WorldWideScience

Sample records for model two-dimensional heat-transfer

  1. Two dimensional finite element heat transfer models for softwood

    Science.gov (United States)

    Hongmei Gu; John F. Hunt

    2004-01-01

    The anisotropy of wood creates a complex problem for solving heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Most heat transfer models use average thermal properties across either the radial or tangential directions and have not differentiated the effects of cellular alignment, earlywood/latewood...

  2. Two-dimensional finite element heat transfer model of softwood. Part II, Macrostructural effects

    Science.gov (United States)

    Hongmei Gu; John F. Hunt

    2006-01-01

    A two-dimensional finite element model was used to study the effects of structural features on transient heat transfer in softwood lumber with various orientations. Transient core temperature was modeled for lumber samples “cut” from various locations within a simulated log. The effects of ring orientation, earlywood to latewood (E/L) ratio, and ring density were...

  3. Two-dimensional finite element heat transfer model of softwood. Part I, Effective thermal conductivity

    Science.gov (United States)

    John F. Hunt; Hongmei Gu

    2006-01-01

    The anisotropy of wood complicates solution of heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Most heat transfer models use average thermal properties across either the radial or tangential direction and do not differentiate the effects of cellular alignment, earlywood/latewood differences, or...

  4. Two-dimensional numerical modeling and solution of convection heat transfer in turbulent He II

    Science.gov (United States)

    Zhang, Burt X.; Karr, Gerald R.

    1991-01-01

    Numerical schemes are employed to investigate heat transfer in the turbulent flow of He II. FEM is used to solve a set of equations governing the heat transfer and hydrodynamics of He II in the turbulent regime. Numerical results are compared with available experimental data and interpreted in terms of conventional heat transfer parameters such as the Prandtl number, the Peclet number, and the Nusselt number. Within the prescribed Reynolds number domain, the Gorter-Mellink thermal counterflow mechanism becomes less significant, and He II acts like an ordinary fluid. The convection heat transfer characteristics of He II in the highly turbulent regime can be successfully described by using the conventional turbulence and heat transfer theories.

  5. Two-dimensional finite element heat transfer model of softwood. Part III, Effect of moisture content on thermal conductivity

    Science.gov (United States)

    Hongmei Gu; John F. Hunt

    2007-01-01

    The anisotropy of wood creates a complex problem for solving heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Most heat transfer models for softwood use average thermal properties across either the radial or tangential direction and do not differentiate the effects of cellular alignment or...

  6. FireStem2D — A two-dimensional heat transfer model for simulating tree stem injury in fires

    Science.gov (United States)

    Efthalia K. Chatziefstratiou; Gil Bohrer; Anthony S. Bova; Ravishankar Subramanian; Renato P.M. Frasson; Amy Scherzer; Bret W. Butler; Matthew B. Dickinson

    2013-01-01

    FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by...

  7. Application of linear and non-linear low-Re k-ε models in two-dimensional predictions of convective heat transfer in passages with sudden contractions

    International Nuclear Information System (INIS)

    Raisee, M.; Hejazi, S.H.

    2007-01-01

    This paper presents comparisons between heat transfer predictions and measurements for developing turbulent flow through straight rectangular channels with sudden contractions at the mid-channel section. The present numerical results were obtained using a two-dimensional finite-volume code which solves the governing equations in a vertical plane located at the lateral mid-point of the channel. The pressure field is obtained with the well-known SIMPLE algorithm. The hybrid scheme was employed for the discretization of convection in all transport equations. For modeling of the turbulence, a zonal low-Reynolds number k-ε model and the linear and non-linear low-Reynolds number k-ε models with the 'Yap' and 'NYP' length-scale correction terms have been employed. The main objective of present study is to examine the ability of the above turbulence models in the prediction of convective heat transfer in channels with sudden contraction at a mid-channel section. The results of this study show that a sudden contraction creates a relatively small recirculation bubble immediately downstream of the channel contraction. This separation bubble influences the distribution of local heat transfer coefficient and increases the heat transfer levels by a factor of three. Computational results indicate that all the turbulence models employed produce similar flow fields. The zonal k-ε model produces the wrong Nusselt number distribution by underpredicting heat transfer levels in the recirculation bubble and overpredicting them in the developing region. The linear low-Re k-ε model, on the other hand, returns the correct Nusselt number distribution in the recirculation region, although it somewhat overpredicts heat transfer levels in the developing region downstream of the separation bubble. The replacement of the 'Yap' term with the 'NYP' term in the linear low-Re k-ε model results in a more accurate local Nusselt number distribution. Moreover, the application of the non-linear k

  8. Two Dimensional Heat Transfer around Penetrations in Multilayer Insulation

    Science.gov (United States)

    Johnson, Wesley L.; Kelly, Andrew O.; Jumper, Kevin M.

    2012-01-01

    The objective of this task was to quantify thermal losses involving integrating MLI into real life situations. Testing specifically focused on the effects of penetrations (including structural attachments, electrical conduit/feedthroughs, and fluid lines) through MLI. While there have been attempts at quantifying these losses both analytically and experimentally, none have included a thorough investigation of the methods and materials that could be used in such applications. To attempt to quantify the excess heat load coming into the system due to the integration losses, a calorimeter was designed to study two dimensional heat transfer through penetrated MLI. The test matrix was designed to take as many variables into account as was possible with the limited test duration and system size. The parameters varied were the attachment mechanism, the buffer material (for buffer attachment mechanisms only), the thickness of the buffer, and the penetration material. The work done under this task is an attempt to measure the parasitic heat loads and affected insulation areas produced by system integration, to model the parasitic loads, and from the model produce engineering equations to allow for the determination of parasitic heat loads in future applications. The methods of integration investigated were no integration, using a buffer to thermally isolate the strut from the MLI, and temperature matching the MLI on the strut. Several materials were investigated as a buffer material including aerogel blankets, aerogel bead packages, cryolite, and even an evacuated vacuum space (in essence a no buffer condition).

  9. Two dimensional heat transfer problem in flow boiling in a rectangular minichannel

    Directory of Open Access Journals (Sweden)

    Hożejowska Sylwia

    2015-01-01

    Full Text Available The paper presents mathematical modelling of flow boiling heat transfer in a rectangular minichannel asymmetrically heated by a thin and one-sided enhanced foil. Both surfaces are available for observations due to the openings covered with glass sheets. Thus, changes in the colour of the plain foil surface can be registered and then processed. Plain side of the heating foil is covered with a base coat and liquid crystal paint. Observation of the opposite, enhanced surface of the minichannel allows for identification of the gas-liquid two-phase flow patterns and vapour quality. A two-dimensional mathematical model of heat transfer in three subsequent layers (sheet glass, heating foil, liquid was proposed. Heat transfer in all these layers was described with the respective equations: Laplace equation, Poisson equation and energy equation, subject to boundary conditions corresponding to the observed physical process. The solutions (temperature distributions in all three layers were obtained by Trefftz method. Additionally, the temperature of the boiling liquid was obtained by homotopy perturbation method (HPM combined with Trefftz method. The heat transfer coefficient, derived from Robin boundary condition, was estimated in both approaches. In comparison, the results by both methods show very good agreement especially when restricted to the thermal sublayer.

  10. Numerical prediction of turbulent heat transfer augmentation in an annular fuel channel with two-dimensional square ribs

    International Nuclear Information System (INIS)

    Takase, Kazuyuki

    1996-01-01

    The square-ribbed fuel rod for high temperature gas-cooled reactors was developed in order to enhance the turbulent heat transfer in comparison with the standard fuel rod. To evaluate the heat transfer performance of the square-ribbed fuel rod, the turbulent heat transfer coefficients in an annular fuel channel with repeated two-dimensional square ribs were analyzed numerically on a fully developed incompressible flow using the k - ε turbulence model and the two-dimensional axisymmetrical coordinate system. Numerical analyses were carried out for a range of Reynolds numbers from 3000 to 20000 and ratios of square-rib pitch to height of 10, 20 and 40, respectively. The predicted values of the heat transfer coefficients agreed within an error of 10% for the square-rib pitch to height ratio of 10, 20% for 20 and 25% for 40, respectively, with the heat transfer empirical correlations obtained from the experimental data. It was concluded by the present study that the effect of the heat transfer augmentation by square ribs could be predicted sufficiently by the present numerical simulations and also a part of its mechanism could be explained by means of the change in the turbulence kinematic energy distribution along the flow direction. (author)

  11. Numerical prediction of augmented turbulent heat transfer in an annular fuel channel with repeated two-dimensional square ribs

    International Nuclear Information System (INIS)

    Takase, K.

    1996-01-01

    The square-ribbed fuel rod for high temperature gas-cooled reactors was designed and developed so as to enhance the turbulent heat transfer in comparison with the previous standard fuel rod. The turbulent heat transfer characteristics in an annular fuel channel with repeated two-dimensional square ribs were analysed numerically on a fully developed incompressible flow using the k-ε turbulence model and the two-dimensional axisymmetrical coordinate system. Numerical analyses were carried out under the conditions of Reynolds numbers from 3000 to 20000 and ratios of square-rib pitch to height of 10, 20 and 40 respectively. The predictions of the heat transfer coefficients agreed well within an error of 10% for the square-rib pitch to height ratio of 10, 20% for 20 and 25% for 40 respectively, with the heat transfer empirical correlations obtained from the experimental data due to the simulated square-ribbed fuel rods. Therefore it was found that the effect of heat transfer augmentation due to the square ribs could be predicted by the present numerical simulations and the mechanism could be explained by the change in the turbulence kinematic energy distribution along the flow direction. (orig.)

  12. Two-dimensional thermal analysis of radial heat transfer of monoliths in small-scale steam methane reforming

    DEFF Research Database (Denmark)

    Cui, Xiaoti; Kær, Søren Knudsen

    2018-01-01

    Monolithic catalysts have received increasing attention for application in the small-scale steam methane reforming process. The radial heat transfer behaviors of monolith reformers were analyzed by two-dimensional computational fluid dynamic (CFD) modeling. A parameter study was conducted...... by a large number of simulations focusing on the thermal conductivity of the monolith substrate, washcoat layer, wall gap, radiation heat transfer and the geometric parameters (cell density, porosity and diameter of monolith). The effective radial thermal conductivity of the monolith structure, kr......,eff, showed good agreement with predictions made by the pseudo-continuous symmetric model. This influence of the radiation heat transfer is low for highly conductive monoliths. A simplified model has been developed to evaluate the importance of radiation for monolithic reformers under different conditions...

  13. Benchmark numerical solutions for radiative heat transfer in two-dimensional medium with graded index distribution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.H. [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)]. E-mail: lhliu@hit.edu.cn

    2006-11-15

    In graded index media, the ray goes along a curved path determined by Fermat principle. Generally, the curved ray trajectory in graded index media is a complex implicit function, and the curved ray tracing is very difficult and complex. Only for some special refractive index distributions, the curved ray trajectory can be expressed as a simple explicit function. Two important examples are the layered and the radial graded index distributions. In this paper, the radiative heat transfer problems in two-dimensional square semitransparent with layered and radial graded index distributions are analyzed. After deduction of the ray trajectory, the radiative heat transfer problems are solved by using the Monte Carlo curved ray-tracing method. Some numerical solutions of dimensionless net radiative heat flux and medium temperature are tabulated as the benchmark solutions for the future development of approximation techniques for multi-dimensional radiative heat transfer in graded index media.

  14. Two-Dimensional Heat Transfer Modeling of the Formosa Ridge Offshore SW Taiwan: Implication for Fluid Migrating Paths of a Cold Seep Site

    Science.gov (United States)

    Tsai, Y.; Chi, W.; Liu, C.; Shyu, C.

    2011-12-01

    The Formosa Ridge, a small ridge located on the passive China continental slope offshore southwestern Taiwan, is an active cold seep site. Large and dense chemosynthetic communities were found there by the ROV Hyper-Dolphin during the 2007 NT0705 cruise. A vertical blank zone is clearly observed on all the seismic profiles across the cold seep site. This narrow zone is interpreted to be the fluid conduit of the seep site. Previous studies suggest that cold sea water carrying large amount of sulfate could flow into the fluid system from flanks of the ridge, and forms a very effective fluid circulation system that emits both methane and hydrogen sulfide to feed the unusual chemosynthetic communities observed at the Formosa Ridge cold seep site. Here we use thermal signals to study possible fluid flow migration paths. In 2008 and 2010, we have collected vdense thermal probe data at this site. We also study the temperatures at Bottom-Simulating Reflectors (BSRs) based on methane hydrate phase diagram. We perform 2D finite element thermal conductive simulations to study the effects of bathymetry on the temperature field in the ridge, and compare the simulation result with thermal probe and BSR-derived datasets. The boundary conditions include insulated boundaries on both sides, and we assign a fix temperature at the bottom of the model using an average regional geothermal gradient. Sensitivity tests and thermal probe data from a nearby region give a regional background geothermal gradient of 0.04 to 0.05 °C/m. The outputs of the simulation runs include geothermal gradient and temperature at different parts of the model. The model can fit the geothermal gradient at a distance away from the ridge where there is less geophysics evidence of fluid flow. However our model over-predicts the geothermal gradient by 50% at the ridge top. We also compare simulated temperature field and found that under the flanks of the ridge the temperature is cooled by 2 °C compared with the

  15. Two-Dimensional Variable Property Conjugate Heat Transfer Simulation of Nanofluids in Microchannels

    International Nuclear Information System (INIS)

    Ramiar, A.; Ranjbar, A.A.

    2013-01-01

    Laminar two-dimensional forced convective heat transfer of CuO-water and Al 2 O 3 -water nanofluids in a horizontal microchannel has been studied numerically, considering axial conduction effects in both solid and liquid regions and variable thermal conductivity and dynamic viscosity. The results show that using nanoparticles with higher thermal conductivities will intensify enhancement of heat transfer characteristics and slightly increases shear stress on the wall. The obtained results show more steep changes in Nusselt number for lower diameters and also higher values of Nusselt number by decreasing the diameter of nanoparticles. Also, by utilizing conduction number as the criterion, it was concluded from the results that adding nanoparticles will intensify the axial conduction effect in the geometry considered.

  16. Convective heat transfer from rough surfaces with two-dimensional ribs - transitional and laminar flow

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Meyer, L.

    1978-01-01

    Measurements of friction factor and heat transfer coefficients for two rods of 18.9 mm 0.D. with two-dimensional roughness, each in two different outer smooth tubes have been performed in turbulent and laminar flow. The turbulent flow results indicate that the flow was not thermally fully established, the isothermal data however agree reasonably well with our previously obtained general correlation. Laminar flow results can be correlated best when the Reynolds and Greatz numbers are evaluated at the temperature average between the temperature of the inner rod surface and of the outer smooth surface of the annulus, the average being weighted over the two surfaces. (orig.) [de

  17. Two-dimensional models

    International Nuclear Information System (INIS)

    Schroer, Bert; Freie Universitaet, Berlin

    2005-02-01

    It is not possible to compactly review the overwhelming literature on two-dimensional models in a meaningful way without a specific viewpoint; I have therefore tacitly added to the above title the words 'as theoretical laboratories for general quantum field theory'. I dedicate this contribution to the memory of J. A. Swieca with whom I have shared the passion of exploring 2-dimensional models for almost one decade. A shortened version of this article is intended as a contribution to the project 'Encyclopedia of mathematical physics' and comments, suggestions and critical remarks are welcome. (author)

  18. Coupled DQ-FE methods for two dimensional transient heat transfer analysis of functionally graded material

    Energy Technology Data Exchange (ETDEWEB)

    Golbahar Haghighi, M.R.; Eghtesad, M. [Department of Mechanical Engineering, School of Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Malekzadeh, P. [Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Boushehr 75169-13798 (Iran, Islamic Republic of)], E-mail: malekzadeh@pgu.ac.ir

    2008-05-15

    In this paper, a mixed finite element (FE) and differential quadrature (DQ) method as a simple, accurate and computationally efficient numerical tool for two dimensional transient heat transfer analysis of functionally graded materials (FGMs) is developed. The method benefits from the high accuracy, fast convergence behavior and low computational efforts of the DQ in conjunction with the advantages of the FE method in general geometry, loading and systematic boundary treatment. Also, the boundary conditions at the top and bottom surfaces of the domain can be implemented more precisely and in strong form. The temporal derivatives are discretized using an incremental DQ method (IDQM), whose numerical stability is not sensitive to time step size. The effects of non-uniform convective-radiative conditions on the boundaries are investigated. The accuracy of the proposed method is demonstrated by comparing its results with those available in the literature. It is shown that using few grid points, highly accurate results can be obtained.

  19. Two-dimensional nonlinear transient heat transfer analysis of variable section pin fins

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, P. [Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Boushehr 75168 (Iran); Rahideh, H. [Department of Chemical Engineering, School of Engineering, Persian Gulf University, Boushehr 75168 (Iran)

    2009-04-15

    The two-dimensional nonlinear transient heat transfer analysis of variable cross section pin-fins is studied using the incremental differential quadrature method (IDQM) as a simple, accurate, and computationally efficient numerical tool. The formulations are general so that it can easily be used for arbitrary continuously varying cross section pin fins with the spatial-temperature dependent thermal parameters. On all external surfaces of the pin fin, the convective-radiative condition is considered. The effects of two different types of boundary conditions at the base of pin fin are investigated: time and spatial dependent temperature, and the convection heat transfer. The thermal conductivity of the pin fin is assumed to vary as a linear function of the temperature. The accuracy of the method is demonstrated by comparing its results with those generated by finite difference method. It is shown that using few grid points, results in excellent agreements with those of FDM are obtained. Less computational efforts of the method with respect to finite difference method is shown. (author)

  20. Two Dimensional CFD Analyses on the Heat Transfer for a Supercritical Pressure CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Hyun; Kim, Young In; Bae, Yoon Yeong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    The Supercritical Water Cooled Reactor(SCWR) operates in a pressure around 25MPa and temperature of 293{approx}510 .deg. C. In order to study the heat transfer behaviors and good comparisons between the various fluids, a heat transfer test loop(SPHINX) using CO{sub 2} has been constructed in KAERI as a part of international research program, I-NERI. At a supercritical pressure, the heat transfer coefficient is much larger than that estimated from the Dittus-Boelter correlation for a relatively large flow rate with moderate wall heat flux conditions. This phenomenon was explained by the rapid variations of the physical properties near the wall with the temperature. On the contrary, the heat transfer becomes worse when the bulk fluid enthalpy is below the pseudo-critical enthalpy under a low flow rate with large heat flux conditions. This phenomenon is called 'deteriorated heat transfer', and which is explained as the modification of the shear stress distribution across the tube to a buoyancy and/or acceleration in a low density layer near the wall, with the consequence of a turbulence. The upward vertical flow of CO{sub 2} through a uniformly heated tube of 4.4 mm in diameter and 3m long(heated length is 2.1m) was investigated numerically using the CFD code, FLUENT. Through the numerical simulations, we have attempted to obtain a physically meaningful insight into the heat transfer mechanisms at a supercritical pressure.

  1. Preparation of functions of computer code GENGTC and improvement for two-dimensional heat transfer calculations for irradiation capsules

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Someya, Hiroyuki; Ito, Haruhiko.

    1992-11-01

    Capsules for irradiation tests in the JMTR (Japan Materials Testing Reactor), consist of irradiation specimens surrounded by a cladding tube, holders, an inner tube and a container tube (from 30mm to 65mm in diameter). And the annular gaps between these structural materials in the capsule are filled with liquids or gases. Cooling of the capsule is done by reactor primary coolant flowing down outside the capsule. Most of the heat generated by fission in fuel specimens and gamma absorption in structural materials is directed radially to the capsule container outer surface. In thermal performance calculations for capsule design, an one(r)-dimensional heat transfer computer code entitled (Generalyzed Gap Temperature Calculation), GENGTC, originally developed in Oak Ridge National Laboratory, U.S.A., has been frequently used. In designing a capsule, are needed many cases of parametric calculations with respect to changes materials and gap sizes. And in some cases, two(r,z)-dimensional heat transfer calculations are needed for irradiation test capsules with short length fuel rods. Recently the authors improved the original one-dimensional code GENGTC, (1) to simplify preparation of input data, (2) to perform automatic calculations for parametric survey based on design temperatures, ect. Moreover, the computer code has been improved to perform r-z two-dimensional heat transfer calculation. This report describes contents of the preparation of the one-dimensional code GENGTC and the improvement for the two-dimensional code GENGTC-2, together with their code manuals. (author)

  2. Analytical method for steady state heat transfer in two-dimensional porous media

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, R.; Goldstein, M.E.

    1970-07-01

    A general technique has been devised for obtaining exact solutions for the heat transfer behavior of a 2- dimensional porous cooled medium. Fluid flows through the porous medium from a reservoir at constant pressure and temperature to a second reservoir at a lower pressure. For the type of flow involved, the surfaces of the porous region that are each at constant pressure are boundaries of constant velocity potential. This fact is used to map the porous region into a strip bounded by parallel potential lines in a complex potential plane. The energy equation, derived by assuming the local matrix and fluid temperatures are equal, is transformed into a separable equation when its independent variables are changed to the coordinates of the potential plane. This allows the general solution for the temperature distribution to be found in the potential plane. The solution is then mapped into the physical plane to yield the heat transfer characteristics of the porous region. An example problem of a porous wall having a step in thickness and a specified surface temperature or heat flux is worked out in detail.

  3. Modeling microscale heat transfer using Calore.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Rader, Daniel John; Wong, Chung-Nin Channy; Bainbridge, Bruce L.; Torczynski, John Robert; Piekos, Edward Stanley

    2005-09-01

    Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.

  4. Heat transfer of phase-change materials in two-dimensional cylindrical coordinates

    Science.gov (United States)

    Labdon, M. B.; Guceri, S. I.

    1981-01-01

    Two-dimensional phase-change problem is numerically solved in cylindrical coordinates (r and z) by utilizing two Taylor series expansions for the temperature distributions in the neighborhood of the interface location. These two expansions form two polynomials in r and z directions. For the regions sufficiently away from the interface the temperature field equations are numerically solved in the usual way and the results are coupled with the polynomials. The main advantages of this efficient approach include ability to accept arbitrarily time dependent boundary conditions of all types and arbitrarily specified initial temperature distributions. A modified approach using a single Taylor series expansion in two variables is also suggested.

  5. Solution to Two-Dimensional Steady Inverse Heat Transfer Problems with Interior Heat Source Based on the Conjugate Gradient Method

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2017-01-01

    Full Text Available The compound variable inverse problem which comprises boundary temperature distribution and surface convective heat conduction coefficient of two-dimensional steady heat transfer system with inner heat source is studied in this paper applying the conjugate gradient method. The introduction of complex variable to solve the gradient matrix of the objective function obtains more precise inversion results. This paper applies boundary element method to solve the temperature calculation of discrete points in forward problems. The factors of measuring error and the number of measuring points zero error which impact the measurement result are discussed and compared with L-MM method in inverse problems. Instance calculation and analysis prove that the method applied in this paper still has good effectiveness and accuracy even if measurement error exists and the boundary measurement points’ number is reduced. The comparison indicates that the influence of error on the inversion solution can be minimized effectively using this method.

  6. Effect of two dimensional heat conduction within the wall on heat transfer of a tube partially heated on its circumference

    International Nuclear Information System (INIS)

    Satoh, Isao; Kurosaki, Yasuo

    1987-01-01

    This paper dealt with the numerical calculations of the heat transfer of a tube partially heated on its circumference, considering two-dimensional heat conduction within the wall. The contribution of the unheated region of the tube wall to heat tranfer of the heated region was explained by the term of 'fin efficiency of psuedo-fin', it was clarified that the fin efficiency of the unheated region was little affected by the temperature difference between the inner and outer surfaces of the wall, and could be approximated by the fin efficency of a rectangular fin. Both the circumferential and radial heat conductions within the wall affected the temperature difference between the inner and outer surfaces of the heated region; however, the effect of the temperature difference on the circumferentially average Nusselt number could be obtained by using the analytical solution of radially one-dimensional heat conduction. Using these results, a diagram showing the effect of wall conduction on heat transfer, which is useful for designing the circumferentially nonuniformly heated coolant passages, was obtained. (author)

  7. Effect of the Presence of Semi-circular Cylinders on Heat Transfer From Heat Sources Placed in Two Dimensional Channel

    Directory of Open Access Journals (Sweden)

    Ahmed W. Mustava

    2013-04-01

    Full Text Available The effect of a semi-circular cylinders in a two dimensional channel on heat transfer by forced convection from two heat sources with a constant temperature has been studied numerically. Each channel contains two heat sources; one on the upper surface of the channel and the other on the lower surface of the channel. There is semi-circular cylinder under the source in upper surface and there is semi-circular cylinder above the source in lower surface. The location of the second heat source with its semi-cylinder has been changed and keeps the first source with its semi- cylinder at the same location. The flow and temperature field are studied numerically with different values of Reynolds numbers and for different spacing between the centers of the semi-cylinders. The laminar flow field is analyzed numerically by solving the steady forms of the two-dimensional incompressible Navier- Stokes and energy equations.  The Cartesian velocity components and pressure on a collocated (non-staggered grid are used as dependent variables in the momentum equations, which discretized by finite volume method, body fitted coordinates are used to represent the complex channel geometry accurately, and grid generation technique based on elliptic partial differential equations is employed. SIMPLE algorithm is used to adjust the velocity field to satisfy the conservation of mass.  The range of Reynolds number is (Re= 100 – 800 and the range of the spacing between the semi-cylinders is(1-4 and the Prandtl number is 0.7.The results showed that increasing the spacing between the semi-cylinders increases the average of Nusselt number of the first heat source for all Reynolds numbers. As well as the results show that the best case among the cases studied to enhance the heat transfer is when the second heat source and its semi-cylinder located on at the distance (S=1.5 from the first half of the cylinder and the Reynolds number is greater than (Re ≥ 400 because of the

  8. Numerical Modeling of Ablation Heat Transfer

    Science.gov (United States)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  9. Heat transfer modeling an inductive approach

    CERN Document Server

    Sidebotham, George

    2015-01-01

    This innovative text emphasizes a "less-is-more" approach to modeling complicated systems such as heat transfer by treating them first as "1-node lumped models" that yield simple closed-form solutions. The author develops numerical techniques for students to obtain more detail, but also trains them to use the techniques only when simpler approaches fail. Covering all essential methods offered in traditional texts, but with a different order, Professor Sidebotham stresses inductive thinking and problem solving as well as a constructive understanding of modern, computer-based practice. Readers learn to develop their own code in the context of the material, rather than just how to use packaged software, offering a deeper, intrinsic grasp behind models of heat transfer. Developed from over twenty-five years of lecture notes to teach students of mechanical and chemical engineering at The Cooper Union for the Advancement of Science and Art, the book is ideal for students and practitioners across engineering discipl...

  10. A two-dimensional model with three regions for the reflooding study

    International Nuclear Information System (INIS)

    Motta, A.M.T.; Kinrys, S.; Roberty, N.C.; Carmo, E.G.D. do; Oliveira, L.F.S. de.

    1983-02-01

    A two-dimensional semi-analytical model, with three heat transfer regions is described for the calculation of flood ratio, the lenght of quenching front and the temperature distribution in the cladding. (E.G.) [pt

  11. A two-dimensional model with three regions for the reflooding study

    International Nuclear Information System (INIS)

    Motta, A.M.T.; Kinrys, S.; Roberty, N.C.; Carmo, E.G.D. do; Oliveira, L.F.S. de

    1982-01-01

    A two-dimensional semi-analytical model, with three heat transfer regions is described for the calculation of flood ratio, the length of quenching front and the temperature distribution in the cladding. (E.G.) [pt

  12. Aluminum-based one- and two-dimensional micro fin array structures: high-throughput fabrication and heat transfer testing

    International Nuclear Information System (INIS)

    Primeaux, Philip A; Zhang, Bin; Zhang, Xiaoman; Miller, Jacob; Meng, W J; KC, Pratik; Moore, Arden L

    2017-01-01

    Microscale fin array structures were replicated onto surfaces of aluminum 1100 and aluminum 6061 alloy (Al1100/Al6061) sheet metals through room-temperature instrumented roll molding. Aluminum-based micro fin arrays were replicated at room temperature, and the fabrication process is one with high throughput and low cost. One-dimensional (1D) micro fin arrays were made through one-pass rolling, while two-dimensional (2D) micro fin arrays were made by sequential 90° cross rolling with the same roller sleeve. For roll molding of 1D micro fins, fin heights greater than 600 µ m were achieved and were shown to be proportional to the normal load force per feature width. At a given normal load force, the fin height was further shown to scale inversely with the hardness of the sheet metal. For sequential 90° cross rolling, morphologies of roll molded 2D micro fin arrays were examined, which provided clues to understand how plastic deformation occurred under cross rolling conditions. A series of pool boiling experiments on low profile Al micro fin array structures were performed within Novec 7100, a widely used commercial dielectric coolant. Results for both horizontal and vertical surface orientations show that roll molded Al micro fin arrays can increase heat flux at fixed surface temperature as compared to un-patterned Al sheet. The present results further suggest that many factors beyond just increased surface area can influence heat transfer performance, including surface finish and the important multiphase transport mechanisms in and around the fin geometry. These factors must also be considered when designing and optimizing micro fin array structures for heat transfer applications. (paper)

  13. The Mathematical Modelling of Heat Transfer in Electrical Cables

    Directory of Open Access Journals (Sweden)

    Bugajev Andrej

    2014-05-01

    Full Text Available This paper describes a mathematical modelling approach for heat transfer calculations in underground high voltage and middle voltage electrical power cables. First of the all typical layout of the cable in the sand or soil is described. Then numerical algorithms are targeted to the two-dimensional mathematical models of transient heat transfer. Finite Volume Method is suggested for calculations. Different strategies of nonorthogonality error elimination are considered. Acute triangles meshes were applied in two-dimensional domain to eliminate this error. Adaptive mesh is also tried. For calculations OpenFOAM open source software which uses Finite Volume Method is applied. To generate acute triangles meshes aCute library is used. The efficiency of the proposed approach is analyzed. The results show that the second order of convergence or close to that is achieved (in terms of sizes of finite volumes. Also it is shown that standard strategy, used by OpenFOAM is less efficient than the proposed approach. Finally it is concluded that for solving real problem a spatial adaptive mesh is essential and adaptive time steps also may be needed.

  14. Heat transfer in Rockwool modelling and method of measurement. Modelling radiative heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For lager thickness dimensions the resulting heat transfer through the

  15. Heat transfer model for quenching by submerging

    International Nuclear Information System (INIS)

    Passarella, D N; Varas, F; MartIn, E B

    2011-01-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  16. Heat transfer model for quenching by submerging

    Energy Technology Data Exchange (ETDEWEB)

    Passarella, D N; Varas, F [Departamento de Matematica Aplicada II, E.T.S. de Ing. de Telecomunicacion, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain); MartIn, E B, E-mail: diego@dma.uvigo.es, E-mail: fvaras@uvigo.es, E-mail: emortega@uvigo.es [Area de Mecanica de Fluidos, E.T.S. de Ing. Industriales, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain)

    2011-05-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  17. Heat Transfer Model for Hot Air Balloons

    OpenAIRE

    Lladó Gambín, Adriana

    2016-01-01

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the mod...

  18. Heat Transfer Model for Hot Air Balloons

    Science.gov (United States)

    Llado-Gambin, Adriana

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.

  19. Heat Transfer Modelling of Glass Media within TPV Systems

    Science.gov (United States)

    Bauer, Thomas; Forbes, Ian; Penlington, Roger; Pearsall, Nicola

    2004-11-01

    Understanding and optimisation of heat transfer, and in particular radiative heat transfer in terms of spectral, angular and spatial radiation distributions is important to achieve high system efficiencies and high electrical power densities for thermophtovoltaics (TPV). This work reviews heat transfer models and uses the Discrete Ordinates method. Firstly one-dimensional heat transfer in fused silica (quartz glass) shields was examined for the common arrangement, radiator-air-glass-air-PV cell. It has been concluded that an alternative arrangement radiator-glass-air-PV cell with increased thickness of fused silica should have advantages in terms of improved transmission of convertible radiation and enhanced suppression of non-convertible radiation.

  20. Effect of different heat transfer models on HCCI engine simulation

    International Nuclear Information System (INIS)

    Neshat, Elaheh; Saray, Rahim Khoshbakhti

    2014-01-01

    Highlights: • A new multi zone model is developed for HCCI combustion modeling. • New heat transfer model is used for prediction of heat transfer in HCCI engines. • Model can predict engine combustion, performance and emission characteristics well. • Appropriate mass and heat transfer models cause to accurate prediction of CO, UHC and NOx. - Abstract: Heat transfer from engine walls has an important role on engine combustion, performance and emission characteristics. The main focus of this study is offering a new relation for calculation of convective heat transfer from in-cylinder charge to combustion chamber walls of HCCI engines and providing the ability of new model in comparison with the previous models. Therefore, a multi zone model is developed for homogeneous charge compression ignition engine simulation. Model consists of four different types of zones including core zone, boundary layer zone, outer zones, which are between core and boundary layer, and crevice zone. Conductive heat transfer and mass transfer are considered between neighboring zones. For accurate calculation of initial conditions at inlet valve closing, multi zone model is coupled with a single zone model, which simulates gas exchange process. Various correlations are used as convective heat transfer correlations. Woschni, modified Woschni, Hohenberg and Annand correlations are used as convective heat transfer models. The new convection model, developed by authors, is used, too. Comparative analyses are done to recognize the accurate correlation for prediction of engine combustion, performance and emission characteristics in a wide range of operating conditions. The results indicate that utilization of various heat transfer models, except for new convective heat transfer model, leads to significant differences in prediction of in-cylinder pressure and exhaust emissions. Using Woschni, Chang and new model, convective heat transfer coefficient increases near top dead center, sharply

  1. Comparison of heat transfer models for reciprocating compressor

    International Nuclear Information System (INIS)

    Tuhovcak, J.; Hejcik, J.; Jicha, M.

    2016-01-01

    Highlights: • Comparison of integral heat transfer models. • Influence of heat transfer model on volumetric and isentropic efficiency. • Various gases used as working fluid. - Abstract: One of the main factors affecting the efficiency of reciprocating compressor is heat transfer inside the cylinder. An analysis of heat transfer could be done using numerical models or integral correlations developed mainly from approaches used in combustion engines; however their accuracy is not completely verified due to the complicated experimental set up. The goal of this paper is to analyse the effect of heat transfer on compressor efficiency. Various integral correlations were compared for different compressor settings and fluids. CoolProp library was used in the code to obtain the properties of common coolants and gases. A comparison was done using the in-house code developed in Matlab, based on 1st Law of Thermodynamics.

  2. Composite heat transfer in a pipe with thermal radiation of two-dimensional propagation - in connection with the temperature rise in flowing medium upstream from heating section

    International Nuclear Information System (INIS)

    Echigo, R.; Hasegawa, S.; Kamiuto, K.

    1975-01-01

    An analytical procedure is presented for simultaneous convective and radiative heat transfer with a fully developed laminar flow in a pipe by taking account of the two-dimensional propagation of radiative transfer and also shows the numerical results on the temperature profiles and the heat-transfer characteristics. In order to solve the energy equation with two-dimensional radiative transfer the entire ranges of the temperature field have to be solved simultaneously both along the radial and flow directions. Moreover, the heat flux by thermal radiation emitted from the heating wall propagates upstream so that it is necessary to examine the temperature profiles of the flowing medium to a certain distance upstream from the entrance of the heating section. In this way in order to attempt to solve the governing equation numerically by a finite difference method the dimension of matrix becomes extremely large provided that a satisfactory validity of numerical calculation is required Consequently the band matrix method is used and the temperature profiles of the medium in both regions upstream and downstream from the entrance of the heating section are illustrated and the heat transfer results are discussed in some detail by comparing with those of the one-dimensional transfer of radiation.(auth)

  3. Heat transfer modelling in thermophotovoltaic cavities using glass media

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, T.; Forbes, I.; Penlington, R.; Pearsall, N. [Northumbria University, Newcastle upon Tyne (United Kingdom). School of Engineering and Technology

    2005-08-15

    Optimisation of heat transfer, and in particular radiative heat transfer in terms of the spectral, angular and spatial radiation distributions, is required to achieve high efficiencies and high electrical power densities for thermophotovoltaic (TPV) conversion. This work examines heat transfer from the radiator to the PV cell in an infinite plate arrangement using three different arrangements of participating dielectric media. The modelling applies the Discrete Ordinates method and assumes fused silica (quartz glass) as the dielectric medium. The arrangement radiator-glass-PV cell (also termed dielectric photon concentration) was found to be superior in terms of efficiency and power density. (author)

  4. Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation

    Science.gov (United States)

    Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.

    2012-01-01

    Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.

  5. Verification and Validation of Heat Transfer Model of AGREE Code

    Energy Technology Data Exchange (ETDEWEB)

    Tak, N. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Seker, V.; Drzewiecki, T. J.; Downar, T. J. [Department of Nuclear Engineering and Radiological Sciences, Univ. of Michigan, Michigan (United States); Kelly, J. M. [US Nuclear Regulatory Commission, Washington (United States)

    2013-05-15

    The AGREE code was originally developed as a multi physics simulation code to perform design and safety analysis of Pebble Bed Reactors (PBR). Currently, additional capability for the analysis of Prismatic Modular Reactor (PMR) core is in progress. Newly implemented fluid model for a PMR core is based on a subchannel approach which has been widely used in the analyses of light water reactor (LWR) cores. A hexagonal fuel (or graphite block) is discretized into triangular prism nodes having effective conductivities. Then, a meso-scale heat transfer model is applied to the unit cell geometry of a prismatic fuel block. Both unit cell geometries of multi-hole and pin-in-hole types of prismatic fuel blocks are considered in AGREE. The main objective of this work is to verify and validate the heat transfer model newly implemented for a PMR core in the AGREE code. The measured data in the HENDEL experiment were used for the validation of the heat transfer model for a pin-in-hole fuel block. However, the HENDEL tests were limited to only steady-state conditions of pin-in-hole fuel blocks. There exist no available experimental data regarding a heat transfer in multi-hole fuel blocks. Therefore, numerical benchmarks using conceptual problems are considered to verify the heat transfer model of AGREE for multi-hole fuel blocks as well as transient conditions. The CORONA and GAMMA+ codes were used to compare the numerical results. In this work, the verification and validation study were performed for the heat transfer model of the AGREE code using the HENDEL experiment and the numerical benchmarks of selected conceptual problems. The results of the present work show that the heat transfer model of AGREE is accurate and reliable for prismatic fuel blocks. Further validation of AGREE is in progress for a whole reactor problem using the HTTR safety test data such as control rod withdrawal tests and loss-of-forced convection tests.

  6. Numerical Modeling of Conjugate Heat Transfer in Fluid Network

    Science.gov (United States)

    Majumdar, Alok

    2004-01-01

    Fluid network modeling with conjugate heat transfer has many applications in Aerospace engineering. In modeling unsteady flow with heat transfer, it is important to know the variation of wall temperature in time and space to calculate heat transfer between solid to fluid. Since wall temperature is a function of flow, a coupled analysis of temperature of solid and fluid is necessary. In cryogenic applications, modeling of conjugate heat transfer is of great importance to correctly predict boil-off rate in propellant tanks and chill down of transfer lines. In TFAWS 2003, the present author delivered a paper to describe a general-purpose computer program, GFSSP (Generalized Fluid System Simulation Program). GFSSP calculates flow distribution in complex flow circuit for compressible/incompressible, with or without heat transfer or phase change in all real fluids or mixtures. The flow circuit constitutes of fluid nodes and branches. The mass, energy and specie conservation equations are solved at the nodes where as momentum conservation equations are solved at the branches. The proposed paper describes the extension of GFSSP to model conjugate heat transfer. The network also includes solid nodes and conductors in addition to fluid nodes and branches. The energy conservation equations for solid nodes solves to determine the temperatures of the solid nodes simultaneously with all conservation equations governing fluid flow. The numerical scheme accounts for conduction, convection and radiation heat transfer. The paper will also describe the applications of the code to predict chill down of cryogenic transfer line and boil-off rate of cryogenic propellant storage tank.

  7. Numerical studies of heat transfer by simultaneous radiative-conduction and radiative-convection in a two dimensional semi-transparent medium

    International Nuclear Information System (INIS)

    Draoui, Abdeslam

    1989-01-01

    The works we present here are on numerical approaches of heat transfer coupling radiation-conduction and radiation-convection within semi-transparent two-dimensional medium. The first part deals with a review of equations of radiative transfer and introduces three numerical methods (Pl, P3, Hottel's zones) which enable one to solve this problem in a two-dimensional environment. After comparing the three methods in the case where radiation is the only mode of transfer, we introduce in the second chapter a study of the coupling of radiation with conduction. So, a fourth method is used to solve this problem. These comparisons lead us to various methods which enable us to show the interest of the spherical harmonics approximations. In the third part, the Pl approximation is kept because it is simple to use, moreover it enables us to introduce both the coupling of radiative transfers with laminar convective equations in a thermally driven two-dimensional cavity. The results show a significant influence of the radiative participation of the fluid on heat and dynamic transfer we met in this type of problem. (author) [fr

  8. Radiation heat transfer model for the SCDAP code

    International Nuclear Information System (INIS)

    Sohal, M.S.

    1984-01-01

    A radiation heat transfer model has been developed for severe fuel damage analysis which accounts for anisotropic effects of reflected radiation. The model simplifies the view factor calculation which results in significant savings in computational cost with little loss of accuracy. Radiation heat transfer rates calculated by the isotropic and anisotropic models compare reasonably well with those calculated by other models. The model is applied to an experimental nuclear rod bundle during a slow boiloff of the coolant liquid, a situation encountered during a loss of coolant accident with severe fuel damage. At lower temperatures and also lower temperature gradients in the core, the anisotropic effect was not found to be significant

  9. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

    International Nuclear Information System (INIS)

    Boyer, B.D.; Parlatan, Y.; Slovik, G.C.

    1995-01-01

    RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba's Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to ±5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes

  10. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, B.D.; Parlatan, Y.; Slovik, G.C. [and others

    1995-09-01

    RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba`s Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to {plus_minus}5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes.

  11. HTCC - a heat transfer model for gas-steam mixtures

    International Nuclear Information System (INIS)

    Papadimitriou, P.

    1983-01-01

    The mathematical model HTCC (Heat Transfer Coefficient in Containment) has been developed for RALOC after a loss-of-coolant accident in order to determine the local heat transfer coefficients for transfer between the containment atmosphere and the walls of the reactor building. The model considers the current values of room and wall temperature, the concentration of steam and non-condensible gases, geometry data and those of fluid dynamics together with thermodynamic parameters and from these determines the heat transfer mechanisms due to convection, radiation and condensation. The HTCC is implemented in the RALOC program. Comparative analyses of computed temperature profiles, for HEDL Standard problems A and B on hydrogen distribution, and of computed temperature profiles determined during the heat-up phase in the CSE-A5 experiment show a good agreement with experimental data. (orig.) [de

  12. The inaccuracy of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional composite walls

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Hsiao, M.-C.; Chen, W.-L.; Lin, K.-C.

    2008-01-01

    This investigation is to show that two-dimensional steady state heat transfer problems of composite walls should not be solved by the conventionally one-dimensional parallel thermal resistance circuits (PTRC) model because the interface temperatures are not unique. Thus PTRC model cannot be used like its conventional recognized analogy, parallel electrical resistance circuits (PERC) model which has the unique node electric voltage. Two typical composite wall examples, solved by CFD software, are used to demonstrate the incorrectness. The numerical results are compared with those obtained by PTRC model, and very large differences are observed between their results. This proves that the application of conventional heat transfer PTRC model to two-dimensional composite walls, introduced in most heat transfer text book, is totally incorrect. An alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to the two-dimensional composite walls with isothermal boundaries. Results with acceptable accuracy can be obtained by the new model

  13. A Rotating Plug Model of Friction Stir Welding Heat Transfer

    Science.gov (United States)

    Raghulapadu J. K.; Peddieson, J.; Buchanan, G. R.; Nunes, A. C.

    2006-01-01

    A simplified rotating plug model is employed to study the heat transfer phenomena associated with the fiction stir welding process. An approximate analytical solution is obtained based on this idealized model and used both to demonstrate the qualitative influence of process parameters on predictions and to estimate temperatures produced in typical fiction stir welding situations.

  14. Geometrical aspects of solvable two dimensional models

    International Nuclear Information System (INIS)

    Tanaka, K.

    1989-01-01

    It was noted that there is a connection between the non-linear two-dimensional (2D) models and the scalar curvature r, i.e., when r = -2 the equations of motion of the Liouville and sine-Gordon models were obtained. Further, solutions of various classical nonlinear 2D models can be obtained from the condition that the appropriate curvature two form Ω = 0, which suggests that these models are closely related. This relation is explored further in the classical version by obtaining the equations of motion from the evolution equations, the infinite number of conserved quantities, and the common central charge. The Poisson brackets of the solvable 2D models are specified by the Virasoro algebra. 21 refs

  15. Validation of heat transfer models for gap cooling

    International Nuclear Information System (INIS)

    Okano, Yukimitsu; Nagae, Takashi; Murase, Michio

    2004-01-01

    For severe accident assessment of a light water reactor, models of heat transfer in a narrow annular gap between overheated core debris and a reactor pressure vessel are important for evaluating vessel integrity and accident management. The authors developed and improved the models of heat transfer. However, validation was not sufficient for applicability of the gap heat flux correlation to the debris cooling in the vessel lower head and applicability of the local boiling heat flux correlations to the high-pressure conditions. Therefore, in this paper, we evaluated the validity of the heat transfer models and correlations by analyses for ALPHA and LAVA experiments where molten aluminum oxide (Al 2 O 3 ) at about 2700 K was poured into the high pressure water pool in a small-scale simulated vessel lower head. In the heating process of the vessel wall, the calculated heating rate and peak temperature agreed well with the measured values, and the validity of the heat transfer models and gap heat flux correlation was confirmed. In the cooling process of the vessel wall, the calculated cooling rate was compared with the measured value, and the validity of the nucleate boiling heat flux correlation was confirmed. The peak temperatures of the vessel wall in ALPHA and LAVA experiments were lower than the temperature at the minimum heat flux point between film boiling and transition boiling, so the minimum heat flux correlation could not be validated. (author)

  16. CFD modeling of heat transfer performance of MgO-water nanofluid under turbulent flow

    OpenAIRE

    Davarnejad, Reza; Jamshidzadeh, Maryam

    2015-01-01

    In this paper, Computational fluid dynamics (CFD) modeling of turbulent heat transfer behavior of Magnesium Oxide-water nanofluid in a circular tube was studied. The modeling was two dimensional under k–ε turbulence model. The base fluid was pure water and the volume fraction of nanoparticles in the base fluid was 0.0625%, 0.125%, 0.25%, 0.5% and 1%. The applied Reynolds number range was 3000–19000. Three individual models including single phase, Volume of Fluid (VOF) and mixture were used. T...

  17. Modelling radiative heat transfer inside a basin type solar still

    International Nuclear Information System (INIS)

    Madhlopa, A.

    2014-01-01

    Radiative heat transfer inside a basin type solar still has been investigated using two models with (model 1) and without (model 2) taking into account optical view factors. The coefficient of radiative heat exchange (h r,w-gc ) between the water and cover surfaces of a practical solar still was computed using the two models. Simulation results show that model 1 yields lower values of h r,w-gc and the root mean square error than model 2. It is therefore concluded that the accuracy of modelling the performance of a basin-type solar still can be improved by incorporating view factors. - Highlights: • Radiative heat transfer in a basin type solar still has been investigated. • Two models with and without view factors were used. • The model with view factors exhibits a lower magnitude of root mean square error. • View factors affect the accuracy of modelling the performance of the solar still

  18. Dynamic Heat Transfer Model of Refrigerated Foodstuff

    DEFF Research Database (Denmark)

    Cai, Junping; Risum, Jørgen; Thybo, Claus

    2006-01-01

    happens to the food inside during this period, when we look at the quality factor? This paper discusses quality model of foodstuff, different scenarios of defrost scheme are simulated, questions such as how the defrost temperature and duration influence the food temperature, thus the food quality, as well...

  19. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

    International Nuclear Information System (INIS)

    Boyer, B.D.; Parlatan, Y.; Slovik, G.C.; Rohatgi, U.S.

    1995-01-01

    RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba's Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations al these conditions were compared with the GIRAFFE data. The effects of PCCS cell nodings on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to ±5% of the data with a three-node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer in the presence of noncondensable gases with only a coarse mesh. The cell length term in the condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes

  20. CFD modelling of convective heat transfer from a window with adjacent venetian blinds

    Energy Technology Data Exchange (ETDEWEB)

    Marjanovic, L. [Belgrade Univ., Belgrade (Yugoslavia). Faculty of Mechanical Engineering]|[DeMontfort Univ. (United Kingdom). Inst. of Energy and Sustainable Development; Cook, M; Hanby, V.; Rees, S. [DeMontfort Univ. (United Kingdom). Inst. of Energy and Sustainable Development

    2005-07-01

    There is a limited amount of 3-dimensional modeling information on the performance of glazing systems with blinds. Two-dimensional flow modeling has indicated that 1-dimensional heat transfer can lead to invalid results where 2- and 3-dimensional effects are present. In this study, a 3-dimensional numerical solution was obtained on the effect of a venetian blind on the conjugate heat transfer from an indoor window glazing system. The solution was obtained for the coupled laminar free convection and radiation heat transfer problem, including conduction along the blind slats. Continuity, momentum and energy equations for buoyant flow were solved using Computational Fluid Dynamics (CFD) software. Grey diffuse radiation exchange between the window, blind and air were considered using the Monte Carlo method. All thermophysical properties of air were assumed to be constant with the exception of density, which was modeled using the Bousinesq approximation. Both winter and summer conditions were considered. In the computational domain, the window represented an isothermal type boundary condition with no slip. The height of the domain was extended beyond the blinds to allow for inflow and outflow regions. Fluid was allowed to entrain into the domain at an ambient temperature in a direction perpendicular to the window. The results indicated that heat transfer between window and indoor air is influenced both quantitatively and qualitatively by the presence of an aluminium venetian blind, and that the cellular flow between the blind slats can have a significant effect on the convective heat transfer from the window surface that is more fully recognized and analyzed in 3 dimensions. refs., 2 tabs., 13 figs.

  1. Two-dimensional modeling of conduction-mode laser welding

    International Nuclear Information System (INIS)

    Russo, A.J.

    1984-01-01

    WELD2D is a two-dimensional finite difference computer program suitable for modeling the conduction-mode welding process when the molten weld pool motion can be neglected. The code is currently structured to treat butt-welded geometries in a plane normal to the beam motion so that dissimilar materials may be considered. The surface heat transfer models used in the code include a Gaussian beam or uniform laser source, and a free electron theory reflectance calculation. Temperature-dependent material parameters are used in the reflectance calculation. Measured cold reflection data are used to include surface roughness or oxide effects until melt occurs, after which the surface is assumed to be smooth and clean. Blackbody reradiation and a simple natural convection model are also included in the upper surface boundary condition. Either an implicit or explicit finite-difference representation of the heat conduction equation in an enthalpy form is solved at each time step. This enables phase transition energies to be easily and accurately incorporated into the formulation. Temperature-dependent 9second-order polynominal dependence) thermal conductivities are used in the conduction calculations. Constant values of specific heat are used for each material phase. At present, material properties for six metals are included in the code. These are: aluminium, nickel, steel, molybdenum, copper and silicon

  2. Heat transfer in Rockwool modelling and method of measurement. The effect of natural convection on heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For large thickness dimensions the resulting heat transfer through the

  3. Evaluation des bassins par modélisation intégrée en deux dimensions des transferts techniques, de l'écoulement des fluides, de la genèse et de la migration des hydrocarbures Basin Evaluation by Integrated Two-Dimensional Modeling of Heat Transfer, Fluid Flow, Hydrocarbon Generation, and Migration

    Directory of Open Access Journals (Sweden)

    Chenet P. Y.

    2006-11-01

    transfer, compaction and water flow, hydrocarbon generation, and two-phase migration of fluids. The model reproduces the influence of conductivity variations and of transient heat transfer on paleotemperatures. Quantitative verification of the paleotemperature reconstruction and of the kinetic model of hydrocarbon generation may be obtained from present temperatures and geochemical data. Compaction-driven flows and overpressures are described by coupling a compaction law with Darcy's law for water flow and a criterion for natural hydraulic fracturing. This formulation allows modeling of overpressures in young deltalic sequences (e. g. , the Mahakam delta, Indonesia as well as in old rift basins (e. g. , the North Sea. An adapted two-phase Darcy's law reproduces primary and secondary migration. In particular, the model helps investigate the role of overpressures and fault behavior on hydrocarbon migration and entrapment. Our results confirm that basin models contribute to the synthesis of geological, geophysical, and geochemical data consistently. By defining parameters for petroleum evaluations, these models increase exploration efficiency.

  4. Fluid mechanics and heat transfer advances in nonlinear dynamics modeling

    CERN Document Server

    Asli, Kaveh Hariri

    2015-01-01

    This valuable new book focuses on new methods and techniques in fluid mechanics and heat transfer in mechanical engineering. The book includes the research of the authors on the development of optimal mathematical models and also uses modern computer technology and mathematical methods for the analysis of nonlinear dynamic processes. It covers technologies applicable to both fluid mechanics and heat transfer problems, which include a combination of physical, mechanical, and thermal techniques. The authors develop a new method for the calculation of mathematical models by computer technology, using parametric modeling techniques and multiple analyses for mechanical system. The information in this book is intended to help reduce the risk of system damage or failure. Included are sidebar discussions, which contain information and facts about each subject area that help to emphasize important points to remember.

  5. Analytical heat transfer modeling of a new radiation calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Obame Ndong, Elysée [Department of Industrial Engineering and Maintenance, University of Sciences and Technology of Masuku (USTM), BP 941 Franceville (Gabon); Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France); Gallot-Lavallée, Olivier [Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France); Aitken, Frédéric, E-mail: frederic.aitken@g2elab.grenoble-inp.fr [Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France)

    2016-06-10

    Highlights: • Design of a new calorimeter for measuring heat power loss in electrical components. • The calorimeter can operate in a temperature range from −50 °C to 150 °C. • An analytical model of heat transfers for this new calorimeter is presented. • The theoretical sensibility of the new apparatus is estimated at ±1 mW. - Abstract: This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from −50 °C to 150 °C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ±1 mW. From these results the calorimeter has been successfully implemented and patented.

  6. Analytical heat transfer modeling of a new radiation calorimeter

    International Nuclear Information System (INIS)

    Obame Ndong, Elysée; Gallot-Lavallée, Olivier; Aitken, Frédéric

    2016-01-01

    Highlights: • Design of a new calorimeter for measuring heat power loss in electrical components. • The calorimeter can operate in a temperature range from −50 °C to 150 °C. • An analytical model of heat transfers for this new calorimeter is presented. • The theoretical sensibility of the new apparatus is estimated at ±1 mW. - Abstract: This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from −50 °C to 150 °C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ±1 mW. From these results the calorimeter has been successfully implemented and patented.

  7. Modelling of heat transfer to fluids at a supercritical pressure

    International Nuclear Information System (INIS)

    Shuisheng, He

    2014-01-01

    A key feature of Supercritical Water-cooled Reactor (SCWR) is that, by raising the pressure of the reactor coolant fluid above the critical value, a phase change crisis is avoided. However, the changes in water density as it flows through the core of an SCWR are actually much higher than in the current water-cooled reactors. In a typical design, the ratio of the density of water at the core inlet to that at exit is as high as 7:1. Other fluid properties also vary significantly, especially around the pseudo-critical temperature (at which the specific heat capacity peaks). As a result, turbulent flow and heat transfer behaviour in the core is extremely complex and under certain conditions, significant heat transfer deterioration can potentially occur. Consequently, understanding and being able to predict flow and heat transfer phenomena under normal steady operation conditions and in start-up and hypothetical fault conditions are fundamental to the design of SCWR. There have been intensive studies on flow and heat transfer to fluids at supercritical pressure recently and several excellent review papers have been published. In the talk, we will focus on some turbulence modelling issues encountered in CFD simulations. The talk will first discuss some flow and heat transfer issues related to fluids at supercritical pressures and their potential implications in SCWR, and some recent developments in the understanding and modelling techniques of such problems, which will be followed by an outlook for some future developments.Factors which have a major influence on the flow and will be discussed are buoyancy and flow acceleration due to thermal expansion (both are due to density variations but involve different mechanisms) and the nonuniformity of other fluid properties. In addition, laminar-turbulent flow transition coupled with buoyancy and flow acceleration plays an important role in heat transfer effectiveness and wall temperature in the entrance region but such

  8. CFD modeling of heat transfer performance of MgO-water nanofluid under turbulent flow

    Directory of Open Access Journals (Sweden)

    Reza Davarnejad

    2015-12-01

    Full Text Available In this paper, Computational fluid dynamics (CFD modeling of turbulent heat transfer behavior of Magnesium Oxide-water nanofluid in a circular tube was studied. The modeling was two dimensional under k–ε turbulence model. The base fluid was pure water and the volume fraction of nanoparticles in the base fluid was 0.0625%, 0.125%, 0.25%, 0.5% and 1%. The applied Reynolds number range was 3000–19000. Three individual models including single phase, Volume of Fluid (VOF and mixture were used. The results showed that the simulated data were in good agreement with the experimental ones available in the literature. According to the experimental work (literature and simulation (this research, Nusselt number (Nu increased with increasing the volume fraction of nanofluid. However friction factor of nanofluid increased but its effect was ignorable compared with the Nu on heat transfer increment. It was concluded that two phase models were more accurate than the others for heat transfer prediction particularly in the higher volume fractions of nanoparticle. The average deviation from experimental data for single phase model was about 11% whereas it was around 2% for two phase models.

  9. Advanced k-epsilon modeling of heat transfer

    Science.gov (United States)

    Kwon, Okey; Ames, Forrest E.

    1995-01-01

    This report describes two approaches to low Reynolds-number k-epsilon turbulence modeling which formulate the eddy viscosity on the wall-normal component of turbulence and a length scale. The wall-normal component of turbulence is computed via integration of the energy spectrum based on the local dissipation rate and is bounded by the isotropic condition. The models account for the anisotropy of the dissipation and the reduced mixing length due to the high strain rates present in the near-wall region. The turbulent kinetic energy and its dissipation rate were computed from the k and epsilon transport equations of Durbin. The models were tested for a wide range of turbulent flows and proved to be superior to other k-epsilon models, especially for nonequilibrium anisotropic flows. For the prediction of airfoil heat transfer, the models included a set of empirical correlations for predicting laminar-turbulent transition and laminar heat transfer augmentation due to the presence of freestream turbulence. The predictions of surface heat transfer were generally satisfactory.

  10. Measurement and modeling of interface heat transfer coefficients

    International Nuclear Information System (INIS)

    Rollett, A.D.; Lewis, H.D.; Dunn, P.S.

    1985-01-01

    The results of preliminary work on the modeling and measurement of the heat transfer coefficients of metal/mold interfaces is reported. The system investigated is the casting of uranium in graphite molds. The motivation for the work is primarily to improve the accuracy of process modeling of prototype mold designs at the Los Alamos Foundry. The evolution in design of a suitable mold for unidirectional solidification is described, illustrating the value of simulating mold designs prior to use. Experiment indicated a heat transfer coefficient of 2 kW/m 2 /K both with and without superheat. It was possible to distinguish between solidification due to the mold and that due to radiative heat loss. This permitted an experimental estimate of the emissivity, epsilon = 0.2, of the solidified metal

  11. Transient Heat Transfer Model for Car Body Primer Curing

    OpenAIRE

    D. Zabala; N. Sánchez; J. Pinto

    2010-01-01

    A transient heat transfer mathematical model for the prediction of temperature distribution in the car body during primer baking has been developed by considering the thermal radiation and convection in the furnace chamber and transient heat conduction governing equations in the car framework. The car cockpit is considered like a structure with six flat plates, four vertical plates representing the car doors and the rear and front panels. The other two flat plates are the...

  12. Lattice Boltzmann heat transfer model for permeable voxels

    Science.gov (United States)

    Pereira, Gerald G.; Wu, Bisheng; Ahmed, Shakil

    2017-12-01

    We develop a gray-scale lattice Boltzmann (LB) model to study fluid flow combined with heat transfer for flow through porous media where voxels may be partially solid (or void). Heat transfer in rocks may lead to deformation, which in turn can modulate the fluid flow and so has significant contribution to rock permeability. The LB temperature field is compared to a finite difference solution of the continuum partial differential equations for fluid flow in a channel. Excellent quantitative agreement is found for both Poiseuille channel flow and Brinkman flow. The LB model is then applied to sample porous media such as packed beds and also more realistic sandstone rock sample, and both the convective and diffusive regimes are recovered when varying the thermal diffusivity. It is found that while the rock permeability can be comparatively small (order milli-Darcy), the temperature field can show significant variation depending on the thermal convection of the fluid. This LB method has significant advantages over other numerical methods such as finite and boundary element methods in dealing with coupled fluid flow and heat transfer in rocks which have irregular and nonsmooth pore spaces.

  13. Heat transfer modeling of double-side arc welding

    International Nuclear Information System (INIS)

    Sun Junsheng; Wu Chuansong

    2002-01-01

    If a plasma arc and a TIG arc are connected in serial and with the plasma arc placed on the obverse side and the TIG arc on the opposite side of the workpiece, a special double-side arc welding (DSAW) system will be formed, in which the PAW current is forced to flow through the keyhole along the thickness direction so as to compensate the energy consumed for melting the workpiece and improve the penetration capacity of the PAW arc. By considering the mechanics factors which influence the DSAW pool geometric shape, the control equations of the pool surface deformation are derived, and the mathematics mode for DSAW heat transfer is established by using boundary-fitted non-orthogonal coordinate systems. With this model, the difference between DSAW and PAW heat transfer is analyzed and the reason for the increase of DSAW penetration is explained from the point of heat transfer. The welding process experiments show that calculated results are in good agreement with measured ones

  14. One dimensional analysis model for condensation heat transfer in feed water heater

    International Nuclear Information System (INIS)

    Murase, Michio; Takamori, Kazuhide; Aihara, Tsuyoshi

    1998-01-01

    In order to simplify condensation heat transfer calculations for feed water heaters, one dimensional (1D) analyses were compared with three dimensional (3D) analyses. The results showed that average condensation heat transfer coefficients by 1D analyses with 1/2 rows of heat transfer tubes agreed with those by 3D analyses within 7%. Using the 1D analysis model, effects of the pitch of heat transfer tubes were evaluated. The results showed that the pitch did not affect much on heat transfer rates and that the size of heat transfer tube bundle could be decreased by a small pitch. (author)

  15. Mountain scale modeling of transient, coupled gas flow, heat transfer and carbon-14 migration

    International Nuclear Information System (INIS)

    Lu, Ning; Ross, B.

    1993-01-01

    We simulate mountain-scale coupled heat transfer and gas flow at Yucca Mountain. A coupled rock-gas flow and heat transfer model, TGIF2, is used to simulate mountain-scale two-dimensional transient heat transfer and gas flow. The model is first verified against an analytical solution for the problem of an infinite horizontal layer of fluid heated from below. Our numerical results match very well with the analytical solution. Then, we obtain transient temperature and gas flow distributions inside the mountain. These distributions are used by a transient semianalytical particle tracker to obtain carbon-14 travel times for particles starting at different locations within the repository. Assuming that the repository is filled with 30-year-old waste at an initial areal power density of 57 kw/acre, we find that repository temperatures remain above 60 degrees C for more than 10,000 years. Carbon-14 travel times to the surface are mostly less than 1000 years, for particles starting at any time within the first 10,000 years

  16. Modeling of quench front progression and heat transfer by radiation during reflooding of a tubular test section

    International Nuclear Information System (INIS)

    Clement, P.; Deruaz, R.

    1976-01-01

    Heat transfer modeling is presented in the scope of emergency core cooling. The rewetting of a hot dry wall during reflooding is a conduction-controlled phenomenon described by a model of heat-transfer coefficient. Upstream of the quench front, a two-dimensional approach involving both axial and transverse (or radial) heat conduction is discussed in view of thick walls, high quench front velocities and nucleate boiling. Downstream of the quench-front, high wall temperatures are reached so that a thermal radiation model is required to separate the different mechanisms of heat transfer. An attempt is made to consider radiation between walls, water droplets and vapor, with scattering emission and absorption of the two phases

  17. Incorrectness of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional circular composite pipes

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Chen, W.-L.; Yu, S.-J.

    2008-01-01

    This study is to prove that two-dimensional steady state heat transfer problems of composite circular pipes cannot be appropriately solved by the conventional one-dimensional parallel thermal resistance circuits (PTRC) model because its interface temperatures are not unique. Thus, the PTRC model is definitely different from its conventional recognized analogy, parallel electrical resistance circuits (PERC) model, which has unique node electric voltages. Two typical composite circular pipe examples are solved by CFD software, and the numerical results are compared with those obtained by the PTRC model. This shows that the PTRC model generates large error. Thus, this conventional model, introduced in most heat transfer text books, cannot be applied to two-dimensional composite circular pipes. On the contrary, an alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to a two-dimensional composite circular pipe with isothermal boundaries, and acceptable results are returned

  18. Proposed heat transfer model for the gas-liquid heat transfer effects observed in the Stanford Research Institute scaled tests

    International Nuclear Information System (INIS)

    Corradini, M.; Sonin, A.A.; Todreas, N.

    1976-12-01

    In 1971-72, the Stanford Research Institute conducted a series of scaled experiments which simulated a sodium-vapor expansion in a hypothetical core disruptive accident (HCDA) for the Fast Flux Test Facility. A non-condensible explosive source was used to model the pressure-volume expansion characteristics of sodium vapor as predicted by computer code calculations. Rigid piston-cylinder experiments ( 1 / 10 and 1 / 30 scale) were undertaken to determine these expansion characteristics. The results showed that the pressure-volume characteristics depend significantly on the presence of water in the cylinder reducing the work output by about 50 percent when a sufficient water depth was present. The study presented proposes that the mechanism of heat transfer between the water and high temperature gas was due to area enhancement by Taylor instabilities at the gas-liquid interface. A simple heat transfer model is proposed which describes this energy transport process and agrees well with the experimental data from both scaled experiments. The consequences of this analysis suggest that an estimate of the heat transfer to the cold slug during a full-scale HCDA due to sodium vapor expansion and the accompanying reduction in mechanical work energy warrants further investigation. The implication of this analysis is that for either sodium or fuel vapor expansion in an HCDA, there is an inherent heat transfer mechanism which significantly reduces the work output of the expanding bubble

  19. Triangular node for Transmission-Line Modeling (TLM) applied to bio-heat transfer.

    Science.gov (United States)

    Milan, Hugo F M; Gebremedhin, Kifle G

    2016-12-01

    Transmission-Line Modeling (TLM) is a numerical method used to solve complex and time-domain bio-heat transfer problems. In TLM, rectangles are used to discretize two-dimensional problems. The drawback in using rectangular shapes is that instead of refining only the domain of interest, a large additional domain will also be refined in the x and y axes, which results in increased computational time and memory space. In this paper, we developed a triangular node for TLM applied to bio-heat transfer that does not have the drawback associated with the rectangular nodes. The model includes heat source, blood perfusion (advection), boundary conditions and initial conditions. The boundary conditions could be adiabatic, temperature, heat flux, or convection. A matrix equation for TLM, which simplifies the solution of time-domain problems or solves steady-state problems, was also developed. The predicted results were compared against results obtained from the solution of a simplified two-dimensional problem, and they agreed within 1% for a mesh length of triangular faces of 59µm±9µm (mean±standard deviation) and a time step of 1ms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A meshless method for modeling convective heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Carrington, David B [Los Alamos National Laboratory

    2010-01-01

    A meshless method is used in a projection-based approach to solve the primitive equations for fluid flow with heat transfer. The method is easy to implement in a MATLAB format. Radial basis functions are used to solve two benchmark test cases: natural convection in a square enclosure and flow with forced convection over a backward facing step. The results are compared with two popular and widely used commercial codes: COMSOL, a finite element model, and FLUENT, a finite volume-based model.

  1. Models for fluid flows with heat transfer in mixed convection

    International Nuclear Information System (INIS)

    Mompean Munhoz da Cruz, G.

    1989-06-01

    Second order models were studied in order to predict turbulent flows with heat transfer. The equations used correspond to the characteristic scale of turbulent flows. The order of magnitude of the terms of the equation is analyzed by using Reynolds and Peclet numbers. The two-equation model (K-ε) is applied in the hydrodynamic study. Two models are developed for the heat transfer analysis: the Prt + teta 2 and the complete model. In the first model, the turbulent thermal diffusivity is calculated by using the Prandtl number for turbulent flow and an equation for the variance of the temperature fluctuation. The second model consists of three equations concerning: the turbulent heat flow, the variance of the temperature fluctuation and its dissipation ratio. The equations were validated by four experiments, which were characterized by the analysis of: the air flow after passing through a grid of constant average temperature and with temperature gradient, an axysymmetric air jet submitted to high and low heating temperature, the mixing (cold-hot) of two coaxial jets of sodium at high Peclet number. The complete model is shown to be the most suitable for the investigations presented [fr

  2. Fluid flow and heat transfer modeling for castings

    International Nuclear Information System (INIS)

    Domanus, H.M.; Liu, Y.Y.; Sha, W.T.

    1986-01-01

    Casting is fundamental to manufacturing of many types of equipment and products. Although casting is a very old technology that has been in existence for hundreds of years, it remains a highly empirical technology, and production of new castings requires an expensive and time-consuming trial-and-error approach. In recent years, mathematical modeling of casting has received increasing attention; however, a majority of the modeling work has been in the area of heat transfer and solidification. Very little work has been done in modeling fluid flow of the liquid melt. This paper presents a model of fluid flow coupled with heat transfer of a liquid melt for casting processes. The model to be described in this paper is an extension of the COMMIX code and is capable of handling castings with any shape, size, and material. A feature of this model is the ability to track the liquid/gas interface and liquid/solid interface. The flow of liquid melt through the sprue and runners and into the mold cavity is calculated as well as three-dimensional temperature and velocity distributions of the liquid melt throughout the casting process. 14 refs., 13 figs

  3. Heat transfer modelling of pulsed laser-tissue interaction

    Science.gov (United States)

    Urzova, J.; Jelinek, M.

    2018-03-01

    Due to their attributes, the application of medical lasers is on the rise in numerous medical fields. From a biomedical point of view, the most interesting applications are the thermal interactions and the photoablative interactions, which effectively remove tissue without excessive heat damage to the remaining tissue. The objective of this work is to create a theoretical model for heat transfer in the tissue following its interaction with the laser beam to predict heat transfer during medical laser surgery procedures. The dimensions of the ablated crater (shape and ablation depth) were determined by computed tomography imaging. COMSOL Multiphysics software was used for temperature modelling. The parameters of tissue and blood, such as density, specific heat capacity, thermal conductivity and diffusivity, were calculated from the chemical ratio. The parameters of laser-tissue interaction, such as absorption and reflection coefficients, were experimentally determined. The parameters of the laser beam were power density, repetition frequency, pulse length and spot dimensions. Heat spreading after laser interaction with tissue was captured using a Fluke thermal camera. The model was verified for adipose tissue, skeletal muscle tissue and heart muscle tissue.

  4. A moving subgrid model for simulation of reflood heat transfer

    International Nuclear Information System (INIS)

    Frepoli, Cesare; Mahaffy, John H.; Hochreiter, Lawrence E.

    2003-01-01

    In the quench front and froth region the thermal-hydraulic parameters experience a sharp axial variation. The heat transfer regime changes from single-phase liquid, to nucleate boiling, to transition boiling and finally to film boiling in a small axial distance. One of the major limitations of all the current best-estimate codes is that a relatively coarse mesh is used to solve the complex fluid flow and heat transfer problem in proximity of the quench front during reflood. The use of a fine axial mesh for the entire core becomes prohibitive because of the large computational costs involved. Moreover, as the mesh size decreases, the standard numerical methods based on a semi-implicit scheme, tend to become unstable. A subgrid model was developed to resolve the complex thermal-hydraulic problem at the quench front and froth region. This model is a Fine Hydraulic Moving Grid (FHMG) that overlies a coarse Eulerian mesh in the proximity of the quench front and froth region. The fine mesh moves in the core and follows the quench front as it advances in the core while the rods cool and quench. The FHMG software package was developed and implemented into the COBRA-TF computer code. This paper presents the model and discusses preliminary results obtained with the COBRA-TF/FHMG computer code

  5. MODELING OF TRANSIENT HEAT TRANSFER IN FOAMED CONCRETE SLAB

    Directory of Open Access Journals (Sweden)

    MD AZREE OTHUMAN MYDIN

    2013-06-01

    Full Text Available This paper reports the basis of one-dimensional Finite Difference method to obtain thermal properties of foamed concrete in order to solve transient heat conduction problems in multi-layer panels. In addition, this paper also incorporates the implementation of the method and the validation of thermal properties model of foamed concrete. A one-dimensional finite difference heat conduction programme has been developed to envisage the temperature development through the thickness of the foamed concrete slab, based on an initial estimate of the thermal conductivity-temperature relationship as a function of porosity and radiation within the voids. The accuracy of the model was evaluated by comparing predicted and experimental temperature profiles obtained from small scale heat transfer test on foamed concrete slabs, so that the temperature history of the specimen calculated by the programme closely matches those recorded during the experiment. Using the thermal properties of foamed concrete, the validated heat transfer program predicts foamed concrete temperatures in close agreement with experimental results obtained from a number of high temperature tests. The proposed numerical and thermal properties are simple yet efficient and can be utilised to aid manufacturers to develop their products without having to conduct numerous large-scale fire tests.

  6. A Summary of Interfacial Heat Transfer Models and Correlations

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sung Won; Cho, Hyung Kyu; Lee, Young Jin; Kim, Hee Chul; Jung, Young Jong; Kim, K. D. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-10-15

    A long term project has been launched in October 2006 to develop a plant safety analysis code. 5 organizations are joining together for the harmonious coworking to build up the code. In this project, KAERI takes the charge of the building up the physical models and correlations about the transport phenomena. The momentum and energy transfer terms as well as the mass are surveyed from the RELAP5/MOD3, RELAP5-3D, CATHARE, and TRAC-M does. Also the recent papers are surveyed. Among these resources, most of the CATHARE models are based on their own experiment and test results. Thus, the CATHARE models are only used as the comparison purposes. In this paper, a summary of the models and the correlations about the interfacial heat transfer are represented. These surveyed models and correlations will be tested numerically and one correlation is selected finally.

  7. Modeling of condensation heat transfer in a reactor containment

    International Nuclear Information System (INIS)

    Kim, M.H.; Corradini, M.L.

    1990-01-01

    This paper proposes a set of condensation models for forced and natural convection in the presence of a noncondensable gas. A simple model is derived by using the analogy between mass, momentum and energy transfer. The effects of a wavy interface are implemented in this model by using correlations for a rough wall surface. A two-dimensional condensation model using a k-ε model for the turbulent vapor-air flow was also developed to investigate the effect of two-dimensional flow and to provide a sound theoretical basis for the simple model. Each model is compared with the available 'separate effects' experimental data. The forced convection model is then compared to the Carolinas Virginia Tube Reactor (CVTR) integral test by using the vapor-air velocity predicted by a separate two-dimensional fluid dynamics model. The effect of counter-current flow is also considered in this comparison. The natural convection model is also compared to the steady-state integral data of Tagami. The comparison shows good agreement with both sets of experimental data. (orig.)

  8. Recent developments in the modeling of boiling heat transfer mechanisms

    International Nuclear Information System (INIS)

    Podowski, M.Z.

    2009-01-01

    Due to the importance of boiling for the analysis of operation and safety of nuclear reactors, extensive efforts have been made in the past to develop a variety of methods and tools to study boiling heat transfer for various geometries and operating conditions. Recent progress in the computational multiphase fluid dynamics (CMFD) methods of two- and multiphase flows has already started opening up new exciting possibilities for using complete multidimensional models to predict the operation of boiling systems under both steady-state and transient conditions. However, such models still require closure laws and boundary conditions, the accuracy of which determines the predictive capabilities of the overall models and the associated CMFD simulations. Because of the complexity of the underlying physical phenomena, boiling heat transfer has traditionally been quantified using phenomenological models and correlations obtained by curve-fitting extensive experimental data. Since simple heuristic formulae are not capable of capturing the effect of various specific experimental conditions and the associated wide scattering of data points, most existing correlations are characterized by large uncertainties which are typically hidden behind the 'logarithmic scale' format of plots. Furthermore, such an approach provides only limited insight into the local phenomena of: nucleation, heated surface material properties, temperature fluctuations, and others. The objectives of this paper are two-fold. First, the state of the art is reviewed in the area of modeling concepts for both pool boiling and forced-convection (bulk and subcooled) boiling. Then, new results are shown concerning the development of new mechanistic models and their validation against experimental data. It is shown that a combination of the proposed theoretical approach with advanced computational methods leads to a dramatic improvement in both our understanding of the physics of boiling and the predictive

  9. Assessment of interfacial heat transfer models under subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Guilherme B.; Braz Filho, Francisco A., E-mail: gbribeiro@ieav.cta.br, E-mail: fbraz@ieav.cta.br [Instituto de Estudos Avançados (DCTA/IEAv), São José dos Campos, SP (Brazil). Div. de Energia Nuclear

    2017-07-01

    The present study concerns a detailed analysis of subcooled flow boiling characteristics under high pressure systems using a two-fluid Eulerian approach provided by a Computational Fluid Dynamics (CFD) solver. For this purpose, a vertical heated pipe made of stainless steel with an internal diameter of 15.4 mm was considered as the modeled domain. An uniform heat flux of 570 kW/m2 and saturation pressure of 4.5 MPa were applied to the channel wall, whereas water mass flux of 900 kg/m2s was considered for all simulation cases. The model was validated against a set of experimental data and results have indicated a promising use of CFD technique for the estimation of wall temperature, the liquid bulk temperature and the location of the departure of nucleate boiling. Different sub-models of interfacial heat transfer coefficient were applied and compared, allowing a better prediction of void fraction along the heated channel. (author)

  10. Modelling of complex heat transfer systems by the coupling method

    Energy Technology Data Exchange (ETDEWEB)

    Bacot, P.; Bonfils, R.; Neveu, A.; Ribuot, J. (Centre d' Energetique de l' Ecole des Mines de Paris, 75 (France))

    1985-04-01

    The coupling method proposed here is designed to reduce the size of matrices which appear in the modelling of heat transfer systems. It consists in isolating the elements that can be modelled separately, and among the input variables of a component, identifying those which will couple it to another component. By grouping these types of variable, one can thus identify a so-called coupling matrix of reduced size, and relate it to the overall system. This matrix allows the calculation of the coupling temperatures as a function of external stresses, and of the state of the overall system at the previous instant. The internal temperatures of the components are determined from for previous ones. Two examples of applications are presented, one concerning a dwelling unit, and the second a solar water heater.

  11. Heat transfer corrected isothermal model for devolatilization of thermally-thick biomass particles

    DEFF Research Database (Denmark)

    Luo, Hao; Wu, Hao; Lin, Weigang

    Isothermal model used in current computational fluid dynamic (CFD) model neglect the internal heat transfer during biomass devolatilization. This assumption is not reasonable for thermally-thick particles. To solve this issue, a heat transfer corrected isothermal model is introduced. In this model......, two heat transfer corrected coefficients: HT-correction of heat transfer and HR-correction of reaction, are defined to cover the effects of internal heat transfer. A series of single biomass devitalization case have been modeled to validate this model, the results show that devolatilization behaviors...... of both thermally-thick and thermally-thin particles are predicted reasonable by using heat transfer corrected model, while, isothermal model overestimate devolatilization rate and heating rate for thermlly-thick particle.This model probably has better performance than isothermal model when it is coupled...

  12. Boundary conditions for heat transfer and evaporative cooling in the trachea and air sac system of the domestic fowl: a two-dimensional CFD analysis.

    Directory of Open Access Journals (Sweden)

    Nina S Sverdlova

    Full Text Available Various parts of the respiratory system play an important role in temperature control in birds. We create a simplified computational fluid dynamics (CFD model of heat exchange in the trachea and air sacs of the domestic fowl (Gallus domesticus in order to investigate the boundary conditions for the convective and evaporative cooling in these parts of the respiratory system. The model is based upon published values for respiratory times, pressures and volumes and upon anatomical data for this species, and the calculated heat exchange is compared with experimentally determined values for the domestic fowl and a closely related, wild species. In addition, we studied the trachea histologically to estimate the thickness of the heat transfer barrier and determine the structure and function of moisture-producing glands. In the transient CFD simulation, the airflow in the trachea of a 2-dimensional model is evoked by changing the volume of the simplified air sac. The heat exchange between the respiratory system and the environment is simulated for different ambient temperatures and humidities, and using two different models of evaporation: constant water vapour concentration model and the droplet injection model. According to the histological results, small mucous glands are numerous but discrete serous glands are lacking on the tracheal surface. The amount of water and heat loss in the simulation is comparable with measured respiratory values previously reported. Tracheal temperature control in the avian respiratory system may be used as a model for extinct or rare animals and could have high relevance for explaining how gigantic, long-necked dinosaurs such as sauropoda might have maintained a high metabolic rate.

  13. Modelling of heat transfer during torrefaction of large lignocellulosic biomass

    Science.gov (United States)

    Regmi, Bharat; Arku, Precious; Tasnim, Syeda Humaira; Mahmud, Shohel; Dutta, Animesh

    2018-07-01

    Preparation of feedstock is a major energy intensive process for the thermochemical conversion of biomass into fuel. By eliminating the need to grind biomass prior to the torrefaction process, there would be a potential gain in the energy requirements as the entire step would be eliminated. In regards to a commercialization of torrefaction technology, this study has examined heat transfer inside large cylindrical biomass both numerically and experimentally during torrefaction. A numerical axis-symmetrical 2-D model for heat transfer during torrefaction at 270°C for 1 h was created in COMSOL Multiphysics 5.1 considering heat generation evaluated from the experiment. The model analyzed the temperature distribution within the core and on the surface of biomass during torrefaction for various sizes. The model results showed similarities with experimental results. The effect of L/D ratio on temperature distribution within biomass was observed by varying length and diameter and compared with experiments in literature to find out an optimal range of cylindrical biomass size suitable for torrefaction. The research demonstrated that a cylindrical biomass sample of 50 mm length with L/D ratio of 2 can be torrefied with a core-surface temperature difference of less than 30 °C. The research also demonstrated that sample length has a negligible effect on core-surface temperature difference during torrefaction when the diameter is fixed at 25 mm. This information will help to design a torrefaction processing system and develop a value chain for biomass supply without using an energy-intensive grinding process.

  14. Modelling of heat transfer during torrefaction of large lignocellulosic biomass

    Science.gov (United States)

    Regmi, Bharat; Arku, Precious; Tasnim, Syeda Humaira; Mahmud, Shohel; Dutta, Animesh

    2018-02-01

    Preparation of feedstock is a major energy intensive process for the thermochemical conversion of biomass into fuel. By eliminating the need to grind biomass prior to the torrefaction process, there would be a potential gain in the energy requirements as the entire step would be eliminated. In regards to a commercialization of torrefaction technology, this study has examined heat transfer inside large cylindrical biomass both numerically and experimentally during torrefaction. A numerical axis-symmetrical 2-D model for heat transfer during torrefaction at 270°C for 1 h was created in COMSOL Multiphysics 5.1 considering heat generation evaluated from the experiment. The model analyzed the temperature distribution within the core and on the surface of biomass during torrefaction for various sizes. The model results showed similarities with experimental results. The effect of L/D ratio on temperature distribution within biomass was observed by varying length and diameter and compared with experiments in literature to find out an optimal range of cylindrical biomass size suitable for torrefaction. The research demonstrated that a cylindrical biomass sample of 50 mm length with L/D ratio of 2 can be torrefied with a core-surface temperature difference of less than 30 °C. The research also demonstrated that sample length has a negligible effect on core-surface temperature difference during torrefaction when the diameter is fixed at 25 mm. This information will help to design a torrefaction processing system and develop a value chain for biomass supply without using an energy-intensive grinding process.

  15. Turbulence model for melt pool natural convection heat transfer

    International Nuclear Information System (INIS)

    Kelkar, K.M.; Patankar, S.V.

    1994-01-01

    Under severe reactor accident scenarios, pools of molten core material may form in the reactor core or in the hemispherically shaped lower plenum of the reactor vessel. Such molten pools are internally heated due to the radioactive decay heat that gives rise to buoyant flows in the molten pool. The flow in such pools is strongly influenced by the turbulent mixing because the expected Rayleigh numbers under accidents scenarios are very high. The variation of the local heat flux over the boundaries of the molten pools are important in determining the subsequent melt progression behavior. This study reports results of an ongoing effort towards providing a well validated mathematical model for the prediction of buoyant flow and heat transfer in internally heated pool under conditions expected in severe accident scenarios

  16. Application of flexibility model in modeling of flow boiling heat transfer

    International Nuclear Information System (INIS)

    Peng Jinfeng; Zhao Fuyu

    2009-01-01

    The mathematical modeling and computer simulation have been widely used in the analysis of system's dynamic characteristics, and often useful for system control. One of the popular methods for this purpose is the lumped parameter method. For flow boiling heat transfer system, the traditional lumped parameter modeling method has a problem that the heat transfer coefficients change suddenly at the boundary of coolant phase change. It can cause error. In this paper, an idea of flexibility model is developed to deal with the boundary problem and to improve the model of flow boiling heat transfer. The segments of coolant phase change's boundary are identified, and the membership functions which are derived from Fuzzy Mathematics are used to derive approximate expressions of heat transfer coefficient in those regions. The continuity of heat transfer coefficient can be described by those expressions. The membership functions are derived from mathematical analysis and transformation. The result shows that this idea is feasible and the conclusion is practicable.

  17. Improved heat transfer modeling of the eye for electromagnetic wave exposures.

    Science.gov (United States)

    Hirata, Akimasa

    2007-05-01

    This study proposed an improved heat transfer model of the eye for exposure to electromagnetic (EM) waves. Particular attention was paid to the difference from the simplified heat transfer model commonly used in this field. From our computational results, the temperature elevation in the eye calculated with the simplified heat transfer model was largely influenced by the EM absorption outside the eyeball, but not when we used our improved model.

  18. Development of heat transfer models for gap cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kohriyama, Tamio; Murase, Michio; Tamaki, Tomohiko [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    In a severe accident of a light water reactor (LWR), heat transfer models in a narrow annular gap between superheated core debris and a reactor pressure vessel (RPV) are important to evaluate the integrity of RPV and emergency procedures. This paper discusses the effects of superheat on the heat flux based on existing data. In low superheat conditions, the heat flux in the narrow gap is higher than the heat flux in pool nucleate boiling due to restricted flow area. It approaches the nucleate boiling heat flux as superheat increasing and reaches a critical value subject to the counter-current flow limiting (CCFL) at the top end of the gap. A heat transfer correlation was derived as a function of dimensionless superheat and a Kutateladze-type CCFL correlation was deduced for critical heat flux (CHF) restricted by CCFL, which gave good prediction for a wide range of the CHF data. Effect of an angle of inclination of the gap could also be incorporated in the CCFL correlation. In high superheat conditions, the heat flux in the narrow gap maintains a similar shape to the pool boiling curve but shifts the position to a higher superheated side than the pool boiling except film boiling, which could be expressed by the typical pool film boiling correlation. Incorporating quench test data, the heat flux correlation was derived as a function of dimensionless superheat using the same formula for the low superheat and the Kutateladze-type CCFL correlation was deduced for CHF. The CHF at the high superheat was 3-4 times as large as CHF at the low superheat and this difference was well predicted by different flow patterns in the gap and the balance of pressure gradients between gas and liquid phases. (author)

  19. Effects of properties variations of Al2O3-EG-water nanofluid on natural convection heat transfer in a two-dimensional enclosure: Enhancement or deterioration?

    Science.gov (United States)

    Khorasanizadeh, H.; Fakhari, M. M.; Ghaffari, S. P.

    2015-05-01

    Heat transfer enhancement or deterioration of variable properties Al2O3-EG-water nanofluid natural convection in a differentially heated rectangular cavity has been investigated numerically. A finite volume approach has been utilized to solve the governing equations for a Newtonian fluid. The influences of the pertinent parameters such as Rayleigh number, Ra, in the range of 103-107 and nanoparticles volume fraction from 0 to 0.04 have been studied. The results verified by making overall comparison with some existing experimental results have shown that for Ra = 103, for which conduction heat transfer is dominant, the average Nusselt number increases as nanoparticles volume fraction increases, but contradictory with the constant properties cases it decreases for higher Ra values. This reduction, which is associated with the increased viscosity, is more severe at Ra = 104 and the least deterioration in heat transfer occurs for Ra = 107. This is due to the fact that the Brownian motion enhances as Ra increases; thus at Ra = 107 the improved conductivity becomes more important than viscosity enhancement. To clarify the contradictory reports existing in the literature on the natural convection heat transfer enhancement or deterioration of nanofluids, a scale analysis performed showed that unlike methods of evaluating the base fluid Ra have led to such differences.

  20. Post-dryout heat transfer analysis model with droplet Lagrangian simulation

    International Nuclear Information System (INIS)

    Keizo Matsuura; Isao Kataoka; Kaichiro Mishima

    2005-01-01

    Post-dryout heat transfer analysis was carried out considering droplet behavior by using the Lagrangian simulation method. Post-dryout heat transfer is an important heat transfer mechanism in many industrial appliances. Especially in recent Japanese BWR licensing, the standard for assessing the integrity of fuel that has experienced boiling transition is being examined. Although post-dryout heat transfer analysis is important when predicting wall temperature, it is difficult to accurately predict the heat transfer coefficient in the post-dryout regime because of the many heat transfer paths and non-equilibrium status between droplet and vapor. Recently, an analysis model that deals with many heat transfer paths including droplet direct contact heat transfer was developed and its results showed good agreement with experimental results. The model also showed that heat transfer by droplet could not be neglected in the low mass flux condition. However, the model deals with droplet deposition behavior by experimental droplet deposition correlation, so it cannot estimate the effect of droplet flow on turbulent flow field and heat transfer. Therefore, in this study we deal with many droplets separately by using the Lagrangian simulation method and hence estimate the effect of droplet flow on the turbulent flow field. We analyzed post-dryout experimental results and found that they correlated well with the analysis results. (authors)

  1. Two dimensional model for coherent synchrotron radiation

    Science.gov (United States)

    Huang, Chengkun; Kwan, Thomas J. T.; Carlsten, Bruce E.

    2013-01-01

    Understanding coherent synchrotron radiation (CSR) effects in a bunch compressor requires an accurate model accounting for the realistic beam shape and parameters. We extend the well-known 1D CSR analytic model into two dimensions and develop a simple numerical model based on the Liénard-Wiechert formula for the CSR field of a coasting beam. This CSR numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in the space charge field calculation present in a 1D model. Good agreement is obtained with 1D CSR analytic result for free electron laser (FEL) related beam parameters but it can also give a more accurate result for low-energy/large spot size beams and off-axis/transient fields. This 2D CSR model can be used for understanding the limitation of various 1D models and for benchmarking fully electromagnetic multidimensional particle-in-cell simulations for self-consistent CSR modeling.

  2. Two dimensional critical models on a torus

    International Nuclear Information System (INIS)

    Saleur, H.; Di Francesco, P.

    1987-01-01

    After the general developments of conformal invariance in two dimensions, it was realized that the study of critical models in finite geometries, in addition to the practical information it could provide through finite size scaling, was also of great conceptual interest. The simplest example is the case of the torus, a genus 1 surface which is thus not conformally equivalent to the plane. This geometry appears quite frequently in lattice calculations for systems with periodic boundary conditions, and is also very natural from the point of view of string theory. We will discuss briefly in these notes the main results obtained so far in this simple case

  3. Molten pool-lower head integrity. Heat transfer models including advanced numerical simulations (DNS)

    International Nuclear Information System (INIS)

    Seiler, J.M.; Bonnet, J.M.; Bernaz, L.

    2001-01-01

    Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)

  4. Molten pool-lower head integrity. Heat transfer models including advanced numerical simulations (DNS)

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, J.M.; Bonnet, J.M.; Bernaz, L. [CEA Grenoble (France)

    2001-07-01

    Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)

  5. Subcooled boiling heat transfer on a finned surface

    International Nuclear Information System (INIS)

    Kowalski, J.E.; Tran, V.T.; Mills, P.J.

    1992-01-01

    Experimental and numerical studies have been performed to determine the heat transfer coefficients from a finned cylindrical surface to subcooled boiling water. The heat transfer rates were measured in an annular test section consisting of an electrically heated fuel element simulator (FES) with eight longitudinal, rectangular fins enclosed in a glass tube. A two-dimensional finite-element heat transfer model using the Galerkin method was employed to determine the heat transfer coefficients along the periphery of the FES surface. An empirical correlation was developed to predict the heat transfer coefficients during subcooled boiling. The correlation agrees well with the measured data. (6 figures) (Author)

  6. Best estimate radiation heat transfer model developed for TRAC-BD1

    International Nuclear Information System (INIS)

    Spore, J.W.; Giles, M.M.; Shumway, R.W.

    1981-01-01

    A best estimate radiation heat transfer model for analysis of BWR fuel bundles has been developed and compared with 8 x 8 fuel bundle data. The model includes surface-to-surface and surface-to-two-phase fluid radiation heat transfer. A simple method of correcting for anisotropic reflection effects has been included in the model

  7. Modelling of flow and heat transfer in PV cooling channels

    Energy Technology Data Exchange (ETDEWEB)

    Diarra, D.C.; Harrison, S.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Akuffo, F.O. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2005-07-01

    Under sunny conditions, the temperature of photovoltaic (PV) modules can be 20 to 30 degrees C above the ambient air temperature. This affects the performance of PV modules, particularly in regions with hot climates. For silicon solar cells, the maximum power decreases between 0.4 and 0.5 per cent for every degree C of temperature increase above a reference value. In an effort to address this issue, this experimental and numerical study examined an active PV panel evaporative cooling scheme that is typically used in hot arid climates. The cooling system circulated cool air behind the PV modules, extracting heat and lowering solar cell temperature. A fluid dynamic and thermal model of the combined system was developed using the EES program in order to study the configuration of the cooling channel and the characteristics of the cooling flow. Heat transfer and flow characteristics in the cooling channel were then calculated along with pressure drop and fan power associated with the air-circulation. The net power output was also calculated. The objective was to design a cost efficient cooling system and to optimize its flow and pressure drop in order to maximize power output. The study demonstrated how the performance of the PV panel is influenced by the geometry of the cooling channel, the inlet air temperature and the air flow rate. 2 refs.

  8. The thermodynamics of enhanced heat transfer: a model study

    International Nuclear Information System (INIS)

    Hovhannisyan, Karen; Allahverdyan, Armen E

    2010-01-01

    Situations where a spontaneous process of energy or matter transfer is enhanced by an external device are widespread in nature (the human sweating system, enzyme catalysis, facilitated diffusion across biomembranes, industrial heat-exchangers and so on). The thermodynamics of such processes remains, however, open. Here we study enhanced heat transfer by using a model junction immersed between two thermal baths at different temperatures T h and T c (T h > T c ). The transferred heat power is enhanced via controlling the junction by means of external time-dependent fields. Provided that the spontaneous heat flow process is optimized over the junction Hamiltonian, any enhancement of this spontaneous process demands consumption and subsequent dissipation of work. The efficiency of the enhancement is defined via the increment in the heat power divided by the amount of work done. We show that this efficiency is bounded from above by T c /(T h − T c ). Formally this is identical to the Carnot bound for the efficiency of ordinary refrigerators which transfer heat from cold to hot bodies. It also shares some (but not all) physical features of the Carnot bound

  9. Heat transfer modelling and stability analysis of selective laser melting

    International Nuclear Information System (INIS)

    Gusarov, A.V.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.

    2007-01-01

    The process of direct manufacturing by selective laser melting basically consists of laser beam scanning over a thin powder layer deposited on a dense substrate. Complete remelting of the powder in the scanned zone and its good adhesion to the substrate ensure obtaining functional parts with improved mechanical properties. Experiments with single-line scanning indicate, that an interval of scanning velocities exists where the remelted tracks are uniform. The tracks become broken if the scanning velocity is outside this interval. This is extremely undesirable and referred to as the 'balling' effect. A numerical model of coupled radiation and heat transfer is proposed to analyse the observed instability. The 'balling' effect at high scanning velocities (above ∼20 cm/s for the present conditions) can be explained by the Plateau-Rayleigh capillary instability of the melt pool. Two factors stabilize the process with decreasing the scanning velocity: reducing the length-to-width ratio of the melt pool and increasing the width of its contact with the substrate

  10. Free convection film flows and heat transfer laminar free convection of phase flows and models for heat-transfer analysis

    CERN Document Server

    Shang, De-Yi

    2012-01-01

    This book presents recent developments in our systematic studies of hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, as well as accelerating film flow of non-Newtonian power-law fluids (FFNF). These new developments provided in this book are (i) novel system of analysis models based on the developed New Similarity Analysis Method; (ii) a system of advanced methods for treatment of gas temperature- dependent physical properties, and liquid temperature- dependent physical properties; (iii) the organically combined models of the governing mathematical models with those on treatment model of variable physical properties; (iv) rigorous approach of overcoming a challenge on accurate solution of three-point boundary value problem related to two-phase film boiling and condensation; and (v) A pseudo-similarity method of dealing with thermal boundary layer of FFNF for greatly simplifies the heat-transfer analysis and numerical calculati...

  11. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers

    NARCIS (Netherlands)

    de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries

    2014-01-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic

  12. SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris

    International Nuclear Information System (INIS)

    Coryell, E.W.; Siefken, L.J.; Paik, S.

    1998-01-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and non-porous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of non-porous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate manner. A design is also described for implementing a model of heat transfer by radiation from debris to the interstitial fluid. A design is described for implementation of models for flow losses and interphase drag in porous debris. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region

  13. Validation of the TASS/SMR-S Code for the PRHRS Condensation Heat Transfer Model

    International Nuclear Information System (INIS)

    Jun, In Sub; Yang, Soo Hyoung; Chung, Young Jong; Lee, Won Jae

    2011-01-01

    When some accidents or events are occurred in the SMART, the secondary system is used to remove the core decay heat for the long time such as a feedwater system. But if the feedwater system can't remove the residual core heat because of its malfunction, the core decay heat is removed using the Passive Residual Heat Removal System (PRHRS). The PRHRS is passive type safety system adopted to enhance the safety of the SMART. It can fundamentally eliminate the uncertainty of operator action. TASS/SMR-S (Transient And Setpoint Simulation/ System-integrated Modular Reactor-Safety) code has various heat transfer models reflecting the design features of the SMART. One of the heat transfer models is the PRHRS condensation heat transfer model. The role of this model is to calculate the heat transfer coefficient in the heat exchanger (H/X) tube side using the relevant heat transfer correlations for all of the heat transfer modes. In this paper, the validation of the condensation heat transfer model was carried out using the POSTECH H/X heat transfer test

  14. Evaluation of heat transfer correlations for HCCI engine modeling

    NARCIS (Netherlands)

    Soyhan, H.S.; Yasar, H.; Walmsley, H.; Head, B.; Kalghatgi, G.T.; Sorusbay, C.

    2009-01-01

    Combustion in HCCI engines is a controlled auto-ignition of well-mixed fuel, air and residual gas. The thermal conditions of the combustion chamber are governed by chemical kinetics strongly coupled with heat transfer from the hot gas to the walls. The heat losses have a critical effect on HCCI

  15. Discrete vessel heat transfer in perfused tissue - model comparison

    NARCIS (Netherlands)

    Stanczyk, M.; Leeuwen, van G.M.J.; Steenhoven, van A.A.

    2007-01-01

    The aim of this paper is to compare two methods of calculating heat transfer in perfused biological tissue using a discrete vessel description. The methods differ in two important aspects: the representation of the vascular system and the algorithm for calculating the heat flux between tissue and

  16. Modeling of heat transfer within porous multi-constituent materials

    International Nuclear Information System (INIS)

    Niezgoda, M.

    2012-01-01

    The CEA works a great deal with porous materials - carbon composites, ceramics - and aims to optimize their properties for specific uses. These materials can be composed of several constituents and generally has a complex structure with pore size of several tens of micrometers. It is used in large-scale systems that are bigger than its own characteristic scale in which they are considered as equivalent to a homogeneous medium for the simulation of its behavior in its using environment without taking into account its local morphology. We are especially interested in the effective thermal diffusivity of heterogeneous materials that we estimate as a function of temperature with the help of an inverse method by considering they are homogeneous. The identification of the diffusivity of porous and/or semi-transparent materials is made difficult because of the strong conducto-radiative coupling can quickly occur when the temperature increases. We have thus modeled the coupled conductive and radiative heat transfer as a function of the temperature within porous multi-constituent materials from their morphology discretized into a set of homogeneous voxels. We have developed a methodology that consists in starting from a 3D-microstructure of the studied materials obtained by tomography. The microstructures constitute the numerical support to this modeling that renders it possible, on the one hand, to simulate any kind of numerical thermal experiments, especially the flash method whose the results render it possible to estimate the thermal diffusivity, and on the other hand, to reproduce the thermal behavior of our materials in their using conditions. (author) [fr

  17. Turbulence modeling and surface heat transfer in a stagnation flow region

    Science.gov (United States)

    Wang, C. R.; Yeh, F. C.

    1987-01-01

    Analysis for the turbulent flow field and the effect of freestream turbulence on the surface heat transfer rate of a stagnation flow is presented. The emphasis is on modeling and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow.

  18. Turbulence Modeling and Computation of Turbine Aerodynamics and Heat Transfer

    Science.gov (United States)

    Lakshminarayana, B.; Luo, J.

    1996-01-01

    The objective of the present research is to develop improved turbulence models for the computation of complex flows through turbomachinery passages, including the effects of streamline curvature, heat transfer and secondary flows. Advanced turbulence models are crucial for accurate prediction of rocket engine flows, due to existance of very large extra strain rates, such as strong streamline curvature. Numerical simulation of the turbulent flows in strongly curved ducts, including two 180-deg ducts, one 90-deg duct and a strongly concave curved turbulent boundary layer have been carried out with Reynolds stress models (RSM) and algebraic Reynolds stress models (ARSM). An improved near-wall pressure-strain correlation has been developed for capturing the anisotropy of turbulence in the concave region. A comparative study of two modes of transition in gas turbine, the by-pass transition and the separation-induced transition, has been carried out with several representative low-Reynolds number (LRN) k-epsilon models. Effects of blade surface pressure gradient, freestream turbulence and Reynolds number on the blade boundary layer development, and particularly the inception of transition are examined in detail. The present study indicates that the turbine blade transition, in the presence of high freestream turbulence, is predicted well with LRN k-epsilon models employed. The three-dimensional Navier-Stokes procedure developed by the present authors has been used to compute the three-dimensional viscous flow through the turbine nozzle passage of a single stage turbine. A low Reynolds number k-epsilon model and a zonal k-epsilon/ARSM (algebraic Reynolds stress model) are utilized for turbulence closure. An assessment of the performance of the turbulence models has been carried out. The two models are found to provide similar predictions for the mean flow parameters, although slight improvement in the prediction of some secondary flow quantities has been obtained by the

  19. An analytical model for annular flow boiling heat transfer in microchannel heat sinks

    International Nuclear Information System (INIS)

    Megahed, A.; Hassan, I.

    2009-01-01

    An analytical model has been developed to predict flow boiling heat transfer coefficient in microchannel heat sinks. The new analytical model is proposed to predict the two-phase heat transfer coefficient during annular flow regime based on the separated model. Opposing to the majority of annular flow heat transfer models, the model is based on fundamental conservation principles. The model considers the characteristics of microchannel heat sink during annular flow and eliminates using any empirical closure relations. Comparison with limited experimental data was found to validate the usefulness of this analytical model. The model predicts the experimental data with a mean absolute error 8%. (author)

  20. A model for dispersed flow heat transfer in rod bundles during reflood

    International Nuclear Information System (INIS)

    Wong, S.

    1980-01-01

    The present model calculates the heat transfer characteristics of the non-equilibrium dispersed droplet flow regime above the quench front during reflood by solving simultaneously the wall-to-vapor interactions, wall-to-droplet interactions and vapor-to-droplet interactions by an iterative numerical method. The unique feature in the present study is various heat transfer mechanisms are combined in an overall energy balance equation, and the convective heat transfer to vapor is obtained by calculating the vapor temperature distributions at the heated walls. The reactor rod bundle geometry, axial variations of vapor temperature and flow properties, radiative heat transfers, and enhancement of heat transfer due to turbulence are considered carefully, so that the present model could be used to predict PWR (Pressurized Water Reactor) reflood heat transfers, and hence the fuel cladding wall temperature transients. In order to achieve closure of the problem formulations, the droplet size and its motion are determined from the FLECHT (Full Length Emergency Cooling Heat Transfer Program) low flooding rate series consine axial power shape test data. The model is then verified by comparing the heat transfer predictions with FLECHT low flooding rate series skewed axial power shape test data. Comparisons of predictions with data show satisfactory agreements

  1. Implementation of a Transition Model in a NASA Code and Validation Using Heat Transfer Data on a Turbine Blade

    Science.gov (United States)

    Ameri, Ali A.

    2012-01-01

    The purpose of this report is to summarize and document the work done to enable a NASA CFD code to model laminar-turbulent transition process on an isolated turbine blade. The ultimate purpose of the present work is to down-select a transition model that would allow the flow simulation of a variable speed power turbine to be accurately performed. The flow modeling in its final form will account for the blade row interactions and their effects on transition which would lead to accurate accounting for losses. The present work only concerns itself with steady flows of variable inlet turbulence. The low Reynolds number k- model of Wilcox and a modified version of the same model will be used for modeling of transition on experimentally measured blade pressure and heat transfer. It will be shown that the k- model and its modified variant fail to simulate the transition with any degree of accuracy. A case is thus made for the adoption of more accurate transition models. Three-equation models based on the work of Mayle on Laminar Kinetic Energy were explored. The three-equation model of Walters and Leylek was thought to be in a relatively mature state of development and was implemented in the Glenn-HT code. Two-dimensional heat transfer predictions of flat plate flow and two-dimensional and three-dimensional heat transfer predictions on a turbine blade were performed and reported herein. Surface heat transfer rate serves as sensitive indicator of transition. With the newly implemented model, it was shown that the simulation of transition process is much improved over the baseline k- model for the single Reynolds number and pressure ratio attempted; while agreement with heat transfer data became more satisfactory. Armed with the new transition model, total-pressure losses of computed three-dimensional flow of E3 tip section cascade were compared to the experimental data for a range of incidence angles. The results obtained, form a partial loss bucket for the chosen blade

  2. Exterior calculus and two-dimensional supersymmetric models

    International Nuclear Information System (INIS)

    Sciuto, S.

    1980-01-01

    An important property of the calculus of differential forms on superspace is pointed out, and an economical way to treat the linear problem associated with certain supersymmetric two-dimensional models is discussed. A generalization of the super sine-Gordon model is proposed; its bosonic limit is a new model whose associate linear set has an SU(3) structure. (orig.)

  3. Mathematical Model for Fluid Flow and Heat Transfer Processes in Plate Exchanger

    Directory of Open Access Journals (Sweden)

    Cvete B. Dimitrieska

    2015-11-01

    Full Text Available Within the analytical solution of the system of equations which solve fluid flow and heat transfer processes, the elliptical and parabolic differential equations based on initial and boundary conditions is usually unfamiliar in a closed form. Numerical solution of equation system is necessarily obtained by discretization of equations. When system of equations relate to estimation of two dimensional stationary problems, the applicable method for estimation in basic two – dimensional form is recommended.

  4. SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris

    International Nuclear Information System (INIS)

    Siefken, Larry James; Coryell, Eric Wesley; Paik, Seungho; Kuo, Han Hsiung

    1999-01-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate manner. Designs are described for models to calculate the flow losses and interphase drag of fluid flowing through the interstices of the porous debris, and to apply these variables in the momentum equations in the RELAP5 part of the code. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region

  5. Modeling of heat transfer into a heat pipe for a localized heat input zone

    International Nuclear Information System (INIS)

    Rosenfeld, J.H.

    1987-01-01

    A general model is presented for heat transfer into a heat pipe using a localized heat input. Conduction in the wall of the heat pipe and boiling in the interior structure are treated simultaneously. The model is derived from circumferential heat transfer in a cylindrical heat pipe evaporator and for radial heat transfer in a circular disk with boiling from the interior surface. A comparison is made with data for a localized heat input zone. Agreement between the theory and the model is good. This model can be used for design purposes if a boiling correlation is available. The model can be extended to provide improved predictions of heat pipe performance

  6. Development of a UF{sub 6} cylinder transient heat transfer/stress analysis model

    Energy Technology Data Exchange (ETDEWEB)

    Williams, W.R. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1991-12-31

    A heat transfer/stress analysis model is being developed to simulate the heating to a point of rupture of a cylinder containing UF{sub 6} when it is exposed to a fire. The assumptions underlying the heat transfer portion of the model, which has been the focus of work to date, will be discussed. A key aspect of this model is a lumped parameter approach to modeling heat transfer. Preliminary results and future efforts to develop an integrated thermal/stress model will be outlined.

  7. A Mathematical Model of Heat Transfer in Spheroplastic

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2016-01-01

    Full Text Available Spheroplastics are composite materials composed of a polymer or organosilicate binder and hollow spherical inclusions (mostly, of glass, but there are also of carbon, phenol, and epoxy, which are called microspheres and have a diameter within a millimeter with the wall thickness of several micrometers. To reduce the material density in watercraft constructions sometimes are used so called macrospheres of up to 40 mm in diameter and shell thickness of 0,5--1,5 mm from spheroplastic with microspheres.Microspheres may contain inert gases such as nitrogen. Many countries have commercialised quartz microspheres. The USA, in particular, produces Q-Gel microspheres with density of 300 kg / m3, the bulk density - 100 kg / m3 and the average diameter of 75 microns,characterized by a high mechanical strength and low cost. Carbon microspheres having low mechanical properties can absorb radio waves in certain frequency ranges. Spheroplastic with silicone microspheres combine relatively high mechanical and dielectric properties.In virtue of low thermal conductivity spheroplastics are used in various heat-insulating structures. As the thermal insulation coatings, the spheroplastic covers the outer surface of the pipes, in particular oil and gas pipelines in the permafrost zones,  regions of swampy ground, and underwater. The effective heat conductivity factor, primarily, determines the specific application of spheroplastic as a thermal insulation material. To quantify the value of this factor is necessary to have a mathematical model describing heat ransfer in spheroplastic.The paper presents a four-phase mathematical model of the heat transfer in a representative element of a spheroplastic structure placed in an unlimited array of homogeneous material, the thermal conductivity of which is to be determined as desired characteristics of spheroplastic. This model in combination with a dual variational formulation of stationary heat conduction problem in the

  8. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    Science.gov (United States)

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  9. Two-dimensional nonlinear heat conduction wave in a layer-inhomogeneous medium and the characteristics of heat transfer in laser thermonuclear fusion targets

    International Nuclear Information System (INIS)

    Gus'kov, Sergei Yu; Doskach, I Ya

    1999-01-01

    An analytical solution is obtained to the problem of propagation of a 2-D nonlinear heat conduction wave from a cylindrical energy source, which acts in a planar layer of a material surrounded by a medium with different mass density and degree of ionisation. A theoretical justification is given of several interesting phenomena of 2-D thermal wave propagation through an inhomogeneous medium. These phenomena are related to the difference between the thermal wave velocities in the media with different thermal diffusivities. When the mass density in a layer experiencing the action of an energy source exceeds the density of the surrounding medium, the thermal wave front is shown to glide along the layer boundaries with a spatial velocity exceeding the velocity of the wave inside the layer. Moreover, there is a possibility of 'themal flow' of a layer across the boundaries between the layer and the surrounding medium in front of a thermal wave propagating inside the layer. The problems of heat transfer in multilayer targets for laser thermonuclear fusion are considered as an application. (interaction of laser radiation with matter. laser plasma)

  10. Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-Bénard convection.

    Science.gov (United States)

    van der Poel, Erwin P; Ostilla-Mónico, Rodolfo; Verzicco, Roberto; Lohse, Detlef

    2014-07-01

    The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-Bénard convection. Combinations of no-slip, stress-free, and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between 10(8) and 10(11) the heat transport is lower for Γ=0.33 than for Γ=1 in case of no-slip sidewalls. This is, surprisingly, the opposite for stress-free sidewalls, where the heat transport increases for a lower aspect ratio. In wider cells the aspect-ratio dependence is observed to disappear for Ra ≥ 10(10). Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall simulations with a no-slip boundary condition on the plates also exhibit zonal flow. In all the other cases, the flow is roll like. In two-dimensional Rayleigh-Bénard convection, the velocity boundary conditions thus have large implications on both roll-like and zonal flow that have to be taken into consideration before the boundary conditions are imposed.

  11. Two-dimensional models in statistical mechanics and field theory

    International Nuclear Information System (INIS)

    Koberle, R.

    1980-01-01

    Several features of two-dimensional models in statistical mechanics and Field theory, such as, lattice quantum chromodynamics, Z(N), Gross-Neveu and CP N-1 are discussed. The problems of confinement and dynamical mass generation are also analyzed. (L.C.) [pt

  12. Two-dimensional effects in nonlinear Kronig-Penney models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim

    1997-01-01

    An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...

  13. New flow boiling heat transfer model for hydrocarbons evaporating inside horizontal tubes

    International Nuclear Information System (INIS)

    Chen, G. F.; Gong, M. Q.; Wu, J. F.; Zou, X.; Wang, S.

    2014-01-01

    Hydrocarbons have high thermodynamic performances, belong to the group of natural refrigerants, and they are the main components in mixture Joule-Thomson low temperature refrigerators (MJTR). New evaluations of nucleate boiling contribution and nucleate boiling suppression factor in flow boiling heat transfer have been proposed for hydrocarbons. A forced convection heat transfer enhancement factor correlation incorporating liquid velocity has also been proposed. In addition, the comparisons of the new model and other classic models were made to evaluate its accuracy in heat transfer prediction

  14. Two dimensional analytical model for a reconfigurable field effect transistor

    Science.gov (United States)

    Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.

    2018-02-01

    This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.

  15. Heat transfer

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.

  16. New Integrals Arising in the Samara-Valencia Heat Transfer Model in Grinding

    Directory of Open Access Journals (Sweden)

    J. L. González-Santander

    2017-01-01

    Full Text Available The Samara-Valencia model for heat transfer in grinding has been recently used for calculating nontabulated integrals. Based on these results, new infinite integrals can be calculated, involving the Macdonald function and the modified Struve function.

  17. Numerical Modeling of Transient Heat Transfer in Longitudinal Fin

    Directory of Open Access Journals (Sweden)

    Farshad Panahizadeh

    2017-11-01

    Full Text Available The main objective of the present numerical study is to investigate the transient heat transfer in one kind of all-purpose longitudinal fin with the triangular profile. The lateral surface of the concerned fin and the tip of it are subjected to general situations included heat flux at the base and insulation on the tip. For this study developed a one dimensional in house code written by Fortran 90 programming language by using finite difference method with an implicit scheme in unsteady state condition. Generally, the result of this study in time variation state after 700 seconds is steady. The results also show the fin efficiency by increasing the time of study decreases due to a reduction in the total heat transfer which is happened in the fin. The grid independence study shows that for the number of nodes greater than 20 the result will not be changed and same as before. Finally, the result of Fortran code verified by commercial CFD code which relies on finite difference method and it was shown have a consistent agreement

  18. Impacts of transient heat transfer modeling on prediction of advanced cladding fracture during LWR LBLOCA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho, E-mail: euo@kaist.ac.kr; Lee, Jeong Ik, E-mail: jeongiklee@kaist.ac.kr; NO, Hee Cheon, E-mail: hcno@kaist.ac.kr

    2016-03-15

    Highlights: • Use of constant heat transfer coefficient for fracture analysis is not sound. • On-time heat transfer coefficient should be used for thermal fracture prediction. • ∼90% of the actual fracture stresses were predicted with the on-time transient h. • Thermal-hydraulic codes can be used to better predict brittle cladding fracture. • Effects of surface oxides on thermal shock fracture should be accounted by h. - Abstract: This study presents the importance of coherency in modeling thermal-hydraulics and mechanical behavior of a solid for an advanced prediction of cladding thermal shock fracture. In water quenching, a solid experiences dynamic heat transfer rate evolutions with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates has been overlooked in the analysis of thermal shock fracture. In this study, we are presenting quantitative evidence against the prevailing use of a constant heat transfer coefficient for thermal shock fracture analysis in water. We conclude that no single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials. The presented results show a remarkable stress prediction improvement up to 80–90% of the actual stress with the use of the surface temperature dependent heat transfer coefficient. For thermal shock fracture analysis of brittle fuel cladding such as oxidized zirconium-based alloy or silicon carbide during LWR reflood, transient subchannel heat transfer coefficients obtained from a thermal-hydraulics code should be used as input for stress analysis. Such efforts will lead to a fundamental improvement in thermal shock fracture predictability over the current experimental empiricism for cladding fracture analysis during reflood.

  19. Theoretical study of evaporation heat transfer in horizontal microfin tubes: stratified flow model

    Energy Technology Data Exchange (ETDEWEB)

    Honda, H; Wang, Y S [Kyushu Univ., Inst. for Materials Chemistry and Engineering, Kasuga, Fukuoka (Japan)

    2004-08-01

    The stratified flow model of evaporation heat transfer in helically grooved, horizontal microfin tubes has been developed. The profile of stratified liquid was determined by a theoretical model previously developed for condensation in horizontal microfin tubes. For the region above the stratified liquid, the meniscus profile in the groove between adjacent fins was determined by a force balance between the gravity and surface tension forces. The thin film evaporation model was applied to predict heat transfer in the thin film region of the meniscus. Heat transfer through the stratified liquid was estimated by using an empirical correlation proposed by Mori et al. The theoretical predictions of the circumferential average heat transfer coefficient were compared with available experimental data for four tubes and three refrigerants. A good agreement was obtained for the region of Fr{sub 0}<2.5 as long as partial dry out of tube surface did not occur. (Author)

  20. Kinetic Monte Carlo modeling of chemical reactions coupled with heat transfer.

    Science.gov (United States)

    Castonguay, Thomas C; Wang, Feng

    2008-03-28

    In this paper, we describe two types of effective events for describing heat transfer in a kinetic Monte Carlo (KMC) simulation that may involve stochastic chemical reactions. Simulations employing these events are referred to as KMC-TBT and KMC-PHE. In KMC-TBT, heat transfer is modeled as the stochastic transfer of "thermal bits" between adjacent grid points. In KMC-PHE, heat transfer is modeled by integrating the Poisson heat equation for a short time. Either approach is capable of capturing the time dependent system behavior exactly. Both KMC-PHE and KMC-TBT are validated by simulating pure heat transfer in a rod and a square and modeling a heated desorption problem where exact numerical results are available. KMC-PHE is much faster than KMC-TBT and is used to study the endothermic desorption of a lattice gas. Interesting findings from this study are reported.

  1. The improvement of the heat transfer model for sodium-water reaction jet code

    International Nuclear Information System (INIS)

    Hashiguchi, Yoshirou; Yamamoto, Hajime; Kamoshida, Norio; Murata, Shuuichi

    2001-02-01

    For confirming the reasonable DBL (Design Base Leak) on steam generator (SG), it is necessary to evaluate phenomena of sodium-water reaction (SWR) in an actual steam generator realistically. The improvement of a heat transfer model on sodium-water reaction (SWR) jet code (LEAP-JET ver.1.40) and application analysis to the water injection tests for confirmation of propriety for the code were performed. On the improvement of the code, the heat transfer model between a inside fluid and a tube wall was introduced instead of the prior model which was heat capacity model including both heat capacity of the tube wall and inside fluid. And it was considered that the fluid of inside the heat exchange tube was able to treat as water or sodium and typical heat transfer equations used in SG design were also introduced in the new heat transfer model. Further additional work was carried out in order to improve the stability of the calculation for long calculation time. The test calculation using the improved code (LEAP-JET ver.1.50) were carried out with conditions of the SWAT-IR·Run-HT-2 test. It was confirmed that the SWR jet behavior on the result and the influence to the result of the heat transfer model were reasonable. And also on the improved code (LEAP-JET ver.1.50), user's manual was revised with additional I/O manual and explanation of the heat transfer model and new variable name. (author)

  2. Drying process optimization for an API solvate using heat transfer model of an agitated filter dryer.

    Science.gov (United States)

    Nere, Nandkishor K; Allen, Kimberley C; Marek, James C; Bordawekar, Shailendra V

    2012-10-01

    Drying an early stage active pharmaceutical ingredient candidate required excessively long cycle times in a pilot plant agitated filter dryer. The key to faster drying is to ensure sufficient heat transfer and minimize mass transfer limitations. Designing the right mixing protocol is of utmost importance to achieve efficient heat transfer. To this order, a composite model was developed for the removal of bound solvent that incorporates models for heat transfer and desolvation kinetics. The proposed heat transfer model differs from previously reported models in two respects: it accounts for the effects of a gas gap between the vessel wall and solids on the overall heat transfer coefficient, and headspace pressure on the mean free path length of the inert gas and thereby on the heat transfer between the vessel wall and the first layer of solids. A computational methodology was developed incorporating the effects of mixing and headspace pressure to simulate the drying profile using a modified model framework within the Dynochem software. A dryer operational protocol was designed based on the desolvation kinetics, thermal stability studies of wet and dry cake, and the understanding gained through model simulations, resulting in a multifold reduction in drying time. Copyright © 2012 Wiley-Liss, Inc.

  3. Study of Variable Turbulent Prandtl Number Model for Heat Transfer to Supercritical Fluids in Vertical Tubes

    Science.gov (United States)

    Tian, Ran; Dai, Xiaoye; Wang, Dabiao; Shi, Lin

    2018-06-01

    In order to improve the prediction performance of the numerical simulations for heat transfer of supercritical pressure fluids, a variable turbulent Prandtl number (Prt) model for vertical upward flow at supercritical pressures was developed in this study. The effects of Prt on the numerical simulation were analyzed, especially for the heat transfer deterioration conditions. Based on the analyses, the turbulent Prandtl number was modeled as a function of the turbulent viscosity ratio and molecular Prandtl number. The model was evaluated using experimental heat transfer data of CO2, water and Freon. The wall temperatures, including the heat transfer deterioration cases, were more accurately predicted by this model than by traditional numerical calculations with a constant Prt. By analyzing the predicted results with and without the variable Prt model, it was found that the predicted velocity distribution and turbulent mixing characteristics with the variable Prt model are quite different from that predicted by a constant Prt. When heat transfer deterioration occurs, the radial velocity profile deviates from the log-law profile and the restrained turbulent mixing then leads to the deteriorated heat transfer.

  4. Research Strategy for Modeling the Complexities of Turbine Heat Transfer

    Science.gov (United States)

    Simoneau, Robert J.

    1996-01-01

    The subject of this paper is a NASA research program, known as the Coolant Flow Management Program, which focuses on the interaction between the internal coolant channel and the external film cooling of a turbine blade and/or vane in an aircraft gas turbine engine. The turbine gas path is really a very complex flow field. The combination of strong pressure gradients, abrupt geometry changes and intersecting surfaces, viscous forces, rotation, and unsteady blade/vane interactions all combine to offer a formidable challenge. To this, in the high pressure turbine, we add the necessity of film cooling. The ultimate goal of the turbine designer is to maintain or increase the high level of turbine performance and at the same time reduce the amount of coolant flow needed to achieve this end. Simply stated, coolant flow is a penalty on the cycle and reduces engine thermal efficiency. Accordingly, understanding the flow field and heat transfer associated with the coolant flow is a priority goal. It is important to understand both the film cooling and the internal coolant flow, particularly their interaction. Thus, the motivation for the Coolant Flow Management Program. The paper will begin with a brief discussion of the management and research strategy, will then proceed to discuss the current attack from the internal coolant side, and will conclude by looking at the film cooling effort - at all times keeping sight of the primary goal the interaction between the two. One of the themes of this paper is that complex heat transfer problems of this nature cannot be attacked by single researchers or even groups of researchers, each working alone. It truly needs the combined efforts of a well-coordinated team to make an impact. It is important to note that this is a government/industry/university team effort.

  5. Enhancement of heat transfer coefficient multi-metallic nanofluid with ANFIS modeling for thermophysical properties

    Directory of Open Access Journals (Sweden)

    Balla Hyder H.

    2015-01-01

    Full Text Available Cu and Zn-water nanofluid is a suspension of the Cu and Zn nanoparticles with the size 50 nm in the water base fluid for different volume fractions to enhance its Thermophysical properties. The determination and measuring the enhancement of Thermophysical properties depends on many limitations. Nanoparticles were suspended in a base fluid to prepare a nanofluid. A coated transient hot wire apparatus was calibrated after the building of the all systems. The vibro-viscometer was used to measure the dynamic viscosity. The measured dynamic viscosity and thermal conductivity with all parameters affected on the measurements such as base fluids thermal conductivity, volume factions, and the temperatures of the base fluid were used as input to the Artificial Neural Fuzzy inference system to modeling both dynamic viscosity and thermal conductivity of the nanofluids. Then, the ANFIS modeling equations were used to calculate the enhancement in heat transfer coefficient using CFD software. The heat transfer coefficient was determined for flowing flow in a circular pipe at constant heat flux. It was found that the thermal conductivity of the nanofluid was highly affected by the volume fraction of nanoparticles. A comparison of the thermal conductivity ratio for different volume fractions was undertaken. The heat transfer coefficient of nanofluid was found to be higher than its base fluid. Comparisons of convective heat transfer coefficients for Cu and Zn nanofluids with the other correlation for the nanofluids heat transfer enhancement are presented. Moreover, the flow demonstrates anomalous enhancement in heat transfer nanofluids.

  6. Evaluation of Advanced Models for PAFS Condensation Heat Transfer in SPACE Code

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byoung-Uhn; Kim, Seok; Park, Yu-Sun; Kang, Kyung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Tae-Hwan; Yun, Byong-Jo [Pusan National University, Busan (Korea, Republic of)

    2015-10-15

    The PAFS (Passive Auxiliary Feedwater System) is operated by the natural circulation to remove the core decay heat through the PCHX (Passive Condensation Heat Exchanger) which is composed of the nearly horizontal tubes. For validation of the cooling and operational performance of the PAFS, PASCAL (PAFS Condensing Heat Removal Assessment Loop) facility was constructed and the condensation heat transfer and natural convection phenomena in the PAFS was experimentally investigated at KAERI (Korea Atomic Energy Research Institute). From the PASCAL experimental result, it was found that conventional system analysis code underestimated the condensation heat transfer. In this study, advanced condensation heat transfer models which can treat the heat transfer mechanisms with the different flow regimes in the nearly horizontal heat exchanger tube were analyzed. The models were implemented in a thermal hydraulic safety analysis code, SPACE (Safety and Performance Analysis Code for Nuclear Power Plant), and it was evaluated with the PASCAL experimental data. With an aim of enhancing the prediction capability for the condensation phenomenon inside the PCHX tube of the PAFS, advanced models for the condensation heat transfer were implemented into the wall condensation model of the SPACE code, so that the PASCAL experimental result was utilized to validate the condensation models. Calculation results showed that the improved model for the condensation heat transfer coefficient enhanced the prediction capability of the SPACE code. This result confirms that the mechanistic modeling for the film condensation in the steam phase and the convection in the condensate liquid contributed to enhance the prediction capability of the wall condensation model of the SPACE code and reduce conservatism in prediction of condensation heat transfer.

  7. Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing

    2009-08-01

    Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.

  8. Assessment of reflood heat transfer model of COBRA-TIF against ABB-CE evaluation model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. I.; Lee, S. Y.; Park, C. E.; Choi, H. R.; Choi, C. J. [Korea Power Engineering Company Inc., Taejon (Korea, Republic of)

    2000-05-01

    According to 10 CFR 50 Appendix K, ECCS performance evaluation model should be based on the experimental data of FLECHT and have the conservatism compared with experimental data. To meet this requirement ABB-CE has the complicate code structure as follows: COMPERC-II calculates three reflood rates, and FLELAPC and HTCOF calculate the reflood heat transfer coefficients, and finally STRIKIN-II calculates the cladding temperature using the reflood heat transfer calculated in previous stage. In this paper, to investigate whether or not COBRA-TF satisfies the requirement of Appendix K, the reflood heat transfer coefficient of COBRA-TF was assessed against ABB-CE MOD-2C model. It was found out that COBRA-TF predicts properly the experimental data and has more conservatism than the results of ABB-CE MOD-2C model. Based on these results, it can be concluded that the reflood heat transfer coefficients calculated by COBRA-TF meet the requirement of Appendix K.

  9. Heat transfer

    International Nuclear Information System (INIS)

    Saad, M.A.

    1985-01-01

    Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously

  10. Minimal quantization of two-dimensional models with chiral anomalies

    International Nuclear Information System (INIS)

    Ilieva, N.

    1987-01-01

    Two-dimensional gauge models with chiral anomalies - ''left-handed'' QED and the chiral Schwinger model, are quantized consistently in the frames of the minimal quantization method. The choice of the cone time as a physical time for system of quantization is motivated. The well-known mass spectrum is found but with a fixed value of the regularization parameter a=2. Such a unique solution is obtained due to the strong requirement of consistency of the minimal quantization that reflects in the physically motivated choice of the time axis

  11. Two-Dimensional Wetting Transition Modeling with the Potts Model

    Science.gov (United States)

    Lopes, Daisiane M.; Mombach, José C. M.

    2017-12-01

    A droplet of a liquid deposited on a surface structured in pillars may have two states of wetting: (1) Cassie-Baxter (CB), the liquid remains on top of the pillars, also known as heterogeneous wetting, or (2) Wenzel, the liquid fills completely the cavities of the surface, also known as homogeneous wetting. Studies show that between these two states, there is an energy barrier that, when overcome, results in the transition of states. The transition can be achieved by changes in geometry parameters of the surface, by vibrations of the surface or by evaporation of the liquid. In this paper, we present a comparison of two-dimensional simulations of the Cassie-Wenzel transition on pillar-structured surfaces using the cellular Potts model (CPM) with studies performed by Shahraz et al. In our work, we determine a transition diagram by varying the surface parameters such as the interpillar distance ( G) and the pillar height ( H). Our results were compared to those obtained by Shahraz et al. obtaining good agreement.

  12. CFD evaluation of turbulence model on heat transfer in 5 × 5 rod bundles

    International Nuclear Information System (INIS)

    Chao Yanmeng; Yang Lixin; Zhang Yuxiang; Pang Zhengzheng

    2014-01-01

    Different turbulence models may lead to different results when analyzing fuel assemblies using computational fluid dynamics (CFD) method. In this paper, a 5 × 5 rod bundle model was built to analyze the relationship between flow and heat transfer. The pressure drop and Nu were calculated using ANSYS CFX. Three factors evaluating swirling flow and cross-flow were used to analyze the inner relationship between flow field and heat transfer. The performances of various turbulence models, including eddy viscosity model and Reynold stress model, were evaluated. The comparison between numerical and similar experimental results indicates that Reynold stress model is more appropriate for modeling flow features and heat transfer in spacer grids discussed in this paper. (authors)

  13. Modeling of Heat Transfer in Rooms in the Modelica "Buildings" Library

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zuo, Wangda [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nouidui, Thierry Stephane [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-11-01

    This paper describes the implementation of the room heat transfer model in the free open-source Modelica \\Buildings" library. The model can be used as a single room or to compose a multizone building model. We discuss how the model is decomposed into submodels for the individual heat transfer phenomena. We also discuss the main physical assumptions. The room model can be parameterized to use different modeling assumptions, leading to linear or non-linear differential algebraic systems of equations. We present numerical experiments that show how these assumptions affect computing time and accuracy for selected cases of the ANSI/ASHRAE Standard 140- 2007 envelop validation tests.

  14. Selection of heat transfer model for describing short-pulse laser heating silica-based sensor

    International Nuclear Information System (INIS)

    Hao Xiangnan; Nie Jinsong; Li Hua; Bian Jintian

    2012-01-01

    The fundamental equations of Fourier heat transfer model and non-Fourier heat transfer model were numerically solved, with the finite difference method. The relative changes between temperature curves of the two heat transfer models were analyzed under laser irradiation with different pulse widths of 10 ns, 1 ns, 100 ps, 10 ps. The impact of different thermal relaxation time on non-Fourier model results was discussed. For pulses of pulse width less than or equal to 100 ps irradiating silicon material, the surface temperature increases slowly and carrier effect happens, which the non-Fourier model can reflect properly. As for general material, when the pulse width is less than or equal to the thermal relaxation time of material, carrier effect occurs. In this case, the non-Fourier model should be used. (authors)

  15. Separate effects tests for GOTHIC condensation and evaporative heat transfer models

    International Nuclear Information System (INIS)

    George, T.L.; Singh, A.

    1994-01-01

    The GOTHIC computer program, under development at EPRI/NAI, is a general purpose thermal hydraulics computer program for design, licensing, safety and operating analysis of nuclear containments and other confinement buildings. The code solves a nine equation model for three dimensional multiphase flow with separate mass, momentum and energy equations for vapor, liquid and drop phases. The vapor phase can be a gas mixture of steam and non-condensing gases. The phase balance equations are coupled by mechanistic and empirical models for interface mass, energy and momentum transfer that cover the entire flow regime from bubbly flow to film/drop flow. A variety of heat transfer correlations are available to model the fluid coupling to active and passive solid conductors. This paper focuses on the application of GOTHIC to two separate effects tests; condensation heat transfer on a vertical flat plate with varying bulk velocity, steam concentration and temperature, and evaporative heat transfer from a hot pool to a dry (superheated) atmosphere. Comparisons with experimental data is included for both tests. Results show the validity of two condensation heat transfer correlations as incorporated into GOTHIC and the interfacial heat and mass transfer models for the range of the experimental test conditions. Comparisons are also made for lumped versus multidimensional modeling for buoyancy controlled flow with evaporative heat transfer. (author). 13 refs., 1 tab., 10 figs

  16. Separate effects tests for GOTHIC condensation and evaporative heat transfer models

    International Nuclear Information System (INIS)

    George, T.L.; Singh, A.

    1996-01-01

    The GOTHIC computer program, under development at NAI for EPRI, is a general purpose thermal hydraulics computer program for design, licensing, safety and operating analysis of nuclear containments and other confinement buildings. The code solves a nine-equation model for three-dimensional multiphase flow with separate mass, momentum and energy equations for vapor, liquid and drop phases. The vapor phase can be a gas mixture of steam and non-condensing gases. The phase balance equations are coupled by mechanistic and empirical models for interface mass, energy and momentum transfer that cover the entire flow regime from bubbly flow to film-drop flow. A variety of heat transfer correlations are available to model the fluid coupling to active and passive solid conductors. This paper focuses on the application of GOTHIC to two separate effects tests: condensation heat transfer on a vertical flat plate with varying bulk velocity, steam concentration and temperature, and evaporative heat transfer from a hot pool to a dry (superheated) atmosphere. Comparisons with experimental data are included for both tests. Results show the validity of two condensation heat transfer correlations as incorporated into GOTHIC and the interfacial heat and mass transfer models for the range of the experimental test conditions. Comparisons are also made for lumped vs. multidimensional modeling for buoyancy-controlled flow with evaporative heat transfer. (orig.)

  17. A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.

    Science.gov (United States)

    Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang

    2018-01-01

    The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.

  18. Comparison of CFD Natural Convection and Conduction-only Models for Heat Transfer in the Yucca Mountain Project Drifts

    International Nuclear Information System (INIS)

    Hadgu, T.; Webb, S.; Itamura, M.

    2004-01-01

    Yucca Mountain, Nevada has been designated as the nation's high-level radioactive waste repository and the U.S. Department of Energy has been approved to apply to the U.S. Nuclear Regulatory Commission for a license to construct a repository. Heat transfer in the Yucca Mountain Project (YMP) drift enclosures is an important aspect of repository waste emplacement. Canisters containing radioactive waste are to be emplaced in tunnels drilled 500 m below the ground surface. After repository closure, decaying heat is transferred from waste packages to the host rock by a combination of thermal radiation, natural convection and conduction heat transfer mechanism?. Current YMP mountain-scale and drift-scale numerical models often use a simplified porous medium code to model fluid and heat flow in the drift openings. To account for natural convection heat transfer, the thermal conductivity of the air was increased in the porous medium model. The equivalent thermal conductivity, defined as the ratio of total heat flow to conductive heat flow, used in the porous media models was based on horizontal concentric cylinders. Such modeling does not effectively capture turbulent natural convection in the open spaces as discussed by Webb et al. (2003) yet the approach is still widely used on the YMP project. In order to mechanistically model natural convection conditions in YMP drifts, the computational fluid dynamics (CFD) code FLUENT (Fluent, Incorporated, 2001) has been used to model natural convection heat transfer in the YMP emplacement drifts. A two-dimensional (2D) model representative of YMP geometry (e.g., includes waste package, drip shield, invert and drift wall) has been developed and numerical simulations made (Francis et al., 2003). Using CFD simulation results for both natural convection and conduction-only heat transfer in a single phase, single component fluid, equivalent thermal conductivities have been calculated for different Rayleigh numbers. Correlation

  19. Heat Transfer Modeling and Validation for Optically Thick Alumina Fibrous Insulation

    Science.gov (United States)

    Daryabeigi, Kamran

    2009-01-01

    Combined radiation/conduction heat transfer through unbonded alumina fibrous insulation was modeled using the diffusion approximation for modeling the radiation component of heat transfer in the optically thick insulation. The validity of the heat transfer model was investigated by comparison to previously reported experimental effective thermal conductivity data over the insulation density range of 24 to 96 kg/cu m, with a pressure range of 0.001 to 750 torr (0.1 to 101.3 x 10(exp 3) Pa), and test sample hot side temperature range of 530 to 1360 K. The model was further validated by comparison to thermal conductivity measurements using the transient step heating technique on an insulation sample at a density of 144 kg/cu m over a pressure range of 0.001 to 760 torr, and temperature range of 290 to 1090 K.

  20. The role of a convective surface in models of the radiative heat transfer in nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.M., E-mail: mansurdu@yahoo.com; Al-Mazroui, W.A.; Al-Hatmi, F.S.; Al-Lawatia, M.A.; Eltayeb, I.A.

    2014-08-15

    Highlights: • The role of a convective surface in modelling with nanofluids is investigated over a wedge. • Surface convection significantly controls the rate of heat transfer in nanofluid. • Increased volume fraction of nanoparticles to the base-fluid may not always increase the rate of heat transfer. • Effect of nanoparticles solid volume fraction depends on the types of constitutive materials. • Higher heat transfer in nanofluids is found in a moving wedge rather than in a static wedge. - Abstract: Nanotechnology becomes the core of the 21st century. Nanofluids are important class of fluids which help advancing nanotechnology in various ways. Convection in nanofluids plays a key role in enhancing the rate of heat transfer either for heating or cooling nanodevices. In this paper, we investigate theoretically the role of a convective surface on the heat transfer characteristics of water-based nanofluids over a static or moving wedge in the presence of thermal radiation. Three different types of nanoparticles, namely copper Cu, alumina Al{sub 2}O{sub 3} and titanium dioxide TiO{sub 2} are considered in preparation of nanofluids. The governing nonlinear partial differential equations are made dimensionless with the similarity transformations. Numerical simulations are carried out through the very robust computer algebra software MAPLE 13 to investigate the effects of various pertinent parameters on the flow field. The obtained results presented graphically as well as in tabular form and discussed from physical and engineering points of view. The results show that the rate of heat transfer in a nanofluid in the presence of thermal radiation significantly depends on the surface convection parameter. If the hot fluid side surface convection resistance is lower than the cold fluid side surface convection resistance, then increased volume fraction of the nanoparticles to the base fluid may reduces the heat transfer rate rather than increases from the surface of

  1. A numerical model for boiling heat transfer coefficient of zeotropic mixtures

    Science.gov (United States)

    Barraza Vicencio, Rodrigo; Caviedes Aedo, Eduardo

    2017-12-01

    Zeotropic mixtures never have the same liquid and vapor composition in the liquid-vapor equilibrium. Also, the bubble and the dew point are separated; this gap is called glide temperature (Tglide). Those characteristics have made these mixtures suitable for cryogenics Joule-Thomson (JT) refrigeration cycles. Zeotropic mixtures as working fluid in JT cycles improve their performance in an order of magnitude. Optimization of JT cycles have earned substantial importance for cryogenics applications (e.g, gas liquefaction, cryosurgery probes, cooling of infrared sensors, cryopreservation, and biomedical samples). Heat exchangers design on those cycles is a critical point; consequently, heat transfer coefficient and pressure drop of two-phase zeotropic mixtures are relevant. In this work, it will be applied a methodology in order to calculate the local convective heat transfer coefficients based on the law of the wall approach for turbulent flows. The flow and heat transfer characteristics of zeotropic mixtures in a heated horizontal tube are investigated numerically. The temperature profile and heat transfer coefficient for zeotropic mixtures of different bulk compositions are analysed. The numerical model has been developed and locally applied in a fully developed, constant temperature wall, and two-phase annular flow in a duct. Numerical results have been obtained using this model taking into account continuity, momentum, and energy equations. Local heat transfer coefficient results are compared with available experimental data published by Barraza et al. (2016), and they have shown good agreement.

  2. Analytical modeling of heat transfer during the reflooding phase of the LOCA: the UCFLOOD code

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Arrieta, L.A.

    1980-01-01

    A mechanistic model of bottom-reflooding heat transfer is described. From the hydrodynamic point of view the flow channel is divided into a single-phase liquid region, a continuous-liquid two-phase region, and a dispersed-liquid region. The void fraction is obtained from drift flux models. The onset of liquid entrainment is determined using a criterion based on the instability of the liquid core in the inverted-annular flow regime. For heat transfer calculations, the channel is also divided into a number of regions. The heat transfer coefficients are functions of the local flow conditions. Quench front propagation is treated separately by a model including the effects of axial conduction. Good agreement of calculated and experimental results has been obtained

  3. Emergence of geometry: A two-dimensional toy model

    International Nuclear Information System (INIS)

    Alfaro, Jorge; Espriu, Domene; Puigdomenech, Daniel

    2010-01-01

    We review the similarities between the effective chiral Lagrangrian, relevant for low-energy strong interactions, and the Einstein-Hilbert action. We use these analogies to suggest a specific mechanism whereby gravitons would emerge as Goldstone bosons of a global SO(D)xGL(D) symmetry broken down to SO(D) by fermion condensation. We propose a two-dimensional toy model where a dynamical zweibein is generated from a topological theory without any preexisting metric structure, the space being endowed only with an affine connection. A metric appears only after the symmetry breaking; thus the notion of distance is an induced effective one. In spite of several nonstandard features this simple toy model appears to be renormalizable and at long distances is described by an effective Lagrangian that corresponds to that of two-dimensional gravity (Liouville theory). The induced cosmological constant is related to the dynamical mass M acquired by the fermion fields in the breaking, which also acts as an infrared regulator. The low-energy expansion is valid for momenta k>M, i.e. for supra-horizon scales. We briefly discuss a possible implementation of a similar mechanism in four dimensions.

  4. The emergence of geometry: a two-dimensional toy model

    CERN Document Server

    Alfaro, Jorge; Puigdomenech, Daniel

    2010-01-01

    We review the similarities between the effective chiral lagrangrian, relevant for low-energy strong interactions, and the Einstein-Hilbert action. We use these analogies to suggest a specific mechanism whereby gravitons would emerge as Goldstone bosons of a global SO(D) X GL(D) symmetry broken down to SO(D) by fermion condensation. We propose a two-dimensional toy model where a dynamical zwei-bein is generated from a topological theory without any pre-existing metric structure, the space being endowed only with an affine connection. A metric appears only after the symmetry breaking; thus the notion of distance is an induced effective one. In spite of several non-standard features this simple toy model appears to be renormalizable and at long distances is described by an effective lagrangian that corresponds to that of two-dimensional gravity (Liouville theory). The induced cosmological constant is related to the dynamical mass M acquired by the fermion fields in the breaking, which also acts as an infrared re...

  5. Two-dimensional divertor modeling and scaling laws

    International Nuclear Information System (INIS)

    Catto, P.J.; Connor, J.W.; Knoll, D.A.

    1996-01-01

    Two-dimensional numerical models of divertors contain large numbers of dimensionless parameters that must be varied to investigate all operating regimes of interest. To simplify the task and gain insight into divertor operation, we employ similarity techniques to investigate whether model systems of equations plus boundary conditions in the steady state admit scaling transformations that lead to useful divertor similarity scaling laws. A short mean free path neutral-plasma model of the divertor region below the x-point is adopted in which all perpendicular transport is due to the neutrals. We illustrate how the results can be used to benchmark large computer simulations by employing a modified version of UEDGE which contains a neutral fluid model. (orig.)

  6. Superconductivity of the two-dimensional Penson-Kolb model

    International Nuclear Information System (INIS)

    Czart, W.R.; Robaszkiewicz, S.

    2001-01-01

    Two-dimensional (d = 2) Penson-Kolb model, i.e. the tight-binding model with the pair-hopping (intersite charge exchange) interaction, is considered and the effects of phase fluctuations on the s-wave superconductivity of this system are discussed within Kosterlitz-Thouless scenario. The London penetration depth λ at T = 0, the Kosterlitz Thouless critical temperature T c , and the Hartree-Fock approximation critical temperature T p are determined as a function of particle concentration and interaction. The Uemura type plots (T c vs. λ -2 (0)) are derived. Beyond weak coupling and for low concentrations they show the existence of universal scaling: T c ∼ 1/λ 2 (0), as it previously found for the attractive Hubbard model and for the models intersite electron pairing. (author)

  7. Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis

    Directory of Open Access Journals (Sweden)

    Young S. Shin

    1998-01-01

    Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.

  8. Analytical model for bottom reflooding heat transfer in light water reactors (the UCFLOOD code)

    International Nuclear Information System (INIS)

    Arrieta, L.; Yadigaroglu, G.

    1978-08-01

    The UCFLOOD code is based on mechanistic models developed to analyze bottom reflooding of a single flow channel and its associated fuel rod, or a tubular test section with internal flow. From the hydrodynamic point of view the flow channel is divided into a single-phase liquid region, a continuous-liquid two-phase region, and a dispersed-liquid region. The void fraction is obtained from drift flux models. For heat transfer calculations, the channel is divided into regions of single-phase-liquid heat transfer, nucleate boiling and forced-convection vaporization, inverted-annular film boiling, and dispersed-flow film boiling. The heat transfer coefficients are functions of the local flow conditions. Good agreement of calculated and experimental results has been obtained. A code user's manual is appended

  9. Complete heat transfer solutions of an insulated regular polygonal pipe by using a PWTR model

    International Nuclear Information System (INIS)

    Wong, K.-L.; Chou, H.-M.; Li, Y.-H.

    2004-01-01

    The heat transfer characteristics for insulated long regular polygonal (including circular) pipes are analyzed by using the same PWRT model in the present study as that used by Chou and Wong previously [Energy Convers. Manage. 44 (4) (2003) 629]. The thermal resistance of the inner convection term and the pipe conduction term in the heat transfer rate are not neglected in the present study. Thus, the complete heat transfer solution will be obtained. The present results can be applied more extensively to practical situations, such as heat exchangers. The results of the critical thickness t cr and the neutral thickness t e are independent of the values of J (generated by the combined effect of the inner convection term and the pipe conduction term). However, the heat transfer rates are dependent on the values of J. The present study shows that the thermal resistance of the inner convection term and the pipe conduction term cannot be neglected in the heat transfer equation in situations of low to medium inner convection coefficients h i and/or low to medium pipe conductivities K, especially in situations with large pipe sizes or/and great outer convection coefficients h 0

  10. Modeling the scooping phenomenon for the heat transfer in liquid–gas horizontal slug flows

    International Nuclear Information System (INIS)

    Bassani, Carlos L.; Pereira, Fernando H.G.; Barbuto, Fausto A.A.; Morales, Rigoberto E.M.

    2016-01-01

    Highlights: • A low computational tool for heat transfer prediction on slug flows is presented. • The scooping phenomenon is modeled on a stationary approach. • The scooping phenomenon improved in 8% the heat transfer results. - Abstract: The heat transfer between the deep sea waters and the oil and gas mixtures flowing through production lines is a common situation in the petroleum industry. The optimum prediction of the liquid–gas flow parameters along those lines, when the intermittent flow pattern known as slug flow is dominant, has extreme importance in facilities' design. The mixture temperature drop caused by the colder sea waters, which can be regarded as an infinite medium with constant temperature, directly affects physical properties of the fluids such as the viscosity and specific mass. Gas expansion may also occur due to pressure and temperature gradients, thus changing the flow hydrodynamics. Finally, the temperature gradient affects the thermodynamic equilibrium between the phases, favoring wax deposition and thus increasing pressure drops or even blocking the production line. With those issues in mind, the present work proposes a stationary model to predict the mixture temperature distribution and the two-phase flow heat transfer coefficient based on the mass, momentum and energy conservation equations applied to different unit cell regions. The main contribution of the present work is the modeling of the thermal scooping phenomenon, i.e., the heat transfer between two adjacent unit cells due to the mass flux known as scooping. The model was implemented as a structured Fortran95 code with an upwind difference scheme. The results were compared to experimental data and presented good agreement. The analysis showed that the inclusion of the scooping phenomenon into the model resulted in an averaged 8% improvement in the temperature gradient calculation and heat transfer coefficient prediction for the flowing mixture.

  11. Finite volume model for two-dimensional shallow environmental flow

    Science.gov (United States)

    Simoes, F.J.M.

    2011-01-01

    This paper presents the development of a two-dimensional, depth integrated, unsteady, free-surface model based on the shallow water equations. The development was motivated by the desire of balancing computational efficiency and accuracy by selective and conjunctive use of different numerical techniques. The base framework of the discrete model uses Godunov methods on unstructured triangular grids, but the solution technique emphasizes the use of a high-resolution Riemann solver where needed, switching to a simpler and computationally more efficient upwind finite volume technique in the smooth regions of the flow. Explicit time marching is accomplished with strong stability preserving Runge-Kutta methods, with additional acceleration techniques for steady-state computations. A simplified mass-preserving algorithm is used to deal with wet/dry fronts. Application of the model is made to several benchmark cases that show the interplay of the diverse solution techniques.

  12. The experimental study of heat transfer around molds inside a model autoclave

    Science.gov (United States)

    Ghamlouch, Taleb; Roux, Stéphane; Lefèvre, Nicolas; Bailleul, Jean-Luc; Sobotka, Vincent

    2018-05-01

    The temperature distribution within composite parts manufactured inside autoclaves plays a key role in determining the parts quality at the end of the curing cycle. Indeed, heat transfer between the parts and the surroundings inside an autoclave is strongly coupled with the flow field around the molds and can be modeled through the convective heat transfer coefficient (HTC). The aerodynamically unsuitable geometry of the molds generates complex turbulent non-uniform flows around them accompanied with the presence of dead zones. This heterogeneity can imply non-uniform convective heat transfers leading to temperature gradients inside parts that can be prejudicial. Given this fact, the purpose of this study is to perform experimental measurements in order to describe the flow field and the convective heat transfer behavior around representative industrial molds installed inside a home-made model. A key point of our model autoclave is the ease of use of non-intrusive measuring instruments: the Particle Image Velocimetry (PIV) technique and infrared imaging camera for the study of the flow field and the heat transfer coefficient distribution around the molds respectively. The experimental measurements are then compared to computational fluid dynamics (CFD) calculations performed on the computer code ANSYS Fluent 16.0®. This investigation has revealed, as expected, a non-uniform distribution of the convective heat transfer coefficient around the molds and therefore the presence of thermal gradients which can reduce the composite parts quality during an autoclave process. A good agreement has been achieved between the experimental and the numerical results leading then to the validation of the performed numerical simulations.

  13. Radiation heat transfer model in a spent fuel pool by TRACE code

    International Nuclear Information System (INIS)

    Sanchez-Saez, F.; Carlos, S.; Villanueva, J.F.; Martorell, S.

    2014-01-01

    Nuclear policies have experienced an important change since Fukushima Daiichi nuclear plant accident and the safety of spent fuels has been in the spot issue among all the safety concerns. The work presented consists of the thermohydraulic simulation of spent fuel pool behavior after a loss of coolant throughout transfer channel with loss of cooling transient is produced. The simulation is done with the TRACE code. One of the most important variables that define the behavior of the pool is cladding temperature, which evolution depends on the heat emission. In this work convection and radiation heat transfer is considered. When both heat transfer models are considered, a clear delay in achieving the maximum peak cladding temperature (1477 K) is observed compared with the simulation in which only convection heat transfer is considered. (authors)

  14. Review and assessment of the database and numerical modeling for turbine heat transfer

    Science.gov (United States)

    Gladden, H. J.; Simoneau, R. J.

    1989-01-01

    The objectives of the NASA Hot Section Technology (HOST) Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena and to assess and improve the analytical methods used to predict the flow and heat transfer in high-temperature gas turbines. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. A building-block approach was utilized and the research ranged from the study of fundamental phenomena and modeling to experiments in simulated real engine environments. Experimental research accounted for approximately 75 percent of the funding while the analytical efforts were approximately 25 percent. A healthy government/industry/university partnership, with industry providing almost half of the research, was created to advance the turbine heat transfer design technology base.

  15. Homogenization of some radiative heat transfer models: application to gas-cooled reactor cores

    International Nuclear Information System (INIS)

    El Ganaoui, K.

    2006-09-01

    In the context of homogenization theory we treat some heat transfer problems involving unusual (according to the homogenization) boundary conditions. These problems are defined in a solid periodic perforated domain where two scales (macroscopic and microscopic) are to be taken into account and describe heat transfer by conduction in the solid and by radiation on the wall of each hole. Two kinds of radiation are considered: radiation in an infinite medium (non-linear problem) and radiation in cavity with grey-diffuse walls (non-linear and non-local problem). The derived homogenized models are conduction problems with an effective conductivity which depend on the considered radiation. Thus we introduce a framework (homogenization and validation) based on mathematical justification using the two-scale convergence method and numerical validation by simulations using the computer code CAST3M. This study, performed for gas cooled reactors cores, can be extended to other perforated domains involving the considered heat transfer phenomena. (author)

  16. Heat transfer and pressure drop of a reactor fuel element model with polyzonal spiral finning

    Energy Technology Data Exchange (ETDEWEB)

    Oka, S; Becirspahic, S [Institute of Nuclear Sciences Boris Kidric, Heat Transfer Department, Vinca, Beograd (Serbia and Montenegro)

    1964-10-15

    Heat transfer and pressure drop of a reactor fuel element model with polyzonal spiral finning have been investigated. The St-number distribution over length and perimeter of he finning are given. The mean and minimum St{sub k}-number are plotted against the Re-number. The influence of the gap between two fuel elements upon heat transfer and pressure drop, in dependence on the Re-number, and the influence of the length of the fuel element on pressure drop across the gap are shown. The influence of the relative position of the splitters of two neighboring fuel elements on pressure drop and heat transfer is shown. The investigations were performed in the Re-number range 15,000 to 100,000 (author)

  17. Development and preliminary assessment of the wall condensation heat transfer models for the SPACE code

    International Nuclear Information System (INIS)

    Park, Hyun Sik; Choi, Ki Yong; Moon, Sang Ki; Kim, Jung Woo; Kim, Kyung Doo

    2009-01-01

    The wall condensation heat transfer models are developed for the SPACE code and are assessed for various condensation conditions. Both default and alternative models were selected through an extensive literature survey. For a pure steam condensation, a maximum value among the Nusselt, Chato, and Shah's correlations is used in order to consider the geometric and turbulent effects. In the presence of non-condensable gases, the Colburn-Hougen's diffusion model was used as a default model and a non-iterative condensation model proposed by No and Park was selected as an alternative model. The wall condensation heat transfer models were assessed preliminarily by using arbitrary test conditions. Both wall condensation models could simulate the heat transfer coefficients and heat fluxes in the vertical, horizontal and turbulent conditions quite reasonably for a pure steam condensation. Both the default and alternative wall condensation models were also verified for the condensation heat transfer coefficient and heat flux in the presence of noncondensable gas. However, some improvements and further detailed verification are necessary for the condensation phenomena in the presence of noncondensable gas

  18. Numerical modeling of coupled heat transfer and phase transformation for solidification of the gray cast iron

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Hosseinzadeh, Azin

    2013-01-01

    In the present study the numerical model in 2D is used to study the solidification bahavior of the gray cast iron. The conventional heat transfer is coupled with the proposed micro-model to predict the amount of different phases, i.e. total austenite (c) phase, graphite (G) and cementite (C...

  19. Mathematical modeling of heat transfer in production premises heated by gas infrared emitters

    Directory of Open Access Journals (Sweden)

    Maksimov Vyacheslav I.

    2017-01-01

    Full Text Available The results of numerical modeling of the process of free convective heat transfer in the regime of turbulent convection in a closed rectangular region heated by an infrared radiator are presented. The system of Navier-Stokes equations in the Boussinesq approximation is solved, the energy equation for the gas and the heat conduction equations for the enclosing vertical and horizontal walls. A comparative analysis of the heat transfer regimes in the considered region for different Grashof numbers is carried out. The features of the formation of heated air flows relative to the infrared emitter located at some distance from the upper horizontal boundary of the region are singled out.

  20. A forced convective heat transfer model for two-phase hydrogen systems

    International Nuclear Information System (INIS)

    Pasch, J.; Anghaie, S.

    2007-01-01

    A consistent event in the use of hydrogen in nuclear thermal propulsion is film boiling, in which the wall heat is so large that liquid can not exist at the wall. Instead, vapor interfaces with the wall and liquid flows in the core of the duct. To better understand heat transfer under these conditions, a select set of hydrogen test data from these conditions are analyzed. This paper presents the results of an extensive literature search for film boiling heat transfer models. A representative cross-section of these models is then applied to the data. The heat transfer coefficient data were found difficult to predict and highly dependent upon the flow regime. Pre-critical heat flux correlations completely fail to predict the heat transfer of inverted film boiling conditions. Pool boiling models for inverted film boiling also are inappropriate. Current force convection models for inverted film boiling, while far better than the previous two classes of models, still generate large predictive errors. It is recommended that for the inverted annular film boiling flow regime the modified equilibrium bulk Dittus-Boelter model be used. For agitated inverted annular film boiling and dispersed film boiling regimes associated with positive equilibrium qualities, the Hendricks model should be used. (A.C.)

  1. Two-dimensional strain gradient damage modeling: a variational approach

    Science.gov (United States)

    Placidi, Luca; Misra, Anil; Barchiesi, Emilio

    2018-06-01

    In this paper, we formulate a linear elastic second gradient isotropic two-dimensional continuum model accounting for irreversible damage. The failure is defined as the condition in which the damage parameter reaches 1, at least in one point of the domain. The quasi-static approximation is done, i.e., the kinetic energy is assumed to be negligible. In order to deal with dissipation, a damage dissipation term is considered in the deformation energy functional. The key goal of this paper is to apply a non-standard variational procedure to exploit the damage irreversibility argument. As a result, we derive not only the equilibrium equations but, notably, also the Karush-Kuhn-Tucker conditions. Finally, numerical simulations for exemplary problems are discussed as some constitutive parameters are varying, with the inclusion of a mesh-independence evidence. Element-free Galerkin method and moving least square shape functions have been employed.

  2. A two-dimensional mathematical model of percutaneous drug absorption

    Directory of Open Access Journals (Sweden)

    Kubota K

    2004-06-01

    Full Text Available Abstract Background When a drug is applied on the skin surface, the concentration of the drug accumulated in the skin and the amount of the drug eliminated into the blood vessel depend on the value of a parameter, r. The values of r depend on the amount of diffusion and the normalized skin-capillary clearence. It is defined as the ratio of the steady-state drug concentration at the skin-capillary boundary to that at the skin-surface in one-dimensional models. The present paper studies the effect of the parameter values, when the region of contact of the skin with the drug, is a line segment on the skin surface. Methods Though a simple one-dimensional model is often useful to describe percutaneous drug absorption, it may be better represented by multi-dimensional models. A two-dimensional mathematical model is developed for percutaneous absorption of a drug, which may be used when the diffusion of the drug in the direction parallel to the skin surface must be examined, as well as in the direction into the skin, examined in one-dimensional models. This model consists of a linear second-order parabolic equation with appropriate initial conditions and boundary conditions. These boundary conditions are of Dirichlet type, Neumann type or Robin type. A finite-difference method which maintains second-order accuracy in space along the boundary, is developed to solve the parabolic equation. Extrapolation in time is applied to improve the accuracy in time. Solution of the parabolic equation gives the concentration of the drug in the skin at a given time. Results Simulation of the numerical methods described is carried out with various values of the parameter r. The illustrations are given in the form of figures. Conclusion Based on the values of r, conclusions are drawn about (1 the flow rate of the drug, (2 the flux and the cumulative amount of drug eliminated into the receptor cell, (3 the steady-state value of the flux, (4 the time to reach the steady

  3. A heat transfer correlation based on a surface renewal model for molten core concrete interaction study

    International Nuclear Information System (INIS)

    Tourniaire, B. . E-mail bruno.tourniaire@cea.fr

    2006-01-01

    The prediction of heat transfer between corium pool and concrete basemat is of particular significance in the framework of the study of PWR's severe accident. Heat transfer directly governs the ablation velocity of concrete in case of molten core concrete interaction (MCCI) and, consequently, the time delay when the reactor cavity may fail. From a restricted hydrodynamic point of view, this issue is related to heat transfer between a heated bubbling pool and a porous wall with gas injection. Several experimental studies have been performed with simulant materials and many correlations have been provided to address this issue. The comparisons of the results of these correlations with the measurements and their extrapolation to reactor materials show that strong discrepancies between the results of these models are obtained which probably means that some phenomena are not well taken into account. The main purpose of this paper is to present an alternative heat transfer model which was originally developed for chemical engineering applications (bubble columns) by Deckwer. A part of this work is devoted to the presentation of this model, which is based on a surface renewal assumption. Comparison of the results of this model with available experimental data in different systems are presented and discussed. These comparisons clearly show that this model can be used to deal with the particular problem of MCCI. The analyses also lead to enrich the original model by taking into account the thermal resistance of the wall: a new formulation of the Deckwer's correlation is finally proposed

  4. Classical symmetries of some two-dimensional models

    International Nuclear Information System (INIS)

    Schwarz, J.H.

    1995-01-01

    It is well-known that principal chiral models and symmetric space models in two-dimensional Minkowski space have an infinite-dimensional algebra of hidden symmetries. Because of the relevance of symmetric space models to duality symmetries in string theory, the hidden symmetries of these models are explored in some detail. The string theory application requires including coupling to gravity, supersymmetrization, and quantum effects. However, as a first step, this paper only considers classical bosonic theories in flat space-time. Even though the algebra of hidden symmetries of principal chiral models is confirmed to include a Kac-Moody algebra (or a current algebra on a circle), it is argued that a better interpretation is provided by a doubled current algebra on a semi-circle (or line segment). Neither the circle nor the semi-circle bears any apparent relationship to the physical space. For symmetric space models the line segment viewpoint is shown to be essential, and special boundary conditions need to be imposed at the ends. The algebra of hidden symmetries also includes Virasoro-like generators. For both principal chiral models and symmetric space models, the hidden symmetry stress tensor is singular at the ends of the line segment. (orig.)

  5. Heat transfer modelling of two-phase bubbles swarm condensing in three - phase direct - contact condenser

    Directory of Open Access Journals (Sweden)

    Mahood Hameed B.

    2016-01-01

    Full Text Available An analytical model for the convective heat transfer coefficient and the two-phase bubble size of a three-phase direct contact heat exchanger was developed. Until the present, there has only been a theoretical model available that deals with a single two-phase bubble and a bubble train condensation in an immiscible liquid. However, to understand the actual heat transfer process within the three-phase direct contact condenser, characteristic models are required. A quasi - steady energy equation in a spherical coordinate system with a potential flow assumption and a cell model configuration has been simplified and solved analytically. The convective heat transfer in terms of Nu number has been derived, and it was found to be a function to Pe number and a system void fraction. In addition, the two-phase bubble size relates to the system void fraction and has been developed by solving a simple energy balance equation and using the derived convective heat transfer coefficient expression. Furthermore, the model correlates well with previous experimental data and theoretical results.

  6. A computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui, E-mail: rhu@anl.gov; Yu, Yiqi

    2016-11-15

    Highlights: • Developed a computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors. • Applied fully-coupled JFNK solution scheme to avoid the operator-splitting errors. • The accuracy and efficiency of the method is confirmed with a 7-assembly test problem. • The effects of different spatial discretization schemes are investigated and compared to the RANS-based CFD simulations. - Abstract: For efficient and accurate temperature predictions of sodium fast reactor structures, a 3-D full-core conjugate heat transfer modeling capability is developed for an advanced system analysis tool, SAM. The hexagon lattice core is modeled with 1-D parallel channels representing the subassembly flow, and 2-D duct walls and inter-assembly gaps. The six sides of the hexagon duct wall and near-wall coolant region are modeled separately to account for different temperatures and heat transfer between coolant flow and each side of the duct wall. The Jacobian Free Newton Krylov (JFNK) solution method is applied to solve the fluid and solid field simultaneously in a fully coupled fashion. The 3-D full-core conjugate heat transfer modeling capability in SAM has been demonstrated by a verification test problem with 7 fuel assemblies in a hexagon lattice layout. Additionally, the SAM simulation results are compared with RANS-based CFD simulations. Very good agreements have been achieved between the results of the two approaches.

  7. Modelling water evaporation during frying with an evaporation dependent heat transfer coefficient

    NARCIS (Netherlands)

    Koerten, van K.N.; Somsen, D.; Boom, R.M.; Schutyser, M.A.I.

    2017-01-01

    In this study a cylindrical crust-core frying model was developed including an evaporation rate dependent heat transfer coefficient. For this, we applied a Nusselt relation for cylindrical bodies and view the release of vapour bubbles during the frying process as a reversed fluidised bed. The

  8. An artificial compressibility CBS method for modelling heat transfer and fluid flow in heterogeneous porous materials

    CSIR Research Space (South Africa)

    Malan, AG

    2011-08-01

    Full Text Available to modelling both forced convection as well as heat transfer and fluid flow through heterogeneous saturated porous materials via an edge-based finite volume discretization scheme. A volume-averaged set of local thermal disequilibrium governing equations...

  9. Turbomachinery Heat Transfer and Loss Modeling for 3D Navier-Stokes Codes

    Science.gov (United States)

    DeWitt, Kenneth; Ameri, Ali

    2005-01-01

    This report's contents focus on making use of NASA Glenn on-site computational facilities,to develop, validate, and apply models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes to enhance the capability to compute heat transfer and losses in turbomachiney.

  10. Inter-subchannel heat transfer modeling for a subchannel analysis of liquid metal-cooled reactors

    International Nuclear Information System (INIS)

    Hae-Yong, Jeong; Kwi-Seok, Ha; Young-Min, Kwon; Yong-Bum, Lee; Dohee, Hahn

    2007-01-01

    In a subchannel approach, the temperature, pressure and velocity in a subchannel are averaged, and one representative thermal-hydraulic condition specifies the state of a subchannel. To enhance the predictability of a subchannel analysis code, it is required to model the inter-subchannel heat transfer between the adjacent subchannels as accurately as possible. One of the critical parameters which determine the thermal-hydraulic behavior of the coolant in subchannels is the heat conduction between two neighboring sub-channels. This portion of a heat transfer becomes more important in the design of an LMR (Liquid Metal-cooled Reactor) because of the high heat capacity of the liquid metal coolant. The other important part of heat transfer is the mixing of flow as a form of cross flow. Especially, the turbulent mixing caused by the eddy motion of fluid across the gap between the subchannels enhances the exchange of the momentum and the energy through the gap with no net transport of the mass. Major results of recent efforts on these modeling have been implemented in a subchannel analysis code MATRA-LMR-FB. The analysis shows that the accuracy of a subchannel analysis code is improved by enhancing the models describing the conduction heat transfer and the cross-flow mixing, especially at low flow rate. (authors)

  11. Experimental study of interfacial shear stress for an analogy model of evaporative heat transfer

    International Nuclear Information System (INIS)

    Kwon, Hyuk; Park, GoonCherl; Min, ByungJoo

    2008-01-01

    In this study, we conducted measurements of an evaporative interfacial shear stress in a passive containment cooling system (PCCS). An interfacial shear stress for a counter-current flow was measured from a momentum balance equation and the interfacial friction factor for evaporation was evaluated by using experimental data. A model for the evaporative heat transfer coefficient of a vertical evaporative flat surface was developed based on an analogy between heat and momentum transfer. It was found that the interfacial shear stress increases with the Jacob number, which incorporates the evaporation rate, and the air and water Reynolds numbers. The relationship between the evaporative heat transfer and the interfacial shear stress was evaluated by using the experimental results. This relationship was used to develop a model for an evaporative heat transfer coefficient by using an analogy between heat and mass transfer. The prediction of this model were found to be in good agreement with the experimental data obtained for evaporative heat transfer by Kang and Park. (author)

  12. Analytical modeling for heat transfer in sheared flows of nanofluids

    NARCIS (Netherlands)

    Ferrari, C.; Kaoui, B.; L'vov, V.S.; Procaccia, I.; Rudenko, O.; Thije Boonkkamp, ten J.H.M.; Toschi, F.

    2012-01-01

    We developed a model for the enhancement of the heat flux by spherical and elongated nanoparticles in sheared laminar flows of nanofluids. Besides the heat flux carried by the nanoparticles, the model accounts for the contribution of their rotation to the heat flux inside and outside the particles.

  13. A two dimensional model of undertow current over mud bed

    International Nuclear Information System (INIS)

    Mir Hammadul Azam; Abdul Aziz Ibrahim; Noraieni Hj, Mokhtar

    1996-01-01

    Coastal wave-current dynamics often causes severe erosion and this activity is more prominent within the surf zone. Turbulence generated by breaking wave is a complex phenomena and the degree of complexity increases to a higher degree when it happens over mud bed. A better understanding on wave and current is necessary to enrich the engineering hand to facilitate any coastal development work. Since physical model has certain deficiencies, such as high cost and scaling problem, the need for developing numerical models in such cases is significant. A time averaged two dimensional model has been developed to simulate the undertow over mud bed. A turbulent energy model also included which considers only the vertical variation of mixing length. Production of turbulent kinetic energy in the surf zone has been calculated from an hydraulic jump analogy. The result obtained shows an insignificant vertical variation of current. Further research is needed involving laboratory and field works to get sufficient data for comparing the model results

  14. Analytical modeling for heat transfer in sheared flows of nanofluids.

    Science.gov (United States)

    Ferrari, Claudio; Kaoui, Badr; L'vov, Victor S; Procaccia, Itamar; Rudenko, Oleksii; ten Thije Boonkkamp, J H M; Toschi, Federico

    2012-07-01

    We developed a model for the enhancement of the heat flux by spherical and elongated nanoparticles in sheared laminar flows of nanofluids. Besides the heat flux carried by the nanoparticles, the model accounts for the contribution of their rotation to the heat flux inside and outside the particles. The rotation of the nanoparticles has a twofold effect: it induces a fluid advection around the particle and it strongly influences the statistical distribution of particle orientations. These dynamical effects, which were not included in existing thermal models, are responsible for changing the thermal properties of flowing fluids as compared to quiescent fluids. The proposed model is strongly supported by extensive numerical simulations, demonstrating a potential increase of the heat flux far beyond the Maxwell-Garnett limit for the spherical nanoparticles. The road ahead, which should lead toward robust predictive models of heat flux enhancement, is discussed.

  15. Fractional calculus phenomenology in two-dimensional plasma models

    Science.gov (United States)

    Gustafson, Kyle; Del Castillo Negrete, Diego; Dorland, Bill

    2006-10-01

    Transport processes in confined plasmas for fusion experiments, such as ITER, are not well-understood at the basic level of fully nonlinear, three-dimensional kinetic physics. Turbulent transport is invoked to describe the observed levels in tokamaks, which are orders of magnitude greater than the theoretical predictions. Recent results show the ability of a non-diffusive transport model to describe numerical observations of turbulent transport. For example, resistive MHD modeling of tracer particle transport in pressure-gradient driven turbulence for a three-dimensional plasma reveals that the superdiffusive (2̂˜t^α where α> 1) radial transport in this system is described quantitatively by a fractional diffusion equation Fractional calculus is a generalization involving integro-differential operators, which naturally describe non-local behaviors. Our previous work showed the quantitative agreement of special fractional diffusion equation solutions with numerical tracer particle flows in time-dependent linearized dynamics of the Hasegawa-Mima equation (for poloidal transport in a two-dimensional cold-ion plasma). In pursuit of a fractional diffusion model for transport in a gyrokinetic plasma, we now present numerical results from tracer particle transport in the nonlinear Hasegawa-Mima equation and a planar gyrokinetic model. Finite Larmor radius effects will be discussed. D. del Castillo Negrete, et al, Phys. Rev. Lett. 94, 065003 (2005).

  16. Numerical modeling of heat transfer during hydrogen absorption in thin double-layered annular ZrCo beds

    Science.gov (United States)

    Cui, Yehui; Zeng, Xiangguo; Kou, Huaqin; Ding, Jun; Wang, Fang

    2018-06-01

    In this work a three-dimensional (3D) hydrogen absorption model was proposed to study the heat transfer behavior in thin double-layered annular ZrCo beds. Numerical simulations were performed to investigate the effects of conversion layer thickness, thermal conductivity, cooling medium and its flow velocity on the efficiency of heat transfer. Results reveal that decreasing the layer thickness and improving the thermal conductivity enhance the ability of heat transfer. Compared with nitrogen and helium, water appears to be a better medium for cooling. In order to achieve the best efficiency of heat transfer, the flow velocity needs to be maximized.

  17. Modeling of heat transfer in wall-cooled tubular reactors

    NARCIS (Netherlands)

    Koning, G.W.; Westerterp, K.R.

    1999-01-01

    In a pilot scale wall-cooled tubular reactor, temperature profiles have been measured with and without reaction. As a model reaction oxidation of carbon monoxide in air over a copper chromite catalyst has been used. The kinetics of this reaction have been determined separately in two kinetic

  18. Heat transfer modelling of first walls subject to plasma disruption

    International Nuclear Information System (INIS)

    Fillo, J.A.; Makowitz, H.

    1981-01-01

    A brief description of the plasma disruption problem and potential thermal consequences to the first wall is given. Thermal models reviewed include: a) melting of a solid with melt layer in place; b) melting of a solid with complete removal of melt (ablation); c) melting/vaporization of a solid; and d) vaporization of a solid but no phase change affecting the temperature profile

  19. Global Gauge Anomalies in Two-Dimensional Bosonic Sigma Models

    Science.gov (United States)

    Gawȩdzki, Krzysztof; Suszek, Rafał R.; Waldorf, Konrad

    2011-03-01

    We revisit the gauging of rigid symmetries in two-dimensional bosonic sigma models with a Wess-Zumino term in the action. Such a term is related to a background closed 3-form H on the target space. More exactly, the sigma-model Feynman amplitudes of classical fields are associated to a bundle gerbe with connection of curvature H over the target space. Under conditions that were unraveled more than twenty years ago, the classical amplitudes may be coupled to the topologically trivial gauge fields of the symmetry group in a way which assures infinitesimal gauge invariance. We show that the resulting gauged Wess-Zumino amplitudes may, nevertheless, exhibit global gauge anomalies that we fully classify. The general results are illustrated on the example of the WZW and the coset models of conformal field theory. The latter are shown to be inconsistent in the presence of global anomalies. We introduce a notion of equivariant gerbes that allow an anomaly-free coupling of the Wess-Zumino amplitudes to all gauge fields, including the ones in non-trivial principal bundles. Obstructions to the existence of equivariant gerbes and their classification are discussed. The choice of different equivariant structures on the same bundle gerbe gives rise to a new type of discrete-torsion ambiguities in the gauged amplitudes. An explicit construction of gerbes equivariant with respect to the adjoint symmetries over compact simply connected simple Lie groups is given.

  20. Two dimensional kicked quantum Ising model: dynamical phase transitions

    International Nuclear Information System (INIS)

    Pineda, C; Prosen, T; Villaseñor, E

    2014-01-01

    Using an efficient one and two qubit gate simulator operating on graphical processing units, we investigate ergodic properties of a quantum Ising spin 1/2 model on a two-dimensional lattice, which is periodically driven by a δ-pulsed transverse magnetic field. We consider three different dynamical properties: (i) level density, (ii) level spacing distribution of the Floquet quasienergy spectrum, and (iii) time-averaged autocorrelation function of magnetization components. Varying the parameters of the model, we found transitions between ordered (non-ergodic) and quantum chaotic (ergodic) phases, but the transitions between flat and non-flat spectral density do not correspond to transitions between ergodic and non-ergodic local observables. Even more surprisingly, we found good agreement of level spacing distribution with the Wigner surmise of random matrix theory for almost all values of parameters except where the model is essentially non-interacting, even in regions where local observables are not ergodic or where spectral density is non-flat. These findings question the versatility of the interpretation of level spacing distribution in many-body systems and stress the importance of the concept of locality. (paper)

  1. Heat transfer models for fusion blanket first walls

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1977-01-01

    In the development of magnetically confined fusion reactors, the ability to cool the first wall, i.e., the first material surface interfacing the plasma, appears to be a critical factor involved in establishing the wall load limit. In order to understand the thermal behavior of the first wall time-dependent, one-dimensional heat conduction models are reviewed with differing modes of heat extraction and cooling

  2. Experiments and numerical simulations of flow field and heat transfer coefficients inside an autoclave model

    Science.gov (United States)

    Ghamlouch, T.; Roux, S.; Bailleul, J.-L.; Lefèvre, N.; Sobotka, V.

    2017-10-01

    Today's aerospace industrial first priority is the quality improvement of the composite material parts with the reduction of the manufacturing time in order to increase their quality/cost ratio. A fabrication method that could meet these specifications especially for large parts is the autoclave curing process. In fact the autoclave molding ensures the thermal control of the composite parts during the whole curing cycle. However the geometry of the tools as well as their positioning in the autoclave induce non uniform and complex flows around composite parts. This heterogeneity implies non-uniform heat transfers which can directly impact on part quality. One of the main challenges is therefore to describe the flow field inside an autoclave as well as the convective heat transfer from the heated pressurized gas to the composite part and the mold. For this purpose, and given the technical issues associated with instrumentation and measurements in actual autoclaves, an autoclave model was designed and then manufactured based on similarity laws. This tool allows the measurement of the flow field around representative real industrial molds using the PIV technique and the characterization of the heat transfer thanks to thermal instrumentation. The experimental results are then compared with those derived from numerical simulations using a commercial RANS CFD code. This study aims at developing a semi-empirical approach for the prediction of the heat transfer coefficient around the parts and therefore predicts its thermal history during the process with a view of optimization.

  3. Modeling Loss-of-Flow Accidents and Their Impact on Radiation Heat Transfer

    Directory of Open Access Journals (Sweden)

    Jivan Khatry

    2017-01-01

    Full Text Available Long-term high payload missions necessitate the need for nuclear space propulsion. The National Aeronautics and Space Administration (NASA investigated several reactor designs from 1959 to 1973 in order to develop the Nuclear Engine for Rocket Vehicle Application (NERVA. Study of planned/unplanned transients on nuclear thermal rockets is important due to the need for long-term missions. In this work, a system model based on RELAP5 is developed to simulate loss-of-flow accidents on the Pewee I test reactor. This paper investigates the radiation heat transfer between the fuel elements and the structures around it. In addition, the impact on the core fuel element temperature and average core pressure was also investigated. The following expected results were achieved: (i greater than normal fuel element temperatures, (ii fuel element temperatures exceeding the uranium carbide melting point, and (iii average core pressure less than normal. Results show that the radiation heat transfer rate between fuel elements and cold surfaces increases with decreasing flow rate through the reactor system. However, radiation heat transfer decreases when there is a complete LOFA. When there is a complete LOFA, the peripheral coolant channels of the fuel elements handle most of the radiation heat transfer. A safety system needs to be designed to counteract the decay heat resulting from a post-LOFA reactor scram.

  4. A stydy on the heat transfer characteristics in the composite heat pipe as modeling turbine rotor

    International Nuclear Information System (INIS)

    Kwon, Sun Sok; Jang, Yeong Suc; Yoo, Byung Wook

    1993-01-01

    The purpose of this research is to study the characteristics of heat transfer in composite rotary heat pipe as modeled turbine rotating by a finite element analysis and experiment. Nu number, Re number, Pr number and dimensionless condensate layer thickness by thermal input and revolutions per minute were given as analysis factors. The comparison between calculated and experimental data showed similar tendency. Therefore the analysis method may be useful to predict the performance of composite heat pipe. The resistance on heat pipe showed the best effect of heat transfer by film condensation, by decreasing film condensation, the heat transfer rate from condenser was increased rapidly. The dimensionless condensate layer thickness according to Re number at given Pr number showed constant values, the dimensionless condensate layer thickness is proportionate to the square root of inverse of revolution number per minute. In this study Nu = A(δ(ω/ν) -1/2 Re B ) is used to the convection heat transfer coefficient and A = 0.963, B = 0.5025 were obtained as analysis predicts. (Author)

  5. Modeling transient heat transfer in nuclear waste repositories.

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  6. Challenges in land model representation of heat transfer in snow and frozen soils

    Science.gov (United States)

    Musselman, K. N.; Clark, M. P.; Nijssen, B.; Arnold, J.

    2017-12-01

    Accurate model simulations of soil thermal and moisture states are critical for realistic estimates of exchanges of energy, water, and biogeochemical fluxes at the land-atmosphere interface. In cold regions, seasonal snow-cover and organic soils form insulating barriers, modifying the heat and moisture exchange that would otherwise occur between mineral soils and the atmosphere. The thermal properties of these media are highly dynamic functions of mass, water and ice content. Land surface models vary in their representation of snow and soil processes, and thus in the treatment of insulation and heat exchange. For some models, recent development efforts have improved representation of heat transfer in cold regions, such as with multi-layer snow treatment, inclusion of soil freezing and organic soil properties, yet model deficiencies remain prevalent. We evaluate models that participated in the Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking Evaluation Project (PLUMBER) experiment for proficiency in simulating heat transfer between the soil through the snowpack to the atmosphere. Using soil observations from cold region sites and a controlled experiment with Structure for Unifying Multiple Modeling Alternatives (SUMMA), we explore the impact of snow and soil model decisions and parameter values on heat transfer model skill. Specifically, we use SUMMA to mimic the spread of behaviors exhibited by the models that participated in PLUMBER. The experiment allows us to isolate relationships between model skill and process representation. The results are aimed to better understand existing model challenges and identify potential advances for cold region models.

  7. Ferromagnetism in the two-dimensional periodic Anderson model

    International Nuclear Information System (INIS)

    Batista, C. D.; Bonca, J.; Gubernatis, J. E.

    2001-01-01

    Using the constrained-path Monte Carlo method, we studied the magnetic properties of the two-dimensional periodic Anderson model for electron fillings between 1/4 and 1/2. We also derived two effective low-energy theories to assist in interpreting the numerical results. For 1/4 filling, we found that the system can be a Mott or a charge-transfer insulator, depending on the relative values of the Coulomb interaction and the charge-transfer gap between the two noninteracting bands. The insulator may be a paramagnet or antiferromagnet. We concentrated on the effect of electron doping on these insulating phases. Upon doping we obtained a partially saturated ferromagnetic phase for low concentrations of conduction electrons. If the system were a charge-transfer insulator, we would find that the ferromagnetism is induced by the well-known Ruderman-Kittel-Kasuya-Yosida interaction. However, we found a novel correlated hopping mechanism inducing the ferromagnetism in the region where the nondoped system is a Mott insulator. Our regions of ferromagnetism spanned a much smaller doping range than suggested by recent slave boson and dynamical mean-field theory calculations, but they were consistent with that obtained by density-matrix renormalization group calculations of the one-dimensional periodic Anderson model

  8. Numerical model describing the heat transfer between combustion products and ventilation-system duct walls

    International Nuclear Information System (INIS)

    Bolstad, J.W.; Foster, R.D.; Gregory, W.S.

    1983-01-01

    A package of physical models simulating the heat transfer processes occurring between combustion gases and ducts in ventilation systems is described. The purpose of the numerical model is to predict how the combustion gas in a system heats up or cools down as it flows through the ducts in a ventilation system under fire conditions. The model treats a duct with (forced convection) combustion gases flowing on the inside and stagnant ambient air on the outside. The model is composed of five submodels of heat transfer processes along with a numerical solution procedure to evaluate them. Each of these quantities is evaluated independently using standard correlations based on experimental data. The details of the physical assumptions, simplifications, and ranges of applicability of the correlations are described. A typical application of this model to a full-scale fire test is discussed, and model predictions are compared with selected experimental data

  9. Parametric analyses of DEMO Divertor using two dimensional transient thermal hydraulic modelling

    Science.gov (United States)

    Domalapally, Phani; Di Caro, Marco

    2018-05-01

    Among the options considered for cooling of the Plasma facing components of the DEMO reactor, water cooling is a conservative option because of its high heat removal capability. In this work a two-dimensional transient thermal hydraulic code is developed to support the design of the divertor for the projected DEMO reactor with water as a coolant. The mathematical model accounts for transient 2D heat conduction in the divertor section. Temperature-dependent properties are used for more accurate analysis. Correlations for single phase flow forced convection, partially developed subcooled nucleate boiling, fully developed subcooled nucleate boiling and film boiling are used to calculate the heat transfer coefficients on the channel side considering the swirl flow, wherein different correlations found in the literature are compared against each other. Correlation for the Critical Heat Flux is used to estimate its limit for a given flow conditions. This paper then investigates the results of the parametric analysis performed, whereby flow velocity, diameter of the coolant channel, thickness of the coolant pipe, thickness of the armor material, inlet temperature and operating pressure affect the behavior of the divertor under steady or transient heat fluxes. This code will help in understanding the basic parameterś effect on the behavior of the divertor, to achieve a better design from a thermal hydraulic point of view.

  10. Two-dimensional numerical modeling of the cosmic ray storm

    International Nuclear Information System (INIS)

    Kadokura, A.; Nishida, A.

    1986-01-01

    A numerical model of the cosmic ray storm in the two-dimensional heliosphere is constructed incorporating the drift effect. We estimate the effect of a flare-associated interplanetary shock and the disturbed region behind it (characterized by enhancement in velocity and magnetic field, and decrease in mean free path) on the density and anisotropy of cosmic rays in the heliosphere. As the disturbance propagates outward, a density enhancement appears on the front side, and a density depression region is produced on the rear side. The effect of drift on the cosmic ray storm appears most clearly in the higher-latitude region. For the parallel (antiparallel) state of the solar magnetic field which corresponds to the pre(post-) 1980 period, the density in the higher-latitude region decreases (increases) before the shock arrival. The maximum density depression near the earth for the parallel state is greater than for the antiparallel state, and the energy spectrum of the density depression in percentage is softer for the parallel state than for the antiparallel state. Prior to the arrival of the shock, the phase of solar diurnal anisotropy begins to shift to the earlier hours, and its amplitude becomes greater for both polarity states. North-south anisotropy also becomes greater because of the enhanced drift for both polarity states

  11. Nonequilibrium two-dimensional Ising model with stationary uphill diffusion

    Science.gov (United States)

    Colangeli, Matteo; Giardinà, Cristian; Giberti, Claudio; Vernia, Cecilia

    2018-03-01

    Usually, in a nonequilibrium setting, a current brings mass from the highest density regions to the lowest density ones. Although rare, the opposite phenomenon (known as "uphill diffusion") has also been observed in multicomponent systems, where it appears as an artificial effect of the interaction among components. We show here that uphill diffusion can be a substantial effect, i.e., it may occur even in single component systems as a consequence of some external work. To this aim we consider the two-dimensional ferromagnetic Ising model in contact with two reservoirs that fix, at the left and the right boundaries, magnetizations of the same magnitude but of opposite signs.We provide numerical evidence that a class of nonequilibrium steady states exists in which, by tuning the reservoir magnetizations, the current in the system changes from "downhill" to "uphill". Moreover, we also show that, in such nonequilibrium setup, the current vanishes when the reservoir magnetization attains a value approaching, in the large volume limit, the magnetization of the equilibrium dynamics, thus establishing a relation between equilibrium and nonequilibrium properties.

  12. Two-dimensional model of a freely expanding plasma

    International Nuclear Information System (INIS)

    Khalid, Q.

    1975-01-01

    The free expansion of an initially confined plasma is studied by the computer experiment technique. The research is an extension to two dimensions of earlier work on the free expansion of a collisionless plasma in one dimension. In the two-dimensional rod model, developed in this research, the plasma particles, electrons and ions are modeled as infinitely long line charges or rods. The line charges move freely in two dimensions normal to their parallel axes, subject only to a self-consistent electric field. Two approximations, the grid approximation and the periodic boundary condition are made in order to reduce the computation time. In the grid approximation, the space occupied by the plasma at a given time is divided into boxes. The particles are subject to an average electric field calculated for that box assuming that the total charge within each box is located at the center of the box. However, the motion of each particle is exactly followed. The periodic boundary condition allows us to consider only one-fourth of the total number of particles of the plasma, representing the remaining three-fourths of the particles as symmetrically placed images of those whose positions are calculated. This approximation follows from the expected azimuthal symmetry of the plasma. The dynamics of the expansion are analyzed in terms of average ion and electron positions, average velocities, oscillation frequencies and relative distribution of energy between thermal, flow and electric field energies. Comparison is made with previous calculations of one-dimensional models which employed plane, spherical or cylindrical sheets as charged particles. In order to analyze the effect of the grid approximation, the model is solved for two different grid sizes and for each grid size the plasma dynamics is determined. For the initial phase of expansion, the agreement for the two grid sizes is found to be good

  13. A finite element method based microwave heat transfer modeling of frozen multi-component foods

    Science.gov (United States)

    Pitchai, Krishnamoorthy

    Microwave heating is fast and convenient, but is highly non-uniform. Non-uniform heating in microwave cooking affects not only food quality but also food safety. Most food industries develop microwavable food products based on "cook-and-look" approach. This approach is time-consuming, labor intensive and expensive and may not result in optimal food product design that assures food safety and quality. Design of microwavable food can be realized through a simulation model which describes the physical mechanisms of microwave heating in mathematical expressions. The objective of this study was to develop a microwave heat transfer model to predict spatial and temporal profiles of various heterogeneous foods such as multi-component meal (chicken nuggets and mashed potato), multi-component and multi-layered meal (lasagna), and multi-layered food with active packages (pizza) during microwave heating. A microwave heat transfer model was developed by solving electromagnetic and heat transfer equations using finite element method in commercially available COMSOL Multiphysics v4.4 software. The microwave heat transfer model included detailed geometry of the cavity, phase change, and rotation of the food on the turntable. The predicted spatial surface temperature patterns and temporal profiles were validated against the experimental temperature profiles obtained using a thermal imaging camera and fiber-optic sensors. The predicted spatial surface temperature profile of different multi-component foods was in good agreement with the corresponding experimental profiles in terms of hot and cold spot patterns. The root mean square error values of temporal profiles ranged from 5.8 °C to 26.2 °C in chicken nuggets as compared 4.3 °C to 4.7 °C in mashed potatoes. In frozen lasagna, root mean square error values at six locations ranged from 6.6 °C to 20.0 °C for 6 min of heating. A microwave heat transfer model was developed to include susceptor assisted microwave heating of a

  14. Modelling heat transfer during flow through a random packed bed of spheres

    Science.gov (United States)

    Burström, Per E. C.; Frishfelds, Vilnis; Ljung, Anna-Lena; Lundström, T. Staffan; Marjavaara, B. Daniel

    2018-04-01

    Heat transfer in a random packed bed of monosized iron ore pellets is modelled with both a discrete three-dimensional system of spheres and a continuous Computational Fluid Dynamics (CFD) model. Results show a good agreement between the two models for average values over a cross section of the bed for an even temperature profiles at the inlet. The advantage with the discrete model is that it captures local effects such as decreased heat transfer in sections with low speed. The disadvantage is that it is computationally heavy for larger systems of pellets. If averaged values are sufficient, the CFD model is an attractive alternative that is easy to couple to the physics up- and downstream the packed bed. The good agreement between the discrete and continuous model furthermore indicates that the discrete model may be used also on non-Stokian flow in the transitional region between laminar and turbulent flow, as turbulent effects show little influence of the overall heat transfer rates in the continuous model.

  15. Chiral anomaly, fermionic determinant and two dimensional models

    International Nuclear Information System (INIS)

    Rego Monteiro, M.A. do.

    1985-01-01

    The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.) [pt

  16. On some classes of two-dimensional local models in discrete two-dimensional monatomic FPU lattice with cubic and quartic potential

    International Nuclear Information System (INIS)

    Quan, Xu; Qiang, Tian

    2009-01-01

    This paper discusses the two-dimensional discrete monatomic Fermi–Pasta–Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather. (condensed matter: structure, thermal and mechanical properties)

  17. Mathematical model of heat transfer to predict distribution of hardness through the Jominy bar

    International Nuclear Information System (INIS)

    Lopez, E.; Hernandez, J. B.; Solorio, G.; Vergara, H. J.; Vazquez, O.; Garnica, F.

    2013-01-01

    The heat transfer coefficient was estimated at the bottom surface at Jominy bar end quench specimen by solution of the heat inverse conduction problem. A mathematical model based on the finite-difference method was developed to predict thermal paths and volume fraction of transformed phases. The mathematical model was codified in the commercial package Microsoft Visual Basic v. 6. The calculated thermal path and final phase distribution were used to evaluate the hardness distribution along the AISI 4140 Jominy bar. (Author)

  18. CFD modelling wall heat transfer inside a combustion chamber using ANSYS forte

    Science.gov (United States)

    Plengsa-ard, C.; Kaewbumrung, M.

    2018-01-01

    A computational model has been performed to analyze a wall heat transfer in a single cylinder, direct injection and four-stroke diesel engine. A direct integration using detailed chemistry CHEMKIN is employed in a combustion model and the Reynolds Averaged Navier Stokes (RANS) turbulence model is used to simulate the flow in the cylinder. To obtain heat flux results, a modified classical variable-density wall heat transfer model is also performed. The model is validated using experimental data from a CUMMINs engine operated with a conventional diesel combustion. One operating engine condition is simulated. Comparisons of simulated in-cylinder pressure and heat release rates with experimental data shows that the model predicts the cylinder pressure and heat release rates reasonably well. The contour plot of instantaneous temperature are presented. Also, the contours of predicted heat flux results are shown. The magnitude of peak heat fluxes as predicted by the wall heat transfer model is in the range of the typical measure values in diesel combustion.

  19. Modeling heat transfer in supercritical fluid using the lattice Boltzmann method.

    Science.gov (United States)

    Házi, Gábor; Márkus, Attila

    2008-02-01

    A lattice Boltzmann model has been developed to simulate heat transfer in supercritical fluids. A supercritical viscous fluid layer between two plates heated from the bottom has been studied. It is demonstrated that the model can be used to study heat transfer near the critical point where the so-called piston effect speeds up the transfer of heat and results in homogeneous heating in the bulk of the layer. We have also studied the onset of convection in a Rayleigh-Bénard configuration. It is shown that our model can well predict qualitatively the onset of convection near the critical point, where there is a crossover between the Rayleigh and Schwarzschild criteria.

  20. Discussion of heat transfer phenomena in fluids at supercritical pressure with the aid of CFD models

    International Nuclear Information System (INIS)

    Sharabi, Medhat; Ambrosini, Walter

    2009-01-01

    The paper discusses heat transfer enhancement and deterioration phenomena observed in experimental data for fluids at supercritical pressure. The results obtained by the application of various CFD turbulence models in the prediction of experimental data for water and carbon dioxide flowing in circular tubes are firstly described. On this basis, the capabilities of the addressed models in predicting the observed phenomena are shortly discussed. Then, the analysis focuses on further results obtained by a low-Reynolds number k - ε model addressing one of the considered experimental apparatuses by changing the operating conditions. In particular, the usual imposed heat flux boundary condition is changed to assigned wall temperature, in order to highlight effects otherwise impossible to point out. The obtained results, supported by considerations drawn from experimental information, allow comparing the trends observed for heat transfer deterioration at supercritical pressure with those typical of the thermal crisis in boiling systems, clarifying old concepts of similarity among them

  1. [Modeling of processes of heat transfer in whole-body hyperthermia].

    Science.gov (United States)

    Kinsht, D N

    2006-01-01

    The method of whole-body hyperthermia in which the body temperature for a short time reaches values up to 43-44 degrees C holds currently much promise. However, at body temperatures above 42 degrees C, the risks associated with the hemodynamic instability and the appearance of arrhythmia in the patient increase. A model of heat transfer has been created to increase the efficiency and safety of the immersion-convectional method of whole-body hyperthermia. This model takes into account changes in the skin blood flow and the dynamics of pulse rate depending on body temperature. The model of heat transfer adequately reflects processes of heating of the organism and can form a basis for the calculation of distribution of heat inside the organism.

  2. Multi-time-scale heat transfer modeling of turbid tissues exposed to short-pulsed irradiations.

    Science.gov (United States)

    Kim, Kyunghan; Guo, Zhixiong

    2007-05-01

    A combined hyperbolic radiation and conduction heat transfer model is developed to simulate multi-time-scale heat transfer in turbid tissues exposed to short-pulsed irradiations. An initial temperature response of a tissue to an ultrashort pulse irradiation is analyzed by the volume-average method in combination with the transient discrete ordinates method for modeling the ultrafast radiation heat transfer. This response is found to reach pseudo steady state within 1 ns for the considered tissues. The single pulse result is then utilized to obtain the temperature response to pulse train irradiation at the microsecond/millisecond time scales. After that, the temperature field is predicted by the hyperbolic heat conduction model which is solved by the MacCormack's scheme with error terms correction. Finally, the hyperbolic conduction is compared with the traditional parabolic heat diffusion model. It is found that the maximum local temperatures are larger in the hyperbolic prediction than the parabolic prediction. In the modeled dermis tissue, a 7% non-dimensional temperature increase is found. After about 10 thermal relaxation times, thermal waves fade away and the predictions between the hyperbolic and parabolic models are consistent.

  3. Effect of turbulence models on predicting convective heat transfer to hydrocarbon fuel at supercritical pressure

    Directory of Open Access Journals (Sweden)

    Tao Zhi

    2016-10-01

    Full Text Available A variety of turbulence models were used to perform numerical simulations of heat transfer for hydrocarbon fuel flowing upward and downward through uniformly heated vertical pipes at supercritical pressure. Inlet temperatures varied from 373 K to 663 K, with heat flux ranging from 300 kW/m2 to 550 kW/m2. Comparative analyses between predicted and experimental results were used to evaluate the ability of turbulence models to respond to variable thermophysical properties of hydrocarbon fuel at supercritical pressure. It was found that the prediction performance of turbulence models is mainly determined by the damping function, which enables them to respond differently to local flow conditions. Although prediction accuracy for experimental results varied from condition to condition, the shear stress transport (SST and launder and sharma models performed better than all other models used in the study. For very small buoyancy-influenced runs, the thermal-induced acceleration due to variations in density lead to the impairment of heat transfer occurring in the vicinity of pseudo-critical points, and heat transfer was enhanced at higher temperatures through the combined action of four thermophysical properties: density, viscosity, thermal conductivity and specific heat. For very large buoyancy-influenced runs, the thermal-induced acceleration effect was over predicted by the LS and AB models.

  4. Multiregional coupled conduction--convection model for heat transfer in an HTGR core

    International Nuclear Information System (INIS)

    Giles, G.E. Jr.; Childs, K.W.; Sanders, J.P.

    1978-01-01

    HEXEREI is a three-dimensional, coupled conduction-convection heat transfer and multichannel fluid dynamic analysis computer code with both steady-state and transient capabilities. The program was developed to provide thermal-fluid dynamic analysis of a core following the general design for high-temperature gas-cooled reactors (HTGRs); its purpose was to provide licensing evaluations for the U.S. Nuclear Regulatory Commission. In order to efficiently model the HTGR core, the nodal geometry of HEXEREI was chosen as a regular hexagonal array perpendicular to the axis of and bounded by a right circular cylinder. The cylindrical nodal geometry surrounds the hexagonal center portion of the mesh; these two different types of nodal geometries must be connected by interface nodes to complete the accurate modeling of the HTGR core. HEXEREI will automatically generate a nodal geometry that will accurately model a complex assembly of hexagonal and irregular prisms. The accuracy of the model was proven by a comparison of computed values with analytical results for steady-state and transient heat transfer problems. HEXEREI incorporates convective heat transfer to the coolant in many parallel axial flow channels. Forced and natural convection (which permits different flow directions in parallel channels) is included in the heat transfer and fluid dynamic models. HEXEREI incorporates a variety of steady-state and transient solution techniques that can be matched with a particular problem to minimize the computational time. HEXEREI was compared with a code of similar capabilities that was based on a Cartesian mesh. This code modeled only one specific core design, and the mesh spacing was closer than that generated by HEXEREI. Good agreement was obtained with the detail provided by the representations

  5. Two-dimensional QCD as a model for strong interaction

    International Nuclear Information System (INIS)

    Ellis, J.

    1977-01-01

    After an introduction to the formalism of two-dimensional QCD, its applications to various strong interaction processes are reviewed. Among the topics discussed are spectroscopy, deep inelastic cross-sections, ''hard'' processes involving hadrons, ''Regge'' behaviour, the existence of the Pomeron, and inclusive hadron cross-sections. Attempts are made to abstracts features useful for four-dimensional QCD phenomenology. (author)

  6. Analysis for Heat Transfer in a High Current-Passing Carbon Nanosphere Using Nontraditional Thermal Transport Model.

    Science.gov (United States)

    Hol C Y; Chen, B C; Tsai, Y H; Ma, C; Wen, M Y

    2015-11-01

    This paper investigates the thermal transport in hollow microscale and nanoscale spheres subject to electrical heat source using nontraditional thermal transport model. Working as supercapacitor electrodes, carbon hollow micrometer- and nanometer-sized spheres needs excellent heat transfer characteristics to maintain high specific capacitance, long cycle life, and high power density. In the nanoscale regime, the prediction of heat transfer from the traditional heat conduction equation based on Fourier's law deviates from the measured data. Consequently, the electrical heat source-induced heat transfer characteristics in hollow micrometer- and nanometer-sized spheres are studied using nontraditional thermal transport model. The effects of parameters on heat transfer in the hollow micrometer- and nanometer-sized spheres are discussed in this study. The results reveal that the heat transferred into the spherical interior, temperature and heat flux in the hollow sphere decrease with the increasing Knudsen number when the radius of sphere is comparable to the mean free path of heat carriers.

  7. A coupled model on fluid flow, heat transfer and solidification in continuous casting mold

    Directory of Open Access Journals (Sweden)

    Xu-bin Zhang

    2017-11-01

    Full Text Available Fluid flow, heat transfer and solidification of steel in the mold are so complex but crucial, determining the surface quality of the continuous casting slab. In the current study, a 2D numerical model was established by Fluent software to simulate the fluid flow, heat transfer and solidification of the steel in the mold. The VOF model and k-ε model were applied to simulate the flow field of the three phases (steel, slag and air, and solidification model was used to simulate the solidification process. The phenomena at the meniscus were also explored through interfacial tension between the liquid steel and slag as well as the mold oscillation. The model included a 20 mm thick mold to clarify the heat transfer and the temperature distribution of the mold. The simulation results show that the liquid steel flows as upper backflow and lower backflow in the mold, and that a small circulation forms at the meniscus. The liquid slag flows away from the corner at the meniscus or infiltrates into the gap between the mold and the shell with the mold oscillating at the negative strip stage or at the positive strip stage. The simulated pitch and the depth of oscillation marks approximate to the theoretical pitch and measured depth on the slab.

  8. Numerical modeling of heat transfer and pasteurizing value during thermal processing of intact egg.

    Science.gov (United States)

    Abbasnezhad, Behzad; Hamdami, Nasser; Monteau, Jean-Yves; Vatankhah, Hamed

    2016-01-01

    Thermal Pasteurization of Eggs, as a widely used nutritive food, has been simulated. A three-dimensional numerical model, computational fluid dynamics codes of heat transfer equations using heat natural convection, and conduction mechanisms, based on finite element method, was developed to study the effect of air cell size and eggshell thickness. The model, confirmed by comparing experimental and numerical results, was able to predict the temperature profiles, the slowest heating zone, and the required heating time during pasteurization of intact eggs. The results showed that the air cell acted as a heat insulator. Increasing the air cell volume resulted in decreasing of the heat transfer rate, and the increasing the required time of pasteurization (up to 14%). The findings show that the effect on thermal pasteurization of the eggshell thickness was not considerable in comparison to the air cell volume.

  9. Stochastic modelling of conjugate heat transfer in near-wall turbulence

    International Nuclear Information System (INIS)

    Pozorski, Jacek; Minier, Jean-Pierre

    2006-01-01

    The paper addresses the conjugate heat transfer in turbulent flows with temperature assumed to be a passive scalar. The Lagrangian approach is applied and the heat transfer is modelled with the use of stochastic particles. The intensity of thermal fluctuations in near-wall turbulence is determined from the scalar probability density function (PDF) with externally provided dynamical statistics. A stochastic model for the temperature field in the wall material is proposed and boundary conditions for stochastic particles at the solid-fluid interface are formulated. The heated channel flow with finite-thickness walls is considered as a validation case. Computation results for the mean temperature profiles and the variance of thermal fluctuations are presented and compared with available DNS data

  10. Stochastic modelling of conjugate heat transfer in near-wall turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Pozorski, Jacek [Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80952 Gdansk (Poland)]. E-mail: jp@imp.gda.pl; Minier, Jean-Pierre [Research and Development Division, Electricite de France, 6 quai Watier, 78400 Chatou (France)

    2006-10-15

    The paper addresses the conjugate heat transfer in turbulent flows with temperature assumed to be a passive scalar. The Lagrangian approach is applied and the heat transfer is modelled with the use of stochastic particles. The intensity of thermal fluctuations in near-wall turbulence is determined from the scalar probability density function (PDF) with externally provided dynamical statistics. A stochastic model for the temperature field in the wall material is proposed and boundary conditions for stochastic particles at the solid-fluid interface are formulated. The heated channel flow with finite-thickness walls is considered as a validation case. Computation results for the mean temperature profiles and the variance of thermal fluctuations are presented and compared with available DNS data.

  11. Discrete elastic model for two-dimensional melting.

    Science.gov (United States)

    Lansac, Yves; Glaser, Matthew A; Clark, Noel A

    2006-04-01

    We present a network model for the study of melting and liquid structure in two dimensions, the first in which the presence and energy of topological defects (dislocations and disclinations) and of geometrical defects (elemental voids) can be independently controlled. Interparticle interaction is via harmonic springs and control is achieved by Monte Carlo moves which springs can either be orientationally "flipped" between particles to generate topological defects, or can be "popped" in force-free shape, to generate geometrical defects. With the geometrical defects suppressed the transition to the liquid phase occurs via disclination unbinding, as described by the Kosterlitz-Thouless-Halperin-Nelson-Young model and found in soft potential two-dimensional (2D) systems, such as the dipole-dipole potential [H. H. von Grünberg, Phys. Rev. Lett. 93, 255703 (2004)]. By contrast, with topological defects suppressed, a disordering transition, the Glaser-Clark condensation of geometrical defects [M. A. Glaser and N. A. Clark, Adv. Chem. Phys. 83, 543 (1993); M. A. Glaser, (Springer-Verlag, Berlin, 1990), Vol. 52, p. 141], produces a state that accurately characterizes the local liquid structure and first-order melting observed in hard-potential 2D systems, such as hard disk and the Weeks-Chandler-Andersen (WCA) potentials (M. A. Glaser and co-workers, see above). Thus both the geometrical and topological defect systems play a role in melting. The present work introduces a system in which the relative roles of topological and geometrical defects and their interactions can be explored. We perform Monte Carlo simulations of this model in the isobaric-isothermal ensemble, and present the phase diagram as well as various thermodynamic, statistical, and structural quantities as a function of the relative populations of geometrical and topological defects. The model exhibits a rich phase behavior including hexagonal and square crystals, expanded crystal, dodecagonal quasicrystal

  12. Numerical analysis of thermal response tests with a groundwater flow and heat transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, J.; Therrien, R. [Departement de Geologie et de Genie Ggeologique, Universite Laval, 1065 avenue de la medecine, Quebec (Qc) G1V 0A6 (Canada); Gosselin, L. [Departement de Genie Mecanique, Universite Laval, 1065 avenue de la medecine, Quebec (Qc) G1V 0A6 (Canada); Lefebvre, R. [Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Quebec (Qc) G1K 9A9 (Canada)

    2011-01-15

    The Kelvin line-source equation, used to analyze thermal response tests, describes conductive heat transfer in a homogeneous medium with a constant temperature at infinite boundaries. The equation is based on assumptions that are valid for most ground-coupled heat pump environments with the exception of geological settings where there is significant groundwater flow, heterogeneous distribution of subsurface properties, a high geothermal gradient or significant atmospheric temperature variations. To address these specific cases, an alternative method to analyze thermal response tests was developed. The method consists in estimating parameters by reproducing the output temperature signal recorded during a test with a numerical groundwater flow and heat transfer model. The input temperature signal is specified at the entrance of the ground heat exchanger, where flow and heat transfer are computed in 2D planes representing piping and whose contributions are added to the 3D porous medium. Results obtained with this method are compared to those of the line-source model for a test performed under standard conditions. A second test conducted in waste rock at the South Dump of the Doyon Mine, where conditions deviate from the line-source assumptions, is analyzed with the numerical model. The numerical model improves the representation of the physical processes involved during a thermal response test compared to the line-source equation, without a significant increase in computational time. (author)

  13. Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat transfer problems

    Directory of Open Access Journals (Sweden)

    Yang Xiao-Jun

    2017-01-01

    Full Text Available In this paper, we address a class of the fractional derivatives of constant and variable orders for the first time. Fractional-order relaxation equations of constants and variable orders in the sense of Caputo type are modeled from mathematical view of point. The comparative results of the anomalous relaxation among the various fractional derivatives are also given. They are very efficient in description of the complex phenomenon arising in heat transfer.

  14. Temperature modulation with an esophageal heat transfer device- a pediatric swine model study

    OpenAIRE

    Kulstad, Erik B; Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Haryu, Todd; Waller, Donald; Azarafrooz, Farshid; Courtney, Daniel Mark

    2015-01-01

    Background An increasing number of conditions appear to benefit from control and modulation of temperature, but available techniques to control temperature often have limitations, particularly in smaller patients with high surface to mass ratios. We aimed to evaluate a new method of temperature modulation with an esophageal heat transfer device in a pediatric swine model, hypothesizing that clinically significant modulation in temperature (both increases and decreases of more than 1?C) would ...

  15. Heat transfer modeling in exhaust systems of high-performance two-stroke engines

    OpenAIRE

    Lujan Martinez, José Manuel; Climent Puchades, Héctor; Olmeda González, Pablo Cesar; JIMENEZ MACEDO, VICTOR DANIEL

    2014-01-01

    Heat transfer from the hot gases to the wall in exhaust systems of high-performance two-stroke engines is underestimated using steady state with fully developed flow empirical correlations. This fact is detected when comparing measured and modeled pressure pulses in different positions in the exhaust system. This can be explained taking into account that classical expressions have been validated for fully developed flows, a situation that is far from the flow behavior in reciprocating interna...

  16. Heat transfer modelling in a spent-fuel dry storage system

    International Nuclear Information System (INIS)

    Ritz, J.B.; Le Bonhomme, S.

    2001-01-01

    The purpose of this paper is to present a numerical modelling of heat transfers in a Spent-Fuel horizontal dry storage. The horizontal dry storage is an interesting issue to momentary store spent fuel containers before the final storage. From a thermal point of view, the cooling of spent fuel container by natural convection is a suitable and inexpensive process but it necessitates to well define the dimensions of the concept due to the difficulty to control the thermal environment. (author)

  17. Evaluation of empirical heat transfer models using TFG heat flux sensors

    International Nuclear Information System (INIS)

    De Cuyper, T.; Broekaert, S.; Chana, K.; De Paepe, M.; Verhelst, S.

    2017-01-01

    Thermodynamic engine cycle models are used to support the development of the internal combustion engine (ICE) in a cost and time effective manner. The sub model which describes the in-cylinder heat transfer from the working gases to the combustion chamber walls plays an important role in the accuracy of these simulation tools. The heat transfer affects the power output, engine efficiency and emissions of the engine. The most common heat transfer models in engine research are the models of Annand and Woschni. These models provide an instantaneous spatial averaged heat flux. In this research, prototype thin film gauge (TFG) heat flux sensors are used to capture the transient in-cylinder heat flux behavior within a production spark ignition (SI) engine as they are small, robust and able to capture the highly transient temperature swings. An inlet valve and two different zones of the cylinder head are instrumented with multiple TFG sensors. The heat flux traces are used to calculate the convection coefficient which includes all information of the convective heat transfer phenomena inside the combustion chamber. The implementation of TFG sensors inside the combustion chamber and the signal processing technique are discussed. The heat transfer measurements are used to analyze the spatial variation in heat flux under motored and fired operation. Spatial variation in peak heat flux was observed even under motored operation. Under fired operation the observed spatial variation is mainly driven by the flame propagation. Next, the paper evaluates the models of Annand and Woschni. These models fail to predict the total heat loss even with calibration of the models coefficients using a reference motored operating condition. The effect of engine speed and inlet pressure is analyzed under motored operation after calibration of the models. The models are able to predict the trend in peak heat flux value for a varying engine speed and inlet pressure. Next, the accuracy of the

  18. SCDAP/RELAP5 modeling of heat transfer and flow losses in lower head porous debris. Rev. 1

    International Nuclear Information System (INIS)

    Siefken, L.J.; Coryell, E.W.; Paik, S.; Kuo, H.

    1999-01-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate ma nner. Designs are described for models to calculate the flow losses and interphase drag of fluid flowing through the interstices of the porous debris, and to apply these variables in the momentum equations in the RELAP5 part of the code. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region

  19. Numerical modeling of heat transfer during hydrogen absorption in thin double-layered annular ZrCo beds

    Directory of Open Access Journals (Sweden)

    Yehui Cui

    2018-06-01

    Full Text Available In this work a three-dimensional (3D hydrogen absorption model was proposed to study the heat transfer behavior in thin double-layered annular ZrCo beds. Numerical simulations were performed to investigate the effects of conversion layer thickness, thermal conductivity, cooling medium and its flow velocity on the efficiency of heat transfer. Results reveal that decreasing the layer thickness and improving the thermal conductivity enhance the ability of heat transfer. Compared with nitrogen and helium, water appears to be a better medium for cooling. In order to achieve the best efficiency of heat transfer, the flow velocity needs to be maximized. Keywords: Hydrogen storage, ZrCo metal hydride, Heat transfer, Three-dimensional simulation

  20. Modeling of the heat transfer in bypass transitional boundary-layer flows

    Science.gov (United States)

    Simon, Frederick F.; Stephens, Craig A.

    1991-01-01

    A low Reynolds number k-epsilon turbulence model and conditioned momentum, energy and turbulence equations were used to predict bypass transition heat transfer on a flat plate in a high-disturbance environment with zero pressure gradient. The use of conditioned equations was demonstrated to be an improvement over the use of the global-time-averaged equations for the calculation of velocity profiles and turbulence intensity profiles in the transition region of a boundary layer. The approach of conditioned equations is extended to include heat transfer and a modeling of transition events is used to predict transition onset and the extent of transition on a flat plate. The events, which describe the boundary layer at the leading edge, result in boundary-layer regions consisting of: (1) the laminar, (2) pseudolaminar, (3) transitional, and (4) turbulent boundary layers. The modeled transition events were incorporated into the TEXSTAN 2-D boundary-layer code which is used to numerically predict the heat transfer. The numerical predictions in general compared well with the experimental data and revealed areas where additional experimental information is needed.

  1. Application of turbulence modeling to predict surface heat transfer in stagnation flow region of circular cylinder

    Science.gov (United States)

    Wang, Chi R.; Yeh, Frederick C.

    1987-01-01

    A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.

  2. Evaluation of Interfacial Heat Transfer Models for Flashing Flow with Two-Fluid CFD

    Directory of Open Access Journals (Sweden)

    Yixiang Liao

    2018-06-01

    Full Text Available The complexity of flashing flows is increased vastly by the interphase heat transfer as well as its coupling with mass and momentum transfers. A reliable heat transfer coefficient is the key in the modelling of such kinds of flows with the two-fluid model. An extensive literature survey on computational modelling of flashing flows has been given in previous work. The present work is aimed at giving a brief review on available theories and correlations for the estimation of interphase heat transfer coefficient, and evaluating them quantitatively based on computational fluid dynamics simulations of bubble growth in superheated liquid. The comparison of predictions for bubble growth rate obtained by using different correlations with the experimental as well as direct numerical simulation data reveals that the performance of the correlations is dependent on the Jakob number and Reynolds number. No generally applicable correlations are available. Both conduction and convection are important in cases of bubble rising and translating in stagnant liquid at high Jakob numbers. The correlations combining the analytical solution for heat diffusion and the theoretical relation for potential flow give the best agreement.

  3. Heat Transfer Measurement and Modeling in Rigid High-Temperature Reusable Surface Insulation Tiles

    Science.gov (United States)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Cunnington, George R.

    2011-01-01

    Heat transfer in rigid reusable surface insulations was investigated. Steady-state thermal conductivity measurements in a vacuum were used to determine the combined contribution of radiation and solid conduction components of heat transfer. Thermal conductivity measurements at higher pressures were then used to estimate the effective insulation characteristic length for gas conduction modeling. The thermal conductivity of the insulation can then be estimated at any temperature and pressure in any gaseous media. The methodology was validated by comparing estimated thermal conductivities with published data on a rigid high-temperature silica reusable surface insulation tile. The methodology was also applied to the alumina enhanced thermal barrier tiles. Thermal contact resistance for thermal conductivity measurements on rigid tiles was also investigated. A technique was developed to effectively eliminate thermal contact resistance on the rigid tile s cold-side surface for the thermal conductivity measurements.

  4. Comprehensive analysis of heat transfer of gold-blood nanofluid (Sisko-model) with thermal radiation

    Science.gov (United States)

    Eid, Mohamed R.; Alsaedi, Ahmed; Muhammad, Taseer; Hayat, Tasawar

    Characteristics of heat transfer of gold nanoparticles (Au-NPs) in flow past a power-law stretching surface are discussed. Sisko bio-nanofluid flow (with blood as a base fluid) in existence of non-linear thermal radiation is studied. The resulting equations system is abbreviated to model the suggested problem in non-linear PDEs. Along with initial and boundary-conditions, the equations are made non-dimensional and then resolved numerically utilizing 4th-5th order Runge-Kutta-Fehlberg (RKF45) technique with shooting integration procedure. Various flow quantities behaviors are examined for parametric consideration such as the Au-NPs volume fraction, the exponentially stretching and thermal radiation parameters. It is observed that radiation drives to shortage the thermal boundary-layer thickness and therefore resulted in better heat transfer at surface.

  5. Modelling the behaviour of corrosion products in the primary heat transfer circuits of pressurised water reactors

    International Nuclear Information System (INIS)

    Rodliffe, R.S.; Polley, M.V.; Thornton, E.W.

    1985-05-01

    The redistribution of corrosion products from the primary circuit surfaces of a water reactor can result in increased flow resistance, poorer heat transfer performance, fuel failure and radioactive contamination of circuit surfaces. The environment is generally sufficiently well controlled to ensure that the first three effects are not limiting. The last effect is of particular importance since radioactive corrosion products are major contributors to shutdown fields and since it is necessary to ensure that the radiation exposure of personnel is as low as reasonably achievable. This review focusses attention on the principles which must form the basis for any mechanistic model describing the formation, transport and deposition of radioactive corrosion products. It is relevant to all water reactors in which the primary heat transfer medium is predominantly single-phase water and in which steam is generated in a secondary circuit, i.e. including CANDU pressurised heavy water reactors, Sovient VVERs, etc. (author)

  6. A simple heat transfer model for a heat flux plate under transient conditions

    International Nuclear Information System (INIS)

    Ryan, L.; Dale, J.D.

    1985-01-01

    Heat flux plates are used for measuring rates of heat transfer through surfaces under steady state and transient conditions. Their usual construction is to have a resistive layer bounded by thermopiles and an exterior layer for protection. If properly designed and constructed a linear relationship between the thermopile generated voltage and heat flux results and calibration under steady state conditions is straight forward. Under transient conditions however the voltage output from a heat flux plate cannot instantaneously follow the heat flux because of the thermal capacitance of the plate and the resulting time lag. In order to properly interpret the output of a heat flux plate used under transient conditions a simple heat transfer model was constructed and tested. (author)

  7. An assessment of heat transfer models of water flow in helically coiled tubes based on selected experimental datasets

    International Nuclear Information System (INIS)

    Gou, Junli; Ma, Haifu; Yang, Zijiang; Shan, Jianqiang

    2017-01-01

    Highlights: •A review of heat transfer characteristics for water flow in helically coiled tubes are conducted. •An assessment of heat transfer models under different heat transfer modes in helically coiled tubes are performed. •This work could provide references for the use of the correlations and for further studies. -- Abstract: This paper presents an assessment of the heat transfer models under different heat transfer modes for water flow in helically coiled tubes based on the compiled datasets from the reviewed literatures. For single phase flow, most of the correlations of the heat transfer coefficient can fit well to the experiments. The correlations of Xin-Ebadian, Dravid and Kalb-Seader for laminar flow and those of Seban-McLaughlim, Mori-Nakayama, Xin-Ebadian, Hardik, Rogers-Mayhew, Mikaila-Poskas and El-Genk-Schriener for turbulent flow are recommended. For flow boiling heat transfer, Steiner-Taborek correlation could be utilized to predict the boiling heat transfer coefficients in helically coiled tubes for a relatively wide range of parameters. For dryout quality, the correlations of Hwang et al. and Santini et al. give relatively better predictions than others. However, more accurate correlations for flow boiling heat transfer coefficient and dryout quality need to be developed based on further investigations with wider parameter ranges in the future. The present work could provide references for the investigators for future uses of those correlations and for performing further investigations on the heat transfer characteristics of water flow in helically coiled tubes.

  8. Safety verification of radiation shielding and heat transfer for a model for dry

    International Nuclear Information System (INIS)

    Yu, Haiyan; Tang, Xiaobin; Wang, Peng; Chen, Feida; Chai, Hao; Chen, Da

    2015-01-01

    Highlights: • New type of dry spent fuel storage was designed. • MC method and FEM were used to verify the reliability of new storage. • Radiation shield and heat transfer both meet IAEA standards: 2 mSv/h, 0.1 mSv/h and 190 °C, 85 °C. • Provided possibilities for future implementation of this type of dry storage. - Abstract: The goal of this research is to develop a type of dry spent fuel storage called CHN-24 container, which could contain an equivalent load of 45 GWD/MTU of spent fuel after 10 years cooling. Basically, radiation shielding performance and safe removal of decay heat, which play important roles in the safety performance, were checked and validated using the Monte Carlo method and finite element analysis to establish the radiation dose rate calculation model and three-dimensional heat transfer model for the CHN-24 container. The dose rates at the surface of the container and at a distance of 1 m from the surface were 0.42 mSv/h and 0.06 mSv/h, respectively. These conform to the International Atomic Energy Agency (IAEA) radioactive material transportation safety standards 2 mSv/h and 0.1 mSv/h. The results shows that the CHN-24 container maintains its structural and material integrity under the condition of normal thermal steady-state heat transfer as well as in case of extreme fire as evinced by transient-state analysis. The temperature inside and on the surface of the container were 150.91 °C and 80 °C under normal storage conditions, which indicated that the design also conform to IAEA heat transfer safety standards of 190 °C and 85 °C

  9. Heat Transfer Model of a Small-Scale Waste Glass Melter with Cold Cap Layer

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Alexander; Guillen, Donna Post; Pokorny, Richard

    2016-09-01

    At the Hanford site in the state of Washington, more than 56 million gallons of radioactive waste is stored in underground tanks. The cleanup plan for this waste is vitrification at the Waste Treatment Plant (WTP), currently under construction. At the WTP, the waste will be blended with glass-forming materials and heated to 1423K, then poured into stainless steel canisters to cool and solidify. A fundamental understanding of the glass batch melting process is needed to optimize the process to reduce cost and decrease the life cycle of the cleanup effort. The cold cap layer that floats on the surface of the glass melt is the primary reaction zone for the feed-to-glass conversion. The conversion reactions include water release, melting of salts, evolution of batch gases, dissolution of quartz and the formation of molten glass. Obtaining efficient heat transfer to this region is crucial to achieving high rates of glass conversion. Computational fluid dynamics (CFD) modeling is being used to understand the heat transfer dynamics of the system and provide insight to optimize the process. A CFD model was developed to simulate the DM1200, a pilot-scale melter that has been extensively tested by the Vitreous State Laboratory (VSL). Electrodes are built into the melter to provide Joule heating to the molten glass. To promote heat transfer from the molten glass into the reactive cold cap layer, bubbling of the molten glass is used to stimulate forced convection within the melt pool. A three-phase volume of fluid approach is utilized to model the system, wherein the molten glass and cold cap regions are modeled as separate liquid phases, and the bubbling gas and plenum regions are modeled as one lumped gas phase. The modeling of the entire system with a volume of fluid model allows for the prescription of physical properties on a per-phase basis. The molten glass phase and the gas phase physical properties are obtained from previous experimental work. Finding representative

  10. On the assumption of vanishing temperature fluctuations at the wall for heat transfer modeling

    Science.gov (United States)

    Sommer, T. P.; So, R. M. C.; Zhang, H. S.

    1993-01-01

    Boundary conditions for fluctuating wall temperature are required for near-wall heat transfer modeling. However, their correct specifications for arbitrary thermal boundary conditions are not clear. The conventional approach is to assume zero fluctuating wall temperature or zero gradient for the temperature variance at the wall. These are idealized specifications and the latter condition could lead to an ill posed problem for fully-developed pipe and channel flows. In this paper, the validity and extent of the zero fluctuating wall temperature condition for heat transfer calculations is examined. The approach taken is to assume a Taylor expansion in the wall normal coordinate for the fluctuating temperature that is general enough to account for both zero and non-zero value at the wall. Turbulent conductivity is calculated from the temperature variance and its dissipation rate. Heat transfer calculations assuming both zero and non-zero fluctuating wall temperature reveal that the zero fluctuating wall temperature assumption is in general valid. The effects of non-zero fluctuating wall temperature are limited only to a very small region near the wall.

  11. About the possible options for models of convective heat transfer in closed volumes with local heating source

    Directory of Open Access Journals (Sweden)

    Maksimov Vyacheslav I.

    2015-01-01

    Full Text Available Results of mathematical modeling of convective heat transfer in air area surrounded on all sides enclosing structures, in the presence of heat source at the lower boundary of the media are presented. Solved the system of differential equations of unsteady Navier-Stokes equations with the appropriate initial and boundary conditions. The process of convective heat transfer is calculated using the models of turbulence Prandtl and Prandtl-Reichard. Takes into account the processes of heat exchange region considered with the environment. Is carried out the analysis of the dimensionless heat transfer coefficient at interfaces “air – enclosures”. The distributions average along the gas temperature range are obtained.

  12. A fractal model for heat transfer of nanofluids by convection in a pool

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Boqi, E-mail: xiaoboqi2006@126.co [Department of Physics and Electromechanical Engineering, Sanming University, 25 Jingdong Road, Sanming 365004 (China); Yu Boming [School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 (China); Wang Zongchi; Chen Lingxia [Department of Physics and Electromechanical Engineering, Sanming University, 25 Jingdong Road, Sanming 365004 (China)

    2009-11-02

    Based on the fractal distribution of nanoparticles, a fractal model for heat transfer of nanofluids is presented in the Letter. Considering heat convection between nanoparticles and liquids due to the Brownian motion of nanoparticles in fluids, the formula of calculating heat flux of nanofluids by convection is given. The proposed model is expressed as a function of the average size of nanoparticle, concentration of nanoparticle, fractal dimension of nanoparticle, temperature and properties of fluids. It is shown that the fractal model is effectual according to a good agreement between the model predictions and experimental data.

  13. A fractal model for heat transfer of nanofluids by convection in a pool

    International Nuclear Information System (INIS)

    Xiao Boqi; Yu Boming; Wang Zongchi; Chen Lingxia

    2009-01-01

    Based on the fractal distribution of nanoparticles, a fractal model for heat transfer of nanofluids is presented in the Letter. Considering heat convection between nanoparticles and liquids due to the Brownian motion of nanoparticles in fluids, the formula of calculating heat flux of nanofluids by convection is given. The proposed model is expressed as a function of the average size of nanoparticle, concentration of nanoparticle, fractal dimension of nanoparticle, temperature and properties of fluids. It is shown that the fractal model is effectual according to a good agreement between the model predictions and experimental data.

  14. Radiative heat transfer

    CERN Document Server

    Modest, Michael F

    2013-01-01

    The third edition of Radiative Heat Transfer describes the basic physics of radiation heat transfer. The book provides models, methodologies, and calculations essential in solving research problems in a variety of industries, including solar and nuclear energy, nanotechnology, biomedical, and environmental. Every chapter of Radiative Heat Transfer offers uncluttered nomenclature, numerous worked examples, and a large number of problems-many based on real world situations-making it ideal for classroom use as well as for self-study. The book's 24 chapters cover the four major areas in the field: surface properties; surface transport; properties of participating media; and transfer through participating media. Within each chapter, all analytical methods are developed in substantial detail, and a number of examples show how the developed relations may be applied to practical problems. It is an extensive solution manual for adopting instructors. Features: most complete text in the field of radiative heat transfer;...

  15. Mathematical modelling for magnetite (crude removal from primary heat transfer loop by ion-exchange resins

    Directory of Open Access Journals (Sweden)

    Zeeshan Nawaz

    2009-04-01

    Full Text Available The present research focuses to develop mathematical model for the removal of iron (magnetite by ion-exchange resin from primary heat transfer loop of process industries. This mathematical model is based on operating capacities (that’s provide more effective design as compared to loading capacity from static laboratory tests. Results showed non-steady state distribution of external Fe2+ and limitations imposed on operating conditions, these conditions includes; loading and elution cycle time, flow rate, concentration of both loading and removal, volume of resin required. Number of generalized assumptions was made under shortcut modeling techniques to overcome the gap of theoretical and actual process design.

  16. Heat transfer optimization of SCO2 porous flow based on Brinkman model

    Directory of Open Access Journals (Sweden)

    Lin David T.W.

    2016-01-01

    Full Text Available The purpose of this study is to obtain the optimal operating condition in order to find the maximum supercritical CO2 heat extraction in the enhanced geothermal system (EGS. In this study, the heat transfer model conjugated with the Brinkman model is used to evaluate the thermal behavior in the reservoir of the EGS. This numerical model is validated by experiment. Optimization is processed based on the Nelder-Mead approach. The optimal operating conditions are proposed with different pressure, porosity. This study will build the optimal platform of heat source of geothermal power plant.

  17. PORFLO - a continuum model for fluid flow, heat transfer, and mass transport in porous media. Model theory, numerical methods, and computational tests

    International Nuclear Information System (INIS)

    Runchal, A.K.; Sagar, B.; Baca, R.G.; Kline, N.W.

    1985-09-01

    Postclosure performance assessment of the proposed high-level nuclear waste repository in flood basalts at Hanford requires that the processes of fluid flow, heat transfer, and mass transport be numerically modeled at appropriate space and time scales. A suite of computer models has been developed to meet this objective. The theory of one of these models, named PORFLO, is described in this report. Also presented are a discussion of the numerical techniques in the PORFLO computer code and a few computational test cases. Three two-dimensional equations, one each for fluid flow, heat transfer, and mass transport, are numerically solved in PORFLO. The governing equations are derived from the principle of conservation of mass, momentum, and energy in a stationary control volume that is assumed to contain a heterogeneous, anisotropic porous medium. Broad discrete features can be accommodated by specifying zones with distinct properties, or these can be included by defining an equivalent porous medium. The governing equations are parabolic differential equations that are coupled through time-varying parameters. Computational tests of the model are done by comparisons of simulation results with analytic solutions, with results from other independently developed numerical models, and with available laboratory and/or field data. In this report, in addition to the theory of the model, results from three test cases are discussed. A users' manual for the computer code resulting from this model has been prepared and is available as a separate document. 37 refs., 20 figs., 15 tabs

  18. An analytical model for particulate deposition on vertical heat transfer surfaces in a boiling environment

    International Nuclear Information System (INIS)

    Keefer, R.H.; Rider, J.L.; Waldman, L.A.

    1993-01-01

    A frequent problem in heat exchange equipment is the deposition of particulates entrained in the working fluid onto heat transfer surfaces. These deposits increase the overall heat transfer resistance and can significantly degrade the performance of the heat exchanger. Accurate prediction of the deposition rate is necessary to ensure that the design and specified operating conditions of the heat exchanger adequately address the effects of this deposit layer. Although the deposition process has been studied in considerable detail, much of the work has focused on investigating individual aspects of the deposition process. This paper consolidates this previous research into a mechanistically based analytical prediction model for particulate deposition from a boiling liquid onto vertical heat transfer surfaces. Consistent with the well known Kern-Seaton approach, the model postulates net particulate accumulation to depend on the relative contributions of deposition and reentrainment processes. Mechanisms for deposition include boiling, momentum, and diffusion effects. Reentrainment is presumed to occur via an intermittent erosion process, with the energy for particle removal being supplied by turbulent flow instabilities. The contributions of these individual mechanisms are integrated to obtain a single equation for the deposit thickness versus time. The validity of the resulting model is demonstrated by comparison with data published in the open literature. Model estimates show good agreement with data obtained over a range of thermal-hydraulic conditions in both flow and pool boiling environments. The utility of the model in performing parametric studies (e.g. to determine the effect of flow velocity on net deposition) is also demonstrated. The initial success of the model suggests that it could prove useful in establishing a range of heat exchanger. operating conditions to minimize deposition

  19. Study and modeling of heat transfer during the solidification of semi-crystalline polymers

    Energy Technology Data Exchange (ETDEWEB)

    Le Goff, R.; Poutot, G.; Delaunay, D. [Laboratoire de Thermocinetique de l' ecole polytechnique de l' universite de Nantes, UMR CNRS 6607, rue Christian Pauc, BP 50609 44306 Nantes cedex 3 (France); Fulchiron, R.; Koscher, E. [Laboratoire des Materiaux Polymeres et des Biomateriaux, IMP/UMR CNRS 5627, Universite Claude Bernard, Lyon 1, 69622 Villeurbanne Cedex (France)

    2005-12-01

    Semi-crystalline polymers are materials whose behavior during their cooling is difficult to model because of the strong coupling between the crystallization, heat transfer, pressure and shear. Thanks to two original apparatus we study solidification of such a polymer without shear. Firstly the comparison between experimental results and a numerical model will permit to validate crystallization kinetic for cooling rate reachable by DSC. The second experiment makes it possible to analyze solidification for high cooling rate, corresponding to some manufacturing processes. It appears that crystallization has an influence on the thermal contact resistance. (author)

  20. Development of an apparatus to measure thermophysical properties of wind tunnel heat transfer models

    Science.gov (United States)

    Romanowski, R. F.; Steinberg, I. H.

    1974-01-01

    The apparatus and technique for measuring the thermophysical properties of models used with the phase-change paint method for obtaining wind tunnel heat transfer data are described. The method allows rapid measurement of the combined properties in a transient manner similar to an actual wind tunnel test. An effective value of the thermophysical properties can be determined which accounts for changes in thermal properties with temperature or with depth into the model surface. The apparatus was successfully tested at various heating rates between 19,000 and 124,000 watts per square meter.

  1. Thermosyphon analysis of a repository: A simplified model for vapor flow and heat transfer

    International Nuclear Information System (INIS)

    Manteufel, R.D.; Powell, M.W.

    1994-01-01

    A simplified model is developed for thermally-driven buoyant gas flow in an unsaturated repository such as that anticipated at Yucca Mountain. Based on a simplified thermosyphon model, the strength of buoyant gas flow is related to key thermal-hydraulic parameters (e.g., bulk permeability and maximum repository temperature). The effects of buoyant gas flow on vapor flow and heat transport near the repository horizon are assessed, namely: (i) the strength of buoyant flow through the repository, (ii) the effect of buoyant flow on vapor transfer, and (iii) the effect of buoyant flow on heat transfer

  2. A computational model for viscous fluid flow, heat transfer, and melting in in situ vitrification melt pools

    International Nuclear Information System (INIS)

    McHugh, P.R.; Ramshaw, J.D.

    1991-11-01

    MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs

  3. A computational model for viscous fluid flow, heat transfer, and melting in in situ vitrification melt pools

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, P.R.; Ramshaw, J.D.

    1991-11-01

    MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.

  4. Heat transfer in melt ponds with convection and radiative heating: observationally-inspired modelling

    Science.gov (United States)

    Wells, A.; Langton, T.; Rees Jones, D. W.; Moon, W.; Kim, J. H.; Wilkinson, J.

    2016-12-01

    Melt ponds have key impacts on the evolution of Arctic sea ice and summer ice melt. Small changes to the energy budget can have significant consequences, with a net heat-flux perturbation of only a few Watts per square metre sufficient to explain the thinning of sea ice over recent decades. Whilst parameterisations of melt-pond thermodynamics often assume that pond temperatures remain close to the freezing point, recent in-situ observations show more complex thermal structure with significant diurnal and synoptic variability. We here consider the energy budget of melt ponds and explore the role of internal convective heat transfer in determining the thermal structure within the pond in relatively calm conditions with low winds. We quantify the energy fluxes and temperature variability using two-dimensional direct numerical simulations of convective turbulence within a melt pond, driven by internal radiative heating and surface fluxes. Our results show that the convective flow dynamics are modulated by changes to the incoming radiative flux and sensible heat flux at the pond surface. The evolving pond surface temperature controls the outgoing longwave emissions from the pond. Hence the convective flow modifies the net energy balance of a melt pond, modulating the relative fractions of the incoming heat flux that is re-emitted to the atmosphere or transferred downward into the sea ice to drive melt.

  5. Combined heat transfer and kinetic models to predict cooking loss during heat treatment of beef meat.

    Science.gov (United States)

    Kondjoyan, Alain; Oillic, Samuel; Portanguen, Stéphane; Gros, Jean-Bernard

    2013-10-01

    A heat transfer model was used to simulate the temperature in 3 dimensions inside the meat. This model was combined with a first-order kinetic models to predict cooking losses. Identification of the parameters of the kinetic models and first validations were performed in a water bath. Afterwards, the performance of the combined model was determined in a fan-assisted oven under different air/steam conditions. Accurate knowledge of the heat transfer coefficient values and consideration of the retraction of the meat pieces are needed for the prediction of meat temperature. This is important since the temperature at the center of the product is often used to determine the cooking time. The combined model was also able to predict cooking losses from meat pieces of different sizes and subjected to different air/steam conditions. It was found that under the studied conditions, most of the water loss comes from the juice expelled by protein denaturation and contraction and not from evaporation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. An assessment of CFD-based wall heat transfer models in piston engines

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States)

    2017-04-26

    The lack of accurate submodels for in-cylinder heat transfer has been identified as a key shortcoming in developing truly predictive, physics-based computational fluid dynamics (CFD) models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Only recently have experimental methods become available that enable accurate near-wall measurements to enhance simulation capability via advancing models. Initial results show crank-angle dependent discrepancies with respect to previously used boundary-layer models of up to 100%. However, available experimental data is quite sparse (only few data points on engine walls) and limited (available measurements are those of heat flux only). Predictive submodels are needed for medium-resolution ("engineering") LES and for unsteady Reynolds-averaged simulations (URANS). Recently, some research groups have performed DNS studies on engine-relevant conditions using simple geometries. These provide very useful data for benchmarking wall heat transfer models under such conditions. Further, a number of new and more sophisticated models have also become available in the literature which account for these engine-like conditions. Some of these have been incorporated while others of a more complex nature, which include solving additional partial differential equations (PDEs) within the thin boundary layer near the wall, are underway. These models will then be tested against the available DNS/experimental data in both SI (spark-ignition) and CI (compression-ignition) engines.

  7. Development of a model to calculate the overall heat transfer coefficient of greenhouse covers

    Energy Technology Data Exchange (ETDEWEB)

    Rasheed, A.; Lee, J. W.; Lee, H.L.

    2017-07-01

    A Building Energy Simulation (BES) model based on TRNSYS, was developed to investigate the overall heat transfer coefficient (U-value) of greenhouse covers including polyethylene (PE), polycarbonate (PC), polyvinyl chloride (PVC), and horticultural glass (HG). This was used to determine the influences of inside-to-outside temperature difference, wind speed, and night sky radiation on the U-values of these materials. The model was calibrated using published values of the inside and outside convective heat transfer coefficients. Validation of the model was demonstrated by the agreement between the computed and experimental results for a single-layer PE film. The results from the BES model showed significant changes in U-value in response to variations in weather parameters and the use of single or double layer greenhouse covers. It was found that the U-value of PC, PVC, and HG was 9%, 4%, and 15% lower, respectively, than that for PE. In addition, by using double glazing a 34% reduction in heat loss was noted. For the given temperature U-value increases as wind speed increases. The slopes at the temperature differences of 20, 30, 40, and 50 °C, were approximately 0.3, 0.5, 0.7, and 0.9, respectively. The results agree with those put forward by other researchers. Hence, the presented model is reliable and can play a valuable role in future work on greenhouse energy modelling.

  8. Border-crossing model for the diffusive coarsening of two-dimensional and quasi-two-dimensional wet foams

    Science.gov (United States)

    Schimming, C. D.; Durian, D. J.

    2017-09-01

    For dry foams, the transport of gas from small high-pressure bubbles to large low-pressure bubbles is dominated by diffusion across the thin soap films separating neighboring bubbles. For wetter foams, the film areas become smaller as the Plateau borders and vertices inflate with liquid. So-called "border-blocking" models can explain some features of wet-foam coarsening based on the presumption that the inflated borders totally block the gas flux; however, this approximation dramatically fails in the wet or unjamming limit where the bubbles become close-packed spheres and coarsening proceeds even though there are no films. Here, we account for the ever-present border-crossing flux by a new length scale defined by the average gradient of gas concentration inside the borders. We compute that it is proportional to the geometric average of film and border thicknesses, and we verify this scaling by numerical solution of the diffusion equation. We similarly consider transport across inflated vertices and surface Plateau borders in quasi-two-dimensional foams. And we show how the d A /d t =K0(n -6 ) von Neumann law is modified by the appearance of terms that depend on bubble size and shape as well as the concentration gradient length scales. Finally, we use the modified von Neumann law to compute the growth rate of the average bubble area, which is not constant.

  9. Two phase modeling of nanofluid flow in existence of melting heat transfer by means of HAM

    Science.gov (United States)

    Sheikholeslami, M.; Jafaryar, M.; Bateni, K.; Ganji, D. D.

    2018-02-01

    In this article, Buongiorno Model is applied for investigation of nanofluid flow over a stretching plate in existence of magnetic field. Radiation and Melting heat transfer are taken into account. Homotopy analysis method (HAM) is selected to solve ODEs which are obtained from similarity transformation. Roles of Brownian motion, thermophoretic parameter, Hartmann number, porosity parameter, Melting parameter and Eckert number are presented graphically. Results indicate that nanofluid velocity and concentration enhance with rise of melting parameter. Nusselt number reduces with increase of porosity and melting parameters.

  10. Modeling ARRM Xenon Tank Pressurization Using 1D Thermodynamic and Heat Transfer Equations

    Science.gov (United States)

    Gilligan, Patrick; Tomsik, Thomas

    2016-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  11. Modelling mass and heat transfer in nano-based cancer hyperthermia.

    Science.gov (United States)

    Nabil, M; Decuzzi, P; Zunino, P

    2015-10-01

    We derive a sophisticated mathematical model for coupled heat and mass transport in the tumour microenvironment and we apply it to study nanoparticle delivery and hyperthermic treatment of cancer. The model has the unique ability of combining the following features: (i) realistic vasculature; (ii) coupled capillary and interstitial flow; (iii) coupled capillary and interstitial mass transfer applied to nanoparticles; and (iv) coupled capillary and interstitial heat transfer, which are the fundamental mechanisms governing nano-based hyperthermic treatment. This is an improvement with respect to previous modelling approaches, where the effect of blood perfusion on heat transfer is modelled in a spatially averaged form. We analyse the time evolution and the spatial distribution of particles and temperature in a tumour mass treated with superparamagnetic nanoparticles excited by an alternating magnetic field. By means of numerical experiments, we synthesize scaling laws that illustrate how nano-based hyperthermia depends on tumour size and vascularity. In particular, we identify two distinct mechanisms that regulate the distribution of particle and temperature, which are characterized by perfusion and diffusion, respectively.

  12. Modeling Xenon Tank Pressurization using One-Dimensional Thermodynamic and Heat Transfer Equations

    Science.gov (United States)

    Gilligan, Ryan P.; Tomsik, Thomas M.

    2017-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  13. Coupled heat transfer model and experiment study of semitransparent barrier materials in aerothermal environment

    Science.gov (United States)

    Wang, Da-Lin; Qi, Hong

    Semi-transparent materials (such as IR optical windows) are widely used for heat protection or transfer, temperature and image measurement, and safety in energy , space, military, and information technology applications. They are used, for instance, ceramic coatings for thermal barriers of spacecrafts or gas turbine blades, and thermal image observation under extreme or some dangerous environments. In this paper, the coupled conduction and radiation heat transfer model is established to describe temperature distribution of semitransparent thermal barrier medium within the aerothermal environment. In order to investigate this numerical model, one semi-transparent sample with black coating was considered, and photothermal properties were measured. At last, Finite Volume Method (FVM) was used to solve the coupled model, and the temperature responses from the sample surfaces were obtained. In addition, experiment study was also taken into account. In the present experiment, aerodynamic heat flux was simulated by one electrical heater, and two experiment cases were designed in terms of the duration of aerodynamic heating. One case is that the heater irradiates one surface of the sample continually until the other surface temperature up to constant, and the other case is that the heater works only 130 s. The surface temperature responses of these two cases were recorded. Finally, FVM model of the coupling conduction-radiation heat transfer was validated based on the experiment study with relative error less than 5%.

  14. Modeling Heat-Transfer in Animal Habitats in the Shuttle Orbiter Middeck

    Science.gov (United States)

    Eodice, Michael T.; Sun, Sid (Technical Monitor)

    2000-01-01

    A mathematical model has been developed to evaluate the heat transfer characteristics of an Animal Enclosure Module (AEM) in the microgravity environment. The AEM is a spaceflight habitat that provides life support for up to six rodents in the Space Shuttle Middeck. Currently, temperatures within the AEM are recorded in real time using a solid state data recorder; however, the data are only available for analysis post-flight. This temperature information is useful for characterizing the thermal environment of the AEM for researchers, but is unavailable during flight operations. Because animal health in microgravity is directly linked to the thermal environment, the ability to predict internal AEM temperatures is extremely useful to life science researchers. NASA flight crews typically carry hand-held temperature measurement devices which allow them to provide ground researchers with near real time readings of AEM inlet temperature; however, higher priority operations limit the frequency at which these measurements can be made and subsequently downlinked. The mathematical model developed allows users to predict internal cage volume temperatures based on knowledge of the ambient air temperature entering the AEM air intake ports. Additionally, an average convective heat transfer coefficient for the AEM has been determined to provide engineers with the requisite information to facilitate future design improvements and product upgrades. The model has been validated using empirical data from a series of three Space Shuttle missions.

  15. Tetrahedral node for Transmission-Line Modeling (TLM) applied to Bio-heat Transfer.

    Science.gov (United States)

    Milan, Hugo F M; Gebremedhin, Kifle G

    2016-12-01

    Transmission-Line Modeling (TLM) is a numerical method used to solve complex and time-domain bio-heat transfer problems. In TLM, parallelepipeds are used to discretize three-dimensional problems. The drawback in using parallelepiped shapes is that instead of refining only the domain of interest, a large additional domain would also have to be refined, which results in increased computational time and memory space. In this paper, we developed a tetrahedral node for TLM applied to bio-heat transfer that does not have the drawback associated with the parallelepiped node. The model includes heat source, blood perfusion, boundary conditions and initial conditions. The boundary conditions could be adiabatic, temperature, heat flux, or convection. The predicted temperature and heat flux were compared against results from an analytical solution and the results agreed within 2% for a mesh size of 69,941 nodes and a time step of 5ms. The method was further validated against published results of maximum skin-surface temperature difference in a breast with and without tumor and the results agreed within 6%. The published results were obtained from a model that used parallelepiped TLM node. An open source software, TLMBHT, was written using the theory developed herein and is available for download free-of-charge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Optimization of heat saving in buildings using unsteady heat transfer model

    Directory of Open Access Journals (Sweden)

    Dedinec Aleksandra

    2015-01-01

    Full Text Available Reducing the energy consumption growth rate is increasingly becoming one of the main challenges for ensuring sustainable development, particularly in the buildings as the largest end-use sector in many countries. Along this line, the aim of this paper is to analyse the possibilities for energy savings in the construction of new buildings and reconstruction of the existing ones developing a tool that, in terms of the available heating technologies and insulation, provides answer to the problem of optimal cost effective energy consumption. The tool is composed of an unsteady heat transfer model which is incorporated into a cost-effective energy saving optimization. The unsteady heat transfer model uses annual hourly meteorological data, chosen as typical for the last ten-year period, as well as thermo physical features of the layers of the building walls. The model is tested for the typical conditions in the city of Skopje, Macedonia. The results show that the most cost effective heating technology for the given conditions is the wood fired stove, followed by the inverter air-conditioner. The centralized district heating and the pellet fired stoves are the next options. The least cost effective option is the panel that uses electricity. In this paper, the optimal insulation thickness is presented for each type of heating technology.

  17. A heat transfer model for evaporating micro-channel coalescing bubble flow

    International Nuclear Information System (INIS)

    Consolini, L.; Thome, J.R.

    2009-01-01

    The current study presents a one-dimensional model of confined coalescing bubble flow for the prediction of micro-channel convective boiling heat transfer. Coalescing bubble flow has recently been identified as one of the characteristic flow patterns to be found in micro-scale systems, occurring at intermediate vapor qualities between the isolated bubble and the fully annular regimes. As two or more bubbles bond under the action of inertia and surface tension, the passage frequency of the bubble liquid slug pair declines, with a redistribution of liquid among the remaining flow structures. Assuming heat transfer to occur only by conduction through the thin evaporating liquid film surrounding individual bubbles, the present model includes a simplified description of the dynamics of the thin film evaporation process that takes into account the added mass transfer by breakup of the bridging liquid slugs. The new model has been confronted against experimental data taken within the coalescing bubble flow mode that have been identified by a diabatic micro-scale flow pattern map. The comparisons for three different fluids (R-134a, R-236fa and R-245fa) gave encouraging results with 83% of the database predicted within a ± 30% error band. (author)

  18. A simplified heat transfer model for predicting temperature change inside food package kept in cold room.

    Science.gov (United States)

    Raval, A H; Solanki, S C; Yadav, Rajvir

    2013-04-01

    A simple analytical heat flow model for a closed rectangular food package containing fruits or vegetables is proposed for predicting time temperature distribution during transient cooling in a controlled environment cold room. It is based on the assumption of only conductive heat transfer inside a closed food package with effective thermal properties, and convective and radiative heat transfer at the outside of the package. The effective thermal conductivity of the food package is determined by evaluating its effective thermal resistance to heat conduction in the packages. Food packages both as an infinite slab and a finite slab have been investigated. The finite slab solution has been obtained as the product of three infinite slab solutions describe in ASHRAE guide and data book. Time temperature variation has been determined and is presented graphically. The cooling rate and the half cooling time were also obtained. These predicted values, are compared with the experimentally measured values for both the finite and infinite closed packages containing oranges. An excellent agreement between them validated the simple proposed model.

  19. Kalman Filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry.

    Science.gov (United States)

    Zhang, Yuxin; Chen, Shuo; Deng, Kexin; Chen, Bingyao; Wei, Xing; Yang, Jiafei; Wang, Shi; Ying, Kui

    2017-01-01

    To develop a self-adaptive and fast thermometry method by combining the original hybrid magnetic resonance thermometry method and the bio heat transfer equation (BHTE) model. The proposed Kalman filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry, abbreviated as KalBHT hybrid method, introduced the BHTE model to synthesize a window on the regularization term of the hybrid algorithm, which leads to a self-adaptive regularization both spatially and temporally with change of temperature. Further, to decrease the sensitivity to accuracy of the BHTE model, Kalman filter is utilized to update the window at each iteration time. To investigate the effect of the proposed model, computer heating simulation, phantom microwave heating experiment and dynamic in-vivo model validation of liver and thoracic tumor were conducted in this study. The heating simulation indicates that the KalBHT hybrid algorithm achieves more accurate results without adjusting λ to a proper value in comparison to the hybrid algorithm. The results of the phantom heating experiment illustrate that the proposed model is able to follow temperature changes in the presence of motion and the temperature estimated also shows less noise in the background and surrounding the hot spot. The dynamic in-vivo model validation with heating simulation demonstrates that the proposed model has a higher convergence rate, more robustness to susceptibility problem surrounding the hot spot and more accuracy of temperature estimation. In the healthy liver experiment with heating simulation, the RMSE of the hot spot of the proposed model is reduced to about 50% compared to the RMSE of the original hybrid model and the convergence time becomes only about one fifth of the hybrid model. The proposed model is able to improve the accuracy of the original hybrid algorithm and accelerate the convergence rate of MR temperature estimation.

  20. Anisotropy and buoyancy in nuclear turbulent heat transfer - critical assessment and needs for modelling

    International Nuclear Information System (INIS)

    Groetzbach, G.

    2007-12-01

    Computational Fluid Dynamics (CFD) programs have a wide application field in reactor technique, like to diverse flow types which have to be considered in Accelerator Driven nuclear reactor Systems (ADS). This requires turbulence models for the momentum and heat transfer with very different capabilities. The physical demands on the models are elaborated for selected transport mechanisms, the status quo of the modelling is discussed, and it is investigated which capabilities are offered by the market dominating commercial CFD codes. One topic of the discussion is on the already earlier achieved knowledge on the distinct anisotropy of the turbulent momentum and heat transport near walls. It is shown that this is relevant in channel flows with inhomogeneous wall conditions. The related consequences for the turbulence modelling are discussed. The second topic is the turbulent heat transport in buoyancy influenced flows. The only turbulence model for heat transfer which is available in the large commercial CFD-codes is based on the Reynolds analogy. This means, it is required to prescribe suitable turbulent Prandtl number distributions. There exist many correlations for channel flows, but they are seldom used in practical applications. Here, a correlation is deduced for the local turbulent Prandtl number which accounts for many parameters, like wall distance, molecular Prandtl number of the fluid, wall roughness and local shear stress, thermal wall condition, etc. so that it can be applied to most ADS typical heat transporting channel flows. The spatial dependence is discussed. It is shown that it is essential for reliable temperature calculations to get accurate turbulent Prandtl numbers especially near walls. If thermal wall functions are applied, then the correlation for the turbulent Prandtl number has to be consistent with the wall functions to avoid unphysical discretisation dependences. In using Direct Numerical Simulation (DNS) data for horizontal fluid layers it

  1. Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics

    Science.gov (United States)

    Wang, Chen; Ren, Jie; Cao, Jianshu

    2017-02-01

    To study the full counting statistics of quantum heat transfer in a driven nonequilibrium spin-boson model, we develop a generalized nonequilibrium polaron-transformed Redfield equation with an auxiliary counting field. This enables us to study the impact of qubit-bath coupling ranging from weak to strong regimes. Without external modulations, we observe maximal values of both steady-state heat flux and noise power in moderate coupling regimes, below which we find that these two transport quantities are enhanced by the finite-qubit-energy bias. With external modulations, the geometric-phase-induced heat flux shows a monotonic decrease upon increasing the qubit-bath coupling at zero qubit energy bias (without bias). While under the finite-qubit-energy bias (with bias), the geometric-phase-induced heat flux exhibits an interesting reversal behavior in the strong coupling regime. Our results unify the seemingly contradictory results in weak and strong qubit-bath coupling regimes and provide detailed dissections for the quantum fluctuation of nonequilibrium heat transfer.

  2. Post-CHF heat transfer: a non-equilibrium, relaxation model

    International Nuclear Information System (INIS)

    Jones, O.C. Jr.; Zuber, N.

    1977-01-01

    Existing phenomenological models of heat transfer in the non-equilibrium, liquid-deficient, dispersed flow regime can sometimes predict the thermal behavior fairly well but are quite complex, requiring coupled simultaneous differential equations to describe the axial gradients of mass and energy along with those of droplet acceleration and size. In addition, empirical relations are required to express the droplet breakup and increased effective heat transfer due to holdup. This report describes the development of a different approach to the problem. It is shown that the non-equilibrium component of the total energy can be expressed as a first order, inhomogeneous relaxation equation in terms of one variable coefficient termed the Superheat Relaxation number. A demonstration is provided to show that this relaxation number can be correlated using local variables in such a manner to allow the single non-equilibrium equation to accurately calculate the effects of mass velocity and heat flux along with tube length, diameter, and critical quality for equilibrium qualities from 0.13 to over 3.0

  3. Bio-heat transfer model of electroconvulsive therapy: Effect of biological properties on induced temperature variation.

    Science.gov (United States)

    de Oliveira, Marilia M; Wen, Paul; Ahfock, Tony

    2016-08-01

    A realistic human head model consisting of six tissue layers was modelled to investigate the behavior of temperature profile and magnitude when applying electroconvulsive therapy stimulation and different biological properties. The thermo-electrical model was constructed with the use of bio-heat transfer equation and Laplace equation. Three different electrode montages were analyzed as well as the influence of blood perfusion, metabolic heat and electric and thermal conductivity in the scalp. Also, the effect of including the fat layer was investigated. The results showed that temperature increase is inversely proportional to electrical and thermal conductivity increase. Furthermore, the inclusion of blood perfusion slightly drops the peak temperature. Finally, the inclusion of fat is highly recommended in order to acquire more realistic results from the thermo-electrical models.

  4. A modeling approach for district heating systems with focus on transient heat transfer in pipe networks

    DEFF Research Database (Denmark)

    Mohammadi, Soma; Bojesen, Carsten

    2015-01-01

    the temperature in DH systems. The main focus is on modeling transient heat transfer in pipe networks regarding the time delays between the heat supply unit and the consumers, the heat loss in the pipe networks and the consumers’ dynamic heat loads. A pseudo-dynamic approach is adopted and also the implicit...... district heating networks [DHN] characteristics. This paper is presenting a new developed model, which reflects the thermo-dynamic behavior of DHN. It is designed for tree network topologies. The purpose of the model is to serve as a basis for applying a variety of scenarios towards lowering...... finite element method is applied to simulate transient temperature changes in pipe networks. The model is calculating time series data related to supply temperature to the DHN from heat production units, heat loads and return temperature related to each consumer to calculate dynamic temperature changes...

  5. Prediction of the fuel failure following a large LOCA using modified gap heat transfer model

    International Nuclear Information System (INIS)

    Lee, K.M.; Lee, N.H.; Huh, J.Y.; Seo, S.K.; Choi, J.H.

    1995-01-01

    The modified Ross and Stoute gap heat transfer model in the ELOCA.Mk5 code for CANDU safety analysis is based on a simplified thermal deformation model. A review on a series of recent experiments reveals that fuel pellets crack, relocate, and are eccentrically positioned within the sheath rather than solid concentric cylinders. In this study, more realistic offset crap conductance model is implemented in the code to estimate the fuel failure thresholds usincr the transient conditions of a 100% Reactor Outlet Header (ROH) break LOCA. Based on the offset gap conductance model, the total release of I-131 from the failed fuel elements in the core is reduced from 3876 TBq to 3283 TBq to increase margin for dose limit. (author)

  6. Heat transfer: Pittsburgh 1987

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.

    1987-01-01

    This book contains papers divided among the following sections: Process Heat Transfer; Thermal Hydraulics and Phase Change Phenomena; Analysis of Multicomponent Multiphase Flow and Heat Transfer; Heat Transfer in Advanced Reactors; General Heat Transfer in Solar Energy; Numerical Simulation of Multiphase Flow and Heat Transfer; High Temperature Heat Transfer; Heat Transfer Aspects of Severe Reactor Accidents; Hazardous Waste On-Site Disposal; and General Papers

  7. Calibration of a Numerical Model for Heat Transfer and Fluid Flow in an Extruder

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Nielsen, Jakob Skov

    2016-01-01

    This paper discusses experiments performed in order to validate simulations on a fused deposition modelling (FDM) extruder. The nozzle has been simulated in terms of heat transfer and fluid flow. In order to calibrate and validate these simulations, experiments were performed giving a significant...... look into the physical behaviour of the nozzle, heating and cooling systems. Experiments on the model were performed at different sub-mm diameters of the extruder. Physical parameters of the model – especially temperature dependent parameters – were set into analytical relationships in order to receive...... dynamical parameters. This research sets the foundation for further research within melted extrusion based additive manufacturing. The heating process of the extruder will be described and a note on the material feeding will be given....

  8. A multi-phase ferrofluid flow model with equation of state for thermomagnetic pumping and heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Aursand, Eskil, E-mail: eskil.aursand@sintef.no; Gjennestad, Magnus Aa.; Yngve Lervåg, Karl; Lund, Halvor

    2016-03-15

    A one-dimensional multi-phase flow model for thermomagnetically pumped ferrofluid with heat transfer is proposed. The thermodynamic model is a combination of a simplified particle model and thermodynamic equations of state for the base fluid. The magnetization model is based on statistical mechanics, taking into account non-uniform particle size distributions. An implementation of the proposed model is validated against experiments from the literature, and found to give good predictions for the thermomagnetic pumping performance. However, the results reveal a very large sensitivity to uncertainties in heat transfer coefficient predictions. - Highlights: • A multi-phase flow model for thermomagnetically pumped ferrofluid is proposed. • An implementation is validated against experiments from the literature. • Predicted thermomagnetic pumping effect agrees with experiments. • However, a very large sensitivity to heat transfer coefficient is revealed.

  9. A Heat Transfer Model for a Stratified Corium-Metal Pool in the Lower Plenum of a Nuclear Reactor

    International Nuclear Information System (INIS)

    Sohal, M.S.; Siefken, L.J.

    1999-01-01

    This preliminary design report describes a model for heat transfer in a corium-metal stratified pool. It was decided to make use of the existing COUPLE model. Currently available correlations for natural convection heat transfer in a pool with and without internal heat generation were obtained. The appropriate correlations will be incorporated in the existing COUPLE model. Heat conduction and solidification modeling will be done with existing algorithms in the COUPLE. Assessment of the new model will be done by simple energy conservation problems

  10. Fluidized-Bed Heat Transfer Modeling for the Development of Particle/Supercritical-CO2 Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Martinek, Janna G [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-03

    Concentrating solar power (CSP) technology is moving toward high-temperature and high-performance design. One technology approach is to explore high-temperature heat-transfer fluids and storage, integrated with a high-efficiency power cycle such as the supercritical carbon dioxide (s-CO2) Brayton power cycle. The s-CO2 Brayton power system has great potential to enable the future CSP system to achieve high solar-to-electricity conversion efficiency and to reduce the cost of power generation. Solid particles have been proposed as a possible high-temperature heat-transfer medium that is inexpensive and stable at high temperatures above 1,000 degrees C. The particle/heat exchanger provides a connection between the particles and s-CO2 fluid in the emerging s-CO2 power cycles in order to meet CSP power-cycle performance targets of 50% thermal-to-electric efficiency, and dry cooling at an ambient temperature of 40 degrees C. The development goals for a particle/s-CO2 heat exchanger are to heat s-CO2 to =720 degrees C and to use direct thermal storage with low-cost, stable solid particles. This paper presents heat-transfer modeling to inform the particle/s-CO2 heat-exchanger design and assess design tradeoffs. The heat-transfer process was modeled based on a particle/s-CO2 counterflow configuration. Empirical heat-transfer correlations for the fluidized bed and s-CO2 were used in calculating the heat-transfer area and optimizing the tube layout. A 2-D computational fluid-dynamics simulation was applied for particle distribution and fluidization characterization. The operating conditions were studied from the heat-transfer analysis, and cost was estimated from the sizing of the heat exchanger. The paper shows the path in achieving the cost and performance objectives for a heat-exchanger design.

  11. Model for definition of heat transfer coefficient in an annular two-phase flow

    International Nuclear Information System (INIS)

    Khun, J.

    1976-01-01

    Near-wall heat exchange in a vertical tube at high vapor velocity in a two-phase vapor and liquid flow is investigated. The flow divides inside the tube into a near-wall liquid film and a vapor nucleus containing liquid droplets, with the boundaries being uniform. The liquid film thickness determines the main resistance during heat transfer between the wall and vapor nucleus. The theoretical model presented is verified in water vaporization experiments, the R12 cooling agent and certain hydrocarbons. The loss of friction pressure is determined by the Lockart-Martinelli method. The approximately universal Carman velocity profile is used to evaluate the velocity in film, and basing on this, film thickness is determined. The parameter ranges were: Resub(vap)=10 4 -3x10 6 , Resub(liq.)=0.9-10. The theoretical model ensures good correlation with the experiment

  12. Modeling of Aerobrake Ballute Stagnation Point Temperature and Heat Transfer to Inflation Gas

    Science.gov (United States)

    Bahrami, Parviz A.

    2012-01-01

    A trailing Ballute drag device concept for spacecraft aerocapture is considered. A thermal model for calculation of the Ballute membrane temperature and the inflation gas temperature is developed. An algorithm capturing the most salient features of the concept is implemented. In conjunction with the thermal model, trajectory calculations for two candidate missions, Titan Explorer and Neptune Orbiter missions, are used to estimate the stagnation point temperature and the inflation gas temperature. Radiation from both sides of the membrane at the stagnation point and conduction to the inflating gas is included. The results showed that the radiation from the membrane and to a much lesser extent conduction to the inflating gas, are likely to be the controlling heat transfer mechanisms and that the increase in gas temperature due to aerodynamic heating is of secondary importance.

  13. Modeling of Heat Transfer and Ablation of Refractory Material Due to Rocket Plume Impingement

    Science.gov (United States)

    Harris, Michael F.; Vu, Bruce T.

    2012-01-01

    CR Tech's Thermal Desktop-SINDA/FLUINT software was used in the thermal analysis of a flame deflector design for Launch Complex 39B at Kennedy Space Center, Florida. The analysis of the flame deflector takes into account heat transfer due to plume impingement from expected vehicles to be launched at KSC. The heat flux from the plume was computed using computational fluid dynamics provided by Ames Research Center in Moffet Field, California. The results from the CFD solutions were mapped onto a 3-D Thermal Desktop model of the flame deflector using the boundary condition mapping capabilities in Thermal Desktop. The ablation subroutine in SINDA/FLUINT was then used to model the ablation of the refractory material.

  14. Semi-empirical model for heat transfer coefficient in liquid metal turbulent flow

    International Nuclear Information System (INIS)

    Fernandez y Fernandez, E.; Carajilescov, P.

    1982-01-01

    The heat transfer by forced convection in a metal liquid turbulent flow for circular ducts is analyzed. An analogy between the momentum and heat in the wall surface, is determined, aiming to determine an expression for heat transfer coefficient in function of the friction coefficient. (E.G.) [pt

  15. A Two-Dimensional Multiphysics Coupling Model of a Middle and Low Temperature Solar Receiver/Reactor for Methanol Decomposition

    Directory of Open Access Journals (Sweden)

    Yanjuan Wang

    2017-10-01

    Full Text Available Abstract: In this paper, the endothermic methanol decomposition reaction is used to obtain syngas by transforming middle and low temperature solar energy into chemical energy. A two-dimensional multiphysics coupling model of a middle and low temperature of 150~300 °C solar receiver/reactor was developed, which couples momentum equation in porous catalyst bed, the governing mass conservation with chemical reaction, and energy conservation incorporating conduction/convection/radiation heat transfer. The complex thermochemical conversion process of the middle and low temperature solar receiver/reactor (MLTSRR system was analyzed. The numerical finite element method (FEM model was validated by comparing it with the experimental data and a good agreement was obtained, revealing that the numerical FEM model is reliable. The characteristics of chemical reaction, coupled heat transfer, the components of reaction products, and the temperature fields in the receiver/reactor were also revealed and discussed. The effects of the annulus vacuum space and the glass tube on the performance of the solar receiver/reactor were further studied. It was revealed that when the direct normal irradiation increases from 200 W/m2 to 800 W/m2, the theoretical efficiency of solar energy transformed into chemical energy can reach 0.14–0.75. When the methanol feeding rate is 13 kg/h, the solar flux increases from 500 W/m2 to 1000 W/m2, methanol conversion can fall by 6.8–8.9% with air in the annulus, and methanol conversion can decrease by 21.8–28.9% when the glass is removed from the receiver/reactor.

  16. Towards a Two-Dimensional Framework for User Models

    NARCIS (Netherlands)

    Vrieze, P.T. de; Bommel, P. van; Klok, J.; Weide, Th.P. van der; Gensel, Jérôme; Sèdes, Florence; Martin, Hervé

    2003-01-01

    The focus of this paper is user modeling in the context of personalisation of information systems. Such a personalisation is essential to give users the feeling that the system is easily accessible. The way this adaptive personalization works is very dependent on the adaptation model that is

  17. Experimental validation of a heat transfer model for concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Sendhil Kumar, Natarajan; Matty, Katz; Rita, Ebner; Simon, Weingaertner; Ortrun, Aßländer; Alex, Cole; Roland, Wertz; Tim, Giesen; Tapas Kumar, Mallick

    2012-01-01

    In this paper, a three dimensional heat transfer model is presented for a novel concentrating photovoltaic design for Active Solar Panel Initiative System (ASPIS). The concentration ratio of two systems (early and integrated prototype) are 5× and 10× respectively, designed for roof-top integrated Photovoltaic systems. ANSYS 12.1, CFX package was effectively used to predict the temperatures of the components of the both ASPIS systems at various boundary conditions. The predicted component temperatures of an early prototype were compared with experimental results of ASPIS, which were carried out in Solecta – Israel and at the Austrian Institute of Technology (AIT) – Austria. It was observed that the solar cell and lens temperature prediction shows good agreement with Solecta measurements. The minimum and maximum deviation of 3.8% and 17.9% were observed between numerical and Solecta measurements and the maximum deviations of 16.9% were observed between modeling and AIT measurements. Thus, the developed validated thermal model enables to predict the component temperatures for concentrating photovoltaic systems. - Highlights: ► Experimentally validated heat transfer model for concentrating Photovoltaic system developed. ► Predictions of solar cell temperatures for parallactic tracking CPV system for roof integration. ► The ASPIS module contains 2 mm wide 216 solar cells manufactured based on SATURN technology. ► A solar cell temperature of 44 °C was predicted for solar radiation intensity was 1000 W/m 2 and ambient temperature was 20 °C. ► Average deviation was 6% and enabled to predict temperature of any CPV system.

  18. Infrared problems in two-dimensional generalized σ-models

    International Nuclear Information System (INIS)

    Curci, G.; Paffuti, G.

    1989-01-01

    We study the correlations of the energy-momentum tensor for classically conformally invariant generalized σ-models in the Wilson operator-product-expansion approach. We find that these correlations are, in general, infrared divergent. The absence of infrared divergences is obtained, as one can expect, for σ-models on a group manifold or for σ-models with a string-like interpretation. Moreover, the infrared divergences spoil the naive scaling arguments used by Zamolodchikov in the demonstration of the C-theorem. (orig.)

  19. Investigation of heat transfer and fluid flow in activating TIG welding by numerical modeling

    International Nuclear Information System (INIS)

    Wang, Xinxin; Huang, Jiankang; Huang, Yong; Fan, Ding; Guo, Yanning

    2017-01-01

    Highlights: • The heat input to the anode and subsequent thermal efficiency is almost equal for TIG and A-TIG welding. • Dominant effect heat convection and reversion of molten metal flow in weld pool causes significant increase in weld penetration. - Abstract: Heat transfer and fluid flow of arc plasma and weld pool in tungsten inert gas (TIG) welding and activated flux tungsten inert gas (A-TIG) welding of SUS 304 stainless steel are investigated comparatively though a 3D unified model. The model differs from the previous ones in that it considers the arc length more realistic for welding production. Tungsten electrode, anode (work piece) and arc plasma are all included. The effects of buoyance, plasma drag force, Lorentz force and Marangoni force on the weld pool flow are taken into account. By solving the conservation equations of mass, momentum, energy as well as Maxwell equations, the distributions of temperature and velocity of arc plasma and weld pool are obtained for TIG and A-TIG welding. The heat flux, current density and shear stress at the weld pool are presented. Dimensionless numbers are employed to compare the relative importance of the driven forces and that of convection and conduction in heat transfer of the weld pool. It is demonstrated that there is no significant difference in the heat flux at the weld pool, and total heat input to the anode and thermal efficiency is almost equal for TIG and A-TIG welding. The current density and the heat flux at the weld pool are more concentrated in more realistic welding condition. As a result, both of the temperature of the weld pool for TIG welding and A-TIG welding increases, while the latter is more significant. Marangoni force ranges from zero to 100 Pa and dominant the weld pool flow. Compared with the conventional TIG welding, the reversion of the Marangoni force results in inward flow and thus causes inward heat convection in weld pool of A-TIG welding. Heat convection was the main mechanism of

  20. Two-Dimensional Model of Scrolled Packings of Molecular Nanoribbons

    Science.gov (United States)

    Savin, A. V.; Mazo, M. A.

    2018-04-01

    A simplified model of the in-plane molecular chain, allowing the description of folded and scrolled packings of molecular nanoribbons of different structures, is proposed. Using this model, possible steady states of single-layer nanoribbons scrolls of graphene, graphane, fluorographene, and fluorographane (graphene hydrogenated on the one side and fluorinated on the other side) are obtained. Their stability is demonstrated and their energy is calculated as a function of the nanoribbon length. It is shown that the scrolled packing is the most energetically favorable nanoribbon conformation at long lengths. The existences of scrolled packings for fluorographene nanoribbons and the existence of two different scroll types corresponding to left- and right-hand Archimedean spirals for fluorographane nanoribbons in the chain model are shown for the first time. The simplicity of the proposed model makes it possible to consider the dynamics of scrolls of rather long molecular nanoribbons at long enough time intervals.

  1. On the two-dimensional model of quantum Regge gravity

    International Nuclear Information System (INIS)

    Khatsimovskij, V.M.

    1991-01-01

    The Ashtekar-like variables are introduced in the Regge calculus. A simplified model of the resulting theory is quantized canonically. The consequences related to quantization of Regge areas are obtained. 10 refs

  2. Hierarchical modeling of heat transfer in silicon-based electronic devices

    Science.gov (United States)

    Goicochea Pineda, Javier V.

    In this work a methodology for the hierarchical modeling of heat transfer in silicon-based electronic devices is presented. The methodology includes three steps to integrate the different scales involved in the thermal analysis of these devices. The steps correspond to: (i) the estimation of input parameters and thermal properties required to solve the Boltzmann transport equation (BTE) for phonons by means of molecular dynamics (MD) simulations, (ii) the quantum correction of some of the properties estimated with MD to make them suitable for BTE and (iii) the numerical solution of the BTE using the lattice Boltzmann method (LBM) under the single mode relaxation time approximation subject to different initial and boundary conditions, including non-linear dispersion relations and different polarizations in the [100] direction. Each step of the methodology is validated with numerical, analytical or experimental reported data. In the first step of the methodology, properties such as, phonon relaxation times, dispersion relations, group and phase velocities and specific heat are obtained with MD at of 300 and 1000 K (i.e. molecular temperatures). The estimation of the properties considers the anhamonic nature of the potential energy function, including the thermal expansion of the crystal. Both effects are found to modify the dispersion relations with temperature. The behavior of the phonon relaxation times for each mode (i.e. longitudinal and transverse, acoustic and optical phonons) is identified using power functions. The exponents of the acoustic modes are agree with those predicted theoretically perturbation theory at high temperatures, while those for the optical modes are higher. All properties estimated with MD are validated with values for the thermal conductivity obtained from the Green-Kubo method. It is found that the relative contribution of acoustic modes to the overall thermal conductivity is approximately 90% at both temperatures. In the second step

  3. Recent numerical results on the two dimensional Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Parola, A.; Sorella, S.; Baroni, S.; Car, R.; Parrinello, M.; Tosatti, E. (SISSA, Trieste (Italy))

    1989-12-01

    A new method for simulating strongly correlated fermionic systems, has been applied to the study of the ground state properties of the 2D Hubbard model at various fillings. Comparison has been made with exact diagonalizations in the 4 x 4 lattices where very good agreement has been verified in all the correlation functions which have been studied: charge, magnetization and momentum distribution. (orig.).

  4. Two-dimensional stochastic modeling of membrane fouling

    NARCIS (Netherlands)

    Wessling, Matthias

    2001-01-01

    The phenomenon of fouling of microfiltration membranes by much smaller particles such as proteins is described by a new developed simulation algorithm based on diffusion limited aggregation simulation techniques. The model specifies the membrane morphology explicitly and allows to (a) characterize

  5. Recent numerical results on the two dimensional Hubbard model

    International Nuclear Information System (INIS)

    Parola, A.; Sorella, S.; Baroni, S.; Car, R.; Parrinello, M.; Tosatti, E.

    1989-01-01

    This paper reports a new method for simulating strongly correlated fermionic systems applied to the study of the ground state properties of the 2D Hubbard model at various fillings. Comparison has been made with exact diagonalizations in the 4 x 4 lattices where very good agreement has been verified in all the correlation functions which have been studied: charge, magnetization and momentum distribution

  6. Modeling of heat transfer in a horizontal heat-generating layer by an effective diffusivity approach

    International Nuclear Information System (INIS)

    Cheung, F.B.; Shiah, S.W.

    1994-01-01

    The concept of effective diffusivity is employed to model various processes of heat transfer in a volumetrically heated fluid layer subjected to different initial and boundary conditions. The approach, which involves the solution of only heat diffusion equations, is found to give rather accurate predictions of the transient response of an initially stagnant fluid layer to a step input of power as well as the developing and decaying nature of the flow following a step change in the internal Rayleigh number from one state of steady convection to another. The approach is also found to be applicable to various flow regions of a heat-generating fluid layer, and is not limited to the case in which the entire layer is in turbulent motion. The simplicity and accuracy of the method are clearly illustrated in the analysis. Validity of the effective diffusivity approach is demonstrated by comparing the predicted results with corresponding experimental data

  7. New two-dimensional integrable quantum models from SUSY intertwining

    International Nuclear Information System (INIS)

    Ioffe, M V; Negro, J; Nieto, L M; Nishnianidze, D N

    2006-01-01

    Supersymmetrical intertwining relations of second order in the derivatives are investigated for the case of supercharges with deformed hyperbolic metric g ik = diag(1, - a 2 ). Several classes of particular solutions of these relations are found. The corresponding Hamiltonians do not allow the conventional separation of variables, but they commute with symmetry operators of fourth order in momenta. For some of these models the specific SUSY procedure of separation of variables is applied

  8. TWO-DIMENSIONAL MODELLING OF ACCIDENTAL FLOOD WAVES PROPAGATION

    OpenAIRE

    Lorand Catalin STOENESCU

    2011-01-01

    The study presented in this article describes a modern modeling methodology of the propagation of accidental flood waves in case a dam break; this methodology is applied in Romania for the first time for the pilot project „Breaking scenarios of Poiana Uzului dam”. The calculation programs used help us obtain a bidimensional calculation (2D) of the propagation of flood waves, taking into consideration the diminishing of the flood wave on a normal direction to the main direction; this diminishi...

  9. An application of the modified turbulent model for analyzing supercritical heat transfer phenomena in a nuclear system

    International Nuclear Information System (INIS)

    Seo, Kyoung-Woo; Park, Cheon-Tae; Seo, Jae-Kwang; Kim, Moo-Hwan; Corradini, Michael L.

    2007-01-01

    For understanding the characteristic of a supercritical fluid heat transfer, we proposed a new parameter, a global Froude number (Fr), dependent on the heat and mass flux, to determine under what conditions the buoyancy effect is dominant and the reduction of the heat transfer rate. In the region of the global Fr>0.01, variable property effects, which may occur at a high heat flux, and buoyancy effects, which could occur at a low mass flux, make the existing standard turbulent model such as the standard wall function not suitably accurate to calculate the heat transfer in supercritical fluid, needed for a reactor thermal-hydraulics simulation and design. Therefore, the turbulence model, especially near the wall, the wall function for a momentum, applicable for a range of supercritical fluid conditions was modified. The modified models deal with a buoyancy, acceleration, and the variable property effect for supercritical conditions

  10. Temperature modulation with an esophageal heat transfer device - a pediatric swine model study.

    Science.gov (United States)

    Kulstad, Erik B; Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Haryu, Todd; Waller, Donald; Azarafrooz, Farshid; Courtney, Daniel Mark

    2015-01-01

    An increasing number of conditions appear to benefit from control and modulation of temperature, but available techniques to control temperature often have limitations, particularly in smaller patients with high surface to mass ratios. We aimed to evaluate a new method of temperature modulation with an esophageal heat transfer device in a pediatric swine model, hypothesizing that clinically significant modulation in temperature (both increases and decreases of more than 1°C) would be possible. Three female Yorkshire swine averaging 23 kg were anesthetized with inhalational isoflurane prior to placement of the esophageal device, which was powered by a commercially available heat exchanger. Swine temperature was measured rectally and cooling and warming were performed by selecting the appropriate external heat exchanger mode. Temperature was recorded over time in order to calculate rates of temperature change. Histopathology of esophageal tissue was performed after study completion. Average swine baseline temperature was 38.3°C. Swine #1 exhibited a cooling rate of 3.5°C/hr; however, passive cooling may have contributed to this rate. External warming blankets maintained thermal equilibrium in swine #2 and #3, demonstrating maximum temperature decrease of 1.7°C/hr. Warming rates averaged 0.29°C/hr. Histopathologic analysis of esophageal tissue showed no adverse effects. An esophageal heat transfer device successfully modulated the temperature in a pediatric swine model. This approach to temperature modulation may offer a useful new modality to control temperature in conditions warranting temperature management (such as maintenance of normothermia, induction of hypothermia, fever control, or malignant hyperthermia).

  11. On the renormalization group flow in two dimensional superconformal models

    International Nuclear Information System (INIS)

    Ahn, Changrim; Stanishkov, Marian

    2014-01-01

    We extend the results on the RG flow in the next to leading order to the case of the supersymmetric minimal models SM p for p≫1. We explain how to compute the NS and Ramond fields conformal blocks in the leading order in 1/p and follow the renormalization scheme proposed in [1]. As a result we obtained the anomalous dimensions of certain NS and Ramond fields. It turns out that the linear combination expressing the infrared limit of these fields in term of the IR theory SM p−2 is exactly the same as those of the nonsupersymmetric minimal theory

  12. Lattice vortices in the two-dimensional Abelian Higgs model

    International Nuclear Information System (INIS)

    Grunewald, S.; Ilgenfritz, E.-M.; Mueller-Preussker, M.

    1986-01-01

    Multi-vortices of the 2D Abelian Higgs model on a finite lattice by relaxation of Monte-Carlo equilibrium configurations are generated and identified. The lattice vortices have action and a uniquely defined topological charge corresponding to the continuum ones. They exhibit the expected exponential decay behaviour and satisfy approximately the classical equations of motion. Vortex-antivortex superpositions are seen as well, supporting the dilute gas picture. Single vortices finally relax into ''dislocations'' and dissapear. A background charge construction turns out nearly insensitive with respect to dislocations

  13. Block Pickard Models for Two-Dimensional Constraints

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Justesen, Jørn

    2009-01-01

    In Pickard random fields (PRF), the probabilities of finite configurations and the entropy of the field can be calculated explicitly, but only very simple structures can be incorporated into such a field. Given two Markov chains describing a boundary, an algorithm is presented which determines...... for the domino tiling constraint represented by a quaternary alphabet. PRF models are also presented for higher order constraints, including the no isolated bits (n.i.b.) constraint, and a minimum distance 3 constraint by defining super symbols on blocks of binary symbols....

  14. TWO-DIMENSIONAL MODELLING OF ACCIDENTAL FLOOD WAVES PROPAGATION

    Directory of Open Access Journals (Sweden)

    Lorand Catalin STOENESCU

    2011-05-01

    Full Text Available The study presented in this article describes a modern modeling methodology of the propagation of accidental flood waves in case a dam break; this methodology is applied in Romania for the first time for the pilot project „Breaking scenarios of Poiana Uzului dam”. The calculation programs used help us obtain a bidimensional calculation (2D of the propagation of flood waves, taking into consideration the diminishing of the flood wave on a normal direction to the main direction; this diminishing of the flood wave is important in the case of sinuous courses of water or with urban settlements very close to the minor river bed. In the case of Poiana Uzului dam, 2 scenarios were simulated with the help of Ph.D. Eng. Dan Stematiu, plausible scenarios but with very little chances of actually producing. The results were presented as animations with flooded surfaces at certain time steps successively.

  15. Mesh-free Hamiltonian implementation of two dimensional Darwin model

    Science.gov (United States)

    Siddi, Lorenzo; Lapenta, Giovanni; Gibbon, Paul

    2017-08-01

    A new approach to Darwin or magnetoinductive plasma simulation is presented, which combines a mesh-free field solver with a robust time-integration scheme avoiding numerical divergence errors in the solenoidal field components. The mesh-free formulation employs an efficient parallel Barnes-Hut tree algorithm to speed up the computation of fields summed directly from the particles, avoiding the necessity of divergence cleaning procedures typically required by particle-in-cell methods. The time-integration scheme employs a Hamiltonian formulation of the Lorentz force, circumventing the development of violent numerical instabilities associated with time differentiation of the vector potential. It is shown that a semi-implicit scheme converges rapidly and is robust to further numerical instabilities which can develop from a dominant contribution of the vector potential to the canonical momenta. The model is validated by various static and dynamic benchmark tests, including a simulation of the Weibel-like filamentation instability in beam-plasma interactions.

  16. Some issues in two-dimensional modeling of tritium transport

    International Nuclear Information System (INIS)

    Tam, S.W.

    1991-01-01

    Among the major processes leading to tritium transport through Li ceramic breeders the percolation of gaseous tritium species through the connected porosity remains the lest amenable to a satisfactory treatment. The combination of diffusion and reaction through the convoluted transport pathways prescribed by the system of pores poses a formidable challenge. The key issue is to make the fundamental connection between the tortuousity of the medium with the transport processes in terms of only basic parameters that are amenable to fundamental understanding and experimental determinations. This fundamental challenges is met within the following approaches. The technique that we have employed is a random network percolation model. Local transport in each individual pore channel is described by a set of convection-diffusion-reaction equations. Long range transport is described by a matrix technique. The heterogeneous structure of the medium is accounted for via Monte Carlo methods. In this way the approach requires as inputs only physical-chemical parameters that are amenable to clear basic understanding and experimental determination. In the sense it provides predictive capability. The approach has been applied to an analysis of the concept of tritium residence time which is associated with the first passage time, a direct output of our analysis. In the next stage of our work the tool that we have developed would be employed to investigate the issues of vary large networks, realistic microstructural information and the effect of varying pressure gradient along the purge channels. We have demonstrated that the approach that has been adopted can be utilized to analyze in a very illuminating way the underlying issues of the concept of residence time. We believe that the present approach is ideally suited to tackle these very important yet difficult issues

  17. Approximate model for calculating overall heat transfer between overlying immiscible liquid layers with bubble-induced liquid entrainment

    International Nuclear Information System (INIS)

    Greene, G.A.; Schwarz, C.E.

    1982-01-01

    In the event a commercial power reactor is subjected to a Class 9 accident resulting in gross core melting and reactor pressure vessel penetration, it has been shown that the containment integrity may subsequently be threatened by steam overpressurization, combustible gas reactions, and basemat penetration. A major contributor to these events would be the interaction of molten core debris with the structural concrete. Modeling of core-concrete interactions involves many poorly understood and complicated heat transfer phenomena for which there exists a sparse data base. One of these phenomena, which has been shown to have significant impact upon code calculations of core-concrete interactions, is the rate of heat transfer between overlying immiscible layers of core oxides and molten metals whose interface is agitated by transverse gas flow. A mathematical model is developed to analyze this heat transfer

  18. Classification of integrable two-dimensional models of relativistic field theory by means of computer

    International Nuclear Information System (INIS)

    Getmanov, B.S.

    1988-01-01

    The results of classification of two-dimensional relativistic field models (1) spinor; (2) essentially-nonlinear scalar) possessing higher conservation laws using the system of symbolic computer calculations are presented shortly

  19. On Regularity Criteria for the Two-Dimensional Generalized Liquid Crystal Model

    Directory of Open Access Journals (Sweden)

    Yanan Wang

    2014-01-01

    Full Text Available We establish the regularity criteria for the two-dimensional generalized liquid crystal model. It turns out that the global existence results satisfy our regularity criteria naturally.

  20. Process-level model evaluation: a snow and heat transfer metric

    Science.gov (United States)

    Slater, Andrew G.; Lawrence, David M.; Koven, Charles D.

    2017-04-01

    Land models require evaluation in order to understand results and guide future development. Examining functional relationships between model variables can provide insight into the ability of models to capture fundamental processes and aid in minimizing uncertainties or deficiencies in model forcing. This study quantifies the proficiency of land models to appropriately transfer heat from the soil through a snowpack to the atmosphere during the cooling season (Northern Hemisphere: October-March). Using the basic physics of heat diffusion, we investigate the relationship between seasonal amplitudes of soil versus air temperatures due to insulation from seasonal snow. Observations demonstrate the anticipated exponential relationship of attenuated soil temperature amplitude with increasing snow depth and indicate that the marginal influence of snow insulation diminishes beyond an effective snow depth of about 50 cm. A snow and heat transfer metric (SHTM) is developed to quantify model skill compared to observations. Land models within the CMIP5 experiment vary widely in SHTM scores, and deficiencies can often be traced to model structural weaknesses. The SHTM value for individual models is stable over 150 years of climate, 1850-2005, indicating that the metric is insensitive to climate forcing and can be used to evaluate each model's representation of the insulation process.

  1. Transition Heat Transfer Modeling Based on the Characteristics of Turbulent Spots

    Science.gov (United States)

    Simon, Fred; Boyle, Robert

    1998-01-01

    While turbulence models are being developed which show promise for simulating the transition region on a turbine blade or vane, it is believed that the best approach with the greatest potential for practical use is the use of models which incorporate the physics of turbulent spots present in the transition region. This type of modeling results in the prediction of transition region intermittency which when incorporated in turbulence models give a good to excellent prediction of the transition region heat transfer. Some models are presented which show how turbulent spot characteristics and behavior can be employed to predict the effect of pressure gradient and Mach number on the transition region. The models predict the spot formation rate which is needed, in addition to the transition onset location, in the Narasimha concentrated breakdown intermittency equation. A simplified approach is taken for modeling turbulent spot growth and interaction in the transition region which utilizes the turbulent spot variables governing transition length and spot generation rate. The models are expressed in terms of spot spreading angle, dimensionless spot velocity, dimensionless spot area, disturbance frequency and Mach number. The models are used in conjunction with a computer code to predict the effects of pressure gradient and Mach number on the transition region and compared with VKI experimental turbine data.

  2. Use of CATHENA to model calandria-tube/moderator heat transfer after pressure-tube/calandria-tube ballooning contact

    International Nuclear Information System (INIS)

    Fan, H.Z.; Bilanovic, Z.; Nitheanandan, T.

    2004-01-01

    A study was performed to assess the effect of the calandria-tube/moderator heat transfer after pressure-tube/calandria tube ballooning contact using CATHENA. Results of this study indicated that the analytical tool, CATHENA, can be applied for pool boiling heat transfer on the external surface of a large diameter tube, such as the calandria tube used in CANDU reactors. The methodology in such CANDU-generic study can be used to simulate the tube surface with multiple boiling regimes and to assess the benefits of closely coupling thermalhydraulics modelling and fuel/fuel channel behaviour modelling. CATHENA (Canadian Algorithm for THErmalhydraulic Network Analysis) is a one-dimensional, two-fluid thermalhydraulic simulation code designed by AECL to analyse two-phase flow and heat transfer in piping networks. The detailed heat transfer package in CATHENA allows a connection to be established from the multiple solid surfaces of tubes to the surrounding large amount of moderator water, which acts as a heat sink during a postulated loss of coolant event. The generalized heat transfer package within CATHENA allows the tube walls to be divided into several layers in the radial direction and several sectors in the circumferential direction, to account for heat transfer conditions in these two directions. The CATHENA code with the generalized heat transfer package is capable of capturing key pool-boiling phenomena such as nucleate, transition and film boiling heat transfer as well as an ability to model the rewet phenomenon to some extent. A CATHENA input model was generated and used in simulations of selected contact boiling experiment test cases. The transient wall temperatures have been calculated in different portions of the calandria tube. By using this model an adequate agreement was achieved between CATHENA calculation and experimental measurement The CATHENA code enables one to investigate the transient and local thermal-mechanical behaviour of the calandria tube

  3. Evaluation of gap heat transfer model in ELESTRES for CANDU fuel element under normal operating conditions

    International Nuclear Information System (INIS)

    Lee, Kang Moon; Ohn, Myung Ryong; Im, Hong Sik; Choi, Jong Hoh; Hwang, Soon Taek

    1995-01-01

    The gap conductance between the fuel and the sheath depends strongly on the gap width and has a significant influence on the amount of initial stored energy. The modified Ross and Stoute gap conductance model in ELESTRES is based on a simplified thermal deformation model for steady-state fuel temperature calculations. A review on a series of experiments reveals that fuel pellets crack, relocate, and are eccentrically positioned within the sheath rather than solid concentric cylinders. In this paper, the two recently-proposed gap conductance models (offset gap model and relocated gap model) are described and are applied to calculate the fuel-sheath gap conductances under experimental conditions and normal operating conditions in CANDU reactors. The good agreement between the experimentally-inferred and calculated gap conductance values demonstrates that the modified Ross and Stoute model was implemented correctly in ELESTRES. The predictions of the modified Ross and Stoute model provide conservative values for gap heat transfer and fuel surface temperature compared to the offset gap and relocated gap models for a limiting power envelope. 13 figs., 3 tabs., 16 refs. (Author)

  4. Heat transfer and fire spread

    Science.gov (United States)

    Hal E. Anderson

    1969-01-01

    Experimental testing of a mathematical model showed that radiant heat transfer accounted for no more than 40% of total heat flux required to maintain rate of spread. A reasonable prediction of spread was possible by assuming a horizontal convective heat transfer coefficient when certain fuel and flame characteristics were known. Fuel particle size had a linear relation...

  5. [Mathematical apparatus of the circuit theory in modeling of heat transfer upon extreme heating of an organism].

    Science.gov (United States)

    2010-01-01

    The mathematical model of heat transfer in whole-body hyperthermia, developed earlier by the author, has been refined using the mathematical apparatus of the circuit theory. The model can be used to calculate the temperature of each organ, which can increase the efficacy and safety of the immersion-convection technique of whole-body hyperthermia.

  6. Heat transfer from rough surfaces

    International Nuclear Information System (INIS)

    Dalle Donne, M.

    1977-01-01

    Artificial roughness is often used in nuclear reactors to improve the thermal performance of the fuel elements. Although these are made up of clusters of rods, the experiments to measure the heat transfer and friction coefficients of roughness are performed with single rods contained in smooth tubes. This work illustrated a new transformation method to obtain data applicable to reactor fuel elements from these annulus experiments. New experimental friction data are presented for ten rods, each with a different artificial roughness made up of two-dimensional rectangular ribs. For each rod four tests have been performed, each in a different outer smooth tube. For two of these rods, each for two different outer tubes, heat transfer data are also given. The friction and heat transfer data, transformed with the present method, are correlated by simple equations. In the paper, these equations are applied to a case typical for a Gas Cooled Fast Reactor fuel element. (orig.) [de

  7. HPTAM, a two-dimensional Heat Pipe Transient Analysis Model, including the startup from a frozen state

    Science.gov (United States)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    1995-01-01

    A two-dimensional Heat Pipe Transient Analysis Model, 'HPTAM,' was developed to simulate the transient operation of fully-thawed heat pipes and the startup of heat pipes from a frozen state. The model incorporates: (a) sublimation and resolidification of working fluid; (b) melting and freezing of the working fluid in the porous wick; (c) evaporation of thawed working fluid and condensation as a thin liquid film on a frozen substrate; (d) free-molecule, transition, and continuum vapor flow regimes, using the Dusty Gas Model; (e) liquid flow and heat transfer in the porous wick; and (f) thermal and hydrodynamic couplings of phases at their respective interfaces. HPTAM predicts the radius of curvature of the liquid meniscus at the liquid-vapor interface and the radial location of the working fluid level (liquid or solid) in the wick. It also includes the transverse momentum jump condition (capillary relationship of Pascal) at the liquid-vapor interface and geometrically relates the radius of curvature of the liquid meniscus to the volume fraction of vapor in the wick. The present model predicts the capillary limit and partial liquid recess (dryout) in the evaporator wick, and incorporates a liquid pooling submodel, which simulates accumulation of the excess liquid in the vapor core at the condenser end.

  8. Heat transfer models for predicting Salmonella enteritidis in shell eggs through supply chain distribution.

    Science.gov (United States)

    Almonacid, S; Simpson, R; Teixeira, A

    2007-11-01

    Egg and egg preparations are important vehicles for Salmonella enteritidis infections. The influence of time-temperature becomes important when the presence of this organism is found in commercial shell eggs. A computer-aided mathematical model was validated to estimate surface and interior temperature of shell eggs under variable ambient and refrigerated storage temperature. A risk assessment of S. enteritidis based on the use of this model, coupled with S. enteritidis kinetics, has already been reported in a companion paper published earlier in JFS. The model considered the actual geometry and composition of shell eggs and was solved by numerical techniques (finite differences and finite elements). Parameters of interest such as local (h) and global (U) heat transfer coefficient, thermal conductivity, and apparent volumetric specific heat were estimated by an inverse procedure from experimental temperature measurement. In order to assess the error in predicting microbial population growth, theoretical and experimental temperatures were applied to a S. enteritidis growth model taken from the literature. Errors between values of microbial population growth calculated from model predicted compared with experimentally measured temperatures were satisfactorily low: 1.1% and 0.8% for the finite difference and finite element model, respectively.

  9. Dynamic Modeling and Control of Distributed Heat Transfer Mechanisms: Application to a Membrane Distillation Module

    KAUST Repository

    Eleiwi, Fadi

    2015-12-01

    Sustainable desalination technologies are the smart solution for producing fresh water and preserve the environment and energy by using sustainable renewable energy sources. Membrane distillation (MD) is an emerging technology which can be driven by renewable energy. It is an innovative method for desalinating seawater and brackish water with high quality production, and the gratitude is to its interesting potentials. MD includes a transfer of water vapor from a feed solution to a permeate solution through a micro-porous hydrophobic membrane, rejecting other non-volatile constituents present in the influent water. The process is driven by the temperature difference along the membrane boundaries. Different control applications and supervision techniques would improve the performance and the efficiency of the MD process, however controlling the MD process requires comprehensive mathematical model for the distributed heat transfer mechanisms inside the process. Our objective is to propose a dynamic mathematical model that accounts for the time evolution of the involved heat transfer mechanisms in the process, and to be capable of hosting intermittent energy supplies, besides managing the production rate of the process, and optimizing its energy consumption. Therefore, we propose the 2D Advection-Diffusion Equation model to account for the heat diffusion and the heat convection mechanisms inside the process. Furthermore, experimental validations have proved high agreement between model simulations and experiments with less than 5% relative error. Enhancing the MD production is an anticipated goal, therefore, two main control strategies are proposed. Consequently, we propose a nonlinear controller for a semi-discretized version of the dynamic model to achieve an asymptotic tracking for a desired temperature difference. Similarly, an observer-based feedback control is used to track sufficient temperature difference for better productivity. The second control strategy

  10. Mechanistic modeling of heat transfer process governing pressure tube-to-calandria tube contact and fuel channel failure

    International Nuclear Information System (INIS)

    Luxat, J.C.

    2002-01-01

    Heat transfer behaviour and phenomena associated with ballooning deformation of a pressure tube into contact with a calandria tube have been analyzed and mechanistic models have been developed to describe the heat transfer and thermal-mechanical processes. These mechanistic models are applied to analyze experiments performed in various COG funded Contact Boiling Test series. Particular attention is given in the modeling to characterization of the conditions for which fuel channel failure may occur. Mechanistic models describing the governing heat transfer and thermal-mechanical processes are presented. The technical basis for characterizing parameters of the models from the general heat transfer literature is described. The validity of the models is demonstrated by comparison with experimental data. Fuel channel integrity criteria are proposed which are based upon three necessary and sequential mechanisms: Onset of CHF and local drypatch formation at contact; sustained film boiling in the post-contact period; and creep strain to failure of the calandria tube while in sustained film boiling. (author)

  11. A model for radiative heat transfer in mixtures of a hot solid or molten material with water and steam

    International Nuclear Information System (INIS)

    Vaeth, L.

    1997-05-01

    A model has been devised for describing the radiative heat transfer in mixtures of a hot radiant material with water and steam, to be used, e.g., in the framework of a multiphase, multicomponent flow simulation. The main features of the model are: 1. The radiative heat transfer is modelled for a homogeneous mixture of one continuous material with droplets/bubbles of the other two, of the kind normally assumed for the material distribution in one cell of a bigger calculational problem. Neither the heat transfer over the cell boundaries nor the finite dimensions of the cell are taken into account. 2. The geometry of the mixture (radiant material continuous or discontinuous, droplet/bubble diameters and number densities) is taken into account. 3. The optical properties of water and water vapour are modelled as functions of the temperature of the radiant and, in the case of water vapour, also of the absorbing material. 4. The model distinguishes between heat transfer to the surface of the water (leading to evaporation) and into the bulk of the water (pure heating). (orig./DG) [de

  12. MODELING OF THE HEAT PUMP STATION CONTROLABLE LOOP OF AN INTERMEDIATE HEAT-TRANSFER AGENT (Part II

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2011-08-01

    Full Text Available It is studied the model of the heat pump station controllable loop of an intermediate heat-transfer agent for the use in wineries. There are demonstrated transients after the disturbing action of the temperature on the input of cooling jacket of the fermentation stirred tank. There are compared different control laws of the object.

  13. Heat Transfer Characteristics and Prediction Model of Supercritical Carbon Dioxide (SC-CO2 in a Vertical Tube

    Directory of Open Access Journals (Sweden)

    Can Cai

    2017-11-01

    Full Text Available Due to its distinct capability to improve the efficiency of shale gas production, supercritical carbon dioxide (SC-CO2 fracturing has attracted increased attention in recent years. Heat transfer occurs in the transportation and fracture processes. To better predict and understand the heat transfer of SC-CO2 near the critical region, numerical simulations focusing on a vertical flow pipe were performed. Various turbulence models and turbulent Prandtl numbers (Prt were evaluated to capture the heat transfer deterioration (HTD. The simulations show that the turbulent Prandtl number model (TWL model combined with the Shear Stress Transport (SST k-ω turbulence model accurately predicts the HTD in the critical region. It was found that Prt has a strong effect on the heat transfer prediction. The HTD occurred under larger heat flux density conditions, and an acceleration process was observed. Gravity also affects the HTD through the linkage of buoyancy, and HTD did not occur under zero-gravity conditions.

  14. Modeling Radiative Heat Transfer and Turbulence-Radiation Interactions in Engines

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Ge, Wenjun [University of California Merced (United States); Modest, Michael F [University of California Merced (United States)

    2017-04-26

    Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a full-load (peak pressure ~200 bar) heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.

  15. Assessment of the MELCOR 1.8.6 condensation heat transfer model under the presence of noncondensable gases

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ji Min; Lee, Dong Hun; Jeong, Jae Jun [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    Condensation heat transfer under the presence of noncondensable gases (NCGs) is an important issue in nuclear safety because the presence of even a small quantity of NC gases in the vapor largely reduces the condensation rate. The extensive assessment of the condensation model of the safety analysis codes has been also performed. When NCGs are present, the condensation phenomenon is largely reduced by accumulated NCGs near the condensing surface. Since the total pressure remains constant, the partial pressure of vapor at the liquid-vapor interface is lower than that in the bulk mixture, providing the driving force for vapor diffusion towards the liquid-vapor interface. The main objective of the present study is the assessment of the condensation heat transfer model of the severe accident code MELCOR 1.8.6 under the presence of NCGs. In this study, the condensation heat transfer model of the MELCOR 1.8.6 is assessed using various experiments which have 4 different types of geometry. Through the comparison of the results, it was shown that the MELCOR code generally under-predicts the condensation heat transfer except the condensation on outer surface of vertical pipes and improvement is needed for other geometries.

  16. Scale model test results for an inverted U-tube steam generator with comparisons to heat transfer correlations

    International Nuclear Information System (INIS)

    Boucher, T.J.

    1987-01-01

    To provide data for assessment and development of thermal-hydraulic computer codes, bottom main feedwater-line-break transient simulations were performed in a scale model (Semiscale Mod-2C) of a pressurized water reactor (PWR) with conditions typical of a PWR (15.0 MPa primary pressure, 600 K steam generator inlet plenum fluid temperatures, 6.2 MPa secondary pressure). The state-of-the-art measurements in the scale model (Type III) steam generator allow for the determination of U-tube steam generator allow for the determination of U-tube steam generator secondary component interactions, tube bundle local radial heat transfer, and tube bundle and riser vapor void fractions for steady state and transient operations. To enhance the understanding of the observed phenomena, the component interactions, local heat fluxes, local secondary convective heat transfer coefficients and local vapor void fractions are discussed for steady state, full-power and transient operations. Comparisons between the measurement-derived secondary convective heat transfer coefficients and those predicted by a number of correlations, including the Chen correlation currently used in thermal-hydraulic computer codes, show that none of the correlations adequately predict the data and points out the need for the formulation of a new correlation based on this experimental data. The unique information presented herein should be of the interest to anyone involved in modeling inverted U-tube steam generator thermal-hydraulics for forced convection boiling/vaporization heat transfer. 5 refs., 13 figs., 1 tab

  17. Model validation and parametric study of fluid flows and heat transfer of aviation kerosene with endothermic pyrolysis at supercritical pressure

    Directory of Open Access Journals (Sweden)

    Keke Xu

    2015-12-01

    Full Text Available The regenerative cooling technology is a promising approach for effective thermal protection of propulsion and power-generation systems. A mathematical model has been used to examine fluid flows and heat transfer of the aviation kerosene RP-3 with endothermic fuel pyrolysis at a supercritical pressure of 5 MPa. A pyrolytic reaction mechanism, which consists of 18 species and 24 elementary reactions, is incorporated to account for fuel pyrolysis. Detailed model validations are conducted against a series of experimental data, including fluid temperature, fuel conversion rate, various product yields, and chemical heat sink, fully verifying the accuracy and reliability of the model. Effects of fuel pyrolysis and inlet flow velocity on flow dynamics and heat transfer characteristics of RP-3 are investigated. Results reveal that the endothermic fuel pyrolysis significantly improves the heat transfer process in the high fluid temperature region. During the supercritical-pressure heat transfer process, the flow velocity significantly increases, caused by the drastic variations of thermophysical properties. Under all the tested conditions, the Nusselt number initially increases, consistent with the increased flow velocity, and then slightly decreases in the high fluid temperature region, mainly owing to the decreased heat absorption rate from the endothermic pyrolytic chemical reactions.

  18. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  19. Modeling and analysis of alternative concept of ITER vacuum vessel primary heat transfer system

    International Nuclear Information System (INIS)

    Carbajo, Juan; Yoder, Graydon; Dell'Orco, G.; Curd, Warren; Kim, Seokho

    2010-01-01

    A RELAP5-3D model of the ITER (Latin for 'the way') vacuum vessel (VV) primary heat transfer system has been developed to evaluate a proposed design change that relocates the heat exchangers (HXs) from the exterior of the tokamak building to the interior. This alternative design protects the HXs from external hazards such as wind, tornado, and aircraft crash. The proposed design integrates the VV HXs into a VV pressure suppression system (VVPSS) tank that contains water to condense vapour in case of a leak into the plasma chamber. The proposal is to also use this water as the ultimate sink when removing decay heat from the VV system. The RELAP5-3D model has been run under normal operating and abnormal (decay heat) conditions. Results indicate that this alternative design is feasible, with no effects on the VVPSS tank under normal operation and with tank temperature and pressure increasing under decay heat conditions resulting in a requirement to remove steam generated if the VVPSS tank low pressure must be maintained.

  20. Modeling of zero gravity venting: Studies of two-phase heat transfer under reduced gravity

    Science.gov (United States)

    Merte, H., Jr.

    1986-01-01

    The objective is to predict the pressure response of a saturated liquid-vapor system when undergoing a venting or depressurization process in zero gravity at low vent rates. An experimental investigation of the venting of cylindrical containers partially filled with initially saturated liquids was previously conducted under zero-gravity conditions and compared with an analytical model which incorporated the effect of interfacial mass transfer on the ullage pressure response during venting. A new model is presented to improve the estimation of the interfacial mass transfer. Duhammel's superposition integral is incorporated to approximate the transient temperature response of the interface, treating the liquid as a semi-infinite solid with conduction heat transfer. Account is also taken of the condensation taking place within the bulk of a saturated vapor as isentropic expansion takes place. Computational results are presented for the venting of R-11 from a given vessel and initial state for five different venting rates over a period of three seconds, and compared to prior NASA experiments. An improvement in the prediction of the final pressure takes place, but is still considerably below the measurements.

  1. Modeling of the coupled radiative and conductive heat transfer within fibrous media at high temperature

    International Nuclear Information System (INIS)

    Dauvois, Yann

    2016-01-01

    In the present work, the effective heat transfer properties of fibrous medium are determined by taking into account a coupling of heat conduction and radiation. A virtual, statistically homogeneous, two-phase fibrous sample has been built by stacking finite absorbing cylinders in vacuum. These cylinders are dispersed according to prescribed distribution functions defining the cylinder positions and orientations. Cylinder overlappings are allowed. Extinction, absorption and scattering are characterised by radiative statistical functions which allow the Beerian behaviour of a medium to be assessed (or not). They are accurately determined with a Monte Carlo method. Whereas the gaseous phase exhibits a Beerian behaviour, the fibre phase is strongly non Beerian. The radiative power field deposited within the fibrous material is calculated by resolving a model which couples a Generalized Radiative Transfer Equation (GRTE) and a classic Radiative Transfer Equation (RTE). The model of conduction transfer is based on a random walk method without meshing. The simulation of Brownian motion of walkers in fibres allows the energy equation to be solved. The idea of the method is to characterize the temperature in an elementary volume by the density of walkers, which roam the medium. The problem is governed by boundary conditions; A constant concentration of walkers (or a constant flux) is associated with a fixed temperature (or flux). (author) [fr

  2. Potential for PET scanning as an aid to heat transfer modeling

    International Nuclear Information System (INIS)

    Samulski, T.V.; Harris, C.; Winget, J.M.; Dewhirst, M.W.

    1987-01-01

    Positron Emission Tomography (PET) using /sup 68/Ga labelled microspheres (15μ diam.) for quantitative imaging of perfusion is being investigated for its potential to aid in verification of parameter estimation techniques. Such techniques have been used in bioheat transfer modeling where direct measurement of perfusion has not been possible. Perfusion is needed, to utilize bioheat transfer to predict temperatures between measured points during hyperthermia therapy. A preliminary study showing that PET could be used for verification of parameter estimation was done by heating a melanoma in a dog in which multiple thermometry catheters were placed in a central plane. Microspheres were injected at the end of a one hour heat treatment session before power down. CT and PET images of the same plane were aligned so that relative counts/pixel in 2 cm regions of interest of the PET image were measured along several catheter tracks. In all tracks measured an inverse correlation was shown between relative perfusion and temperature along the catheter during thermal steady state. These data strongly imply that PET scans obtained in the manner described bear relevance to bioheat transfer and for verification of perfusion in heated tissues as estimated by heat transfer modeling

  3. Analysis of Heat Transfer

    International Nuclear Information System (INIS)

    2003-08-01

    This book deals with analysis of heat transfer which includes nonlinear analysis examples, radiation heat transfer, analysis of heat transfer in ANSYS, verification of analysis result, analysis of heat transfer of transition with automatic time stepping and open control, analysis of heat transfer using arrangement of ANSYS, resistance of thermal contact, coupled field analysis such as of thermal-structural interaction, cases of coupled field analysis, and phase change.

  4. A review of heat transfer in human tooth--experimental characterization and mathematical modeling.

    Science.gov (United States)

    Lin, Min; Xu, Feng; Lu, Tian Jian; Bai, Bo Feng

    2010-06-01

    With rapid advances in modern dentistry, high-energy output instruments (e.g., dental lasers and light polymerizing units) are increasingly employed in dental surgery for applications such as laser assisted tooth ablation, bleaching, hypersensitivity treatment and polymerization of dental restorative materials. Extreme high temperature occurs within the tooth during these treatments, which may induce tooth thermal pain (TTP) sensation. Despite the wide application of these dental treatments, the underlying mechanisms are far from clear. Therefore, there is an urgent need to better understand heat transfer (HT) process in tooth, thermally induced damage of tooth, and the corresponding TTP. This will enhance the design and optimization of clinical treatment strategies. This paper presents the state-of-the-art of the current understanding on HT in tooth, with both experimental study and mathematical modeling reviewed. Limitations of the current experimental and mathematical methodologies are discussed and potential solutions are suggested. Interpretation of TTP in terms of thermally stimulated dentinal fluid flow is also discussed. Copyright (c) 2010 Academy of Dental Materials. All rights reserved.

  5. Transectional heat transfer in thermoregulating bigeye tuna (Thunnus obesus) - a 2D heat flux model.

    Science.gov (United States)

    Boye, Jess; Musyl, Michael; Brill, Richard; Malte, Hans

    2009-11-01

    We developed a 2D heat flux model to elucidate routes and rates of heat transfer within bigeye tuna Thunnus obesus Lowe 1839 in both steady-state and time-dependent settings. In modeling the former situation, we adjusted the efficiencies of heat conservation in the red and the white muscle so as to make the output of the model agree as closely as possible with observed cross-sectional isotherms. In modeling the latter situation, we applied the heat exchanger efficiencies from the steady-state model to predict the distribution of temperature and heat fluxes in bigeye tuna during their extensive daily vertical excursions. The simulations yielded a close match to the data recorded in free-swimming fish and strongly point to the importance of the heat-producing and heat-conserving properties of the white muscle. The best correspondence between model output and observed data was obtained when the countercurrent heat exchangers in the blood flow pathways to the red and white muscle retained 99% and 96% (respectively) of the heat produced in these tissues. Our model confirms that the ability of bigeye tuna to maintain elevated muscle temperatures during their extensive daily vertical movements depends on their ability to rapidly modulate heating and cooling rates. This study shows that the differential cooling and heating rates could be fully accounted for by a mechanism where blood flow to the swimming muscles is either exclusively through the heat exchangers or completely shunted around them, depending on the ambient temperature relative to the body temperature. Our results therefore strongly suggest that such a mechanism is involved in the extensive physiological thermoregulatory abilities of endothermic bigeye tuna.

  6. The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel

    Science.gov (United States)

    Alrashed, Abdullah A. A. A.; Akbari, Omid Ali; Heydari, Ali; Toghraie, Davood; Zarringhalam, Majid; Shabani, Gholamreza Ahmadi Sheikh; Seifi, Ali Reza; Goodarzi, Marjan

    2018-05-01

    In recent years, the study of rheological behavior and heat transfer of nanofluids in the industrial equipment has become widespread among the researchers and their results have led to great advancements in this field. In present study, the laminar flow and heat transfer of water/functional multi-walled carbon nanotube nanofluid have been numerically investigated in weight percentages of 0.00, 0.12 and 0.25 and Reynolds numbers of 1-150 by using finite volume method (FVM). The analyzed geometry is a two-dimensional backward-facing contracting channel and the effects of various weight percentages and Reynolds numbers have been studied in the supposed geometry. The results have been interpreted as the figures of Nusselt number, friction coefficient, pressure drop, velocity contours and static temperature. The results of this research indicate that, the enhancement of Reynolds number or weight percentage of nanoparticles causes the reduction of surface temperature and the enhancement of heat transfer coefficient. By increasing Reynolds number, the axial velocity enhances, causing the enhancement of momentum. By increasing fluid momentum at the beginning of channel, especially in areas close to the upper wall, the axial velocity reduces and the possibility of vortex generation increases. The mentioned behavior causes a great enhancement in velocity gradients and pressure drop at the inlet of channel. Also, in these areas, Nusselt number and local friction coefficient figures have a relative decline, which is due to the sudden reduction of velocity. In general, by increasing the mass fraction of solid nanoparticles, the average Nusselt number increases and in Reynolds number of 150, the enhancement of pumping power and pressure drop does not cause any significant changes. This behavior is an important advantage of choosing nanofluid which causes the enhancement of thermal efficiency.

  7. A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models

    Science.gov (United States)

    Ameri, A. A.; Rigby, D. L.

    1999-01-01

    A computational study has been performed to predict the distribution of convective heat transfer coefficient on a simulated blade tip with cooling holes. The purpose of the examination was to assess the ability of a three-dimensional Reynolds-averaged Navier-Stokes solver to predict the rate of tip heat transfer and the distribution of cooling effectiveness. To this end, the simulation of tip clearance flow with blowing of Kim and Metzger was used. The agreement of the computed effectiveness with the data was quite good. The agreement with the heat transfer coefficient was not as good but improved away from the cooling holes. Numerical flow visualization showed that the uniformity of wetting of the surface by the film cooling jet is helped by the reverse flow due to edge separation of the main flow.

  8. Interface model conditions for a non-equilibrium heat transfer model for conjugate fluid/porous/solid domains

    International Nuclear Information System (INIS)

    Betchen, L.J.; Straatman, A.G.

    2005-01-01

    A mathematical and numerical model for the treatment of conjugate fluid flow and heat transfer problems in domains containing pure fluid, porous, and pure solid regions has been developed. The model is general and physically reasoned, and allows for local thermal non-equilibrium in the porous region. The model is developed for implementation on a simple collocated finite volume grid. Of particular novelty are the conditions implemented at the interfaces between porous regions, and those containing a pure solid or pure fluid. The model is validated by simulation of a three-dimensional porous plug problem for which experimental results are available. (author)

  9. Convection Heat Transfer Modeling of Ag Nanofluid Using Different Viscosity Theories

    Directory of Open Access Journals (Sweden)

    Ali Bakhsh Kasaeian

    2012-04-01

    Full Text Available ABSTRACT: In this paper, the effects of adding nanoparticles (including Ag to a fluid media for improving free convection heat transfer were analysed. The free convective heat transfer was assumed to be in laminar flow regime, and the corresponding calculations and solutions were all done by the integral method. Water, as a Newtonian fluid, was considered as the base and all relevant thermo physical properties of the nanofluids were considered to be unvarying. The calculations performed and the graphs generated showed that, in general, the addition of nanoparticles to the fluid media resulted in an increment or improvement of its heat transfer coefficient. With increase in the concentration of the nanoparticles, the heat transfer rate of the fluid also increased. The increment in heat transfer is also dependent on the nanoparticles’ thermal conductivity and the viscosity theory which was utilized in the calculations. In this study, four different theories were used to calculate the viscosities of the nanofluids. The effects of viscosity on the nanofluids’ thermal conductivity were apparent from the calculations which were performed for nanoparticle concentrations of 4% or less. ABSTRAK: Kajian ini menganalisis kesan penambahan nanopartikel Ag ke dalam media bendalir bagi tujuan pembaikkan pemindahan haba perolakan bebas. Perolakan bebas diandaikan berada di zon aliran laminar, di mana penyelesaian dan pengiraan telah dilakukan mengunakan kaedah kamilan. Air yang merupakan cecair Newtonian, dianggap sebagai asas dan sifat terma fizikal nanocecair dianggapkan tidak berubah. Mengikut pengiraan yang dilakukan dan graf yang diplotkan, umumnya penambahan nanopartikel kepada media bendalir menyebabkan peningkatan dan pengembangan pekali pemindahan haba. Kadar pemindahan haba meningkat dengan nanopartikel. Peningkatan pemindahan haba juga bergantung kepada pengalir haba nanopartikel dan teori kelikatan yang digunakan. Di dalam kajian ini, empat

  10. Heat transfer correlation models for electrospray evaporative cooling chambers of different geometry types

    International Nuclear Information System (INIS)

    Wang, Hsiu-Che; Mamishev, Alexander V.

    2012-01-01

    Development of future electronics for high speed computing requires a silent thermal management method capable of dissipating a broad range of heat generated from application-specific integrated circuits, while keeping the skin temperature below 45 °C. Electrospray evaporative cooling (ESEC) chambers show promise because of their ability to dissipate a broad range of heat within a relatively small size. However, the development and the optimization of ESEC chambers are currently restricted, in part due to the lack of sufficient empirical heat transfer correlations. This paper investigates empirical heat transfer correlations for ESEC chambers with three different geometry types. Since the unstable multi-jet behavior of an ESEC chamber is similar to that of a free-surface traditional impinging liquid jet, these correlations are based on the traditional impinging liquid jet’s empirical correlations, yet are modified to factor in the electric field effect. The results show that the heat transfer enhancement ratio correlations and the Nusselt number correlations for different ESEC chambers cover more than 83% of the experimental data, within ±10% deviation. The sensitivity analysis results and experimental data prove that the variation in the enhancement ratio is sensitive to that of the potential and the flow rate. It is not sensitive to the geometric factor of the same ESEC type. This paper presents a natural convection correlation for chip-scale, heated, flat surfaces when the Rayleigh number is below 3000. Further investigation is necessary to extend these heat transfer correlations to cover additional parameters for different thermal management applications. - Highlights: ► We develop empirical heat transfer correlations for electrospray evaporative cooling chambers. ► The developed heat transfer enhancement correlations fit more than 83% experimental data. ► The developed Nusselt number correlations fit more than 89% experimental data. ► We present a

  11. Developing of two-dimensional model of the corium cooling and behavior with non-condensible gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; Cho, Jae Seon; Kim, Ju Youl; Kim, Do Hyoung [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    The purpose of this study is to understand the effect of the non-condensible gas injection into the molten corium on the heat transfer and dynamic behavior within the melt when molten core-concrete interaction occurs during the hypothetical severe accident. Corium behavior with gas injection effect is two phase fluid pattern in which droplet has dispersed gas phase in continuous liquid phase of corium. To analyze this behavior, two dimensional governing equation using the governing equation, the computer program is accomplished using the finite difference method and SIMPLER algorithm. And benchmarking calculation is performed for the KfK experiment, which consider the gas injection effect. After this pre-calculation, an analyses is performed with typical corium under severe accidents. It is concluded that the heat transfer within corium increases as the metal components of the corium and gas injection velocity increase. 88 refs., 23 tabs., 35 figs. (author)

  12. Two-dimensional gauge model with vector U(1) and axial-vector U(1) symmetries

    International Nuclear Information System (INIS)

    Watabiki, Y.

    1989-01-01

    We have succeeded in constructing a two-dimensional gauge model with both vector U(1) and axial-vector U(1) symmetries. This model is exactly solvable. The Schwinger term vanishes in this model as a consequence of the above symmetries, and negative-norm states appear. However, the norms of physical states are always positive semidefinite due to the gauge symmetries

  13. Two-dimensional model of coupled heat and moisture transport in frost-heaving soils

    International Nuclear Information System (INIS)

    Guymon, G.L.; Berg, R.L.; Hromadka, T.V.

    1984-01-01

    A two-dimensional model of coupled heat and moisture flow in frost-heaving soils is developed based upon well known equations of heat and moisture flow in soils. Numerical solution is by the nodal domain integration method which includes the integrated finite difference and the Galerkin finite element methods. Solution of the phase change process is approximated by an isothermal approach and phenomenological equations are assumed for processes occurring in freezing or thawing zones. The model has been verified against experimental one-dimensional freezing soil column data and experimental two-dimensional soil thawing tank data as well as two-dimensional soil seepage data. The model has been applied to several simple but useful field problems such as roadway embankment freezing and frost heaving

  14. Two-dimensional discrete dislocation models of deformation in polycrystalline thin metal films on substrates

    International Nuclear Information System (INIS)

    Hartmaier, Alexander; Buehler, Markus J.; Gao, Huajian

    2005-01-01

    The time-dependent irreversible deformation of polycrystalline thin metal films on substrates is investigated using two-dimensional discrete dislocation dynamics models incorporating essential parameters determined from atomistic studies. The work is focused on the mechanical properties of uncapped films, where diffusive processes play an important role. The simulations incorporate dislocation climb along the grain boundary as well as conservative glide. Despite of severe limitations of the two-dimensional dislocation models, the simulation results are found to largely corroborate experimental findings on different dominant deformation mechanisms at different film thicknesses

  15. Numerical simulation of heat transfer process in solar enhanced natural draft dry cooling tower with radiation model

    International Nuclear Information System (INIS)

    Wang, Qiuhuan; Zhu, Jialing; Lu, Xinli

    2017-01-01

    Graphical abstract: A 3-D numerical model integrated with a discrete ordinate (DO) solar radiation model (considering solar radiation effect in the room of solar collector) was developed to investigate the influence of solar radiation intensity and ambient pressure on the efficiency and thermal characteristics of the SENDDCT. Our study shows that introducing such a radiation model can more accurately simulate the heat transfer process in the SENDDCT. Calculation results indicate that previous simulations overestimated solar energy obtained by the solar collector and underestimated the heat loss. The cooling performance is improved when the solar radiation intensity or ambient pressure is high. Air temperature and velocity increase with the increase of solar radiation intensity. But ambient pressure has inverse effects on the changes of air temperature and velocity. Under a condition that the solar load increases but the ambient pressure decreases, the increased rate of heat transferred in the heat exchanger is not obvious. Thus the performance of the SENDDCT not only depends on the solar radiation intensity but also depends on the ambient pressure. - Highlights: • A radiation model has been introduced to accurately simulate heat transfer process. • Heat transfer rate would be overestimated if the radiation model was not introduced. • The heat transfer rate is approximately proportional to solar radiation intensity. • The higher the solar radiation or ambient pressure, the better SENDDCT performance. - Abstract: Solar enhanced natural draft dry cooling tower (SENDDCT) is more efficient than natural draft dry cooling tower by utilizing solar radiation in arid region. A three-dimensional numerical model considering solar radiation effect was developed to investigate the influence of solar radiation intensity and ambient pressure on the efficiency and thermal characteristics of SENDDCT. The numerical simulation outcomes reveal that a model with consideration of

  16. Hyperkaehlerian manifolds and exact β functions of two-dimensional N=4 supersymmetric σ models

    International Nuclear Information System (INIS)

    Morozov, A.Yu.; Perelomov, A.M.

    1984-01-01

    Two-dimensional supersymmetric sigma-models on cotangent bundles over CPsup(n) are investigated. These mannfolds are supplied with hyperkaehlerian metrics, and the corresponding σ-models possess N=4 supersymmetry. Also they admit instantonic solutions, which permits to apply the Novikov-Shifman-Vainshtein-Zakharov method and calculate exact β-functions. βsup(gsup(2)) = 0, as was expected

  17. Modeling of the financial market using the two-dimensional anisotropic Ising model

    Science.gov (United States)

    Lima, L. S.

    2017-09-01

    We have used the two-dimensional classical anisotropic Ising model in an external field and with an ion single anisotropy term as a mathematical model for the price dynamics of the financial market. The model presented allows us to test within the same framework the comparative explanatory power of rational agents versus irrational agents with respect to the facts of financial markets. We have obtained the mean price in terms of the strong of the site anisotropy term Δ which reinforces the sensitivity of the agent's sentiment to external news.

  18. A Conceptual Change Model for Teaching Heat Energy, Heat Transfer and Insulation

    Science.gov (United States)

    Lee, C. K.

    2014-01-01

    This study examines the existing knowledge that pre-service elementary teachers (PSETs) have regarding heat energy, heat transfer and insulation. The PSETs' knowledge of heat energy was initially assessed by using an activity: determining which container would be best to keep hot water warm for the longest period of time. Results showed that PSETs…

  19. Modeling conductive heat transfer during high-pressure thawing processes: determination of latent heat as a function of pressure.

    Science.gov (United States)

    Denys, S; Van Loey, A M; Hendrickx, M E

    2000-01-01

    A numerical heat transfer model for predicting product temperature profiles during high-pressure thawing processes was recently proposed by the authors. In the present work, the predictive capacity of the model was considerably improved by taking into account the pressure dependence of the latent heat of the product that was used (Tylose). The effect of pressure on the latent heat of Tylose was experimentally determined by a series of freezing experiments conducted at different pressure levels. By combining a numerical heat transfer model for freezing processes with a least sum of squares optimization procedure, the corresponding latent heat at each pressure level was estimated, and the obtained pressure relation was incorporated in the original high-pressure thawing model. Excellent agreement with the experimental temperature profiles for both high-pressure freezing and thawing was observed.

  20. Study on heat transfer and hydraulic model of spiral-fin fuel rods based on equivalent annulus method

    International Nuclear Information System (INIS)

    Zhang Dan; Liu Changwen; Lu Jianchao

    2011-01-01

    Tight lattice fuel assembly usually adopts spiral-fin fuel elements. Compared with the traditional PWR fuel rods, the closely packed and spiral fin spacers make the heat transfer and hydraulic phenomena in sub-channels very complicated, and: there was no suitable model and correlation to study it. This paper studied the effect of spiral spacers on the channel geometry in the equivalent annulus and physical performance based on the Rehme equivalent annulus methods, and the heat transfer of the spiral fin fuel rods and hydraulic model were obtained. The new model was verified with the traditional one, and the verification showed that two new models agreed well, which could provide certain theoretical explanation to the effect of the spiral spacer on the thermal hydraulics. (authors)

  1. Development of tube rupture evaluation code for FBR steam generator (II). Modification of heat transfer model in sodium side

    International Nuclear Information System (INIS)

    Hamada, H.; Kurihara, A.

    2003-05-01

    The thermal effect of sodium-water reaction jet on neighboring heat transfer tubes was examined to rationally evaluate the structural integrity of the tube for overheating rupture under a water leak in an FBR steam generator. Then, the development of new heat transfer model and the application analysis were carried out. Main results in this paper are as follows. (1) The evaluation method of heat flux and heat transfer coefficient (HTC) on the tube exposed to reaction jet was developed. By using the method, it was confirmed that the heat flux could be realistically evaluated in comparison with the previous method. (2) The HTC between reaction jet and the tube was theoretically examined in the two-phase flow model, and new heat transfer model considering the effect of fluid temperature and cover gas pressure was developed. By applying the model, a tentative experimental correlation was conservatively obtained by using SWAT-1R test data. (3) The new model was incorporated to the Tube Rupture Evaluation Code (TRUE), and the conservatism of the model was confirmed by using sodium-water reaction data such as the SWAT-3 tests. (4) In the application analysis of the PFR large leak event, there was no significant difference of calculation results between the new model and previous one; the importance of depressurization in the tube was confirmed. (5) In the application analysis of the Monju evaporator, it was confirmed that the calculation result in the previous model would be more conservative than that in the new one and that the maximum cumulative damage of 25% could be reduced in the new model. (author)

  2. Use of fundamental condensation heat transfer experiments for the development of a sub-grid liquid jet condensation model

    Energy Technology Data Exchange (ETDEWEB)

    Buschman, Francis X., E-mail: Francis.Buschman@unnpp.gov; Aumiller, David L.

    2017-02-15

    Highlights: • Direct contact condensation data on liquid jets up to 1.7 MPa in pure steam and in the presence of noncondensable gas. • Identified a pressure effect on the impact of noncondensables to suppress condensation heat transfer not captured in existing data or correlations. • Pure steam data is used to develop a new correlation for condensation heat transfer on subcooled liquid jets. • Noncondensable data used to develop a modification to the renewal time estimate used in the Young and Bajorek correlation for condensation suppression in the presence of noncondensables. • A jet injection boundary condition, using a sub-grid jet condensation model, is developed for COBRA-IE which provides a more detailed estimate of the condensation rate on the liquid jet and allows the use of jet specific closure relationships. - Abstract: Condensation on liquid jets is an important phenomenon for many different facets of nuclear power plant transients and analyses such as containment spray cooling. An experimental facility constructed at the Pennsylvania State University, the High Pressure Liquid Jet Condensation Heat Transfer facility (HPLJCHT), has been used to perform steady-state condensation heat transfer experiments in which the temperature of the liquid jet is measured at different axial locations allowing the condensation rate to be determined over the jet length. Test data have been obtained in a pure steam environment and with varying concentrations of noncondensable gas. This data extends the available jet condensation data from near atmospheric pressure up to a pressure of 1.7 MPa. An empirical correlation for the liquid side condensation heat transfer coefficient has been developed based on the data obtained in pure steam. The data obtained with noncondensable gas were used to develop a correlation for the renewal time as used in the condensation suppression model developed by Young and Bajorek. This paper describes a new sub-grid liquid jet

  3. Use of fundamental condensation heat transfer experiments for the development of a sub-grid liquid jet condensation model

    International Nuclear Information System (INIS)

    Buschman, Francis X.; Aumiller, David L.

    2017-01-01

    Highlights: • Direct contact condensation data on liquid jets up to 1.7 MPa in pure steam and in the presence of noncondensable gas. • Identified a pressure effect on the impact of noncondensables to suppress condensation heat transfer not captured in existing data or correlations. • Pure steam data is used to develop a new correlation for condensation heat transfer on subcooled liquid jets. • Noncondensable data used to develop a modification to the renewal time estimate used in the Young and Bajorek correlation for condensation suppression in the presence of noncondensables. • A jet injection boundary condition, using a sub-grid jet condensation model, is developed for COBRA-IE which provides a more detailed estimate of the condensation rate on the liquid jet and allows the use of jet specific closure relationships. - Abstract: Condensation on liquid jets is an important phenomenon for many different facets of nuclear power plant transients and analyses such as containment spray cooling. An experimental facility constructed at the Pennsylvania State University, the High Pressure Liquid Jet Condensation Heat Transfer facility (HPLJCHT), has been used to perform steady-state condensation heat transfer experiments in which the temperature of the liquid jet is measured at different axial locations allowing the condensation rate to be determined over the jet length. Test data have been obtained in a pure steam environment and with varying concentrations of noncondensable gas. This data extends the available jet condensation data from near atmospheric pressure up to a pressure of 1.7 MPa. An empirical correlation for the liquid side condensation heat transfer coefficient has been developed based on the data obtained in pure steam. The data obtained with noncondensable gas were used to develop a correlation for the renewal time as used in the condensation suppression model developed by Young and Bajorek. This paper describes a new sub-grid liquid jet

  4. Evaluation method for two-phase flow and heat transfer in a feed-water heater

    International Nuclear Information System (INIS)

    Takamori, Kazuhide; Minato, Akihiko

    1993-01-01

    A multidimensional analysis code for two-phase flow using a two-fluid model was improved by taking into consideration the condensation heat transfer, film thickness, and film velocity, in order to develop an evaluation method for two-phase flow and heat transfer in a feed-water heater. The following results were obtained by a two-dimensional analysis of a feed-water heater for a power plant. (1) In the model, the film flowed downward in laminar flow due to gravity, with droplet entrainment and deposition. For evaluation of the film thickness, Fujii's equation was used in order to account for forced convection of steam flow. (2) Based on the former experimental data, the droplet deposition coefficient and droplet entrainment rate of liquid film were determined. When the ratio at which the liquid film directly flowed from an upper heat transfer tube to a lower heat transfer tube was 0.7, the calculated total heat transfer rate agreed with the measured value of 130 MW. (3) At the upper region of a heat transfer tube bundle where film thickness was thin, and at the outer region of a heat transfer tube bundle where steam velocity was high, the heat transfer rate was large. (author)

  5. Modelling of heat transfer between molten core and concrete with account of phase changes in the melt

    International Nuclear Information System (INIS)

    Petukhov, S.M.; Zemlianoukhin, V.V.

    1992-01-01

    The analysis of the process of heat transfer between molten corium and concrete in the case of severe accident in a PWR is performed. It is shown that Bradley's model may be improved for the case of an oxidic melt. A new model is developed and incorporated in the WECHSL-Mod2 Code. Post-test calculations of melt-concrete interaction experiments are carried out. The comparison and analysis of the experimental results and calculations are presented. (9 figures) (Author)

  6. Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Wang, Zhiqiang

    2014-01-01

    Highlights: • Using local thermal non-equilibrium model to solve heat transfer of porous media. • CH 4 /H 2 O mixture is adopted as feeding gas of porous media receiver. • Radiative transfer equation between porous strut is solved by Rosseland approximation. • Transport and thermophysical models not included in Fluent are programmed by UDFs. • Variations of model on thermal performance of porous media receiver are studied. - Abstract: The local thermal non-equilibrium model is adopted to solve the steady state heat and mass transfer problems of porous media solar receiver. The fluid entrance surface is subjected to concentrated solar radiation, and CH 4 /H 2 O mixture is adopted as feeding gas. The radiative heat transfer equation between porous strut is solved by Rosseland approximation. The impacts of variation in transport and thermophysical characteristics model of gas mixture on thermal performance of porous media receiver are investigated. The transport and thermophysical characteristics models which are not included in software Fluent are programmed by user defined functions (UDFs). The numerical results indicate that models of momentum source term for porous media receiver have significant impact on pressure drop and static pressure distribution, and the radiative heat transfer cannot be omitted during the thermal performance analysis of porous media receiver

  7. Analysis of simplified heat transfer models for thermal property determination of nano-film by TDTR method

    Science.gov (United States)

    Wang, Xinwei; Chen, Zhe; Sun, Fangyuan; Zhang, Hang; Jiang, Yuyan; Tang, Dawei

    2018-03-01

    Heat transfer in nanostructures is of critical importance for a wide range of applications such as functional materials and thermal management of electronics. Time-domain thermoreflectance (TDTR) has been proved to be a reliable measurement technique for the thermal property determinations of nanoscale structures. However, it is difficult to determine more than three thermal properties at the same time. Heat transfer model simplifications can reduce the fitting variables and provide an alternative way for thermal property determination. In this paper, two simplified models are investigated and analyzed by the transform matrix method and simulations. TDTR measurements are performed on Al-SiO2-Si samples with different SiO2 thickness. Both theoretical and experimental results show that the simplified tri-layer model (STM) is reliable and suitable for thin film samples with a wide range of thickness. Furthermore, the STM can also extract the intrinsic thermal conductivity and interfacial thermal resistance from serial samples with different thickness.

  8. Two-dimensional sigma models: modelling non-perturbative effects of gauge theories

    International Nuclear Information System (INIS)

    Novikov, V.A.; Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I.

    1984-01-01

    The review is devoted to a discussion of non-perturbative effects in gauge theories and two-dimensional sigma models. The main emphasis is put on supersymmetric 0(3) sigma model. The instanton-based method for calculating the exact Gell-Mann-Low function and bifermionic condensate is considered in detail. All aspects of the method in simplifying conditions are discussed. The basic points are: the instanton measure from purely classical analysis; a non-renormalization theorem in self-dual external fields; existence of vacuum condensates and their compatibility with supersymmetry

  9. Characteristics of heat transfer fouling of thin stillage using model thin stillage and evaporator concentrates

    Science.gov (United States)

    Challa, Ravi Kumar

    The US fuel ethanol demand was 50.3 billion liters (13.3 billion gallons) in 2012. Corn ethanol was produced primarily by dry grind process. Heat transfer equipment fouling occurs during corn ethanol production and increases the operating expenses of ethanol plants. Following ethanol distillation, unfermentables are centrifuged to separate solids as wet grains and liquid fraction as thin stillage. Evaporator fouling occurs during thin stillage concentration to syrup and decreases evaporator performance. Evaporators need to be shutdown to clean the deposits from the evaporator surfaces. Scheduled and unscheduled evaporator shutdowns decrease process throughput and results in production losses. This research were aimed at investigating thin stillage fouling characteristics using an annular probe at conditions similar to an evaporator in a corn ethanol production plant. Fouling characteristics of commercial thin stillage and model thin stillage were studied as a function of bulk fluid temperature and heat transfer surface temperature. Experiments were conducted by circulating thin stillage or carbohydrate mixtures in a loop through the test section which consisted of an annular fouling probe while maintaining a constant heat flux by electrical heating and fluid flow rate. The change in fouling resistance with time was measured. Fouling curves obtained for thin stillage and concentrated thin stillage were linear with time but no induction periods were observed. Fouling rates for concentrated thin stillage were higher compared to commercial thin stillage due to the increase in solid concentration. Fouling rates for oil skimmed and unskimmed concentrated thin stillage were similar but lower than concentrated thin stillage at 10% solids concentration. Addition of post fermentation corn oil to commercial thin stillage at 0.5% increments increased the fouling rates up to 1% concentration but decreased at 1.5%. As thin stillage is composed of carbohydrates, protein, lipid

  10. Proton transport in a membrane protein channel: two-dimensional infrared spectrum modeling.

    NARCIS (Netherlands)

    Liang, C.; Knoester, J.; Jansen, T.L.Th.A.

    2012-01-01

    We model the two-dimensional infrared (2DIR) spectrum of a proton channel to investigate its applicability as a spectroscopy tool to study the proton transport process in biological systems. Proton transport processes in proton channels are involved in numerous fundamental biochemical reactions.

  11. Monte Carlo study of the phase diagram for the two-dimensional Z(4) model

    International Nuclear Information System (INIS)

    Carneiro, G.M.; Pol, M.E.; Zagury, N.

    1982-05-01

    The phase diagram of the two-dimensional Z(4) model on a square lattice is determined using a Monte Carlo method. The results of this simulation confirm the general features of the phase diagram predicted theoretically for the ferromagnetic case, and show the existence of a new phase with perpendicular order. (Author) [pt

  12. Stationary states of the two-dimensional nonlinear Schrödinger model with disorder

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Hendriksen, D.; Christiansen, Peter Leth

    1998-01-01

    Solitonlike excitations in the presence of disorder in the two-dimensional cubic nonlinear Schrodinger equation are analyzed. The continuum as well as the discrete problem are analyzed. In the continuum model, otherwise unstable excitations are stabilized in the presence of disorder...

  13. Solitary excitations in discrete two-dimensional nonlinear Schrodinger models with dispersive dipole-dipole interactions

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.

    1998-01-01

    The dynamics of discrete two-dimensional nonlinear Schrodinger models with long-range dispersive interactions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole interaction, assuming the dipole moments at each lattice site to be aligned either...

  14. Alignment dynamics of diffusive scalar gradient in a two-dimensional model flow

    Science.gov (United States)

    Gonzalez, M.

    2018-04-01

    The Lagrangian two-dimensional approach of scalar gradient kinematics is revisited accounting for molecular diffusion. Numerical simulations are performed in an analytic, parameterized model flow, which enables considering different regimes of scalar gradient dynamics. Attention is especially focused on the influence of molecular diffusion on Lagrangian statistical orientations and on the dynamics of scalar gradient alignment.

  15. Exploring a two-dimensional model of mentor teacher roles in mentoring dialogues

    NARCIS (Netherlands)

    Dr. F.J.A.J. Crasborn; Dr. Paul Hennissen; Dr. Niels Brouwer; Prof. Dr. Fred Korthagen; Prof. Dr. Theo Bergen

    2011-01-01

    The extent to which mentor teachers are able to address mentees' individual needs is an important factor in the success of mentoring. A two-dimensional model of mentor teacher roles in mentoring dialogues, entitled MERID, is explored empirically. Data regarding five aspects of mentoring dialogues

  16. On two-dimensionalization of three-dimensional turbulence in shell models

    DEFF Research Database (Denmark)

    Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.

    2010-01-01

    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell m......-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case....

  17. Two-dimensional quantum electrodynamics as a model in the constructive quantum field theory

    International Nuclear Information System (INIS)

    Ito, K.R.

    1976-01-01

    We investigate two-dimensional quantum electrodynamics((QED) 2 ) type models on the basis of the Hamiltonian formalism of a vector field. The transformation into a sine-Gordon equation is clarified as a generalized mass-shift transformation through canonical linear transformations. (auth.)

  18. Local persistence and blocking in the two-dimensional blume-capel model

    OpenAIRE

    Silva, Roberto da; Dahmen, S. R.

    2004-01-01

    In this paper we study the local persistence of the two-dimensional Blume-Capel Model by extending the concept of Glauber dynamics. We verify that for any value of the ratio alpha = D/J between anisotropy D and exchange J the persistence shows a power law behavior. In particular for alpha 0 (a ¹ 1) we observe the occurrence of blocking.

  19. Exploring a two-dimensional model of mentor teacher roles in mentoring dialogues

    NARCIS (Netherlands)

    Crasborn, F.J.A.J.; Hennissen, P.P.M.; Brouwer, C.N.; Korthagen, F.A.J.; Bergen, T.C.M.

    2011-01-01

    In this study, a two-dimensional model of mentor teacher roles in mentoring dialogues, entitled MERID, is explored empirically. Data regarding five aspects of mentoring dialogues were collected, using a sample of 20 transcriptions of mentoring dialogues, in which 112 topics were discussed and 440

  20. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  1. Numerical modelling of heat transfer in a cavity due to liquid jet impingement for liquid supported stretch blow moulding

    Science.gov (United States)

    Smyth, Trevor; Menary, Gary; Geron, Marco

    2018-05-01

    Impingement of a liquid jet in a polymer cavity has been modelled numerically in this study. Liquid supported stretch blow moulding is a nascent polymer forming process using liquid as the forming medium to produce plastic bottles. The process derives from the conventional stretch blow moulding process which uses compressed air to deform the preform. Heat transfer away from the preform greatly increases when a liquid instead of a gas is flowing over a solid; in the blow moulding process the temperature of the preform is tightly controlled to achieve optimum forming conditions. A model was developed with Computational Fluid Dynamics code ANSYS Fluent which allows the extent of heat transfer between the incoming liquid and the solid preform to be determined in the initial transient stage, where a liquid jet enters an air filled preform. With this data, an approximation of the extent of cooling through the preform wall can be determined.

  2. SCDAP/RELAP5 modeling of fluid heat transfer and flow losses through porous debris in a light water reactor

    International Nuclear Information System (INIS)

    Harvego, E. A.; Siefken, L. J.

    2000-01-01

    The SCDAP/RELAP5 code is being developed at the Idaho National Engineering and Environmental Laboratory under the primary sponsorship of the U.S. Nuclear Regulatory Commission (NRC) to provide best-estimate transient simulations of light water reactor coolant systems during severe accidents. This paper describes the modeling approach used in the SCDAP/RELAP5 code to calculate fluid heat transfer and flow losses through porous debris that has accumulated in the vessel lower head and core regions during the latter stages of a severe accident. The implementation of heat transfer and flow loss correlations into the code is discussed, and calculations performed to assess the validity of the modeling approach are described. The different modes of heat transfer in porous debris include: (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, (5) film boiling, and (6) transition from film boiling to convection to vapor. The correlations for flow losses in porous debris include frictional and form losses. The correlations for flow losses were integrated into the momentum equations in the RELAP5 part of the code. Since RELAP5 is a very general non-homogeneous non-equilibrium thermal-hydraulics code, the resulting modeling methodology is applicable to a wide range of debris thermal-hydraulic conditions. Assessment of the SCDAP/RELAP5 debris bed thermal-hydraulic models included comparisons with experimental measurements and other models available in the open literature. The assessment calculations, described in the paper, showed that SCDAP/RELAP5 is capable of calculating the heat transfer and flow losses occurring in porous debris regions that may develop in a light water reactor during a severe accident

  3. Absence of vortex condensation in a two dimensional fermionic XY model

    International Nuclear Information System (INIS)

    Cecile, D. J.; Chandrasekharan, Shailesh

    2008-01-01

    Motivated by a puzzle in the study of two-dimensional lattice quantum electrodynamics with staggered fermions, we construct a two-dimensional fermionic model with a global U(1) symmetry. Our model can be mapped into a model of closed packed dimers and plaquettes. Although the model has the same symmetries as the XY model, we show numerically that the model lacks the well-known Kosterlitz-Thouless phase transition. The model is always in the gapless phase showing the absence of a phase with vortex condensation. In other words the low energy physics is described by a noncompact U(1) field theory. We show that by introducing an even number of layers one can introduce vortex condensation within the model and thus also induce a Kosterlitz-Thouless transition.

  4. Two-dimensional horizontal model seismic test and analysis for HTGR core

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Honma, Toshiaki.

    1988-05-01

    The resistance against earthquakes of high-temperature gas-cooled reactor (HTGR) core with block-type fuels is not fully ascertained yet. Seismic studies must be made if such a reactor plant is to be installed in areas with frequent earthquakes. The paper presented the test results of seismic behavior of a half scale two-dimensional horizontal slice core model and analysis. The following is a summary of the more important results. (1) When the core is subjected to the single axis excitation and simultaneous two-axis excitations to the core across-corners, it has elliptical motion. The core stays lumped motion at the low excitation frequencies. (2) When the load is placed on side fixed reflector blocks from outside to the core center, the core displacement and reflector impact reaction force decrease. (3) The maximum displacement occurs at simultaneous two-axis excitations. The maximum displacement occurs at the single axis excitation to the core across-flats. (4) The results of two-dimensional horizontal slice core model was compared with the results of two-dimensional vertical one. It is clarified that the seismic response of actual core can be predicted from the results of two-dimensional vertical slice core model. (5) The maximum reflector impact reaction force for seismic waves was below 60 percent of that for sinusoidal waves. (6) Vibration behavior and impact response are in good agreement between test and analysis. (author)

  5. A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment.

    Science.gov (United States)

    Kumar, P; Kumar, Dinesh; Rai, K N

    2015-01-01

    The success of hyperthermia in the treatment of cancer depends on the precise prediction and control of temperature. It was absolutely a necessity for hyperthermia treatment planning to understand the temperature distribution within living biological tissues. In this paper, dual-phase-lag model of bio-heat transfer has been studied using Gaussian distribution source term under most generalized boundary condition during hyperthermia treatment. An approximate analytical solution of the present problem has been done by Finite element wavelet Galerkin method which uses Legendre wavelet as a basis function. Multi-resolution analysis of Legendre wavelet in the present case localizes small scale variations of solution and fast switching of functional bases. The whole analysis is presented in dimensionless form. The dual-phase-lag model of bio-heat transfer has compared with Pennes and Thermal wave model of bio-heat transfer and it has been found that large differences in the temperature at the hyperthermia position and time to achieve the hyperthermia temperature exist, when we increase the value of τT. Particular cases when surface subjected to boundary condition of 1st, 2nd and 3rd kind are discussed in detail. The use of dual-phase-lag model of bio-heat transfer and finite element wavelet Galerkin method as a solution method helps in precise prediction of temperature. Gaussian distribution source term helps in control of temperature during hyperthermia treatment. So, it makes this study more useful for clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Verification of calculational models of heat exchange crisis and overcrisis heat transfer, used in the KORSAR code

    International Nuclear Information System (INIS)

    Bezrukov, Yu.A.; Shchekoldin, V.I.

    2002-01-01

    On the basis of the Gidropress OKB (Special Design Bureau) experimental data bank one verified the KORSAR code design models and correlations as to heat exchange crisis and overcrisis heat transfer as applied to the WWER reactor normal and emergency conditions. The VI.006.000 version of KORSAR code base calculations is shown to describe adequately the conducted experiments and to deviate insignificantly towards the conservative approach. So it may be considered as one of the codes ensuring more precise estimation [ru

  7. NLP modeling for the optimization of LiBr-H2O absorption refrigeration systems with exergy loss rate, heat transfer area, and cost as single objective functions

    DEFF Research Database (Denmark)

    Mussati, Sergio F.; Gernaey, Krist; Morosuk, Tatiana

    2016-01-01

    exergy loss rate, the total heat transfer area, and the total annual cost of the system. It was found that the optimal solution obtained by minimization of the total exergy loss rate provides “theoretical” upper bounds not only for the total heat transfer area of the system but also for each process unit...... and all stream temperatures, while the optimal solution obtained by minimization of the total heat transfer area provides the lower bounds for these model variables, to solve a cost optimization problem. The minimization of the total exergy loss rate by varying parametrically the available total heat...... transfer area between these bounds was also performed, allowing to see how the optimal distribution of the available total heat transfer area among the system components, as well as the operating conditions (stream temperature, pressure, composition, and mass flow rate) and heat loads, vary qualitatively...

  8. Modelling of fluid flow and heat transfer in a reciprocating compressor

    Science.gov (United States)

    Tuhovcak, J.; Hejcik, J.; Jicha, M.

    2015-08-01

    Efficiency of reciprocating compressor is strongly dependent on several parameters. The most important are valve behaviour and heat transfer. Valves affect the flow through the suction and discharge line. Heat flow from the walls to working fluid increases the work of the cycle. Understanding of these phenomena inside the compressor is a necessary step in the development process. Commercial CFD tools offer wide range of opportunities how to simulate the flow inside the reciprocating compressor nowadays, however they are too demanding in terms of computational time and mesh creation. Several approaches using various correlation equation exist to describe the heat transfer inside the cylinder, however none of them was validated by measurements due to the complicated settings. The goal of this paper is to show a comparison between these correlations using in-house code based on energy balance through the cycle.

  9. Thermal-Flow Code for Modeling Gas Dynamics and Heat Transfer in Space Shuttle Solid Rocket Motor Joints

    Science.gov (United States)

    Wang, Qunzhen; Mathias, Edward C.; Heman, Joe R.; Smith, Cory W.

    2000-01-01

    A new, thermal-flow simulation code, called SFLOW. has been developed to model the gas dynamics, heat transfer, as well as O-ring and flow path erosion inside the space shuttle solid rocket motor joints by combining SINDA/Glo, a commercial thermal analyzer. and SHARPO, a general-purpose CFD code developed at Thiokol Propulsion. SHARP was modified so that friction, heat transfer, mass addition, as well as minor losses in one-dimensional flow can be taken into account. The pressure, temperature and velocity of the combustion gas in the leak paths are calculated in SHARP by solving the time-dependent Navier-Stokes equations while the heat conduction in the solid is modeled by SINDA/G. The two codes are coupled by the heat flux at the solid-gas interface. A few test cases are presented and the results from SFLOW agree very well with the exact solutions or experimental data. These cases include Fanno flow where friction is important, Rayleigh flow where heat transfer between gas and solid is important, flow with mass addition due to the erosion of the solid wall, a transient volume venting process, as well as some transient one-dimensional flows with analytical solutions. In addition, SFLOW is applied to model the RSRM nozzle joint 4 subscale hot-flow tests and the predicted pressures, temperatures (both gas and solid), and O-ring erosions agree well with the experimental data. It was also found that the heat transfer between gas and solid has a major effect on the pressures and temperatures of the fill bottles in the RSRM nozzle joint 4 configuration No. 8 test.

  10. Model of two-dimensional electron gas formation at ferroelectric interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aguado-Puente, P.; Bristowe, N. C.; Yin, B.; Shirasawa, R.; Ghosez, Philippe; Littlewood, P. B.; Artacho, Emilio

    2015-07-01

    The formation of a two-dimensional electron gas at oxide interfaces as a consequence of polar discontinuities has generated an enormous amount of activity due to the variety of interesting effects it gives rise to. Here, we study under what circumstances similar processes can also take place underneath ferroelectric thin films. We use a simple Landau model to demonstrate that in the absence of extrinsic screening mechanisms, a monodomain phase can be stabilized in ferroelectric films by means of an electronic reconstruction. Unlike in the LaAlO3/SrTiO3 heterostructure, the emergence with thickness of the free charge at the interface is discontinuous. This prediction is confirmed by performing first-principles simulations of free-standing slabs of PbTiO3. The model is also used to predict the response of the system to an applied electric field, demonstrating that the two-dimensional electron gas can be switched on and off discontinuously and in a nonvolatile fashion. Furthermore, the reversal of the polarization can be used to switch between a two-dimensional electron gas and a two-dimensional hole gas, which should, in principle, have very different transport properties. We discuss the possible formation of polarization domains and how such configuration competes with the spontaneous accumulation of free charge at the interfaces.

  11. Modelling flow and heat transfer around a seated human body by computational fluid dynamics

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft; Voigt, Lars Peter Kølgaard

    2003-01-01

    A database (http://www.ie.dtu.dk/manikin) containing a detailed representation of the surface geometry of a seated female human body was created from a surface scan of a thermal manikin (minus clothing and hair). The radiative heat transfer coefficient and the natural convection flow around...... of the computational manikin has all surface features of a human being; (2) the geometry is an exact copy of an experimental thermal manikin, enabling detailed comparisons between calculations and experiments....

  12. A Comparison of Simplified Two-dimensional Flow Models Exemplified by Water Flow in a Cavern

    Science.gov (United States)

    Prybytak, Dzmitry; Zima, Piotr

    2017-12-01

    The paper shows the results of a comparison of simplified models describing a two-dimensional water flow in the example of a water flow through a straight channel sector with a cavern. The following models were tested: the two-dimensional potential flow model, the Stokes model and the Navier-Stokes model. In order to solve the first two, the boundary element method was employed, whereas to solve the Navier-Stokes equations, the open-source code library OpenFOAM was applied. The results of numerical solutions were compared with the results of measurements carried out on a test stand in a hydraulic laboratory. The measurements were taken with an ADV probe (Acoustic Doppler Velocimeter). Finally, differences between the results obtained from the mathematical models and the results of laboratory measurements were analysed.

  13. Two-dimensional model of laser alloying of binary alloy powder with interval of melting temperature

    Science.gov (United States)

    Knyzeva, A. G.; Sharkeev, Yu. P.

    2017-10-01

    The paper contains two-dimensional model of laser beam melting of powders from binary alloy. The model takes into consideration the melting of alloy in some temperature interval between solidus and liquidus temperatures. The external source corresponds to laser beam with energy density distributed by Gauss law. The source moves along the treated surface according to given trajectory. The model allows investigating the temperature distribution and thickness of powder layer depending on technological parameters.

  14. Milgrom Relation Models for Spiral Galaxies from Two-Dimensional Velocity Maps

    OpenAIRE

    Barnes, Eric I.; Kosowsky, Arthur; Sellwood, Jerry A.

    2007-01-01

    Using two-dimensional velocity maps and I-band photometry, we have created mass models of 40 spiral galaxies using the Milgrom relation (the basis of modified Newtonian dynamics, or MOND) to complement previous work. A Bayesian technique is employed to compare several different dark matter halo models to Milgrom and Newtonian models. Pseudo-isothermal dark matter halos provide the best statistical fits to the data in a majority of cases, while the Milgrom relation generally provides good fits...

  15. Containment condensing heat transfer

    International Nuclear Information System (INIS)

    Gido, R.G.; Koestel, A.

    1983-01-01

    This report presents a mechanistic heat-transfer model that is valid for large scale containment heat sinks. The model development is based on the determination that the condensation is controlled by mass diffusion through the vapor-air boundary layer, and the application of the classic Reynolds' analogy to formulate expressions for the transfer of heat and mass based on hydrodynamic measurements of the momentum transfer. As a result, the analysis depends on the quantification of the shear stress (momentum transfer) at the interface between the condensate film and the vapor-air boundary layer. In addition, the currently used Tagami and Uchida test observations and their range of applicability are explained

  16. Modelling floor heating systems using a validated two-dimensional ground coupled numerical model

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Kragh, Jesper; Roots, Peter

    2005-01-01

    This paper presents a two-dimensional simulation model of the heat losses and tempera-tures in a slab on grade floor with floor heating which is able to dynamically model the floor heating system. The aim of this work is to be able to model, in detail, the influence from the floor construction...... the floor. This model can be used to design energy efficient houses with floor heating focusing on the heat loss through the floor construction and foundation. It is found that it is impor-tant to model the dynamics of the floor heating system to find the correct heat loss to the ground, and further......, that the foundation has a large impact on the energy consumption of buildings heated by floor heating. Consequently, this detail should be in focus when designing houses with floor heating....

  17. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    International Nuclear Information System (INIS)

    Kirschen, Marcus; Velikorodov, Viktor; Pfeifer, Herbert

    2006-01-01

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently

  18. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Kirschen, Marcus [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)]. E-mail: kirschen@iob.rwth-aachen.de; Velikorodov, Viktor [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany); Pfeifer, Herbert [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)

    2006-11-15

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently.

  19. Application of advanced model of radiative heat transfer in a rod geometry to QUENCH and PARAMETER tests

    International Nuclear Information System (INIS)

    Vasiliev, A.D.; Kobelev, G.V.; Astafieva, V.O.

    2007-01-01

    Radiative heat transfer is very important in different fields of mechanical engineering and related technologies including nuclear reactors, heat transfer in furnaces, aerospace, different high-temperature assemblies. In particular, in the course of a hypothetical severe accident at PWR-type nuclear reactor the temperatures inside the reactor vessel reach high values at which taking into account of radiative heat exchange between the structures of reactor (including core and other reactor vessel elements) gets important. Radiative heat transfer dominates the late phase of severe accident because radiative heat fluxes (proportional to T4, where T is the temperature) are generally considerably higher than convective and conductive heat fluxes in a system. In particular, heat transfer due to radiation determines the heating and degradation of the core and surrounding steel in-vessel structures and finally influences the composition, temperature and mass of materials pouring out of the reactor vessel after its loss of integrity. Existing models of radiative heat exchange use many limitations and approximations: approximate estimation of view factors and beam lengths; the geometry change in the course of the accident is neglected; the database for emissivities of materials is not complete; absorption/emission by steam-noncondensable medium is taken into account approximately. The module MRAD was developed in this paper to model the radiative heat exchange in rod-like geometry typical of PWR-type reactor. Radiative heat exchange is computed using dividing on zones (zonal method) as in existing radiation models implemented to severe accident numerical codes such as ICARE, SCDAP/RELAP, MELCOR but improved in following aspects: new approach to evaluation of view factors and mean beam length; detailed evaluation of gas absorptivity and emissivity; account of effective radiative thermal conductivity for the large core; account of geometry modification in the course of severe

  20. Microfabricated thermal modulator for comprehensive two-dimensional micro gas chromatography: design, thermal modeling, and preliminary testing.

    Science.gov (United States)

    Kim, Sung-Jin; Reidy, Shaelah M; Block, Bruce P; Wise, Kensall D; Zellers, Edward T; Kurabayashi, Katsuo

    2010-07-07

    In comprehensive two-dimensional gas chromatography (GC x GC), a modulator is placed at the juncture between two separation columns to focus and re-inject eluting mixture components, thereby enhancing the resolution and the selectivity of analytes. As part of an effort to develop a microGC x microGC prototype, in this report we present the design, fabrication, thermal operation, and initial testing of a two-stage microscale thermal modulator (microTM). The microTM contains two sequential serpentine Pyrex-on-Si microchannels (stages) that cryogenically trap analytes eluting from the first-dimension column and thermally inject them into the second-dimension column in a rapid, programmable manner. For each modulation cycle (typically 5 s for cooling with refrigeration work of 200 J and 100 ms for heating at 10 W), the microTM is kept approximately at -50 degrees C by a solid-state thermoelectric cooling unit placed within a few tens of micrometres of the device, and heated to 250 degrees C at 2800 degrees C s(-1) by integrated resistive microheaters and then cooled back to -50 degrees C at 250 degrees C s(-1). Thermal crosstalk between the two stages is less than 9%. A lumped heat transfer model is used to analyze the device design with respect to the rates of heating and cooling, power dissipation, and inter-stage thermal crosstalk as a function of Pyrex-membrane thickness, air-gap depth, and stage separation distance. Experimental results are in agreement with trends predicted by the model. Preliminary tests using a conventional capillary column interfaced to the microTM demonstrate the capability for enhanced sensitivity and resolution as well as the modulation of a mixture of alkanes.

  1. A two-dimensional analytical model of laminar flame in lycopodium dust particles

    Energy Technology Data Exchange (ETDEWEB)

    Rahbari, Alireza [Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Shakibi, Ashkan [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Bidabadi, Mehdi [Combustion Research Laboratory, Narmak, Tehran (Iran, Islamic Republic of)

    2015-09-15

    A two-dimensional analytical model is presented to determine the flame speed and temperature distribution of micro-sized lycopodium dust particles. This model is based on the assumptions that the particle burning rate in the flame front is controlled by the process of oxygen diffusion and the flame structure consists of preheat, reaction and post flame zones. In the first step, the energy conservation equations for fuel-lean condition are expressed in two dimensions, and then these differential equations are solved using the required boundary condition and matching the temperature and heat flux at the interfacial boundaries. Consequently, the obtained flame temperature and flame speed distributions in terms of different particle diameters and equivalence ratio for lean mixture are compared with the corresponding experimental data for lycopodium dust particles. Consequently, it is shown that this two-dimensional model demonstrates better agreement with the experimental results compared to the previous models.

  2. A two-dimensional analytical model of laminar flame in lycopodium dust particles

    International Nuclear Information System (INIS)

    Rahbari, Alireza; Shakibi, Ashkan; Bidabadi, Mehdi

    2015-01-01

    A two-dimensional analytical model is presented to determine the flame speed and temperature distribution of micro-sized lycopodium dust particles. This model is based on the assumptions that the particle burning rate in the flame front is controlled by the process of oxygen diffusion and the flame structure consists of preheat, reaction and post flame zones. In the first step, the energy conservation equations for fuel-lean condition are expressed in two dimensions, and then these differential equations are solved using the required boundary condition and matching the temperature and heat flux at the interfacial boundaries. Consequently, the obtained flame temperature and flame speed distributions in terms of different particle diameters and equivalence ratio for lean mixture are compared with the corresponding experimental data for lycopodium dust particles. Consequently, it is shown that this two-dimensional model demonstrates better agreement with the experimental results compared to the previous models.

  3. A Computational Fluid Dynamic and Heat Transfer Model for Gaseous Core and Gas Cooled Space Power and Propulsion Reactors

    Science.gov (United States)

    Anghaie, S.; Chen, G.

    1996-01-01

    A computational model based on the axisymmetric, thin-layer Navier-Stokes equations is developed to predict the convective, radiation and conductive heat transfer in high temperature space nuclear reactors. An implicit-explicit, finite volume, MacCormack method in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve the thermal and fluid governing equations. Simulation of coolant and propellant flows in these reactors involves the subsonic and supersonic flows of hydrogen, helium and uranium tetrafluoride under variable boundary conditions. An enthalpy-rebalancing scheme is developed and implemented to enhance and accelerate the rate of convergence when a wall heat flux boundary condition is used. The model also incorporated the Baldwin and Lomax two-layer algebraic turbulence scheme for the calculation of the turbulent kinetic energy and eddy diffusivity of energy. The Rosseland diffusion approximation is used to simulate the radiative energy transfer in the optically thick environment of gas core reactors. The computational model is benchmarked with experimental data on flow separation angle and drag force acting on a suspended sphere in a cylindrical tube. The heat transfer is validated by comparing the computed results with the standard heat transfer correlations predictions. The model is used to simulate flow and heat transfer under a variety of design conditions. The effect of internal heat generation on the heat transfer in the gas core reactors is examined for a variety of power densities, 100 W/cc, 500 W/cc and 1000 W/cc. The maximum temperature, corresponding with the heat generation rates, are 2150 K, 2750 K and 3550 K, respectively. This analysis shows that the maximum temperature is strongly dependent on the value of heat generation rate. It also indicates that a heat generation rate higher than 1000 W/cc is necessary to maintain the gas temperature at about 3500 K, which is typical design temperature required to achieve high

  4. Heat transfer enhancement

    International Nuclear Information System (INIS)

    Hasatani, Masanobu; Itaya, Yoshinori

    1985-01-01

    In order to develop energy-saving techniques and new energy techniques, and also most advanced techniques by making industrial equipment with high performance, heat transfer performance frequently becomes an important problem. In addition, the improvement of conventional heat transfer techniques and the device of new heat transfer techniques are often required. It is most proper that chemical engineers engage in the research and development for enhancing heat transfer. The research and development for enhancing heat transfer are important to heighten heat exchange efficiency or to cool equipment for preventing overheat in high temperature heat transfer system. In this paper, the techniques of enhancing radiative heat transfer and the improvement of radiative heat transfer characteristics are reported. Radiative heat transfer is proportional to fourth power of absolute temperature, and it does not require any heat transfer medium, but efficient heat-radiation converters are necessary. As the techniques of enhancing radiative heat transfer, the increase of emission and absorption areas, the installation of emissive structures and the improvement of radiative characteristics are discussed. (Kako, I.)

  5. Effects of stratospheric aerosol surface processes on the LLNL two-dimensional zonally averaged model

    International Nuclear Information System (INIS)

    Connell, P.S.; Kinnison, D.E.; Wuebbles, D.J.; Burley, J.D.; Johnston, H.S.

    1992-01-01

    We have investigated the effects of incorporating representations of heterogeneous chemical processes associated with stratospheric sulfuric acid aerosol into the LLNL two-dimensional, zonally averaged, model of the troposphere and stratosphere. Using distributions of aerosol surface area and volume density derived from SAGE 11 satellite observations, we were primarily interested in changes in partitioning within the Cl- and N- families in the lower stratosphere, compared to a model including only gas phase photochemical reactions

  6. N = 2 two dimensional Wess-Zumino model on the lattice

    International Nuclear Information System (INIS)

    Elitzur, S.; Schwimmer, A.

    1983-04-01

    A lattice version of the N = 2 SUSY two dimensional Wess-Zumino model was constructed and studied. The correct continuum limit is checked in perturbation theory. The strong coupling limit is defined and investigated. We find that the ground state of the model has zero energy and infinite degeneracy. The connection between this degeneracy and the properties of the Nicolai-Parisi-Sourlas transformation is discussed. (author)

  7. Radiant heat transfers in turbojet engines. Two applications, three levels of modeling; Transferts radiatifs dans les foyers de turboreacteurs. Deux applications, trois niveaux de modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J L; Desaulty, M [SNECMA, Centre de Villaroche, 77 - Moissy-Cramayel (France); Taine, J [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France)

    1997-12-31

    Several applications linked with the dimensioning of turbojet engines require the use of modeling of radiant heat transfers. Two different applications are presented in this study: the modeling of heat transfers in the main combustion chamber, and modeling of the infrared signature of the post-combustion chamber of a military engine. In the first application, two types of radiant heat transfer modeling are presented: a global modeling based on empirical considerations and used in rapid pre-dimensioning methods, and a modeling based on a grey gases concept and combined to a ray shooting type technique allowing the determination of local radiant heat flux values. In the second application, a specific modeling of the radiant heat flux is used in the framework of a ray shooting method. Each model represents a different level of successive approximations of the radiant heat transfer adapted to flow specificities and to the performance requested. (J.S.) 16 refs.

  8. Radiant heat transfers in turbojet engines. Two applications, three levels of modeling; Transferts radiatifs dans les foyers de turboreacteurs. Deux applications, trois niveaux de modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.L.; Desaulty, M. [SNECMA, Centre de Villaroche, 77 - Moissy-Cramayel (France); Taine, J. [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France)

    1996-12-31

    Several applications linked with the dimensioning of turbojet engines require the use of modeling of radiant heat transfers. Two different applications are presented in this study: the modeling of heat transfers in the main combustion chamber, and modeling of the infrared signature of the post-combustion chamber of a military engine. In the first application, two types of radiant heat transfer modeling are presented: a global modeling based on empirical considerations and used in rapid pre-dimensioning methods, and a modeling based on a grey gases concept and combined to a ray shooting type technique allowing the determination of local radiant heat flux values. In the second application, a specific modeling of the radiant heat flux is used in the framework of a ray shooting method. Each model represents a different level of successive approximations of the radiant heat transfer adapted to flow specificities and to the performance requested. (J.S.) 16 refs.

  9. Investigation of the influence of turbulence models on the prediction of heat transfer to low Prandtl number fluids

    International Nuclear Information System (INIS)

    Thiele, R.; Ma, W.; Anglart, H.

    2011-01-01

    Despite many advances in computational fluid dynamics (CFD), heat transfer modeling and validation of code for liquid metal flows needs to be improved. This contribution aims to provide validation of several turbulence models implemented in OpenFOAM. 6 different low Reynolds number and 3 high Reynolds number turbulence models have been validated against experimental data for 3 different Reynolds numbers. The results show that most models are able to predict the temperature profile tendencies and that especially the k-ω-SST by Menter has good predictive capabilities. However, all turbulence models show deteriorating capabilities with decreasing Reynolds numbers. (author)

  10. Numerical simulation of potato slices drying using a two-dimensional finite element model

    Directory of Open Access Journals (Sweden)

    Beigi Mohsen

    2017-01-01

    Full Text Available An experimental and numerical study was conducted to investigate the process of potato slices drying. For simulating the moisture transfer in the samples and predict the dehydration curves, a two-dimensional finite element model was developed and programmed in Compaq Visual Fortran, version 6.5. The model solved the Fick’s second law for slab in a shrinkage system to calculate the unsteady two-dimensional moisture transmission in rectangular coordinates (x,y. Moisture diffusivity and moisture transfer coefficient were determined by minimizing the sum squares of residuals between experimental and numerical predicted data. Shrinkage kinetics of the potato slices during dehydration was determined experimentally and found to be a linear function of removed moisture. The determined parameters were used in the mathematical model. The predicted moisture content values were compared to the experimental data and the validation results demonstrated that the dynamic drying curves were predicted by the methodology very well.

  11. Rheological properties of the soft-disk model of two-dimensional foams

    DEFF Research Database (Denmark)

    Langlois, Vincent; Hutzler, Stefan; Weaire, Denis

    2008-01-01

    The soft-disk model previously developed and applied by Durian [D. J. Durian, Phys. Rev. Lett. 75, 4780 (1995)] is brought to bear on problems of foam rheology of longstanding and current interest, using two-dimensional systems. The questions at issue include the origin of the Herschel-Bulkley re......The soft-disk model previously developed and applied by Durian [D. J. Durian, Phys. Rev. Lett. 75, 4780 (1995)] is brought to bear on problems of foam rheology of longstanding and current interest, using two-dimensional systems. The questions at issue include the origin of the Herschel......-Bulkley relation, normal stress effects (dilatancy), and localization in the presence of wall drag. We show that even a model that incorporates only linear viscous effects at the local level gives rise to nonlinear (power-law) dependence of the limit stress on strain rate. With wall drag, shear localization...

  12. Numerical Investigation of Fluid Flow and Heat Transfer Inside a 2D Enclosure with Three Hot Obstacles on the Ramp under the Influence of a Magnetic Field

    Directory of Open Access Journals (Sweden)

    M. M. Keshtkar

    2017-06-01

    Full Text Available This paper focuses on solving the fluid flow and heat transfer equations inside a two-dimensional square enclosure containing three hot obstacles affected by gravity and magnetic force placed on a ramp using Boltzmann method (LBM applying multiple relaxation times (MRT. Although, the Lattice Boltzmann with MRT is a complex technique, it is a relatively new, stable, fast and high-accurate one. The main objective of this research was to numerically model the fluid flow and ultimately obtaining the velocity field, flow and temperature contour lines inside a two-dimensional enclosure. The results and their comparisons for different types of heat transfer revealed that free or forced heat transfer has a considerable impact on the heat transfer and stream lines. This can be controlled by modifying the Richardson number. It is revealed that changing the intensity of the magnetic field (Hartman number has an appreciable effect on the heat transfer.

  13. Numerical simulations of a coupled radiative?conductive heat transfer model using a modified Monte Carlo method

    KAUST Repository

    Kovtanyuk, Andrey E.; Botkin, Nikolai D.; Hoffmann, Karl-Heinz

    2012-01-01

    Radiative-conductive heat transfer in a medium bounded by two reflecting and radiating plane surfaces is considered. This process is described by a nonlinear system of two differential equations: an equation of the radiative heat transfer

  14. Quantum entanglement and phase transition in a two-dimensional photon-photon pair model

    International Nuclear Information System (INIS)

    Zhang Jianjun; Yuan Jianhui; Zhang Junpei; Cheng Ze

    2013-01-01

    We propose a two-dimensional model consisting of photons and photon pairs. In the model, the mixed gas of photons and photon pairs is formally equivalent to a two-dimensional system of massive bosons with non-vanishing chemical potential, which implies the existence of two possible condensate phases. Using the variational method, we discuss the quantum phase transition of the mixed gas and obtain the critical coupling line analytically. Moreover, we also find that the phase transition of the photon gas can be interpreted as enhanced second harmonic generation. We then discuss the entanglement between photons and photon pairs. Additionally, we also illustrate how the entanglement between photons and photon pairs can be associated with the phase transition of the system.

  15. A Novel Machine Learning Strategy Based on Two-Dimensional Numerical Models in Financial Engineering

    Directory of Open Access Journals (Sweden)

    Qingzhen Xu

    2013-01-01

    Full Text Available Machine learning is the most commonly used technique to address larger and more complex tasks by analyzing the most relevant information already present in databases. In order to better predict the future trend of the index, this paper proposes a two-dimensional numerical model for machine learning to simulate major U.S. stock market index and uses a nonlinear implicit finite-difference method to find numerical solutions of the two-dimensional simulation model. The proposed machine learning method uses partial differential equations to predict the stock market and can be extensively used to accelerate large-scale data processing on the history database. The experimental results show that the proposed algorithm reduces the prediction error and improves forecasting precision.

  16. Modeling of phonon heat transfer in spherical segment of silica aerogel grains

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ya-Fen; Xia, Xin-Lin, E-mail: xiaxl@hit.edu.cn; Tan, He-Ping, E-mail: tanheping@hit.edu.cn; Liu, Hai-Dong

    2013-07-01

    Phonon heat transfer in spherical segment of nano silica aerogel grains is investigated by the lattice Boltzmann method (LBM). For various sizes of grains, the temperature distribution and the thermal conductivity are obtained by the numerical simulation, in which the size effects of the gap surface are also considered. The results indicate that the temperature distribution in the silica aerogel grain depends strongly on the size. Both the decreases in the diameter of spherical segment and the ratio of the diameter of gap surface to the diameter of spherical segment reduce its effective thermal conductivity obviously. In addition, the phonon scattering at the boundary surfaces becomes more prominent when grain size decreases.

  17. Modeling of phonon heat transfer in spherical segment of silica aerogel grains

    International Nuclear Information System (INIS)

    Han, Ya-Fen; Xia, Xin-Lin; Tan, He-Ping; Liu, Hai-Dong

    2013-01-01

    Phonon heat transfer in spherical segment of nano silica aerogel grains is investigated by the lattice Boltzmann method (LBM). For various sizes of grains, the temperature distribution and the thermal conductivity are obtained by the numerical simulation, in which the size effects of the gap surface are also considered. The results indicate that the temperature distribution in the silica aerogel grain depends strongly on the size. Both the decreases in the diameter of spherical segment and the ratio of the diameter of gap surface to the diameter of spherical segment reduce its effective thermal conductivity obviously. In addition, the phonon scattering at the boundary surfaces becomes more prominent when grain size decreases

  18. Development of a global aerosol model using a two-dimensional sectional method: 1. Model design

    Science.gov (United States)

    Matsui, H.

    2017-08-01

    This study develops an aerosol module, the Aerosol Two-dimensional bin module for foRmation and Aging Simulation version 2 (ATRAS2), and implements the module into a global climate model, Community Atmosphere Model. The ATRAS2 module uses a two-dimensional (2-D) sectional representation with 12 size bins for particles from 1 nm to 10 μm in dry diameter and 8 black carbon (BC) mixing state bins. The module can explicitly calculate the enhancement of absorption and cloud condensation nuclei activity of BC-containing particles by aging processes. The ATRAS2 module is an extension of a 2-D sectional aerosol module ATRAS used in our previous studies within a framework of a regional three-dimensional model. Compared with ATRAS, the computational cost of the aerosol module is reduced by more than a factor of 10 by simplifying the treatment of aerosol processes and 2-D sectional representation, while maintaining good accuracy of aerosol parameters in the simulations. Aerosol processes are simplified for condensation of sulfate, ammonium, and nitrate, organic aerosol formation, coagulation, and new particle formation processes, and box model simulations show that these simplifications do not substantially change the predicted aerosol number and mass concentrations and their mixing states. The 2-D sectional representation is simplified (the number of advected species is reduced) primarily by the treatment of chemical compositions using two interactive bin representations. The simplifications do not change the accuracy of global aerosol simulations. In part 2, comparisons with measurements and the results focused on aerosol processes such as BC aging processes are shown.

  19. Completely two-dimensional model for analysis of characteristics of linear induction cylindrical pump

    International Nuclear Information System (INIS)

    Kirillov, I.R.; Obukhov, D.M.

    2005-01-01

    One introduces a completely two-dimensional mathematical model to calculate characteristics of induction magnetohydrodynamic (MHD) machines with a cylindrical channel. On the basis of the numerical analysis one obtained a pattern of liquid metal flow in a electromagnetic pump at presence of the MHD-instability characterized by initiation of large-scale vortices propagating longitudinally and azimuthally. Comparison of the basic calculated characteristics of pump with the experiment shows their adequate qualitative and satisfactory quantitative coincidence [ru

  20. Coexistence of incommensurate magnetism and superconductivity in the two-dimensional Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Yamase, Hiroyuki [Max Planck Institute for Solid State Research, Stuttgart (Germany); National Institute for Materials Science, Tsukuba (Japan); Eberlein, Andreas [Max Planck Institute for Solid State Research, Stuttgart (Germany); Department of Physics, Harvard University, Cambridge (United States); Metzner, Walter [Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2016-07-01

    We analyze the competition of magnetism and superconductivity in the two-dimensional Hubbard model with a moderate interaction strength, including the possibility of incommensurate spiral magnetic order. Using an unbiased renormalization group approach, we compute magnetic and superconducting order parameters in the ground state. In addition to previously established regions of Neel order coexisting with d-wave superconductivity, the calculations reveal further coexistence regions where superconductivity is accompanied by incommensurate magnetic order.

  1. Two dimensional numerical model for steam--water flow in a sudden contraction

    International Nuclear Information System (INIS)

    Crowe, C.T.; Choi, H.N.

    1976-01-01

    A computational model developed for two-dimensional dispersed two-phase flows is applied to steam--water flow in a sudden contraction. The calculational scheme utilizes the cellular approach in which each cell is regarded as a control volume and the droplets are regarded as sources of mass, momentum and energy to the conveying (steam) phase. The predictions show how droplets channel in the entry region and affect the velocity and pressure distributions along the duct

  2. Two-Dimensional Model Test Study of New Western Breakwater Proposal for Port of Hanstholm

    DEFF Research Database (Denmark)

    Eldrup, Mads Røge; Andersen, Thomas Lykke

    The present report presents results from a two-dimensional model test study carried out at Aalborg University in December 2016 with the proposed trunk section for the new western breakwater in Port of Hanstholm. The objectives of the model tests were to study the stability of the armour layer, toe...... erosion, overtopping and transmission. The scale used for the model tests was 1:61.5. Unless otherwise specified all values given in this report are prototype values converted from the model to prototype according to the Froude model law....

  3. Conjugate heat transfer analysis of an energy conversion device with an updated numerical model obtained through inverse identification

    International Nuclear Information System (INIS)

    Hey, Jonathan; Malloy, Adam C.; Martinez-Botas, Ricardo; Lamperth, Michael

    2015-01-01

    Highlights: • Conjugate heat transfer analysis of an electric machine. • Inverse identification method for estimating the model parameters. • Experimentally determined thermal properties and electromagnetic losses. • Coupling of inverse identification method with a numerical model. • Improved modeling accuracy through introduction of interface material. - Abstract: Energy conversion devices undergo thermal loading during their operation as a result of inefficiencies in the energy conversion process. This will eventually lead to degradation and possible failure of the device if the heat generated is not properly managed. The ability to accurately predict the thermal behavior of such a device during the initial developmental stage is an important requirement. However, accurate predictions of critical temperature is challenging due to the variation of heat transfer parameters from one device to another. The ability to determine the model parameters is key to accurately representing the heat transfer in such a device. This paper presents the use of an inverse identification technique to estimate the model parameters of an energy conversion device designed for vehicular applications. To simulate the imperfect contact and the presence of insulating materials in the permanent magnet electric machine, thin material are introduced at the component interface of the numerical model. The proposed inverse identification method is used to estimate the equivalent thermal conductance of the thin material. In addition, the electromagnetic losses generated in the permanent magnet is also derived indirectly from the temperature measurement using the same method. With the thermal properties and input parameters of the numerical model obtained from the inverse identification method, the critical temperature of the device can be predicted more accurately. The deviation between the maximum measured and predicted winding temperature is less than 2.4%

  4. Influence of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition

    Directory of Open Access Journals (Sweden)

    Guo Zerong

    2016-01-01

    Full Text Available To study the effect of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition, considering the heat transfer coefficient as the power function of temperature, mathematical thermal explosion steady state and unsteady-state model of finite cylindrical fireworks and crackers with complex shell structures are established based on two-dimensional steady state thermal explosion theory. The influence of variable heat transfer coefficient on thermal explosion critical ambient temperature and time to ignition are analyzed. When heat transfer coefficient is changing with temperature and in the condition of natural convection heat transfer, critical ambient temperature lessen, thermal explosion time to ignition shorten. If ambient temperature is close to critical ambient temperature, the influence of variable heat transfer coefficient on time to ignition become large. For firework with inner barrel in example analysis, the critical ambient temperature of propellant is 463.88 K and the time to ignition is 4054.9s at 466 K, 0.26 K and 450.8s less than without considering the change of heat transfer coefficient respectively. The calculation results show that the influence of variable heat transfer coefficient on thermal explosion time to ignition is greater in this example. Therefore, the effect of variable heat transfer coefficient should be considered into thermal safety evaluation of fireworks to reduce potential safety hazard.

  5. Heat transfer from the roughened surface of gas cooled fast breeder reactor fuel element

    International Nuclear Information System (INIS)

    Tang, I.M.

    1979-01-01

    The temperature distributions and the augmentation of heat transfer performance by artificial roughening of a gas cooled fast breeder reactor (GCFR) fuel rod cladding are studied. Numerical solutions are based on the axisymmetric assumption for a two-dimensional model for one rib pitch of axial distance. The local and axial clad temperature distributions are obtained for both the rectangular and ramp rib roughened surface geometries. The transformation of experimentally measured convective heat transfer coefficients, in terms of Stanton number, into GCFR values is studied. In addition, the heat transfer performance of a GCFR fuel rod cladding roughened surface design is evaluated. Approximate analytical solution for correlating an average Stanton number is also obtained and satisfactorily compared with the corresponding numerical result for a GCFR design. The analytical correlation is useful in assessing roughened surface heat transfer performance in scoping studies and conceptual design

  6. An axial heat transfer analytical model for capillary-pumped loop vapor line temperature distributions

    International Nuclear Information System (INIS)

    Lin, H.-W.; Lin, W.-K.

    2007-01-01

    This paper aims to study the capillary-pumped loop (CPL) vapor line temperature distributions. A simple axial heat transfer method is developed to predict the vapor line temperature from evaporator outlet to condenser inlet. CPL is a high efficiency two-phase heat transfer device. Since it does not need any other mechanical force such as pump, furthermore, it might be used to do the thermal management of high power electronic component such as spacecraft, notebook and computer servers. It is a cyclic circulation pumped by capillary force, and this force is generated from the fine porous structure in evaporator. A novel semi-arc porous evaporator to CPL in 1U server is designed on the ground with a horizontal position and scale down the whole device to the miniature size. From the experimental results, the CPL could remove heat 90 W in steady-state and keep the heat source temperature about 70 deg. C. Finally, a good agreement between the simulation and experimental values has been achieved. Comparing with experiment and simulation results, the deviation values of the distributions of the condenser inlet temperature are less than 8%

  7. Chern-Simons matrix models, two-dimensional Yang-Mills theory and the Sutherland model

    International Nuclear Information System (INIS)

    Szabo, Richard J; Tierz, Miguel

    2010-01-01

    We derive some new relationships between matrix models of Chern-Simons gauge theory and of two-dimensional Yang-Mills theory. We show that q-integration of the Stieltjes-Wigert matrix model is the discrete matrix model that describes q-deformed Yang-Mills theory on S 2 . We demonstrate that the semiclassical limit of the Chern-Simons matrix model is equivalent to the Gross-Witten model in the weak-coupling phase. We study the strong-coupling limit of the unitary Chern-Simons matrix model and show that it too induces the Gross-Witten model, but as a first-order deformation of Dyson's circular ensemble. We show that the Sutherland model is intimately related to Chern-Simons gauge theory on S 3 , and hence to q-deformed Yang-Mills theory on S 2 . In particular, the ground-state wavefunction of the Sutherland model in its classical equilibrium configuration describes the Chern-Simons free energy. The correspondence is extended to Wilson line observables and to arbitrary simply laced gauge groups.

  8. A Multi-Dimensional Heat Transfer Model of a Tie-Tube and Hexagonal Fuel Element for Nuclear Thermal Propulsion

    Science.gov (United States)

    Gomez, C. F.; Mireles, O. R.; Stewart, E.

    2016-01-01

    The Space Capable Cryogenic Thermal Engine (SCCTE) effort considers a nuclear thermal rocket design based around a Low-Enriched Uranium (LEU) design fission reactor. The reactor core is comprised of bundled hexagonal fuel elements that directly heat hydrogen for expansion in a thrust chamber and hexagonal tie-tubes that house zirconium hydride moderator mass for the purpose of thermalizing fast neutrons resulting from fission events. Created 3D steady state Hex fuel rod model with 1D flow channels. Hand Calculation were used to set up initial conditions for fluid flow. The Hex Fuel rod uses 1D flow paths to model the channels using empirical correlations for heat transfer in a pipe. Created a 2-D axisymmetric transient to steady state model using the CFD turbulent flow and Heat Transfer module in COMSOL. This model was developed to find and understand the hydrogen flow that might effect the thermal gradients axially and at the end of the tie tube where the flow turns and enters an annulus. The Hex fuel rod and Tie tube models were made based on requirements given to us by CSNR and the SCCTE team. The models helped simplify and understand the physics and assumptions. Using pipe correlations reduced the complexity of the 3-D fuel rod model and is numerically more stable and computationally more time-efficient compared to the CFD approach. The 2-D axisymmetric tie tube model can be used as a reference "Virtual test model" for comparing and improving 3-D Models.

  9. Two-Dimensional Model Test Study of New Western Breakwater Proposal for Port of Hanstholm

    OpenAIRE

    Eldrup, Mads Røge; Andersen, Thomas Lykke

    2016-01-01

    The present report presents results from a two-dimensional model test study carried out at Aalborg University in December 2016 with the proposed trunk section for the new western breakwater in Port of Hanstholm. The objectives of the model tests were to study the stability of the armour layer, toe erosion, overtopping and transmission. The scale used for the model tests was 1:61.5. Unless otherwise specified all values given in this report are prototype values converted from the model to prot...

  10. S-matrix regularities of two-dimensional sigma-models of Stiefel manifolds

    International Nuclear Information System (INIS)

    Flume-Gorczyca, B.

    1980-01-01

    The S-matrices of the two-dimensional nonlinear O(n + m)/O(n) and O(n + m)/O(n) x O(m) sigma-models corresponding to Stiefel and Grassmann manifolds, respectively, are compared in leading order in 1/n. It is shown, that after averaging over O(m) labels of the incoming and outgoing particles, the S-matrices of both models become identical. This result explains why commonly expected regularities of the Grassmann models, in particular absence of particle production, are found, modulo an O(m) average, also in Stiefel models. (orig.)

  11. Optimum interior area thermal resistance model to analyze the heat transfer characteristics of an insulated pipe with arbitrary shape

    International Nuclear Information System (INIS)

    Chou, H.-M.

    2003-01-01

    The heat transfer characteristics for an insulated regular polygonal (or circular) pipe are investigated by using a wedge thermal resistance model as well as the interior area thermal resistance model R th =t/K s /[(1-α)A 2 +αA 3 ] with a surface area weighting factor α. The errors of the results generated by an interior area model can be obtained by comparing with the exact results generated by a wedge model. Accurate heat transfer rates can be obtained without error at the optimum α opt with the related t/R 2 . The relation between α opt and t/R 2 is α opt =1/ln(1+t/R 2 )-1/(t/R 2 ). The value of α opt is greater than zero and less than 0.5 and is independent of pipe size R 2 /R cr but strongly dependent on the insulation thickness t/R 2 . The interior area model using the optimum value α opt with the related t/R 2 should also be applied to an insulated pipe with arbitrary shape within a very small amount of error for the results of heat transfer rates. The parameter R 2 conservatively corresponds to the outside radius of the maximum inside tangent circular pipe within the arbitrary shaped pipes. The approximate dimensionless critical thickness t cr /R 2 and neutral thickness t e /R 2 of an insulated pipe with arbitrary shape are also obtained. The accuracies of the value of t cr /R 2 as well as t e /R 2 are strongly dependent on the shape of the insulated small pipe. The closer the shape of an insulated pipe is to a regular polygonal or circular pipe, the more reliable will the values of t cr /R 2 as well as t e /R 2 be

  12. Contribution to the modelling of flows and heat transfers during the reflooding phase of a PWR core

    International Nuclear Information System (INIS)

    Colas, D.

    1984-01-01

    This thesis contributes to modelise thermohydraulic phenomena occuring in a pressurized water nuclear reactor core during the reflood phase of a LOCA. The reference accident and phenomena occuring during reflooding are described as well as flow regime and heat transfer proposed models. With these models, we developed a code to compute fluid conditions and fuel rods temperatures in a reactor core chanel. In order to test this code, results of computation are compared with experiments (FLECHT Skewed Tests) and a conclusion is drawn [fr

  13. Introduction to heat transfer

    CERN Document Server

    SUNDÉN, B

    2012-01-01

    Presenting the basic mechanisms for transfer of heat, Introduction to Heat Transfer gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers.

  14. Tailoring weld geometry during keyhole mode laser welding using a genetic algorithm and a heat transfer model

    International Nuclear Information System (INIS)

    Rai, R; DebRoy, T

    2006-01-01

    Tailoring of weld attributes based on scientific principles remains an important goal in welding research. The current generation of unidirectional laser keyhole models cannot determine sets of welding variables that can lead to a particular weld attribute such as specific weld geometry. Here we show how a computational heat transfer model of keyhole mode laser welding can be restructured for systematic tailoring of weld attributes based on scientific principles. Furthermore, the model presented here can calculate multiple sets of laser welding variables, i.e. laser power, welding speed and beam defocus, with each set leading to the same weld pool geometry. Many sets of welding variables were obtained via a global search using a real number-based genetic algorithm, which was combined with a numerical heat transfer model of keyhole laser welding. The reliability of the numerical heat transfer calculations was significantly improved by optimizing values of the uncertain input parameters from a limited volume of experimental data. The computational procedure was applied to the keyhole mode laser welding of the 5182 Al-Mg alloy to calculate various sets of welding variables to achieve a specified weld geometry. The calculated welding parameter sets showed wide variations of the values of welding parameters, but each set resulted in a similar fusion zone geometry. The effectiveness of the computational procedure was examined by comparing the computed weld geometry for each set of welding parameters with the corresponding experimental geometry. The results provide hope that systematic tailoring of weld attributes via multiple pathways, each representing alternative welding parameter sets, is attainable based on scientific principles

  15. Heat transfer system

    Science.gov (United States)

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  16. Basic heat transfer

    CERN Document Server

    Bacon, D H

    2013-01-01

    Basic Heat Transfer aims to help readers use a computer to solve heat transfer problems and to promote greater understanding by changing data values and observing the effects, which are necessary in design and optimization calculations.The book is concerned with applications including insulation and heating in buildings and pipes, temperature distributions in solids for steady state and transient conditions, the determination of surface heat transfer coefficients for convection in various situations, radiation heat transfer in grey body problems, the use of finned surfaces, and simple heat exc

  17. A Model for the Two-dimensional no Isolated Bits Constraint

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2006-01-01

    A stationary model is presented for the two-dimensional (2-D) no isolated bits (n.i.b.) constraint over an extended alphabet defined by the elements within 1 by 2 blocks. This block-wise model is based on a set of sufficient conditions for a Pickard random field (PRF) over an m-ary alphabet....... Iterative techniques are applied as part of determining the model parameters. Given two Markov chains describing a boundary, an algorithm is presented which determines whether a certain PRF consistent with the boundary exists. Iterative scaling is used as part of the algorithm, which also determines...

  18. Determination of two dimensional axisymmetric finite element model for reactor coolant piping nozzles

    International Nuclear Information System (INIS)

    Choi, S. N.; Kim, H. N.; Jang, K. S.; Kim, H. J.

    2000-01-01

    The purpose of this paper is to determine a two dimensional axisymmetric model through a comparative study between a three dimensional and an axisymmetric finite element analysis of the reactor coolant piping nozzle subject to internal pressure. The finite element analysis results show that the stress adopting the axisymmetric model with the radius of equivalent spherical vessel are well agree with that adopting the three dimensional model. The radii of equivalent spherical vessel are 3.5 times and 7.3 times of the radius of the reactor coolant piping for the safety injection nozzle and for the residual heat removal nozzle, respectively

  19. Two-dimensional Thermal Modeling of Lithium-ion Battery Cell Based on Electrothermal Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Loan; Knap, Vaclav

    2016-01-01

    Thermal modeling of lithium-ion batteries is gaining its importance together with increasing power density and compact design of the modern battery systems in order to assure battery safety and long lifetime. Thermal models of lithium-ion batteries are usually either expensive to develop...... and accurate or equivalent thermal circuit based with moderate accuracy and without spatial temperature distribution. This work presents initial results that can be used as a fundament for the cost-efficient development of the two-dimensional thermal model of lithium-ion battery based on multipoint...

  20. Indirectly heated biomass gasification using a latent-heat ballast-part 3: refinement of the heat transfer model

    International Nuclear Information System (INIS)

    Cummer, Keith; Brown, Robert C.

    2005-01-01

    An indirectly heated gasifier is under development at Iowa State University. This gasifier integrates a latent-heat ballast with a fluidized-bed reactor. The latent heat ballast is an array of stainless-steel tubes filled with lithium fluoride, which is a high-temperature phase-change material (PCM). Previous studies have presented experimental results from the gasifier and described a mathematical model of the pyrolysis phase of the cyclic gasification process. This model considers both heat transfer and chemical reactions that occur during pyrolysis, but discrepancies between model predictions and experimental data have demonstrated the need to refine the model. In particular, cooling curves for the ballasting system are not well predicted during phase change of the lithium fluoride. A reformulated model, known as the Receding Interface (RI) model, postulates the existence of a receding liquid phase within the ballast tubes as they cool, which progressively decreases the rate of heat transfer from the tubes. The RI model predicts behavior that is more consistent with experimental results during the phase-change process, while retaining accuracy before and after the process of phase change

  1. Development and Validation of Computational Fluid Dynamics Models for Prediction of Heat Transfer and Thermal Microenvironments of Corals

    Science.gov (United States)

    Ong, Robert H.; King, Andrew J. C.; Mullins, Benjamin J.; Cooper, Timothy F.; Caley, M. Julian

    2012-01-01

    We present Computational Fluid Dynamics (CFD) models of the coupled dynamics of water flow, heat transfer and irradiance in and around corals to predict temperatures experienced by corals. These models were validated against controlled laboratory experiments, under constant and transient irradiance, for hemispherical and branching corals. Our CFD models agree very well with experimental studies. A linear relationship between irradiance and coral surface warming was evident in both the simulation and experimental result agreeing with heat transfer theory. However, CFD models for the steady state simulation produced a better fit to the linear relationship than the experimental data, likely due to experimental error in the empirical measurements. The consistency of our modelling results with experimental observations demonstrates the applicability of CFD simulations, such as the models developed here, to coral bleaching studies. A study of the influence of coral skeletal porosity and skeletal bulk density on surface warming was also undertaken, demonstrating boundary layer behaviour, and interstitial flow magnitude and temperature profiles in coral cross sections. Our models compliment recent studies showing systematic changes in these parameters in some coral colonies and have utility in the prediction of coral bleaching. PMID:22701582

  2. Basic problems solving for two-dimensional discrete 3 × 4 order hidden markov model

    International Nuclear Information System (INIS)

    Wang, Guo-gang; Gan, Zong-liang; Tang, Gui-jin; Cui, Zi-guan; Zhu, Xiu-chang

    2016-01-01

    A novel model is proposed to overcome the shortages of the classical hypothesis of the two-dimensional discrete hidden Markov model. In the proposed model, the state transition probability depends on not only immediate horizontal and vertical states but also on immediate diagonal state, and the observation symbol probability depends on not only current state but also on immediate horizontal, vertical and diagonal states. This paper defines the structure of the model, and studies the three basic problems of the model, including probability calculation, path backtracking and parameters estimation. By exploiting the idea that the sequences of states on rows or columns of the model can be seen as states of a one-dimensional discrete 1 × 2 order hidden Markov model, several algorithms solving the three questions are theoretically derived. Simulation results further demonstrate the performance of the algorithms. Compared with the two-dimensional discrete hidden Markov model, there are more statistical characteristics in the structure of the proposed model, therefore the proposed model theoretically can more accurately describe some practical problems.

  3. Numerical Simulation of One-Dimensional Fractional Nonsteady Heat Transfer Model Based on the Second Kind Chebyshev Wavelet

    Directory of Open Access Journals (Sweden)

    Fuqiang Zhao

    2017-01-01

    Full Text Available In the current study, a numerical technique for solving one-dimensional fractional nonsteady heat transfer model is presented. We construct the second kind Chebyshev wavelet and then derive the operational matrix of fractional-order integration. The operational matrix of fractional-order integration is utilized to reduce the original problem to a system of linear algebraic equations, and then the numerical solutions obtained by our method are compared with those obtained by CAS wavelet method. Lastly, illustrated examples are included to demonstrate the validity and applicability of the technique.

  4. Modeling the burnout of solid polydisperse fuel under the conditions of external heat transfer

    Science.gov (United States)

    Skorik, I. A.; Goldobin, Yu. M.; Tolmachev, E. M.; Gal'perin, L. G.

    2013-11-01

    A self-similar burnout mode of solid polydisperse fuel is considered taking into consideration heat transfer between fuel particles, gases, and combustion chamber walls. A polydisperse composition of fuel is taken into account by introducing particle distribution functions by radiuses obtained for the kinetic and diffusion combustion modes. Equations for calculating the temperatures of particles and gases are presented, which are written for particles average with respect to their distribution functions by radiuses taking into account the fuel burnout ratio. The proposed equations take into consideration the influence of fuel composition, air excess factor, and gas recirculation ratio. Calculated graphs depicting the variation of particle and gas temperatures, and the fuel burnout ratio are presented for an anthracite-fired boiler.

  5. Convective Heat Transfer at the Martian Boundary Layer, Measurement and Model

    Science.gov (United States)

    Tomás Soria-Salinas, Álvaro; Zorzano-Mier, María Paz; Martín-Torres, Javier

    2016-04-01

    We present a measuring concept to measure the convective heat transfer coefficient h near a spacecraft operating on the surface of Mars. This coefficient can be used to derive the speed of the wind and direction, and to detect its modulations. This measuring concept will be used in the instrument HABIT (HabitAbility: Brines, Irradiance and Temperature) for the Surface Platform of ExoMars 2018 (ESA-Roscosmos). The method is based on the use of 3 Resistance Temperature Thermodetectors (RTD) that measure the temperature at 3 locations along the axial direction of a rod of length L: at the base of the rod, Tb, an intermediate point x = L/n, TLn, and the tip,Ta. This sensing fin is called the Air Temperature Sensor (ATS). HABIT shall incorporate three ATS, oriented in perpendicular directions and thus exposed to wind in a different way. Solving these equations for each ATS, provides three fluid temperatures Tf as well as three m parameters that are used to derive three heat transfer coefficients h. This magnitude is dependent on the local forced convection and therefore is sensitive to the direction, speed and modulations of the wind. The m-parameter has already proven to be useful to investigate the convective activity at the planetary boundary layer on Mars and to determine the height of the planetary boundary layer. This method shall be presented here by: 1) Introducing the mathematical concepts for the retrieval of the m-parameter; 2) performing ANSYS simulations of the fluid dynamics and the thermal environment around the ATS-rods under wind conditions in Mars; and 3) comparing the method by using data measurements from the Rover Environmental Monitoring Station (REMS) at the Curiosity rover of NASA's Mars Science Laboratory project currently operating on Mars. The results shall be compared with the wind sensor measurements of three years of REMS operation on Mars.

  6. NUMERICAL SIMULATION OF FLOW OVER TWO-DIMENSIONAL MOUNTAIN RIDGE USING SIMPLE ISENTROPIC MODEL

    Directory of Open Access Journals (Sweden)

    Siswanto Siswanto

    2009-07-01

    Full Text Available Model sederhana isentropis telah diaplikasikan untuk mengidentifikasi perilaku aliran masa udara melewati topografi sebuah gunung. Dalam model isentropis, temperature potensial θ digunakan sebagai koordinat vertikal dalam rezim aliran adiabatis. Medan angin dalam arah vertikal dihilangkan dalam koordinat isentropis sehingga mereduksi sistim tiga dimensi menjadi sistim dua dimensi lapisan θ. Skema komputasi beda hingga tengah telah digunakan untuk memformulasikan model adveksi. Paper ini membahas aplikasi sederhana dari model isentropis untuk mempelajari gelombang gravitasi dan fenomena angin gunung  dengan desain komputasi periodik dan kondisi batas lateral serta simulasi dengan topografi yang berbeda.   The aim of this work is to study turbulent flow over two-dimensional hill using a simple isentropic model. The isentropic model is represented by applying the potential temperature θ, as the vertical coordinate and is conversed in adiabatic flow regimes. This implies a vanishing vertical wind in isentropic coordinates which reduces the three dimensional system to a stack of two dimensional θ–layers. The equations for each isentropic layer are formally identical with the shallow water equation. A computational scheme of centered finite differences is used to formulate an advective model. This work reviews a simple isentropic model application to investigate gravity wave and mountain wave phenomena regard to different experimental design of computation and topographic height.

  7. An Embedded 3D Fracture Modeling Approach for Simulating Fracture-Dominated Fluid Flow and Heat Transfer in Geothermal Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Henry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Cong [Colorado School of Mines; Winterfeld, Philip [Colorado School of Mines; Wu, Yu-Shu [Colorado School of Mines

    2018-02-14

    An efficient modeling approach is described for incorporating arbitrary 3D, discrete fractures, such as hydraulic fractures or faults, into modeling fracture-dominated fluid flow and heat transfer in fractured geothermal reservoirs. This technique allows 3D discrete fractures to be discretized independently from surrounding rock volume and inserted explicitly into a primary fracture/matrix grid, generated without including 3D discrete fractures in prior. An effective computational algorithm is developed to discretize these 3D discrete fractures and construct local connections between 3D fractures and fracture/matrix grid blocks of representing the surrounding rock volume. The constructed gridding information on 3D fractures is then added to the primary grid. This embedded fracture modeling approach can be directly implemented into a developed geothermal reservoir simulator via the integral finite difference (IFD) method or with TOUGH2 technology This embedded fracture modeling approach is very promising and computationally efficient to handle realistic 3D discrete fractures with complicated geometries, connections, and spatial distributions. Compared with other fracture modeling approaches, it avoids cumbersome 3D unstructured, local refining procedures, and increases computational efficiency by simplifying Jacobian matrix size and sparsity, while keeps sufficient accuracy. Several numeral simulations are present to demonstrate the utility and robustness of the proposed technique. Our numerical experiments show that this approach captures all the key patterns about fluid flow and heat transfer dominated by fractures in these cases. Thus, this approach is readily available to simulation of fractured geothermal reservoirs with both artificial and natural fractures.

  8. Nanolithographic Fabrication and Heterogeneous Reaction Studies ofTwo-Dimensional Platinum Model Catalyst Systems

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Anthony Marshall [Univ. of California, Berkeley, CA (United States)

    2006-05-20

    In order to better understand the fundamental components that govern catalytic activity, two-dimensional model platinum nanocatalyst arrays have been designed and fabricated. These catalysts arrays are meant to model the interplay of the metal and support important to industrial heterogeneous catalytic reactions. Photolithography and sub-lithographic techniques such as electron beam lithography, size reduction lithography and nanoimprint lithography have been employed to create these platinum nanoarrays. Both in-situ and ex-situ surface science techniques and catalytic reaction measurements were used to correlate the structural parameters of the system to catalytic activity.

  9. Computer simulation of the martensite transformation in a model two-dimensional body

    International Nuclear Information System (INIS)

    Chen, S.; Khachaturyan, A.G.; Morris, J.W. Jr.

    1979-05-01

    An analytical model of a martensitic transformation in an idealized body is constructed and used to carry out a computer simulation of the transformation in a pseudo-two-dimensional crystal. The reaction is assumed to proceed through the sequential transformation of elementary volumes (elementary martensitic particles, EMP) via the Bain strain. The elastic interaction between these volumes is computed and the transformation path chosen so as to minimize the total free energy. The model transformation shows interesting qualitative correspondencies with the known features of martensitic transformations in typical solids

  10. Computer simulation of the martensite transformation in a model two-dimensional body

    International Nuclear Information System (INIS)

    Chen, S.; Khachaturyan, A.G.; Morris, J.W. Jr.

    1979-06-01

    An analytical model of a martensitic transformation in an idealized body is constructed and used to carry out a computer simulation of the transformation in a pseudo-two-dimensional crystal. The reaction is assumed to proceed through the sequential transformation of elementary volumes (elementary martensitic particles, EMP) via the Bain strain. The elastic interaction between these volumes is computed and the transformation path chosen so as to minimize the total free energy. The model transformation shows interesting qualitative correspondencies with the known features of martensitic transformations in typical solids

  11. Two dimensional Hall MHD modeling of a plasma opening switch with density inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Zabaidullin, O [Kurchatov Institute, Moscow (Russian Federation); Chuvatin, A; Etlicher, B [Ecole Polytechnique, Palaiseau (France). Laboratoire de Physique des Milieux Ionises

    1997-12-31

    The results of two-dimensional numerical modeling of the Plasma Opening Switch in the MHD framework with Hall effect are presented. An enhanced Hall diffusion coefficient was used in the simulations. Recent experiments justify the application of this approach. The result of the modeling also correlates better with the experiment than in the case of the classical diffusion coefficient. Numerically generated pictures propose a switching scenario in which the translation between the conduction and opening phases can be explained by an abrupt `switching on` and further domination of the Hall effect at the end of the conduction phase. (author). 3 figs., 6 refs.

  12. Validation of a two-dimensional pollutant dispersion model in an isolated street canyon

    Energy Technology Data Exchange (ETDEWEB)

    Chan, T.L.; Dong, G.; Leung, C.W.; Cheung, C.S. [The Hong Kong Polytechnic University, Kowloon (Hong Kong). Research Centre for Combustion and Pollution Control, Department of Mechanical Engineering; Hung, W.T. [The Hong Kong Polytechnic University, Kowloon (Hong Kong). Department of Civil and Structural Engineering

    2002-07-01

    A two-dimensional numerical model based on Reynolds-averaged Navier-Stokes equations coupled with a series of standard, Renormalization Group (RNG) and realizable k-{epsilon} turbulence models was developed to simulate the fluid-flow development and pollutant dispersion within an isolated street canyon using the FLUENT code. In the present study, the validation of the numerical model was evaluated using an extensive experimental database obtained from the atmospheric boundary layer wind tunnel at the Meteorological Institute of Hamburg University, Germany (J. Wind Eng. Ind. Aerodyn. 62 (1996) 37). Among the studied turbulence models, the RNG k-{epsilon} turbulence model was found to be the most optimum turbulence model coupled with the two-dimensional street canyon model developed in the present study. Both the calculated and measured dimensionless pollutant concentrations have been shown to be less dependent on the variation of wind speed and source strength conditions for the studied street canyon aspect ratio of the B/H=1 case. However, the street canyon configuration has significant influence on the pollutant dispersion. The wider street and lower height of the buildings are favorable to pollutant dilution within the street canyon. The fluid-flow development has demonstrated that the rotative vortex or vortices generated within the urban street canyon can transport the pollutants from a line source to the wall surfaces of the buildings. (author)

  13. Treatment of dynamical processes in two-dimensional models of the troposphere and stratosphere

    International Nuclear Information System (INIS)

    Wuebbles, D.J.

    1980-07-01

    The physical structure of the troposphere and stratosphere is the result of an intricate interplay among a large number of radiative, chemical, and dynamical processes. Because it is not possible to model the global environment in the laboratory, theoretical models must be relied on, subject to observational verification, to simulate atmospheric processes. Of particular concern in recent years has been the modeling of those processes affecting the structure of ozone and other trace species in the stratosphere and troposphere. Zonally averaged two-dimensional models with spatial resolution in the vertical and meridional directions can provide a much more realistic representation of tracer transport than one-dimensional models, yet are capable of the detailed representation of chemical and radiative processes contained in the one-dimensional models. The purpose of this study is to describe and analyze existing approaches to representing global atmospheric transport processes in two-dimensional models and to discuss possible alternatives to these approaches. A general description of the processes controlling the transport of trace constituents in the troposphere and stratosphere is given

  14. Two-Dimensional Physical and CFD Modelling of Large Gas Bubble Behaviour in Bath Smelting Furnaces

    Directory of Open Access Journals (Sweden)

    Yuhua Pan

    2010-09-01

    Full Text Available The behaviour of large gas bubbles in a liquid bath and the mechanisms of splash generation due to gas bubble rupture in high-intensity bath smelting furnaces were investigated by means of physical and mathematical (CFD modelling techniques. In the physical modelling work, a two-dimensional Perspex model of the pilot plant furnace at CSIRO Process Science and Engineering was established in the laboratory. An aqueous glycerol solution was used to simulate liquid slag. Air was injected via a submerged lance into the liquid bath and the bubble behaviour and the resultant splashing phenomena were observed and recorded with a high-speed video camera. In the mathematical modelling work, a two-dimensional CFD model was developed to simulate the free surface flows due to motion and deformation of large gas bubbles in the liquid bath and rupture of the bubbles at the bath free surface. It was concluded from these modelling investigations that the splashes generated in high-intensity bath smelting furnaces are mainly caused by the rupture of fast rising large gas bubbles. The acceleration of the bubbles into the preceding bubbles and the rupture of the coalescent bubbles at the bath surface contribute significantly to splash generation.

  15. CFD SIMULATION OF THE HEAT TRANSFER PROCESS IN A CHEVRON PLATE HEAT EXCHANGER USING THE SST TURBULENCE MODEL

    Directory of Open Access Journals (Sweden)

    Jan Skočilas

    2015-08-01

    Full Text Available This paper deals with a computational fluid dynamics (CFD simulation of the heat transfer process during turbulent hot water flow between two chevron plates in a plate heat exchanger. A three-dimensional model with the simplified geometry of two cross-corrugated channels provided by chevron plates, taking into account the inlet and outlet ports, has been designed for the numerical study. The numerical model was based on the shear-stress transport (SST k-! model. The basic characteristics of the heat exchanger, as values of heat transfer coefficient and pressure drop, have been investigated. A comparative analysis of analytical calculation results, based on experimental data obtained from literature, and of the results obtained by numerical simulation, has been carried out. The coefficients and the exponents in the design equations for the considered plates have been arranged by using simulation results. The influence on the main flow parameters of the corrugation inclination angle relative to the flow direction has been taken into account. An analysis of the temperature distribution across the plates has been carried out, and it has shown the presence of zones with higher heat losses and low fluid flow intensity.

  16. Modeling of thin-walled structures interacting with acoustic media as constrained two-dimensional continua

    Science.gov (United States)

    Rabinskiy, L. N.; Zhavoronok, S. I.

    2018-04-01

    The transient interaction of acoustic media and elastic shells is considered on the basis of the transition function approach. The three-dimensional hyperbolic initial boundary-value problem is reduced to a two-dimensional problem of shell theory with integral operators approximating the acoustic medium effect on the shell dynamics. The kernels of these integral operators are determined by the elementary solution of the problem of acoustic waves diffraction at a rigid obstacle with the same boundary shape as the wetted shell surface. The closed-form elementary solution for arbitrary convex obstacles can be obtained at the initial interaction stages on the background of the so-called “thin layer hypothesis”. Thus, the shell–wave interaction model defined by integro-differential dynamic equations with analytically determined kernels of integral operators becomes hence two-dimensional but nonlocal in time. On the other hand, the initial interaction stage results in localized dynamic loadings and consequently in complex strain and stress states that require higher-order shell theories. Here the modified theory of I.N.Vekua–A.A.Amosov-type is formulated in terms of analytical continuum dynamics. The shell model is constructed on a two-dimensional manifold within a set of field variables, Lagrangian density, and constraint equations following from the boundary conditions “shifted” from the shell faces to its base surface. Such an approach allows one to construct consistent low-order shell models within a unified formal hierarchy. The equations of the N th-order shell theory are singularly perturbed and contain second-order partial derivatives with respect to time and surface coordinates whereas the numerical integration of systems of first-order equations is more efficient. Such systems can be obtained as Hamilton–de Donder–Weyl-type equations for the Lagrangian dynamical system. The Hamiltonian formulation of the elementary N th-order shell theory is

  17. Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices.

    Science.gov (United States)

    Español, Malena I; Golovaty, Dmitry; Wilber, J Patrick

    2018-01-01

    In this paper, we derive a continuum variational model for a two-dimensional deformable lattice of atoms interacting with a two-dimensional rigid lattice. The starting point is a discrete atomistic model for the two lattices which are assumed to have slightly different lattice parameters and, possibly, a small relative rotation. This is a prototypical example of a three-dimensional system consisting of a graphene sheet suspended over a substrate. We use a discrete-to-continuum procedure to obtain the continuum model which recovers both qualitatively and quantitatively the behaviour observed in the corresponding discrete model. The continuum model predicts that the deformable lattice develops a network of domain walls characterized by large shearing, stretching and bending deformation that accommodates the misalignment and/or mismatch between the deformable and rigid lattices. Two integer-valued parameters, which can be identified with the components of a Burgers vector, describe the mismatch between the lattices and determine the geometry and the details of the deformation associated with the domain walls.

  18. Renormalization group flows in σ-models coupled to two-dimensional dynamical gravity

    International Nuclear Information System (INIS)

    Penati, S.; Santambrogio, A.; Zanon, D.

    1997-01-01

    We consider a bosonic σ-model coupled to two-dimensional gravity. In the semiclassical limit, c→-∞, we compute the gravity dressing of the β-functions at two-loop order in the matter fields. We find that the corrections due to the presence of dynamical gravity are not expressible simply in terms of a multiplicative factor as previously obtained at the one-loop level. Our result indicates that the critical points of the theory are non-trivially influenced and modified by the induced gravity. (orig.)

  19. Dynamics of a neuron model in different two-dimensional parameter-spaces

    Science.gov (United States)

    Rech, Paulo C.

    2011-03-01

    We report some two-dimensional parameter-space diagrams numerically obtained for the multi-parameter Hindmarsh-Rose neuron model. Several different parameter planes are considered, and we show that regardless of the combination of parameters, a typical scenario is preserved: for all choice of two parameters, the parameter-space presents a comb-shaped chaotic region immersed in a large periodic region. We also show that exist regions close these chaotic region, separated by the comb teeth, organized themselves in period-adding bifurcation cascades.

  20. Thermal structure of the ionosphere of Mars - simulations with one- and two-dimensional models

    International Nuclear Information System (INIS)

    Singhal, R.P.; Whitten, R.C.

    1988-01-01

    Heat flux saturation effects are included in the present one- and two-dimensional models of the Martian upper ionosphere's thermal structure. The inclusion of small upper boundary and volume heat sources is found to yield satisfactory simulations of the dayside ion temperature observation results obtained by Viking 1's retarding potential analyzers. It is noted that the plasma flow-transport of heat from the dayside to the nightside makes no contribution to the ion and electron temperatures that have been calculated for the nightside. 22 references

  1. The background-quantum split symmetry in two-dimensional σ-models

    International Nuclear Information System (INIS)

    Blasi, A.; Delduc, F.; Sorella, S.P.

    1989-01-01

    A generic, non-linear, background-quantum split is translated into a BRS symmetry. The renormalization of the resulting Slavnov-Taylor identity is analyzed in the class of two-dimensional σ-models with Wess-Zumino term which suggests the adoption of a regularization independent method. We discuss the cohomology of the linearized nilpotent operator derived from the Slavnov-Taylor identity. In particular, the cohomology class with zero Faddeev-Popov charge ensures the stability of the action, while the fact that the cohomology class with one unit of Faddeev-Popov charge is empty ensures the absence of anomalies. (orig.)

  2. Dynamics of the two-dimensional directed Ising model in the paramagnetic phase

    Science.gov (United States)

    Godrèche, C.; Pleimling, M.

    2014-05-01

    We consider the nonconserved dynamics of the Ising model on the two-dimensional square lattice, where each spin is influenced preferentially by its east and north neighbours. The single-spin flip rates are such that the stationary state is Gibbsian with respect to the usual ferromagnetic Ising Hamiltonian. We show the existence, in the paramagnetic phase, of a dynamical transition between two regimes of violation of the fluctuation-dissipation theorem in the nonequilibrium stationary state: a regime of weak violation where the stationary fluctuation-dissipation ratio is finite, when the asymmetry parameter is less than a threshold value, and a regime of strong violation where this ratio vanishes asymptotically above the threshold. This study suggests that this novel kind of dynamical transition in nonequilibrium stationary states, already found for the directed Ising chain and the spherical model with asymmetric dynamics, might be quite general. In contrast with the latter models, the equal-time correlation function for the two-dimensional directed Ising model depends on the asymmetry.

  3. Two-dimensional threshold voltage analytical model of DMG strained-silicon-on-insulator MOSFETs

    International Nuclear Information System (INIS)

    Li Jin; Liu Hongxia; Li Bin; Cao Lei; Yuan Bo

    2010-01-01

    For the first time, a simple and accurate two-dimensional analytical model for the surface potential variation along the channel in fully depleted dual-material gate strained-Si-on-insulator (DMG SSOI) MOSFETs is developed. We investigate the improved short channel effect (SCE), hot carrier effect (HCE), drain-induced barrier-lowering (DIBL) and carrier transport efficiency for the novel structure MOSFET. The analytical model takes into account the effects of different metal gate lengths, work functions, the drain bias and Ge mole fraction in the relaxed SiGe buffer. The surface potential in the channel region exhibits a step potential, which can suppress SCE, HCE and DIBL. Also, strained-Si and SOI structure can improve the carrier transport efficiency, with strained-Si being particularly effective. Further, the threshold voltage model correctly predicts a 'rollup' in threshold voltage with decreasing channel length ratios or Ge mole fraction in the relaxed SiGe buffer. The validity of the two-dimensional analytical model is verified using numerical simulations. (semiconductor devices)

  4. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    Energy Technology Data Exchange (ETDEWEB)

    Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

  5. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe.

    Science.gov (United States)

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes.

  6. An analytical model of heat transfer and fluid dynamic performances of an unconventional NTR engine for manned interplanetary missions

    Energy Technology Data Exchange (ETDEWEB)

    Di Piazza, Ivan, E-mail: ivandipiazza@yahoo.i [Dipartimento di Ingegneria Nucleare, Universita degli studi di Palermo, Viale delle Scienze, Edificio 6, CAP 90128, Palermo (Italy)

    2009-12-15

    An analytical model of fluid flow and heat transfer of a Nuclear Thermal Rocket (NTR) engine concept is presented. The engine is based on the direct conversion of the kinetic energy of the fission fragments (FFs) into the propellant enthalpy. The FFs can escape from an extremely thin layer of fissionable material: a sufficiently large surface coated with few micrometers of Americium 242m, confined by a neutron moderator-reflector, may become a critical reactor. Three dimensional coupled CFD-Monte Carlo simulations have already been presented in . In this paper, an analytical integral 1-D model of fluid dynamics and heat transfer is built in order to foresee the performances on the basis of simple, physically founded correlations. The Peclet number has been identified as the main governing parameter of the system, and theoretically based correlations have been found for the thermodynamic efficiency of the engine and for the specific impulse. The correlations show a good agreement with numerical results presented in from fully coupled 3D CFD-Monte Carlo calculations.

  7. A thermodynamic and heat transfer model for LNG ageing during ship transportation. Towards an efficient boil-off gas management

    Science.gov (United States)

    Krikkis, Rizos N.

    2018-06-01

    A non-equilibrium thermodynamic and heat transfer model for LNG ageing during ship transportation has been developed based on experimental data. The measurements reveal that the liquid temperature remains nearly constant, whereas significant variations are observed for the gas temperature. The measurement of the liquid temperature along the tank height suggests that a small scale rollover phenomenon may have taken place in one cargo tank. A time dependent heat transfer mechanism has been considered by taking into account the temperature variations of the atmospheric air, the seawater and the cofferdam environment which affect the cargo tanks. An important finding is that the evaporation rate (boil-of rate) is forced to follow the fuel flow consumption profile imposed by the vessel's propulsion system in order to match the tank pressure and volume constraints. The theoretical model is favorably compared to a comprehensive set on per hour basis of on board measurements of cargo temperatures and pressures, recorded during laden voyages, providing a better understanding of the underlying processes involved. The dominant role of the fuel consumption on the evaporation rate may be utilized in order to devise an efficient cargo management strategy during the laden voyage.

  8. Modelling and Pareto optimization of heat transfer and flow coefficients in microchannels using GMDH type neural networks and genetic algorithms

    International Nuclear Information System (INIS)

    Amanifard, N.; Nariman-Zadeh, N.; Borji, M.; Khalkhali, A.; Habibdoust, A.

    2008-01-01

    Three-dimensional heat transfer characteristics and pressure drop of water flow in a set of rectangular microchannels are numerically investigated using Fluent and compared with those of experimental results. Two metamodels based on the evolved group method of data handling (GMDH) type neural networks are then obtained for modelling of both pressure drop (ΔP) and Nusselt number (Nu) with respect to design variables such as geometrical parameters of microchannels, the amount of heat flux and the Reynolds number. Using such obtained polynomial neural networks, multi-objective genetic algorithms (GAs) (non-dominated sorting genetic algorithm, NSGA-II) with a new diversity preserving mechanism is then used for Pareto based optimization of microchannels considering two conflicting objectives such as (ΔP) and (Nu). It is shown that some interesting and important relationships as useful optimal design principles involved in the performance of microchannels can be discovered by Pareto based multi-objective optimization of the obtained polynomial metamodels representing their heat transfer and flow characteristics. Such important optimal principles would not have been obtained without the use of both GMDH type neural network modelling and the Pareto optimization approach

  9. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe

    Science.gov (United States)

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes. PMID:26201073

  10. Model validation of GAMMA code with heat transfer experiment for KO TBM in ITER

    International Nuclear Information System (INIS)

    Yum, Soo Been; Lee, Eo Hwak; Lee, Dong Won; Park, Goon Cherl

    2013-01-01

    Highlights: ► In this study, helium supplying system was constructed. ► Preparation for heat transfer experiment in KO TBM condition using helium supplying system was progressed. ► To get more applicable results, test matrix was made to cover the condition for KO TBM. ► Using CFD code; CFX 11, validation and modification for system code GAMMA was performed. -- Abstract: By considering the requirements for a DEMO-relevant blanket concept, Korea (KO) has proposed a He cooled molten lithium (HCML) test blanket module (TBM) for testing in ITER. A performance analysis for the thermal–hydraulics and a safety analysis for the KO TBM have been carried out using a commercial CFD code, ANSYS-CFX, and a system code, GAMMA (GAs multicomponent mixture analysis), which was developed by the gas cooled reactor in Korea. To verify the codes, a preliminary study was performed by Lee using a single TBM first wall (FW) mock-up made from the same material as the KO TBM, ferritic martensitic steel, using a 6 MPa nitrogen gas loop. The test was performed at pressures of 1.1, 1.9 and 2.9 MPa, and under various ranges of flow rate from 0.0105 to 0.0407 kg/s with a constant wall temperature condition. In the present study, a thermal–hydraulic test was performed with the newly constructed helium supplying system, in which the design pressure and temperature were 9 MPa and 500 °C, respectively. In the experiment, the same mock-up was used, and the test was performed under the conditions of 3 MPa pressure, 30 °C inlet temperature and 70 m/s helium velocity, which are almost same conditions of the KO TBM FW. One side of the mock-up was heated with a constant heat flux of 0.3–0.5 MW/m 2 using a graphite heating system, KoHLT-2 (Korea heat load test facility-2). Because the comparison result between CFX 11 and GAMMA showed a difference tendency, the modification of heat transfer correlation included in GAMMA was performed. And the modified GAMMA showed the strong parity with CFX

  11. Simplifying numerical ray tracing for two-dimensional non circularly symmetric models of the human eye.

    Science.gov (United States)

    Jesus, Danilo A; Iskander, D Robert

    2015-12-01

    Ray tracing is a powerful technique to understand the light behavior through an intricate optical system such as that of a human eye. The prediction of visual acuity can be achieved through characteristics of an optical system such as the geometrical point spread function. In general, its precision depends on the number of discrete rays and the accurate surface representation of each eye's components. Recently, a method that simplifies calculation of the geometrical point spread function has been proposed for circularly symmetric systems [Appl. Opt.53, 4784 (2014)]. An extension of this method to 2D noncircularly symmetric systems is proposed. In this method, a two-dimensional ray tracing procedure for an arbitrary number of surfaces and arbitrary surface shapes has been developed where surfaces, rays, and refractive indices are all represented in functional forms being approximated by Chebyshev polynomials. The Liou and Brennan anatomically accurate eye model has been adapted and used for evaluating the method. Further, real measurements of the anterior corneal surface of normal, astigmatic, and keratoconic eyes were substituted for the first surface in the model. The results have shown that performing ray tracing, utilizing the two-dimensional Chebyshev function approximation, is possible for noncircularly symmetric models, and that such calculation can be performed with a newly created Chebfun toolbox.

  12. Heat transfer enhancement with nanofluids

    CERN Document Server

    Bianco, Vincenzo; Nardini, Sergio; Vafai, Kambiz

    2015-01-01

    Properties of NanofluidSamuel Paolucci and Gianluca PolitiExact Solutions and Their Implications in Anomalous Heat TransferWenhao Li, Chen Yang and Akira NakayamaMechanisms and Models of Thermal Conductivity in NanofluidsSeung-Hyun Lee and Seok Pil JangExperimental Methods for the Characterization of Thermophysical Properties of NanofluidsSergio Bobbo and Laura FedeleNanofluid Forced ConvectionGilles RoyExperimental Study of Convective Heat Transfer in NanofluidsEhsan B. Haghighi, Adi T. Utomo, Andrzej W. Pacek and Björn E. PalmPerformance of Heat Exchangers Using NanofluidsBengt Sundén and Za

  13. Influence of various aspects of low Reynolds number k-ε turbulence models on predicting in-tube buoyancy affected heat transfer to supercritical pressure fluids

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chen-Ru; Zhang, Zhen [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Centre, Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Jiang, Pei-Xue, E-mail: jiangpx@tsinghua.edu.cn [Beijing Key Laboratory of CO_2 Utilization and Reduction Technology/Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Bo, Han-Liang [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Centre, Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China)

    2017-03-15

    Highlights: • Understanding of the mechanism of buoyancy effect on supercritical heat transfer. • Turbulence related parameters in upward and downward flows were compared. • Turbulent Prandtl number affected the prediction insignificantly. • Buoyancy production was insignificant compared with shear production. • Damping function had the greatest effect and is a priority for further modification. - Abstract: Heat transfer to supercritical pressure fluids was modeled for normal and buoyancy affected conditions using several low Reynolds number k-ε models, including the Launder and Sharma, Myong and Kasagi, and Abe, Kondoh and Nagano, with the predictions compared with experimental data. All three turbulence models accurately predicted the cases without heat transfer deterioration, but failed to accurately predict the cases with heat transfer deterioration although the general trends were captured, indicating that further improvements and modifications are needed for the low Reynolds number k-ε turbulence models to better predict buoyancy deteriorated heat transfer. Further investigations studied the influence of various aspects of the low Reynolds number k-ε turbulence models, including the turbulent Prandtl number, the buoyancy production of turbulent kinetic energy, and the damping function to provide guidelines for model development to more precisely predict buoyancy affected heat transfer. The results show that the turbulent Prandtl number and the buoyancy production of turbulent kinetic energy have little influence on the predictions for cases in this study, while new damping functions with carefully selected control parameters are needed in the low Reynolds number k-ε turbulence models to correctly predict the buoyancy effect for heat transfer simulations in various applications such as supercritical pressure steam generators (SPSGs) in the high temperature gas cooled reactor (HTR) and the supercritical pressure water reactor (SCWR).

  14. Influence of various aspects of low Reynolds number k-ε turbulence models on predicting in-tube buoyancy affected heat transfer to supercritical pressure fluids

    International Nuclear Information System (INIS)

    Zhao, Chen-Ru; Zhang, Zhen; Jiang, Pei-Xue; Bo, Han-Liang

    2017-01-01

    Highlights: • Understanding of the mechanism of buoyancy effect on supercritical heat transfer. • Turbulence related parameters in upward and downward flows were compared. • Turbulent Prandtl number affected the prediction insignificantly. • Buoyancy production was insignificant compared with shear production. • Damping function had the greatest effect and is a priority for further modification. - Abstract: Heat transfer to supercritical pressure fluids was modeled for normal and buoyancy affected conditions using several low Reynolds number k-ε models, including the Launder and Sharma, Myong and Kasagi, and Abe, Kondoh and Nagano, with the predictions compared with experimental data. All three turbulence models accurately predicted the cases without heat transfer deterioration, but failed to accurately predict the cases with heat transfer deterioration although the general trends were captured, indicating that further improvements and modifications are needed for the low Reynolds number k-ε turbulence models to better predict buoyancy deteriorated heat transfer. Further investigations studied the influence of various aspects of the low Reynolds number k-ε turbulence models, including the turbulent Prandtl number, the buoyancy production of turbulent kinetic energy, and the damping function to provide guidelines for model development to more precisely predict buoyancy affected heat transfer. The results show that the turbulent Prandtl number and the buoyancy production of turbulent kinetic energy have little influence on the predictions for cases in this study, while new damping functions with carefully selected control parameters are needed in the low Reynolds number k-ε turbulence models to correctly predict the buoyancy effect for heat transfer simulations in various applications such as supercritical pressure steam generators (SPSGs) in the high temperature gas cooled reactor (HTR) and the supercritical pressure water reactor (SCWR).

  15. Two-dimensional hidden semantic information model for target saliency detection and eyetracking identification

    Science.gov (United States)

    Wan, Weibing; Yuan, Lingfeng; Zhao, Qunfei; Fang, Tao

    2018-01-01

    Saliency detection has been applied to the target acquisition case. This paper proposes a two-dimensional hidden Markov model (2D-HMM) that exploits the hidden semantic information of an image to detect its salient regions. A spatial pyramid histogram of oriented gradient descriptors is used to extract features. After encoding the image by a learned dictionary, the 2D-Viterbi algorithm is applied to infer the saliency map. This model can predict fixation of the targets and further creates robust and effective depictions of the targets' change in posture and viewpoint. To validate the model with a human visual search mechanism, two eyetrack experiments are employed to train our model directly from eye movement data. The results show that our model achieves better performance than visual attention. Moreover, it indicates the plausibility of utilizing visual track data to identify targets.

  16. Two dimensional, two fluid model for sodium boiling in LMFBR fuel assemblies

    International Nuclear Information System (INIS)

    Granziera, M.R.; Kazimi, M.S.

    1980-05-01

    A two dimensional numerical model for the simulation of sodium boiling transient was developed using the two fluid set of conservation equations. A semiimplicit numerical differencing scheme capable of handling the problems associated with the ill-posedness implied by the complex characteristic roots of the two fluid problems was used, which took advantage of the dumping effect of the exchange terms. Of particular interest in the development of the model was the identification of the numerical problems caused by the strong disparity between the axial and radial dimensions of fuel assemblies. A solution to this problem was found which uses the particular geometry of fuel assemblies to accelerate the convergence of the iterative technique used in the model. Three sodium boiling experiments were simulated with the model, with good agreement between the experimental results and the model predictions

  17. One- and two-dimensional Stirling machine simulation using experimentally generated reversing flow turbuulence models

    International Nuclear Information System (INIS)

    Goldberg, L.F.

    1990-08-01

    The activities described in this report do not constitute a continuum but rather a series of linked smaller investigations in the general area of one- and two-dimensional Stirling machine simulation. The initial impetus for these investigations was the development and construction of the Mechanical Engineering Test Rig (METR) under a grant awarded by NASA to Dr. Terry Simon at the Department of Mechanical Engineering, University of Minnesota. The purpose of the METR is to provide experimental data on oscillating turbulent flows in Stirling machine working fluid flow path components (heater, cooler, regenerator, etc.) with particular emphasis on laminar/turbulent flow transitions. Hence, the initial goals for the grant awarded by NASA were, broadly, to provide computer simulation backup for the design of the METR and to analyze the results produced. This was envisaged in two phases: First, to apply an existing one-dimensional Stirling machine simulation code to the METR and second, to adapt a two-dimensional fluid mechanics code which had been developed for simulating high Rayleigh number buoyant cavity flows to the METR. The key aspect of this latter component was the development of an appropriate turbulence model suitable for generalized application to Stirling simulation. A final-step was then to apply the two-dimensional code to an existing Stirling machine for which adequate experimental data exist. The work described herein was carried out over a period of three years on a part-time basis. Forty percent of the first year's funding was provided as a match to the NASA funds by the Underground Space Center, University of Minnesota, which also made its computing facilities available to the project at no charge

  18. Fluctuating hydrodynamics for multiscale modeling and simulation: energy and heat transfer in molecular fluids.

    Science.gov (United States)

    Shang, Barry Z; Voulgarakis, Nikolaos K; Chu, Jhih-Wei

    2012-07-28

    This work illustrates that fluctuating hydrodynamics (FHD) simulations can be used to capture the thermodynamic and hydrodynamic responses of molecular fluids at the nanoscale, including those associated with energy and heat transfer. Using all-atom molecular dynamics (MD) trajectories as the reference data, the atomistic coordinates of each snapshot are mapped onto mass, momentum, and energy density fields on Eulerian grids to generate a corresponding field trajectory. The molecular length-scale associated with finite molecule size is explicitly imposed during this coarse-graining by requiring that the variances of density fields scale inversely with the grid volume. From the fluctuations of field variables, the response functions and transport coefficients encoded in the all-atom MD trajectory are computed. By using the extracted fluid properties in FHD simulations, we show that the fluctuations and relaxation of hydrodynamic fields quantitatively match with those observed in the reference all-atom MD trajectory, hence establishing compatibility between the atomistic and field representations. We also show that inclusion of energy transfer in the FHD equations can more accurately capture the thermodynamic and hydrodynamic responses of molecular fluids. The results indicate that the proposed MD-to-FHD mapping with explicit consideration of finite molecule size provides a robust framework for coarse-graining the solution phase of complex molecular systems.

  19. Modeling of heat transfer in a vascular tissue-like medium during an interstitial hyperthermia process.

    Science.gov (United States)

    Hassanpour, Saeid; Saboonchi, Ahmad

    2016-12-01

    This paper aims to evaluate the role of small vessels in heat transfer mechanisms of a tissue-like medium during local intensive heating processes, for example, an interstitial hyperthermia treatment. To this purpose, a cylindrical tissue with two co- and counter-current vascular networks and a central heat source is introduced. Next, the energy equations of tissue, supply fluid (arterial blood), and return fluid (venous blood) are derived using porous media approach. Then, a 2D computer code is developed to predict the temperature of blood (fluid phase) and tissue (solid phase) by conventional volume averaging method and a more realistic solution method. In latter method, despite the volume averaging the blood of interconnect capillaries is separated from the arterial and venous blood phases. It is found that in addition to blood perfusion rate, the arrangement of vascular network has considerable effects on the pattern and amount of the achieved temperature. In contrast to counter-current network, the co-current network of vessels leads to considerable asymmetric pattern of temperature contours and relocation of heat affected zone along the blood flow direction. However this relocation can be prevented by changing the site of hyperthermia heat source. The results show that the cooling effect of co-current blood vessels during of interstitial heating is more efficient. Despite much anatomical dissimilarities, these findings can be useful in designing of protocols for hyperthermia cancer treatment of living tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Modeling the heat transfer problem for the novel combined cryosurgery and hyperthermia system.

    Science.gov (United States)

    Zhao, Gang; Bai, Xue-Fei; Luo, Da-Wei; Gao, Da-Yong

    2006-01-01

    A multidimensional, finite element analysis (FEA) for the freezing, holding, rewarming and heating processes of biological tissues during the cryosurgery process of the new Combined Cryosurgery/Hyperthermia System is presented to theoretically test its validity. The tissues are treated as nonideal materials freezing over a temperature range, and the thermophysical properties of which are temperature dependent. The enthalpy method is applied to solve the highly nonlinear problem. It was found that when the same boundary condition and the same target tissue presented, the novel Cryosurgery/Hyperthermia System could supply the target tissue an approximative cooling rate, a much lower minimal temperature, a much greater warming rate, and a much greater thermal gradients compared with that of the simplified Endocare system. The numerical simulation indicates that the novel combined cryosurgery and hyperthermia system can provide an excellent curative effect in the corresponding cryotherapy. And the most attractive feature of this FEA framework is that it can be easily mastered by the surgeon without in-depth theory of heat transfer to analyze the cryosurgery process beforehand due to the friendly GUI (graphical user interface) of Ansys software.

  1. Modelling for post-dryout heat transfer and droplet sizes at low pressure and low flow conditions

    International Nuclear Information System (INIS)

    Jeong, H.Y.; No, H.C.

    1996-01-01

    A correlation describing the initial droplet size just after the CHF position at low mass flux is suggested through regression analysis. The history-dependent post-dryout model of Varone and Rohsenow replaced by the Webb-Chen model for wall-vapor heat transfer is used as a reference model in the analysis. In the post-dryout region at low pressure and low flow, it is found that the suggested one-dimensional mechanistic model is valid only in the churn-turbulent flow regime (j* g = 0.5 ∼ 4.5). It is also suggested that the droplet size generated from the churn-turbulent surface is dependent not only on the pressure but also on the vapor velocity. It turns out that the present model can predict the measured cladding and vapor temperatures within 20% and 15%, respectively

  2. Predictions for heat transfer characteristics in a natural draft reactor cooling system using a second moment closure turbulence model

    International Nuclear Information System (INIS)

    Nishimura, M.; Maekawa, I.

    2004-01-01

    A numerical study is performed on the natural draft reactor cavity cooling system (RCCS). In the cooling system, buoyancy driven heated upward flow could be in the mixed convection regime that is accompanied by heat transfer impairment. Also, the heating wall condition is asymmetric with regard to the channel cross section. These flow regime and thermal boundary conditions may invalidate the use of design correlation. To precisely simulate the flow and thermal fields within the RCCS, the second moment closure turbulence model is applied. Two types of the RCCS channel geometry are selected to make a comparison: an annular duct with fins on the outer surface of the inner circular wall, and a multi-rectangular duct. The prediction shows that the local heat transfer coefficient on the RCCS with finned annular duct is less than 1/6 of that estimated with Dittus-Boelter correlation. Much portion of the natural draft airflow does not contribute cooling at all because mainstream escapes from the narrow gaps between the fins. This result and thus the finned annulus design are unacceptable from the viewpoint for structural integrity of the RCCS wall boundary. The performance of the multi-rectangular duct design is acceptable that the RCCS maximum temperature is less than 400 degree centigrade even when the flow rate is halved from the designed condition. (author)

  3. Analysis for average heat transfer empirical correlation of natural convection on the concentric vertical cylinder modelling of APWR

    International Nuclear Information System (INIS)

    Daddy Setyawan

    2011-01-01

    There are several passive safety systems on APWR reactor design. One of the passive safety system is the cooling system with natural circulation air on the surface of concentric vertical cylinder containment wall. Since the natural circulation air performance in the Passive Containment Cooling System (PCCS) application is related to safety, the cooling characteristics of natural circulation air on concentric vertical cylinder containment wall should be studied experimentally. This paper focuses on the experimental study of the heat transfer coefficient of natural circulation air with heat flux level varied on the characteristics of APWR concentric vertical cylinder containment wall. The procedure of this experimental study is composed of 4 stages as follows: the design of APWR containment with scaling 1:40, the assembling of APWR containment with its instrumentation, calibration and experimentation. The experimentation was conducted in the transient and steady-state with the variation of heat flux, from 119 W/m 2 until 575 W/m 2 . From The experimentation result obtained average heat transfer empirical correlation of natural convection Nu L = 0,008(Ra * L ) 0,68 for the concentric vertical cylinder geometry modelling of APWR. (author)

  4. Pareto Optimization of a Half Car Passive Suspension Model Using a Novel Multiobjective Heat Transfer Search Algorithm

    Directory of Open Access Journals (Sweden)

    Vimal Savsani

    2017-01-01

    Full Text Available Most of the modern multiobjective optimization algorithms are based on the search technique of genetic algorithms; however the search techniques of other recently developed metaheuristics are emerging topics among researchers. This paper proposes a novel multiobjective optimization algorithm named multiobjective heat transfer search (MOHTS algorithm, which is based on the search technique of heat transfer search (HTS algorithm. MOHTS employs the elitist nondominated sorting and crowding distance approach of an elitist based nondominated sorting genetic algorithm-II (NSGA-II for obtaining different nondomination levels and to preserve the diversity among the optimal set of solutions, respectively. The capability in yielding a Pareto front as close as possible to the true Pareto front of MOHTS has been tested on the multiobjective optimization problem of the vehicle suspension design, which has a set of five second-order linear ordinary differential equations. Half car passive ride model with two different sets of five objectives is employed for optimizing the suspension parameters using MOHTS and NSGA-II. The optimization studies demonstrate that MOHTS achieves the better nondominated Pareto front with the widespread (diveresed set of optimal solutions as compared to NSGA-II, and further the comparison of the extreme points of the obtained Pareto front reveals the dominance of MOHTS over NSGA-II, multiobjective uniform diversity genetic algorithm (MUGA, and combined PSO-GA based MOEA.

  5. Numerical investigation of influence on heat transfer characteristics to pneumatically conveyed dense phase flow by selecting models and boundary conditions

    Science.gov (United States)

    Zheng, Y.; Liu, Q.; Li, Y.

    2012-03-01

    Solids moving with a gas stream in a pipeline can be found in many industrial processes, such as power generation, chemical, pharmaceutical, food and commodity transfer processes. A mass flow rate of the solids is important characteristic that is often required to be measured (and controlled) to achieve efficient utilization of energy and raw materials in pneumatic conveying systems. The methods of measuring the mass flow rate of solids in a pneumatic pipeline can be divided into direct and indirect (inferential) measurements. A thermal solids' mass flow-meter, in principle, should ideally provide a direct measurement of solids flow rate, regardless of inhomogeneities in solids' distribution and environmental impacts. One key issue in developing a thermal solids' mass flow-meter is to characterize the heat transfer between the hot pipe wall and the gas-solids dense phase flow. The Eulerian continuum modeling with gas-solid two phases is the most common method for pneumatic transport. To model a gas-solid dense phase flow passing through a heated region, the gas phase is described as a continuous phase and the particles as the second phase. This study aims to describe the heat transfer characteristics between the hot wall and the gas-solids dense phase flow in pneumatic pipelines by modeling a turbulence gas-solid plug passing through the heated region which involves several actual and crucial issues: selections of interphase exchange coefficient, near-wall region functions and different wall surface temperatures. A sensitivity analysis was discussed to identify the influence on the heat transfer characteristics by selecting different interphase exchange coefficient models and different boundary conditions. Simulation results suggest that sensitivity analysis in the choice of models is very significant. The simulation results appear to show that a combination of choosing the Syamlal-O'Brien interphase exchange coefficient model and the standard k-ɛ model along with

  6. Experimental Study and a Mathematical Model of the Processes in Frozen Soil Under a Reservoir with a Hot Heat-Transfer Agent

    Science.gov (United States)

    Kislitsyn, A. A.; Shastunova, U. Yu.; Yanbikova, Yu. F.

    2018-05-01

    On an experimental setup, the authors have measured temperature fields in frozen soil during the filling of a reservoir with hot heat-transfer agent (oil), and also the change in the shape and position of the front of ice melting (isotherms T = 0°C) with time. The approximate solution of a two-dimensional Stefan problem on thawing of frozen soil has been given; it has been shown that satisfactory agreement with experimental results can only be obtained with account taken of the convective transfer of heat due to the water motion in the region of thawed soil.

  7. Analytical model of unsteady-state convective heat transfer between the heat carrier and the finite sizes plate adjusted for the thermal relaxation

    Directory of Open Access Journals (Sweden)

    Makarushkin Danila

    2017-01-01

    Full Text Available A hyperbolic boundary value problem of the thermal conduction of a two-dimensional plate with the third kind boundary conditions is formulated. The transient thermal process in the plate is due to the temperature changes of the external medium over time and along the plate length, and also by a multiple step change of the plate surface heat transfer coefficient throughout the transient process. An analytical solution with improved convergence adjusted for thermal relaxation and thermal damping is obtained for the temperature field in the plate.

  8. Development and validation of a two-dimensional fast-response flood estimation model

    Energy Technology Data Exchange (ETDEWEB)

    Judi, David R [Los Alamos National Laboratory; Mcpherson, Timothy N [Los Alamos National Laboratory; Burian, Steven J [UNIV OF UTAK

    2009-01-01

    A finite difference formulation of the shallow water equations using an upwind differencing method was developed maintaining computational efficiency and accuracy such that it can be used as a fast-response flood estimation tool. The model was validated using both laboratory controlled experiments and an actual dam breach. Through the laboratory experiments, the model was shown to give good estimations of depth and velocity when compared to the measured data, as well as when compared to a more complex two-dimensional model. Additionally, the model was compared to high water mark data obtained from the failure of the Taum Sauk dam. The simulated inundation extent agreed well with the observed extent, with the most notable differences resulting from the inability to model sediment transport. The results of these validation studies complex two-dimensional model. Additionally, the model was compared to high water mark data obtained from the failure of the Taum Sauk dam. The simulated inundation extent agreed well with the observed extent, with the most notable differences resulting from the inability to model sediment transport. The results of these validation studies show that a relatively numerical scheme used to solve the complete shallow water equations can be used to accurately estimate flood inundation. Future work will focus on further reducing the computation time needed to provide flood inundation estimates for fast-response analyses. This will be accomplished through the efficient use of multi-core, multi-processor computers coupled with an efficient domain-tracking algorithm, as well as an understanding of the impacts of grid resolution on model results.

  9. Using FDFD Technique in Two-Dimensional TE Analysis for Modeling Clutter in Wall Penetrating Radar

    Directory of Open Access Journals (Sweden)

    David Insana

    2014-01-01

    Full Text Available Finite difference frequency domain (FDFD computational electromagnetic modeling is implemented to perform a two-dimensional TEz analysis for the application of wall penetrating radar (WPR. Resolving small targets of interest, embedded in a strong clutter environment of unknown configuration, is difficult. Field interaction between clutter elements will dominate the received fields back-scattered from the scene. Removing the effects of clutter ultimately relies on the accuracy of the model. Analysis starts with a simple model that continues to build based on the dominant scattering features of the scene. FDFD provides a steady state frequency response to a discrete excitation. Taking the fast Fourier transform of the wideband response of the scene, at several external transmit/receive locations, produces 2D images of the clutter, which are used to mature the model.

  10. Modelling Altitude Information in Two-Dimensional Traffic Networks for Electric Mobility Simulation

    Directory of Open Access Journals (Sweden)

    Diogo Santos

    2016-06-01

    Full Text Available Elevation data is important for electric vehicle simulation. However, traffic simulators are often two-dimensional and do not offer the capability of modelling urban networks taking elevation into account. Specifically, SUMO - Simulation of Urban Mobility, a popular microscopic traffic simulator, relies on networks previously modelled with elevation data as to provide this information during simulations. This work tackles the problem of adding elevation data to urban network models - particularly for the case of the Porto urban network, in Portugal. With this goal in mind, a comparison between different altitude information retrieval approaches is made and a simple tool to annotate network models with altitude data is proposed. The work starts by describing the methodological approach followed during research and development, then describing and analysing its main findings. This description includes an in-depth explanation of the proposed tool. Lastly, this work reviews some related work to the subject.

  11. Two-dimensional chronostratigraphic modelling of OSL ages from recent beach-ridge deposits, SE Australia

    DEFF Research Database (Denmark)

    Tamura, Toru; Cunningham, Alastair C.; Oliver, Thomas S.N.

    2018-01-01

    Optically-stimulated luminesecne (OSL) dating, in concert with two-dimensional ground-penetrating radar (GPR) profiling, has contributed to significant advances in our understanding of beach-ridge systems and other sedimentary landforms in various settings. For recent beach-ridges, the good OSL...... samples may be larger than the difference in sample ages. Age inversions can be avoided, however, if the stratigraphic constraints are included in the age estimation process. Here, we create a custom Bayesian chronological model for a recent (..., for direct comparison with a GPR profile. The model includes a full ‘burial-dose model’ for each sample and a dose rate term with the modelled ages constrained by the vertical and shore-normal sample order. The modelled ages are visualized by plotting isochrones on the beach-ridge cross section...

  12. Numerical Modeling of Fluid Flow, Heat Transfer and Arc-Melt Interaction in Tungsten Inert Gas Welding

    Science.gov (United States)

    Li, Linmin; Li, Baokuan; Liu, Lichao; Motoyama, Yuichi

    2017-04-01

    The present work develops a multi-region dynamic coupling model for fluid flow, heat transfer and arc-melt interaction in tungsten inert gas (TIG) welding using the dynamic mesh technique. The arc-weld pool unified model is developed on basis of magnetohydrodynamic (MHD) equations and the interface is tracked using the dynamic mesh method. The numerical model for arc is firstly validated by comparing the calculated temperature profiles and essential results with the former experimental data. For weld pool convection solution, the drag, Marangoni, buoyancy and electromagnetic forces are separately validated, and then taken into account. Moreover, the model considering interface deformation is adopted in a stationary TIG welding process with SUS304 stainless steel and the effect of interface deformation is investigated. The depression of weld pool center and the lifting of pool periphery are both predicted. The results show that the weld pool shape calculated with considering the interface deformation is more accurate.

  13. A computer simulation of the turbocharged turbo compounded diesel engine system: A description of the thermodynamic and heat transfer models

    Science.gov (United States)

    Assanis, D. N.; Ekchian, J. E.; Frank, R. M.; Heywood, J. B.

    1985-01-01

    A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system was developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multicylinder reciprocator diesel model, where each cylinder undergoes the same thermodynamic cycle. The master cylinder model describes the reciprocator intake, compression, combustion and exhaust processes in sufficient detail to define the mass and energy transfers in each subsystem of the total engine system. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. From this information, the simulation predicts the performance gains, and assesses the system design trade-offs which would result from the introduction of selected heat transfer reduction materials in key system components, over a range of operating conditions.

  14. Heat transfer with a split water channel

    International Nuclear Information System (INIS)

    Krinsky, S.

    1978-01-01

    The heat transfer problem associated with the incidence of synchrotron radiation upon a vacuum chamber wall cooled by a single water channel was previously studied, and a numerical solution to the potential problem was found using the two-dimensional magnet program POISSON. Calculations were extended to consider the case of a split water channel using POISSON to solve the potential problem for a given choice of parameters. By optimizing the dimensions, boiling of the water can be avoided. A copper chamber is a viable solution to the heat transfer problem at a beam port

  15. Two-dimensional models as testing ground for principles and concepts of local quantum physics

    International Nuclear Information System (INIS)

    Schroer, Bert

    2005-04-01

    In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g. chiral models, factoring models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff(S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL(2,Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular 'Euclideanization' is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J. A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an 'Encyclopedia of Mathematical Physics' contribution hep-th/0502125. (author)

  16. Two-dimensional models as testing ground for principles and concepts of local quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [FU Berlin (Germany). Institut fuer Theoretische Physik

    2005-04-15

    In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g. chiral models, factoring models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff(S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL(2,Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular 'Euclideanization' is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J. A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an 'Encyclopedia of Mathematical Physics' contribution hep-th/0502125. (author)

  17. Finite-elements modeling of radiant heat transfers between mobile surfaces; Modelisation par elements finis de transferts radiatifs entre surfaces mobiles

    Energy Technology Data Exchange (ETDEWEB)

    Daurelle, J V; Cadene, V; Occelli, R [Universite de Provence, 13 - Marseille (France)

    1997-12-31

    In the numerical modeling of thermal industrial problems, radiant heat transfers remain difficult to take into account and require important computer memory and long computing time. These difficulties are enhanced when radiant heat transfers are coupled with finite-elements diffusive heat transfers because finite-elements architecture is complex and requires a lot of memory. In the case of radiant heat transfers along mobile boundaries, the methods must be optimized. The model described in this paper concerns the radiant heat transfers between diffuse grey surfaces. These transfers are coupled with conduction transfers in the limits of the diffusive opaque domain. 2-D and 3-D geometries are