. P.; Kaiser, J. J.; Rocha, A.

    2012-08-01

    This study evaluates the performance of the WRF-ARW numerical weather model in simulating the spatial and temporal patterns of an extreme rainfall period over a complex orographic region in north-central Portugal. The analysis was performed for the December month of 2009, during the Portugal Mainland rainy season. The heavy rainfall to extreme heavy rainfall periods were due to several low surface pressure's systems associated with frontal surfaces. The total amount of precipitation for December exceeded, in average, the climatological mean for the 1971-2000 time period in +89 mm, varying from 190 mm (south part of the country) to 1175 mm (north part of the country). Three model runs were conducted to assess possible improvements in model performance: (1) the WRF-ARW is forced with the initial fields from a global domain model (RunRef); (2) data assimilation for a specific location (RunObsN) is included; (3) nudging is used to adjust the analysis field (RunGridN). Model performance was evaluated against an observed hourly precipitation dataset of 15 rainfall stations using several statistical parameters. The WRF-ARW model reproduced well the temporal rainfall patterns but tended to overestimate precipitation amounts. The RunGridN simulation provided the best results but model performance of the other two runs was good too, so that the selected extreme rainfall episode was successfully reproduced.

  17. Investigating the sensitivity of hurricane intensity and trajectory to sea surface temperatures using the regional model WRF

    Directory of Open Access Journals (Sweden)

    Cevahir Kilic

    2013-12-01

    Full Text Available The influence of sea surface temperature (SST anomalies on the hurricane characteristics are investigated in a set of sensitivity experiments employing the Weather Research and Forecasting (WRF model. The idealised experiments are performed for the case of Hurricane Katrina in 2005. The first set of sensitivity experiments with basin-wide changes of the SST magnitude shows that the intensity goes along with changes in the SST, i.e., an increase in SST leads to an intensification of Katrina. Additionally, the trajectory is shifted to the west (east, with increasing (decreasing SSTs. The main reason is a strengthening of the background flow. The second set of experiments investigates the influence of Loop Current eddies idealised by localised SST anomalies. The intensity of Hurricane Katrina is enhanced with increasing SSTs close to the core of a tropical cyclone. Negative nearby SST anomalies reduce the intensity. The trajectory only changes if positive SST anomalies are located west or north of the hurricane centre. In this case the hurricane is attracted by the SST anomaly which causes an additional moisture source and increased vertical winds.

  18. Quantification and mapping of urban fluxes under climate change: Application of WRF-SUEWS model to Greater Porto area (Portugal).

    Science.gov (United States)

    Rafael, S; Martins, H; Marta-Almeida, M; Sá, E; Coelho, S; Rocha, A; Borrego, C; Lopes, M

    2017-05-01

    Climate change and the growth of urban populations are two of the main challenges facing Europe today. These issues are linked as climate change results in serious challenges for cities. Recent attention has focused on how urban surface-atmosphere exchanges of heat and water will be affected by climate change and the implications for urban planning and sustainability. In this study energy fluxes for Greater Porto area, Portugal, were estimated and the influence of the projected climate change evaluated. To accomplish this, the Weather Research and Forecasting Model (WRF) and the Surface Urban Energy and Water Balance Scheme (SUEWS) were applied for two climatological scenarios: a present (or reference, 1986-2005) scenario and a future scenario (2046-2065), in this case the Representative Concentration Pathway RCP8.5, which reflects the worst set of expectations (with the most onerous impacts). The results show that for the future climate conditions, the incoming shortwave radiation will increase by around 10%, the sensible heat flux around 40% and the net storage heat flux around 35%. In contrast, the latent heat flux will decrease about 20%. The changes in the magnitude of the different fluxes result in an increase of the net all-wave radiation by 15%. The implications of the changes of the energy balance on the meteorological variables are discussed, particularly in terms of temperature and precipitation. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effects of Initial Drivers and Land Use on WRF Modeling for Near-Surface Fields and Atmospheric Boundary Layer over the Northeastern Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Junhua Yang

    2016-01-01

    Full Text Available To improve the simulation performance of mesoscale models in the northeastern Tibetan Plateau, two reanalysis initial datasets (NCEP FNL and ERA-Interim and two MODIS (Moderate-Resolution Imaging Spectroradiometer land-use datasets (from 2001 and 2010 are used in WRF (Weather Research and Forecasting modeling. The model can reproduce the variations of 2 m temperature (T2 and 2 m relative humidity (RH2, but T2 is overestimated and RH2 is underestimated in the control experiment. After using the new initial drive and land use data, the simulation precision in T2 is improved by the correction of overestimated net energy flux at surface and the RH2 is improved due to the lower T2 and larger soil moisture. Due to systematic bias in WRF modeling for wind speed, we design another experiment that includes the Jimenez subgrid-scale orography scheme, which reduces the frequency of low wind speed and increases the frequency of high wind speed and that is more consistent with the observation. Meanwhile, the new drive and land-use data lead to lower boundary layer height and influence the potential temperature and wind speed in both the lower atmosphere and the upper layer, while the impact on water vapor mixing ratio is primarily concentrated in the lower atmosphere.

  20. Evaluation of the Weather Research and Forecasting mesoscale model for GABLS3: Impact of boundary-layer schemes, boundary conditions and spin-up

    NARCIS (Netherlands)

    Kleczek, M.A.; Steeneveld, G.J.; Holtslag, A.A.M.

    2014-01-01

    We evaluated the performance of the three-dimensional Weather Research and Forecasting (WRF) mesoscale model, specifically the performance of the planetary boundary-layer (PBL) parametrizations. For this purpose, Cabauw tower observations were used, with the study extending beyond the third GEWEX

  1. Future Midwest Heat Waves in WRF

    Science.gov (United States)

    Huber, M.; Buzan, J. R.; Yoo, J.

    2017-12-01

    We present heat stress results for the upper Midwest derived from convection resolving Weather Research and Forecasting (WRF) model simulations carried out for the RCP 8.5 Scenario and driven by Community Earth System Model (CESM) boundary conditions as part of the Indiana Climate Change Assessment. Using this modeling system we find widespread and severe increases in moist heat stress metrics in the Midwest by end of century. We detail scaling arguments that suggest our results are robust and not model dependent and describe potential health, welfare, and productivity implications of these results.

  2. A comparison study of convective and microphysical parameterization schemes associated with lightning occurrence in southeastern Brazil using the WRF model

    Science.gov (United States)

    Zepka, G. D.; Pinto, O.

    2010-12-01

    The intent of this study is to identify the combination of convective and microphysical WRF parameterizations that better adjusts to lightning occurrence over southeastern Brazil. Twelve thunderstorm days were simulated with WRF model using three different convective parameterizations (Kain-Fritsch, Betts-Miller-Janjic and Grell-Devenyi ensemble) and two different microphysical schemes (Purdue-Lin and WSM6). In order to test the combinations of parameterizations at the same time of lightning occurrence, a comparison was made between the WRF grid point values of surface-based Convective Available Potential Energy (CAPE), Lifted Index (LI), K-Index (KI) and equivalent potential temperature (theta-e), and the lightning locations nearby those grid points. Histograms were built up to show the ratio of the occurrence of different values of these variables for WRF grid points associated with lightning to all WRF grid points. The first conclusion from this analysis was that the choice of microphysics did not change appreciably the results as much as different convective schemes. The Betts-Miller-Janjic parameterization has generally worst skill to relate higher magnitudes for all four variables to lightning occurrence. The differences between the Kain-Fritsch and Grell-Devenyi ensemble schemes were not large. This fact can be attributed to the similar main assumptions used by these schemes that consider entrainment/detrainment processes along the cloud boundaries. After that, we examined three case studies using the combinations of convective and microphysical options without the Betts-Miller-Janjic scheme. Differently from the traditional verification procedures, fields of surface-based CAPE from WRF 10 km domain were compared to the Eta model, satellite images and lightning data. In general the more reliable convective scheme was Kain-Fritsch since it provided more consistent distribution of the CAPE fields with respect to satellite images and lightning data.

  3. Analysis of errors introduced by geographic coordinate systems on weather numeric prediction modeling

    Directory of Open Access Journals (Sweden)

    Y. Cao

    2017-09-01

    Full Text Available Most atmospheric models, including the Weather Research and Forecasting (WRF model, use a spherical geographic coordinate system to internally represent input data and perform computations. However, most geographic information system (GIS input data used by the models are based on a spheroid datum because it better represents the actual geometry of the earth. WRF and other atmospheric models use these GIS input layers as if they were in a spherical coordinate system without accounting for the difference in datum. When GIS layers are not properly reprojected, latitudinal errors of up to 21 km in the midlatitudes are introduced. Recent studies have suggested that for very high-resolution applications, the difference in datum in the GIS input data (e.g., terrain land use, orography should be taken into account. However, the magnitude of errors introduced by the difference in coordinate systems remains unclear. This research quantifies the effect of using a spherical vs. a spheroid datum for the input GIS layers used by WRF to study greenhouse gas transport and dispersion in northeast Pennsylvania.

  4. Is ozone model bias driven by errors in cloud predictions? A quantitative assessment using satellite cloud retrievals in WRF-Chem

    Science.gov (United States)

    Ryu, Y. H.; Hodzic, A.; Barré, J.; Descombes, G.; Minnis, P.

    2017-12-01

    Clouds play a key role in radiation and hence O3 photochemistry by modulating photolysis rates and light-dependent emissions of biogenic volatile organic compounds (BVOCs). It is not well known, however, how much of the bias in O3 predictions is caused by inaccurate cloud predictions. This study quantifies the errors in surface O3 predictions associated with clouds in summertime over CONUS using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. Cloud fields used for photochemistry are corrected based on satellite cloud retrievals in sensitivity simulations. It is found that the WRF-Chem model is able to detect about 60% of clouds in the right locations and generally underpredicts cloud optical depths. The errors in hourly O3 due to the errors in cloud predictions can be up to 60 ppb. On average in summertime over CONUS, the errors in 8-h average O3 of 1-6 ppb are found to be attributable to those in cloud predictions under cloudy sky conditions. The contribution of changes in photolysis rates due to clouds is found to be larger ( 80 % on average) than that of light-dependent BVOC emissions. The effects of cloud corrections on O­3 are about 2 times larger in VOC-limited than NOx-limited regimes, suggesting that the benefits of accurate cloud predictions would be greater in VOC-limited than NOx-limited regimes.

  5. Performance of the WRF model to simulate the seasonal and interannual variability of hydrometeorological variables in East Africa: a case study for the Tana River basin in Kenya

    Science.gov (United States)

    Kerandi, Noah Misati; Laux, Patrick; Arnault, Joel; Kunstmann, Harald

    2017-10-01

    This study investigates the ability of the regional climate model Weather Research and Forecasting (WRF) in simulating the seasonal and interannual variability of hydrometeorological variables in the Tana River basin (TRB) in Kenya, East Africa. The impact of two different land use classifications, i.e., the Moderate Resolution Imaging Spectroradiometer (MODIS) and the US Geological Survey (USGS) at two horizontal resolutions (50 and 25 km) is investigated. Simulated precipitation and temperature for the period 2011-2014 are compared with Tropical Rainfall Measuring Mission (TRMM), Climate Research Unit (CRU), and station data. The ability of Tropical Rainfall Measuring Mission (TRMM) and Climate Research Unit (CRU) data in reproducing in situ observation in the TRB is analyzed. All considered WRF simulations capture well the annual as well as the interannual and spatial distribution of precipitation in the TRB according to station data and the TRMM estimates. Our results demonstrate that the increase of horizontal resolution from 50 to 25 km, together with the use of the MODIS land use classification, significantly improves the precipitation results. In the case of temperature, spatial patterns and seasonal cycle are well reproduced, although there is a systematic cold bias with respect to both station and CRU data. Our results contribute to the identification of suitable and regionally adapted regional climate models (RCMs) for East Africa.

  6. The 2010 Pakistan floods: high-resolution simulations with the WRF model

    Science.gov (United States)

    Viterbo, Francesca; Parodi, Antonio; Molini, Luca; Provenzale, Antonello; von Hardenberg, Jost; Palazzi, Elisa

    2013-04-01

    Estimating current and future water resources in high mountain regions with complex orography is a difficult but crucial task. In particular, the French-Italian project PAPRIKA is focused on two specific regions in the Hindu-Kush -- Himalaya -- Karakorum (HKKH)region: the Shigar basin in Pakistan, at the feet of K2, and the Khumbu valley in Nepal, at the feet of Mount Everest. In this framework, we use the WRF model to simulate precipitation and meteorological conditions with high resolution in areas with extreme orographic slopes, comparing the model output with station and satellite data. Once validated the model, we shall run a set of three future time-slices at very high spatial resolution, in the periods 2046-2050, 2071-2075 and 2096-2100, nested in different climate change scenarios (EXtreme PREcipitation and Hydrological climate Scenario Simulations -EXPRESS-Hydro project). As a prelude to this study, here we discuss the simulation of specific, high-intensity rainfall events in this area. In this paper we focus on the 2010 Pakistan floods which began in late July 2010, producing heavy monsoon rains in the Khyber Pakhtunkhwa, Sindh, Punjab and Balochistan regions of Pakistan and affecting the Indus River basin. Approximately one-fifth of Pakistan's total land area was underwater, with a death toll of about 2000 people. This event has been simulated with the WRF model (version 3.3.) in cloud-permitting mode (d01 14 km and d02 3.5 km): different convective closures and microphysics parameterization have been used. A deeper understanding of the processes responsible for this event has been gained through comparison with rainfall depth observations, radiosounding data and geostationary/polar satellite images.

  7. Predominant nonlinear atmospheric response to meridional shift of the Gulf Stream path from the WRF atmospheric model simulations

    Science.gov (United States)

    Seo, H.; Kwon, Y. O.; Joyce, T. M.

    2016-02-01

    A remarkably strong nonlinear behavior of the atmospheric circulation response to North Atlantic SST anomalies (SSTA) is revealed from a set of large-ensemble, high-resolution, and hemispheric-scale Weather Research and Forecasting (WRF) model simulations. The model is forced with the SSTA associated with meridional shift of the Gulf Stream (GS) path, constructed from a lag regression of the winter SST on a GS Index from observation. Analysis of the systematic set of experiments with SSTAs of varied amplitudes and switched signs representing various GS-shift scenarios provides unique insights into mechanism for emergence and evolution of transient and equilibrium response of atmospheric circulation to extratropical SSTA. Results show that, independent of sign of the SSTA, the equilibrium response is characterized by an anomalous trough over the North Atlantic Ocean and the Western Europe concurrent with enhanced storm track, increased rainfall, and reduced blocking days. To the north of the anomalous low, an anomalous ridge emerges over the Greenland, Iceland, and Norwegian Seas accompanied by weakened storm track, reduced rainfall and increased blocking days. This nonlinear component of the total response dominates the weak and oppositely signed linear response that is directly forced by the SSTA, yielding an anomalous ridge (trough) downstream of the warm (cold) SSTA. The amplitude of the linear response is proportional to that of the SSTA, but this is masked by the overwhelmingly strong nonlinear behavior showing no clear correspondence to the SSTA amplitude. The nonlinear pattern emerges 3-4 weeks after the model initialization in November and reaches its first peak amplitude in December/January. It appears that altered baroclinic wave activity due to the GS SSTA in November lead to low-frequency height responses in December/January through transient eddy vorticity flux convergence.

  8. Land use and topography influence in a complex terrain area: A high resolution mesoscale modelling study over the Eastern Pyrenees using the WRF model

    Science.gov (United States)

    Jiménez-Esteve, B.; Udina, M.; Soler, M. R.; Pepin, N.; Miró, J. R.

    2018-04-01

    Different types of land use (LU) have different physical properties which can change local energy balance and hence vertical fluxes of moisture, heat and momentum. This in turn leads to changes in near-surface temperature and moisture fields. Simulating atmospheric flow over complex terrain requires accurate local-scale energy balance and therefore model grid spacing must be sufficient to represent both topography and land-use. In this study we use both the Corine Land Cover (CLC) and United States Geological Survey (USGS) land use databases for use with the Weather Research and Forecasting (WRF) model and evaluate the importance of both land-use classification and horizontal resolution in contributing to successful modelling of surface temperatures and humidities observed from a network of 39 sensors over a 9 day period in summer 2013. We examine case studies of the effects of thermal inertia and soil moisture availability at individual locations. The scale at which the LU classification is observed influences the success of the model in reproducing observed patterns of temperature and moisture. Statistical validation of model output demonstrates model sensitivity to both the choice of LU database used and the horizontal resolution. In general, results show that on average, by a) using CLC instead of USGS and/or b) increasing horizontal resolution, model performance is improved. We also show that the sensitivity to these changes in the model performance shows a daily cycle.

  9. On the Dependence of Cloud Feedbacks on Physical Parameterizations in WRF Aquaplanet Simulations

    Science.gov (United States)

    Cesana, Grégory; Suselj, Kay; Brient, Florent

    2017-10-01

    We investigate the effects of physical parameterizations on cloud feedback uncertainty in response to climate change. For this purpose, we construct an ensemble of eight aquaplanet simulations using the Weather Research and Forecasting (WRF) model. In each WRF-derived simulation, we replace only one parameterization at a time while all other parameters remain identical. By doing so, we aim to (i) reproduce cloud feedback uncertainty from state-of-the-art climate models and (ii) understand how parametrizations impact cloud feedbacks. Our results demonstrate that this ensemble of WRF simulations, which differ only in physical parameterizations, replicates the range of cloud feedback uncertainty found in state-of-the-art climate models. We show that microphysics and convective parameterizations govern the magnitude and sign of cloud feedbacks, mostly due to tropical low-level clouds in subsidence regimes. Finally, this study highlights the advantages of using WRF to analyze cloud feedback mechanisms owing to its plug-and-play parameterization capability.

  10. Noodles: a tool for visualization of numerical weather model ensemble uncertainty.

    Science.gov (United States)

    Sanyal, Jibonananda; Zhang, Song; Dyer, Jamie; Mercer, Andrew; Amburn, Philip; Moorhead, Robert J

    2010-01-01

    Numerical weather prediction ensembles are routinely used for operational weather forecasting. The members of these ensembles are individual simulations with either slightly perturbed initial conditions or different model parameterizations, or occasionally both. Multi-member ensemble output is usually large, multivariate, and challenging to interpret interactively. Forecast meteorologists are interested in understanding the uncertainties associated with numerical weather prediction; specifically variability between the ensemble members. Currently, visualization of ensemble members is mostly accomplished through spaghetti plots of a single mid-troposphere pressure surface height contour. In order to explore new uncertainty visualization methods, the Weather Research and Forecasting (WRF) model was used to create a 48-hour, 18 member parameterization ensemble of the 13 March 1993 "Superstorm". A tool was designed to interactively explore the ensemble uncertainty of three important weather variables: water-vapor mixing ratio, perturbation potential temperature, and perturbation pressure. Uncertainty was quantified using individual ensemble member standard deviation, inter-quartile range, and the width of the 95% confidence interval. Bootstrapping was employed to overcome the dependence on normality in the uncertainty metrics. A coordinated view of ribbon and glyph-based uncertainty visualization, spaghetti plots, iso-pressure colormaps, and data transect plots was provided to two meteorologists for expert evaluation. They found it useful in assessing uncertainty in the data, especially in finding outliers in the ensemble run and therefore avoiding the WRF parameterizations that lead to these outliers. Additionally, the meteorologists could identify spatial regions where the uncertainty was significantly high, allowing for identification of poorly simulated storm environments and physical interpretation of these model issues.

  11. Simulation of ozone formation at different elevations in mountainous area of Hong Kong using WRF-CMAQ model.

    Science.gov (United States)

    Wang, N; Guo, H; Jiang, F; Ling, Z H; Wang, T

    2015-02-01

    Field measurements were simultaneously conducted at a mountain (Mt.) site (Tai Mao Shan, TMS) and an urban site (Tsuen Wan, TW) at the foot of the Mt. TMS in Hong Kong. An interesting event with consecutive high-ozone (O₃) days from 08:00 on 28 Oct. to 23:00 on 03 Nov., 2010 was observed at Mt. TMS, while no such polluted event was found at the foot of the mountain. The Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) models were used to understand this event. Model performance evaluation showed that the simulated meteorological parameters and air pollutants were well in agreement with the observations. The index of agreement (IOA) of temperature, relative humidity, wind direction and wind speed were 0.93, 0.83, 0.46 and 0.60, respectively. The multi-day high O₃ episode at Mt. TMS was also reasonably reproduced (IOA=0.68). Horizontally, the photochemical processes determined the O₃ levels in southwestern Pearl River Delta (PRD) and the Pearl River Estuary (PRE), while in eastern and northern PRD, the O₃ destruction was over the production during the event. Vertically, higher O₃ values at higher levels were found at both Mt. TMS and TW, indicating a vertical O₃ gradient over Hong Kong. With the aid of the process analysis module, we found positive contribution of vertical transport including advection and diffusion to O₃ mixing ratios at the two sites, suggesting that O₃ values at lower locations could be affected by O₃ at higher locations via vertical advection and diffusion over Hong Kong. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Nebula Cloud Computing Environment

    Science.gov (United States)

    Molthan, Andrew L.; Case, Jonathan L.; Venner, Jason; Moreno-Madrinan, Max. J.; Delgado, Francisco

    2012-01-01

    Over the past two years, scientists in the Earth Science Office at NASA fs Marshall Space Flight Center (MSFC) have explored opportunities to apply cloud computing concepts to support near real ]time weather forecast modeling via the Weather Research and Forecasting (WRF) model. Collaborators at NASA fs Short ]term Prediction Research and Transition (SPoRT) Center and the SERVIR project at Marshall Space Flight Center have established a framework that provides high resolution, daily weather forecasts over Mesoamerica through use of the NASA Nebula Cloud Computing Platform at Ames Research Center. Supported by experts at Ames, staff at SPoRT and SERVIR have established daily forecasts complete with web graphics and a user interface that allows SERVIR partners access to high resolution depictions of weather in the next 48 hours, useful for monitoring and mitigating meteorological hazards such as thunderstorms, heavy precipitation, and tropical weather that can lead to other disasters such as flooding and landslides. This presentation will describe the framework for establishing and providing WRF forecasts, example applications of output provided via the SERVIR web portal, and early results of forecast model verification against available surface ] and satellite ]based observations.

  13. Performance of the Bulgarian WRF-CMAQ modelling system for three subdomains in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Syrakov, D.; Prodanova, M.; Georgieva, E.

    2015-07-01

    The air quality modelling system WRF-CMAQ running at the National Institute of Meteorology and Hydrology (NIMH) in Sofia was applied to the European domain for the year 2010 in the frame of the Air Quality Model Evaluation International Initiative (AQMEII), Phase 2. The model system was set up for a domain of 5000x5000 km2 size with horizontal resolution of 25 km. The models options used and the emission input are briefly outlined. The model performance was investigated based on graphical plots and statistical indexes obtained by the web-based model evaluation platform ENSEMBLE. A preliminary operational model evaluation for ozone and particulate matter was conducted, comparing simulated and observed concentrations at ground level in three sub-domains of Europe. The analysis shows model overestimation for ozone and model underestimation for particulate matter. The best statistical indicators are for ozone concentrations during summer, when comparing data for EMEP stations in the EU domain. The worse results are for PM10 winter concentration in the region of the Balkan countries. (Author)

  14. Sensitivity of the weather research and forecasting model to parameterization schemes for regional climate of Nile River Basin

    Science.gov (United States)

    Tariku, Tebikachew Betru; Gan, Thian Yew

    2018-06-01

    Regional climate models (RCMs) have been used to simulate rainfall at relatively high spatial and temporal resolutions useful for sustainable water resources planning, design and management. In this study, the sensitivity of the RCM, weather research and forecasting (WRF), in modeling the regional climate of the Nile River Basin (NRB) was investigated using 31 combinations of different physical parameterization schemes which include cumulus (Cu), microphysics (MP), planetary boundary layer (PBL), land-surface model (LSM) and radiation (Ra) schemes. Using the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data as initial and lateral boundary conditions, WRF was configured to model the climate of NRB at a resolution of 36 km with 30 vertical levels. The 1999-2001 simulations using WRF were compared with satellite data combined with ground observation and the NCEP reanalysis data for 2 m surface air temperature (T2), rainfall, short- and longwave downward radiation at the surface (SWRAD, LWRAD). Overall, WRF simulated more accurate T2 and LWRAD (with correlation coefficients >0.8 and low root-mean-square error) than SWRAD and rainfall for the NRB. Further, the simulation of rainfall is more sensitive to PBL, Cu and MP schemes than other schemes of WRF. For example, WRF simulated less biased rainfall with Kain-Fritsch combined with MYJ than with YSU as the PBL scheme. The simulation of T2 is more sensitive to LSM and Ra than to Cu, PBL and MP schemes selected, SWRAD is more sensitive to MP and Ra than to Cu, LSM and PBL schemes, and LWRAD is more sensitive to LSM, Ra and PBL than Cu, and MP schemes. In summary, the following combination of schemes simulated the most representative regional climate of NRB: WSM3 microphysics, KF cumulus, MYJ PBL, RRTM longwave radiation and Dudhia shortwave radiation schemes, and Noah LSM. The above configuration of WRF coupled to the Noah LSM has also been shown to simulate representative regional

  15. Sensitivity of the weather research and forecasting model to parameterization schemes for regional climate of Nile River Basin

    Science.gov (United States)

    Tariku, Tebikachew Betru; Gan, Thian Yew

    2017-08-01

    Regional climate models (RCMs) have been used to simulate rainfall at relatively high spatial and temporal resolutions useful for sustainable water resources planning, design and management. In this study, the sensitivity of the RCM, weather research and forecasting (WRF), in modeling the regional climate of the Nile River Basin (NRB) was investigated using 31 combinations of different physical parameterization schemes which include cumulus (Cu), microphysics (MP), planetary boundary layer (PBL), land-surface model (LSM) and radiation (Ra) schemes. Using the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data as initial and lateral boundary conditions, WRF was configured to model the climate of NRB at a resolution of 36 km with 30 vertical levels. The 1999-2001 simulations using WRF were compared with satellite data combined with ground observation and the NCEP reanalysis data for 2 m surface air temperature (T2), rainfall, short- and longwave downward radiation at the surface (SWRAD, LWRAD). Overall, WRF simulated more accurate T2 and LWRAD (with correlation coefficients >0.8 and low root-mean-square error) than SWRAD and rainfall for the NRB. Further, the simulation of rainfall is more sensitive to PBL, Cu and MP schemes than other schemes of WRF. For example, WRF simulated less biased rainfall with Kain-Fritsch combined with MYJ than with YSU as the PBL scheme. The simulation of T2 is more sensitive to LSM and Ra than to Cu, PBL and MP schemes selected, SWRAD is more sensitive to MP and Ra than to Cu, LSM and PBL schemes, and LWRAD is more sensitive to LSM, Ra and PBL than Cu, and MP schemes. In summary, the following combination of schemes simulated the most representative regional climate of NRB: WSM3 microphysics, KF cumulus, MYJ PBL, RRTM longwave radiation and Dudhia shortwave radiation schemes, and Noah LSM. The above configuration of WRF coupled to the Noah LSM has also been shown to simulate representative regional

  16. Performance of the Bulgarian WRF-CMAQ modelling system for three subdomains in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Syrakov, M.; Prodanova, M.; Georgieva, E.

    2015-07-01

    The air quality modelling system WRF-CMAQ running at the National Institute of Meteorology and Hydrology (NIMH) in Sofia was applied to the European domain for the year 2010 in the frame of the Air Quality Model Evaluation International Initiative (AQMEII), Phase 2. The model system was set up for a domain of 5000x5000 km2 size with horizontal resolution of 25 km. The models’ options used and the emission input are briefly outlined. The model performance was investigated based on graphical plots and statistical indexes obtained by the web-based model evaluation platform ENSEMBLE. A preliminary operational model evaluation for ozone and particulate matter was conducted, comparing simulated and observed concentrations at ground level in three sub-domains of Europe. The analysis shows model overestimation for ozone and model underestimation for particulate matter. The best statistical indicators are for ozone concentrations during summer, when comparing data for EMEP stations in the EU domain. The worse results are for PM10 winter concentration in the region of the Balkan countries. (Author)

  17. An introduction to Space Weather Integrated Modeling

    Science.gov (United States)

    Zhong, D.; Feng, X.

    2012-12-01

    The need for a software toolkit that integrates space weather models and data is one of many challenges we are facing with when applying the models to space weather forecasting. To meet this challenge, we have developed Space Weather Integrated Modeling (SWIM) that is capable of analysis and visualizations of the results from a diverse set of space weather models. SWIM has a modular design and is written in Python, by using NumPy, matplotlib, and the Visualization ToolKit (VTK). SWIM provides data management module to read a variety of spacecraft data products and a specific data format of Solar-Interplanetary Conservation Element/Solution Element MHD model (SIP-CESE MHD model) for the study of solar-terrestrial phenomena. Data analysis, visualization and graphic user interface modules are also presented in a user-friendly way to run the integrated models and visualize the 2-D and 3-D data sets interactively. With these tools we can locally or remotely analysis the model result rapidly, such as extraction of data on specific location in time-sequence data sets, plotting interplanetary magnetic field lines, multi-slicing of solar wind speed, volume rendering of solar wind density, animation of time-sequence data sets, comparing between model result and observational data. To speed-up the analysis, an in-situ visualization interface is used to support visualizing the data 'on-the-fly'. We also modified some critical time-consuming analysis and visualization methods with the aid of GPU and multi-core CPU. We have used this tool to visualize the data of SIP-CESE MHD model in real time, and integrated the Database Model of shock arrival, Shock Propagation Model, Dst forecasting model and SIP-CESE MHD model developed by SIGMA Weather Group at State Key Laboratory of Space Weather/CAS.

  18. Quantification and mapping of urban fluxes under climate change: Application of WRF-SUEWS model to Greater Porto area (Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Rafael, S., E-mail: sandra.rafael@ua.pt [CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro (Portugal); Martins, H. [CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro (Portugal); Rossby Centre, Swedish Meteorological and Hydrological Institute (SMHI), SE-60176 Norrköping (Sweden); Marta-Almeida, M. [Centro Oceanográfico A Coruña, Instituto Español de Oceanografía, A Coruña (Spain); Sá, E.; Coelho, S. [CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro (Portugal); Rocha, A. [CESAM & Department of Physics, University of Aveiro, 3810-193 Aveiro (Portugal); Borrego, C.; Lopes, M. [CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro (Portugal)

    2017-05-15

    Climate change and the growth of urban populations are two of the main challenges facing Europe today. These issues are linked as climate change results in serious challenges for cities. Recent attention has focused on how urban surface-atmosphere exchanges of heat and water will be affected by climate change and the implications for urban planning and sustainability. In this study energy fluxes for Greater Porto area, Portugal, were estimated and the influence of the projected climate change evaluated. To accomplish this, the Weather Research and Forecasting Model (WRF) and the Surface Urban Energy and Water Balance Scheme (SUEWS) were applied for two climatological scenarios: a present (or reference, 1986–2005) scenario and a future scenario (2046–2065), in this case the Representative Concentration Pathway RCP8.5, which reflects the worst set of expectations (with the most onerous impacts). The results show that for the future climate conditions, the incoming shortwave radiation will increase by around 10%, the sensible heat flux around 40% and the net storage heat flux around 35%. In contrast, the latent heat flux will decrease about 20%. The changes in the magnitude of the different fluxes result in an increase of the net all-wave radiation by 15%. The implications of the changes of the energy balance on the meteorological variables are discussed, particularly in terms of temperature and precipitation. - Highlights: • Assessment of energy fluxes behaviour under past period and medium-term climate change projection. • Evaluation of climate change at urban scale. • Meteorological variables alters the partitioning of the energy fluxes. • Changes in the partition of the annual energy balance are found between the two analysed periods. • Increase in the magnitude of sensible and storage heat fluxes.

  19. The Impact of Albedo Increase to Mitigate the Urban Heat Island in Terni (Italy Using the WRF Model

    Directory of Open Access Journals (Sweden)

    Elena Morini

    2016-10-01

    Full Text Available The impacts of the urban heat island (UHI phenomenon on energy consumption, air quality, and human health have been widely studied and described. Mitigation strategies have been developed to fight the UHI and its detrimental consequences. A potential countermeasure is the increase of urban albedo by using cool materials. Cool materials are highly reflective materials that can maintain lower surface temperatures and thus can present an effective solution to mitigate the UHI. Terni’s proven record of high temperatures along with related environmental and comfort issues in its urban areas have reflected the local consequences of global warming. On the other hand, it promoted integrated actions by the government and research institutes to investigate solutions to mitigate the UHI effects. In this study, the main goal is to investigate the effectiveness of albedo increase as a strategy to tackle the UHI, by using the Weather Research and Forecasting (WRF mesoscale model to simulate the urban climate of Terni (Italy. Three different scenarios through a summer heat wave in the summer of 2015 are analyzed. The Base Scenario, which simulates the actual conditions of the urban area, is the control case. In the Albedo Scenario (ALB Scenario, the albedo of the roof, walls and road of the whole urban area is increased. In the Albedo-Industrial Scenario (ALB-IND Scenario, the albedo of the roof, walls and road of the area occupied by the main industrial site of Terni, located in close proximity to the city center, is increased. The simulation results show that the UHI is decreased up to 2 °C both at daytime and at nighttime in the ALB and in ALB-IND Scenarios. Peak temperatures in the urban area can be decreased by 1 °C at daytime, and by about 2 °C at nighttime. Albedo increase in the area of interest might thus represent an opportunity to decrease the UHI effect and its consequences.

  20. An observation-constrained multi-physics WRF ensemble for simulating European mega heat waves

    NARCIS (Netherlands)

    Stegehuis, A.I.; Vautard, R.; Ciais, P.; Teuling, A.J.; Gonzalez Miralles, D.; Wild, M.

    2015-01-01

    Many climate models have difficulties in properly reproducing climate extremes, such as heat wave conditions. Here we use the Weather Research and Forecasting (WRF) regional climate model with a large combination of different atmospheric physics schemes, in combination with the NOAH land-surface

  1. An observation-constrained multi-physics WRF ensemble for simulating European mega heat waves

    NARCIS (Netherlands)

    Stegehuis, A.I.; Vautard, R.; Ciais, P.; Teuling, A.J.; Miralles, D.G.; Wild, M.

    2015-01-01

    Many climate models have difficulties in properly reproducing climate extremes, such as heat wave conditions. Here we use the Weather Research and Forecasting (WRF) regional climate model with a large combination of different atmospheric physics schemes, in combination with the NOAH land-surface

  2. Spatio-Temporal Variation and Futuristic Emission Scenario of Ambient Nitrogen Dioxide over an Urban Area of Eastern India Using GIS and Coupled AERMOD-WRF Model.

    Directory of Open Access Journals (Sweden)

    Sharadia Dey

    Full Text Available The present study focuses on the spatio-temporal variation of nitrogen dioxide (NO2 during June 2013 to May 2015 and its futuristic emission scenario over an urban area (Durgapur of eastern India. The concentration of ambient NO2 shows seasonal as well as site specific characteristics. The site with high vehicular density (Muchipara shows highest NO2 concentration followed by industrial site (DVC- DTPS Colony and the residential site (B Zone, respectively. The seasonal variation of ambient NO2 over the study area is portrayed by means of Geographical Information System based Digital Elevation Model. Out of the total urban area under consideration (114.982 km2, the concentration of NO2 exceeded the National Ambient Air Quality Standard (NAAQS permissible limit over an area of 5.000 km2, 0.786 km2 and 0.653 km2 in post monsoon, winter and pre monsoon, respectively. Wind rose diagrams, correlation and regression analyses show that meteorology plays a crucial role in dilution and dispersion of NO2 near the earth's surface. Principal component analysis identifies vehicular source as the major source of NO2 in all the seasons over the urban region. Coupled AMS/EPA Regulatory Model (AERMOD-Weather Research and Forecasting (WRF model is used for predicting the concentration of NO2. Comparison of the observed and simulated data shows that the model overestimates the concentration of NO2 in all the seasons (except winter. The results show that coupled AERMOD-WRF model can overcome the unavailability of hourly surface as well as upper air meteorological data required for predicting the pollutant concentration, but improvement of emission inventory along with better understanding of the sinks and sources of ambient NO2 is essential for capturing the more realistic scenario.

  3. Operational forecasting based on a modified Weather Research and Forecasting model

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, J; Glascoe, L; Obrecht, J

    2010-03-18

    Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

  4. Error characterization of CO2 vertical mixing in the atmospheric transport model WRF-VPRM

    Directory of Open Access Journals (Sweden)

    U. Karstens

    2012-03-01

    Full Text Available One of the dominant uncertainties in inverse estimates of regional CO2 surface-atmosphere fluxes is related to model errors in vertical transport within the planetary boundary layer (PBL. In this study we present the results from a synthetic experiment using the atmospheric model WRF-VPRM to realistically simulate transport of CO2 for large parts of the European continent at 10 km spatial resolution. To elucidate the impact of vertical mixing error on modeled CO2 mixing ratios we simulated a month during the growing season (August 2006 with different commonly used parameterizations of the PBL (Mellor-Yamada-Janjić (MYJ and Yonsei-University (YSU scheme. To isolate the effect of transport errors we prescribed the same CO2 surface fluxes for both simulations. Differences in simulated CO2 mixing ratios (model bias were on the order of 3 ppm during daytime with larger values at night. We present a simple method to reduce this bias by 70–80% when the true height of the mixed layer is known.

  5. Megacity impacts on regional ozone formation: observations and WRF-Chem modeling for the MIRAGE-Shanghai field campaign

    Directory of Open Access Journals (Sweden)

    X. Tie

    2013-06-01

    Full Text Available The MIRAGE-Shanghai experiment was designed to characterize the factors controlling regional air pollution near a Chinese megacity (Shanghai and was conducted during September 2009. This paper provides information on the measurements conducted for this study. In order to have some deep analysis of the measurements, a regional chemical/dynamical model (version 3 of Weather Research and Forecasting Chemical modelWRF-Chemv3 is applied for this study. The model results are intensively compared with the measurements to evaluate the model capability for calculating air pollutants in the Shanghai region, especially the chemical species related to ozone formation. The results show that the model is able to calculate the general distributions (the level and the variability of air pollutants in the Shanghai region, and the differences between the model calculation and the measurement are mostly smaller than 30%, except the calculations of HONO (nitrous acid at PD (Pudong and CO (carbon monoxide at DT (Dongtan. The main scientific focus is the study of ozone chemical formation not only in the urban area, but also on a regional scale of the surrounding area of Shanghai. The results show that during the experiment period, the ozone photochemical formation was strongly under the VOC (volatile organic compound-limited condition in the urban area of Shanghai. Moreover, the VOC-limited condition occurred not only in the city, but also in the larger regional area. There was a continuous enhancement of ozone concentrations in the downwind of the megacity of Shanghai, resulting in a significant enhancement of ozone concentrations in a very large regional area in the surrounding region of Shanghai. The sensitivity study of the model suggests that there is a threshold value for switching from VOC-limited condition to NOx (nitric oxide and nitrogen dioxide-limited condition. The threshold value is strongly dependent on the emission ratio of NOx / VOCs. When the

  6. Ensemble prediction of air quality using the WRF/CMAQ model system for health effect studies in China

    Science.gov (United States)

    Hu, Jianlin; Li, Xun; Huang, Lin; Ying, Qi; Zhang, Qiang; Zhao, Bin; Wang, Shuxiao; Zhang, Hongliang

    2017-11-01

    Accurate exposure estimates are required for health effect analyses of severe air pollution in China. Chemical transport models (CTMs) are widely used to provide spatial distribution, chemical composition, particle size fractions, and source origins of air pollutants. The accuracy of air quality predictions in China is greatly affected by the uncertainties of emission inventories. The Community Multiscale Air Quality (CMAQ) model with meteorological inputs from the Weather Research and Forecasting (WRF) model were used in this study to simulate air pollutants in China in 2013. Four simulations were conducted with four different anthropogenic emission inventories, including the Multi-resolution Emission Inventory for China (MEIC), the Emission Inventory for China by School of Environment at Tsinghua University (SOE), the Emissions Database for Global Atmospheric Research (EDGAR), and the Regional Emission inventory in Asia version 2 (REAS2). Model performance of each simulation was evaluated against available observation data from 422 sites in 60 cities across China. Model predictions of O3 and PM2.5 generally meet the model performance criteria, but performance differences exist in different regions, for different pollutants, and among inventories. Ensemble predictions were calculated by linearly combining the results from different inventories to minimize the sum of the squared errors between the ensemble results and the observations in all cities. The ensemble concentrations show improved agreement with observations in most cities. The mean fractional bias (MFB) and mean fractional errors (MFEs) of the ensemble annual PM2.5 in the 60 cities are -0.11 and 0.24, respectively, which are better than the MFB (-0.25 to -0.16) and MFE (0.26-0.31) of individual simulations. The ensemble annual daily maximum 1 h O3 (O3-1h) concentrations are also improved, with mean normalized bias (MNB) of 0.03 and mean normalized errors (MNE) of 0.14, compared to MNB of 0.06-0.19 and

  7. Ensemble prediction of air quality using the WRF/CMAQ model system for health effect studies in China

    Directory of Open Access Journals (Sweden)

    J. Hu

    2017-11-01

    Full Text Available Accurate exposure estimates are required for health effect analyses of severe air pollution in China. Chemical transport models (CTMs are widely used to provide spatial distribution, chemical composition, particle size fractions, and source origins of air pollutants. The accuracy of air quality predictions in China is greatly affected by the uncertainties of emission inventories. The Community Multiscale Air Quality (CMAQ model with meteorological inputs from the Weather Research and Forecasting (WRF model were used in this study to simulate air pollutants in China in 2013. Four simulations were conducted with four different anthropogenic emission inventories, including the Multi-resolution Emission Inventory for China (MEIC, the Emission Inventory for China by School of Environment at Tsinghua University (SOE, the Emissions Database for Global Atmospheric Research (EDGAR, and the Regional Emission inventory in Asia version 2 (REAS2. Model performance of each simulation was evaluated against available observation data from 422 sites in 60 cities across China. Model predictions of O3 and PM2.5 generally meet the model performance criteria, but performance differences exist in different regions, for different pollutants, and among inventories. Ensemble predictions were calculated by linearly combining the results from different inventories to minimize the sum of the squared errors between the ensemble results and the observations in all cities. The ensemble concentrations show improved agreement with observations in most cities. The mean fractional bias (MFB and mean fractional errors (MFEs of the ensemble annual PM2.5 in the 60 cities are −0.11 and 0.24, respectively, which are better than the MFB (−0.25 to −0.16 and MFE (0.26–0.31 of individual simulations. The ensemble annual daily maximum 1 h O3 (O3-1h concentrations are also improved, with mean normalized bias (MNB of 0.03 and mean normalized errors (MNE of 0.14, compared to MNB

  8. Joint atmospheric-terrestrial water balances for East Africa: a WRF-Hydro case study for the upper Tana River basin

    Science.gov (United States)

    Kerandi, Noah; Arnault, Joel; Laux, Patrick; Wagner, Sven; Kitheka, Johnson; Kunstmann, Harald

    2018-02-01

    For an improved understanding of the hydrometeorological conditions of the Tana River basin of Kenya, East Africa, its joint atmospheric-terrestrial water balances are investigated. This is achieved through the application of the Weather Research and Forecasting (WRF) and the fully coupled WRF-Hydro modeling system over the Mathioya-Sagana subcatchment (3279 km2) and its surroundings in the upper Tana River basin for 4 years (2011-2014). The model setup consists of an outer domain at 25 km (East Africa) and an inner one at 5-km (Mathioya-Sagana subcatchment) horizontal resolution. The WRF-Hydro inner domain is enhanced with hydrological routing at 500-m horizontal resolution. The results from the fully coupled modeling system are compared to those of the WRF-only model. The coupled WRF-Hydro slightly reduces precipitation, evapotranspiration, and the soil water storage but increases runoff. The total precipitation from March to May and October to December for WRF-only (974 mm/year) and coupled WRF-Hydro (940 mm/year) is closer to that derived from the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data (989 mm/year) than from the TRMM (795 mm/year) precipitation product. The coupled WRF-Hydro-accumulated discharge (323 mm/year) is close to that observed (333 mm/year). However, the coupled WRF-Hydro underestimates the observed peak flows registering low but acceptable NSE (0.02) and RSR (0.99) at daily time step. The precipitation recycling and efficiency measures between WRF-only and coupled WRF-Hydro are very close and small. This suggests that most of precipitation in the region comes from moisture advection from the outside of the analysis domain, indicating a minor impact of potential land-precipitation feedback mechanisms in this case. The coupled WRF-Hydro nonetheless serves as a tool in quantifying the atmospheric-terrestrial water balance in this region.

  9. Assessment of the Effects of Various Precipitation Forcings on Flood Forecasting Potential Using WRF-Hydro Modeling

    Science.gov (United States)

    Zhang, J.; Fang, N. Z.

    2017-12-01

    A potential flood forecast system is under development for the Upper Trinity River Basin (UTRB) in North Central of Texas using the WRF-Hydro model. The Routing Application for the Parallel Computation of Discharge (RAPID) is utilized as channel routing module to simulate streamflow. Model performance analysis was conducted based on three quantitative precipitation estimates (QPE): the North Land Data Assimilation System (NLDAS) rainfall, the Multi-Radar Multi-Sensor (MRMS) QPE and the National Centers for Environmental Prediction (NCEP) quality-controlled stage IV estimates. Prior to hydrologic simulation, QPE performance is assessed on two time scales (daily and hourly) using the Community Collaborative Rain, Hail and Snow Network (CoCoRaHS) and Hydrometeorological Automated Data System (HADS) hourly products. The calibrated WRF-Hydro model was then evaluated by comparing the simulated against the USGS observed using various QPE products. The results imply that the NCEP stage IV estimates have the best accuracy among the three QPEs on both time scales, while the NLDAS rainfall performs poorly because of its coarse spatial resolution. Furthermore, precipitation bias demonstrates pronounced impact on flood forecasting skills, as the root mean squared errors are significantly reduced by replacing NLDAS rainfall with NCEP stage IV estimates. This study also demonstrates that accurate simulated results can be achieved when initial soil moisture values are well understood in the WRF-Hydro model. Future research effort will therefore be invested on incorporating data assimilation with focus on initial states of the soil properties for UTRB.

  10. Resolving vorticity-driven lateral fire spread using the WRF-Fire coupled atmosphere–fire numerical model

    OpenAIRE

    Simpson, C. C.; Sharples, J. J.; Evans, J. P.

    2014-01-01

    Fire channelling is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep lee-facing slope in a direction transverse to the background winds, and is often accompanied by a downwind extension of the active flaming region and extreme pyro-convection. Recent work using the WRF-Fire coupled atmosphere-fire model has demonstrated that fire channelling can be characterised as vorticity-driven lateral fire spread (VDLS). In t...

  11. Convective-stratiform rainfall separation of Typhoon Fitow (2013: A 3D WRF modeling study

    Directory of Open Access Journals (Sweden)

    Huiyan Xu

    2018-01-01

    Full Text Available Surface precipitation budget equation in a three-dimensional (3D WRF model framework is derived. By applying the convective-stratiform partition method to the surface precipitation budget equation in the 3D model, this study separated convective and stratiform rainfall of typhoon Fitow (2013. The separations are further verified by examining statistics of vertical velocity, surface precipitation budget, and cloud microphysical budget. Results show that water vapor convergence moistens local atmosphere and offsets hydrometeor divergence, and producing convective rainfall, while hydrometeor convergence primarily supports stratiform rainfall, since water vapor divergence and local atmospheric drying generally cancelled out. Mean ascending motions are prevailing in the entire troposphere in the convective region, whereas mean descending motions occur below 5 km and mean ascending motions occur above in the stratiform region. The frequency distribution of vertical velocity shows vertical velocity has wide distribution with the maximum values up to 13 m s-1 in the convective regions, whereas it has narrow distribution with absolute values confined within 7 m s-1 in the stratiform region. Liquid cloud microphysics is dominant in convective regions and ice cloud microphysics is dominant in stratiform regions. These indicate that the statistics results are generally consistent with the corresponding physical characteristics of the convective-stratiform rainfall structures generalized by previous studies.

  12. WRF-Chem simulations in the Amazon region during wet and dry season transitions: evaluation of methane models and wetland inundation maps

    Science.gov (United States)

    Beck, V.; Gerbig, C.; Koch, T.; Bela, M. M.; Longo, K. M.; Freitas, S. R.; Kaplan, J. O.; Prigent, C.; Bergamaschi, P.; Heimann, M.

    2013-08-01

    The Amazon region, being a large source of methane (CH4), contributes significantly to the global annual CH4 budget. For the first time, a forward and inverse modelling framework on regional scale for the purpose of assessing the CH4 budget of the Amazon region is implemented. Here, we present forward simulations of CH4 as part of the forward and inverse modelling framework based on a modified version of the Weather Research and Forecasting model with chemistry that allows for passive tracer transport of CH4, carbon monoxide, and carbon dioxide (WRF-GHG), in combination with two different process-based bottom-up models of CH4 emissions from anaerobic microbial production in wetlands and additional datasets prescribing CH4 emissions from other sources such as biomass burning, termites, or other anthropogenic emissions. We compare WRF-GHG simulations on 10 km horizontal resolution to flask and continuous CH4 observations obtained during two airborne measurement campaigns within the Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) project in November 2008 and May 2009. In addition, three different wetland inundation maps, prescribing the fraction of inundated area per grid cell, are evaluated. Our results indicate that the wetland inundation maps based on remote-sensing data represent the observations best except for the northern part of the Amazon basin and the Manaus area. WRF-GHG was able to represent the observed CH4 mixing ratios best at days with less convective activity. After adjusting wetland emissions to match the averaged observed mixing ratios of flights with little convective activity, the monthly CH4 budget for the Amazon basin obtained from four different simulations ranges from 1.5 to 4.8 Tg for November 2008 and from 1.3 to 5.5 Tg for May 2009. This corresponds to an average CH4 flux of 9-31 mg m-2 d-1 for November 2008 and 8-36 mg m-2 d-1 for May 2009.

  13. Identification of Mesoscale Convective Complex (MCC) phenomenon with image of Himawari 8 Satellite and WRF ARW Model on Bangka Island (Case Study: 7-8 February 2016)

    Science.gov (United States)

    Rinaldy, Nanda; Saragih, Immanuel J. A.; Wandala Putra, Agie; Redha Nugraheni, Imma; Wijaya Yonas, Banu

    2017-12-01

    Based on monitoring on 7th and 8th February 2016 there has been a flood that occurred due to heavy rainfall in a long time in some areas of Bangka Island. Mesoscale Convective Complex (MCC) is one type of Mesoscale Convective System (MCS). Previous research on MCC mentions that MCC can cause heavy rain for a long time. This study aims to identify the phenomenon of MCC in Bangka Island both in the satellite imagery and the output of the model. In addition, this study was also conducted to determine the effect of MCC on the weather conditions in Bangka Island. The study area in this research is Bangka Island with Pangkalpinang Meteorological Station as the centre of research. The data used in this research are FNL (Final Analysis) data from http://rda.ucar.edu/, Satellite Image of Himawari-8 IR1 Channel from BMKG, and meteorological observation data (synoptic and radiosonde) from Pangkalpinang Meteorological Station. The FNL data is simulated using the WRF-ARW model, verified using observation data and then visualized using GrADS. The results of the analysis of Himawari-8 satellite image data showed that two MCCs occurred on 7th and 8th February 2016 on Bangka Island and the MCC was nocturnal, which appeared at night which then continued until extinction in the morning the next day. In a peak cloud temperature review with the coordinates of Pangkalpinang Meteorological Station (-2,163 N 106,137 E) when 1st MCC and 2nd MCC events ranged from -60°C to -80°C. The result of WRF-ARW model output analysis shows that MCC area has high humidity value and positive vertical velocity value which indicates the potential of heavy rain for a long time.

  14. Simulation of CO2 concentrations at Tsukuba tall tower using WRF ...

    Indian Academy of Sciences (India)

    1School of Environmental Studies, Jadavpur University, Kolkata 700 032, India. ... nental or coastal sites is challenging because of coarse horizontal resolution of ... Here the regional Weather Research and Forecasting (WRF) model coupled .... at nine-towers regional networks during North ..... ond case, it falls to ≥0.57.

  15. Surface Wind Regionalization over Complex Terrain: Evaluation and Analysis of a High-Resolution WRF Simulation

    NARCIS (Netherlands)

    Jiménez, P.A.; González-Rouco, J.F.; García-Bustamante, E.; Navarro, J.; Montávez, J.P.; Vilà-Guerau de Arellano, J.; Dudhia, J.; Muñoz-Roldan, A.

    2010-01-01

    This study analyzes the daily-mean surface wind variability over an area characterized by complex topography through comparing observations and a 2-km-spatial-resolution simulation performed with the Weather Research and Forecasting (WRF) model for the period 1992–2005. The evaluation focuses on the

  16. Ocean-atmosphere interaction during Thane cyclone: A numerical study using WRF

    Digital Repository Service at National Institute of Oceanography (India)

    VinodKumar, K.; Soumya, M.; Tkalich, P.; Vethamony, P.

    Cyclone `Thane` developed over the southeast Bay of Bengal (BoB) at 88.5 degree E, 8.5degree N during 25-31 December 2011.Simulations have been carried out using Weather Research and Forecasting (WRF) model to generate fine resolution winds...

  17. The Polar WRF Downscaled Historical and Projected Twenty-First Century Climate for the Coast and Foothills of Arctic Alaska

    Directory of Open Access Journals (Sweden)

    Lei Cai

    2018-01-01

    Full Text Available Climate change is most pronounced in the northern high latitude region. Yet, climate observations are unable to fully capture regional-scale dynamics due to the sparse weather station coverage, which limits our ability to make reliable climate-based assessments. A set of simulated data products was therefore developed for the North Slope of Alaska through a dynamical downscaling approach. The polar-optimized Weather Research and Forecast (Polar WRF model was forced by three sources: The ERA-interim reanalysis data (for 1979–2014, the Community Earth System Model 1.0 (CESM1.0 historical simulation (for 1950–2005, and the CESM1.0 projected (for 2006–2100 simulations in two Representative Concentration Pathways (RCP4.5 and RCP8.5 scenarios. Climatic variables were produced in a 10-km grid spacing and a 3-h interval. The ERA-interim forced WRF (ERA-WRF proves the value of dynamical downscaling, which yields more realistic topographical-induced precipitation and air temperature, as well as corrects underestimations in observed precipitation. In summary, dry and cold biases to the north of the Brooks Range are presented in ERA-WRF, while CESM forced WRF (CESM-WRF holds wet and warm biases in its historical period. A linear scaling method allowed for an adjustment of the biases, while keeping the majority of the variability and extreme values of modeled precipitation and air temperature. CESM-WRF under RCP 4.5 scenario projects smaller increase in precipitation and air temperature than observed in the historical CESM-WRF product, while the CESM-WRF under RCP 8.5 scenario shows larger changes. The fine spatial and temporal resolution, long temporal coverage, and multi-scenario projections jointly make the dataset appropriate to address a myriad of physical and biological changes occurring on the North Slope of Alaska.

  18. The polar WRF downscaled historical and projected 21st century climate for the coast and foothills of Arctic Alaska

    Science.gov (United States)

    Cai, Lei; Alexeev, Vladimir A.; Arp, Christopher D.; Jones, Benjamin M.; Liljedahl, Anna K.; Gädeke, Anne

    2018-01-01

    Climate change is most pronounced in the northern high latitude region. Yet, climate observations are unable to fully capture regional-scale dynamics due to the sparse weather station coverage, which limits our ability to make reliable climate-based assessments. A set of simulated data products was therefore developed for the North Slope of Alaska through a dynamical downscaling approach. The polar-optimized Weather Research & Forecast (Polar WRF) model was forced by three sources: The ERA-interim reanalysis data (for 1979-2014), the Community Earth System Model 1.0 (CESM1.0) historical simulation (for 1950-2005), and the CESM1.0 projected (for 2006-2100) simulations in two Representative Concentration Pathways (RCP4.5 and RCP8.5) scenarios. Climatic variables were produced in a 10-km grid spacing and a 3-hour interval. The ERA-interim forced WRF (ERA-WRF) proves the value of dynamical downscaling, which yields more realistic topographical-induced precipitation and air temperature, as well as corrects underestimations in observed precipitation. In summary, dry and cold biases to the north of the Brooks Range are presented in ERA-WRF, while CESM forced WRF (CESM-WRF) holds wet and warm biases in its historical period. A linear scaling method allowed for an adjustment of the biases, while keeping the majority of the variability and extreme values of modeled precipitation and air temperature. CESM-WRF under RCP 4.5 scenario projects smaller increase in precipitation and air temperature than observed in the historical CESM-WRF product, while the CESM-WRF under RCP8.5 scenario shows larger changes. The fine spatial and temporal resolution, long temporal coverage, and multi-scenario projections jointly make the dataset appropriate to address a myriad of physical and biological changes occurring on the North Slope of Alaska.

  19. Evaluating hourly rainfall characteristics over the U.S. Great Plains in dynamically downscaled climate model simulations using NASA-Unified WRF

    Science.gov (United States)

    Lee, Huikyo; Waliser, Duane E.; Ferraro, Robert; Iguchi, Takamichi; Peters-Lidard, Christa D.; Tian, Baijun; Loikith, Paul C.; Wright, Daniel B.

    2017-07-01

    Accurate simulation of extreme precipitation events remains a challenge in climate models. This study utilizes hourly precipitation data from ground stations and satellite instruments to evaluate rainfall characteristics simulated by the NASA-Unified Weather Research and Forecasting (NU-WRF) regional climate model at horizontal resolutions of 4, 12, and 24 km over the Great Plains of the United States. We also examined the sensitivity of the simulated precipitation to different spectral nudging approaches and the cumulus parameterizations. The rainfall characteristics in the observations and simulations were defined as an hourly diurnal cycle of precipitation and a joint probability distribution function (JPDF) between duration and peak intensity of precipitation events over the Great Plains in summer. We calculated a JPDF for each data set and the overlapping area between observed and simulated JPDFs to measure the similarity between the two JPDFs. Comparison of the diurnal precipitation cycles between observations and simulations does not reveal the added value of high-resolution simulations. However, the performance of NU-WRF simulations measured by the JPDF metric strongly depends on horizontal resolution. The simulation with the highest resolution of 4 km shows the best agreement with the observations in simulating duration and intensity of wet spells. Spectral nudging does not affect the JPDF significantly. The effect of cumulus parameterizations on the JPDFs is considerable but smaller than that of horizontal resolution. The simulations with lower resolutions of 12 and 24 km show reasonable agreement but only with the high-resolution observational data that are aggregated into coarse resolution and spatially averaged.

  20. Sensitivity of tropical convection in cloud-resolving WRF simulations to model physics and forcing procedures

    Science.gov (United States)

    Endo, S.; Lin, W.; Jackson, R. C.; Collis, S. M.; Vogelmann, A. M.; Wang, D.; Oue, M.; Kollias, P.

    2017-12-01

    Tropical convection is one of the main drivers of the climate system and recognized as a major source of uncertainty in climate models. High-resolution modeling is performed with a focus on the deep convection cases during the active monsoon period of the TWP-ICE field campaign to explore ways to improve the fidelity of convection permitting tropical simulations. Cloud resolving model (CRM) simulations are performed with WRF modified to apply flexible configurations for LES/CRM simulations. We have enhanced the capability of the forcing module to test different implementations of large-scale vertical advective forcing, including a function for optional use of large-scale thermodynamic profiles and a function for the condensate advection. The baseline 3D CRM configurations are, following Fridlind et al. (2012), driven by observationally-constrained ARM forcing and tested with diagnosed surface fluxes and fixed sea-surface temperature and prescribed aerosol size distributions. After the spin-up period, the simulations follow the observed precipitation peaks associated with the passages of precipitation systems. Preliminary analysis shows that the simulation is generally not sensitive to the treatment of the large-scale vertical advection of heat and moisture, while more noticeable changes in the peak precipitation rate are produced when thermodynamic profiles above the boundary layer were nudged to the reference profiles from the forcing dataset. The presentation will explore comparisons with observationally-based metrics associated with convective characteristics and examine the model performance with a focus on model physics, doubly-periodic vs. nested configurations, and different forcing procedures/sources. A radar simulator will be used to understand possible uncertainties in radar-based retrievals of convection properties. Fridlind, A. M., et al. (2012), A comparison of TWP-ICE observational data with cloud-resolving model results, J. Geophys. Res., 117, D05204

  1. Evaluation of Optimized WRF Precipitation Forecast over a Complex Topography Region during Flood Season

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2016-11-01

    Full Text Available In recent years, the Weather Research and Forecast (WRF model has been utilized to generate quantitative precipitation forecasts with higher spatial and temporal resolutions. However, factors including horizontal resolution, domain size, and the physical parameterization scheme have a strong impact on the dynamic downscaling ability of the WRF model. In this study, the influence of these factors has been analyzed in precipitation forecasting for the Xijiang Basin, southern China—a region with complex topography. The results indicate that higher horizontal resolutions always result in higher Critical Success Indexes (CSI, but higher biases as well. Meanwhile, the precipitation forecast skills are also influenced by the combination of microphysics parameterization scheme and cumulus convective parameterization scheme. On the basis of these results, an optimized configuration of the WRF model is built in which the horizontal resolution is 10 km, the microphysics parameterization is the Lin scheme, and the cumulus convective parameterization is the Betts–Miller–Janjic scheme. This configuration is then evaluated by simulating the daily weather during the 2013–2014 flood season. The high Critical Success Index scores and low biases at various thresholds and lead times confirm the high accuracy of the optimized WRF model configuration for Xijiang Basin. However, the performance of the WRF model varies from different sub-basins due to the complexity of the mesoscale convective system (MCS over this region.

  2. Sources and characteristics of summertime organic aerosol in the Colorado Front Range: perspective from measurements and WRF-Chem modeling

    Directory of Open Access Journals (Sweden)

    R. Bahreini

    2018-06-01

    Full Text Available The evolution of organic aerosols (OAs and their precursors in the boundary layer (BL of the Colorado Front Range during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ, July–August 2014 was analyzed by in situ measurements and chemical transport modeling. Measurements indicated significant production of secondary OA (SOA, with enhancement ratio of OA with respect to carbon monoxide (CO reaching 0.085±0.003 µg m−3 ppbv−1. At background mixing ratios of CO, up to  ∼  1.8 µg m−3 background OA was observed, suggesting significant non-combustion contribution to OA in the Front Range. The mean concentration of OA in plumes with a high influence of oil and natural gas (O&G emissions was  ∼  40 % higher than in urban-influenced plumes. Positive matrix factorization (PMF confirmed a dominant contribution of secondary, oxygenated OA (OOA in the boundary layer instead of fresh, hydrocarbon-like OA (HOA. Combinations of primary OA (POA volatility assumptions, aging of semi-volatile species, and different emission estimates from the O&G sector were used in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem simulation scenarios. The assumption of semi-volatile POA resulted in greater than a factor of 10 lower POA concentrations compared to PMF-resolved HOA. Including top-down modified O&G emissions resulted in substantially better agreements in modeled ethane, toluene, hydroxyl radical, and ozone compared to measurements in the high-O&G-influenced plumes. By including emissions from the O&G sector using the top-down approach, it was estimated that the O&G sector contributed to  <  5 % of total OA, but up to 38 % of anthropogenic SOA (aSOA in the region. The best agreement between the measured and simulated median OA was achieved by limiting the extent of biogenic hydrocarbon aging and consequently biogenic SOA (bSOA production. Despite a lower production of bSOA in

  3. A comprehensive approach for the simulation of the Urban Heat Island effect with the WRF/SLUCM modeling system: The case of Athens (Greece)

    Science.gov (United States)

    Giannaros, Christos; Nenes, Athanasios; Giannaros, Theodore M.; Kourtidis, Konstantinos; Melas, Dimitrios

    2018-03-01

    This study presents a comprehensive modeling approach for simulating the spatiotemporal distribution of urban air temperatures with a modeling system that includes the Weather Research and Forecasting (WRF) model and the Single-Layer Urban Canopy Model (SLUCM) with a modified treatment of the impervious surface temperature. The model was applied to simulate a 3-day summer heat wave event over the city of Athens, Greece. The simulation, using default SLUCM parameters, is capable of capturing the observed diurnal variation of urban temperatures and the Urban Heat Island (UHI) in the greater Athens Area (GAA), albeit with systematic biases that are prominent during nighttime hours. These biases are particularly evident over low-intensity residential areas, and they are associated with the surface and urban canopy properties representing the urban environment. A series of sensitivity simulations unravels the importance of the sub-grid urban fraction parameter, surface albedo, and street canyon geometry in the overall causation and development of the UHI effect. The sensitivities are then used to determine optimal values of the street canyon geometry, which reproduces the observed temperatures throughout the simulation domain. The optimal parameters, apart from considerably improving model performance (reductions in mean temperature bias from 0.30 °C to 1.58 °C), are also consistent with actual city building characteristics - which gives confidence that the model set-up is robust, and can be used to study the UHI in the GAA in the anticipated warmer conditions in the future.

  4. WRF Mesoscale Pre-Run for the Wind Atlas of Mexico

    OpenAIRE

    Hahmann, Andrea N.; Pena Diaz, Alfredo; Hansen, Jens Carsten

    2016-01-01

    This report documents the work performed by DTU Wind Energy for the project “Atlas Eólico Mexicano” or the Wind Atlas of Mexico. This document reports on the methods used in “Pre-run” of the windmapping project for Mexico. The interim mesoscale modeling results were calculated from the output of simulations using the Weather, Research and Forecasting (WRF) model. We document the method used to run the mesoscale simulations and to generalize the WRF model wind climatologies. A separate section...

  5. Application, evaluation and sensitivity analysis of the coupled WRF-CMAQ system from regional to urban scales

    Science.gov (United States)

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science chemical transport model (CTM) capable of simulating the emission, transport and fate of numerous air pollutants. Similarly, the Weather Research and Forecasting (WRF) model is a state-of-the-science mete...

  6. Adaptive Numerical Algorithms in Space Weather Modeling

    Science.gov (United States)

    Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; hide

    2010-01-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical

  7. A Study of Precipitation Climatology and Its Variability over Europe Using an Advanced Regional Model (WRF)

    KAUST Repository

    Dasari, Hari Prasad

    2015-03-06

    In recent years long-term precipitation trends on a regional scale have been given emphasis due to the impacts of global warming on regional hydrology. In this study, regional precipitation trends are simulated over the Europe continent for a 60-year period in 1950-2010 using an advanced regional model, WRF, to study extreme precipitation events over Europe. The model runs continuously for each year during the period at a horizontal resolution of 25 km with initial/ boundary conditions derived from the National Center for Environmental Prediction (NCEP) 2.5 degree reanalysis data sets. The E-OBS 0.25 degree rainfall observation analysis is used for model validation. Results indicate that the model could reproduce the spatial annual rainfall pattern over Europe with low amounts (250 - 750 mm) in Iberian Peninsula, moderate to large amounts (750 - 1500 mm) in central, eastern and northeastern parts of Europe and extremely heavy falls (1500 - 2000 mm) in hilly areas of Alps with a slight overestimation in Alps and underestimation in other parts of Europe. The regional model integrations showed increasing errors (mean absolute errors) and decreasing correlations with increasing time scale (daily to seasonal). Rainfall is simulated relatively better in Iberian Peninsula, northwest and central parts of Europe. A large spatial variability with the highest number of wet days over eastern, central Europe and Alps (~200 days/year) and less number of wet days over Iberian Peninsula (≤150 days/year) is also found in agreement with observations. The model could simulate the spatial rainfall climate variability reasonably well with low rainfall days (1 - 10 mm/days) in almost all zones, heavy rainfall events in western, northern, southeastern hilly and coastal zones and extremely heavy rainfall events in northern coastal zones. An increasing trend of heavy rainfall in central, southern and southeastern parts, a decreasing trend in Iberian Peninsula and a steady trend in other

  8. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-11-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  9. Optimal Physics Parameterization Scheme Combination of the Weather Research and Forecasting Model for Seasonal Precipitation Simulation over Ghana

    Directory of Open Access Journals (Sweden)

    Richard Yao Kuma Agyeman

    2017-01-01

    Full Text Available Seasonal predictions of precipitation, among others, are important to help mitigate the effects of drought and floods on agriculture, hydropower generation, disasters, and many more. This work seeks to obtain a suitable combination of physics schemes of the Weather Research and Forecasting (WRF model for seasonal precipitation simulation over Ghana. Using the ERA-Interim reanalysis as forcing data, simulation experiments spanning eight months (from April to November were performed for two different years: a dry year (2001 and a wet year (2008. A double nested approach was used with the outer domain at 50 km resolution covering West Africa and the inner domain covering Ghana at 10 km resolution. The results suggest that the WRF model generally overestimated the observed precipitation by a mean value between 3% and 64% for both years. Most of the scheme combinations overestimated (underestimated precipitation over coastal (northern zones of Ghana for both years but estimated precipitation reasonably well over forest and transitional zones. On the whole, the combination of WRF Single-Moment 6-Class Microphysics Scheme, Grell-Devenyi Ensemble Cumulus Scheme, and Asymmetric Convective Model Planetary Boundary Layer Scheme simulated the best temporal pattern and temporal variability with the least relative bias for both years and therefore is recommended for Ghana.

  10. Dynamic Floodplain representation in hydrologic flood forecasting using WRF-Hydro modeling framework

    Science.gov (United States)

    Gangodagamage, C.; Li, Z.; Maitaria, K.; Islam, M.; Ito, T.; Dhondia, J.

    2016-12-01

    Floods claim more lives and damage more property than any other category of natural disaster in the Continental United States. A system that can demarcate local flood boundaries dynamically could help flood prone communities prepare for and even prevent from catastrophic flood events. Lateral distance from the centerline of the river to the right and left floodplains for the water levels coming out of the models at each grid location have not been properly integrated with the national hydrography dataset (NHDPlus). The NHDPlus dataset represents the stream network with feature classes such as rivers, tributaries, canals, lakes, ponds, dams, coastlines, and stream gages. The NHDPlus dataset consists of approximately 2.7 million river reaches defining how surface water drains to the ocean. These river reaches have upstream and downstream nodes and basic parameters such as flow direction, drainage area, reach slope etc. We modified an existing algorithm (Gangodagamage et al., 2007) to provide lateral distance from the centerline of the river to the right and left floodplains for the flows simulated by models. Previous work produced floodplain boundaries for static river stages (i.e. 3D metric: distance along the main stem, flow depth, lateral distance from river center line). Our new approach introduces the floodplain boundary for variable water levels at each reach with the fourth dimension, time. We use modeled flows from WRF-Hydro and demarcate the right and left lateral boundaries of inundation dynamically by appropriately mapping discharges into hydraulically corrected stages. Backwater effects from the mainstem to tributaries are considered and proper corrections are applied for the tributary inundations. We obtained river stages by optimizing reach level channel parameters using newly developed stream flow routing algorithm. Non uniform inundations are mapped at each NHDplus reach (upstream and downstream nodes) and spatial interpolation is carried out on a

  11. Comparison of Spatial and Temporal Rainfall Characteristics in WRF-Simulated Precipitation to Gauge and Radar Observations

    Science.gov (United States)

    Weather Research and Forecasting (WRF) meteorological data are used for USEPA multimedia air and water quality modeling applications, within the CMAQ modeling system to estimate wet deposition and to evaluate future climate and land-use scenarios. While it is not expected that hi...

  12. Numerical Weather Prediction Models on Linux Boxes as tools in meteorological education in Hungary

    Science.gov (United States)

    Gyongyosi, A. Z.; Andre, K.; Salavec, P.; Horanyi, A.; Szepszo, G.; Mille, M.; Tasnadi, P.; Weidiger, T.

    2012-04-01

    . Numerical modeling became a common tool in the daily practice of weather experts forecasters due to the i) increasing user demands for weather data by the costumers, ii) the growth in computer resources, iii) numerical weather prediction systems available for integration on affordable, off the shelf computers and iv) available input data (from ECMWF or NCEP) for model integrations. Beside learning the theoretical basis, since the last year. Students in their MSc or BSc Thesis Research or in Student's Research ProjectsStudent's Research Projects h have the opportunity to run numerical models and to analyze the outputs for different purposes including wind energy estimation, simulation of the dynamics of a polar low, and subtropical cyclones, analysis of the isentropic potential vorticity field, examination of coupled atmospheric dispersion models, etc. A special course in the application of numerical modeling has been held (is being announced for the upcoming semester) (is being announced for the upcoming semester) for our students in order to improve their skills on this field. Several numerical model (NRIPR ETA and WRF) systems have been adapted in the University and integrated WRF have been tested and used for the geographical region of the Carpathian Basin (NRIPR, ETA and WRF). Recently ALADIN/CHAPEAU the academic version of the ARPEGE ALADIN cy33t1 meso-scale numerical weather prediction model system (which is the operational forecasting tool of our National Weather Service) has been installed at our Institute. ALADIN is the operational forecasting model of the Hungarian Meteorological Service and developed in the framework of the international ALADIN co-operation. Our main objectives are i) the analysis of different typical weather situations, ii) fine tuning of parameterization schemes and the iii) comparison of the ALADIN/CHAPEAU and WRF model outputs based on case studies. The necessary hardware and software innovations has have been done. In the presentation the

  13. Implementation of a generalized actuator disk wind turbine model into the weather research and forecasting model for large-eddy simulation applications

    Energy Technology Data Exchange (ETDEWEB)

    Mirocha, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kosovic, B. [National Center for Atmospheric Research, Boulder, CO (United States); Aitken, M. L. [Univ. of Colorado, Boulder, CO (United States); Lundquist, J. K. [Univ. of Colorado, Boulder, CO (United States); National Renewable Energy Lab., Golden, CO (United States)

    2014-01-10

    A generalized actuator disk (GAD) wind turbine parameterization designed for large-eddy simulation (LES) applications was implemented into the Weather Research and Forecasting (WRF) model. WRF-LES with the GAD model enables numerical investigation of the effects of an operating wind turbine on and interactions with a broad range of atmospheric boundary layer phenomena. Numerical simulations using WRF-LES with the GAD model were compared with measurements obtained from the Turbine Wake and Inflow Characterization Study (TWICS-2011), the goal of which was to measure both the inflow to and wake from a 2.3-MW wind turbine. Data from a meteorological tower and two light-detection and ranging (lidar) systems, one vertically profiling and another operated over a variety of scanning modes, were utilized to obtain forcing for the simulations, and to evaluate characteristics of the simulated wakes. Simulations produced wakes with physically consistent rotation and velocity deficits. Two surface heat flux values of 20 W m–2 and 100 W m–2 were used to examine the sensitivity of the simulated wakes to convective instability. Simulations using the smaller heat flux values showed good agreement with wake deficits observed during TWICS-2011, whereas those using the larger value showed enhanced spreading and more-rapid attenuation. This study demonstrates the utility of actuator models implemented within atmospheric LES to address a range of atmospheric science and engineering applications. In conclusion, validated implementation of the GAD in a numerical weather prediction code such as WRF will enable a wide range of studies related to the interaction of wind turbines with the atmosphere and surface.

  14. Reference Evapotranspiration Retrievals from a Mesoscale Model Based Weather Variables for Soil Moisture Deficit Estimation

    Directory of Open Access Journals (Sweden)

    Prashant K. Srivastava

    2017-10-01

    Full Text Available Reference Evapotranspiration (ETo and soil moisture deficit (SMD are vital for understanding the hydrological processes, particularly in the context of sustainable water use efficiency in the globe. Precise estimation of ETo and SMD are required for developing appropriate forecasting systems, in hydrological modeling and also in precision agriculture. In this study, the surface temperature downscaled from Weather Research and Forecasting (WRF model is used to estimate ETo using the boundary conditions that are provided by the European Center for Medium Range Weather Forecast (ECMWF. In order to understand the performance, the Hamon’s method is employed to estimate the ETo using the temperature from meteorological station and WRF derived variables. After estimating the ETo, a range of linear and non-linear models is utilized to retrieve SMD. The performance statistics such as RMSE, %Bias, and Nash Sutcliffe Efficiency (NSE indicates that the exponential model (RMSE = 0.226; %Bias = −0.077; NSE = 0.616 is efficient for SMD estimation by using the Observed ETo in comparison to the other linear and non-linear models (RMSE range = 0.019–0.667; %Bias range = 2.821–6.894; NSE = 0.013–0.419 used in this study. On the other hand, in the scenario where SMD is estimated using WRF downscaled meteorological variables based ETo, the linear model is found promising (RMSE = 0.017; %Bias = 5.280; NSE = 0.448 as compared to the non-linear models (RMSE range = 0.022–0.707; %Bias range = −0.207–−6.088; NSE range = 0.013–0.149. Our findings also suggest that all the models are performing better during the growing season (RMSE range = 0.024–0.025; %Bias range = −4.982–−3.431; r = 0.245–0.281 than the non−growing season (RMSE range = 0.011–0.12; %Bias range = 33.073–32.701; r = 0.161–0.244 for SMD estimation.

  15. Aviation Model: A Fine-Scale Numerical Weather Prediction System for Aviation Applications at the Hong Kong International Airport

    Directory of Open Access Journals (Sweden)

    Wai-Kin Wong

    2013-01-01

    Full Text Available The Hong Kong Observatory (HKO is planning to implement a fine-resolution Numerical Weather Prediction (NWP model for supporting the aviation weather applications at the Hong Kong International Airport (HKIA. This new NWP model system, called Aviation Model (AVM, is configured at a horizontal grid spacing of 600 m and 200 m. It is based on the WRF-ARW (Advance Research WRF model that can have sufficient computation efficiency in order to produce hourly updated forecasts up to 9 hours ahead on a future high performance computer system with theoretical peak performance of around 10 TFLOPS. AVM will be nested inside the operational mesoscale NWP model of HKO with horizontal resolution of 2 km. In this paper, initial numerical experiment results in forecast of windshear events due to seabreeze and terrain effect are discussed. The simulation of sea-breeze-related windshear is quite successful, and the headwind change observed from flight data could be reproduced in the model forecast. Some impacts of physical processes on generating the fine-scale wind circulation and development of significant convection are illustrated. The paper also discusses the limitations in the current model setup and proposes methods for the future development of AVM.

  16. Creating Weather System Ensembles Through Synergistic Process Modeling and Machine Learning

    Science.gov (United States)

    Chen, B.; Posselt, D. J.; Nguyen, H.; Wu, L.; Su, H.; Braverman, A. J.

    2017-12-01

    Earth's weather and climate are sensitive to a variety of control factors (e.g., initial state, forcing functions, etc). Characterizing the response of the atmosphere to a change in initial conditions or model forcing is critical for weather forecasting (ensemble prediction) and climate change assessment. Input - response relationships can be quantified by generating an ensemble of multiple (100s to 1000s) realistic realizations of weather and climate states. Atmospheric numerical models generate simulated data through discretized numerical approximation of the partial differential equations (PDEs) governing the underlying physics. However, the computational expense of running high resolution atmospheric state models makes generation of more than a few simulations infeasible. Here, we discuss an experiment wherein we approximate the numerical PDE solver within the Weather Research and Forecasting (WRF) Model using neural networks trained on a subset of model run outputs. Once trained, these neural nets can produce large number of realization of weather states from a small number of deterministic simulations with speeds that are orders of magnitude faster than the underlying PDE solver. Our neural network architecture is inspired by the governing partial differential equations. These equations are location-invariant, and consist of first and second derivations. As such, we use a 3x3 lon-lat grid of atmospheric profiles as the predictor in the neural net to provide the network the information necessary to compute the first and second moments. Results indicate that the neural network algorithm can approximate the PDE outputs with high degree of accuracy (less than 1% error), and that this error increases as a function of the prediction time lag.

  17. Analysis of the ozone profile specifications in the WRF-ARW model and their impact on the simulation of direct solar radiation

    Directory of Open Access Journals (Sweden)

    A. Montornès

    2015-03-01

    Full Text Available Although ozone is an atmospheric gas with high spatial and temporal variability, mesoscale numerical weather prediction (NWP models simplify the specification of ozone concentrations used in their shortwave schemes by using a few ozone profiles. In this paper, a two-part study is presented: (i an evaluation of the quality of the ozone profiles provided for use with the shortwave schemes in the Advanced Research version of the Weather Research and Forecasting (WRF-ARW model and (ii an assessment of the impact of deficiencies in those profiles on the performance of model simulations of direct solar radiation. The first part compares simplified data sets used to specify the total ozone column in six schemes (i.e., Goddard, New Goddard, RRTMG, CAM, GFDL and Fu–Liou–Gu with the Multi-Sensor Reanalysis data set during the period 1979–2008 examining the latitudinal, longitudinal and seasonal limitations in the ozone profile specifications of each parameterization. The results indicate that the maximum deviations are over the poles and show prominent longitudinal patterns in the departures due to the lack of representation of the patterns associated with the Brewer–Dobson circulation and the quasi-stationary features forced by the land–sea distribution, respectively. In the second part, the bias in the simulated direct solar radiation due to these deviations from the simplified spatial and temporal representation of the ozone distribution is analyzed for the New Goddard and CAM schemes using the Beer–Lambert–Bouguer law and for the GFDL using empirical equations. For radiative applications those simplifications introduce spatial and temporal biases with near-zero departures over the tropics throughout the year and increasing poleward with a maximum in the high middle latitudes during the winter of each hemisphere.

  18. Quantifying sources of elemental carbon over the Guanzhong Basin of China: A consistent network of measurements and WRF-Chem modeling

    International Nuclear Information System (INIS)

    Li, Nan; He, Qingyang; Tie, Xuexi; Cao, Junji; Liu, Suixin; Wang, Qiyuan; Li, Guohui; Huang, Rujin; Zhang, Qiang

    2016-01-01

    We conducted a year-long WRF-Chem (Weather Research and Forecasting Chemical) model simulation of elemental carbon (EC) aerosol and compared the modeling results to the surface EC measurements in the Guanzhong (GZ) Basin of China. The main goals of this study were to quantify the individual contributions of different EC sources to EC pollution, and to find the major cause of the EC pollution in this region. The EC measurements were simultaneously conducted at 10 urban, rural, and background sites over the GZ Basin from May 2013 to April 2014, and provided a good base against which to evaluate model simulation. The model evaluation showed that the calculated annual mean EC concentration was 5.1 μgC m −3 , which was consistent with the observed value of 5.3 μgC m −3 . Moreover, the model result also reproduced the magnitude of measured EC in all seasons (regression slope = 0.98–1.03), as well as the spatial and temporal variations (r = 0.55–0.78). We conducted several sensitivity studies to quantify the individual contributions of EC sources to EC pollution. The sensitivity simulations showed that the local and outside sources contributed about 60% and 40% to the annual mean EC concentration, respectively, implying that local sources were the major EC pollution contributors in the GZ Basin. Among the local sources, residential sources contributed the most, followed by industry and transportation sources. A further analysis suggested that a 50% reduction of industry or transportation emissions only caused a 6% decrease in the annual mean EC concentration, while a 50% reduction of residential emissions reduced the winter surface EC concentration by up to 25%. In respect to the serious air pollution problems (including EC pollution) in the GZ Basin, our findings can provide an insightful view on local air pollution control strategies. - Highlights: • A yearlong WRF-Chem simulation is conducted to identify sources of the EC pollution. • A network of

  19. The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts

    Science.gov (United States)

    Zavodsky, Bradley; Kozlowski, Danielle; Case, Jonathan; Molthan, Andrew

    2012-01-01

    Short-term Prediction Research and Transition (SPoRT) seeks to improve short-term, regional weather forecasts using unique NASA products and capabilities SPoRT has developed a unique, real-time configuration of the NASA Unified Weather Research and Forecasting (WRF)WRF (ARW) that integrates all SPoRT modeling research data: (1) 2-km SPoRT Sea Surface Temperature (SST) Composite, (2) 3-km LIS with 1-km Greenness Vegetation Fraction (GVFs) (3) 45-km AIRS retrieved profiles. Transitioned this real-time forecast to NOAA's Hazardous Weather Testbed (HWT) as deterministic model at Experimental Forecast Program (EFP). Feedback from forecasters/participants and internal evaluation of SPoRT-WRF shows a cool, dry bias that appears to suppress convection likely related to methodology for assimilation of AIRS profiles Version 2 of the SPoRT-WRF will premier at the 2012 EFP and include NASA physics, cycling data assimilation methodology, better coverage of precipitation forcing, and new GVFs

  20. Global distribution of urban parameters derived from high-resolution global datasets for weather modelling

    Science.gov (United States)

    Kawano, N.; Varquez, A. C. G.; Dong, Y.; Kanda, M.

    2016-12-01

    Numerical model such as Weather Research and Forecasting model coupled with single-layer Urban Canopy Model (WRF-UCM) is one of the powerful tools to investigate urban heat island. Urban parameters such as average building height (Have), plain area index (λp) and frontal area index (λf), are necessary inputs for the model. In general, these parameters are uniformly assumed in WRF-UCM but this leads to unrealistic urban representation. Distributed urban parameters can also be incorporated into WRF-UCM to consider a detail urban effect. The problem is that distributed building information is not readily available for most megacities especially in developing countries. Furthermore, acquiring real building parameters often require huge amount of time and money. In this study, we investigated the potential of using globally available satellite-captured datasets for the estimation of the parameters, Have, λp, and λf. Global datasets comprised of high spatial resolution population dataset (LandScan by Oak Ridge National Laboratory), nighttime lights (NOAA), and vegetation fraction (NASA). True samples of Have, λp, and λf were acquired from actual building footprints from satellite images and 3D building database of Tokyo, New York, Paris, Melbourne, Istanbul, Jakarta and so on. Regression equations were then derived from the block-averaging of spatial pairs of real parameters and global datasets. Results show that two regression curves to estimate Have and λf from the combination of population and nightlight are necessary depending on the city's level of development. An index which can be used to decide which equation to use for a city is the Gross Domestic Product (GDP). On the other hand, λphas less dependence on GDP but indicated a negative relationship to vegetation fraction. Finally, a simplified but precise approximation of urban parameters through readily-available, high-resolution global datasets and our derived regressions can be utilized to estimate a

  1. Coupling of WRF and Building-resolved CFD Simulations for Greenhouse Gas Transport and Dispersion

    Science.gov (United States)

    Prasad, K.; Hu, H.; McDermott, R.; Lopez-Coto, I.; Davis, K. J.; Whetstone, J. R.; Lauvaux, T.

    2014-12-01

    The Indianapolis Flux Experiment (INFLUX) aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over an urban domain with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. WRF is used extensively in the atmospheric community to simulate mesoscale atmospheric transport. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics that are generated by the flow around buildings and communities that are part of a large city. Since the model domain includes the city of Indianapolis, much of the flow of interest is over an urban topography. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model to perform large eddy simulations of flow around buildings, but it has not been nested within a larger-scale atmospheric transport model such as WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing that cannot be simulated with a mesoscale atmospheric model, and which may be important to determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards the one computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 2-10 m. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in an urban domain and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Predicted mixing ratios will be compared with tower measurements and WRF simulations

  2. Comparison of Microclimate Simulated weather data to ASHRAE Clear Sky Model and Measured Data

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Mahabir S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    In anticipation of emerging global urbanization and its impact on microclimate, a need exists to better understand and quantify microclimate effects on building energy use. Satisfaction of this need will require coordinated research of microclimate impacts on and from “human systems.” The Urban Microclimate and Energy Tool (Urban-MET) project seeks to address this need by quantifying and analyzing the relationships among climatic conditions, urban morphology, land cover, and energy use; and using these relationships to inform energy-efficient urban development and planning. Initial research will focus on analysis of measured and modeled energy efficiency of various building types in selected urban areas and temporal variations in energy use for different urban morphologies under different microclimatic conditions. In this report, we analyze the differences between microclimate weather data sets for the Oak Ridge National Laboratory campus produced by ENVI-met and Weather Research Forecast (WRF) models, the ASHRAE clear sky which defines the maximum amounts of solar radiation that can be expected, and measured data from a weather station on campus. Errors with climate variables and their impact on building energy consumption will be shown for the microclimate simulations to help prioritize future improvement for use in microclimate simulation impacts to energy use of buildings.

  3. Simulation of Flash-Flood-Producing Storm Events in Saudi Arabia Using the Weather Research and Forecasting Model

    KAUST Repository

    Deng, Liping

    2015-05-01

    The challenges of monitoring and forecasting flash-flood-producing storm events in data-sparse and arid regions are explored using the Weather Research and Forecasting (WRF) Model (version 3.5) in conjunction with a range of available satellite, in situ, and reanalysis data. Here, we focus on characterizing the initial synoptic features and examining the impact of model parameterization and resolution on the reproduction of a number of flood-producing rainfall events that occurred over the western Saudi Arabian city of Jeddah. Analysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) data suggests that mesoscale convective systems associated with strong moisture convergence ahead of a trough were the major initial features for the occurrence of these intense rain events. The WRF Model was able to simulate the heavy rainfall, with driving convective processes well characterized by a high-resolution cloud-resolving model. The use of higher (1 km vs 5 km) resolution along the Jeddah coastline favors the simulation of local convective systems and adds value to the simulation of heavy rainfall, especially for deep-convection-related extreme values. At the 5-km resolution, corresponding to an intermediate study domain, simulation without a cumulus scheme led to the formation of deeper convective systems and enhanced rainfall around Jeddah, illustrating the need for careful model scheme selection in this transition resolution. In analysis of multiple nested WRF simulations (25, 5, and 1 km), localized volume and intensity of heavy rainfall together with the duration of rainstorms within the Jeddah catchment area were captured reasonably well, although there was evidence of some displacements of rainstorm events.

  4. Can High-resolution WRF Simulations Be Used for Short-term Forecasting of Lightning?

    Science.gov (United States)

    Goodman, S. J.; Lapenta, W.; McCaul, E. W., Jr.; LaCasse, K.; Petersen, W.

    2006-01-01

    A number of research teams have begun to make quasi-operational forecast simulations at high resolution with models such as the Weather Research and Forecast (WRF) model. These model runs have used horizontal meshes of 2-4 km grid spacing, and thus resolved convective storms explicitly. In the light of recent global satellite-based observational studies that reveal robust relationships between total lightning flash rates and integrated amounts of precipitation-size ice hydrometeors in storms, it is natural to inquire about the capabilities of these convection-resolving models in representing the ice hydrometeor fields faithfully. If they do, this might make operational short-term forecasts of lightning activity feasible. We examine high-resolution WRF simulations from several Southeastern cases for which either NLDN or LMA lightning data were available. All the WRF runs use a standard microphysics package that depicts only three ice species, cloud ice, snow and graupel. The realism of the WRF simulations is examined by comparisons with both lightning and radar observations and with additional even higher-resolution cloud-resolving model runs. Preliminary findings are encouraging in that they suggest that WRF often makes convective storms of the proper size in approximately the right location, but they also indicate that higher resolution and better hydrometeor microphysics would be helpful in improving the realism of the updraft strengths, reflectivity and ice hydrometeor fields.

  5. Contributions of mobile, stationary and biogenic sources to air pollution in the Amazon rainforest: a numerical study with the WRF-Chem model

    Science.gov (United States)

    Abou Rafee, Sameh A.; Martins, Leila D.; Kawashima, Ana B.; Almeida, Daniela S.; Morais, Marcos V. B.; Souza, Rita V. A.; Oliveira, Maria B. L.; Souza, Rodrigo A. F.; Medeiros, Adan S. S.; Urbina, Viviana; Freitas, Edmilson D.; Martin, Scot T.; Martins, Jorge A.

    2017-06-01

    This paper evaluates the contributions of the emissions from mobile, stationary and biogenic sources on air pollution in the Amazon rainforest by using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. The analyzed air pollutants were CO, NOx, SO2, O3, PM2. 5, PM10 and volatile organic compounds (VOCs). Five scenarios were defined in order to evaluate the emissions by biogenic, mobile and stationary sources, as well as a future scenario to assess the potential air quality impact of doubled anthropogenic emissions. The stationary sources explain the highest concentrations for all air pollutants evaluated, except for CO, for which the mobile sources are predominant. The anthropogenic sources considered resulted an increasing in the spatial peak-temporal average concentrations of pollutants in 3 to 2780 times in relation to those with only biogenic sources. The future scenario showed an increase in the range of 3 to 62 % in average concentrations and 45 to 109 % in peak concentrations depending on the pollutant. In addition, the spatial distributions of the scenarios has shown that the air pollution plume from the city of Manaus is predominantly transported west and southwest, and it can reach hundreds of kilometers in length.

  6. Contributions of mobile, stationary and biogenic sources to air pollution in the Amazon rainforest: a numerical study with the WRF-Chem model

    Directory of Open Access Journals (Sweden)

    S. A. Abou Rafee

    2017-06-01

    Full Text Available This paper evaluates the contributions of the emissions from mobile, stationary and biogenic sources on air pollution in the Amazon rainforest by using the Weather Research and Forecasting with Chemistry (WRF-Chem model. The analyzed air pollutants were CO, NOx, SO2, O3, PM2. 5, PM10 and volatile organic compounds (VOCs. Five scenarios were defined in order to evaluate the emissions by biogenic, mobile and stationary sources, as well as a future scenario to assess the potential air quality impact of doubled anthropogenic emissions. The stationary sources explain the highest concentrations for all air pollutants evaluated, except for CO, for which the mobile sources are predominant. The anthropogenic sources considered resulted an increasing in the spatial peak-temporal average concentrations of pollutants in 3 to 2780 times in relation to those with only biogenic sources. The future scenario showed an increase in the range of 3 to 62 % in average concentrations and 45 to 109 % in peak concentrations depending on the pollutant. In addition, the spatial distributions of the scenarios has shown that the air pollution plume from the city of Manaus is predominantly transported west and southwest, and it can reach hundreds of kilometers in length.

  7. Simulation of the effects of aerosol on mixed-phase orographic clouds using the WRF model with a detailed bin microphysics scheme

    Science.gov (United States)

    Xiao, Hui; Yin, Yan; Jin, Lianji; Chen, Qian; Chen, Jinghua

    2015-08-01

    The Weather Research Forecast (WRF) mesoscale model coupled with a detailed bin microphysics scheme is used to investigate the impact of aerosol particles serving as cloud condensation nuclei and ice nuclei on orographic clouds and precipitation. A mixed-phase orographic cloud developed under two scenarios of aerosol (a typical continental background and a relatively polluted urban condition) and ice nuclei over an idealized mountain is simulated. The results show that, when the initial aerosol condition is changed from the relatively clean case to the polluted scenario, more droplets are activated, leading to a delay in precipitation, but the precipitation amount over the terrain is increased by about 10%. A detailed analysis of the microphysical processes indicates that ice-phase particles play an important role in cloud development, and their contribution to precipitation becomes more important with increasing aerosol particle concentrations. The growth of ice-phase particles through riming and Wegener-Bergeron-Findeisen regime is more effective under more polluted conditions, mainly due to the increased number of droplets with a diameter of 10-30 µm. Sensitivity tests also show that a tenfold increase in the concentration of ice crystals formed from ice nucleation leads to about 7% increase in precipitation, and the sensitivity of the precipitation to changes in the concentration and size distribution of aerosol particles is becoming less pronounced when the concentration of ice crystals is also increased.

  8. Impact of vehicular emissions on the formation of fine particles in the Sao Paulo Metropolitan Area: a numerical study with the WRF-Chem model

    Directory of Open Access Journals (Sweden)

    A. Vara-Vela

    2016-01-01

    Full Text Available The objective of this work is to evaluate the impact of vehicular emissions on the formation of fine particles (PM2.5;  ≤  2.5 µm in diameter in the Sao Paulo Metropolitan Area (SPMA in Brazil, where ethanol is used intensively as a fuel in road vehicles. The Weather Research and Forecasting with Chemistry (WRF-Chem model, which simulates feedbacks between meteorological variables and chemical species, is used as a photochemical modelling tool to describe the physico-chemical processes leading to the evolution of number and mass size distribution of particles through gas-to-particle conversion. A vehicular emission model based on statistical information of vehicular activity is applied to simulate vehicular emissions over the studied area. The simulation has been performed for a 1-month period (7 August–6 September 2012 to cover the availability of experimental data from the NUANCE-SPS (Narrowing the Uncertainties on Aerosol and Climate Changes in Sao Paulo State project that aims to characterize emissions of atmospheric aerosols in the SPMA. The availability of experimental measurements of atmospheric aerosols and the application of the WRF-Chem model made it possible to represent some of the most important properties of fine particles in the SPMA such as the mass size distribution and chemical composition, besides allowing us to evaluate its formation potential through the gas-to-particle conversion processes. Results show that the emission of primary gases, mostly from vehicles, led to a production of secondary particles between 20 and 30 % in relation to the total mass concentration of PM2.5 in the downtown SPMA. Each of PM2.5 and primary natural aerosol (dust and sea salt contributed with 40–50 % of the total PM10 (i.e. those  ≤  10 µm in diameter concentration. Over 40 % of the formation of fine particles, by mass, was due to the emission of hydrocarbons, mainly aromatics. Furthermore, an increase in the

  9. Impact of vehicular emissions on the formation of fine particles in the Sao Paulo Metropolitan Area: a numerical study with the WRF-Chem model

    Science.gov (United States)

    Vara-Vela, A.; Andrade, M. F.; Kumar, P.; Ynoue, R. Y.; Muñoz, A. G.

    2016-01-01

    The objective of this work is to evaluate the impact of vehicular emissions on the formation of fine particles (PM2.5; ≤ 2.5 µm in diameter) in the Sao Paulo Metropolitan Area (SPMA) in Brazil, where ethanol is used intensively as a fuel in road vehicles. The Weather Research and Forecasting with Chemistry (WRF-Chem) model, which simulates feedbacks between meteorological variables and chemical species, is used as a photochemical modelling tool to describe the physico-chemical processes leading to the evolution of number and mass size distribution of particles through gas-to-particle conversion. A vehicular emission model based on statistical information of vehicular activity is applied to simulate vehicular emissions over the studied area. The simulation has been performed for a 1-month period (7 August-6 September 2012) to cover the availability of experimental data from the NUANCE-SPS (Narrowing the Uncertainties on Aerosol and Climate Changes in Sao Paulo State) project that aims to characterize emissions of atmospheric aerosols in the SPMA. The availability of experimental measurements of atmospheric aerosols and the application of the WRF-Chem model made it possible to represent some of the most important properties of fine particles in the SPMA such as the mass size distribution and chemical composition, besides allowing us to evaluate its formation potential through the gas-to-particle conversion processes. Results show that the emission of primary gases, mostly from vehicles, led to a production of secondary particles between 20 and 30 % in relation to the total mass concentration of PM2.5 in the downtown SPMA. Each of PM2.5 and primary natural aerosol (dust and sea salt) contributed with 40-50 % of the total PM10 (i.e. those ≤ 10 µm in diameter) concentration. Over 40 % of the formation of fine particles, by mass, was due to the emission of hydrocarbons, mainly aromatics. Furthermore, an increase in the number of small particles impaired the

  10. Towards a generalization procedure for WRF mesoscale wind climatologies

    DEFF Research Database (Denmark)

    Hahmann, Andrea N.; Casso, P.; Campmany, E.

    We present a method for generalizing wind climatologies generated from mesoscale model output (e.g. the Weather, Research and Forecasting (WRF) model.) The generalization procedure is based on Wind Atlas framework of WAsP and KAMM/WAsP, and been extensively in wind resources assessment in DTU Wind...... generalized wind climatologies estimated by the microscale model WAsP and the methodology presented here. For the Danish wind measurements the mean absolute error in the ‘raw’ wind speeds is 9.2%, while the mean absolute error in the generalized wind speeds is 4.1%. The generalization procedure has been...

  11. Space Weather Models at the CCMC And Their Capabilities

    Science.gov (United States)

    Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha

    2007-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. In this presentation, we will provide an overview of the community-provided, space weather-relevant, model suite, which resides at CCMC. We will discuss current capabilities, and analyze expected future developments of space weather related modeling.

  12. Evaluation and Improvement of Polar WRF simulations using the observed atmospheric profiles in the Arctic seasonal ice zone

    Science.gov (United States)

    Liu, Z.; Schweiger, A. J. B.

    2016-12-01

    We use the Polar Weather Research and Forecasting (WRF) model to simulate atmospheric conditions during the Seasonal Ice Zone Reconnaissance Survey (SIZRS) over the Beaufort Sea in the summer since 2013. With the 119 SIZRS dropsondes in the18 cross sections along the 150W and 140W longitude lines, we evaluate the performance of WRF simulations and two forcing data sets, the ERA-Interim reanalysis and the Global Forecast System (GFS) analysis, and explore the improvement of the Polar WRF performance when the dropsonde data are assimilated using observation nudging. Polar WRF, ERA-Interim, and GFS can reproduce the general features of the observed mean atmospheric profiles, such as low-level temperature inversion, low-level jet (LLJ) and specific humidity inversion. The Polar WRF significantly improves the mean LLJ, with a lower and stronger jet and a larger turning angle than the forcing, which is likely related to the lower values of the boundary layer diffusion in WRF than in the global models such as ECMWF and GFS. The Polar WRF simulated relative humidity closely resembles the forcing datasets while having large biases compared to observations. This suggests that the performance of Polar WRF and its forecasts in this region are limited by the quality of the forcing dataset and that the assimilation of more and better-calibrated observations, such as humidity data, is critical for their improvement. We investigate the potential of assimilating the SIZRS dropsonde dataset in improving the weather forecast over the Beaufort Sea. A simple local nudging approach is adopted. Along SIZRS flight cross sections, a set of Polar WRF simulations are performed with varying number of variables and dropsonde profiles assimilated. Different model physics are tested to examine the sensitivity of different aspects of model physics, such as boundary layer schemes, cloud microphysics, and radiation parameterization, to data assimilation. The comparison of the Polar WRF runs with

  13. Configuring the HYSPLIT Model for National Weather Service Forecast Office and Spaceflight Meteorology Group Applications

    Science.gov (United States)

    Dreher, Joseph G.

    2009-01-01

    For expedience in delivering dispersion guidance in the diversity of operational situations, National Weather Service Melbourne (MLB) and Spaceflight Meteorology Group (SMG) are becoming increasingly reliant on the PC-based version of the HYSPLIT model run through a graphical user interface (GUI). While the GUI offers unique advantages when compared to traditional methods, it is difficult for forecasters to run and manage in an operational environment. To alleviate the difficulty in providing scheduled real-time trajectory and concentration guidance, the Applied Meteorology Unit (AMU) configured a Linux version of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) (HYSPLIT) model that ingests the National Centers for Environmental Prediction (NCEP) guidance, such as the North American Mesoscale (NAM) and the Rapid Update Cycle (RUC) models. The AMU configured the HYSPLIT system to automatically download the NCEP model products, convert the meteorological grids into HYSPLIT binary format, run the model from several pre-selected latitude/longitude sites, and post-process the data to create output graphics. In addition, the AMU configured several software programs to convert local Weather Research and Forecast (WRF) model output into HYSPLIT format.

  14. Hydrological modeling using a multi-site stochastic weather generator

    Science.gov (United States)

    Weather data is usually required at several locations over a large watershed, especially when using distributed models for hydrological simulations. In many applications, spatially correlated weather data can be provided by a multi-site stochastic weather generator which considers the spatial correl...

  15. Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system

    International Nuclear Information System (INIS)

    Gao, Y; Fu, J S; Drake, J B; Liu, Y; Lamarque, J-F

    2012-01-01

    This study is the first evaluation of dynamical downscaling using the Weather Research and Forecasting (WRF) Model on a 4 km × 4 km high resolution scale in the eastern US driven by the new Community Earth System Model version 1.0 (CESM v1.0). First we examined the global and regional climate model results, and corrected an inconsistency in skin temperature during the downscaling process by modifying the land/sea mask. In comparison with observations, WRF shows statistically significant improvement over CESM in reproducing extreme weather events, with improvement for heat wave frequency estimation as high as 98%. The fossil fuel intensive scenario Representative Concentration Pathway (RCP) 8.5 was used to study a possible future mid-century climate extreme in 2057–9. Both the heat waves and the extreme precipitation in 2057–9 are more severe than the present climate in the Eastern US. The Northeastern US shows large increases in both heat wave intensity (3.05 °C higher) and annual extreme precipitation (107.3 mm more per year). (letter)

  16. Modeling regional air quality and climate: improving organic aerosol and aerosol activation processes in WRF/Chem version 3.7.1

    Science.gov (United States)

    Yahya, Khairunnisa; Glotfelty, Timothy; Wang, Kai; Zhang, Yang; Nenes, Athanasios

    2017-06-01

    Air quality and climate influence each other through the uncertain processes of aerosol formation and cloud droplet activation. In this study, both processes are improved in the Weather, Research and Forecasting model with Chemistry (WRF/Chem) version 3.7.1. The existing Volatility Basis Set (VBS) treatments for organic aerosol (OA) formation in WRF/Chem are improved by considering the following: the secondary OA (SOA) formation from semi-volatile primary organic aerosol (POA), a semi-empirical formulation for the enthalpy of vaporization of SOA, and functionalization and fragmentation reactions for multiple generations of products from the oxidation of VOCs. Over the continental US, 2-month-long simulations (May to June 2010) are conducted and results are evaluated against surface and aircraft observations during the Nexus of Air Quality and Climate Change (CalNex) campaign. Among all the configurations considered, the best performance is found for the simulation with the 2005 Carbon Bond mechanism (CB05) and the VBS SOA module with semivolatile POA treatment, 25 % fragmentation, and the emissions of semi-volatile and intermediate volatile organic compounds being 3 times the original POA emissions. Among the three gas-phase mechanisms (CB05, CB6, and SAPRC07) used, CB05 gives the best performance for surface ozone and PM2. 5 concentrations. Differences in SOA predictions are larger for the simulations with different VBS treatments (e.g., nonvolatile POA versus semivolatile POA) compared to the simulations with different gas-phase mechanisms. Compared to the simulation with CB05 and the default SOA module, the simulations with the VBS treatment improve cloud droplet number concentration (CDNC) predictions (normalized mean biases from -40.8 % to a range of -34.6 to -27.7 %), with large differences between CB05-CB6 and SAPRC07 due to large differences in their OH and HO2 predictions. An advanced aerosol activation parameterization based on the Fountoukis and Nenes

  17. WRF added value to capture the spatio-temporal drought variability

    Science.gov (United States)

    García-Valdecasas Ojeda, Matilde; Quishpe-Vásquez, César; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María

    2017-04-01

    Regional Climate Models (RCM) has been widely used as a tool to perform high resolution climate fields in areas with high climate variability such as Spain. However, the outputs provided by downscaling techniques have many sources of uncertainty associated at different aspects. In this study, the ability of the Weather Research and Forecasting (WRF) model to capture drought conditions has been analyzed. The WRF simulation was carried out for a period that spanned from 1980 to 2010 over a domain centered in the Iberian Peninsula with a spatial resolution of 0.088°, and nested in the coarser EURO-CORDEX domain (0.44° spatial resolution). To investigate the spatiotemporal drought variability, the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) has been computed at two different timescales: 3- and 12-months due to its suitability to study agricultural and hydrological droughts. The drought indices computed from WRF outputs were compared with those obtained from the observational (MOTEDAS and MOPREDAS) datasets. In order to assess the added value provided by downscaled fields, these indices were also computed from the ERA-Interim Re-Analysis database, which provides the lateral and boundary conditions of the WRF simulations. Results from this study indicate that WRF provides a noticeable benefit with respect to ERA-Interim for many regions in Spain in terms of drought indices, greater for SPI than for SPEI. The improvement offered by WRF depends on the region, index and timescale analyzed, being greater at longer timescales. These findings prove the reliability of the downscaled fields to detect drought events and, therefore, it is a remarkable source of knowledge for a suitable decision making related to water-resource management. Keywords: Drought, added value, Regional Climate Models, WRF, SPEI, SPI. Acknowledgements: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and

  18. Advanced Corrections for InSAR Using GPS and Numerical Weather Models

    Science.gov (United States)

    Cossu, F.; Foster, J. H.; Amelung, F.; Varugu, B. K.; Businger, S.; Cherubini, T.

    2017-12-01

    We present results from an investigation into the application of numerical weather models for generating tropospheric correction fields for Interferometric Synthetic Aperture Radar (InSAR). We apply the technique to data acquired from a UAVSAR campaign as well as from the CosmoSkyMed satellites. The complex spatial and temporal changes in the atmospheric propagation delay of the radar signal remain the single biggest factor limiting InSAR's potential for hazard monitoring and mitigation. A new generation of InSAR systems is being built and launched, and optimizing the science and hazard applications of these systems requires advanced methodologies to mitigate tropospheric noise. We use the Weather Research and Forecasting (WRF) model to generate a 900 m spatial resolution atmospheric models covering the Big Island of Hawaii and an even higher, 300 m resolution grid over the Mauna Loa and Kilauea volcanoes. By comparing a range of approaches, from the simplest, using reanalyses based on typically available meteorological observations, through to the "kitchen-sink" approach of assimilating all relevant data sets into our custom analyses, we examine the impact of the additional data sets on the atmospheric models and their effectiveness in correcting InSAR data. We focus particularly on the assimilation of information from the more than 60 GPS sites in the island. We ingest zenith tropospheric delay estimates from these sites directly into the WRF analyses, and also perform double-difference tomography using the phase residuals from the GPS processing to robustly incorporate heterogeneous information from the GPS data into the atmospheric models. We assess our performance through comparisons of our atmospheric models with external observations not ingested into the model, and through the effectiveness of the derived phase screens in reducing InSAR variance. Comparison of the InSAR data, our atmospheric analyses, and assessments of the active local and mesoscale

  19. Modulation of Soil Initial State on WRF Model Performance Over China

    Science.gov (United States)

    Xue, Haile; Jin, Qinjian; Yi, Bingqi; Mullendore, Gretchen L.; Zheng, Xiaohui; Jin, Hongchun

    2017-11-01

    The soil state (e.g., temperature and moisture) in a mesoscale numerical prediction model is typically initialized by reanalysis or analysis data that may be subject to large bias. Such bias may lead to unrealistic land-atmosphere interactions. This study shows that the Climate Forecast System Reanalysis (CFSR) dramatically underestimates soil temperature and overestimates soil moisture over most parts of China in the first (0-10 cm) and second (10-25 cm) soil layers compared to in situ observations in July 2013. A correction based on the global optimal dual kriging is employed to correct CFSR bias in soil temperature and moisture using in situ observations. To investigate the impacts of the corrected soil state on model forecasts, two numerical model simulations—a control run with CFSR soil state and a disturbed run with the corrected soil state—were conducted using the Weather Research and Forecasting model. All the simulations are initiated 4 times per day and run 48 h. Model results show that the corrected soil state, for example, warmer and drier surface over the most parts of China, can enhance evaporation over wet regions, which changes the overlying atmospheric temperature and moisture. The changes of the lifting condensation level, level of free convection, and water transport due to corrected soil state favor precipitation over wet regions, while prohibiting precipitation over dry regions. Moreover, diagnoses indicate that the remote moisture flux convergence plays a dominant role in the precipitation changes over the wet regions.

  20. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    Science.gov (United States)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  1. Spatio-temporal variability of CO and O3 in Hyderabad (17°N, 78°E, central India, based on MOZAIC and TES observations and WRF-Chem and MOZART-4 models

    Directory of Open Access Journals (Sweden)

    Varun Sheel

    2016-05-01

    Full Text Available This article is based on the study of the seasonal and interannual variability of carbon monoxide (CO and ozone (O3 at different altitudes of the troposphere over Hyderabad, India, during 2006–2010 using Measurement of OZone and water vapour by Airbus In-Service Aircraft (MOZAIC and observation from Tropospheric Emission Spectrometer (TES aboard NASA's Aura satellite. The MOZAIC observations show maximum seasonal variability in both CO and O3 during winter and pre-monsoon season, with CO in the range (100–200±13 ppbv and O3 in the range (50–70±9 ppbv. The time-series of MOZAIC data shows a significant increase of 4.2±1.3 % in the surface CO and 6.7±1.3 % in the surface O3 during 2006–2010 in Hyderabad. From MOZAIC observations, we identify CO and O3 profiles that are anomalous with respect to the monthly mean and compare those with Weather Research Forecast model coupled with Chemistry (WRF-Chem and Model for OZone and Related Tracers, version 4 profiles for the same day. The anomalous profiles of WRF-Chem are simulated using three convection schemes. The goodness of comparison depends on the convection scheme and the altitude region of the troposphere.

  2. URBAN EFFICIENT ENERGY EVALUATION IN HIGH RESOLUTION URBAN AREAS BY USING ADAPTED WRF-UCM AND MICROSYS CFD MODELS

    Science.gov (United States)

    San Jose, R.; Perez, J. L.; Gonzalez, R. M.

    2009-12-01

    Urban metabolism modeling has advanced substantially during the last years due to the increased detail in mesoscale urban parameterization in meteorological mesoscale models and CFD numerical tools. Recently the implementation of the “urban canopy model” (UCM) into the WRF mesoscale meteorological model has produced a substantial advance on the understanding of the urban atmospheric heat flux exchanges in the urban canopy. The need to optimize the use of heat energy in urban environment has produced a substantial increase in the detailed investigation of the urban heat flux exchanges. In this contribution we will show the performance of using a tool called MICROSYS (MICRO scale CFD modelling SYStem) which is an adaptation of the classical urban canopy model but on a high resolution environment by using a classical CFD approach. The energy balance in the urban system can be determined in a micrometeorologicl sense by considering the energy flows in and out of a control volume. For such a control volume reaching from ground to a certain height above buildings, the energy balance equation includes the net radiation, the anthropogenic heat flux, the turbulent sensible heat flux, the turbulent latent heat flux, the net storage change within the control volume, the net advected flux and other sources and sinks. We have applied the MICROSYS model to an area of 5 km x 5 km with 200 m spatial resolution by using the WRF-UCM (adapted and the MICROSYS CFD model. The anthropogenic heat flux has been estimated by using the Flanner M.G. (2009) database and detailed GIS information (50 m resolution) of Madrid city. The Storage energy has been estimated by calculating the energy balance according to the UCM procedure and implementing it into the MICROSYS tool. Results show that MICROSYS can be used as an energy efficient tool to estimate the energy balance of different urban areas and buildings.

  3. The Sensitivity of WRF Daily Summertime Simulations over West Africa to Alternative Parameterizations. Part 1: African Wave Circulation

    Science.gov (United States)

    Noble, Erik; Druyan, Leonard M.; Fulakeza, Matthew

    2014-01-01

    The performance of the NCAR Weather Research and Forecasting Model (WRF) as a West African regional-atmospheric model is evaluated. The study tests the sensitivity of WRF-simulated vorticity maxima associated with African easterly waves to 64 combinations of alternative parameterizations in a series of simulations in September. In all, 104 simulations of 12-day duration during 11 consecutive years are examined. The 64 combinations combine WRF parameterizations of cumulus convection, radiation transfer, surface hydrology, and PBL physics. Simulated daily and mean circulation results are validated against NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) and NCEP/Department of Energy Global Reanalysis 2. Precipitation is considered in a second part of this two-part paper. A wide range of 700-hPa vorticity validation scores demonstrates the influence of alternative parameterizations. The best WRF performers achieve correlations against reanalysis of 0.40-0.60 and realistic amplitudes of spatiotemporal variability for the 2006 focus year while a parallel-benchmark simulation by the NASA Regional Model-3 (RM3) achieves higher correlations, but less realistic spatiotemporal variability. The largest favorable impact on WRF-vorticity validation is achieved by selecting the Grell-Devenyi cumulus convection scheme, resulting in higher correlations against reanalysis than simulations using the Kain-Fritch convection. Other parameterizations have less-obvious impact, although WRF configurations incorporating one surface model and PBL scheme consistently performed poorly. A comparison of reanalysis circulation against two NASA radiosonde stations confirms that both reanalyses represent observations well enough to validate the WRF results. Validation statistics for optimized WRF configurations simulating the parallel period during 10 additional years are less favorable than for 2006.

  4. Analyzing the Response of Climate Perturbations to (Tropical) Cyclones using the WRF Model

    Science.gov (United States)

    Tewari, M.; Mittal, R.; Radhakrishnan, C.; Cipriani, J.; Watson, C.

    2015-12-01

    An analysis of global climate models shows considerable changes in the intensity and characteristics of future, warm climate cyclones. At regional scales, deviations in cyclone characteristics are often derived using idealized perturbations in the humidity, temperature and surface conditions. In this work, a more realistic approach is adopted by applying climate perturbations from the Community Climate System Model (CCSM4) to ERA-interim data to generate the initial and boundary conditions for future climate simulations. The climate signal perturbations are generated from the differences in 21 years of mean data from CCSM4 with representative concentration pathways (RCP8.5) for the periods: (a) 2070-2090 (future climate), (b) 2025-2045 (near-future climate) and (c) 1985-2005 (current climate). Four individual cyclone cases are simulated with and without climate perturbations using the Weather Research and Forecasting model with a nested configuration. Each cyclone is characterized by variations in intensity, landfall location, precipitation and societal damage. To calculate societal damage, we use the recently introduced Cyclone Damage Potential (CDP) index evolved from the Willis Hurricane Index (WHI). As CDP has been developed for general societal applications, this work should provide useful insights for resilience analyses and industry (e.g., re-insurance).

  5. Grid-scale Indirect Radiative Forcing of Climate due to aerosols over the northern hemisphere simulated by the integrated WRF-CMAQ model: Preliminary results

    Science.gov (United States)

    In this study, indirect aerosol effects on grid-scale clouds were implemented in the integrated WRF3.3-CMAQ5.0 modeling system by including parameterizations for both cloud droplet and ice number concentrations calculated from the CMAQ-predicted aerosol particles. The resulting c...

  6. Modeling of air pollutant removal by dry deposition to urban trees using a WRF/CMAQ/i-Tree Eco coupled system

    Science.gov (United States)

    Maria Theresa I. Cabaraban; Charles N. Kroll; Satoshi Hirabayashi; David J. Nowak

    2013-01-01

    A distributed adaptation of i-Tree Eco was used to simulate dry deposition in an urban area. This investigation focused on the effects of varying temperature, LAI, and NO2 concentration inputs on estimated NO2 dry deposition to trees in Baltimore, MD. A coupled modeling system is described, wherein WRF provided temperature...

  7. Multiple-resolution Modeling of flood processes in urban catchments using WRF-Hydro: A Case Study in south Louisiana.

    Science.gov (United States)

    Saad, H.; Habib, E. H.

    2017-12-01

    In August 2016, the city of Lafayette and many other urban centers in south Louisiana experienced catastrophic flooding resulting from prolonged rainfall. Statewide, this historic storm displaced more than 30,000 people from their homes, resulted in damages up to $8.7 billion, put rescue workers at risk, interrupted institutions of education and business, and worst of all, resulted in the loss of life of at least 13 Louisiana residents. With growing population and increasing signs of climate change, the frequency of major floods and severe storms is expected to increase, as will the impacts of these events on our communities. Local communities need improved capabilities for forecasting flood events, monitoring of flood impacts on roads and key infrastructure, and effectively communicating real-time flood dangers at scales that are useful to the public. The current study presents the application of the WRF-Hydro modeling system to represent integrated hydrologic, hydraulic and hydrometeorological processes that drive flooding in urban basins at temporal and spatial scales that can be useful to local communities. The study site is the 25- mile2 Coulee mine catchment in Lafayette, south Louisiana. The catchment includes two tributaries with natural streams located within mostly agricultural lands. The catchment crosses the I-10 highway and through the metropolitan area of the City of Lafayette into a man-made channel, which eventually drains into the Vermilion River and the Gulf of Mexico. Due to its hydrogeomorphic setting, local and rapid diversification of land uses, low elevation, and interdependent infrastructure, the integrated modeling of this coulee is considered a challenge. A nested multi-scale model is being built using the WRF-HYDRO, with 500m and 10m resolutions for the NOAH land-surface model and diffusive wave terrain routing grids, respectively.

  8. Detecting Weather Radar Clutter by Information Fusion With Satellite Images and Numerical Weather Prediction Model Output

    DEFF Research Database (Denmark)

    Bøvith, Thomas; Nielsen, Allan Aasbjerg; Hansen, Lars Kai

    2006-01-01

    A method for detecting clutter in weather radar images by information fusion is presented. Radar data, satellite images, and output from a numerical weather prediction model are combined and the radar echoes are classified using supervised classification. The presented method uses indirect...... information on precipitation in the atmosphere from Meteosat-8 multispectral images and near-surface temperature estimates from the DMI-HIRLAM-S05 numerical weather prediction model. Alternatively, an operational nowcasting product called 'Precipitating Clouds' based on Meteosat-8 input is used. A scale...

  9. Regional Climate Simulations of the Hydrological Cycle in the Iberian Peninsula with a Coupled WRF-HYDRO Model

    Science.gov (United States)

    Rios-Entenza, A.; Miguez-Macho, G.

    2008-12-01

    Land-atmosphere water exchanges and heat fluxes play an important role in climate and particularly in controlling precipitation in water-limited regions. One of such regions is the Iberian Peninsula, and in this study we examine the relevance of water recycling in convective precipitation regimes of the Fall and Spring there, when rainfall is critical for agriculture and many other human activities. We conducted simulations with WRF-ARW model at 5 km horizontal resolution, using a 1500 km x 1500 km nested grid that covers the Iberian Peninsula, with a parent domain that uses spectral nudging in order to avoid the distortion of the large-scale circulation caused by the interaction of the modeled flow with the lateral boundaries of the nested grid. For land-surface interactions we coupled WRF with the LEAF-HYDRO land surface model, which includes water table dynamics. We use therefore a tool that simulates the entire water cycle, including the water table, which has been reported to be critical for soil moisture dynamics in semi-arid regions like the Iberian Peninsula. For each one of the events that we selected, we performed two simulations: a control one, where all land-atmosphere feedbacks are taken into account, and the experiment, where infiltration of the precipitated water into the soil was suppressed. In this manner we explore the role of upward latent and sensible heat fluxes and evapotranspiration in precipitation dynamics. Preliminary results suggest that water recycling is a key factor in extending convective precipitation during several days, and that the total new water added in the area as a whole is only a fraction of the total measured rainfall. An estimation of this fraction is very important to better understanding the water budget and for hydrological planning in this water-stressed region.

  10. Sensitivity Studies on the Influence of Aerosols on Cloud and Precipitation Development Using WRF Mesoscale Model Simulations

    Science.gov (United States)

    Thompson, G.; Eidhammer, T.; Rasmussen, R.

    2011-12-01

    Using the WRF model in simulations of shallow and deep precipitating cloud systems, we investigated the sensitivity to aerosols initiating as cloud condensation and ice nuclei. A global climatological dataset of sulfates, sea salts, and dust was used as input for a control experiment. Sensitivity experiments with significantly more polluted conditions were conducted to analyze the resulting impacts to cloud and precipitation formation. Simulations were performed using the WRF model with explicit treatment of aerosols added to the Thompson et al (2008) bulk microphysics scheme. The modified scheme achieves droplet formation using pre-tabulated CCN activation tables provided by a parcel model. The ice nucleation is parameterized as a function of dust aerosols as well as homogeneous freezing of deliquesced aerosols. The basic processes of aerosol activation and removal by wet scavenging are considered, but aerosol characteristic size or hygroscopicity does not change due to evaporating droplets. In other words, aerosol processing was ignored. Unique aspects of this study include the usage of one to four kilometer grid spacings and the direct parameterization of ice nucleation from aerosols rather than typical temperature and/or supersaturation relationships alone. Initial results from simulations of a deep winter cloud system and its interaction with significant orography show contrasting sensitivities in regions of warm rain versus mixed liquid and ice conditions. The classical view of higher precipitation amounts in relatively clean maritime clouds with fewer but larger droplets is confirmed for regions dominated by the warm-rain process. However, due to complex interactions with the ice phase and snow riming, the simulations revealed the reverse situation in high terrain areas dominated by snow reaching the surface. Results of other cloud systems will be summarized at the conference.

  11. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    Science.gov (United States)

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  12. Coupling spectral-bin cloud microphysics with the MOSAIC aerosol model in WRF-Chem: Methodology and results for marine stratocumulus clouds

    Science.gov (United States)

    Gao, Wenhua; Fan, Jiwen; Easter, R. C.; Yang, Qing; Zhao, Chun; Ghan, Steven J.

    2016-09-01

    Aerosol-cloud interaction processes can be represented more physically with bin cloud microphysics relative to bulk microphysical parameterizations. However, due to computational power limitations in the past, bin cloud microphysics was often run with very simple aerosol treatments. The purpose of this study is to represent better aerosol-cloud interaction processes in the Chemistry version of Weather Research and Forecast model (WRF-Chem) at convection-permitting scales by coupling spectral-bin cloud microphysics (SBM) with the MOSAIC sectional aerosol model. A flexible interface is built that exchanges cloud and aerosol information between them. The interface contains a new bin aerosol activation approach, which replaces the treatments in the original SBM. It also includes the modified aerosol resuspension and in-cloud wet removal processes with the droplet loss tendencies and precipitation fluxes from SBM. The newly coupled system is evaluated for two marine stratocumulus cases over the Southeast Pacific Ocean with either a simplified aerosol setup or full-chemistry. We compare the aerosol activation process in the newly coupled SBM-MOSAIC against the SBM simulation without chemistry using a simplified aerosol setup, and the results show consistent activation rates. A longer time simulation reinforces that aerosol resuspension through cloud drop evaporation plays an important role in replenishing aerosols and impacts cloud and precipitation in marine stratocumulus clouds. Evaluation of the coupled SBM-MOSAIC with full-chemistry using aircraft measurements suggests that the new model works realistically for the marine stratocumulus clouds, and improves the simulation of cloud microphysical properties compared to a simulation using MOSAIC coupled with the Morrison two-moment microphysics.

  13. Modeling rock weathering in small watersheds

    NARCIS (Netherlands)

    Pacheco, F.A.L.; van der Weijden, C.H.

    2014-01-01

    Many mountainous watersheds are conceived as aquifer media where multiple groundwater flow systems have developed (Tóth, 1963), and as bimodal landscapes where differential weathering of bare and soil-mantled rock has occurred (Wahrhaftig, 1965). The results of a weathering algorithm (Pacheco and

  14. Impact of Desiccation of Aral Sea on the Regional Climate of Central Asia Using WRF Model

    Science.gov (United States)

    Sharma, Ashish; Huang, Huei-Ping; Zavialov, Peter; Khan, Valentina

    2018-01-01

    This study explores the impacts of the desiccation of the Aral Sea and large-scale climate change on the regional climate of Central Asia in the post-1960 era. A series of climate downscaling experiments for the 1960's and 2000's decades were performed using the Weather Research and Forecast model at 12-km horizontal resolution. To quantify the impacts of the changing surface boundary condition, a set of simulations with an identical lateral boundary condition but different extents of the Aral Sea were performed. It was found that the desiccation of the Aral Sea leads to more snow (and less rain) as desiccated winter surface is relatively much colder than water surface. In summer, desiccation led to substantial warming over the Aral Sea. These impacts were largely confined to within the area covered by the former Aral Sea and its immediate vicinity, although desiccation of the Sea also led to minor cooling over the greater Central Asia in winter. A contrasting set of simulations with an identical surface boundary condition but different lateral boundary conditions produced more identifiable changes in regional climate over the greater Central Asia which was characterized by a warming trend in both winter and summer. Simulations also showed that while the desiccation of the Aral Sea has significant impacts on the local climate over the Sea, the climate over the greater Central Asia on inter-decadal time scale was more strongly influenced by the continental or global-scale climate change on that time scale.

  15. High-Resolution WRF Forecasts of Lightning Threat

    Science.gov (United States)

    Goodman, S. J.; McCaul, E. W., Jr.; LaCasse, K.

    2007-01-01

    Tropical Rainfall Measuring Mission (TRMM)lightning and precipitation observations have confirmed the existence of a robust relationship between lightning flash rates and the amount of large precipitating ice hydrometeors in storms. This relationship is exploited, in conjunction with the capabilities of the Weather Research and Forecast (WRF) model, to forecast the threat of lightning from convective storms using the output fields from the model forecasts. The simulated vertical flux of graupel at -15C is used in this study as a proxy for charge separation processes and their associated lightning risk. Initial experiments using 6-h simulations are conducted for a number of case studies for which three-dimensional lightning validation data from the North Alabama Lightning Mapping Array are available. The WRF has been initialized on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity and reflectivity fields, and METAR and ACARS data. An array of subjective and objective statistical metrics is employed to document the utility of the WRF forecasts. The simulation results are also compared to other more traditional means of forecasting convective storms, such as those based on inspection of the convective available potential energy field.

  16. Updated vegetation information in high resolution regional climate simulations using WRF

    DEFF Research Database (Denmark)

    Nielsen, Joakim Refslund; Dellwik, Ebba; Hahmann, Andrea N.

    Climate studies show that the frequency of heat wave events and above-average high temperatures during the summer months over Europe will increase in the coming decades. Such climatic changes and long-term meteorological conditions will impact the seasonal development of vegetation and ultimately...... modify the energy distribution at the land surface. In weather and climate models it is important to represent the vegetation variability accurately to obtain reliable results. The weather research and forecasting (WRF) model uses a green vegetation fraction (GVF) climatology to represent the seasonal...... or changes in management practice since it is derived more than twenty years ago. In this study, a new high resolution, high quality GVF product is applied in a WRF climate simulation over Denmark during the 2006 heat wave year. The new GVF product reflects the year 2006 and it was previously tested...

  17. Space weather: Modeling and forecasting ionospheric

    International Nuclear Information System (INIS)

    Calzadilla Mendez, A.

    2008-01-01

    Full text: Space weather is the set of phenomena and interactions that take place in the interplanetary medium. It is regulated primarily by the activity originating in the Sun and affects both the artificial satellites that are outside of the protective cover of the Earth's atmosphere as the rest of the planets in the solar system. Among the phenomena that are of great relevance and impact on Earth are the auroras and geomagnetic storms , these are a direct result of irregularities in the flow of the solar wind and the interplanetary magnetic field . Given the high complexity of the physical phenomena involved (magnetic reconnection , particle inlet and ionizing radiation to the atmosphere) one of the great scientific challenges today is to forecast the state of plasmatic means either the interplanetary medium , the magnetosphere and ionosphere , for their importance to the development of various human activities such as radio , global positioning , navigation, etc. . It briefly address some of the international ionospheric modeling methods and contributions and participation that currently has the space group of the Institute of Geophysics Geophysics and Astronomy (IGA) in these activities of modeling and forecasting ionospheric. (author)

  18. Assessment of Planetary-Boundary-Layer Schemes in the Weather Research and Forecasting Model Within and Above an Urban Canopy Layer

    Science.gov (United States)

    Ferrero, Enrico; Alessandrini, Stefano; Vandenberghe, Francois

    2018-03-01

    We tested several planetary-boundary-layer (PBL) schemes available in the Weather Research and Forecasting (WRF) model against measured wind speed and direction, temperature and turbulent kinetic energy (TKE) at three levels (5, 9, 25 m). The Urban Turbulence Project dataset, gathered from the outskirts of Turin, Italy and used for the comparison, provides measurements made by sonic anemometers for more than 1 year. In contrast to other similar studies, which have mainly focused on short-time periods, we considered 2 months of measurements (January and July) representing both the seasonal and the daily variabilities. To understand how the WRF-model PBL schemes perform in an urban environment, often characterized by low wind-speed conditions, we first compared six PBL schemes against observations taken by the highest anemometer located in the inertial sub-layer. The availability of the TKE measurements allows us to directly evaluate the performances of the model; results of the model evaluation are presented in terms of quantile versus quantile plots and statistical indices. Secondly, we considered WRF-model PBL schemes that can be coupled to the urban-surface exchange parametrizations and compared the simulation results with measurements from the two lower anemometers located inside the canopy layer. We find that the PBL schemes accounting for TKE are more accurate and the model representation of the roughness sub-layer improves when the urban model is coupled to each PBL scheme.

  19. WRF and WRF-Chem v3.5.1 simulations of meteorology and black carbon concentrations in the Kathmandu Valley

    Directory of Open Access Journals (Sweden)

    A. Mues

    2018-06-01

    Full Text Available An evaluation of the meteorology simulated using the Weather Research and Forecast (WRF model for the region of south Asia and Nepal with a focus on the Kathmandu Valley is presented. A particular focus of the model evaluation is placed on meteorological parameters that are highly relevant to air quality such as wind speed and direction, boundary layer height and precipitation. The same model setup is then used for simulations with WRF including chemistry and aerosols (WRF-Chem. A WRF-Chem simulation has been performed using the state-of-the-art emission database, EDGAR HTAP v2.2, which is the Emission Database for Global Atmospheric Research of the Joint Research Centre (JRC of the European Commission, in cooperation with the Task Force on Hemispheric Transport of Air Pollution (TF HTAP organized by the United Nations Economic Commission for Europe, along with a sensitivity simulation using observation-based black carbon emission fluxes for the Kathmandu Valley. The WRF-Chem simulations are analyzed in comparison to black carbon measurements in the valley and to each other.The evaluation of the WRF simulation with a horizontal resolution of 3×3 km2 shows that the model is often able to capture important meteorological parameters inside the Kathmandu Valley and the results for most meteorological parameters are well within the range of biases found in other WRF studies especially in mountain areas. But the evaluation results also clearly highlight the difficulties of capturing meteorological parameters in such complex terrain and reproducing subgrid-scale processes with a horizontal resolution of 3×3 km2. The measured black carbon concentrations are typically systematically and strongly underestimated by WRF-Chem. A sensitivity study with improved emissions in the Kathmandu Valley shows significantly reduced biases but also underlines several limitations of such corrections. Further improvements of the model and of the emission data are

  20. Simple model for crop photosynthesis in terms of weather variables ...

    African Journals Online (AJOL)

    A theoretical mathematical model for describing crop photosynthetic rate in terms of the weather variables and crop characteristics is proposed. The model utilizes a series of efficiency parameters, each of which reflect the fraction of possible photosynthetic rate permitted by the different weather elements or crop architecture.

  1. Quality assurance of weather data for agricultural system model input

    Science.gov (United States)

    It is well known that crop production and hydrologic variation on watersheds is weather related. Rarely, however, is meteorological data quality checks reported for agricultural systems model research. We present quality assurance procedures for agricultural system model weather data input. Problems...

  2. Case Study of the California Low Level Coastal Jet Comparisons Between Observed and Model-Estimated Winds and Temperatures using WRF and COAMPS

    Science.gov (United States)

    Tomé, Ricardo; Semedo, Alvaro; Ranjha, Raza; Tjernström, Michael; Svensson, Gunilla

    2010-05-01

    A low level coastal jet (LLCJ) is a low-troposphereic wind feature driven by the pressure gradient produced by a sharp contrast between high temperatures over land and lower temperatures over sea. This feature has been identified and studied in several areas of the world, where such a land-sea temperature contrast exist: off the coast of Somalia, near Lima, Peru, off the Mediterranean coast of Spain, in the Southwest coast of Africa, or in the South China Sea coast. Nevertheless, the California LLCJ is probably the most studied coastal jet in the world, with several studies available in the literature. Coastal jets have a notorious impact on coastal areas. Climatologically they are associated with coastal upwelling processes. The major coastal fishing grounds in the world are usually in areas of upwelling, and the abundance of fish at the surface is supported by the upwelled nutrient-rich waters from deeper levels. The effect of this upwelled water to the fishing industry and to the habitat of an enormous diversity of marine life is of paramount importance, and has led to numerous studies in this field. Littoral areas are usually densely populated, and often airports are built in areas where a LLCJ may occur. Thus, aviation operations are deeply influenced by this weather feature, which has a significant impact on the takeoff and landing of airplanes. Therefore the forecasting of LLCJ features is very important for several reasons.The forecasting skills of mesoscale models, while challenging in any region, become particularly complex near coastlines, where processes associated with the coastal boundary add additional complexity: interaction of the flow with the coastal orography, sharp sea-land temperature gradients, highly baroclinic environment, complex air-sea exchanging processes, etc. The purpose of this study is to assess the forecasting skills of the limited-area models WRF (Weather Research and Forecasting) and COAMPS® (Coupled Ocean-Atmosphere Mesoscale

  3. Development of the WRF-CO2 4D-Var assimilation system v1.0

    Directory of Open Access Journals (Sweden)

    T. Zheng

    2018-05-01

    Full Text Available Regional atmospheric CO2 inversions commonly use Lagrangian particle trajectory model simulations to calculate the required influence function, which quantifies the sensitivity of a receptor to flux sources. In this paper, an adjoint-based four-dimensional variational (4D-Var assimilation system, WRF-CO2 4D-Var, is developed to provide an alternative approach. This system is developed based on the Weather Research and Forecasting (WRF modeling system, including the system coupled to chemistry (WRF-Chem, with tangent linear and adjoint codes (WRFPLUS, and with data assimilation (WRFDA, all in version 3.6. In WRF-CO2 4D-Var, CO2 is modeled as a tracer and its feedback to meteorology is ignored. This configuration allows most WRF physical parameterizations to be used in the assimilation system without incurring a large amount of code development. WRF-CO2 4D-Var solves for the optimized CO2 flux scaling factors in a Bayesian framework. Two variational optimization schemes are implemented for the system: the first uses the limited memory Broyden–Fletcher–Goldfarb–Shanno (BFGS minimization algorithm (L-BFGS-B and the second uses the Lanczos conjugate gradient (CG in an incremental approach. WRFPLUS forward, tangent linear, and adjoint models are modified to include the physical and dynamical processes involved in the atmospheric transport of CO2. The system is tested by simulations over a domain covering the continental United States at 48 km  ×  48 km grid spacing. The accuracy of the tangent linear and adjoint models is assessed by comparing against finite difference sensitivity. The system's effectiveness for CO2 inverse modeling is tested using pseudo-observation data. The results of the sensitivity and inverse modeling tests demonstrate the potential usefulness of WRF-CO2 4D-Var for regional CO2 inversions.

  4. Development of the WRF-CO2 4D-Var assimilation system v1.0

    Science.gov (United States)

    Zheng, Tao; French, Nancy H. F.; Baxter, Martin

    2018-05-01

    Regional atmospheric CO2 inversions commonly use Lagrangian particle trajectory model simulations to calculate the required influence function, which quantifies the sensitivity of a receptor to flux sources. In this paper, an adjoint-based four-dimensional variational (4D-Var) assimilation system, WRF-CO2 4D-Var, is developed to provide an alternative approach. This system is developed based on the Weather Research and Forecasting (WRF) modeling system, including the system coupled to chemistry (WRF-Chem), with tangent linear and adjoint codes (WRFPLUS), and with data assimilation (WRFDA), all in version 3.6. In WRF-CO2 4D-Var, CO2 is modeled as a tracer and its feedback to meteorology is ignored. This configuration allows most WRF physical parameterizations to be used in the assimilation system without incurring a large amount of code development. WRF-CO2 4D-Var solves for the optimized CO2 flux scaling factors in a Bayesian framework. Two variational optimization schemes are implemented for the system: the first uses the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization algorithm (L-BFGS-B) and the second uses the Lanczos conjugate gradient (CG) in an incremental approach. WRFPLUS forward, tangent linear, and adjoint models are modified to include the physical and dynamical processes involved in the atmospheric transport of CO2. The system is tested by simulations over a domain covering the continental United States at 48 km × 48 km grid spacing. The accuracy of the tangent linear and adjoint models is assessed by comparing against finite difference sensitivity. The system's effectiveness for CO2 inverse modeling is tested using pseudo-observation data. The results of the sensitivity and inverse modeling tests demonstrate the potential usefulness of WRF-CO2 4D-Var for regional CO2 inversions.

  5. Assessing the applicability of WRF optimal parameters under the different precipitation simulations in the Greater Beijing Area

    Science.gov (United States)

    Di, Zhenhua; Duan, Qingyun; Wang, Chen; Ye, Aizhong; Miao, Chiyuan; Gong, Wei

    2018-03-01

    Forecasting skills of the complex weather and climate models have been improved by tuning the sensitive parameters that exert the greatest impact on simulated results based on more effective optimization methods. However, whether the optimal parameter values are still work when the model simulation conditions vary, which is a scientific problem deserving of study. In this study, a highly-effective optimization method, adaptive surrogate model-based optimization (ASMO), was firstly used to tune nine sensitive parameters from four physical parameterization schemes of the Weather Research and Forecasting (WRF) model to obtain better summer precipitation forecasting over the Greater Beijing Area in China. Then, to assess the applicability of the optimal parameter values, simulation results from the WRF model with default and optimal parameter values were compared across precipitation events, boundary conditions, spatial scales, and physical processes in the Greater Beijing Area. The summer precipitation events from 6 years were used to calibrate and evaluate the optimal parameter values of WRF model. Three boundary data and two spatial resolutions were adopted to evaluate the superiority of the calibrated optimal parameters to default parameters under the WRF simulations with different boundary conditions and spatial resolutions, respectively. Physical interpretations of the optimal parameters indicating how to improve precipitation simulation results were also examined. All the results showed that the optimal parameters obtained by ASMO are superior to the default parameters for WRF simulations for predicting summer precipitation in the Greater Beijing Area because the optimal parameters are not constrained by specific precipitation events, boundary conditions, and spatial resolutions. The optimal values of the nine parameters were determined from 127 parameter samples using the ASMO method, which showed that the ASMO method is very highly-efficient for optimizing WRF

  6. The impact of urbanization during half a century on surface meteorology based on WRF model simulations over National Capital Region, India

    Science.gov (United States)

    Sati, Ankur Prabhat; Mohan, Manju

    2017-10-01

    An estimated 50% of the global population lives in the urban areas, and this percentage is projected to reach around 69% by the year 2050 (World Urbanization Prospects 2009). There is a considerable growth of urban and built-up area during the recent decades over National Capital Region (NCR) of India (17-fold increase in the urban extent). The proposed study estimates the land use land cover changes particularly changes to urban class from other land use types such as croplands, shrubland, open areas, and water bodies and quantify these changes for a span of about five decades. Further, the impact of these land use/land cover changes is examined on spatial and temporal variations of meteorological parameters using the Weather Research and Forecast (WRF) Model. The urbanized areas appear to be one of the regions with highest changes in the values of the fluxes and temperatures where during daytime, the surface sensible heat flux values show a noticeable increase of 60-70 W m-2 which commensurate with increase in urbanization. Similarly, the nighttime LST and T2m show an increase of 3-5 and 2-3 K, respectively. The diurnal temperature range (DTR) of LST and surface temperature also shows a decrease of about 5 and 2-3 K, respectively, with increasing urbanization. Significant decrease in the magnitude of surface winds and relative humidity is also observed over the areas converted to urban form over a period of half a century. The impacts shown here have serious implications on human health, energy consumption, ventilation, and atmospheric pollution.

  7. WRF-Chem model simulations of a dust outbreak over the central Mediterranean and comparison with multi-sensor desert dust observations

    Science.gov (United States)

    Rizza, Umberto; Barnaba, Francesca; Marcello Miglietta, Mario; Mangia, Cristina; Di Liberto, Luca; Dionisi, Davide; Costabile, Francesca; Grasso, Fabio; Gobbi, Gian Paolo

    2017-01-01

    In this study, the Weather Research and Forecasting model with online coupled chemistry (WRF-Chem) is applied to simulate an intense Saharan dust outbreak event that took place over the Mediterranean in May 2014. Comparison of a simulation using a physics-based desert dust emission scheme with a numerical experiment using a simplified (minimal) emission scheme is included to highlight the advantages of the former. The model was found to reproduce well the synoptic meteorological conditions driving the dust outbreak: an omega-like pressure configuration associated with a cyclogenesis in the Atlantic coasts of Spain. The model performances in reproducing the atmospheric desert dust load were evaluated using a multi-platform observational dataset of aerosol and desert dust properties, including optical properties from satellite and ground-based sun photometers and lidars, plus in situ particulate matter mass concentration (PM) data. This comparison allowed us to investigate the model ability in reproducing both the horizontal and the vertical displacement of the dust plume, as well as its evolution in time. The comparison with satellite (MODIS-Terra) and sun photometers (AERONET) showed that the model is able to reproduce well the horizontal field of the aerosol optical depth (AOD) and its evolution in time (temporal correlation coefficient with AERONET of 0.85). On the vertical scale, the comparison with lidar data at a single site (Rome, Italy) confirms that the desert dust advection occurs in several, superimposed "pulses" as simulated by the model. Cross-analysis of the modeled AOD and desert dust emission fluxes further allowed for the source regions of the observed plumes to be inferred. The vertical displacement of the modeled dust plume was in rather good agreement with the lidar soundings, with correlation coefficients among aerosol extinction profiles up to 1 and mean discrepancy of about 50 %. The model-measurement comparison for PM10 and PM2.5 showed a

  8. Improving the representation of clouds, radiation, and precipitation using spectral nudging in the Weather Research and Forecasting model

    Science.gov (United States)

    Spero, Tanya L.; Otte, Martin J.; Bowden, Jared H.; Nolte, Christopher G.

    2014-10-01

    Spectral nudging—a scale-selective interior constraint technique—is commonly used in regional climate models to maintain consistency with large-scale forcing while permitting mesoscale features to develop in the downscaled simulations. Several studies have demonstrated that spectral nudging improves the representation of regional climate in reanalysis-forced simulations compared with not using nudging in the interior of the domain. However, in the Weather Research and Forecasting (WRF) model, spectral nudging tends to produce degraded precipitation simulations when compared to analysis nudging—an interior constraint technique that is scale indiscriminate but also operates on moisture fields which until now could not be altered directly by spectral nudging. Since analysis nudging is less desirable for regional climate modeling because it dampens fine-scale variability, changes are proposed to the spectral nudging methodology to capitalize on differences between the nudging techniques and aim to improve the representation of clouds, radiation, and precipitation without compromising other fields. These changes include adding spectral nudging toward moisture, limiting nudging to below the tropopause, and increasing the nudging time scale for potential temperature, all of which collectively improve the representation of mean and extreme precipitation, 2 m temperature, clouds, and radiation, as demonstrated using a model-simulated 20 year historical period. Such improvements to WRF may increase the fidelity of regional climate data used to assess the potential impacts of climate change on human health and the environment and aid in climate change mitigation and adaptation studies.

  9. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    Science.gov (United States)

    Bell, Jordan R.; Case, Jonathan L.; Molthan, Andrew L.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center develops new products and techniques that can be used in operational meteorology. The majority of these products are derived from NASA polar-orbiting satellite imagery from the Earth Observing System (EOS) platforms. One such product is a Greenness Vegetation Fraction (GVF) dataset, which is produced from Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the new SPoRT-MODIS GVF dataset on land surface models apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. The second phase of the project is to examine the impacts of the SPoRT GVF dataset on NWP using the Weather Research and Forecasting (WRF) model. Two separate WRF model simulations were made for individual severe weather case days using the NCEP GVF (control) and SPoRT GVF (experimental), with all other model parameters remaining the same. Based on the sensitivity results in these case studies, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and lower direct surface heating, which typically resulted in lower (higher) predicted 2-m temperatures (2-m dewpoint temperatures). The opposite was true

  10. Supercomputing for weather and climate modelling: convenience or necessity

    CSIR Research Space (South Africa)

    Landman, WA

    2009-12-01

    Full Text Available Weather and climate modelling require dedicated computer infrastructure in order to generate high-resolution, large ensemble, various models with different configurations, etc. in order to optimise operational forecasts and climate projections. High...

  11. Evaluation of cumulus cloud – radiation interaction effects on air quality –relevant meteorological variables from WRF, from a regional climate perspective

    Science.gov (United States)

    Aware only of the resolved, grid-scale clouds, the Weather Research & Forecasting model (WRF) does not consider the interactions between subgrid-scale convective clouds and radiation. One consequence of this omission may be WRF’s overestimation of surface precipitation during sum...

  12. Fog prediction using the modified asymptotic liquid water content vertical distribution formulation with the Weather Research and Forecasting model

    Science.gov (United States)

    Kim, E.; Lee, S.; Kim, J.; Chae, D.

    2017-12-01

    Fog forecasts have difficulty in forecasting due to temporal and spatial resolution problems, high numerical computations, complicated mechanisms related to turbulence in order to analyze the fog in the model, and a lack of appropriate fog physical processes. Conventional fog prediction is based on the surface visibility threshold "fog diagnosis method is based on the fog related variables near the surface, such as visibility, low stratus, relative humidity and wind speed but this method only predicts fog occurrence not fog intensity. To improve this, a new fog diagnostic scheme, based on an asymptotic analytical study of radiation fog (Zhou and Ferrier 2008, ZF08) is to increase the accuracy of fog prediction by calculating the vertical LWC considering cooling, turbulence and droplet settling, visibility, surface relative humidity and low stratus. In this study, we intend to improve fog prediction through the Weather Research and Forecasting (WRF) model using high-resolution data. Although the prediction accuracy can be improved by combining the WRF Planetary Boundary Layer (PBL) scheme and 1 dimension (1D) model, it is necessary to increase the vertical resolution in the boundary layer to implement the fog formation and persistence mechanism in the internal boundary layer in the PBL more accurately, we'll modify the algorithm to enhance the effects of turbulence and then compare the newly predicted fog and observations to determine the accuracy of the forecast of the fog occurring on the Korean peninsula.

  13. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    Science.gov (United States)

    Bell, Jordan R.; Case, Jonathan L.; LaFontaine, Frank J.; Kumar, Sujay V.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the SPoRT-MODIS GVF dataset on a land surface model (LSM) apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. In the West, higher latent heat fluxes prevailed, which enhanced the rates of evapotranspiration and soil moisture depletion in the LSM. By late Summer and Autumn, both the average sensible and latent heat fluxes increased in the West as a result of the more rapid soil drying and higher coverage of GVF. The impacts of the SPoRT GVF dataset on NWP was also examined for a single severe weather case study using the Weather Research and Forecasting (WRF) model. Two separate coupled LIS/WRF model simulations were made for the 17 July 2010 severe weather event in the Upper Midwest using the NCEP and SPoRT GVFs, with all other model parameters remaining the same. Based on the sensitivity results, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and

  14. Evaluation of WRF Performance Driven by GISS-E2-R Global Model for the 2014 Rainy Season in Mexico

    Science.gov (United States)

    Almanza, V.; Zavala, M. A.; Lei, W.; Shindell, D. T.; Molina, L. T.

    2017-12-01

    Precipitation and cloud fields as well as the spatial distribution of emissions are important during the estimation of the radiative effects of atmospheric pollutants in future climate applications. In particular, landfalling hurricanes and tropical storms greatly affect the amount and distribution of annual precipitation, and thus have a direct impact on the wet deposition of pollutants and aerosol-cloud interactions. Therefore, long-term simulations in chemistry mode driven by the outputs of a global model need to consider the influence of these phenomena on the radiative effects, particularly for countries such as Mexico that have high number of landfalling hurricanes and tropical storms. In this work the NASA earth system GISS-E2-R global model is downscaled with the WRF model over a domain encompassing Mexico. We use the North American Regional Reanalysis (NARR) and Era-Interim reanalysis, along with available surface observations and data from the Tropical Rainfall Measuring Mission (TRMM) products to evaluate the contribution of spectral nudging, domain size and resolution in resolving the precipitation and cloud fraction fields for the rainy season in 2014. We focus on this year since 10 tropical cyclones made landfall in central Mexico. The results of the evaluation are useful to assess the performance of the model in representing the present conditions of precipitation and cloud fraction in Mexico. In addition, it provides guidelines for conducting the operational runs in chemistry mode for the future years.

  15. Numerical simulation of mesoscale surface pressure features with trailing stratiform squall lines using WRF -ARW model over Gangetic West Bengal region

    Science.gov (United States)

    Dawn, Soma; Satyanarayana, A. N. V.

    2018-01-01

    In the present study, an attempt has been made to investigate the simulation of mesoscale surface pressure patterns like pre-squall mesolow, mesohigh and wake low associated with leading convective line-trailing stratiform (TS) squall lines over Gangetic West Bengal (GWB). For this purpose, a two way interactive triple nested domain with high resolution WRF model having2 km grid length in the innermost domain is used. The model simulated results are compared with the available in-situ observations obtained as a part of Severe Thunderstorm: Observations and Regional Modeling (STORM) programme, reflectivity products of Doppler Weather Radar (DWR) Kolkata and TRMM rainfall. Three TS squall lines (15 May 2009, 5 May 2010 and 7 May 2010) are chosen during pre-monsoon thunderstorm season for this study. The model simulated results of diurnal variation of temperature, relative humidity, wind speed and direction at the station Kharagpur in GWB region reveal a sudden fall in temperature, increase in the amount of relative humidity and sudden rise in wind speed during the arrival of the storms. Such results are well comparable with the observations though there are some leading or lagging of time in respect of actual occurrences of such events. The study indicates that the model is able to predict the occurrences of three typical surface pressure features namely: pre-squall mesolow, meso high and wake low. The predicted surface parameters like accumulated rainfall, maximum reflectivity and vertical profiles (temperature, relative humidity and winds) are well accorded with the observations. The convective and stratiform precipitation region of the TS squall lines are well represented by the model. A strong downdraft is observed to be a contributory factor for formation of mesohigh in the convective region of the squall line. Wake low is observed to reside in the stratiform rain region and the descending dry air at this place has triggered the wake low through adiabatic

  16. Improving Air Quality (and Weather) Predictions using Advanced Data Assimilation Techniques Applied to Coupled Models during KORUS-AQ

    Science.gov (United States)

    Carmichael, G. R.; Saide, P. E.; Gao, M.; Streets, D. G.; Kim, J.; Woo, J. H.

    2017-12-01

    Ambient aerosols are important air pollutants with direct impacts on human health and on the Earth's weather and climate systems through their interactions with radiation and clouds. Their role is dependent on their distributions of size, number, phase and composition, which vary significantly in space and time. There remain large uncertainties in simulated aerosol distributions due to uncertainties in emission estimates and in chemical and physical processes associated with their formation and removal. These uncertainties lead to large uncertainties in weather and air quality predictions and in estimates of health and climate change impacts. Despite these uncertainties and challenges, regional-scale coupled chemistry-meteorological models such as WRF-Chem have significant capabilities in predicting aerosol distributions and explaining aerosol-weather interactions. We explore the hypothesis that new advances in on-line, coupled atmospheric chemistry/meteorological models, and new emission inversion and data assimilation techniques applicable to such coupled models, can be applied in innovative ways using current and evolving observation systems to improve predictions of aerosol distributions at regional scales. We investigate the impacts of assimilating AOD from geostationary satellite (GOCI) and surface PM2.5 measurements on predictions of AOD and PM in Korea during KORUS-AQ through a series of experiments. The results suggest assimilating datasets from multiple platforms can improve the predictions of aerosol temporal and spatial distributions.

  17. Future intensification of hydro-meteorological extremes: downscaling using the weather research and forecasting model

    KAUST Repository

    El-Samra, R.

    2017-02-15

    A set of ten downscaling simulations at high spatial resolution (3 km horizontally) were performed using the Weather Research and Forecasting (WRF) model to generate future climate projections of annual and seasonal temperature and precipitation changes over the Eastern Mediterranean (with a focus on Lebanon). The model was driven with the High Resolution Atmospheric Model (HiRAM), running over the whole globe at a resolution of 25 km, under the conditions of two Representative Concentration Pathways (RCP) (4.5 and 8.5). Each downscaling simulation spanned one year. Two past years (2003 and 2008), also forced by HiRAM without data assimilation, were simulated to evaluate the model’s ability to capture the cold and wet (2003) and hot and dry (2008) extremes. The downscaled data were in the range of recent observed climatic variability, and therefore corrected for the cold bias of HiRAM. Eight future years were then selected based on an anomaly score that relies on the mean annual temperature and accumulated precipitation to identify the worst year per decade from a water resources perspective. One hot and dry year per decade, from 2011 to 2050, and per scenario was simulated and compared to the historic 2008 reference. The results indicate that hot and dry future extreme years will be exacerbated and the study area might be exposed to a significant decrease in annual precipitation (rain and snow), reaching up to 30% relative to the current extreme conditions.

  18. Implementation of bayesian model averaging on the weather data forecasting applications utilizing open weather map

    Science.gov (United States)

    Rahmat, R. F.; Nasution, F. R.; Seniman; Syahputra, M. F.; Sitompul, O. S.

    2018-02-01

    Weather is condition of air in a certain region at a relatively short period of time, measured with various parameters such as; temperature, air preasure, wind velocity, humidity and another phenomenons in the atmosphere. In fact, extreme weather due to global warming would lead to drought, flood, hurricane and other forms of weather occasion, which directly affects social andeconomic activities. Hence, a forecasting technique is to predict weather with distinctive output, particullary mapping process based on GIS with information about current weather status in certain cordinates of each region with capability to forecast for seven days afterward. Data used in this research are retrieved in real time from the server openweathermap and BMKG. In order to obtain a low error rate and high accuracy of forecasting, the authors use Bayesian Model Averaging (BMA) method. The result shows that the BMA method has good accuracy. Forecasting error value is calculated by mean square error shows (MSE). The error value emerges at minumum temperature rated at 0.28 and maximum temperature rated at 0.15. Meanwhile, the error value of minimum humidity rates at 0.38 and the error value of maximum humidity rates at 0.04. Afterall, the forecasting error rate of wind speed is at 0.076. The lower the forecasting error rate, the more optimized the accuracy is.

  19. Modeling regional air quality and climate: improving organic aerosol and aerosol activation processes in WRF/Chem version 3.7.1

    Directory of Open Access Journals (Sweden)

    K. Yahya

    2017-06-01

    Full Text Available Air quality and climate influence each other through the uncertain processes of aerosol formation and cloud droplet activation. In this study, both processes are improved in the Weather, Research and Forecasting model with Chemistry (WRF/Chem version 3.7.1. The existing Volatility Basis Set (VBS treatments for organic aerosol (OA formation in WRF/Chem are improved by considering the following: the secondary OA (SOA formation from semi-volatile primary organic aerosol (POA, a semi-empirical formulation for the enthalpy of vaporization of SOA, and functionalization and fragmentation reactions for multiple generations of products from the oxidation of VOCs. Over the continental US, 2-month-long simulations (May to June 2010 are conducted and results are evaluated against surface and aircraft observations during the Nexus of Air Quality and Climate Change (CalNex campaign. Among all the configurations considered, the best performance is found for the simulation with the 2005 Carbon Bond mechanism (CB05 and the VBS SOA module with semivolatile POA treatment, 25 % fragmentation, and the emissions of semi-volatile and intermediate volatile organic compounds being 3 times the original POA emissions. Among the three gas-phase mechanisms (CB05, CB6, and SAPRC07 used, CB05 gives the best performance for surface ozone and PM2. 5 concentrations. Differences in SOA predictions are larger for the simulations with different VBS treatments (e.g., nonvolatile POA versus semivolatile POA compared to the simulations with different gas-phase mechanisms. Compared to the simulation with CB05 and the default SOA module, the simulations with the VBS treatment improve cloud droplet number concentration (CDNC predictions (normalized mean biases from −40.8 % to a range of −34.6 to −27.7 %, with large differences between CB05–CB6 and SAPRC07 due to large differences in their OH and HO2 predictions. An advanced aerosol activation

  20. High-resolution simulation and forecasting of Jeddah floods using WRF version 3.5

    KAUST Repository

    Deng, Liping

    2013-12-01

    Modeling flash flood events in arid environments is a difficult but important task that has impacts on both water resource related issues and also emergency management and response. The challenge is often related to adequately describing the precursor intense rainfall events that cause these flood responses, as they are generally poorly simulated and forecast. Jeddah, the second largest city in the Kingdom of Saudi Arabia, has suffered from a number of flash floods over the last decade, following short-intense rainfall events. The research presented here focuses on examining four historic Jeddah flash floods (Nov. 25-26 2009, Dec. 29-30 2010, Jan. 14-15 2011 and Jan. 25-26 2011) and investigates the feasibility of using numerical weather prediction models to achieve a more realistic simulation of these flood-producing rainfall events. The Weather Research and Forecasting (WRF) model (version 3.5) is used to simulate precipitation and meteorological conditions via a high-resolution inner domain (1-km) around Jeddah. A range of different convective closure and microphysics parameterization, together with high-resolution (4-km) sea surface temperature data are employed. Through examining comparisons between the WRF model output and in-situ, radar and satellite data, the characteristics and mechanism producing the extreme rainfall events are discussed and the capacity of the WRF model to accurately forecast these rainstorms is evaluated.

  1. High-resolution simulation and forecasting of Jeddah floods using WRF version 3.5

    KAUST Repository

    Deng, Liping; McCabe, Matthew; Stenchikov, Georgiy L.; Evans, Jason; Kucera, Paul

    2013-01-01

    Modeling flash flood events in arid environments is a difficult but important task that has impacts on both water resource related issues and also emergency management and response. The challenge is often related to adequately describing the precursor intense rainfall events that cause these flood responses, as they are generally poorly simulated and forecast. Jeddah, the second largest city in the Kingdom of Saudi Arabia, has suffered from a number of flash floods over the last decade, following short-intense rainfall events. The research presented here focuses on examining four historic Jeddah flash floods (Nov. 25-26 2009, Dec. 29-30 2010, Jan. 14-15 2011 and Jan. 25-26 2011) and investigates the feasibility of using numerical weather prediction models to achieve a more realistic simulation of these flood-producing rainfall events. The Weather Research and Forecasting (WRF) model (version 3.5) is used to simulate precipitation and meteorological conditions via a high-resolution inner domain (1-km) around Jeddah. A range of different convective closure and microphysics parameterization, together with high-resolution (4-km) sea surface temperature data are employed. Through examining comparisons between the WRF model output and in-situ, radar and satellite data, the characteristics and mechanism producing the extreme rainfall events are discussed and the capacity of the WRF model to accurately forecast these rainstorms is evaluated.

  2. Coupling of WRF meteorological model to WAM spectral wave model through sea surface roughness at the Balearic Sea: impact on wind and wave forecasts

    Science.gov (United States)

    Tolosana-Delgado, R.; Soret, A.; Jorba, O.; Baldasano, J. M.; Sánchez-Arcilla, A.

    2012-04-01

    Meteorological models, like WRF, usually describe the earth surface characteristics by tables that are function of land-use. The roughness length (z0) is an example of such approach. However, over sea z0 is modeled by the Charnock (1955) relation, linking the surface friction velocity u*2 with the roughness length z0 of turbulent air flow, z0 = α-u2* g The Charnock coefficient α may be considered a measure of roughness. For the sea surface, WRF considers a constant roughness α = 0.0185. However, there is evidence that sea surface roughness should depend on wave energy (Donelan, 1982). Spectral wave models like WAM, model the evolution and propagation of wave energy as a function of wind, and include a richer sea surface roughness description. Coupling WRF and WAM is thus a common way to improve the sea surface roughness description of WRF. WAM is a third generation wave model, solving the equation of advection of wave energy subject to input/output terms of: wind growth, energy dissipation and resonant non-linear wave-wave interactions. Third generation models work on the spectral domain. WAM considers the Charnock coefficient α a complex yet known function of the total wind input term, which depends on the wind velocity and on the Charnock coefficient again. This is solved iteratively (Janssen et al., 1990). Coupling of meteorological and wave models through a common Charnock coefficient is operationally done in medium-range met forecasting systems (e.g., at ECMWF) though the impact of coupling for smaller domains is not yet clearly assessed (Warner et al, 2010). It is unclear to which extent the additional effort of coupling improves the local wind and wave fields, in comparison to the effects of other factors, like e.g. a better bathymetry and relief resolution, or a better circulation information which might have its influence on local-scale meteorological processes (local wind jets, local convection, daily marine wind regimes, etc.). This work, within the

  3. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    Science.gov (United States)

    Zhou, C.; Zhang, X.; Gong, S.; Wang, Y.; Xue, M.

    2016-01-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under a China Meteorological Administration (CMA) chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment). Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme - WDM6) and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  4. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    Directory of Open Access Journals (Sweden)

    C. Zhou

    2016-01-01

    Full Text Available A comprehensive aerosol–cloud–precipitation interaction (ACI scheme has been developed under a China Meteorological Administration (CMA chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment. Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme – WDM6 and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  5. Tropospheric ozone using an emission tagging technique in the CAM-Chem and WRF-Chem models

    Science.gov (United States)

    Lupascu, A.; Coates, J.; Zhu, S.; Butler, T. M.

    2017-12-01

    Tropospheric ozone is a short-lived climate forcing pollutant. High concentration of ozone can affect human health (cardiorespiratory and increased mortality due to long-term exposure), and also it damages crops. Attributing ozone concentrations to the contributions from different sources would indicate the effects of locally emitted or transported precursors on ozone levels in specific regions. This information could be used as an important component of the design of emissions reduction strategies by indicating which emission sources could be targeted for effective reductions, thus reducing the burden of ozone pollution. Using a "tagging" approach within the CAM-Chem (global) and WRF-Chem (regional) models, we can quantify the contribution of individual emission of NOx and VOC precursors on air quality. Hence, when precursor emissions of NOx are tagged, we have seen that the largest contributors on ozone levels are the anthropogenic sources, while in the case of precursor emissions of VOCs, the biogenic sources and methane account for more than 50% of ozone levels. Further, we have extended the NOx tagging method in order to investigate continental source region contributions to concentrations of ozone over various receptor regions over the globe, with a zoom over Europe. In general, summertime maximum ozone in most receptor regions is largely attributable to local emissions of anthropogenic NOx and biogenic VOC. During the rest of the year, especially during springtime, ozone in most receptor regions shows stronger influences from anthropogenic emissions of NOx and VOC in remote source regions.

  6. Retrospective evaluation of continental-scale streamflow nudging with WRF-Hydro National Water Model V1

    Science.gov (United States)

    McCreight, J. L.; Wu, Y.; Gochis, D.; Rafieeinasab, A.; Dugger, A. L.; Yu, W.; Cosgrove, B.; Cui, Z.; Oubeidillah, A.; Briar, D.

    2016-12-01

    The streamflow (discharge) data assimilation capability in version 1 of the National Water Model (NWM; a WRF-Hydro configuration) is applied and evaluated in a 5-year (2011-2015) retrospective study using NLDAS2 forcing data over CONUS. This talk will describe the NWM V1 operational nudging (continuous-time) streamflow data assimilation approach, its motivation, and its relationship to this retrospective evaluation. Results from this study will provide a an analysis-based (not forecast-based) benchmark for streamflow DA in the NWM. The goal of the assimilation is to reduce discharge bias and improve channel initial conditions for discharge forecasting (though forecasts are not considered here). The nudging method assimilates discharge observations at nearly 7,000 USGS gages (at frequency up to 1/15 minutes) to produce a (univariate) discharge reanalysis (i.e. this is the only variable affected by the assimilation). By withholding 14% nested gages throughout CONUS in a separate validation run, we evaluate the downstream impact of assimilation at upstream gages. Based on this sample, we estimate the skill of the streamflow reanalysis at ungaged locations and examine factors governing the skill of the assimilation. Comparison of assimilation and open-loop runs is presented. Performance of DA under both high and low flow regimes and selected flooding events is examined. Preliminary evaluation of nudging parameter sensitivity and its relationship to flow regime will be presented.

  7. Development of efficient GPU parallelization of WRF Yonsei University planetary boundary layer scheme

    Directory of Open Access Journals (Sweden)

    M. Huang

    2015-09-01

    Full Text Available The planetary boundary layer (PBL is the lowest part of the atmosphere and where its character is directly affected by its contact with the underlying planetary surface. The PBL is responsible for vertical sub-grid-scale fluxes due to eddy transport in the whole atmospheric column. It determines the flux profiles within the well-mixed boundary layer and the more stable layer above. It thus provides an evolutionary model of atmospheric temperature, moisture (including clouds, and horizontal momentum in the entire atmospheric column. For such purposes, several PBL models have been proposed and employed in the weather research and forecasting (WRF model of which the Yonsei University (YSU scheme is one. To expedite weather research and prediction, we have put tremendous effort into developing an accelerated implementation of the entire WRF model using graphics processing unit (GPU massive parallel computing architecture whilst maintaining its accuracy as compared to its central processing unit (CPU-based implementation. This paper presents our efficient GPU-based design on a WRF YSU PBL scheme. Using one NVIDIA Tesla K40 GPU, the GPU-based YSU PBL scheme achieves a speedup of 193× with respect to its CPU counterpart running on one CPU core, whereas the speedup for one CPU socket (4 cores with respect to 1 CPU core is only 3.5×. We can even boost the speedup to 360× with respect to 1 CPU core as two K40 GPUs are applied.

  8. Assimilation of Atmospheric InfraRed Sounder (AIRS) Profiles using WRF-Var

    Science.gov (United States)

    Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2008-01-01

    The Weather Research and Forecasting (WRF) model contains a three-dimensional variational (3DVAR) assimilation system (WRF-Var), which allows a user to join data from multiple sources into one coherent analysis. WRF-Var combines observations with a background field traditionally generated using a previous model forecast through minimization of a cost function. In data sparse regions, remotely-sensed observations may be able to improve analyses and produce improved forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The combined AIRS/AMSU system provides radiance measurements used as input to a sophisticated retrieval scheme which has been shown to produce temperature profiles with an accuracy of 1 K over 1 km layers and humidity profiles with accuracy of 15% in 2 km layers in both clear and partly cloudy conditions. The retrieval algorithm also provides estimates of the accuracy of the retrieved values at each pressure level, allowing the user to select profiles based on the required error tolerances of the application. The purpose of this paper is to describe a procedure to optimally assimilate high-resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type using gen_be and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics in the WRF-Var. The AIRS thermodynamic profiles are obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators are used to select the highest quality temperature and moisture

  9. Adaptation of Mesoscale Weather Models to Local Forecasting

    Science.gov (United States)

    Manobianco, John T.; Taylor, Gregory E.; Case, Jonathan L.; Dianic, Allan V.; Wheeler, Mark W.; Zack, John W.; Nutter, Paul A.

    2003-01-01

    Methodologies have been developed for (1) configuring mesoscale numerical weather-prediction models for execution on high-performance computer workstations to make short-range weather forecasts for the vicinity of the Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) and (2) evaluating the performances of the models as configured. These methodologies have been implemented as part of a continuing effort to improve weather forecasting in support of operations of the U.S. space program. The models, methodologies, and results of the evaluations also have potential value for commercial users who could benefit from tailoring their operations and/or marketing strategies based on accurate predictions of local weather. More specifically, the purpose of developing the methodologies for configuring the models to run on computers at KSC and CCAFS is to provide accurate forecasts of winds, temperature, and such specific thunderstorm-related phenomena as lightning and precipitation. The purpose of developing the evaluation methodologies is to maximize the utility of the models by providing users with assessments of the capabilities and limitations of the models. The models used in this effort thus far include the Mesoscale Atmospheric Simulation System (MASS), the Regional Atmospheric Modeling System (RAMS), and the National Centers for Environmental Prediction Eta Model ( Eta for short). The configuration of the MASS and RAMS is designed to run the models at very high spatial resolution and incorporate local data to resolve fine-scale weather features. Model preprocessors were modified to incorporate surface, ship, buoy, and rawinsonde data as well as data from local wind towers, wind profilers, and conventional or Doppler radars. The overall evaluation of the MASS, Eta, and RAMS was designed to assess the utility of these mesoscale models for satisfying the weather-forecasting needs of the U.S. space program. The evaluation methodology includes

  10. Development of satellite green vegetation fraction time series for use in mesoscale modeling: application to the European heat wave 2006

    DEFF Research Database (Denmark)

    Nielsen, Joakim Refslund; Dellwik, Ebba; Hahmann, Andrea N.

    2014-01-01

    A method is presented for development of satellite green vegetation fraction (GVF) time series for use in the Weather Research and Forecasting (WRF) model. The GVF data is in the WRF model used to describe the temporal evolution of many land surface parameters, in addition to the evolution of veg...

  11. A Data Model for Determining Weather's Impact on Travel Time

    DEFF Research Database (Denmark)

    Andersen, Ove; Torp, Kristian

    2016-01-01

    Accurate estimating travel times in road networks is a complex task because travel times depends on factors such as the weather. In this paper, we present a generic model for integrating weather data with GPS data to improve the accuracy of the estimated travel times. First, we present a data model...... for storing and map-matching GPS data, and integrating this data with detailed weather data. The model is generic in the sense that it can be used anywhere GPS data and weather data is available. Next, we analyze the correlation between travel time and the weather classes dry, fog, rain, and snow along...... with winds impact on travel time. Using a data set of 1.6 billion GPS records collected from 10,560 vehicles, over a 5 year period from all of Denmark, we show that snow can increase the travel time up to 27% and strong headwind can increase the travel time with up to 19% (compared to dry calm weather...

  12. Validating the WRF-Chem model for wind energy applications using High Resolution Doppler Lidar data from a Utah 2012 field campaign

    Science.gov (United States)

    Mitchell, M. J.; Pichugina, Y. L.; Banta, R. M.

    2015-12-01

    Models are important tools for assessing potential of wind energy sites, but the accuracy of these projections has not been properly validated. In this study, High Resolution Doppler Lidar (HRDL) data obtained with high temporal and spatial resolution at heights of modern turbine rotors were compared to output from the WRF-chem model in order to help improve the performance of the model in producing accurate wind forecasts for the industry. HRDL data were collected from January 23-March 1, 2012 during the Uintah Basin Winter Ozone Study (UBWOS) field campaign. A model validation method was based on the qualitative comparison of the wind field images, time-series analysis and statistical analysis of the observed and modeled wind speed and direction, both for case studies and for the whole experiment. To compare the WRF-chem model output to the HRDL observations, the model heights and forecast times were interpolated to match the observed times and heights. Then, time-height cross-sections of the HRDL and WRF-Chem wind speed and directions were plotted to select case studies. Cross-sections of the differences between the observed and forecasted wind speed and directions were also plotted to visually analyze the model performance in different wind flow conditions. A statistical analysis includes the calculation of vertical profiles and time series of bias, correlation coefficient, root mean squared error, and coefficient of determination between two datasets. The results from this analysis reveals where and when the model typically struggles in forecasting winds at heights of modern turbine rotors so that in the future the model can be improved for the industry.

  13. Evaluate Hydrologic Response on Spatiotemporal Characteristics of Rainfall Using High Resolution Radar Rainfall Data and WRF-Hydro Model

    Science.gov (United States)

    Gao, S.; Fang, N. Z.

    2017-12-01

    A previously developed Dynamic Moving Storm (DMS) generator is a multivariate rainfall model simulating the complex nature of precipitation field: spatial variability, temporal variability, and storm movement. Previous effort by the authors has investigated the sensitivity of DMS parameters on corresponding hydrologic responses by using synthetic storms. In this study, the DMS generator has been upgraded to generate more realistic precipitation field. The dependence of hydrologic responses on rainfall features was investigated by dissecting the precipitation field into rain cells and modifying their spatio-temporal specification individually. To retrieve DMS parameters from radar rainfall data, rain cell segmentation and tracking algorithms were respectively developed and applied on high resolution radar rainfall data (1) to spatially determine the rain cells within individual radar image and (2) to temporally analyze their dynamic behavior. Statistics of DMS parameters were established by processing a long record of rainfall data (10 years) to keep the modification on real storms within the limit of regional climatology. Empirical distributions of the DMS parameters were calculated to reveal any preferential pattern and seasonality. Subsequently, the WRF-Hydro model forced by the remodeled and modified precipitation was used for hydrologic simulation. The study area was the Upper Trinity River Basin (UTRB) watershed, Texas; and two kinds of high resolution radar data i.e. the Next-Generation Radar (NEXRAD) level III Digital Hybrid Reflectivity (DHR) product and Multi-Radar Multi-Sensor (MRMS) precipitation rate product, were utilized to establish parameter statistics and to recreate/remodel historical events respectively. The results demonstrated that rainfall duration is a significant linkage between DMS parameters and their hydrologic impacts—any combination of spatiotemporal characteristics that keep rain cells longer over the catchment will produce higher

  14. Impact of spectral nudging on regional climate simulation over CORDEX East Asia using WRF

    Science.gov (United States)

    Tang, Jianping; Wang, Shuyu; Niu, Xiaorui; Hui, Pinhong; Zong, Peishu; Wang, Xueyuan

    2017-04-01

    In this study, the impact of the spectral nudging method on regional climate simulation over the Coordinated Regional Climate Downscaling Experiment East Asia (CORDEX-EA) region is investigated using the Weather Research and Forecasting model (WRF). Driven by the ERA-Interim reanalysis, five continuous simulations covering 1989-2007 are conducted by the WRF model, in which four runs adopt the interior spectral nudging with different wavenumbers, nudging variables and nudging coefficients. Model validation shows that WRF has the ability to simulate spatial distributions and temporal variations of the surface climate (air temperature and precipitation) over CORDEX-EA domain. Comparably the spectral nudging technique is effective in improving the model's skill in the following aspects: (1), the simulated biases and root mean square errors of annual mean temperature and precipitation are obviously reduced. The SN3-UVT (spectral nudging with wavenumber 3 in both zonal and meridional directions applied to U, V and T) and SN6 (spectral nudging with wavenumber 6 in both zonal and meridional directions applied to U and V) experiments give the best simulations for temperature and precipitation respectively. The inter-annual and seasonal variances produced by the SN experiments are also closer to the ERA-Interim observation. (2), the application of spectral nudging in WRF is helpful for simulating the extreme temperature and precipitation, and the SN3-UVT simulation shows a clear advantage over the other simulations in depicting both the spatial distributions and inter-annual variances of temperature and precipitation extremes. With the spectral nudging, WRF is able to preserve the variability in the large scale climate information, and therefore adjust the temperature and precipitation variabilities toward the observation.

  15. Validation of crop weather models for crop assessment arid yield ...

    African Journals Online (AJOL)

    IRSIS and CRPSM models were used in this study to see how closely they could predict grain yields for selected stations in Tanzania. Input for the models comprised of weather, crop and soil data collected from five selected stations. Simulation results show that IRSIS model tends to over predict grain yields of maize, ...

  16. Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources

    Directory of Open Access Journals (Sweden)

    E. G. Chapman

    2009-02-01

    Full Text Available The local and regional influence of elevated point sources on summertime aerosol forcing and cloud-aerosol interactions in northeastern North America was investigated using the WRF-Chem community model. The direct effects of aerosols on incoming solar radiation were simulated using existing modules to relate aerosol sizes and chemical composition to aerosol optical properties. Indirect effects were simulated by adding a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets, simulate aqueous-phase chemistry, and tie a two-moment treatment of cloud water (cloud water mass and cloud droplet number to precipitation and an existing radiation scheme. Fully interactive feedbacks thus were created within the modified model, with aerosols affecting cloud droplet number and cloud radiative properties, and clouds altering aerosol size and composition via aqueous processes, wet scavenging, and gas-phase-related photolytic processes. Comparisons of a baseline simulation with observations show that the model captured the general temporal cycle of aerosol optical depths (AODs and produced clouds of comparable thickness to observations at approximately the proper times and places. The model overpredicted SO2 mixing ratios and PM2.5 mass, but reproduced the range of observed SO2 to sulfate aerosol ratios, suggesting that atmospheric oxidation processes leading to aerosol sulfate formation are captured in the model. The baseline simulation was compared to a sensitivity simulation in which all emissions at model levels above the surface layer were set to zero, thus removing stack emissions. Instantaneous, site-specific differences for aerosol and cloud related properties between the two simulations could be quite large, as removing above-surface emission sources influenced when and where clouds formed within the modeling domain. When summed spatially over the finest

  17. An evaluation of the performance of a WRF multi-physics ensemble for heatwave events over the city of Melbourne in southeast Australia

    Science.gov (United States)

    Imran, H. M.; Kala, J.; Ng, A. W. M.; Muthukumaran, S.

    2018-04-01

    Appropriate choice of physics options among many physics parameterizations is important when using the Weather Research and Forecasting (WRF) model. The responses of different physics parameterizations of the WRF model may vary due to geographical locations, the application of interest, and the temporal and spatial scales being investigated. Several studies have evaluated the performance of the WRF model in simulating the mean climate and extreme rainfall events for various regions in Australia. However, no study has explicitly evaluated the sensitivity of the WRF model in simulating heatwaves. Therefore, this study evaluates the performance of a WRF multi-physics ensemble that comprises 27 model configurations for a series of heatwave events in Melbourne, Australia. Unlike most previous studies, we not only evaluate temperature, but also wind speed and relative humidity, which are key factors influencing heatwave dynamics. No specific ensemble member for all events explicitly showed the best performance, for all the variables, considering all evaluation metrics. This study also found that the choice of planetary boundary layer (PBL) scheme had largest influence, the radiation scheme had moderate influence, and the microphysics scheme had the least influence on temperature simulations. The PBL and microphysics schemes were found to be more sensitive than the radiation scheme for wind speed and relative humidity. Additionally, the study tested the role of Urban Canopy Model (UCM) and three Land Surface Models (LSMs). Although the UCM did not play significant role, the Noah-LSM showed better performance than the CLM4 and NOAH-MP LSMs in simulating the heatwave events. The study finally identifies an optimal configuration of WRF that will be a useful modelling tool for further investigations of heatwaves in Melbourne. Although our results are invariably region-specific, our results will be useful to WRF users investigating heatwave dynamics elsewhere.

  18. Simulation of a severe convective storm using a numerical model with explicitly incorporated aerosols

    Science.gov (United States)

    Lompar, Miloš; Ćurić, Mladjen; Romanic, Djordje

    2017-09-01

    Despite an important role the aerosols play in all stages of cloud lifecycle, their representation in numerical weather prediction models is often rather crude. This paper investigates the effects the explicit versus implicit inclusion of aerosols in a microphysics parameterization scheme in Weather Research and Forecasting (WRF) - Advanced Research WRF (WRF-ARW) model has on cloud dynamics and microphysics. The testbed selected for this study is a severe mesoscale convective system with supercells that struck west and central parts of Serbia in the afternoon of July 21, 2014. Numerical products of two model runs, i.e. one with aerosols explicitly (WRF-AE) included and another with aerosols implicitly (WRF-AI) assumed, are compared against precipitation measurements from surface network of rain gauges, as well as against radar and satellite observations. The WRF-AE model accurately captured the transportation of dust from the north Africa over the Mediterranean and to the Balkan region. On smaller scales, both models displaced the locations of clouds situated above west and central Serbia towards southeast and under-predicted the maximum values of composite radar reflectivity. Similar to satellite images, WRF-AE shows the mesoscale convective system as a merged cluster of cumulonimbus clouds. Both models over-predicted the precipitation amounts; WRF-AE over-predictions are particularly pronounced in the zones of light rain, while WRF-AI gave larger outliers. Unlike WRF-AI, the WRF-AE approach enables the modelling of time evolution and influx of aerosols into the cloud which could be of practical importance in weather forecasting and weather modification. Several likely causes for discrepancies between models and observations are discussed and prospects for further research in this field are outlined.

  19. Application of Intel Many Integrated Core (MIC) architecture to the Yonsei University planetary boundary layer scheme in Weather Research and Forecasting model

    Science.gov (United States)

    Huang, Melin; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecasting (WRF) model provided operational services worldwide in many areas and has linked to our daily activity, in particular during severe weather events. The scheme of Yonsei University (YSU) is one of planetary boundary layer (PBL) models in WRF. The PBL is responsible for vertical sub-grid-scale fluxes due to eddy transports in the whole atmospheric column, determines the flux profiles within the well-mixed boundary layer and the stable layer, and thus provide atmospheric tendencies of temperature, moisture (including clouds), and horizontal momentum in the entire atmospheric column. The YSU scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. To accelerate the computation process of the YSU scheme, we employ Intel Many Integrated Core (MIC) Architecture as it is a multiprocessor computer structure with merits of efficient parallelization and vectorization essentials. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.4x. Furthermore, the same CPU-based optimizations improved the performance on Intel Xeon E5-2603 by a factor of 1.6x as compared to the first version of multi-threaded code.

  20. WRF-Chem model predictions of the regional impacts of N2O5 heterogeneous processes on night-time chemistry over north-western Europe

    Directory of Open Access Journals (Sweden)

    D. Lowe

    2015-02-01

    Full Text Available Chemical modelling studies have been conducted over north-western Europe in summer conditions, showing that night-time dinitrogen pentoxide (N2O5 heterogeneous reactive uptake is important regionally in modulating particulate nitrate and has a~modest influence on oxidative chemistry. Results from Weather Research and Forecasting model with Chemistry (WRF-Chem model simulations, run with a detailed volatile organic compound (VOC gas-phase chemistry scheme and the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC sectional aerosol scheme, were compared with a series of airborne gas and particulate measurements made over the UK in July 2010. Modelled mixing ratios of key gas-phase species were reasonably accurate (correlations with measurements of 0.7–0.9 for NO2 and O3. However modelled loadings of particulate species were less accurate (correlation with measurements for particulate sulfate and ammonium were between 0.0 and 0.6. Sulfate mass loadings were particularly low (modelled means of 0.5–0.7 μg kg−1air, compared with measurements of 1.0–1.5 μg kg−1air. Two flights from the campaign were used as test cases – one with low relative humidity (RH (60–70%, the other with high RH (80–90%. N2O5 heterogeneous chemistry was found to not be important in the low-RH test case; but in the high-RH test case it had a strong effect and significantly improved the agreement between modelled and measured NO3 and N2O5. When the model failed to capture atmospheric RH correctly, the modelled NO3 and N2O5 mixing ratios for these flights differed significantly from the measurements. This demonstrates that, for regional modelling which involves heterogeneous processes, it is essential to capture the ambient temperature and water vapour profiles. The night-time NO3 oxidation of VOCs across the whole region was found to be 100–300 times slower than the daytime OH oxidation of these compounds. The difference in contribution was less

  1. Air quality modelling in the summer over the eastern Mediterranean using WRF-Chem: chemistry and aerosol mechanism intercomparison

    Science.gov (United States)

    Georgiou, George K.; Christoudias, Theodoros; Proestos, Yiannis; Kushta, Jonilda; Hadjinicolaou, Panos; Lelieveld, Jos

    2018-02-01

    We employ the WRF-Chem model to study summertime air pollution, the intense photochemical activity and their impact on air quality over the eastern Mediterranean. We utilize three nested domains with horizontal resolutions of 80, 16 and 4 km, with the finest grid focusing on the island of Cyprus, where the CYPHEX campaign took place in July 2014. Anthropogenic emissions are based on the EDGAR HTAP global emission inventory, while dust and biogenic emissions are calculated online. Three simulations utilizing the CBMZ-MOSAIC, MOZART-MOSAIC, and RADM2-MADE/SORGAM gas-phase and aerosol mechanisms are performed. The results are compared with measurements from a dense observational network of 14 ground stations in Cyprus. The model simulates T2 m, Psurf, and WD10 m accurately, with minor differences in WS10 m between model and observations at coastal and mountainous stations attributed to limitations in the representation of the complex topography in the model. It is shown that the south-eastern part of Cyprus is mostly affected by emissions from within the island, under the dominant (60 %) westerly flow during summertime. Clean maritime air from the Mediterranean can reduce concentrations of local air pollutants over the region during westerlies. Ozone concentrations are overestimated by all three mechanisms (9 % ≤ NMB ≤ 23 %) with the smaller mean bias (4.25 ppbV) obtained by the RADM2-MADE/SORGAM mechanism. Differences in ozone concentrations can be attributed to the VOC treatment by the three mechanisms. The diurnal variability of pollution and ozone precursors is not captured (hourly correlation coefficients for O3 ≤ 0.29). This might be attributed to the underestimation of NOx concentrations by local emissions by up to 50 %. For the fine particulate matter (PM2.5), the lowest mean bias (9 µg m-3) is obtained with the RADM2-MADE/SORGAM mechanism, with overestimates in sulfate and ammonium aerosols. Overestimation of sulfate aerosols by this mechanism may be

  2. Improvements to the WRF-Chem 3.5.1 model for quasi-hemispheric simulations of aerosols and ozone in the Arctic

    Science.gov (United States)

    Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.; Berg, Larry K.; Fast, Jerome D.; Easter, Richard C.; Shrivastava, Manish; Thomas, Jennie L.

    2017-10-01

    In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain-Fritsch + Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.

  3. Differences between downscaling with spectral and grid nudging using WRF

    Directory of Open Access Journals (Sweden)

    P. Liu

    2012-04-01

    Full Text Available Dynamical downscaling has been extensively used to study regional climate forced by large-scale global climate models. During the downscaling process, however, the simulation of regional climate models (RCMs tends to drift away from the driving fields. Developing a solution that addresses this issue, by retaining the large scale features (from the large-scale fields and the small-scale features (from the RCMs has led to the development of "nudging" techniques. Here, we examine the performance of two nudging techniques, grid and spectral nudging, in the downscaling of NCEP/NCAR data with the Weather Research and Forecasting (WRF Model. The simulations are compared against the results with North America Regional Reanalysis (NARR data set at different scales of interest using the concept of similarity. We show that with the appropriate choice of wave numbers, spectral nudging outperforms grid nudging in the capacity of balancing the performance of simulation at the large and small scales.

  4. Model for expressing leaf photosynthesis in terms of weather variables

    African Journals Online (AJOL)

    A theoretical mathematical model for describing photosynthesis in individual leaves in terms of weather variables is proposed. The model utilizes a series of efficiency parameters, each of which reflect the fraction of potential photosynthetic rate permitted by the different environmental elements. These parameters are useful ...

  5. Managing wildland fires: integrating weather models into fire projections

    Science.gov (United States)

    Anne M. Rosenthal; Francis Fujioka

    2004-01-01

    Flames from the Old Fire sweep through lands north of San Bernardino during late fall of 2003. Like many Southern California fires, the Old Fire consumed susceptible forests at the urban-wildland interface and spread to nearby city neighborhoods. By incorporating weather models into fire perimeter projections, scientist Francis Fujioka is improving fire modeling as a...

  6. Modeling Silicate Weathering for Elevated CO2 and Temperature

    Science.gov (United States)

    Bolton, E. W.

    2016-12-01

    A reactive transport model (RTM) is used to assess CO2 drawdown by silicate weathering over a wide range of temperature, pCO2, and infiltration rates for basalts and granites. Although RTM's have been used extensively to model weathering of basalts and granites for present-day conditions, we extend such modeling to higher CO2 that could have existed during the Archean and Proterozoic. We also consider a wide range of surface temperatures and infiltration rates. We consider several model basalt and granite compositions. We normally impose CO2 in equilibrium with the various atmospheric ranges modeled and CO2 is delivered to the weathering zone by aqueous transport. We also consider models with fixed CO2 (aq) throughout the weathering zone as could occur in soils with partial water saturation or with plant respiration, which can strongly influence pH and mineral dissolution rates. For the modeling, we use Kinflow: a model developed at Yale that includes mineral dissolution and precipitation under kinetic control, aqueous speciation, surface erosion, dynamic porosity, permeability, and mineral surface areas via sub-grid-scale grain models, and exchange of volatiles at the surface. Most of the modeling is done in 1D, but some comparisons to 2D domains with heterogeneous permeability are made. We find that when CO2 is fixed only at the surface, the pH tends toward higher values for basalts than granites, in large part due to the presence of more divalent than monovalent cations in the primary minerals, tending to decrease rates of mineral dissolution. Weathering rates increase (as expected) with increasing CO2 and temperature. This modeling is done with the support of the Virtual Planetary Laboratory.

  7. Simulation of Mexico City plumes during the MIRAGE-Mex field campaign using the WRF-Chem model

    Directory of Open Access Journals (Sweden)

    X. Tie

    2009-07-01

    Full Text Available The quantification of tropospheric O3 production in the downwind of the Mexico City plume is a major objective of the MIRAGE-Mex field campaign. We used a regional chemistry-transport model (WRF-Chem to predict the distribution of O3 and its precursors in Mexico City and the surrounding region during March 2006, and compared the model with in-situ aircraft measurements of O3, CO, VOCs, NOx, and NOy concentrations. The comparison shows that the model is capable of capturing the timing and location of the measured city plumes, and the calculated variability along the flights is generally consistent with the measured results, showing a rapid increase in O3 and its precursors when city plumes are detected. However, there are some notable differences between the calculated and measured values, suggesting that, during transport from the surface of the city to the outflow plume, ozone mixing ratios are underestimated by about 0–25% during different flights. The calculated O3-NOx, O3-CO, and O3-NOz correlations generally agree with the measured values, and the analyses of these correlations suggest that photochemical O3 production continues in the plume downwind of the city (aged plume, adding to the O3 already produced in the city and exported with the plume. The model is also used to quantify the contributions to OH reactivity from various compounds in the aged plume. This analysis suggests that oxygenated organics (OVOCs have the highest OH reactivity and play important roles for the O3 production in the aging plume. Furthermore, O3 production per NOx molecule consumed (O3 production efficiency is more efficient in the aged plume than in the young plume near the city. The major contributor to the high O3 production efficiency in the aged plume is the

  8. A spatio-temporal evaluation of the WRF physical parameterisations for numerical rainfall simulation in semi-humid and semi-arid catchments of Northern China

    Science.gov (United States)

    Tian, Jiyang; Liu, Jia; Wang, Jianhua; Li, Chuanzhe; Yu, Fuliang; Chu, Zhigang

    2017-07-01

    Mesoscale Numerical Weather Prediction systems can provide rainfall products at high resolutions in space and time, playing an increasingly more important role in water management and flood forecasting. The Weather Research and Forecasting (WRF) model is one of the most popular mesoscale systems and has been extensively used in research and practice. However, for hydrologists, an unsolved question must be addressed before each model application in a different target area. That is, how are the most appropriate combinations of physical parameterisations from the vast WRF library selected to provide the best downscaled rainfall? In this study, the WRF model was applied with 12 designed parameterisation schemes with different combinations of physical parameterisations, including microphysics, radiation, planetary boundary layer (PBL), land-surface model (LSM) and cumulus parameterisations. The selected study areas are two semi-humid and semi-arid catchments located in the Daqinghe River basin, Northern China. The performance of WRF with different parameterisation schemes is tested for simulating eight typical 24-h storm events with different evenness in space and time. In addition to the cumulative rainfall amount, the spatial and temporal patterns of the simulated rainfall are evaluated based on a two-dimensional composed verification statistic. Among the 12 parameterisation schemes, Scheme 4 outperforms the other schemes with the best average performance in simulating rainfall totals and temporal patterns; in contrast, Scheme 6 is generally a good choice for simulations of spatial rainfall distributions. Regarding the individual parameterisations, Single-Moment 6 (WSM6), Yonsei University (YSU), Kain-Fritsch (KF) and Grell-Devenyi (GD) are better choices for microphysics, planetary boundary layers (PBL) and cumulus parameterisations, respectively, in the study area. These findings provide helpful information for WRF rainfall downscaling in semi-humid and semi

  9. Simulations of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign

    Directory of Open Access Journals (Sweden)

    G. Li

    2011-04-01

    Full Text Available Organic aerosol concentrations are simulated using the WRF-CHEM model in Mexico City during the period from 24 to 29 March in association with the MILAGRO-2006 campaign. Two approaches are employed to predict the variation and spatial distribution of the organic aerosol concentrations: (1 a traditional 2-product secondary organic aerosol (SOA model with non-volatile primary organic aerosols (POA; (2 a non-traditional SOA model including the volatility basis-set modeling method in which primary organic components are assumed to be semi-volatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The MCMA (Mexico City Metropolitan Area 2006 official emission inventory is used in simulations and the POA emissions are modified and distributed by volatility based on dilution experiments for the non-traditional SOA model. The model results are compared to the Aerosol Mass Spectrometry (AMS observations analyzed using the Positive Matrix Factorization (PMF technique at an urban background site (T0 and a suburban background site (T1 in Mexico City. The traditional SOA model frequently underestimates the observed POA concentrations during rush hours and overestimates the observations in the rest of the time in the city. The model also substantially underestimates the observed SOA concentrations, particularly during daytime, and only produces 21% and 25% of the observed SOA mass in the suburban and urban area, respectively. The non-traditional SOA model performs well in simulating the POA variation, but still overestimates during daytime in the urban area. The SOA simulations are significantly improved in the non-traditional SOA model compared to the traditional SOA model and the SOA production is increased by more than 100% in the city. However, the underestimation during daytime is still salient in the urban area and the non-traditional model also fails to reproduce the high level of SOA concentrations in the

  10. Using Virtualization to Integrate Weather, Climate, and Coastal Science Education

    Science.gov (United States)

    Davis, J. R.; Paramygin, V. A.; Figueiredo, R.; Sheng, Y.

    2012-12-01

    To better understand and communicate the important roles of weather and climate on the coastal environment, a unique publically available tool is being developed to support research, education, and outreach activities. This tool uses virtualization technologies to facilitate an interactive, hands-on environment in which students, researchers, and general public can perform their own numerical modeling experiments. While prior efforts have focused solely on the study of the coastal and estuary environments, this effort incorporates the community supported weather and climate model (WRF-ARW) into the Coastal Science Educational Virtual Appliance (CSEVA), an education tool used to assist in the learning of coastal transport processes; storm surge and inundation; and evacuation modeling. The Weather Research and Forecasting (WRF) Model is a next-generation, community developed and supported, mesoscale numerical weather prediction system designed to be used internationally for research, operations, and teaching. It includes two dynamical solvers (ARW - Advanced Research WRF and NMM - Nonhydrostatic Mesoscale Model) as well as a data assimilation system. WRF-ARW is the ARW dynamics solver combined with other components of the WRF system which was developed primarily at NCAR, community support provided by the Mesoscale and Microscale Meteorology (MMM) division of National Center for Atmospheric Research (NCAR). Included with WRF is the WRF Pre-processing System (WPS) which is a set of programs to prepare input for real-data simulations. The CSEVA is based on the Grid Appliance (GA) framework and is built using virtual machine (VM) and virtual networking technologies. Virtualization supports integration of an operating system, libraries (e.g. Fortran, C, Perl, NetCDF, etc. necessary to build WRF), web server, numerical models/grids/inputs, pre-/post-processing tools (e.g. WPS / RIP4 or UPS), graphical user interfaces, "Cloud"-computing infrastructure and other tools into a

  11. Modeling and Forecasting Average Temperature for Weather Derivative Pricing

    Directory of Open Access Journals (Sweden)

    Zhiliang Wang

    2015-01-01

    Full Text Available The main purpose of this paper is to present a feasible model for the daily average temperature on the area of Zhengzhou and apply it to weather derivatives pricing. We start by exploring the background of weather derivatives market and then use the 62 years of daily historical data to apply the mean-reverting Ornstein-Uhlenbeck process to describe the evolution of the temperature. Finally, Monte Carlo simulations are used to price heating degree day (HDD call option for this city, and the slow convergence of the price of the HDD call can be found through taking 100,000 simulations. The methods of the research will provide a frame work for modeling temperature and pricing weather derivatives in other similar places in China.

  12. Incorporating Lightning Flash Data into the WRF-CMAQ Modeling System: Algorithms and Evaluations

    Science.gov (United States)

    We describe the use of lightning flash data from the National Lightning Detection Network (NLDN) to constrain and improve the performance of coupled meteorology-chemistry models. We recently implemented a scheme in which lightning data is used to control the triggering of conve...

  13. GPU-Accelerated Stony-Brook University 5-class Microphysics Scheme in WRF

    Science.gov (United States)

    Mielikainen, J.; Huang, B.; Huang, A.

    2011-12-01

    The Weather Research and Forecasting (WRF) model is a next-generation mesoscale numerical weather prediction system. Microphysics plays an important role in weather and climate prediction. Several bulk water microphysics schemes are available within the WRF, with different numbers of simulated hydrometeor classes and methods for estimating their size fall speeds, distributions and densities. Stony-Brook University scheme (SBU-YLIN) is a 5-class scheme with riming intensity predicted to account for mixed-phase processes. In the past few years, co-processing on Graphics Processing Units (GPUs) has been a disruptive technology in High Performance Computing (HPC). GPUs use the ever increasing transistor count for adding more processor cores. Therefore, GPUs are well suited for massively data parallel processing with high floating point arithmetic intensity. Thus, it is imperative to update legacy scientific applications to take advantage of this unprecedented increase in computing power. CUDA is an extension to the C programming language offering programming GPU's directly. It is designed so that its constructs allow for natural expression of data-level parallelism. A CUDA program is organized into two parts: a serial program running on the CPU and a CUDA kernel running on the GPU. The CUDA code consists of three computational phases: transmission of data into the global memory of the GPU, execution of the CUDA kernel, and transmission of results from the GPU into the memory of CPU. CUDA takes a bottom-up point of view of parallelism is which thread is an atomic unit of parallelism. Individual threads are part of groups called warps, within which every thread executes exactly the same sequence of instructions. To test SBU-YLIN, we used a CONtinental United States (CONUS) benchmark data set for 12 km resolution domain for October 24, 2001. A WRF domain is a geographic region of interest discretized into a 2-dimensional grid parallel to the ground. Each grid point has

  14. A Step towards a Sharable Community Knowledge Base for WRF Settings -Developing a WRF Setting Methodology based on a case study in a Torrential Rainfall Event

    Science.gov (United States)

    CHU, Q.; Xu, Z.; Zhuo, L.; Han, D.

    2016-12-01

    Increased requirements for interactions between different disciplines and readily access to the numerical weather forecasting system featured with portability and extensibility have made useful contribution to the increases of downstream model users in WRF over recent years. For these users, a knowledge base classified by the representative events would be much helpful. This is because the determination of model settings is regarded as the most important steps in WRF. However, such a process is generally time-consuming, even if with a high computational platform. As such, we propose a sharable proper lookup table on WRF domain settings and corresponding procedures based on a representative torrential rainfall event in Beijing, China. It has been found that WRF's simulations' drift away from the input lateral boundary conditions can be significantly reduced with the adjustment of the domain settings. Among all the impact factors, the placement of nested domain can not only affect the moving speed and angle of the storm-center, but also the location and amount of heavy-rain-belt which can only be detected with adjusted spatial resolutions. Spin-up time is also considered in the model settings, which is demonstrated to have the most obvious influence on the accuracy of the simulations. This conclusion is made based on the large diversity of spatial distributions of precipitation, in terms of the amount of heavy rain varied from -30% to 58% among each experiment. After following all the procedures, the variations of domain settings have minimal effect on the modeling and show the best correlation (larger than 0.65) with fusion observations. So the model settings, including domain size covering the greater Beijing area, 1:5:5 downscaling ratio, 57 vertical levels with top of 50hpa and 60h spin-up time, are found suitable for predicting the similar convective torrential rainfall event in Beijing area. We hope that the procedure for building the community WRF knowledge

  15. Comparison of Analysis and Spectral Nudging Techniques for Dynamical Downscaling with the WRF Model over China

    OpenAIRE

    Ma, Yuanyuan; Yang, Yi; Mai, Xiaoping; Qiu, Chongjian; Long, Xiao; Wang, Chenghai

    2016-01-01

    To overcome the problem that the horizontal resolution of global climate models may be too low to resolve features which are important at the regional or local scales, dynamical downscaling has been extensively used. However, dynamical downscaling results generally drift away from large-scale driving fields. The nudging technique can be used to balance the performance of dynamical downscaling at large and small scales, but the performances of the two nudging techniques (analysis nudging and s...

  16. Sensitivity of tropical cyclone simulations to microphysics parameterizations in WRF

    International Nuclear Information System (INIS)

    Reshmi Mohan, P.; Srinivas, C.V.; Bhaskaran, R.; Venkatraman, B.; Yesubabu, V.

    2018-01-01

    Tropical cyclones (TC) cause storm surge along coastal areas where these storms cross the coast. As major nuclear facilities are usually installed in coastal region, the surge predictions are highly important for DAE. The critical TC parameters needed in estimating storm surge are intensity (winds, central pressure and radius of maximum winds) and storm tracks. The predictions with numerical models are generally made by representing the clouds and precipitation processes using convective and microphysics parameterization. At high spatial resolutions (1-3Km) microphysics can act as cloud resolving NWP model to explicitly resolve the convective precipitation without using convection schemes. Recent simulation studies using WRF on severe weather phenomena such as thunderstorms and hurricanes indicated large sensitivity of predicted rainfall and hurricane tracks to microphysics due to variation in temperature and pressure gradients which generate winds that determine the storm track. In the present study the sensitivity of tropical cyclone tracks and intensity to different microphysics schemes has been conducted

  17. Applicability of WRF-Lake System in Studying Reservoir-Induced Impacts on Local Climate: Case Study of Two Reservoirs with Contrasting Characteristics

    Science.gov (United States)

    Wang, F.; Zhu, D.; Ni, G.; Sun, T.

    2017-12-01

    Large reservoirs play a key role in regional hydrological cycles as well as in modulating the local climate. The emerging large reservoirs in concomitant with rapid hydropower exploitation in southwestern China warrant better understanding of their impacts on local and regional climates. One of the crucial pathways through which reservoirs impact the climate is lake-atmospheric interaction. Although such interactions have been widely studied with numeric weather prediction (NWP) models, an outstanding limitation across various NWPs resides on the poor thermodynamic representation of lakes. The recent version of Weather Research and Forecasting (WRF) system has been equipped with a one-dimensional lake model to better represent the thermodynamics of large water body and has been shown to enhance the its predication skill in the lake-atmospheric interaction. In this study, we further explore the applicability of the WRF-Lake system in two reservoirs with contrasting characteristics: Miyun Reservoir with an average depth of 30 meters in North China Plain, and Nuozhadu Reservoir with an average depth of 200 meters in the Tibetan Plateau Region. Driven by the high spatiotemporal resolution meteorological forcing data, the WRF-Lake system is used to simulate the water temperature and surface energy budgets of the two reservoirs after the evaluation against temperature observations. The simulated results show the WRF-Lake model can well predict the vertical profile of water temperature in Miyun Reservoir, but underestimates deep water temperature and overestimates surface temperature in the deeper Nuozhadu Reservoir. In addition, sensitivity analysis indicates the poor performance of the WRF-Lake system in Nuozhadu Reservoir could be attributed to the weak vertical mixing in the model, which can be improved by tuning the eddy diffusion coefficient ke . Keywords: reservoir-induced climatic impact; lake-atmospheric interaction; WRF-Lake system; hydropower exploitation

  18. Inclusion of ash and SO2 emissions from volcanic eruptions in WRF-Chem: development and some applications

    Directory of Open Access Journals (Sweden)

    M. Stuefer

    2013-04-01

    Full Text Available We describe a new functionality within the Weather Research and Forecasting (WRF model with coupled Chemistry (WRF-Chem that allows simulating emission, transport, dispersion, transformation and sedimentation of pollutants released during volcanic activities. Emissions from both an explosive eruption case and a relatively calm degassing situation are considered using the most recent volcanic emission databases. A preprocessor tool provides emission fields and additional information needed to establish the initial three-dimensional cloud umbrella/vertical distribution within the transport model grid, as well as the timing and duration of an eruption. From this source condition, the transport, dispersion and sedimentation of the ash cloud can be realistically simulated by WRF-Chem using its own dynamics and physical parameterization as well as data assimilation. Examples of model applications include a comparison of tephra fall deposits from the 1989 eruption of Mount Redoubt (Alaska and the dispersion of ash from the 2010 Eyjafjallajökull eruption in Iceland. Both model applications show good coincidence between WRF-Chem and observations.

  19. Development of a source oriented version of the WRF/Chem model and its application to the California regional PM10 / PM2.5 air quality study

    Directory of Open Access Journals (Sweden)

    H. Zhang

    2014-01-01

    Full Text Available A source-oriented version of the Weather Research and Forecasting model with chemistry (SOWC, hereinafter was developed. SOWC separately tracks primary particles with different hygroscopic properties rather than instantaneously combining them into an internal mixture. This approach avoids artificially mixing light absorbing black + brown carbon particles with materials such as sulfate that would encourage the formation of additional coatings. Source-oriented particles undergo coagulation and gas-particle conversion, but these processes are considered in a dynamic framework that realistically "ages" primary particles over hours and days in the atmosphere. SOWC more realistically predicts radiative feedbacks from anthropogenic aerosols compared to models that make internal mixing or other artificial mixing assumptions. A three-week stagnation episode (15 December 2000 to 6 January 2001 in the San Joaquin Valley (SJV during the California Regional PM10 / PM2.5 Air Quality Study (CRPAQS was chosen for the initial application of the new modeling system. Primary particles emitted from diesel engines, wood smoke, high-sulfur fuel combustion, food cooking, and other anthropogenic sources were tracked separately throughout the simulation as they aged in the atmosphere. Differences were identified between predictions from the source oriented vs. the internally mixed representation of particles with meteorological feedbacks in WRF/Chem for a number of meteorological parameters: aerosol extinction coefficients, downward shortwave flux, planetary boundary layer depth, and primary and secondary particulate matter concentrations. Comparisons with observations show that SOWC predicts particle scattering coefficients more accurately than the internally mixed model. Downward shortwave radiation predicted by SOWC is enhanced by ~1% at ground level chiefly because diesel engine particles in the source-oriented mixture are not artificially coated with material that

  20. Weather Derivatives and Stochastic Modelling of Temperature

    Directory of Open Access Journals (Sweden)

    Fred Espen Benth

    2011-01-01

    Full Text Available We propose a continuous-time autoregressive model for the temperature dynamics with volatility being the product of a seasonal function and a stochastic process. We use the Barndorff-Nielsen and Shephard model for the stochastic volatility. The proposed temperature dynamics is flexible enough to model temperature data accurately, and at the same time being analytically tractable. Futures prices for commonly traded contracts at the Chicago Mercantile Exchange on indices like cooling- and heating-degree days and cumulative average temperatures are computed, as well as option prices on them.

  1. Impact of Assimilation on Heavy Rainfall Simulations Using WRF Model: Sensitivity of Assimilation Results to Background Error Statistics

    Science.gov (United States)

    Rakesh, V.; Kantharao, B.

    2017-03-01

    Data assimilation is considered as one of the effective tools for improving forecast skill of mesoscale models. However, for optimum utilization and effective assimilation of observations, many factors need to be taken into account while designing data assimilation methodology. One of the critical components that determines the amount and propagation observation information into the analysis, is model background error statistics (BES). The objective of this study is to quantify how BES in data assimilation impacts on simulation of heavy rainfall events over a southern state in India, Karnataka. Simulations of 40 heavy rainfall events were carried out using Weather Research and Forecasting Model with and without data assimilation. The assimilation experiments were conducted using global and regional BES while the experiment with no assimilation was used as the baseline for assessing the impact of data assimilation. The simulated rainfall is verified against high-resolution rain-gage observations over Karnataka. Statistical evaluation using several accuracy and skill measures shows that data assimilation has improved the heavy rainfall simulation. Our results showed that the experiment using regional BES outperformed the one which used global BES. Critical thermo-dynamic variables conducive for heavy rainfall like convective available potential energy simulated using regional BES is more realistic compared to global BES. It is pointed out that these results have important practical implications in design of forecast platforms while decision-making during extreme weather events

  2. An Accurate Fire-Spread Algorithm in the Weather Research and Forecasting Model Using the Level-Set Method

    Science.gov (United States)

    Muñoz-Esparza, Domingo; Kosović, Branko; Jiménez, Pedro A.; Coen, Janice L.

    2018-04-01

    The level-set method is typically used to track and propagate the fire perimeter in wildland fire models. Herein, a high-order level-set method using fifth-order WENO scheme for the discretization of spatial derivatives and third-order explicit Runge-Kutta temporal integration is implemented within the Weather Research and Forecasting model wildland fire physics package, WRF-Fire. The algorithm includes solution of an additional partial differential equation for level-set reinitialization. The accuracy of the fire-front shape and rate of spread in uncoupled simulations is systematically analyzed. It is demonstrated that the common implementation used by level-set-based wildfire models yields to rate-of-spread errors in the range 10-35% for typical grid sizes (Δ = 12.5-100 m) and considerably underestimates fire area. Moreover, the amplitude of fire-front gradients in the presence of explicitly resolved turbulence features is systematically underestimated. In contrast, the new WRF-Fire algorithm results in rate-of-spread errors that are lower than 1% and that become nearly grid independent. Also, the underestimation of fire area at the sharp transition between the fire front and the lateral flanks is found to be reduced by a factor of ≈7. A hybrid-order level-set method with locally reduced artificial viscosity is proposed, which substantially alleviates the computational cost associated with high-order discretizations while preserving accuracy. Simulations of the Last Chance wildfire demonstrate additional benefits of high-order accurate level-set algorithms when dealing with complex fuel heterogeneities, enabling propagation across narrow fuel gaps and more accurate fire backing over the lee side of no fuel clusters.

  3. Impact of bacterial ice nucleating particles on weather predicted by a numerical weather prediction model

    Science.gov (United States)

    Sahyoun, Maher; Korsholm, Ulrik S.; Sørensen, Jens H.; Šantl-Temkiv, Tina; Finster, Kai; Gosewinkel, Ulrich; Nielsen, Niels W.

    2017-12-01

    Bacterial ice-nucleating particles (INP) have the ability to facilitate ice nucleation from super-cooled cloud droplets at temperatures just below the melting point. Bacterial INP have been detected in cloud water, precipitation, and dry air, hence they may have an impact on weather and climate. In modeling studies, the potential impact of bacteria on ice nucleation and precipitation formation on global scale is still uncertain due to their small concentration compared to other types of INP, i.e. dust. Those earlier studies did not account for the yet undetected high concentration of nanoscale fragments of bacterial INP, which may be found free or attached to soil dust in the atmosphere. In this study, we investigate the sensitivity of modeled cloud ice, precipitation and global solar radiation in different weather scenarios to changes in the fraction of cloud droplets containing bacterial INP, regardless of their size. For this purpose, a module that calculates the probability of ice nucleation as a function of ice nucleation rate and bacterial INP fraction was developed and implemented in a numerical weather prediction model. The threshold value for the fraction of cloud droplets containing bacterial INP needed to produce a 1% increase in cloud ice was determined at 10-5 to 10-4. We also found that increasing this fraction causes a perturbation in the forecast, leading to significant differences in cloud ice and smaller differences in convective and total precipitation and in net solar radiation reaching the surface. These effects were most pronounced in local convective events. Our results show that bacterial INP can be considered as a trigger factor for precipitation, but not an enhancement factor.

  4. Weathering of oils at sea: model/field data comparisons

    International Nuclear Information System (INIS)

    Daling, Per S.; Stroem, Tove

    1999-01-01

    The SINTEF Oil Weathering Model (OWM) has been extensively tested with results from full-scale field trials with experimental oil slicks in the Norwegian NOFO Sea trials in 1994 and 1995 and the AEA 1997 trials in UK. The comparisons between oil weathering values predicted by the model and ground-truth obtained from the field trials are presented and discussed. Good laboratory weathering data of the specific oil as input to the model is essential for obtaining reliable weathering predictions. Predications provided by the SINTEF-OWM enable oil spill personnel to estimate the most appropriate 'window of opportunity' for use of chemical dispersants under various spill situations. Pre-spill scenario analysis with the SINTEF Oil Spill Contingency and Response (OSCAR) model system, in which the SINTEF-OWM is one of several components, has become an important part of contingency plans as well as contingency training of oil spill personnel at refineries, oil terminals and offshore installations in Norway. (Author)

  5. Short-Term Forecasts Using NU-WRF for the Winter Olympics 2018

    Science.gov (United States)

    Srikishen, Jayanthi; Case, Jonathan L.; Petersen, Walter A.; Iguchi, Takamichi; Tao, Wei-Kuo; Zavodsky, Bradley T.; Molthan, Andrew

    2017-01-01

    The NASA Unified-Weather Research and Forecasting model (NU-WRF) will be included for testing and evaluation in the forecast demonstration project (FDP) of the International Collaborative Experiment -PyeongChang 2018 Olympic and Paralympic (ICE-POP) Winter Games. An international array of radar and supporting ground based observations together with various forecast and now-cast models will be operational during ICE-POP. In conjunction with personnel from NASA's Goddard Space Flight Center, the NASA Short-term Prediction Research and Transition (SPoRT) Center is developing benchmark simulations for a real-time NU-WRF configuration to run during the FDP. ICE-POP observational datasets will be used to validate model simulations and investigate improved model physics and performance for prediction of snow events during the research phase (RDP) of the project The NU-WRF model simulations will also support NASA Global Precipitation Measurement (GPM) Mission ground-validation physical and direct validation activities in relation to verifying, testing and improving satellite-based snowfall retrieval algorithms over complex terrain.

  6. Geodetic Space Weather Monitoring by means of Ionosphere Modelling

    Science.gov (United States)

    Schmidt, Michael

    2017-04-01

    The term space weather indicates physical processes and phenomena in space caused by radiation of energy mainly from the Sun. Manifestations of space weather are (1) variations of the Earth's magnetic field, (2) the polar lights in the northern and southern hemisphere, (3) variations within the ionosphere as part of the upper atmosphere characterized by the existence of free electrons and ions, (4) the solar wind, i.e. the permanent emission of electrons and photons, (5) the interplanetary magnetic field, and (6) electric currents, e.g. the van Allen radiation belt. It can be stated that ionosphere disturbances are often caused by so-called solar storms. A solar storm comprises solar events such as solar flares and coronal mass ejections (CMEs) which have different effects on the Earth. Solar flares may cause disturbances in positioning, navigation and communication. CMEs can effect severe disturbances and in extreme cases damages or even destructions of modern infrastructure. Examples are interruptions to satellite services including the global navigation satellite systems (GNSS), communication systems, Earth observation and imaging systems or a potential failure of power networks. Currently the measurements of solar satellite missions such as STEREO and SOHO are used to forecast solar events. Besides these measurements the Earth's ionosphere plays another key role in monitoring the space weather, because it responses to solar storms with an increase of the electron density. Space-geodetic observation techniques, such as terrestrial GNSS, satellite altimetry, space-borne GPS (radio occultation), DORIS and VLBI provide valuable global information about the state of the ionosphere. Additionally geodesy has a long history and large experience in developing and using sophisticated analysis and combination techniques as well as empirical and physical modelling approaches. Consequently, geodesy is predestinated for strongly supporting space weather monitoring via

  7. Idealized WRF model sensitivity simulations of sea breeze types and their effects on offshore windfields

    Directory of Open Access Journals (Sweden)

    C. J. Steele

    2013-01-01

    Full Text Available The behaviour and characteristics of the marine component of sea breeze cells have received little attention relative to their onshore counterparts. Yet there is a growing interest and dependence on the offshore wind climate from, for example, a wind energy perspective. Using idealized model experiments, we investigate the sea breeze circulation at scales which approximate to those of the southern North Sea, a region of major ongoing offshore wind farm development. We also contrast the scales and characteristics of the pure and the little known corkscrew and backdoor sea breeze types, where the type is pre-defined by the orientation of the synoptic scale flow relative to the shoreline. We find, crucially, that pure sea breezes, in contrast to corkscrew and backdoor types, can lead to substantial wind speed reductions offshore and that the addition of a second eastern coastline emphasises this effect through generation of offshore "calm zones". The offshore extent of all sea breeze types is found to be sensitive to both the influence of Coriolis acceleration and to the boundary layer scheme selected. These extents range, for example for a pure sea breeze produced in a 2 m s−1 offshore gradient wind, from 0 km to 21 km between the Mellor-Yamada-Nakanishi-Niino and the Yonsei State University schemes respectively. The corkscrew type restricts the development of a backdoor sea breeze on the opposite coast and is also capable of traversing a 100 km offshore domain even under high along-shore gradient wind speed (>15 m s−1 conditions. Realistic variations in sea surface skin temperature and initializing vertical thermodynamic profile do not significantly alter the resulting circulation, though the strengths of the simulated sea breezes are modulated if the effective land-sea thermal contrast is altered. We highlight how sea breeze impacts on circulation need to be

  8. Modeling the influence of organic acids on soil weathering

    Science.gov (United States)

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  9. A reactive transport model for Marcellus shale weathering

    Science.gov (United States)

    Heidari, Peyman; Li, Li; Jin, Lixin; Williams, Jennifer Z.; Brantley, Susan L.

    2017-11-01

    Shale formations account for 25% of the land surface globally and contribute a large proportion of the natural gas used in the United States. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water in the surface or deep subsurface, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil and water chemistry data. The simulation was carried out for 10,000 years since deglaciation, assuming bedrock weathering and soil genesis began after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small if CO2 was not present in the soil gas. The field observations were only simulated successfully when the modeled specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals. Small surface areas could be consistent with the lack of accessibility of some fluids to mineral surfaces due to surface coatings. In addition, some mineral surface is likely interacting only with equilibrated pore

  10. A single-column particle-resolved model for simulating the vertical distribution of aerosol mixing state: WRF-PartMC-MOSAIC-SCM v1.0

    Science.gov (United States)

    Curtis, Jeffrey H.; Riemer, Nicole; West, Matthew

    2017-11-01

    The PartMC-MOSAIC particle-resolved aerosol model was previously developed to predict the aerosol mixing state as it evolves in the atmosphere. However, the modeling framework was limited to a zero-dimensional box model approach without resolving spatial gradients in aerosol concentrations. This paper presents the development of stochastic particle methods to simulate turbulent diffusion and dry deposition of aerosol particles in a vertical column within the planetary boundary layer. The new model, WRF-PartMC-MOSAIC-SCM, resolves the vertical distribution of aerosol mixing state. We verified the new algorithms with analytical solutions for idealized test cases and illustrate the capabilities with results from a 2-day urban scenario that shows the evolution of black carbon mixing state in a vertical column.

  11. PREDIKSI SEBARAN ASAP KEBAKARAN HUTAN/LAHAN MENGGUNAKAN WRF/CHEM (Studi Kasus: Tanggal 14 dan 20 Juni 2012, Pekanbaru-Riau

    Directory of Open Access Journals (Sweden)

    Eko Heriyanto

    2015-01-01

    Full Text Available Penelitian ini bertujuan mengembangkan prediksi sebaran asap kebakaran hutan/lahan di wilayah Indonesia. Simulasi prediksi sebaran  asap (hindcast menggunakan model Weather Research and Forecasting with CHEMistry (WRF/CHEM pada kasus kebakaran hutan/lahan tanggal 14 dan 20 Juni 2012 di wilayah Pekanbaru-Riau. Dalam penelitian ini digunakan data luaran WRF resolusi 25 km dan emisi global . Hasil simulasi  konsentrasi Carbon Monoxide (CO luaran WRF/CHEM menggambarkan pola yang identik dengan hasil luaran Monitoring Atmospheric Composition and Climate (MACC-Reanalysis 1.10. Dilakukan juga analisis kualitatif terhadap hasil simulasi kedua model dengan citra satelit Aqua-Terra MODIS, NOAA-18, dan total column CO Atmospheric Infrared Sounder (AIRS dari NASA. Korelasi simulasi kedua model menunjukkan nilai yang baik antara 0.55 – 0.83. Secara umum dapat disimpulkan bahwa WRF/CHEM mampu mensimulasikan sebaran asap kebakaran hutan/lahan secara akurat. Hasil penelitian ini bisa menjadi salah satu langkah awal dalam pengembangan sistem peringatan dini sebaran asap kebakaran hutan/lahan di wilayah Indonesia.   This study aims to develop a predictive distribution of forest fire smoke/land in the territory of Indonesia. The simulation of smoke spread prediction (hindcast is using the Weather Research and Forecasting Model with CHEMistry (WRF/CHEM in the case of forest fires/land dated June 14, 2012 in Pekanbaru-Riau region. This study uses the WRF data output resolution 25 km and global emissions. Carbon Monoxide concentration simulation results (CO which is the WRF/CHEM output describes patterns that are identical to the results of Monitoring Atmospheric Composition and Climate (MACC-Reanalysis 1.1250 outcomes. a qualitative analysis of the results of the both simulation models with satellite imagery MODIS Aqua-Terra,NOAA-18 and the Total column CO Atmospheric Infrared Sounder (Airs from NASA has  been conducted as well. Both simulation models show a

  12. Improvements to the WRF-Chem 3.5.1 model for quasi-hemispheric simulations of aerosols and ozone in the Arctic

    Directory of Open Access Journals (Sweden)

    L. Marelle

    2017-10-01

    Full Text Available In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols (1 a correction to the sedimentation of aerosols, (2 dimethyl sulfide (DMS oceanic emissions and gas-phase chemistry, (3 an improved representation of the dry deposition of trace gases over seasonal snow, and (4 an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5 correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6 couple and further test the recent KF-CuP (Kain–Fritsch + Cumulus Potential cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC, sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone, the improved surface temperatures over sea ice (surface ozone, BC, and sulfate, and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone. DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.

  13. A Reactive Transport Model for Marcellus Shale Weathering

    Science.gov (United States)

    Li, L.; Heidari, P.; Jin, L.; Williams, J.; Brantley, S.

    2017-12-01

    Shale formations account for 25% of the land surface globally. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil chemistry and water data. The simulation was carried out for 10,000 years, assuming bedrock weathering and soil genesis began right after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1,000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small with the presence of soil CO2. The field observations were only simulated successfully when the specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals, reflecting the lack of accessibility of fluids to mineral surfaces and potential surface coating. An increase in the water infiltration rate enhanced weathering by removing dissolution products and maintaining far-from-equilibrium conditions. We conclude that availability of reactive surface area and transport of H2O and gases are the most important

  14. Turbulence Dissipation Rates in the Planetary Boundary Layer from Wind Profiling Radars and Mesoscale Numerical Weather Prediction Models during WFIP2

    Science.gov (United States)

    Bianco, L.; McCaffrey, K.; Wilczak, J. M.; Olson, J. B.; Kenyon, J.

    2016-12-01

    When forecasting winds at a wind plant for energy production, the turbulence parameterizations in the forecast models are crucial for understanding wind plant performance. Recent research shows that the turbulence (eddy) dissipation rate in planetary boundary layer (PBL) parameterization schemes introduces significant uncertainty in the Weather Research and Forecasting (WRF) model. Thus, developing the capability to measure dissipation rates in the PBL will allow for identification of weaknesses in, and improvements to the parameterizations. During a preliminary field study at the Boulder Atmospheric Observatory in spring 2015, a 915-MHz wind profiling radar (WPR) measured dissipation rates concurrently with sonic anemometers mounted on a 300-meter tower. WPR set-up parameters (e.g., spectral resolution), post-processing techniques (e.g., filtering for non-atmospheric signals), and spectral averaging were optimized to capture the most accurate Doppler spectra for measuring spectral widths for use in the computation of the eddy dissipation rates. These encouraging results lead to the implementation of the observing strategy on a 915-MHz WPR in Wasco, OR, operating as part of the Wind Forecasting Improvement Project 2 (WFIP2). These observations are compared to dissipation rates calculated from the High-Resolution Rapid Refresh model, a WRF-based mesoscale numerical weather prediction model run for WFIP2 at 3000 m horizontal grid spacing and with a nest, which has 750-meter horizontal grid spacing, in the complex terrain region of the Columbia River Gorge. The observed profiles of dissipation rates are used to evaluate the PBL parameterization schemes used in the HRRR model, which are based on the modeled turbulent kinetic energy and a tunable length scale.

  15. Atlas : A library for numerical weather prediction and climate modelling

    Science.gov (United States)

    Deconinck, Willem; Bauer, Peter; Diamantakis, Michail; Hamrud, Mats; Kühnlein, Christian; Maciel, Pedro; Mengaldo, Gianmarco; Quintino, Tiago; Raoult, Baudouin; Smolarkiewicz, Piotr K.; Wedi, Nils P.

    2017-11-01

    The algorithms underlying numerical weather prediction (NWP) and climate models that have been developed in the past few decades face an increasing challenge caused by the paradigm shift imposed by hardware vendors towards more energy-efficient devices. In order to provide a sustainable path to exascale High Performance Computing (HPC), applications become increasingly restricted by energy consumption. As a result, the emerging diverse and complex hardware solutions have a large impact on the programming models traditionally used in NWP software, triggering a rethink of design choices for future massively parallel software frameworks. In this paper, we present Atlas, a new software library that is currently being developed at the European Centre for Medium-Range Weather Forecasts (ECMWF), with the scope of handling data structures required for NWP applications in a flexible and massively parallel way. Atlas provides a versatile framework for the future development of efficient NWP and climate applications on emerging HPC architectures. The applications range from full Earth system models, to specific tools required for post-processing weather forecast products. The Atlas library thus constitutes a step towards affordable exascale high-performance simulations by providing the necessary abstractions that facilitate the application in heterogeneous HPC environments by promoting the co-design of NWP algorithms with the underlying hardware.

  16. Evaluation of weather-based rice yield models in India

    Science.gov (United States)

    Sudharsan, D.; Adinarayana, J.; Reddy, D. Raji; Sreenivas, G.; Ninomiya, S.; Hirafuji, M.; Kiura, T.; Tanaka, K.; Desai, U. B.; Merchant, S. N.

    2013-01-01

    The objective of this study was to compare two different rice simulation models—standalone (Decision Support System for Agrotechnology Transfer [DSSAT]) and web based (SImulation Model for RIce-Weather relations [SIMRIW])—with agrometeorological data and agronomic parameters for estimation of rice crop production in southern semi-arid tropics of India. Studies were carried out on the BPT5204 rice variety to evaluate two crop simulation models. Long-term experiments were conducted in a research farm of Acharya N G Ranga Agricultural University (ANGRAU), Hyderabad, India. Initially, the results were obtained using 4 years (1994-1997) of data with weather parameters from a local weather station to evaluate DSSAT simulated results with observed values. Linear regression models used for the purpose showed a close relationship between DSSAT and observed yield. Subsequently, yield comparisons were also carried out with SIMRIW and DSSAT, and validated with actual observed values. Realizing the correlation coefficient values of SIMRIW simulation values in acceptable limits, further rice experiments in monsoon (Kharif) and post-monsoon (Rabi) agricultural seasons (2009, 2010 and 2011) were carried out with a location-specific distributed sensor network system. These proximal systems help to simulate dry weight, leaf area index and potential yield by the Java based SIMRIW on a daily/weekly/monthly/seasonal basis. These dynamic parameters are useful to the farming community for necessary decision making in a ubiquitous manner. However, SIMRIW requires fine tuning for better results/decision making.

  17. A Dynamical Downscaling study over the Great Lakes Region Using WRF-Lake: Historical Simulation

    Science.gov (United States)

    Xiao, C.; Lofgren, B. M.

    2014-12-01

    As the largest group of fresh water bodies on Earth, the Laurentian Great Lakes have significant influence on local and regional weather and climate through their unique physical features compared with the surrounding land. Due to the limited spatial resolution and computational efficiency of general circulation models (GCMs), the Great Lakes are geometrically ignored or idealized into several grid cells in GCMs. Thus, the nested regional climate modeling (RCM) technique, known as dynamical downscaling, serves as a feasible solution to fill the gap. The latest Weather Research and Forecasting model (WRF) is employed to dynamically downscale the historical simulation produced by the Geophysical Fluid Dynamics Laboratory-Coupled Model (GFDL-CM3) from 1970-2005. An updated lake scheme originated from the Community Land Model is implemented in the latest WRF version 3.6. It is a one-dimensional mass and energy balance scheme with 20-25 model layers, including up to 5 snow layers on the lake ice, 10 water layers, and 10 soil layers on the lake bottom. The lake scheme is used with actual lake points and lake depth. The preliminary results show that WRF-Lake model, with a fine horizontal resolution and realistic lake representation, provides significantly improved hydroclimates, in terms of lake surface temperature, annual cycle of precipitation, ice content, and lake-effect snowfall. Those improvements suggest that better resolution of the lakes and the mesoscale process of lake-atmosphere interaction are crucial to understanding the climate and climate change in the Great Lakes region.

  18. WRF Simulation over the Eastern Africa by use of Land Surface Initialization

    Science.gov (United States)

    Sakwa, V. N.; Case, J.; Limaye, A. S.; Zavodsky, B.; Kabuchanga, E. S.; Mungai, J.

    2014-12-01

    The East Africa region experiences severe weather events associated with hazards of varying magnitude. It receives heavy precipitation which leads to wide spread flooding and lack of sufficient rainfall in some parts results into drought. Cases of flooding and drought are two key forecasting challenges for the Kenya Meteorological Service (KMS). The source of heat and moisture depends on the state of the land surface which interacts with the boundary layer of the atmosphere to produce excessive precipitation or lack of it that leads to severe drought. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface within weakly-sheared environments, such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in numerical weather prediction models. Improved modeling capabilities within the region have the potential to enhance forecast guidance in support of daily operations and high-impact weather over East Africa. KMS currently runs a configuration of the Weather Research and Forecasting (WRF) model in real time to support its daily forecasting operations, invoking the Non-hydrostatic Mesoscale Model (NMM) dynamical core. They make use of the National Oceanic and Atmospheric Administration / National Weather Service Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the WRF-NMM model runs on a 7-km regional grid over Eastern Africa.SPoRT and SERVIR provide land surface initialization datasets and model verification tool. The NASA Land Information System (LIS) provide real-time, daily soil initialization data in place of interpolated Global Forecast System soil moisture and temperature data. Model verification is done using the Model Evaluation Tools (MET) package, in order

  19. A Product Development Decision Model for Cockpit Weather Information Systems

    Science.gov (United States)

    Sireli, Yesim; Kauffmann, Paul; Gupta, Surabhi; Kachroo, Pushkin

    2003-01-01

    There is a significant market demand for advanced cockpit weather information products. However, it is unclear how to identify the most promising technological options that provide the desired mix of consumer requirements by employing feasible technical systems at a price that achieves market success. This study develops a unique product development decision model that employs Quality Function Deployment (QFD) and Kano's model of consumer choice. This model is specifically designed for exploration and resolution of this and similar information technology related product development problems.

  20. A Product Development Decision Model for Cockpit Weather Information System

    Science.gov (United States)

    Sireli, Yesim; Kauffmann, Paul; Gupta, Surabhi; Kachroo, Pushkin; Johnson, Edward J., Jr. (Technical Monitor)

    2003-01-01

    There is a significant market demand for advanced cockpit weather information products. However, it is unclear how to identify the most promising technological options that provide the desired mix of consumer requirements by employing feasible technical systems at a price that achieves market success. This study develops a unique product development decision model that employs Quality Function Deployment (QFD) and Kano's model of consumer choice. This model is specifically designed for exploration and resolution of this and similar information technology related product development problems.

  1. High-resolution WRF-LES simulations for real episodes: A case study for prealpine terrain

    Science.gov (United States)

    Hald, Cornelius; Mauder, Matthias; Laux, Patrick; Kunstmann, Harald

    2017-04-01

    While in most large or regional scale weather and climate models turbulence is parametrized, LES (Large Eddy Simulation) allows for the explicit modeling of turbulent structures in the atmosphere. With the exponential growth in available computing power the technique has become more and more applicable, yet it has mostly been used to model idealized scenarios. It is investigated how well WRF-LES can represent small scale weather patterns. The results are evaluated against different hydrometeorological measurements. We use WRF-LES to model the diurnal cycle for a 48 hour episode in summer over moderately complex terrain in southern Germany. The model setup uses a high resolution digital elevation model, land use and vegetation map. The atmospheric boundary conditions are set by reanalysis data. Schemes for radiation and microphysics and a land-surface model are employed. The biggest challenge in modeling arises from the high horizontal resolution of dx = 30m, since the subgrid-scale model then requires a vertical resolution dz ≈ 10m for optimal results. We observe model instabilities and present solutions like smoothing of the surface input data, careful positioning of the model domain and shortening of the model time step down to a twentieth of a second. Model results are compared to an array of various instruments including eddy covariance stations, LIDAR, RASS, SODAR, weather stations and unmanned aerial vehicles. All instruments are part of the TERENO pre-Alpine area and were employed in the orchestrated measurement campaign ScaleX in July 2015. Examination of the results show reasonable agreement between model and measurements in temperature- and moisture profiles. Modeled wind profiles are highly dependent on the vertical resolution and are in accordance with measurements only at higher wind speeds. A direct comparison of turbulence is made difficult by the purely statistical character of turbulent motions in the model.

  2. Contribution of lateral terrestrial water flows to the regional hydrological cycle: A joint soil-atmospheric moisture tagging procedure with WRF-Hydro

    Science.gov (United States)

    Arnault, Joel; Wei, Jianhui; Zhang, Zhenyu; Wagner, Sven; Kunstmann, Harald

    2017-04-01

    Water resources management requires an accurate knowledge of the behavior of the regional hydrological cycle components, including precipitation, evapotranspiration, river discharge and soil water storage. Atmospheric models such as the Weather Research and Forecasting (WRF) model provide a tool to evaluate these components. The main drawback of these atmospheric models, however, is that the terrestrial segment of the hydrological cycle is reduced to vertical infiltration, and that lateral terrestrial water flows are neglected. Recent model developments have focused on coupled atmospheric-hydrological modeling systems, such as WRF-hydro, in order to take into account subsurface, overland and river flow. The aim of this study is to investigate the contribution of lateral terrestrial water flows to the regional hydrological cycle, with the help of a joint soil-atmospheric moisture tagging procedure. This procedure is the extended version of an existing atmospheric moisture tagging method developed in WRF and WRF-Hydro (Arnault et al. 2017). It is used to quantify the partitioning of precipitation into water stored in the soil, runoff, evapotranspiration, and potentially subsequent precipitation through regional recycling. An application to a high precipitation event on 23 June 2009 in the upper Danube river basin, Germany and Austria, is presented. Precipitating water during this day is tagged for the period 2009-2011. Its contribution to runoff and evapotranspiration decreases with time, but is still not negligible in the summer 2011. At the end of the study period, less than 5 % of the precipitating water on 23 June 2009 remains in the soil. The additionally resolved lateral terrestrial water flows in WRF-Hydro modify the partitioning between surface and underground runoff, in association with a slight increase of evapotranspiration and recycled precipitation. Reference: Arnault, J., R. Knoche, J. Wei, and H. Kunstmann (2016), Evaporation tagging and atmospheric

  3. Assessing uncertainty and sensitivity of model parameterizations and parameters in WRF affecting simulated surface fluxes and land-atmosphere coupling over the Amazon region

    Science.gov (United States)

    Qian, Y.; Wang, C.; Huang, M.; Berg, L. K.; Duan, Q.; Feng, Z.; Shrivastava, M. B.; Shin, H. H.; Hong, S. Y.

    2016-12-01

    This study aims to quantify the relative importance and uncertainties of different physical processes and parameters in affecting simulated surface fluxes and land-atmosphere coupling strength over the Amazon region. We used two-legged coupling metrics, which include both terrestrial (soil moisture to surface fluxes) and atmospheric (surface fluxes to atmospheric state or precipitation) legs, to diagnose the land-atmosphere interaction and coupling strength. Observations made using the Department of Energy's Atmospheric Radiation Measurement (ARM) Mobile Facility during the GoAmazon field campaign together with satellite and reanalysis data are used to evaluate model performance. To quantify the uncertainty in physical parameterizations, we performed a 120 member ensemble of simulations with the WRF model using a stratified experimental design including 6 cloud microphysics, 3 convection, 6 PBL and surface layer, and 3 land surface schemes. A multiple-way analysis of variance approach is used to quantitatively analyze the inter- and intra-group (scheme) means and variances. To quantify parameter sensitivity, we conducted an additional 256 WRF simulations in which an efficient sampling algorithm is used to explore the multiple-dimensional parameter space. Three uncertainty quantification approaches are applied for sensitivity analysis (SA) of multiple variables of interest to 20 selected parameters in YSU PBL and MM5 surface layer schemes. Results show consistent parameter sensitivity across different SA methods. We found that 5 out of 20 parameters contribute more than 90% total variance, and first-order effects dominate comparing to the interaction effects. Results of this uncertainty quantification study serve as guidance for better understanding the roles of different physical processes in land-atmosphere interactions, quantifying model uncertainties from various sources such as physical processes, parameters and structural errors, and providing insights for

  4. Linking the M&Rfi Weather Generator with Agrometeorological Models

    Science.gov (United States)

    Dubrovsky, Martin; Trnka, Miroslav

    2015-04-01

    Realistic meteorological inputs (representing the present and/or future climates) for the agrometeorological model simulations are often produced by stochastic weather generators (WGs). This contribution presents some methodological issues and results obtained in our recent experiments. We also address selected questions raised in the synopsis of this session. The input meteorological time series for our experiments are produced by the parametric single site weather generator (WG) Marfi, which is calibrated from the available observational data (or interpolated from surrounding stations). To produce meteorological series representing the future climate, the WG parameters are modified by climate change scenarios, which are prepared by the pattern scaling method: the standardised scenarios derived from Global or Regional Climate Models are multiplied by the change in global mean temperature (ΔTG) determined by the simple climate model MAGICC. The presentation will address following questions: (i) The dependence of the quality of the synthetic weather series and impact results on the WG settings. An emphasis will be put on an effect of conditioning the daily WG on monthly WG (presently being one of our hot topics), which aims at improvement of the reproduction of the low-frequency weather variability. Comparison of results obtained with various WG settings is made in terms of climatic and agroclimatic indices (including extreme temperature and precipitation characteristics and drought indices). (ii) Our methodology accounts for the uncertainties coming from various sources. We will show how the climate change impact results are affected by 1. uncertainty in climate modelling, 2. uncertainty in ΔTG, and 3. uncertainty related to the complexity of the climate change scenario (focusing on an effect of inclusion of changes in variability into the climate change scenarios). Acknowledgements: This study was funded by project "Building up a multidisciplinary scientific

  5. Modeling Apple Surface Temperature Dynamics Based on Weather Data

    Directory of Open Access Journals (Sweden)

    Lei Li

    2014-10-01

    Full Text Available The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed was recorded for seven hours between 11:00–18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of “Fuji” apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  6. Modeling apple surface temperature dynamics based on weather data.

    Science.gov (United States)

    Li, Lei; Peters, Troy; Zhang, Qin; Zhang, Jingjin; Huang, Danfeng

    2014-10-27

    The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST) dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed) was recorded for seven hours between 11:00-18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of "Fuji" apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  7. Time series regression model for infectious disease and weather.

    Science.gov (United States)

    Imai, Chisato; Armstrong, Ben; Chalabi, Zaid; Mangtani, Punam; Hashizume, Masahiro

    2015-10-01

    Time series regression has been developed and long used to evaluate the short-term associations of air pollution and weather with mortality or morbidity of non-infectious diseases. The application of the regression approaches from this tradition to infectious diseases, however, is less well explored and raises some new issues. We discuss and present potential solutions for five issues often arising in such analyses: changes in immune population, strong autocorrelations, a wide range of plausible lag structures and association patterns, seasonality adjustments, and large overdispersion. The potential approaches are illustrated with datasets of cholera cases and rainfall from Bangladesh and influenza and temperature in Tokyo. Though this article focuses on the application of the traditional time series regression to infectious diseases and weather factors, we also briefly introduce alternative approaches, including mathematical modeling, wavelet analysis, and autoregressive integrated moving average (ARIMA) models. Modifications proposed to standard time series regression practice include using sums of past cases as proxies for the immune population, and using the logarithm of lagged disease counts to control autocorrelation due to true contagion, both of which are motivated from "susceptible-infectious-recovered" (SIR) models. The complexity of lag structures and association patterns can often be informed by biological mechanisms and explored by using distributed lag non-linear models. For overdispersed models, alternative distribution models such as quasi-Poisson and negative binomial should be considered. Time series regression can be used to investigate dependence of infectious diseases on weather, but may need modifying to allow for features specific to this context. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Comparing satellite SAR and wind farm wake models

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Vincent, P.; Husson, R.

    2015-01-01

    . These extend several tens of kilometres downwind e.g. 70 km. Other SAR wind maps show near-field fine scale details of wake behind rows of turbines. The satellite SAR wind farm wake cases are modelled by different wind farm wake models including the PARK microscale model, the Weather Research and Forecasting...... (WRF) model in high resolution and WRF with coupled microscale parametrization....

  9. A WRF-Chem model study of the impact of VOCs emission of a huge petro-chemical industrial zone on the summertime ozone in Beijing, China

    Science.gov (United States)

    Wei, Wei; Lv, Zhao Feng; Li, Yue; Wang, Li Tao; Cheng, Shuiyuan; Liu, Huan

    2018-02-01

    In China, petro-chemical manufacturing plants generally gather in the particular industrial zone defined as PIZ in some cities, and distinctly influence the air quality of these cities for their massive VOCs emissions. This study aims to quantify the local and regional impacts of PIZ VOCs emission and its relevant reduction policy on the surface ozone based on WRF-Chem model, through the case study of Beijing. Firstly, the model simulation under the actual precursors' emissions over Beijing region for July 2010 is conducted and evaluated, which meteorological and chemical predictions both within the thresholds for satisfactory model performance. Then, according to simulated H2O2/HNO3 ratio, the nature of photochemical ozone formation over Beijing is decided, the VOCs-sensitive regime over the urban areas, NOx-sensitive regime over the northern and western rural areas, and both VOCssbnd and NOx-mixed sensitive regime over the southern and eastern rural areas. Finally, a 30% VOCs reduction scenario (RS) and a 100% VOCs reduction scenario (ZS) for Beijing PIZ are additional simulated by WRF-Chem. The sensitivity simulations imply that the current 30% reduction policy would bring about an O3 increase in the southern and western areas (by +4.7 ppb at PIZ site and +2.1 ppb at LLH station), and an O3 decrease in the urban center (by -1.7 ppb at GY station and -2.5 ppb at DS station) and in the northern and eastern areas (by -1.2 ppb at MYX station), mainly through interfering with the circulation of atmospheric HOx radicals. While the contribution of the total VOCs emission of PIZ to ozone is greatly prominent in the PIZ and its surrounding areas along south-north direction (12.7% at PIZ site on average), but slight in the other areas of Beijing (<3% in other four stations on average).

  10. Parameterisation of sea and lake ice in numerical weather prediction models of the German Weather Service

    Directory of Open Access Journals (Sweden)

    Dmitrii Mironov

    2012-04-01

    Full Text Available A bulk thermodynamic (no rheology sea-ice parameterisation scheme for use in numerical weather prediction (NWP is presented. The scheme is based on a self-similar parametric representation (assumed shape of the evolving temperature profile within the ice and on the integral heat budget of the ice slab. The scheme carries ordinary differential equations (in time for the ice surface temperature and the ice thickness. The proposed sea-ice scheme is implemented into the NWP models GME (global and COSMO (limited-area of the German Weather Service. In the present operational configuration, the horizontal distribution of the sea ice is governed by the data assimilation scheme, no fractional ice cover within the GME/COSMO grid box is considered, and the effect of snow above the ice is accounted for through an empirical temperature dependence of the ice surface albedo with respect to solar radiation. The lake ice is treated similarly to the sea ice, except that freeze-up and break-up of lakes occurs freely, independent of the data assimilation. The sea and lake ice schemes (the latter is a part of the fresh-water lake parameterisation scheme FLake show a satisfactory performance in GME and COSMO. The ice characteristics are not overly sensitive to the details of the treatment of heat transfer through the ice layer. This justifies the use of a simplified but computationally efficient bulk approach to model the ice thermodynamics in NWP, where the ice surface temperature is a major concern whereas details of the temperature distribution within the ice are of secondary importance. In contrast to the details of the heat transfer through the ice, the cloud cover is of decisive importance for the ice temperature as it controls the radiation energy budget at the ice surface. This is particularly true for winter, when the long-wave radiation dominates the surface energy budget. During summer, the surface energy budget is also sensitive to the grid-box mean ice

  11. Forecasting Lightning Threat Using WRF Proxy Fields

    Science.gov (United States)

    McCaul, E. W., Jr.

    2010-01-01

    Objectives: Given that high-resolution WRF forecasts can capture the character of convective outbreaks, we seek to: 1. Create WRF forecasts of LTG threat (1-24 h), based on 2 proxy fields from explicitly simulated convection: - graupel flux near -15 C (captures LTG time variability) - vertically integrated ice (captures LTG threat area). 2. Calibrate each threat to yield accurate quantitative peak flash rate densities. 3. Also evaluate threats for areal coverage, time variability. 4. Blend threats to optimize results. 5. Examine sensitivity to model mesh, microphysics. Methods: 1. Use high-resolution 2-km WRF simulations to prognose convection for a diverse series of selected case studies. 2. Evaluate graupel fluxes; vertically integrated ice (VII). 3. Calibrate WRF LTG proxies using peak total LTG flash rate densities from NALMA; relationships look linear, with regression line passing through origin. 4. Truncate low threat values to make threat areal coverage match NALMA flash extent density obs. 5. Blend proxies to achieve optimal performance 6. Study CAPS 4-km ensembles to evaluate sensitivities.

  12. Simulated precipitation diurnal cycles over East Asia using different CAPE-based convective closure schemes in WRF model

    Science.gov (United States)

    Yang, Ben; Zhou, Yang; Zhang, Yaocun; Huang, Anning; Qian, Yun; Zhang, Lujun

    2018-03-01

    Closure assumption in convection parameterization is critical for reasonably modeling the precipitation diurnal variation in climate models. This study evaluates the precipitation diurnal cycles over East Asia during the summer of 2008 simulated with three convective available potential energy (CAPE) based closure assumptions, i.e. CAPE-relaxing (CR), quasi-equilibrium (QE), and free-troposphere QE (FTQE) and investigates the impacts of planetary boundary layer (PBL) mixing, advection, and radiation on the simulation by using the weather research and forecasting model. The sensitivity of precipitation diurnal cycle to PBL vertical resolution is also examined. Results show that the precipitation diurnal cycles simulated with different closures all exhibit large biases over land and the simulation with FTQE closure agrees best with observation. In the simulation with QE closure, the intensified PBL mixing after sunrise is responsible for the late-morning peak of convective precipitation, while in the simulation with FTQE closure, convective precipitation is mainly controlled by advection cooling. The relative contributions of different processes to precipitation formation are functions of rainfall intensity. In the simulation with CR closure, the dynamical equilibrium in the free troposphere still can be reached, implying the complex cause-effect relationship between atmospheric motion and convection. For simulations in which total CAPE is consumed for the closures, daytime precipitation decreases with increased PBL resolution because thinner model layer produces lower convection starting layer, leading to stronger downdraft cooling and CAPE consumption. The sensitivity of the diurnal peak time of precipitation to closure assumption can also be modulated by changes in PBL vertical resolution. The results of this study help us better understand the impacts of various processes on the precipitation diurnal cycle simulation.

  13. Impact of MODIS High-Resolution Sea-Surface Temperatures on WRF Forecasts at NWS Miami, FL

    Science.gov (United States)

    Case, Jonathan L.; LaCasse, Katherine M.; Dembek, Scott R.; Santos, Pablo; Lapenta, William M.

    2007-01-01

    Over the past few years,studies at the Short-term Prediction Research and Transition (SPoRT) Center have suggested that the use of Moderate Resolution Imaging Spectroradiometer (MODIS) composite sea-surface temperature (SST) products in regional weather forecast models can have a significant positive impact on short-term numerical weather prediction in coastal regions. The recent paper by LaCasse et al. (2007, Monthly Weather Review) highlights lower atmospheric differences in regional numerical simulations over the Florida offshore waters using 2-km SST composites derived from the MODIS instrument aboard the polar-orbiting Aqua and Terra Earth Observing System satellites. To help quantify the value of this impact on NWS Weather Forecast Offices (WFOs), the SPoRT Center and the NWS WFO at Miami, FL (MIA) are collaborating on a project to investigate the impact of using the high-resolution MODIS SST fields within the Weather Research and Forecasting (WRF) prediction system. The scientific hypothesis being tested is: More accurate specification of the lower-boundary forcing within WRF will result in improved land/sea fluxes and hence, more accurate evolution of coastal mesoscale circulations and the associated sensible weather elements. The NWS MIA is currently running the WRF system in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software; The EMS is a standalone modeling system capable of downloading the necessary daily datasets, and initializing, running and displaying WRF forecasts in the NWS Advanced Weather Interactive Processing System (AWIPS) with little intervention required by forecasters. Twenty-seven hour forecasts are run daily with start times of 0300,0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and the far

  14. Traffic analysis toolbox volume XI : weather and traffic analysis, modeling and simulation.

    Science.gov (United States)

    2010-12-01

    This document presents a weather module for the traffic analysis tools program. It provides traffic engineers, transportation modelers and decisions makers with a guide that can incorporate weather impacts into transportation system analysis and mode...

  15. An Iberian climatology of solar radiation obtained from WRF regional climate simulations for 1950–2010 period

    KAUST Repository

    Perdigão, João

    2017-08-15

    The mesoscale Weather Research and Forecasting (WRF) Model is used over the Iberian Peninsula to generate 60years (1950–2010) of climate data, at 5km resolution, in order to evaluate and characterize the incident shortwave downward radiation at the surface (SW↓), in present climate.The simulated values of SW↓ in the period 2000–2009 were compared with data measured in Spanish and Portuguese meteorological stations before and a statistical BIAS correction was applied using data from Clouds and the Earth\\'s Radiant Energy System (CERES), on board four different satellites. The spatial and temporal comparison between WRF results and observations show a good agreement for the analyzed period, although the model overestimates observations. This overestimation has a mean normalized bias of about 7% after BIAS correction (or 17% for original WRF output). Additionally, the present simulation was confronted against another previously validated WRF simulation performed with different resolution and set of parametrizations, showing comparable results. WRF adequately reproduces the observational features of SW↓ with correlation coefficients above 0.8 in annual and seasonal basis.60years of simulated SW↓ over the Iberian Peninsula were produced, which showed annual mean values that range from 130W/m2, in the northern regions, to a maximum of around 230W/m2 in the southeast of the Iberian Peninsula (IP). SW↓ over IP shows a positive gradient from north to south and from west to east, with local effects influenced by topography and distance to the coast.The analysis of the simulated cloud fraction indicates that clear sky days are found in >30% of the period at the southern area of IP, particularly in the Algarve (Portugal) and Andalusia (Spain), and this value increases significantly in the summer season for values above 80%.

  16. An Iberian climatology of solar radiation obtained from WRF regional climate simulations for 1950-2010 period

    Science.gov (United States)

    Perdigão, João; Salgado, Rui; Magarreiro, Clarisse; Soares, Pedro M. M.; Costa, Maria João; Dasari, Hari Prasad

    2017-12-01

    The mesoscale Weather Research and Forecasting (WRF) Model is used over the Iberian Peninsula to generate 60 years (1950-2010) of climate data, at 5 km resolution, in order to evaluate and characterize the incident shortwave downward radiation at the surface (SW ↓), in present climate. The simulated values of SW ↓ in the period 2000-2009 were compared with data measured in Spanish and Portuguese meteorological stations before and a statistical BIAS correction was applied using data from Clouds and the Earth's Radiant Energy System (CERES), on board four different satellites. The spatial and temporal comparison between WRF results and observations show a good agreement for the analyzed period, although the model overestimates observations. This overestimation has a mean normalized bias of about 7% after BIAS correction (or 17% for original WRF output). Additionally, the present simulation was confronted against another previously validated WRF simulation performed with different resolution and set of parametrizations, showing comparable results. WRF adequately reproduces the observational features of SW ↓ with correlation coefficients above 0.8 in annual and seasonal basis. 60 years of simulated SW ↓ over the Iberian Peninsula were produced, which showed annual mean values that range from 130 W/m2, in the northern regions, to a maximum of around 230 W/m2 in the southeast of the Iberian Peninsula (IP). SW ↓ over IP shows a positive gradient from north to south and from west to east, with local effects influenced by topography and distance to the coast. The analysis of the simulated cloud fraction indicates that clear sky days are found in > 30% of the period at the southern area of IP, particularly in the Algarve (Portugal) and Andalusia (Spain), and this value increases significantly in the summer season for values above 80%.

  17. An Iberian climatology of solar radiation obtained from WRF regional climate simulations for 1950–2010 period

    KAUST Repository

    Perdigã o, Joã o; Salgado, Rui; Magarreiro, Clarisse; Soares, Pedro M.M.; Costa, Maria Joã o; Dasari, Hari Prasad

    2017-01-01

    The mesoscale Weather Research and Forecasting (WRF) Model is used over the Iberian Peninsula to generate 60years (1950–2010) of climate data, at 5km resolution, in order to evaluate and characterize the incident shortwave downward radiation at the surface (SW↓), in present climate.The simulated values of SW↓ in the period 2000–2009 were compared with data measured in Spanish and Portuguese meteorological stations before and a statistical BIAS correction was applied using data from Clouds and the Earth's Radiant Energy System (CERES), on board four different satellites. The spatial and temporal comparison between WRF results and observations show a good agreement for the analyzed period, although the model overestimates observations. This overestimation has a mean normalized bias of about 7% after BIAS correction (or 17% for original WRF output). Additionally, the present simulation was confronted against another previously validated WRF simulation performed with different resolution and set of parametrizations, showing comparable results. WRF adequately reproduces the observational features of SW↓ with correlation coefficients above 0.8 in annual and seasonal basis.60years of simulated SW↓ over the Iberian Peninsula were produced, which showed annual mean values that range from 130W/m2, in the northern regions, to a maximum of around 230W/m2 in the southeast of the Iberian Peninsula (IP). SW↓ over IP shows a positive gradient from north to south and from west to east, with local effects influenced by topography and distance to the coast.The analysis of the simulated cloud fraction indicates that clear sky days are found in >30% of the period at the southern area of IP, particularly in the Algarve (Portugal) and Andalusia (Spain), and this value increases significantly in the summer season for values above 80%.

  18. Application of WRF/Chem over the Continental U.S. under the AQMEII Phase II: Part 2. Evaluation of 2010 Application and Responses of Air Quality and Meteorology-Chemistry Interactions to Changes in Emissions and Meteorology from 2006 to 2010

    Science.gov (United States)

    The Weather Research and Forecasting model with Chemistry (WRF/Chem) simulation with the 2005 Carbon Bond (CB05) gas-phase mechanism coupled to the Modal for Aerosol Dynamics for Europe (MADE) and the Volatility Basis Set (VBS) approach for secondary organic aerosol (SOA) (MADE/V...

  19. The origins of computer weather prediction and climate modeling

    International Nuclear Information System (INIS)

    Lynch, Peter

    2008-01-01

    Numerical simulation of an ever-increasing range of geophysical phenomena is adding enormously to our understanding of complex processes in the Earth system. The consequences for mankind of ongoing climate change will be far-reaching. Earth System Models are capable of replicating climate regimes of past millennia and are the best means we have of predicting the future of our climate. The basic ideas of numerical forecasting and climate modeling were developed about a century ago, long before the first electronic computer was constructed. There were several major practical obstacles to be overcome before numerical prediction could be put into practice. A fuller understanding of atmospheric dynamics allowed the development of simplified systems of equations; regular radiosonde observations of the free atmosphere and, later, satellite data, provided the initial conditions; stable finite difference schemes were developed; and powerful electronic computers provided a practical means of carrying out the prodigious calculations required to predict the changes in the weather. Progress in weather forecasting and in climate modeling over the past 50 years has been dramatic. In this presentation, we will trace the history of computer forecasting through the ENIAC integrations to the present day. The useful range of deterministic prediction is increasing by about one day each decade, and our understanding of climate change is growing rapidly as Earth System Models of ever-increasing sophistication are developed

  20. Weather regimes in past climate atmospheric general circulation model simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kageyama, M.; Ramstein, G. [CEA Saclay, Gif-sur-Yvette (France). Lab. des Sci. du Climat et de l' Environnement; D' Andrea, F.; Vautard, R. [Laboratoire de Meteorologie Dynamique, Ecole Normale Superieure, Paris (France); Valdes, P.J. [Department of Meteorology, University of Reading (United Kingdom)

    1999-10-01

    We investigate the climates of the present-day, inception of the last glaciation (115000 y ago) and last glacial maximum (21000 y ago) in the extratropical north Atlantic and Europe, as simulated by the laboratoire de Meteorologie dynamique atmospheric general circulation model. We use these simulations to investigate the low-frequency variability of the model in different climates. The aim is to evaluate whether changes in the intraseasonal variability, which we characterize using weather regimes, can help describe the impact of different boundary conditions on climate and give a better understanding of climate change processes. Weather regimes are defined as the most recurrent patterns in the 500 hPa geopotential height, using a clustering algorithm method. The regimes found in the climate simulations of the present-day and inception of the last glaciation are similar in their number and their structure. It is the regimes' populations which are found to be different for these climates, with an increase of the model's blocked regime and a decrease in the zonal regime at the inception of the last glaciation. This description reinforces the conclusions from a study of the differences between the climatological averages of the different runs and confirms the northeastward shift to the tail of the Atlantic storm-track, which would favour more precipitation over the site of growth of the Fennoscandian ice-sheet. On the other hand, the last glacial maximum results over this sector are not found to be classifiable, showing that the change in boundary conditions can be responsible for severe changes in the weather regime and low-frequency dynamics. The LGM Atlantic low-frequency variability appears to be dominated by a large-scale retrogressing wave with a period 40 to 50 days. (orig.)

  1. Operational forecast products and applications based on WRF/Chem

    Science.gov (United States)

    Hirtl, Marcus; Flandorfer, Claudia; Langer, Matthias; Mantovani, Simone; Olefs, Marc; Schellander-Gorgas, Theresa

    2015-04-01

    The responsibilities of the national weather service of Austria (ZAMG) include the support of the federal states and the public in questions connected to the protection of the environment in the frame of advisory and counseling services as well as expert opinions. The ZAMG conducts daily Air-Quality forecasts using the on-line coupled model WRF/Chem. The mother domain expands over Europe, North Africa and parts of Russia. The nested domain includes the alpine region and has a horizontal resolution of 4 km. Local emissions (Austria) are used in combination with European inventories (TNO and EMEP) for the simulations. The modeling system is presented and the results from the evaluation of the assimilation of pollutants using the 3D-VAR software GSI is shown. Currently observational data (PM10 and O3) from the Austrian Air-Quality network and from European stations (EEA) are assimilated into the model on an operational basis. In addition PM maps are produced using Aerosol Optical Thickness (AOT) observations from MODIS in combination with model data using machine learning techniques. The modeling system is operationally evaluated with different data sets. The emphasis of the application is on the forecast of pollutants which are compared to the hourly values (PM10, O3 and NO2) of the Austrian Air-Quality network. As the meteorological conditions are important for transport and chemical processes, some parameters like wind and precipitation are automatically evaluated (SAL diagrams, maps, …) with other models (e.g. ECMWF, AROME, …) and ground stations via web interface. The prediction of the AOT is also important for operators of solar power plants. In the past Numerical Weather Prediction (NWP) models were used to predict the AOT based on cloud forecasts at the ZAMG. These models do not consider the spatial and temporal variation of the aerosol distribution in the atmosphere with a consequent impact on the accuracy of forecasts especially during clear-sky days

  2. The effect of different weather data sets and their resolution on climate-based daylight modelling

    DEFF Research Database (Denmark)

    Iversen, A; Svendsen, Svend; Nielsen, Toke Rammer

    2013-01-01

    Climate-based daylight modelling is based on the available weather data, which means that the weather data used as input to the daylight simulations are of great importance. In this paper, the effect on the outcome of the daylight simulations of using one weather data file rather than another...

  3. "Application, evaluation and sensitivity analysis of the coupled WRF-CMAQ system from regional to urban scales"

    Science.gov (United States)

    Appel, W.; Gilliam, R. C.; Mathur, R.; Roselle, S. J.; Pleim, J. E.; Hogrefe, C.; Pouliot, G.

    2017-12-01

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science chemical transport model (CTM) capable of simulating the emission, transport and fate of numerous air pollutants. Similarly, the Weather Research and Forecasting (WRF) model is a state-of-the-science meteorological model capable of simulating meteorology at many scales (e.g. global to urban). The coupled WRF-CMAQ system integrates these two models in a "two-way" configuration which allows feedback effects between the chemical (e.g. aerosols) and physical (e.g. solar radiation) states of the atmosphere. In addition, the coupled modeling system allows for more frequent communication between the CTM and meteorological model than is typically done in uncoupled WRF-CMAQ simulations. The goal of this modeling exercise is to assess the ability of the coupled WRF-CMAQ system at fine-scales (e.g. 4km to 1km) through comparison with high space and time resolution field measurements, and comparing those results to the traditional regional scale (e.g. 12km) simulation. This work will specifically examine several fine-scale simulations over the Eastern United States and the Baltimore, MD/Washington D.C. region for 2011, with special emphasis on the period of the DISCOVERAQ field campaign. In addition to evaluating the model performance at the various scales, the impact of the more frequent time coupling of the CTM and meteorology, aerosol feedback effects and lightning generated NO at the finer spatial resolutions will be assessed. The effect of simulating sub-grid clouds using several different options (i.e. explicit, parameterized or assimilated) will also be examined, since clouds are particularly important as they can have a large impact on both the meteorology (beyond the clouds themselves) and air quality, and are notoriously difficult to simulate accurately.

  4. Modeling the weather impact on aviation in a global air traffic model

    Science.gov (United States)

    Himmelsbach, S.; Hauf, T.; Rokitansky, C. H.

    2009-09-01

    Weather has a strong impact on aviation safety and efficiency. For a better understanding of that impact, especially of thunderstorms and similar other severe hazards, we pursued a modeling approach. We used the detailed simulation software (NAVSIM) of worldwide air traffic, developed by Rokitansky [Eurocontrol, 2005] and implemented a specific weather module. NAVSIM models each aircraft with its specific performance characteristics separately along preplanned and prescribed routes. The specific weather module in its current version simulates a thunderstorm as an impenetrable 3D object, which forces an aircraft to circumvent the latter. We refer to that object in general terms as a weather object. The Cb-weather object, as a specific weather object, is a heuristic model of a real thunderstorm, with its characteristics based on actually observed satellite and precipitation radar data. It is comprised of an upper volume, mostly the anvil, and a bottom volume, the up- and downdrafts and the lower outflow area [Tafferner and Forster, 2009; Kober and Tafferner 2009; Zinner et al, 2008]. The Cb-weather object is already implemented in NAVSIM, other weather objects like icing and turbulence will follow. This combination of NAVSIM with a weather object allows a detailed investigation of situations where conflicts exist between planned flight routes and adverse weather. The first objective is to simulate the observed circum-navigation in NAVSIM. Real occurring routes will be compared with simulated ones. Once this has successfully completed, NAVSIM offers a platform to assess existing rules and develop more efficient strategies to cope with adverse weather. An overview will be given over the implementation status of weather objects within NAVSIM and first results will be presented. Cb-object data provision by A. Tafferner, C. Forster, T. Zinner, K. Kober, M. Hagen (DLR Oberpfaffenhofen) is greatly acknowledged. References: Eurocontrol, VDL Mode 2 Capacity Analysis through

  5. Impacts of updated green vegetation fraction data on WRF simulations of the 2006 European heat wave

    Science.gov (United States)

    Refslund, J.; Dellwik, E.; Hahmann, A. N.; Barlage, M. J.; Boegh, E.

    2012-12-01

    Climate change studies suggest an increase in heat wave occurrences over Europe in the coming decades. Extreme events with excessive heat and associated drought will impact vegetation growth and health and lead to alterations in the partitioning of the surface energy. In this study, the atmospheric conditions during the heat wave year 2006 over Europe were simulated using the Weather Research and Forecasting (WRF) model. To account for the drought effects on the vegetation, new high-resolution green vegetation fraction (GVF) data were developed for the domain using NDVI data from MODIS satellite observations. Many empirical relationships exist to convert NDVI to GVF and both a linear and a quadratic formulation were evaluated. The new GVF product has a spatial resolution of 1 km2 and a temporal resolution of 8 days. To minimize impacts from low-quality satellite retrievals in the NDVI series, as well as for comparison with the default GVF climatology in WRF, a new background climatology using 10 recent years of observations was also developed. The annual time series of the new GVF climatology was compared to the default WRF GVF climatology at 18 km2 grid resolution for the most common land use classes in the European domain. The new climatology generally has higher GVF levels throughout the year, in particular an extended autumnal growth season. Comparison of 2006 GVF with the climatology clearly indicates vegetation stresses related to heat and drought. The GVF product based on a quadratic NDVI relationship shows the best agreement with the magnitude and annual range of the default input data, in addition to including updated seasonality for various land use classes. The new GVF products were tested in WRF and found to work well for the spring of 2006 where the difference between the default and new GVF products was small. The WRF 2006 heat wave simulations were verified by comparison with daily gridded observations of mean, minimum and maximum temperature and

  6. Combining weather radar nowcasts and numerical weather prediction models to estimate short-term quantitative precipitation and uncertainty

    DEFF Research Database (Denmark)

    Jensen, David Getreuer

    The topic of this Ph.D. thesis is short term forecasting of precipitation for up to 6 hours called nowcasts. The focus is on improving the precision of deterministic nowcasts, assimilation of radar extrapolation model (REM) data into Danish Meteorological Institutes (DMI) HIRLAM numerical weather...

  7. High Resolution Forecasting System for Mountain area based on KLAPS-WRF

    Science.gov (United States)

    Chun, Ji Min; Rang Kim, Kyu; Lee, Seon-Yong; Kang, Wee Soo; Park, Jong Sun; Yi, Chae Yeon; Choi, Young-jean; Park, Eun Woo; Hong, Soon Sung; Jung, Hyun-Sook

    2013-04-01

    This paper reviews the results of recent observations and simulations on the thermal belt and cold air drainage, which are outstanding in local climatic phenomena in mountain areas. In a mountain valley, cold air pool and thermal belt were simulated with the Weather and Research Forecast (WRF) model and the Korea Local Analysis and Prediction System (KLAPS) to determine the impacts of planetary boundary layer (PBL) schemes and topography resolution on model performance. Using the KLAPS-WRF models, an information system was developed for 12 hour forecasting of cold air damage in orchard. This system was conducted on a three level nested grid from 1 km to 111 m horizontal resolution. Results of model runs were verified by the data from automated weather stations, which were installed at twelve sites in a valley at Yeonsuri, Yangpyeonggun, Gyeonggido to measure temperature and wind speed and direction during March to May 2012. The potential of the numerical model to simulate these local features was found to be dependent on the planetary boundary layer schemes. Statistical verification results indicate that Mellor-Yamada-Janjic (MYJ) PBL scheme was in good agreement with night time temperature, while the no-PBL scheme produced predictions similar to the day time temperature observation. Although the KLAPS-WRF system underestimates temperature in mountain areas and overestimates wind speed, it produced an accurate description of temperature, with an RMSE of 1.67 ˚C in clear daytime. Wind speed and direction were not forecasted well in precision (RMSE: 5.26 m/s and 10.12 degree). It might have been caused by the measurement uncertainty and spatial variability. Additionally, the performance of KLAPS-WRF was performed to evaluate for different terrain resolution: Topography data were improved from USGS (United States Geological Survey) 30" to NGII (National Geographic Information Institute) 10 m. The simulated results were quantitatively compared to observations and

  8. A WRF sensitivity study for summer ozone and winter PM events in California

    Science.gov (United States)

    Zhao, Z.; Chen, J.; Mahmud, A.; Di, P.; Avise, J.; DaMassa, J.; Kaduwela, A. P.

    2014-12-01

    Elevated summer ozone and winter PM frequently occur in the San Joaquin Valley (SJV) and the South Coast Air Basin (SCAB) in California. Meteorological conditions, such as wind, temperature and planetary boundary layer height (PBLH) play crucial roles in these air pollution events. Therefore, accurate representation of these fields from a meteorological model is necessary to successfully reproduce these air pollution events in subsequent air quality model simulations. California's complex terrain and land-sea interface can make it challenging for meteorological models to replicate the atmospheric conditions over the SJV and SCAB during extreme pollution events. In this study, the performance of the Weather Research and Forecasting Model (WRF) over these two regions for a summer month (July 2012) and a winter month (January 2013) is evaluated with different model configurations and forcing. Different land surface schemes (Pleim-Xiu vs. hybrid scheme), the application of observational and soil nudging, two SST datasets (the Global Ocean Data Assimilation Experiment (GODAE) SST vs. the default SST from North American Regional Reanalysis (NARR) reanalysis), and two land use datasets (the National Land Cover Data (NLCD) 2006 40-category vs. USGS 24-category land use data) have been tested. Model evaluation will focus on both surface and vertical profiles for wind, temperature, relative humidity, as well as PBLH. Sensitivity of the Community Multi-scale Air Quality Model (CMAQ) results to different WRF configurations will also be presented and discussed.

  9. A characterisation of sea-breeze events in the eastern Cantabrian coast (Spain) from observational data and WRF simulations

    Science.gov (United States)

    Arrillaga, Jon A.; Yagüe, Carlos; Sastre, Mariano; Román-Cascón, Carlos

    2016-11-01

    The behaviour of the sea breeze along the north coast of Spain is investigated using observations of two topographically contrasting sites together with simulations from the Weather Research and Forecasting (WRF) model. An objective and systematic selection method is used to detect sea-breeze days from a database of two summer months. The direction and intensity of the sea breeze are significantly affected by the topography of the area; indeed, the estimated sea-breeze intensity shows an opposite relationship with the cross-shore temperature gradient for both sites. WRF simulations reproduce the onset of the sea breeze, but some characteristics are not adequately simulated: they generally overestimate the wind speed, smooth the temperature evolution and they do not represent the correct interaction with the terrain-induced flows. Additionally, four sensitivity experiments are performed with the WRF model varying the Planetary Boundary Layer (PBL) scheme, as well as the grid analysis nudging for an anomalous case study which is incorrectly filtered. As the two simulations considering nudging reproduce an unreal (not observed) sea breeze, this day turns out to be of great interest: it allows to evaluate the influence of the passage of the sea-breeze front (SBF) in other variables mainly related to turbulence. Furthermore, the best model scores are obtained for the PBL scheme that does not use a TKE closure.

  10. A WRF/Chem sensitivity study using ensemble modelling for a high ozone episode in Slovenia and the Northern Adriatic area

    Science.gov (United States)

    Žabkar, Rahela; Koračin, Darko; Rakovec, Jože

    2013-10-01

    A high ozone (O3) concentrations episode during a heat wave event in the Northeastern Mediterranean was investigated using the WRF/Chem model. To understand the major model uncertainties and errors as well as the impacts of model inputs on the model accuracy, an ensemble modelling experiment was conducted. The 51-member ensemble was designed by varying model physics parameterization options (PBL schemes with different surface layer and land-surface modules, and radiation schemes); chemical initial and boundary conditions; anthropogenic and biogenic emission inputs; and model domain setup and resolution. The main impacts of the geographical and emission characteristics of three distinct regions (suburban Mediterranean, continental urban, and continental rural) on the model accuracy and O3 predictions were investigated. In spite of the large ensemble set size, the model generally failed to simulate the extremes; however, as expected from probabilistic forecasting the ensemble spread improved results with respect to extremes compared to the reference run. Noticeable model nighttime overestimations at the Mediterranean and some urban and rural sites can be explained by too strong simulated winds, which reduce the impact of dry deposition and O3 titration in the near surface layers during the nighttime. Another possible explanation could be inaccuracies in the chemical mechanisms, which are suggested also by model insensitivity to variations in the nitrogen oxides (NOx) and volatile organic compounds (VOC) emissions. Major impact factors for underestimations of the daytime O3 maxima at the Mediterranean and some rural sites include overestimation of the PBL depths, a lack of information on forest fires, too strong surface winds, and also possible inaccuracies in biogenic emissions. This numerical experiment with the ensemble runs also provided guidance on an optimum model setup and input data.

  11. Space Weather Forecasting and Research at the Community Coordinated Modeling Center

    Science.gov (United States)

    Aronne, M.

    2015-12-01

    The Space Weather Research Center (SWRC), within the Community Coordinated Modeling Center (CCMC), provides experimental research forecasts and analysis for NASA's robotic mission operators. Space weather conditions are monitored to provide advance warning and forecasts based on observations and modeling using the integrated Space Weather Analysis Network (iSWA). Space weather forecasters come from a variety of backgrounds, ranging from modelers to astrophysicists to undergraduate students. This presentation will discuss space weather operations and research from an undergraduate perspective. The Space Weather Research, Education, and Development Initiative (SW REDI) is the starting point for many undergraduate opportunities in space weather forecasting and research. Space weather analyst interns play an active role year-round as entry-level space weather analysts. Students develop the technical and professional skills to forecast space weather through a summer internship that includes a two week long space weather boot camp, mentorship, poster session, and research opportunities. My unique development of research projects includes studying high speed stream events as well as a study of 20 historic, high-impact solar energetic particle events. This unique opportunity to combine daily real-time analysis with related research prepares students for future careers in Heliophysics.

  12. Economics of extreme weather events: Terminology and regional impact models

    OpenAIRE

    Jahn, Malte

    2015-01-01

    Impacts of extreme weather events are relevant for regional (in the sense of subnational) economies and in particular cities in many aspects. Cities are the cores of economic activity and the amount of people and assets endangered by extreme weather events is large, even under the current climate. A changing climate with changing extreme weather patterns and the process of urbanization will make the whole issue even more relevant in the future. In this paper, definitions and terminology in th...

  13. Mitigating Satellite-Based Fire Sampling Limitations in Deriving Biomass Burning Emission Rates: Application to WRF-Chem Model Over the Northern sub-Saharan African Region

    Science.gov (United States)

    Wang, Jun; Yue, Yun; Wang, Yi; Ichoku, Charles; Ellison, Luke; Zeng, Jing

    2018-01-01

    Largely used in several independent estimates of fire emissions, fire products based on MODIS sensors aboard the Terra and Aqua polar-orbiting satellites have a number of inherent limitations, including (a) inability to detect fires below clouds, (b) significant decrease of detection sensitivity at the edge of scan where pixel sizes are much larger than at nadir, and (c) gaps between adjacent swaths in tropical regions. To remedy these limitations, an empirical method is developed here and applied to correct fire emission estimates based on MODIS pixel level fire radiative power measurements and emission coefficients from the Fire Energetics and Emissions Research (FEER) biomass burning emission inventory. The analysis was performed for January 2010 over the northern sub-Saharan African region. Simulations from WRF-Chem model using original and adjusted emissions are compared with the aerosol optical depth (AOD) products from MODIS and AERONET as well as aerosol vertical profile from CALIOP data. The comparison confirmed an 30-50% improvement in the model simulation performance (in terms of correlation, bias, and spatial pattern of AOD with respect to observations) by the adjusted emissions that not only increases the original emission amount by a factor of two but also results in the spatially continuous estimates of instantaneous fire emissions at daily time scales. Such improvement cannot be achieved by simply scaling the original emission across the study domain. Even with this improvement, a factor of two underestimations still exists in the modeled AOD, which is within the current global fire emissions uncertainty envelope.

  14. Weather Radar Estimations Feeding an Artificial Neural Network Model Weather Radar Estimations Feeding an Artificial Neural Network Model

    Directory of Open Access Journals (Sweden)

    Dawei Han

    2012-02-01

    Full Text Available The application of ANNs (Artifi cial Neural Networks has been studied by many researchers in modelling rainfall runoff processes. However, the work so far has been focused on the rainfall data from traditional raingauges. Weather radar is a modern technology which could provide high resolution rainfall in time and space. In this study, a comparison in rainfall runoff modelling between the raingauge and weather radar has been carried out. The data were collected from Brue catchment in Southwest of England, with 49 raingauges covering 136 km2 and two C-band weather radars. This raingauge network is extremely dense (for research purposes and does not represent the usual raingauge density in operational flood forecasting systems. The ANN models were set up with both lumped and spatial rainfall input. The results showed that raingauge data outperformed radar data in all the events tested, regardless of the lumped and spatial input. La aplicación de Redes Neuronales Artificiales (RNA en el modelado de lluvia-flujo ha sido estudiada ampliamente. Sin embargo, hasta ahora se han utilizado datos provenientes de pluviómetros tradicionales. Los radares meteorológicos son una tecnología moderna que puede proveer datos de lluvia de alta resolución en tiempo y espacio. Este es un trabajo de comparación en el modelado lluvia-flujo entre pluviómetros y radares meteorológicos. Los datos provienen de la cuenca del río Brue en el suroeste de Inglaterra, con 49 pluviómetros cubriendo 136 km2 y dos radares meteorológicos en la banda C. Esta red de pluviómetros es extremadamente densa (para investigación y no representa la densidad usual en sistemas de predicción de inundaciones. Los modelos de RNA fueron implementados con datos de entrada de lluvia tanto espaciados como no distribuidos. Los resultados muestran que los datos de los pluviómetros fueron mejores que los datos de los radares en todos los eventos probados.

  15. Development of a WRF-RTFDDA-based high-resolution hybrid data-assimilation and forecasting system toward to operation in the Middle East

    Science.gov (United States)

    Liu, Y.; Wu, W.; Zhang, Y.; Kucera, P. A.; Liu, Y.; Pan, L.

    2012-12-01

    Weather forecasting in the Middle East is challenging because of its complicated geographical nature including massive coastal area and heterogeneous land, and regional spare observational network. Strong air-land-sea interactions form multi-scale weather regimes in the area, which require a numerical weather prediction model capable of properly representing multi-scale atmospheric flow with appropriate initial conditions. The WRF-based Real-Time Four Dimensional Data Assimilation (RTFDDA) system is one of advanced multi-scale weather analysis and forecasting facilities developed at the Research Applications Laboratory (RAL) of NCAR. The forecasting system is applied for the Middle East with careful configuration. To overcome the limitation of the very sparsely available conventional observations in the region, we develop a hybrid data assimilation algorithm combining RTFDDA and WRF-3DVAR, which ingests remote sensing data from satellites and radar. This hybrid data assimilation blends Newtonian nudging FDDA and 3DVAR technology to effectively assimilate both conventional observations and remote sensing measurements and provide improved initial conditions for the forecasting system. For brevity, the forecasting system is called RTF3H (RTFDDA-3DVAR Hybrid). In this presentation, we will discuss the hybrid data assimilation algorithm, and its implementation, and the applications for high-impact weather events in the area. Sensitivity studies are conducted to understand the strength and limitations of this hybrid data assimilation algorithm.

  16. A Real-Time Offshore Weather Risk Advisory System

    Science.gov (United States)

    Jolivet, Samuel; Zemskyy, Pavlo; Mynampati, Kalyan; Babovic, Vladan

    2015-04-01

    Offshore oil and gas operations in South East Asia periodically face extended downtime due to unpredictable weather conditions, including squalls that are accompanied by strong winds, thunder, and heavy rains. This downtime results in financial losses. Hence, a real time weather risk advisory system is developed to provide the offshore Oil and Gas (O&G) industry specific weather warnings in support of safety and environment security. This system provides safe operating windows based on sensitivity of offshore operations to sea state. Information products for safety and security include area of squall occurrence for the next 24 hours, time before squall strike, and heavy sea state warning for the next 3, 6, 12 & 24 hours. These are predicted using radar now-cast, high resolution Numerical Weather Prediction (NWP) and Data Assimilation (DA). Radar based now-casting leverages the radar data to produce short term (up to 3 hours) predictions of severe weather events including squalls/thunderstorms. A sea state approximation is provided through developing a translational model based on these predictions to risk rank the sensitivity of operations. A high resolution Weather Research and Forecasting (WRF, an open source NWP model) is developed for offshore Brunei, Malaysia and the Philippines. This high resolution model is optimized and validated against the adaptation of temperate to tropical met-ocean parameterization. This locally specific parameters are calibrated against federated data to achieve a 24 hour forecast of high resolution Convective Available Potential Energy (CAPE). CAPE is being used as a proxy for the risk of squall occurrence. Spectral decomposition is used to blend the outputs of the now-cast and the forecast in order to assimilate near real time weather observations as an implementation of the integration of data sources. This system uses the now-cast for the first 3 hours and then the forecast prediction horizons of 3, 6, 12 & 24 hours. The output is

  17. Implement a Sub-grid Turbulent Orographic Form Drag in WRF and its application to Tibetan Plateau

    Science.gov (United States)

    Zhou, X.; Yang, K.; Wang, Y.; Huang, B.

    2017-12-01

    Sub-grid-scale orographic variation exerts turbulent form drag on atmospheric flows. The Weather Research and Forecasting model (WRF) includes a turbulent orographic form drag (TOFD) scheme that adds the stress to the surface layer. In this study, another TOFD scheme has been incorporated in WRF3.7, which exerts an exponentially decaying drag on each model layer. To investigate the effect of the new scheme, WRF with the old and new one was used to simulate the climate over the complex terrain of the Tibetan Plateau. The two schemes were evaluated in terms of the direct impact (on wind) and the indirect impact (on air temperature, surface pressure and precipitation). Both in winter and summer, the new TOFD scheme reduces the mean bias in the surface wind, and clearly reduces the root mean square error (RMSEs) in comparisons with the station measurements (Figure 1). Meanwhile, the 2-m air temperature and surface pressure is also improved (Figure 2) due to the more warm air northward transport across south boundary of TP in winter. The 2-m air temperature is hardly improved in summer but the precipitation improvement is more obvious, with reduced mean bias and RMSEs. This is due to the weakening of water vapor flux (at low-level flow with the new scheme) crossing the Himalayan Mountains from South Asia.

  18. User's guide to the weather model: a component of the western spruce budworm modeling system.

    Science.gov (United States)

    W. P. Kemp; N. L. Crookston; P. W. Thomas

    1989-01-01

    A stochastic model useful in simulating daily maximum and minimum temperature and precipitation developed by Bruhn and others has been adapted for use in the western spruce budworm modeling system. This document describes how to use the weather model and illustrates some aspects of its behavior.

  19. Spatially explicit modelling of extreme weather and climate events ...

    African Journals Online (AJOL)

    The reality of climate change continues to influence the intensity and frequency of extreme weather events such as heat waves, droughts, floods, and landslides. The impacts of the cumulative interplay of these extreme weather and climate events variation continue to perturb governments causing a scramble into formation ...

  20. Weather forecasting for Eastern Amazon with OLAM model

    Directory of Open Access Journals (Sweden)

    Renato Ramos da Silva

    2014-12-01

    Full Text Available The OLAM model has as its characteristics the advantage to represent simultaneously the global and regional meteorological phenomena using the application of a grid refinement scheme. During the REMAM project the model was applied for a few case studies to evaluate its performance on numerical weather prediction for the eastern Amazon region. Case studies were performed for the twelve months of the year of 2009. The model results for those numerical experiments were compared with the observed data for the region of study. Precipitation data analysis showed that OLAM is able to represent the average mean accumulated precipitation and the seasonal features of the events occurrence, but can't predict the local total amount of precipitation. However, individual evaluation for a few cases had shown that OLAM was able to represent the dynamics and forecast a few days in advance the development of coastal meteorological systems such as the squall lines that are one of the most important precipitating systems of the Amazon.

  1. A review of operational, regional-scale, chemical weather forecasting models in Europe

    Directory of Open Access Journals (Sweden)

    J. Kukkonen

    2012-01-01

    Full Text Available Numerical models that combine weather forecasting and atmospheric chemistry are here referred to as chemical weather forecasting models. Eighteen operational chemical weather forecasting models on regional and continental scales in Europe are described and compared in this article. Topics discussed in this article include how weather forecasting and atmospheric chemistry models are integrated into chemical weather forecasting systems, how physical processes are incorporated into the models through parameterization schemes, how the model architecture affects the predicted variables, and how air chemistry and aerosol processes are formulated. In addition, we discuss sensitivity analysis and evaluation of the models, user operational requirements, such as model availability and documentation, and output availability and dissemination. In this manner, this article allows for the evaluation of the relative strengths and weaknesses of the various modelling systems and modelling approaches. Finally, this article highlights the most prominent gaps of knowledge for chemical weather forecasting models and suggests potential priorities for future research directions, for the following selected focus areas: emission inventories, the integration of numerical weather prediction and atmospheric chemical transport models, boundary conditions and nesting of models, data assimilation of the various chemical species, improved understanding and parameterization of physical processes, better evaluation of models against data and the construction of model ensembles.

  2. Mountain range specific analog weather forecast model for ...

    Indian Academy of Sciences (India)

    used to draw weather forecast for that mountain range in operational weather forecasting mode, three days ... various road management activities and for better .... −0.8. 1.5. 0.0. Pir Panjal range (HP). 1989–90 to 2002–03. 14. Snow day. 2.2. −4.1 ..... ed days,. S. = snow day,. N. S. = no-snow day and. P. C. = per cent correct).

  3. Model analysis of urbanization impacts on boundary layer meteorology under hot weather conditions: a case study of Nanjing, China

    Science.gov (United States)

    Chen, Lei; Zhang, Meigen; Wang, Yongwei

    2016-08-01

    The Weather Research and Forecasting (WRF) model, configured with a single-layer urban canopy model, was employed to investigate the influence of urbanization on boundary layer meteorological parameters during a long-lasting heat wave. This study was conducted over Nanjing city, East China, from 26 July to 4 August 2010. The impacts of urban expansion and anthropogenic heat (AH) release were simulated to quantify their effects on 2-m temperature, 2-m water vapor mixing ratio, and 10-m wind speed and heat stress index. Urban sprawl increased the daily 2-m temperature in urbanized areas by around 1.6 °C and decreased the urban diurnal temperature range (DTR) by 1.24 °C. The contribution of AH release to the atmospheric warming was nearly 22 %, but AH had little influence on the DTR. The urban regional mean surface wind speed decreased by about 0.4 m s-1, and this decrease was successfully simulated from the surface to 300 m. The influence of urbanization on 2-m water vapor mixing ratio was significant over highly urbanized areas with a decrease of 1.1-1.8 g kg-1. With increased urbanization ratio, the duration of the inversion layer was about 4 h shorter, and the lower atmospheric layer was less stable. Urban heat island (UHI) intensity was significantly enhanced when synthesizing both urban sprawl and AH release and the daily mean UHI intensity increased by 0.74 °C. Urbanization increased the time under extreme heat stress (about 40 %) and worsened the living environment in urban areas.

  4. Wind field near complex terrain using numerical weather prediction model

    Science.gov (United States)

    Chim, Kin-Sang

    The PennState/NCAR MM5 model was modified to simulate an idealized flow pass through a 3D obstacle in the Micro- Alpha Scale domain. The obstacle used were the idealized Gaussian obstacle and the real topography of Lantau Island of Hong Kong. The Froude number under study is ranged from 0.22 to 1.5. Regime diagrams for both the idealized Gaussian obstacle and Lantau island were constructed. This work is divided into five parts. The first part is the problem definition and the literature review of the related publications. The second part briefly discuss as the PennState/NCAR MM5 model and a case study of long- range transport is included. The third part is devoted to the modification and the verification of the PennState/NCAR MM5 model on the Micro-Alpha Scale domain. The implementation of the Orlanski (1976) open boundary condition is included with the method of single sounding initialization of the model. Moreover, an upper dissipative layer, Klemp and Lilly (1978), is implemented on the model. The simulated result is verified by the Automatic Weather Station (AWS) data and the Wind Profiler data. Four different types of Planetary Boundary Layer (PBL) parameterization schemes have been investigated in order to find out the most suitable one for Micro-Alpha Scale domain in terms of both accuracy and efficiency. Bulk Aerodynamic type of PBL parameterization scheme is found to be the most suitable PBL parameterization scheme. Investigation of the free- slip lower boundary condition is performed and the simulated result is compared with that with friction. The fourth part is the use of the modified PennState/NCAR MM5 model for an idealized flow simulation. The idealized uniform flow used is nonhydrostatic and has constant Froude number. Sensitivity test is performed by varying the Froude number and the regime diagram is constructed. Moreover, nondimensional drag is found to be useful for regime identification. The model result is also compared with the analytic

  5. An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS

    Directory of Open Access Journals (Sweden)

    W. R. Sessions

    2011-06-01

    Full Text Available The Weather Research and Forecasting Model (WRF is considered a "next generation" mesoscale meteorology model. The inclusion of a chemistry module (WRF-Chem allows transport simulations of chemical and aerosol species such as those observed during NASA's Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS in 2008. The ARCTAS summer deployment phase during June and July coincided with large boreal wildfires in Saskatchewan and Eastern Russia.

    One of the most important aspects of simulating wildfire plume transport is the height at which emissions are injected. WRF-Chem contains an integrated one-dimensional plume rise model to determine the appropriate injection layer. The plume rise model accounts for thermal buoyancy associated with fires and local atmospheric stability. This paper describes a case study of a 10 day period during the Spring phase of ARCTAS. It compares results from the plume model against those of two more traditional injection methods: Injecting within the planetary boundary layer, and in a layer 3–5 km above ground level. Fire locations are satellite derived from the GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA and the MODIS thermal hotspot detection. Two methods for preprocessing these fire data are compared: The prep_chem_sources method included with WRF-Chem, and the Naval Research Laboratory's Fire Locating and Monitoring of Burning Emissions (FLAMBE. Results from the simulations are compared with satellite-derived products from the AIRS, MISR and CALIOP sensors.

    When FLAMBE provides input to the 1-D plume rise model, the resulting injection heights exhibit the best agreement with satellite-observed injection heights. The FLAMBE-derived heights are more realistic than those utilizing prep_chem_sources. Conversely, when the planetary boundary layer or the 3–5 km a.g.l. layer were filled with emissions, the resulting injection heights exhibit less

  6. An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS

    Science.gov (United States)

    Sessions, W. R.; Fuelberg, H. E.; Kahn, R. A.; Winker, D. M.

    2011-06-01

    The Weather Research and Forecasting Model (WRF) is considered a "next generation" mesoscale meteorology model. The inclusion of a chemistry module (WRF-Chem) allows transport simulations of chemical and aerosol species such as those observed during NASA's Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) in 2008. The ARCTAS summer deployment phase during June and July coincided with large boreal wildfires in Saskatchewan and Eastern Russia. One of the most important aspects of simulating wildfire plume transport is the height at which emissions are injected. WRF-Chem contains an integrated one-dimensional plume rise model to determine the appropriate injection layer. The plume rise model accounts for thermal buoyancy associated with fires and local atmospheric stability. This paper describes a case study of a 10 day period during the Spring phase of ARCTAS. It compares results from the plume model against those of two more traditional injection methods: Injecting within the planetary boundary layer, and in a layer 3-5 km above ground level. Fire locations are satellite derived from the GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA) and the MODIS thermal hotspot detection. Two methods for preprocessing these fire data are compared: The prep_chem_sources method included with WRF-Chem, and the Naval Research Laboratory's Fire Locating and Monitoring of Burning Emissions (FLAMBE). Results from the simulations are compared with satellite-derived products from the AIRS, MISR and CALIOP sensors. When FLAMBE provides input to the 1-D plume rise model, the resulting injection heights exhibit the best agreement with satellite-observed injection heights. The FLAMBE-derived heights are more realistic than those utilizing prep_chem_sources. Conversely, when the planetary boundary layer or the 3-5 km a.g.l. layer were filled with emissions, the resulting injection heights exhibit less agreement with observed plume heights

  7. Winds Measured by the Rover Environmental Monitoring Station (REMS) During the Mars Science Laboratory (MSL) Rover's Bagnold Dunes Campaign and Comparison with Numerical Modeling Using MarsWRF

    Science.gov (United States)

    Newman, Claire E.; Gomez-Elvira, Javier; Marin, Mercedes; Navarro, Sara; Torres, Josefina; Richardson, Mark I.; Battalio, J. Michael; Guzewich, Scott D.; Sullivan, Robert; de la Torre, Manuel; hide

    2016-01-01

    A high density of REMS wind measurements were collected in three science investigations during MSL's Bagnold Dunes Campaign, which took place over approx. 80 sols around southern winter solstice (Ls approx. 90deg) and constituted the first in situ analysis of the environmental conditions, morphology, structure, and composition of an active dune field on Mars. The Wind Characterization Investigation was designed to fully characterize the near-surface wind field just outside the dunes and confirmed the primarily upslope/downslope flow expected from theory and modeling of the circulation on the slopes of Aeolis Mons in this season. The basic pattern of winds is 'upslope' (from the northwest, heading up Aeolis Mons) during the daytime (approx. 09:00-17:00 or 18:00) and 'downslope' (from the southeast, heading down Aeolis Mons) at night (approx. 20:00 to some time before 08:00). Between these times the wind rotates largely clockwise, giving generally westerly winds mid-morning and easterly winds in the early evening. The timings of these direction changes are relatively consistent from sol to sol; however, the wind direction and speed at any given time shows considerable intersol variability. This pattern and timing is similar to predictions from the MarsWRF numerical model, run at a resolution of approx. 490 m in this region, although the model predicts the upslope winds to have a stronger component from the E than the W, misses a wind speed peak at approx. 09:00, and under-predicts the strength of daytime wind speeds by approx. 2-4 m/s. The Namib Dune Lee Investigation reveals 'blocking' of northerly winds by the dune, leaving primarily a westerly component to the daytime winds, and also shows a broadening of the 1 Hz wind speed distribution likely associated with lee turbulence. The Namib Dune Side Investigation measured primarily daytime winds at the side of the same dune, in support of aeolian change detection experiments designed to put limits on the saltation

  8. An Integrated WRF-CAMx Modeling Approach for Impact Analysis of Implementing the Emergency PM2.5 Control Measures during Red Alerts in Beijing in December 2015

    Science.gov (United States)

    Jia, J.; Cheng, S.; Lei, L.; Lang, J.

    2017-12-01

    In December 2015, the Beijing-Tianjin-Hebei (BTH) region experienced several episodes of heavy air pollution. Beijing municipal government therefore issued 2 red alerts on December 7 and 19, respectively, and also implemented emergency control measures to alleviate the negative effects of pollution. It is estimated that the heavy pollutions in 2 red alert periods in Beijing were due mainly to the accumulation of air pollutants from local emission sources and the transboundary transport of pollutants from surrounding areas. The collected meteorological and PM2.5 data indicate that the severity of air pollutions were enlarged by the poor meteorological conditions along with lower mixing layer height. In this study, the WRF-CAMx modeling system was utilized not only for analyzing the contributions of PM2.5 from different sources, but also for quantitatively assessing the effects of implementing various emergency control measures on PM2.5 pollution control during the red alert periods. The modeling results show that local emissions were the most dominant contributors (64.8%-83.5%) among all emission sources, while the main external contributions came from the city of Baoding (3.4%-9.3%). In addition, among 5 different emission source categories, coal and traffic were the two dominant contributors to PM2.5 concentration in urban area of Beijing. Then four pollution control scenarios were designed particularly to investigate the effectiveness of the emergency control measures, and the results show that, generally these emergency control measures have positive effects on air pollution reduction. In particular, restrictive measures of traffic volume control and industrial activity shutdown/suspension have been found as the most effective measures in comparison to other emergency control measures. It is recommended that such effective measures should be considered to implement when next time similar heavy air pollutions occur in the city of Beijing.

  9. Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations

    Science.gov (United States)

    Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.

    2013-12-01

    There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.

  10. Climate and weather risk in natural resource models

    Science.gov (United States)

    Merrill, Nathaniel Henry

    This work, consisting of three manuscripts, addresses natural resource management under risk due to variation in climate and weather. In three distinct but theoretically related applications, I quantify the role of natural resources in stabilizing economic outcomes. In Manuscript 1, we address policy designed to effect the risk of cyanobacteria blooms in a drinking water reservoir through watershed wide policy. Combining a hydrologic and economic model for a watershed in Rhode Island, we solve for the efficient allocation of best management practices (BMPs) on livestock pastures to meet a monthly risk-based as well as mean-based water quality objective. In order to solve for the efficient allocations of nutrient control effort, we optimize a probabilistically constrained integer-programming problem representing the choices made on each farm and the resultant conditions that support cyanobacteria blooms. In doing so, we employ a genetic algorithm (GA). We hypothesize that management based on controlling the upper tail of the probability distribution of phosphorus loading implies different efficient management actions as compared to controlling mean loading. We find a shift to more intense effort on fewer acres when a probabilistic objective is specified with cost savings of meeting risk levels of up to 25% over mean loading based policies. Additionally, we illustrate the relative cost effectiveness of various policies designed to meet this risk-based objective. Rainfall and the subsequent overland runoff is the source of transportation of nutrients to a receiving water body, with larger amounts of phosphorus moving in more intense rainfall events. We highlight the importance of this transportation mechanism by comparing policies under climate change scenarios, where the intensity of rainfall is projected to increase and the time series process of rainfall to change. In Manuscript 2, we introduce a new economic groundwater model that incorporates the gradual shift

  11. Wind farm efficiency assessed by WRF with a statistical-dynamical approach

    DEFF Research Database (Denmark)

    Volker, Patrick; Badger, Jake; Hahmann, Andrea N.

    2016-01-01

    the power production of a target wind farm and (II) how large wind farms can get if they are to remain efficient and productive power generators. The modelling of wind farm wake flows is challenging, since it includes processes from the micro- to mesoscale meteorology. We use the Weather Research......A pledge to increase the share of renewable energies has led to a focus on offshore wind energy in many western European countries. With an increasing number of offshore wind farms to be installed it becomes important to understand (I) the degree to which wakes from neighbouring wind farms affect...... and Forecast (WRF) model that allows us to simulate mesoscale features of wind farm wakes. Its limited horizontal resolution – in microscale terms – however, requires flow characteristics, such as single turbine wakes, to be parametrised....

  12. Climatology of the Iberia coastal low-level wind jet: weather research forecasting model high-resolution results

    Directory of Open Access Journals (Sweden)

    Pedro M. M. Soares

    2013-01-01

    Full Text Available Coastal low-level jets (CLLJ are a low-tropospheric wind feature driven by the pressure gradient produced by a sharp contrast between high temperatures over land and lower temperatures over the sea. This contrast between the cold ocean and the warm land in the summer is intensified by the impact of the coastal parallel winds on the ocean generating upwelling currents, sharpening the temperature gradient close to the coast and giving rise to strong baroclinic structures at the coast. During summertime, the Iberian Peninsula is often under the effect of the Azores High and of a thermal low pressure system inland, leading to a seasonal wind, in the west coast, called the Nortada (northerly wind. This study presents a regional climatology of the CLLJ off the west coast of the Iberian Peninsula, based on a 9 km resolution downscaling dataset, produced using the Weather Research and Forecasting (WRF mesoscale model, forced by 19 years of ERA-Interim reanalysis (1989–2007. The simulation results show that the jet hourly frequency of occurrence in the summer is above 30% and decreases to about 10% during spring and autumn. The monthly frequencies of occurrence can reach higher values, around 40% in summer months, and reveal large inter-annual variability in all three seasons. In the summer, at a daily base, the CLLJ is present in almost 70% of the days. The CLLJ wind direction is mostly from north-northeasterly and occurs more persistently in three areas where the interaction of the jet flow with local capes and headlands is more pronounced. The coastal jets in this area occur at heights between 300 and 400 m, and its speed has a mean around 15 m/s, reaching maximum speeds of 25 m/s.

  13. WRF nested large-eddy simulations of deep convection during SEAC4RS

    Science.gov (United States)

    Heath, Nicholas K.; Fuelberg, Henry E.; Tanelli, Simone; Turk, F. Joseph; Lawson, R. Paul; Woods, Sarah; Freeman, Sean

    2017-04-01

    Large-eddy simulations (LES) and observations are often combined to increase our understanding and improve the simulation of deep convection. This study evaluates a nested LES method that uses the Weather Research and Forecasting (WRF) model and, specifically, tests whether the nested LES approach is useful for studying deep convection during a real-world case. The method was applied on 2 September 2013, a day of continental convection that occurred during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. Mesoscale WRF output (1.35 km grid length) was used to drive a nested LES with 450 m grid spacing, which then drove a 150 m domain. Results reveal that the 450 m nested LES reasonably simulates observed reflectivity distributions and aircraft-observed in-cloud vertical velocities during the study period. However, when examining convective updrafts, reducing the grid spacing to 150 m worsened results. We find that the simulated updrafts in the 150 m run become too diluted by entrainment, thereby generating updrafts that are weaker than observed. Lastly, the 450 m simulation is combined with observations to study the processes forcing strong midlevel cloud/updraft edge downdrafts that were observed on 2 September. Results suggest that these strong downdrafts are forced by evaporative cooling due to mixing and by perturbation pressure forces acting to restore mass continuity around neighboring updrafts. We conclude that the WRF nested LES approach, with further development and evaluation, could potentially provide an effective method for studying deep convection in real-world cases.

  14. Coupling the WRF model with a temperature index model based on remote sensing for snowmelt simulations in a river basin in the Altay Mountains, northwest China

    Science.gov (United States)

    Wu, X.; Shen, Y.; Wang, N.; Pan, X.; Zhang, W.; He, J.; Wang, G.

    2017-12-01

    Snowmelt water is an important freshwater resource in the Altay Mountains in northwest China, and it is also crucial for local ecological system, economic and social sustainable development; however, warming climate and rapid spring snowmelt can cause floods that endanger both eco-environment and public and personal property and safety. This study simulates snowmelt in the Kayiertesi River catchment using a temperature-index model based on remote sensing coupled with high-resolution meteorological data obtained from NCEP reanalysis fields that were downscaled using Weather Research Forecasting model, then bias-corrected using a statistical downscaled model. Validation of the forcing data revealed that the high-resolution meteorological fields derived from downscaled NCEP reanalysis were reliable for driving the snowmelt model. Parameters of temperature-index model based on remote sensing were calibrated for spring 2014, and model performance was validated using MODIS snow cover and snow observations from spring 2012. The results show that the temperature-index model based on remote sensing performed well, with a simulation mean relative error of 6.7% and a Nash-Sutchliffe efficiency of 0.98 in spring 2012 in the river of Altay Mountains. Based on the reliable distributed snow water equivalent simulation, daily snowmelt runoff was calculated for spring 2012 in the basin. In the study catchment, spring snowmelt runoff accounts for 72% of spring runoff and 21% of annual runoff. Snowmelt is the main source of runoff for the catchment and should be managed and utilized effectively. The results provide a basis for snowmelt runoff predictions, so as to prevent snowmelt-induced floods, and also provide a generalizable approach that can be applied to other remote locations where high-density, long-term observational data is lacking.

  15. Community Coordinated Modeling Center: A Powerful Resource in Space Science and Space Weather Education

    Science.gov (United States)

    Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.

  16. A comprehensive assessment of land surface-atmosphere interactions in a WRF/Urban modeling system for Indianapolis, IN

    Directory of Open Access Journals (Sweden)

    Daniel P. Sarmiento

    2017-05-01

    Full Text Available As part of the Indianapolis Flux (INFLUX experiment, the accuracy and biases of simulated meteorological fields were assessed for the city of Indianapolis, IN. The INFLUX project allows for a unique opportunity to conduct an extensive observation-to-model comparison in order to assess model errors for the following meteorological variables: latent heat and sensible heat fluxes, air temperature near the surface and in the planetary boundary layer (PBL, wind speed and direction, and PBL height. In order to test the sensitivity of meteorological simulations to different model packages, a set of simulations was performed by implementing different PBL schemes, urban canopy models (UCMs, and a model subroutine that was created in order to reduce an inherent model overestimation of urban land cover. It was found that accurately representing the amount of urban cover in the simulations reduced the biases in most cases during the summertime (SUMMER simulations. The simulations that used the BEP urban canopy model and the Bougeault & Lacarrere (BouLac PBL scheme had the smallest biases in the wintertime (WINTER simulations for most meteorological variables, with the exception being wind direction. The model configuration chosen had a larger impact on model errors during the WINTER simulations, whereas the differences between most of the model configurations during the SUMMER simulations were not statistically significant. By learning the behaviors of different PBL schemes and urban canopy models, researchers can start to understand the expected biases in certain model configurations for their own simulations and have a hypothesis as to the potential errors and biases that might occur when using a multi-physics ensemble based modeling approach.

  17. Evaluation of a multi-scale WRF-CAM5 simulation during the 2010 East Asian Summer Monsoon

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Patrick; Zhang, Yang; Wang, Kai; Leung, Ruby; Fan, Jiwen; Zheng, Bo; Zhang, Qiang; He, Kebin

    2017-11-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) with the physics package of the Community Atmosphere Model Version 5 (CAM5) has been applied at multiple scales over Eastern China (EC) and the Yangtze River Delta (YRD) to evaluate how increased horizontal resolution with physics designed for a coarser resolution climate model impacts aerosols and clouds, and the resulting precipitation characteristics and performance during the 2010 East Asian Summer Monsoon (EASM). Despite large underpredictions in surface aerosol concentrations and aerosol optical depth, there is good spatial agreement with surface observations of chemical predictions, and increasing spatial resolution tends to improve performance. Model bias and normalized root mean square values for precipitation predictions are relatively small, but there are significant differences when comparing modeled and observed probability density functions for precipitation in EC and YRD. Increasing model horizontal resolution tends to reduce model bias and error for precipitation predictions. The surface and column aerosol loading is maximized between about 32N and 42N in early to mid-May during the 2010 EASM, and then shifts north while decreasing in magnitude during July and August. Changing model resolution moderately changes the spatiotemporal relationships between aerosols, cloud properties, and precipitation during the EASM, thus demonstrating the importance of model grid resolution in simulating EASM circulation and rainfall patterns over EC and the YRD. Results from this work demonstrate the capability and limitations in the aerosol, cloud, and precipitation representation of WRF-CAM5 for regional-scale applications down to relatively fine horizontal resolutions. Further WRF-CAM5 model development and application in this area is needed.

  18. Space Weather Models and Their Validation and Verification at the CCMC

    Science.gov (United States)

    Hesse, Michael

    2010-01-01

    The Community Coordinated l\\lodeling Center (CCMC) is a US multi-agency activity with a dual mission. With equal emphasis, CCMC strives to provide science support to the international space research community through the execution of advanced space plasma simulations, and it endeavors to support the space weather needs of the CS and partners. Space weather support involves a broad spectrum, from designing robust forecasting systems and transitioning them to forecasters, to providing space weather updates and forecasts to NASA's robotic mission operators. All of these activities have to rely on validation and verification of models and their products, so users and forecasters have the means to assign confidence levels to the space weather information. In this presentation, we provide an overview of space weather models resident at CCMC, as well as of validation and verification activities undertaken at CCMC or through the use of CCMC services.

  19. Using Intel Xeon Phi to accelerate the WRF TEMF planetary boundary layer scheme

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen

    2014-05-01

    The Weather Research and Forecasting (WRF) model is designed for numerical weather prediction and atmospheric research. The WRF software infrastructure consists of several components such as dynamic solvers and physics schemes. Numerical models are used to resolve the large-scale flow. However, subgrid-scale parameterizations are for an estimation of small-scale properties (e.g., boundary layer turbulence and convection, clouds, radiation). Those have a significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. For the cloudy planetary boundary layer (PBL), it is fundamental to parameterize vertical turbulent fluxes and subgrid-scale condensation in a realistic manner. A parameterization based on the Total Energy - Mass Flux (TEMF) that unifies turbulence and moist convection components produces a better result that the other PBL schemes. For that reason, the TEMF scheme is chosen as the PBL scheme we optimized for Intel Many Integrated Core (MIC), which ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our optimization results for TEMF planetary boundary layer scheme. The optimizations that were performed were quite generic in nature. Those optimizations included vectorization of the code to utilize vector units inside each CPU. Furthermore, memory access was improved by scalarizing some of the intermediate arrays. The results show that the optimization improved MIC performance by 14.8x. Furthermore, the optimizations increased CPU performance by 2.6x compared to the original multi-threaded code on quad core Intel Xeon E5-2603 running at 1.8 GHz. Compared to the optimized code running on a single CPU socket the optimized MIC code is 6.2x faster.

  20. Modeling the evolution of natural cliffs subject to weathering. 1, Limit analysis approach

    OpenAIRE

    Utili, Stefano; Crosta, Giovanni B.

    2011-01-01

    Retrogressive landsliding evolution of natural slopes subjected to weathering has been modeled by assuming Mohr-Coulomb material behavior and by using an analytical method. The case of weathering-limited slope conditions, with complete erosion of the accumulated debris, has been modeled. The limit analysis upper-bound method is used to study slope instability induced by a homogeneous decrease of material strength in space and time. The only assumption required in the model concerns the degree...

  1. The Added Value to Global Model Projections of Climate Change by Dynamical Downscaling: A Case Study over the Continental U.S. using the GISS-ModelE2 and WRF Models

    Science.gov (United States)

    Racherla, P. N.; Shindell, D. T.; Faluvegi, G. S.

    2012-01-01

    Dynamical downscaling is being increasingly used for climate change studies, wherein the climates simulated by a coupled atmosphere-ocean general circulation model (AOGCM) for a historical and a future (projected) decade are used to drive a regional climate model (RCM) over a specific area. While previous studies have demonstrated that RCMs can add value to AOGCM-simulated climatologies over different world regions, it is unclear as to whether or not this translates to a better reproduction of the observed climate change therein. We address this issue over the continental U.S. using the GISS-ModelE2 and WRF models, a state-of-the-science AOGCM and RCM, respectively. As configured here, the RCM does not effect holistic improvement in the seasonally and regionally averaged surface air temperature or precipitation for the individual historical decades. Insofar as the climate change between the two decades is concerned, the RCM does improve upon the AOGCM when nudged in the domain proper, but only modestly so. Further, the analysis indicates that there is not a strong relationship between skill in capturing climatological means and skill in capturing climate change. Though additional research would be needed to demonstrate the robustness of this finding in AOGCM/RCM models generally, the evidence indicates that, for climate change studies, the most important factor is the skill of the driving global model itself, suggesting that highest priority should be given to improving the long-range climate skill of AOGCMs.

  2. Effects of biomass smoke from southern Africa on stratocumulus over southeastern Atlantic Ocean based on satellite observations and WRF-Chem model simulations

    Science.gov (United States)

    Lu, Z.; Liu, X.; Zhang, Z.; Zhao, C.; Meyer, K.; Rajapakshe, C.; Wu, C.; Yang, Z.; Penner, J.

    2017-12-01

    Each year, large amount of biomass burning (BB) aerosols are emitted over southern Africa, and transported by the predominant circulation to the southeastern Atlantic Ocean (SEA), where they overly and potentially interact with the semi-permanent stratocumulus deck in the marine boundary layer (MBL). Many previous studies suggested that the aerosol plumes are well separated from the MBL clouds, and only focused on the radiative effects of BB aerosols (direct + semi-direct radiative effects); however, as shown in several recent satellite observational studies, BB aerosols are able to be frequently entrained into the underlying clouds, function as cloud condensation nuclei (CCN), and potentially cause microphysical effects. Based on satellite observations from CATS, we found that the mixing frequencies between above-cloud aerosols and MBL clouds are very high ( 50%) over both coastal and remote regions, suggesting that BB aerosols may likely contact MBL cloud top and function as CCN quickly after they are transported over SEA. Despite the potential importance of the microphysical effect of BB aerosols over SEA, its magnitude is not fully assessed by modeling studies. In this study, we employ WRF-Chem model to study the impacts of BB aerosols on MBL stratocumulus clouds over SEA during the fire season of 2014. By designing three cases, we are able to quantitatively determine the relative importance of microphysical and radiative effects of BB aerosols. Our modeling results show that, by serving as CCN, BB aerosols are able to alter cloud properties of stratocumulus (e.g. higher cloud droplet number concentration [CDNC], higher cloud liquid water path [LWP], and larger cloud fraction [CF] before noon) and exert significant cooling effect at TOA (-8.05 Wm-2) over SEA. The cooling is primarily caused by higher CDNC (the Twomey effect), and secondarily by the changes in LWP and CF (the cloud lifetime effect). The semi-direct effect estimated in this study is smaller in

  3. Contribution of ship emissions to the concentration of PM2.5: A comprehensive study using AIS data and WRF/Chem model in Bohai Rim Region, China.

    Science.gov (United States)

    Chen, Dongsheng; Zhao, Na; Lang, Jianlei; Zhou, Ying; Wang, Xiaotong; Li, Yue; Zhao, Yuehua; Guo, Xiurui

    2018-01-01

    Compared with on-road vehicles, emission from ships is one of the least-regulated anthropogenic emission sources and non-negligible source of primary aerosols and gas-phase precursors of PM 2.5 . The Bohai Rim Region in China hosts dozens of large ports, two of which ranked among the top ten ports in the world. To determine the impact of ship emissions on the PM 2.5 concentrations over this region, two parts of works have been conducted in this study. First, a detailed ship emission inventory with high spatiotemporal resolution was developed based on Automatic Identification System (AIS) data. Then the WRF/Chem model was applied to modeling the impact of ship emissions by comparing two scenarios: with and without ship emissions. The results indicate that the total estimated ship emissions of SO 2 , NO X , PM 10 , PM 2.5 , CO, HC, and CO 2 from Bohai Rim Region in 2014 are 1.9×10 5 , 2.9×10 5 , 2.6×10 4 , 2.4×10 4 , 2.5×10 4 , 1.2×10 4 , and 1.3×10 7 tonnes, respectively. The modeling results indicate that the annual PM 2.5 concentrations increased by 5.9% on land areas of Bohai Rim Region (the continent within 115.2°E-124.3°E and 36.1°N-41.6°N) due to ship emissions. The contributions show distinctive seasonal variations of contributions, presenting highest in summer (12.5%) followed by spring (6.9%) and autumn (3.3%), and lowest in winter (0.9%). The contribution reaches up to 10.7% along the shoreline and down to 1.0% 200km inland. After examining the statistics of the modeling results during heavy and non-heavy haze days in July, it was found that 6 out of 9 cities around the Bohai Rim Region were observed with higher contributions from ship emissions during heavy haze days compared with non-heavy haze days. These results indicate that the impacts of ship emissions on the ambient PM 2.5 are non-negligible, especially for heavy haze days for most coastal cities in the Bohai Rim Region. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The Explicit Wake Parametrisation V1.0: a wind farm parametrisation in the mesoscale model WRF

    Directory of Open Access Journals (Sweden)

    P. J. H. Volker

    2015-11-01

    Full Text Available We describe the theoretical basis, implementation, and validation of a new parametrisation that accounts for the effect of large offshore wind farms on the atmosphere and can be used in mesoscale and large-scale atmospheric models. This new parametrisation, referred to as the Explicit Wake Parametrisation (EWP, uses classical wake theory to describe the unresolved wake expansion. The EWP scheme is validated for a neutral atmospheric boundary layer against filtered in situ measurements from two meteorological masts situated a few kilometres away from the Danish offshore wind farm Horns Rev I. The simulated velocity deficit in the wake of the wind farm compares well to that observed in the measurements, and the velocity profile is qualitatively similar to that simulated with large eddy simulation models and from wind tunnel studies. At the same time, the validation process highlights the challenges in verifying such models with real observations.

  5. Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model.

    Science.gov (United States)

    Krissansen-Totton, Joshua; Catling, David C

    2017-05-22

    The relative influences of tectonics, continental weathering and seafloor weathering in controlling the geological carbon cycle are unknown. Here we develop a new carbon cycle model that explicitly captures the kinetics of seafloor weathering to investigate carbon fluxes and the evolution of atmospheric CO 2 and ocean pH since 100 Myr ago. We compare model outputs to proxy data, and rigorously constrain model parameters using Bayesian inverse methods. Assuming our forward model is an accurate representation of the carbon cycle, to fit proxies the temperature dependence of continental weathering must be weaker than commonly assumed. We find that 15-31 °C (1σ) surface warming is required to double the continental weathering flux, versus 3-10 °C in previous work. In addition, continental weatherability has increased 1.7-3.3 times since 100 Myr ago, demanding explanation by uplift and sea-level changes. The average Earth system climate sensitivity is  K (1σ) per CO 2 doubling, which is notably higher than fast-feedback estimates. These conclusions are robust to assumptions about outgassing, modern fluxes and seafloor weathering kinetics.

  6. Proposed Use of the NASA Ames Nebula Cloud Computing Platform for Numerical Weather Prediction and the Distribution of High Resolution Satellite Imagery

    Science.gov (United States)

    Limaye, Ashutosh S.; Molthan, Andrew L.; Srikishen, Jayanthi

    2010-01-01

    The development of the Nebula Cloud Computing Platform at NASA Ames Research Center provides an open-source solution for the deployment of scalable computing and storage capabilities relevant to the execution of real-time weather forecasts and the distribution of high resolution satellite data to the operational weather community. Two projects at Marshall Space Flight Center may benefit from use of the Nebula system. The NASA Short-term Prediction Research and Transition (SPoRT) Center facilitates the use of unique NASA satellite data and research capabilities in the operational weather community by providing datasets relevant to numerical weather prediction, and satellite data sets useful in weather analysis. SERVIR provides satellite data products for decision support, emphasizing environmental threats such as wildfires, floods, landslides, and other hazards, with interests in numerical weather prediction in support of disaster response. The Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS) has been configured for Nebula cloud computing use via the creation of a disk image and deployment of repeated instances. Given the available infrastructure within Nebula and the "infrastructure as a service" concept, the system appears well-suited for the rapid deployment of additional forecast models over different domains, in response to real-time research applications or disaster response. Future investigations into Nebula capabilities will focus on the development of a web mapping server and load balancing configuration to support the distribution of high resolution satellite data sets to users within the National Weather Service and international partners of SERVIR.