WorldWideScience

Sample records for model student misconceptions

  1. Student Misconceptions in Introductory Biology.

    Science.gov (United States)

    Fisher, Kathleen M.; Lipson, Joseph I.

    Defining a "misconception" as an error of translation (transformation, correspondence, interpolation, interpretation) between two different kinds of information which causes students to have incorrect expectations, a Taxonomy of Errors has been developed to examine student misconceptions in an introductory biology course for science…

  2. Thai High-School Students' Misconceptions about and Models of Light Refraction through a Planar Surface

    Science.gov (United States)

    Kaewkhong, Kreetha; Mazzolini, Alex; Emarat, Narumon; Arayathanitkul, Kwan

    2010-01-01

    This article investigates the optics misconceptions of 220 year 11 Thai high-school students. These misconceptions became apparent when the students attempted to explain how an object submerged in a water tank is "seen" by an observer looking into the tank from above and at an angle. The two diagnostic questions used in the study probe…

  3. Misconceptions About Sound Among Engineering Students

    Science.gov (United States)

    Pejuan, Arcadi; Bohigas, Xavier; Jaén, Xavier; Periago, Cristina

    2012-12-01

    Our first objective was to detect misconceptions about the microscopic nature of sound among senior university students enrolled in different engineering programmes (from chemistry to telecommunications). We sought to determine how these misconceptions are expressed (qualitative aspect) and, only very secondarily, to gain a general idea of the extent to which they are held (quantitative aspect). Our second objective was to explore other misconceptions about wave aspects of sound. We have also considered the degree of consistency in the model of sound used by each student. Forty students answered a questionnaire including open-ended questions. Based on their free, spontaneous answers, the main results were as follows: a large majority of students answered most of the questions regarding the microscopic model of sound according to the scientifically accepted model; however, only a small number answered consistently. The main model misconception found was the notion that sound is propagated through the travelling of air particles, even in solids. Misconceptions and mental-model inconsistencies tended to depend on the engineering programme in which the student was enrolled. However, students in general were inconsistent also in applying their model of sound to individual sound properties. The main conclusion is that our students have not truly internalised the scientifically accepted model that they have allegedly learnt. This implies a need to design learning activities that take these findings into account in order to be truly efficient.

  4. STUDENT'S SCIENCE MISCONCEPTIONS CONCERNING THE STATE CHANGES OF WATER AND THEIR REMEDIATION USING THREE DIFFERENT LEARNING MODELS IN ELEMENTARY SCHOOL

    Directory of Open Access Journals (Sweden)

    M. Taufiq

    2012-01-01

    Full Text Available Secara umum, kesalahpahaman yang dialami oleh mahasiswa dapat menyebabkan kesulitan dalam penelitian, sementara anakanakmemiliki kesadaran mereka sendiri. Tingkat kesalahpahaman yang dialami oleh siswa juga tidak sama, dalam kasus inisesuatu mengalami kesalahpahaman pengalaman tingkat tinggi, menengah, dan rendah. Untuk alasan itu, siswa memerlukanmodel pembelajaran yang tepat untuk masing-masing tingkat kesalahpahaman yang dialami untuk membuat studi menjadibermakna. Dalam makalah ini, peneliti mengeksplorasi informasi tentang; (1 tingkat kesalahpahaman ilmu siswa tentangperubahan wujud dari air, dan (2 model pembelajaran yang paling efektif untuk mengatasi kesalahpahaman siswa mengenaiperubahan wujud air. Model pembelajaran tiga dalam penelitian ini adalah: siklus belajar, penyelidikan dipandu, dan model konseppemetaan. Metode yang diterapkan dalam penelitian ini adalah wawancara klinis dan pretest-posttest. Informasi yangdikumpulkan dianalisis secara kuantitatif dengan percobaan uji ANOVA dan keuntungan rata-rata normal dihitung untuk setiapkelompok percobaan. In general, misconceptions experienced by student could cause difficulties in study, meanwhile children have their own sense.Level of misconceptions experienced by student also unequal, in this case something experiences high level misconceptions,medium, and low. For that reason, student requires correct learning model for each level of misconception experienced to make thestudy become meaningful. In this paper, the researcher explored information about; (1 the level of science misconceptions of thestudent concerning the state changes of water, and (2 the most effective learning model to remedy student's misconceptionsconcerning the state changes of water. The three learning models in this research are: learning cycle, guided inquiry, and conceptmapping model. The method applied in this research is the clinical interview and pretest-posttest. The information collected wasanalyzed in

  5. Applying Scientific Principles to Resolve Student Misconceptions

    Science.gov (United States)

    Yin, Yue

    2012-01-01

    Misconceptions about sinking and floating phenomena are some of the most challenging to overcome (Yin 2005), possibly because explaining sinking and floating requires students to understand challenging topics such as density, force, and motion. Two scientific principles are typically used in U.S. science curricula to explain sinking and floating:…

  6. Students' Levels of Explanations, Models, and Misconceptions in Basic Quantum Chemistry: A Phenomenographic Study

    Science.gov (United States)

    Stefani, Christina; Tsaparlis, Georgios

    2009-01-01

    We investigated students' knowledge constructions of basic quantum chemistry concepts, namely atomic orbitals, the Schrodinger equation, molecular orbitals, hybridization, and chemical bonding. Ausubel's theory of meaningful learning provided the theoretical framework and phenomenography the method of analysis. The semi-structured interview with…

  7. Secondary School Students' Misconceptions about Simple Electric Circuits

    Science.gov (United States)

    Küçüközer, Hüseyin; Kocakülah, Sabri

    2007-01-01

    The aim of this study is to reveal secondary school students' misconceptions about simple electric circuits and to define whether specific misconceptions peculiar to Turkish students exist within those identified. Data were obtained with a conceptual understanding test for simple electric circuits and semi-structured interviews. Conceptual…

  8. Misconceptions about traumatic brain injuries among South African university students

    Directory of Open Access Journals (Sweden)

    Chrisma Pretorius

    2013-08-01

    Full Text Available Objective. To investigate the incidence and type of misconceptions about traumatic brain injuries (TBIs harboured by university students.  Method. A convenience sample of 705 university students were recruited and data were collected using an electronic survey. The link to the survey was sent via e-mail to all registered students at Stellenbosch University. The participants had to complete the Common Misconceptions about Traumatic Brain Injury (CM-TBI questionnaire.  Results. The findings of this study suggest that the students subscribe to misconceptions from each of the 7 categories of misconceptions about TBIs. The mean percentages of misconceptions about TBIs were calculated and the amnesia (mean 49.7% and unconsciousness (mean 46.1% categories were identified as the categories about which the respondents had the most misconceptions, while the mean percentages of misconceptions were lower for the categories of recovery (mean 27.6%, rehabilitation (mean 26.56%, prevention (mean 20.8%, brain injury sequelae (mean 18.7% and brain damage (mean 8.4%.  Conclusion. Generally, these findings appear to be in keeping with previous literature, which suggests that misconceptions about TBIs are common among the general population. This study’s identification of these misconceptions could help create awareness, provide a focus for information provision, and contribute to the development of educational intervention programmes tailored for the South African context.

  9. Students' Misconceptions about Heat Transfer Mechanisms and Elementary Kinetic Theory

    Science.gov (United States)

    Pathare, S. R.; Pradhan, H. C.

    2010-01-01

    Heat and thermodynamics is a conceptually rich area of undergraduate physics. In the Indian context in particular there has been little work done in this area from the point of view of misconceptions. This prompted us to undertake a study in this area. We present a study of students' misconceptions about heat transfer mechanisms, i.e. conduction,…

  10. On Misconceptions about Behavior Analysis among University Students and Teachers

    Science.gov (United States)

    Arntzen, Erik; Lokke, Jon; Lokke, Gunn; Eilertsen, Dag-Erik

    2010-01-01

    Students frequently show misconceptions regarding scientific psychology in general and basic concepts in behavior analysis in particular. We wanted to replicate the study by Lamal (1995) and to expand the study by including some additional statements. In the current study, the focus was on misconceptions about behavior analysis held by…

  11. Common Student Misconceptions in Exercise Physiology and Biochemistry

    Science.gov (United States)

    Morton, James P.; Doran, Dominic A.; MacLaren, Don P. M.

    2008-01-01

    The present study represents a preliminary investigation designed to identify common misconceptions in students' understanding of physiological and biochemical topics within the academic domain of sport and exercise sciences. A specifically designed misconception inventory (consisting of 10 multiple-choice questions) was administered to a cohort…

  12. Enhancing Preservice Teachers' Understanding of Students' Misconceptions in Learning Chemistry

    Science.gov (United States)

    Naah, Basil Mugaga

    2015-01-01

    Preservice teachers enrolled in a modified introductory chemistry course used an instructional rubric to improve and evaluate their understanding of students' misconceptions in learning various chemistry concepts. A sample of 79 preservice teachers first explored the state science standards to identify chemistry misconceptions associated with the…

  13. Unraveling Students' Misconceptions about the Earth's Shape and Gravity.

    Science.gov (United States)

    Sneider, Cary I.; Ohadi, Mark M.

    1998-01-01

    Presents a study designed to test the effectiveness of a constructivist-historical teaching strategy in changing students' misconceptions about the earth's shape and gravity at the upper elementary and middle school levels. Contains 27 references. (DDR)

  14. Misconceptions and Conceptual Changes Concerning Continental Drift and Plate Tectonics among Portuguese Students Aged 16-17.

    Science.gov (United States)

    Marques, Luis; Thompson, David

    1997-01-01

    This study investigates student misconceptions in the areas of continent, ocean, permanence of ocean basins, continental drift, Earth's magnetic field, and plates and plate motions. A teaching-learning model was designed based on a constructivist approach. Results show that students held a substantial number of misconceptions. (Author/DKM)

  15. Students' Misconceptions about Medium-Scale Integrated Circuits

    Science.gov (United States)

    Herman, G. L.; Loui, M. C.; Zilles, C.

    2011-01-01

    To improve instruction in computer engineering and computer science, instructors must better understand how their students learn. Unfortunately, little is known about how students learn the fundamental concepts in computing. To investigate student conceptions and misconceptions about digital logic concepts, the authors conducted a qualitative…

  16. Students' conceptions and misconceptions in chemical kinetics in ...

    African Journals Online (AJOL)

    The purpose of the study was to probe the conception and misconception of senior secondary (SS3) and University (US) chemistry students in chemical kinetics in Rivers State, Nigeria. The study sample was made up of 107 SS3 and 93 US students. Two main instruments were used to collect data for the study. They are the ...

  17. Moving Beyond Misconceptions: A New Model for Learning Challenges in Cognition

    Science.gov (United States)

    Slater, T. F.; Slater, S. J.

    2011-12-01

    For over 40 years, the science education community has given its attention to cataloging the substantial body of "misconceptions" in individual's thinking about science, and to addressing the consequences of those misconceptions in the science classroom. Despite the tremendous amount of effort given to researching and disseminating information related to misconceptions, and the development of a theory of conceptual change to mitigate misconceptions, progress continues to be less than satisfying. An analysis of the literature and our own research has persuaded the CAPER Center for Astronomy and Physics Education Research to put forth model that will allow us to operate on students' learning difficulties in a more fruitful manner. Previously, much of the field's work binned erroneous student thinking into a single construct, and from that basis, curriculum developers and instructors addressed student misconceptions with a single instructional strategy. In contrast this model suggests that "misconceptions" are a mixture of at least four learning barriers: incorrect factual information, inappropriately applied mental algorithms (phenomenological primitives), insufficient cognitive structures (e.g. spatial reasoning), and affective/emotional difficulties. Each of these types of barriers should be addressed with an appropriately designed instructional strategy. Initial applications of this model to learning problems in the Earth & Space Sciences have been fruitful, suggesting that an effort towards categorizing persistent learning difficulties in the geosciences beyond the level of "misconceptions" may allow our community to craft tailored and more effective learning experiences for our students and the general public.

  18. Does Conceptual Understanding of Limit Partially Lead Students to Misconceptions?

    Science.gov (United States)

    Mulyono, B.; Hapizah

    2017-09-01

    This article talks about the result of preliminary research of my dissertation, which will investigate student’s retention of conceptual understanding. In my preliminary research, I surveyed 73 students of mathematics education program by giving some questions to test their retention of conceptual understanding of limits. Based on the results of analyzing of students’ answers I conclude that most of the students have problems with their retention of conceptual understanding and they also have misconception of limits. The first misconception I identified is that students always used the substitution method to determine a limit of a function at a point, but they did not check whether the function is continue or not at the point. It means that they only use the substitution theorem partially, because they do not consider that the substitution theorem \\mathop{{lim}}\\limits\\text{x\\to \\text{c}}f(x)=f(c) works only if f(x) is defined at χ = c. The other misconception identified is that some students always think there must be available of variables χ in a function to determine the limit of the function. I conjecture that conceptual understanding of limit partially leads students to misconceptions.

  19. The Equal Sign: Teachers' Knowledge and Students' Misconceptions

    Science.gov (United States)

    Vermeulen, Cornelis; Meyer, Bronwin

    2017-01-01

    This article reports on a study that investigated the extent to which 57 Grade 6 students at a particular school have misconceptions regarding equality, with the equal sign as focus. It also investigated this school's three Grade 5 and 6 teachers' mathematical knowledge for teaching regarding equality, again focusing on the equal sign. The…

  20. One output function: a misconception of students studying digital systems - a case study

    Science.gov (United States)

    Trotskovsky, E.; Sabag, N.

    2015-05-01

    Background:Learning processes are usually characterized by students' misunderstandings and misconceptions. Engineering educators intend to help their students overcome their misconceptions and achieve correct understanding of the concept. This paper describes a misconception in digital systems held by many students who believe that combinational logic circuits should have only one output. Purpose:The current study aims to investigate the roots of the misconception about one-output function and the pedagogical methods that can help students overcome the misconception. Sample:Three hundred and eighty-one students in the Departments of Electrical and Electronics and Mechanical Engineering at an academic engineering college, who learned the same topics of a digital combinational system, participated in the research. Design and method:In the initial research stage, students were taught according to traditional method - first to design a one-output combinational logic system, and then to implement a system with a number of output functions. In the main stage, an experimental group was taught using a new method whereby they were shown how to implement a system with several output functions, prior to learning about one-output systems. A control group was taught using the traditional method. In the replication stage (the third stage), an experimental group was taught using the new method. A mixed research methodology was used to examine the results of the new learning method. Results:Quantitative research showed that the new teaching approach resulted in a statistically significant decrease in student errors, and qualitative research revealed students' erroneous thinking patterns. Conclusions:It can be assumed that the traditional teaching method generates an incorrect mental model of the one-output function among students. The new pedagogical approach prevented the creation of an erroneous mental model and helped students develop the correct conceptual understanding.

  1. Students' Understandings and Misconceptions of Algebraic Inequalities

    Science.gov (United States)

    Rowntree, Rebecca V.

    2009-01-01

    The National Council of Teachers of Mathematics [NCTM] requires students in grades nine through 12 to be able to explain inequalities using mathematical relational symbols and be able to understand the meaning of inequalities and their solutions (NCTM, 2000). Studies have shown that not only middle and high school students have difficulties with…

  2. Singapore Students' Misconceptions of Climate Change

    Science.gov (United States)

    Chang, Chew-Hung; Pascua, Liberty

    2016-01-01

    Climate change is an important theme in the investigation of human-environment interactions in geographic education. This study explored the nature of students' understanding of concepts and processes related to climate change. Through semi-structured interviews, data was collected from 27 Secondary 3 (Grade 9) students from Singapore. The data…

  3. students' conceptions and misconceptions in chemical kinetics

    African Journals Online (AJOL)

    IICBA01

    40 items ... **Department of Science & Technical Education, Rivers State University of Science & .... CKCP is a one-item calculation test based on elementary knowledge of ... then administered on thirty SS3 chemistry students in a school that was.

  4. Exploring Lecturers' Views of First-Year Health Science Students' Misconceptions in Biomedical Domains

    Science.gov (United States)

    Badenhorst, Elmi; Mamede, Sílvia; Hartman, Nadia; Schmidt, Henk G.

    2015-01-01

    Research has indicated that misconceptions hamper the process of knowledge construction. Misconceptions are defined as persistent ideas not supported by current scientific views. Few studies have explored how misconceptions develop when first year health students conceptually move between anatomy and physiology to construct coherent knowledge…

  5. Exploring lecturers' views of first-year health science students' misconceptions in biomedical domains.

    Science.gov (United States)

    Badenhorst, Elmi; Mamede, Sílvia; Hartman, Nadia; Schmidt, Henk G

    2015-05-01

    Research has indicated that misconceptions hamper the process of knowledge construction. Misconceptions are defined as persistent ideas not supported by current scientific views. Few studies have explored how misconceptions develop when first year health students conceptually move between anatomy and physiology to construct coherent knowledge about the human body. This explorative study analysed lecturers' perceptions of first-year health science students' misconceptions in anatomy and physiology to gain a deeper understanding of how and why misconceptions could potentially arise, by attempting to link sources of misconceptions with four schools of thought, namely theories on concept formation, complexity, constructivism and conceptual change. This was a qualitative study where ten lecturers involved in teaching anatomy and physiology in the health science curricula at the University of Cape Town were interviewed to explore perceptions of students' misconceptions. Analytical induction was used to uncover categories within the interview data by using a coding system. A deeper analysis was done to identify emerging themes that begins to explore a theoretical understanding of why and how misconceptions arise. Nine sources of misconceptions were identified, including misconceptions related to language, perception, three dimensional thinking, causal reasoning, curricula design, learning styles and moving between macro and micro levels. The sources of misconceptions were then grouped together to assist educators with finding educational interventions to overcome potential misconceptions. This explorative study is an attempt in theory building to understand what is at the core of biomedical misconceptions. Misconceptions identified in this study hold implications for educators as not all students have the required building blocks and cognitive skills to successfully navigate their way through biomedical courses. Theoretical insight into the sources of misconceptions can

  6. Development and Application of Diagnostic Test to Identify Students' Misconceptions of Quantum Physics

    International Nuclear Information System (INIS)

    Halim, A.A.; Meerah, T.S.; Lilia Halim

    2009-01-01

    A study on students' misconceptions on quantum physics is rarely being done, because the target audience is quite small. It is important to understand quantum physics concepts correctly especially for science students. This study was under taken to help students identify their misconceptions at the early stage. The aim of this study is to develop a diagnostic test which can access the students' misconceptions, and use the findings for the benefits of quantum physics courses. A multiple-choice Quantum Physics Diagnostic Test (QPDT), that involves concepts of light, atomic model, particle-wave dualism, wave function, and potential energy, was administered to 200 university students. The results shows that many students use the classical concepts to describe the quantum phenomenon. For example students describe light only as a wave, an electron only as a particle, and that the atomic structure is parallel to the solar system. To overcome these problems, it is suggested that lecturers spend more time in explaining the basic definitions and using analogies in quantum physics teaching. (author)

  7. Secondary School Students' Misconceptions about Photosynthesis and Plant Respiration: Preliminary Results

    Science.gov (United States)

    Svandova, Katerina

    2014-01-01

    The study investigated the common misconceptions of lower secondary school students regarding the concepts of photosynthesis and plant respiration. These are abstract concepts which are difficult to comprehend for adults let alone for lower secondary school students. Research of the students misconceptions are conducted worldwide. The researches…

  8. Diagnosing students' misconceptions in algebra: results from an experimental pilot study.

    Science.gov (United States)

    Russell, Michael; O'Dwyer, Laura M; Miranda, Helena

    2009-05-01

    Computer-based diagnostic assessment systems hold potential to help teachers identify sources of poor performance and to connect teachers and students to learning activities designed to help advance students' conceptual understandings. The present article presents findings from a study that examined how students' performance in algebra and their overcoming of common algebraic misconceptions were affected by the use of a diagnostic assessment system that focused on important algebra concepts. This study used a four-group randomized cluster trial design in which teachers were assigned randomly to one of four groups: a "business as usual" control group, a partial intervention group that was provided with access to diagnostic tests results, a partial intervention group that was provided with access to the learning activities, and a full intervention group that was given access to the test results and learning activities. Data were collected from 905 students (6th-12th grade) nested within 44 teachers. We used hierarchical linear modeling techniques to compare the effects of full, partial, and no (control) intervention on students' algebraic ability and misconceptions. The analyses indicate that full intervention had a net positive effect on ability and misconception measures.

  9. An Analysis of Students' Misconceptions Concerning Photosynthesis and Respiration in Plants.

    Science.gov (United States)

    Capa, Yesim; Yildirim, Ali; Ozden, M. Yasar

    The aims of this study were to diagnose students' misconceptions concerning photosynthesis and respiration in plants, and to investigate reasons behind these misconceptions. The subjects were 45 ninth grade high school students and 11 high school teachers. Data were collected by interview technique. All of the interviews were audiotaped and…

  10. "Holes" in Student Understanding: Addressing Prevalent Misconceptions regarding Atmospheric Environmental Chemistry

    Science.gov (United States)

    Kerr, Sara C.; Walz, Kenneth A.

    2007-01-01

    There is a misconception among undergraduate students that global warming is caused by holes in the ozone layer. In this study, we evaluated the presence of this and other misconceptions surrounding atmospheric chemistry that are responsible for the entanglement of the greenhouse effect and the ozone hole in students' conceptual frameworks. We…

  11. Analysis of the Misconceptions of 7th Grade Students on Polygons and Specific Quadrilaterals

    Science.gov (United States)

    Ozkan, Mustafa; Bal, Ayten Pinar

    2017-01-01

    Purpose: This study will find out student misconceptions about geometrical figures, particularly polygons and quadrilaterals. Thus, it will offer insights into teaching these concepts. The objective of this study, the question of "What are the misconceptions of seventh grade students on polygons and quadrilaterals?" constitutes the…

  12. Students' Misconceptions about the Ozone Layer and the Effect of Internet-Based Media on It

    Science.gov (United States)

    Gungordu, Nahide; Yalcin-Celik, Ayse; Kilic, Ziya

    2017-01-01

    In this study, students' misconceptions about the ozone layer were investigated, looking specifically at the effect internet-based media has on the formation of these misconceptions. Quantitative and qualitative research approaches were used to perform the research. As part of the quantitative portion of the research, the descriptive survey…

  13. Misconceptions of High School Students Related to the Conceptions of Absolutism and Constitutionalism in History Courses

    Science.gov (United States)

    Bal, Mehmet Suat

    2011-01-01

    The goal of this study is to analyze the 10th grade high school students' misconceptions related to the sense of ruling in the Ottoman State during the absolutist and constitutional periods and to investigate the causes of these misconceptions. The data were collected through eight open-ended questions related to the concepts of absolutism and…

  14. Remediating Misconception on Climate Change among Secondary School Students in Malaysia

    Science.gov (United States)

    Karpudewan, Mageswary; Roth, Wolff-Michael; Chandrakesan, Kasturi

    2015-01-01

    Existing studies report on secondary school students' misconceptions related to climate change; they also report on the methods of teaching as reinforcing misconceptions. This quasi-experimental study was designed to test the null hypothesis that a curriculum based on constructivist principles does not lead to greater understanding and fewer…

  15. Myths and Misconceptions in Popular Psychology: Comparing Psychology Students and the General Public

    Science.gov (United States)

    Furnham, Adrian; Hughes, David J.

    2014-01-01

    This study examined the prevalence of psychological myths and misconceptions among psychology students and within the general population. In total, 829 participants completed a 249-item questionnaire designed to measure a broad range of psychological myths. Results revealed that psychological myths and misconceptions are numerous and widely held.…

  16. Enhancing Mathematics Teachers' Knowledge of Students' Thinking from Assessing and Analyzing Misconceptions in Homework

    Science.gov (United States)

    An, Shuhua; Wu, Zhonghe

    2012-01-01

    This study focuses on teacher learning of student thinking through grading homework, assessing and analyzing misconceptions. The data were collected from 10 teachers at fifth-eighth grade levels in the USA. The results show that assessing and analyzing misconceptions from grading homework is an important approach to acquiring knowledge of…

  17. Black Boxes in Analytical Chemistry: University Students' Misconceptions of Instrumental Analysis

    Science.gov (United States)

    Carbo, Antonio Domenech; Adelantado, Jose Vicente Gimeno; Reig, Francisco Bosch

    2010-01-01

    Misconceptions of chemistry and chemical engineering university students concerning instrumental analysis have been established from coordinated tests, tutorial interviews and laboratory lessons. Misconceptions can be divided into: (1) formal, involving specific concepts and formulations within the general frame of chemistry; (2)…

  18. Student Misconceptions in Chemical Equilibrium as Related to Cognitive Level and Achievement.

    Science.gov (United States)

    Wheeler, Alan E.; Kass, Heidi

    Reported is an investigation to determine the nature and extent of student misconceptions in chemical equilibrium and to ascertain the degree to which certain misconceptions are related to chemistry achievement and to performance on specific tasks involving cognitive transformations characteristic of the concrete and formal operational stages of…

  19. Exploring Secondary Students' Knowledge and Misconceptions about Influenza: Development, validation, and implementation of a multiple-choice influenza knowledge scale

    Science.gov (United States)

    Romine, William L.; Barrow, Lloyd H.; Folk, William R.

    2013-07-01

    Understanding infectious diseases such as influenza is an important element of health literacy. We present a fully validated knowledge instrument called the Assessment of Knowledge of Influenza (AKI) and use it to evaluate knowledge of influenza, with a focus on misconceptions, in Midwestern United States high-school students. A two-phase validation process was used. In phase 1, an initial factor structure was calculated based on 205 students of grades 9-12 at a rural school. In phase 2, one- and two-dimensional factor structures were analyzed from the perspectives of classical test theory and the Rasch model using structural equation modeling and principal components analysis (PCA) on Rasch residuals, respectively. Rasch knowledge measures were calculated for 410 students from 6 school districts in the Midwest, and misconceptions were verified through the χ 2 test. Eight items measured knowledge of flu transmission, and seven measured knowledge of flu management. While alpha reliability measures for the subscales were acceptable, Rasch person reliability measures and PCA on residuals advocated for a single-factor scale. Four misconceptions were found, which have not been previously documented in high-school students. The AKI is the first validated influenza knowledge assessment, and can be used by schools and health agencies to provide a quantitative measure of impact of interventions aimed at increasing understanding of influenza. This study also adds significantly to the literature on misconceptions about influenza in high-school students, a necessary step toward strategic development of educational interventions for these students.

  20. Text Based Analogy in Overcoming Student Misconception on Simple Electricity Circuit Material

    Science.gov (United States)

    Hesti, R.; Maknun, J.; Feranie, S.

    2017-09-01

    Some researcher have found that the use of analogy in learning and teaching physics was effective enough in giving comprehension in a complicated physics concept such as electrical circuits. Meanwhile, misconception become main cause that makes students failed when learning physics. To provide teaching physics effectively, the misconception should be resolved. Using Text Based Analogy is one of the way to identifying misconceptions and it is enough to assist teachers in conveying scientific truths in order to overcome misconceptions. The purpose of the study to investigate the use of text based analogy in overcoming students misconception on simple electrical circuit material. The samples of this research were 28 of junior high school students taken purposively from one high school in South Jakarta. The method use in this research is pre-experimental and design in one shot case study. Students who are the participants of sample have been identified misconception on the electrical circuit material by using the Diagnostic Test of Simple Electricity Circuit. The results of this study found that TBA can replace the misconceptions of the concept possessed by students with scientific truths conveyed in the text in a way that is easily understood so that TBA is strongly recommended to use in other physics materials.

  1. Cultural misconceptions and public stigma against mental illness among Lebanese university students.

    Science.gov (United States)

    Rayan, Ahmad; Fawaz, Mirna

    2018-04-01

    The purpose of this study was to examine cultural misconceptions about mental illness and how they are associated with the public stigma against mental illness among Lebanese university students. A sample of 203 participants completed the study. Data about cultural misconceptions, attitudes about mental illness, and public stigma of mental illness were obtained. The researchers examined the mean difference in public stigma according to cultural beliefs about mental illness. The majority of students believe that mental health professionals have inadequate knowledge and expertise to treat mental disorders. Various cultural misconceptions about mental illness were reported. Public stigma significantly differed based on these cultural misconceptions. Psychiatric nurses should play a vital role in reshaping the inappropriate cultural view about mental illness. © 2017 Wiley Periodicals, Inc.

  2. STUDENT MISCONCEPTION ON REDOX TITRATION (A CHALLENGE ON THE COURSE IMPLEMENTATION THROUGH COGNITIVE DISSONANCE BASED ON THE MULTIPLE REPRESENTATIONS

    Directory of Open Access Journals (Sweden)

    H. R. Widarti

    2016-04-01

    Full Text Available The misconception is one of the obstacles in the concept mastery that needed to be minimalized. This descriptive study was conducted to find the patterns of misconceptions which have occurred on college students who participating in the redox titration course subject. Efforts to minimize misconceptions have been conducted through lectures using the multiple representations with the cognitive dissonance strategies on the 30 students who joined the Fundamentals of Analytical Chemistry course. The research instrument used in this study was 6 multiple-choice tests with reasons. In order to detect the misconception, Certainty of Response Index technique was performed. The preliminary study results showed that 34.30% of students experiencing the misconceptions on redox titration. After treatments, the misconceptions reduced to 28.17%. A misconception that cannot be eliminated was related to the concepts involving in the microscopic and symbolic appearances.

  3. The Profile of Student Misconceptions on The Human and Plant Transport Systems

    Science.gov (United States)

    Ainiyah, M.; Ibrahim, M.; Hidayat, M. T.

    2018-01-01

    This research aims to identify misconceptions on the humans and plants transportation systems. The research was done in the 8th grade in Indonesia. Data were collected to use a three-tier test. This type of research was used survey design. Content analysis was used to analyze the misconception data. The results of this research were the location of misconception of each student is different. The highest misconceptions identified in this research, namely: a) arteries that drain blood to the heart (73.3%); b) veins that drain blood from the heart (70.0%); c) place of oxygen and carbon dioxide exchange occurs in the veins (66.7%); d) blood pressure in veins greater than in capillaries (63.3%); e) absorption of water occurs diffusion and absorption of minerals occurs osmosis (76.7%); f) transport of photosynthesis process occurs by diffusion (66.7%); g) photosynthesis process occurs during the day (63.3%); and h) process of evaporation of water through the leaves are guttation (56.7%). The results of this research show that the level of students misconceptions on the of human and plant transport systems is still high so that it can serve as a reference to improve the learning process and the reduction of student misconceptions.

  4. Development and Application of an Instrument to Identify Students Misconceptions: Diffusion and Osmosis

    Science.gov (United States)

    Misischia, Cynthia M.

    2010-01-01

    A large number of undergraduate students have naive understandings about the processes of Diffusion and Osmosis. Some students overcome these misconceptions, but others do not. The study involved nineteen undergraduate movement science students at a Midwest University. Participants' were asked to complete a short answer (fill-in the blank) test,…

  5. Calcium contained tap water phenomena: students misconception patterns of acids-bases concept

    Science.gov (United States)

    Liliasari, S.; Albaiti, A.; Wahyudi, A.

    2018-05-01

    Acids and bases concept is very important and fundamental concept in learning chemistry. It is one of the chemistry subjects considered as an abstract and difficult concept to understand. The aim of this research was to explore student’s misconception pattern about acids and bases phenomena in daily life, such as calcium contained tap water. This was a qualitative research with descriptive methods. Participants were 546 undergraduate students of chemistry education and chemistry program, and graduate students of chemistry education in West Java, Indonesia. The test to explore students’ misconception about this phenomena was essay test. The results showed that there were five patterns of students’ misconception in explaining the phenomena of calcium carbonate precipitation on heating tap water. Students used irrelevant concepts in explaining this phenomena, i.e. temporary hardness, coagulation, density, and phase concepts. No students had right answer in explaining this phenomena. This research contributes to design meaningful learning and to achieve better understanding.

  6. A Reply to ''Reinterpretation of Students' Ideas When Reasoning about Particle Model Illustrations. A Response to ''Using Animations in Identifying General Chemistry Students' Misconceptions and Evaluating Their Knowledge Transfer Relating to Particle Position in Physical Changes'' by Smith and Villarreal (2015)''

    Science.gov (United States)

    Smith, K. Christopher; Villarreal, Savannah

    2015-01-01

    In this reply to Elon Langbeheim's response to an article recently published in this journal, authors Smith and Villarreal identify several types of general chemistry students' misconceptions concerning the concept of particle position during physical change. They focus their response on one of the misconceptions identified as such: Given a solid…

  7. A Study on Primary and Secondary School Students' Misconceptions about Greenhouse Effect (Erzurum Sampling)

    Science.gov (United States)

    Gul, Seyda; Yesilyurt, Selami

    2011-01-01

    The aim of this study is to determine what level of primary and secondary school students' misconceptions related to greenhouse effect is. Study group consists of totally 280 students attended to totally 8 primary and secondary schools (4 primary school, 4 secondary school) which were determined with convenient sampling method from center of…

  8. High School 9th Grade Students' Understanding Level and Misconceptions about Temperature and Factors Affecting It

    Science.gov (United States)

    Akbas, Yavuz

    2012-01-01

    The purpose of this study is to explore students' understanding levels and misconceptions about temperature and factors affecting it. The concept of the study was chosen from Geography National Curriculum. In this study, a questionnaire was developed after a pilot study with an aim to ascertain the students' understanding levels of temperature and…

  9. Improving Algebra Preparation: Implications from Research on Student Misconceptions and Difficulties

    Science.gov (United States)

    Welder, Rachael M.

    2012-01-01

    Through historical and contemporary research, educators have identified widespread misconceptions and difficulties faced by students in learning algebra. Many of these universal issues stem from content addressed long before students take their first algebra course. Yet elementary and middle school teachers may not understand how the subtleties of…

  10. Identifying and Addressing Student Difficulties and Misconceptions: Examples from Physics and from Materials Science and Engineering

    Science.gov (United States)

    Rosenblatt, Rebecca

    2012-01-01

    Here I present my work identifying and addressing student difficulties with several materials science and physics topics. In the first part of this thesis, I present my work identifying student difficulties and misconceptions about the directional relationships between net force, velocity, and acceleration in one dimension. This is accomplished…

  11. The effect of remediation on reducing misconception: a metaanalysis of student thesis on physics education

    Science.gov (United States)

    Oktavianty, E.; Haratua, T. M. S.; Anuru, M.

    2018-05-01

    The purpose of this study is to compare the effects of various remediation practices in reducing the number of student misconceptions on physics concepts. This research synthesizes 68 thesis undergraduate students of physics education which are published in Tanjungpura University library 2009-2016 period. In this study, the guidance in the form of checklist in conducting the study arranged to facilitate the understanding and assessment of the scientific work. Based on the analysis result, the average of effect size of all the synthesized thesis is 1.13. There are six forms of remedial misconceptions performed by physics education students, such as re-learning, feedback, integration of remediation in learning, physical activity, utilization of other learning resources and interviews. In addition, sampling techniques and test reliability were have contributed to the effect size of the study. Therefore, it is expected that the results of this study can be considered in preparing the remediation of misconceptions on physics learning in the future.

  12. Tracking the Resolution of Student Misconceptions about the Central Dogma of Molecular Biology.

    Science.gov (United States)

    Briggs, Amy G; Morgan, Stephanie K; Sanderson, Seth K; Schulting, Molly C; Wieseman, Laramie J

    2016-12-01

    The goal of our study was to track changes in student understanding of the central dogma of molecular biology before and after taking a genetics course. Concept maps require the ability to synthesize new information into existing knowledge frameworks, and so the hypothesis guiding this study was that student performance on concept maps reveals specific central dogma misconceptions gained, lost, and retained by students. Students in a genetics course completed pre- and posttest concept mapping tasks using terms related to the central dogma. Student maps increased in complexity and validity, indicating learning gains in both content and complexity of understanding. Changes in each of the 351 possible connections in the mapping task were tracked for each student. Our students did not retain much about the central dogma from their introductory biology courses, but they did move to more advanced levels of understanding by the end of the genetics course. The information they retained from their introductory courses focused on structural components (e.g., protein is made of amino acids) and not on overall mechanistic components (e.g., DNA comes before RNA, the ribosome makes protein). Students made the greatest gains in connections related to transcription, and they resolved the most prior misconceptions about translation. These concept-mapping tasks revealed that students are able to correct prior misconceptions about the central dogma during an intermediate-level genetics course. From these results, educators can design new classroom interventions to target those aspects of this foundational principle with which students have the most trouble.

  13. The Effect of Group Work on Misconceptions of 9th Grade Students about Newton's Laws

    Science.gov (United States)

    Ergin, Serap

    2016-01-01

    In this study, the effect of group work and traditional method on 9th grade students' misconceptions about Newton Laws was investigated. The study was conducted in three classes in an Anatolian Vocational High School in Ankara/Turkey in the second term of the 2014-2015 academic year. Two of these classes were chosen as the experimental group and…

  14. Analysis of Errors and Misconceptions in the Learning of Calculus by Undergraduate Students

    Science.gov (United States)

    Muzangwa, Jonatan; Chifamba, Peter

    2012-01-01

    This paper is going to analyse errors and misconceptions in an undergraduate course in Calculus. The study will be based on a group of 10 BEd. Mathematics students at Great Zimbabwe University. Data is gathered through use of two exercises on Calculus 1&2.The analysis of the results from the tests showed that a majority of the errors were due…

  15. The Investigation of 6th Grade Student Misconceptions Originated from Didactic about the "Digestive System" Subject

    Science.gov (United States)

    Ozgur, Sami; Pelitoglu, Fatma Cildir

    2008-01-01

    In this study, the misconceptions emerged as a result of instruction were examined from the viewpoint of the Didactic Transposition Theory. To this end, two randomly selected sample groups (n = 33 and n = 31) from the students of two nearby schools in downtown Balikesir were included in the study. It was observed that different knowledge…

  16. Reduction of cognitive conflict and learning style impact towards student-teacher's misconception load

    Science.gov (United States)

    A'yun, Kurroti; Suyono, Poedjiastoeti, Sri; Bin-Tahir, Saidna Zulfiqar

    2017-08-01

    The most crucial issue in education is a misconception that is caused by the misconception of the students themselves. Therefore, this study provided the solution to improve the quality of teaching chemistry in the schools through the remediation of misconceptions to the chemistry teacher candidates. This study employed a mixed method approach using concurrent embedded designs where it tended more to the qualitative research, but it still relied on the quantitative research in the assessment of the learning impact. The results of this study were the students with higher levels of cognitive conflict still have high loads of misconceptions (MC), it possibly due to the type of students' learning styles that is the sequential-global balanced. To facilitate the cognitive conflict character and the learning style of sequential-global balanced, the researchers created an integrated worksheet conceptual change with peer learning (WCCPL). The peer learning undertaken in the last stages of conceptual change of WCCPL can increase the resistance of students' concept in a category of knowing the concept significantly, but it should be examined in an in-depth study related to the long-term memory.

  17. Growing Pebbles and Conceptual Prisms - Understanding the Source of Student Misconceptions about Rock Formation.

    Science.gov (United States)

    Kusnick, Judi

    2002-01-01

    Analyzes narrative essays--stories of rock formation--written by pre-service elementary school teachers. Reports startling misconceptions among preservice teachers on pebbles that grow, human involvement in rock formation, and sedimentary rocks forming as puddles as dry up, even though these students had completed a college level course on Earth…

  18. Student Misconceptions about Plants – A First Step in Building a Teaching Resource

    Directory of Open Access Journals (Sweden)

    April N. Wynn

    2017-05-01

    Full Text Available Plants are ubiquitous and found in virtually every ecosystem on Earth, but their biology is often poorly understood, and inaccurate ideas about how plants grow and function abound. Many articles have been published documenting student misconceptions about photosynthesis and respiration, but there are substantially fewer on such topics as plant cell structure and growth; plant genetics, evolution, and classification; plant physiology (beyond energy relations; and plant ecology. The available studies of misconceptions held on those topics show that many are formed at a very young age and persist throughout all educational levels. Our goal is to begin building a central resource of plant biology misconceptions that addresses these underrepresented topics, and here we provide a table of published misconceptions organized by topic. For greater utility, we report the age group(s in which the misconceptions were found and then map them to the ASPB – BSA Core Concepts and Learning Objectives in Plant Biology for Undergraduates, developed jointly by the American Society of Plant Biologists and the Botanical Society of America.

  19. Student Misconceptions about Plants – A First Step in Building a Teaching Resource†

    Science.gov (United States)

    Wynn, April N.; Pan, Irvin L.; Rueschhoff, Elizabeth E.; Herman, Maryann A. B.; Archer, E. Kathleen

    2017-01-01

    Plants are ubiquitous and found in virtually every ecosystem on Earth, but their biology is often poorly understood, and inaccurate ideas about how plants grow and function abound. Many articles have been published documenting student misconceptions about photosynthesis and respiration, but there are substantially fewer on such topics as plant cell structure and growth; plant genetics, evolution, and classification; plant physiology (beyond energy relations); and plant ecology. The available studies of misconceptions held on those topics show that many are formed at a very young age and persist throughout all educational levels. Our goal is to begin building a central resource of plant biology misconceptions that addresses these underrepresented topics, and here we provide a table of published misconceptions organized by topic. For greater utility, we report the age group(s) in which the misconceptions were found and then map them to the ASPB – BSA Core Concepts and Learning Objectives in Plant Biology for Undergraduates, developed jointly by the American Society of Plant Biologists and the Botanical Society of America. PMID:28912929

  20. Student Misconceptions about Plants - A First Step in Building a Teaching Resource.

    Science.gov (United States)

    Wynn, April N; Pan, Irvin L; Rueschhoff, Elizabeth E; Herman, Maryann A B; Archer, E Kathleen

    2017-01-01

    Plants are ubiquitous and found in virtually every ecosystem on Earth, but their biology is often poorly understood, and inaccurate ideas about how plants grow and function abound. Many articles have been published documenting student misconceptions about photosynthesis and respiration, but there are substantially fewer on such topics as plant cell structure and growth; plant genetics, evolution, and classification; plant physiology (beyond energy relations); and plant ecology. The available studies of misconceptions held on those topics show that many are formed at a very young age and persist throughout all educational levels. Our goal is to begin building a central resource of plant biology misconceptions that addresses these underrepresented topics, and here we provide a table of published misconceptions organized by topic. For greater utility, we report the age group(s) in which the misconceptions were found and then map them to the ASPB - BSA Core Concepts and Learning Objectives in Plant Biology for Undergraduates, developed jointly by the American Society of Plant Biologists and the Botanical Society of America.

  1. A Two-Tier Multiple Choice Questions to Diagnose Thermodynamic Misconception of Thai and Laos Students

    Science.gov (United States)

    Kamcharean, Chanwit; Wattanakasiwich, Pornrat

    The objective of this study was to diagnose misconceptions of Thai and Lao students in thermodynamics by using a two-tier multiple-choice test. Two-tier multiple choice questions consist of the first tier, a content-based question and the second tier, a reasoning-based question. Data of student understanding was collected by using 10 two-tier multiple-choice questions. Thai participants were the first-year students (N = 57) taking a fundamental physics course at Chiang Mai University in 2012. Lao participants were high school students in Grade 11 (N = 57) and Grade 12 (N = 83) at Muengnern high school in Xayaboury province, Lao PDR. As results, most students answered content-tier questions correctly but chose incorrect answers for reason-tier questions. When further investigating their incorrect reasons, we found similar misconceptions as reported in previous studies such as incorrectly relating pressure with temperature when presenting with multiple variables.

  2. Influence of Learning Strategy of Cognitive Conflict on Student Misconception in Computational Physics Course

    Science.gov (United States)

    Akmam, A.; Anshari, R.; Amir, H.; Jalinus, N.; Amran, A.

    2018-04-01

    Misconception is one of the factors causing students are not suitable in to choose a method for problem solving. Computational Physics course is a major subject in the Department of Physics FMIPA UNP Padang. The problem in Computational Physics learning lately is that students have difficulties in constructing knowledge. The indication of this problem was the student learning outcomes do not achieve mastery learning. The root of the problem is the ability of students to think critically weak. Student critical thinking can be improved using cognitive by conflict learning strategies. The research aims to determine the effect of cognitive conflict learning strategy to student misconception on the subject of Computational Physics Course at the Department of Physics, Faculty of Mathematics and Science, Universitas Negeri Padang. The experimental research design conducted after-before design cycles with a sample of 60 students by cluster random sampling. Data were analyzed using repeated Anova measurements. The cognitive conflict learning strategy has a significant effect on student misconception in the subject of Computational Physics Course.

  3. Some Misconceptions in Meiosis Shown by Students Responding to an Advanced Level Practical Examination Question in Biology.

    Science.gov (United States)

    Brown, C. R.

    1990-01-01

    Discussed are problems revealed in student responses to a practical task which formed part of an advanced level examination. The frequencies with which some misconceptions about cell reproduction and genetics occurred are presented. The nature of these misconceptions is analyzed and their implications discussed. (CW)

  4. Student Misconceptions about Newtonian Mechanics: Origins and Solutions through Changes to Instruction

    Science.gov (United States)

    Adair, Aaron Michael

    In order for Physics Education Research (PER) to achieve its goals of significant learning gains with efficient methods, it is necessary to figure out what are the sorts of preexisting issues that students have prior to instruction and then to create teaching methods that are best able to overcome those problems. This makes it necessary to figure out what is the nature of student physics misconceptions---prior beliefs that are both at variance to Newtonian mechanics and also prevent a student from properly cognizing Newtonian concepts. To understand the prior beliefs of students, it is necessary to uncover their origins, which may allow instructors to take into account the sources for ideas of physics that are contrary to Newtonian mechanics understanding. That form of instruction must also induce the sorts of metacognitive processes that allow students to transition from their previous conceptions to Newtonian ones, let alone towards those of modern physics. In this paper, the notions of basic dynamics that are common among first-year college students are studied and compared with previous literature. In particular, an analysis of historical documents from antiquity up to the early modern period shows that these conceptions were rather widespread and consistent over thousands of years and in numerous cultural contexts. This is one of the only analyses in PER that considers the original languages of some of these texts, along with appropriate historical scholarship. Based on the consistent appearance of these misconceptions, a test and interview module was devised to help elucidate the feelings students have that may relate to fictitious forces. The test looked at one-dimensional motion and forces. The first part of the interview asked each student about their answers to the test questions, while the second part asked how students felt when undergoing three cases of constant acceleration in a car. We determined that students confabulated relative motion with the

  5. Using formative feedback to identify and support first-year chemistry students with missing or misconceptions. A Practice Report

    Directory of Open Access Journals (Sweden)

    Gwen Lawrie

    2013-08-01

    Full Text Available Students entering tertiary studies possess a diverse range of prior experiences in their academic preparation for tertiary chemistry so academics need tools to enable them to respond to issues in diversity in conceptual models possessed by entering students. Concept inventories can be used to provide formative feedback to help students identify concepts that they need to address to improve construction of subsequent understanding enabling their learning.Modular, formative learning activities that can be administered inside or outside of class in first year chemistry courses have been developed. These activities address key missing and mis-conceptions possessed by incoming student. Engagement in these learning activities by students and academics will help shift the culture of diagnostic and formative assessment within the tertiary context and address issues around the secondary/tertiary transition. This diagnostic/intervention framework is currently being trialed across five Australian tertiary institutions encompassing a large heterogeneous sample of students.

  6. Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification

    Science.gov (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What…

  7. Tracking the Resolution of Student Misconceptions about the Central Dogma of Molecular Biology†

    Science.gov (United States)

    Briggs, Amy G.; Morgan, Stephanie K.; Sanderson, Seth K.; Schulting, Molly C.; Wieseman, Laramie J.

    2016-01-01

    The goal of our study was to track changes in student understanding of the central dogma of molecular biology before and after taking a genetics course. Concept maps require the ability to synthesize new information into existing knowledge frameworks, and so the hypothesis guiding this study was that student performance on concept maps reveals specific central dogma misconceptions gained, lost, and retained by students. Students in a genetics course completed pre- and posttest concept mapping tasks using terms related to the central dogma. Student maps increased in complexity and validity, indicating learning gains in both content and complexity of understanding. Changes in each of the 351 possible connections in the mapping task were tracked for each student. Our students did not retain much about the central dogma from their introductory biology courses, but they did move to more advanced levels of understanding by the end of the genetics course. The information they retained from their introductory courses focused on structural components (e.g., protein is made of amino acids) and not on overall mechanistic components (e.g., DNA comes before RNA, the ribosome makes protein). Students made the greatest gains in connections related to transcription, and they resolved the most prior misconceptions about translation. These concept-mapping tasks revealed that students are able to correct prior misconceptions about the central dogma during an intermediate-level genetics course. From these results, educators can design new classroom interventions to target those aspects of this foundational principle with which students have the most trouble. PMID:28101260

  8. Tracking the Resolution of Student Misconceptions about the Central Dogma of Molecular Biology

    Directory of Open Access Journals (Sweden)

    Amy G. Briggs

    2016-12-01

    Full Text Available The goal of our study was to track changes in student understanding of the central dogma of molecular biology before and after taking a genetics course. Concept maps require the ability to synthesize new information into existing knowledge frameworks, and so the hypothesis guiding this study was that student performance on concept maps reveals specific central dogma misconceptions gained, lost, and retained by students. Students in a genetics course completed pre- and posttest concept mapping tasks using terms related to the central dogma. Student maps increased in complexity and validity, indicating learning gains in both content and complexity of understanding. Changes in each of the 351 possible connections in the mapping task were tracked for each student. Our students did not retain much about the central dogma from their introductory biology courses, but they did move to more advanced levels of understanding by the end of the genetics course. The information they retained from their introductory courses focused on structural components (e.g., protein is made of amino acids and not on overall mechanistic components (e.g., DNA comes before RNA, the ribosome makes protein. Students made the greatest gains in connections related to transcription, and they resolved the most prior misconceptions about translation. These concept-mapping tasks revealed that students are able to correct prior misconceptions about the central dogma during an intermediate-level genetics course. From these results, educators can design new classroom interventions to target those aspects of this foundational principle with which students have the most trouble.

  9. Response to Dr. Smith's Comments and Criticisms Concerning "Identification of Student Misconceptions in Genetics Problem Solving via Computer Program."

    Science.gov (United States)

    Browning, Mark; Lehman, James D.

    1991-01-01

    Authors respond to criticisms by Smith in the same issue and defend their use of the term "gene" and "misconception." Authors indicate that they did not believe that the use of computers significantly skewed their data concerning student errors. (PR)

  10. Invisible Misconceptions: Student Understanding of Ultraviolet and Infrared Radiation

    Science.gov (United States)

    Libarkin, Julie C.; Asghar, Anila; Crockett, C.; Sadler, Philip

    2011-01-01

    The importance of nonvisible wavelengths for the study of astronomy suggests that student understanding of nonvisible light is an important consideration in astronomy classrooms. Questionnaires, interviews, and panel discussions were used to investigate 6-12 student and teacher conceptions of ultraviolet (UV) and infrared (IR). Alternative…

  11. Student Misconceptions about Plants ? A First Step in Building a Teaching Resource?

    OpenAIRE

    Wynn, April N.; Pan, Irvin L.; Rueschhoff, Elizabeth E.; Herman, Maryann A. B.; Archer, E. Kathleen

    2017-01-01

    Plants are ubiquitous and found in virtually every ecosystem on Earth, but their biology is often poorly understood, and inaccurate ideas about how plants grow and function abound. Many articles have been published documenting student misconceptions about photosynthesis and respiration, but there are substantially fewer on such topics as plant cell structure and growth; plant genetics, evolution, and classification; plant physiology (beyond energy relations); and plant ecology. The available ...

  12. Common misconceptions and future intention to smoke among secondary school students in Malaysia.

    Science.gov (United States)

    Caszo, Brinnell; Khair, Muhammad; Mustafa, Mohd Habbib; Zafran, Siti Nor; Syazmin, Nur; Safinaz, Raja Nor Intan; Gnanou, Justin

    2015-01-01

    The prevalence of smoking among secondary school children continues to remain unchanged over the last 3 decades even though awareness regarding the health effects of smoking is increasing. Common misconceptions about smoking and parental influence could be factors influencing future intentions to smoke among these students. Hence, we looked at the common misconceptions as well as student perceptions about their future intention to smoke among Form 4 students in Shah Alam, Malaysia. This study was conducted by distribution of a questionnaire developed as part of the Global Youth Tobacco Survey to Form 4 student in 3 schools at Shah Alam. Prevalence of smoking (current smokers) was 7.5%. Almost half of the children came from families where one or both parents smoked and a third of the parents had no discussion regarding consequences of smoking with them. A large number of students were classified as "triers" as they had tried smoking and were unsure of whether they would not be smoking in the future. Contrary to our expectations, students generally felt smoking did make one feel more uncomfortable and helped one to reduce body weight. Most students seemed to be aware of the ill-effects of smoking on health. They felt they had received adequate information from school regarding the effects on smoking on health. Our study showed that even though Form 4 students in Shah Alam were knowledgeable about ill-effects of smoking and were taught so as part of their school curriculum, the prevalence of smoking was still high. Students in the "trier group" represent a potential group of future smokers and strategies targeting tobacco control may be aimed at tackling these vulnerable individuals. Efforts are also needed to help educate secondary school children about common misconceptions and dispel myths associated with cigarette smoking.

  13. An inventory of student recollections of their past misconceptions as a tool for improved classroom astronomy instruction

    Science.gov (United States)

    Favia, Andrej

    My Ph.D. research is about examining the persistence of 215 common misconceptions in astronomy. Each misconception is based on an often commonly-held incorrect belief by college students taking introductory astronomy. At the University of Maine, the course is taught in alternating semesters by Prof. Neil F. Comins and Prof. David J. Batuski. In this dissertation, I examine the persistence of common astronomy misconceptions by the administration of a retrospective survey. The survey is a new instrument in that it permits the student to indicate either endorsement or rejection of each misconception at various stages in the student's life. I analyze data from a total of 639 students over six semesters. I compare the survey data to the results of exams taken by the students and additional instruments that assess students' misconceptions prior to instruction. I show that the consistency of the students' recollection of their own misconceptions is on par with the consistency of responses between prelims and the final exam. I also find that students who report higher increased childhood interest in astronomy are more likely to have accurate recalls of their own past recollections. I then discuss the use of principal components analysis as a technique for describing the extent to which misconceptions are correlated with each other. The analysis yields logical groupings of subtopics from which to teach. I then present a brief overview of item response theory, the methodology of which calculates relative difficulties of the items. My analysis reveals orders to teach the associated topics in ways that are most effective at dispelling misconceptions during instruction. I also find that the best order to teach the associated concepts is often different for high school and college level courses.

  14. Identifying and Remediating Student Misconceptions in Introductory Biology via Writing-to-Learn Assignments and Peer Review.

    Science.gov (United States)

    Halim, Audrey S; Finkenstaedt-Quinn, Solaire A; Olsen, Laura J; Gere, Anne Ruggles; Shultz, Ginger V

    2018-06-01

    Student misconceptions are an obstacle in science, technology, engineering, and mathematics courses and unless remediated may continue causing difficulties in learning as students advance in their studies. Writing-to-learn assignments (WTL) are characterized by their ability to promote in-depth conceptual learning by allowing students to explore their understanding of a topic. This study sought to determine whether and what types of misconceptions are elicited by WTL assignments and how the process of peer review and revision leads to remediation or propagation of misconceptions. We examined four WTL assignments in an introductory biology course in which students first wrote about content by applying it to a realistic scenario, then participated in a peer-review process before revising their work. Misconceptions were identified in all four assignments, with the greatest number pertaining to protein structure and function. Additionally, in certain contexts, students used scientific terminology incorrectly. Analysis of the drafts and peer-review comments generated six profiles by which misconceptions were addressed through the peer-review process. The prevalent mode of remediation arose through directed peer-review comments followed by correction during revision. It was also observed that additional misconceptions were elicited as students revised their writing in response to general peer-review suggestions.

  15. Atheist Students on Campus: From Misconceptions to Inclusion

    Science.gov (United States)

    Goodman, Kathleen M.; Mueller, John A.

    2009-01-01

    People who follow trends in higher education are aware of a renewed emphasis on religious plurality and spirituality on college campuses. But all the articles, conferences, and campus activities surrounding religion and spirituality rarely, if at all, acknowledge one group: students who are atheists. If colleges are to be truly inclusive, they…

  16. Student’s mental model, misconceptions, troublesome knowledge, and threshold concept on thermochemistry with DToM-POE

    Science.gov (United States)

    Wiji, W.; Mulyani, S.

    2018-05-01

    The purpose of this study is to obtain a profile of students' mental models, misconceptions, troublesome knowledge, and threshold concept on thermochemistry. The subjects in this study were 35 students. The method used in this research was descriptive method with instruments Diagnostic Test of Mental Model - Prediction, Observation, and Explanation (DToM-POE). The results showed that the students' ability to predict, observe, and explain ΔH of neutralization reaction of NaOH with HCl was still lacking. Most students tended to memorize chemical concepts related to symbolic level and they did not understand the meaning of the symbols used. Furthermore, most students were unable to connect the results of observations at the macroscopic level with the symbolic level to determine ΔH of neutralization reaction of NaOH with HCl. Then, most students tended to give an explanation by a net ionic equation or a chemical reaction equation at the symbolic level when explaining ΔH of neutralization reaction at the submicroscopic level. In addition, there are seven misconceptions, three troublesome knowledges, and three threshold concepts held by students on thermochemistry.

  17. Identification misconception of primary school teacher education students in changes of matters using a five-tier diagnostic test

    Science.gov (United States)

    Bayuni, T. C.; Sopandi, W.; Sujana, A.

    2018-05-01

    This research was conducted on third grade students (III) semester six, with sample number 84 respondents. The method used in this research is descriptive method. This article identifies the misconceptions of Primary School Teacher Education students by using a five tier diagnostic test research instrument, a question adapted to three chemical representations accompanied by an open reason and a level of confidence in the choice of answers. The categorization of the five tier diagnostic test scoring is divided into four namely, understand the concept, lack of concept, misconception and not understand the concept. Questionnaire in the form of a closed questionnaire is used to determine the factors that cause misconception. The data obtained is misconception has the highest percentage on the concept of substance properties and changes in its form. The highest incidence of misconceptions is due to self-factors. The conclusion is that five tier diagnostic tests can be used to uncover misconceptions of elementary school teachers and assist teachers in presenting lesson material tailored to the chemical representation so that students can understand the concept of the nature of matter and change its form well.

  18. Analysis of acid-base misconceptions using modified certainty of response index (CRI and diagnostic interview for different student levels cognitive

    Directory of Open Access Journals (Sweden)

    Satya Sadhu

    2017-08-01

    Full Text Available The authors in this paper draw attention to the importance of an instrument that can analyze student’s misconception.This study described the kind of the misconception in acid-base theory, and the percentage students’ misconception occur in every subconcept of acid-base theory. The design of this study is a descriptive method, involved 148 of 11th grade science students from Senior High School, which divided into two classes are high cognitive and low cognitive. Further analysis of using Modified Certainty of Response Index (CRI as a diagnostic instrument is used to explore misconception which in that test included evaluating only content knowledge with considering the reason behind the students' choice of response and their certainty of response in every question. The result of data analysis has shown that misconception occurred in high cognitive class, gained 43,86% and misconception occurred in low cognitive class, gained 24,63%. Based on the diagnostic interview has shown that misconception occurred in students due to students does not understand the concept well and they related the one concept to the other concepts with partial understanding, the result students make the failed conclusions. The type of misconception occurred is a conceptual misunderstanding.  According to the data analysis showed that Modified Certainty of Response Index (CRI is effective used to analyze students’ misconceptions and the diagnostic interview is effective used to know the reasons that caused students which having misconceptions.

  19. "I Thought It Would Be More Glamorous": Preconceptions and Misconceptions among Students in the Public Relations Principles Course.

    Science.gov (United States)

    Bowen, Shannon A.

    2003-01-01

    Addresses public speaking students' preconceptions as they begin their study and the misconceptions to which they ascribe. Finds that students often enter the basic course unaware of a management focus, shocked by the level of strategic decision making required of practitioners, and surprised by the amount of research knowledge and activity…

  20. The Effect of Conceptual Change Approach to Eliminate 9th Grade High School Students' Misconceptions about Air Pressure

    Science.gov (United States)

    Akbas, Yavuz; Gencturk, Ebru

    2011-01-01

    The aim of this study was to determine the effectiveness of teaching based on conceptual change overcome misconceptions of 9th grade high school students about the subject of air pressure. The sampling of the study was formed with two classes of 9th grade students from a general high school in the city-center of Trabzon. A quasi-experimental…

  1. Misconceptions and biases in German students' perception of multiple energy sources: implications for science education

    Science.gov (United States)

    Lee, Roh Pin

    2016-04-01

    Misconceptions and biases in energy perception could influence people's support for developments integral to the success of restructuring a nation's energy system. Science education, in equipping young adults with the cognitive skills and knowledge necessary to navigate in the confusing energy environment, could play a key role in paving the way for informed decision-making. This study examined German students' knowledge of the contribution of diverse energy sources to their nation's energy mix as well as their affective energy responses so as to identify implications for science education. Specifically, the study investigated whether and to what extent students hold mistaken beliefs about the role of multiple energy sources in their nation's energy mix, and assessed how misconceptions could act as self-generated reference points to underpin support/resistance of proposed developments. An in-depth analysis of spontaneous affective associations with five key energy sources also enabled the identification of underlying concerns driving people's energy responses and facilitated an examination of how affective perception, in acting as a heuristic, could lead to biases in energy judgment and decision-making. Finally, subgroup analysis differentiated by education and gender supported insights into a 'two culture' effect on energy perception and the challenge it poses to science education.

  2. Implementation of ECIRR model based on virtual simulation media to reduce students’ misconception on kinetic theory of gases

    Science.gov (United States)

    Prastiwi, A. C.; Kholiq, A.; Setyarsih, W.

    2018-03-01

    The purposed of this study are to analyse reduction of students’ misconceptions after getting ECIRR with virtual simulation. The design of research is the pre-experimental design with One Group Pretest-Posttest Design. Subjects of this research were 36 students of class XI MIA-5 SMAN 1 Driyorejo Gresik 2015/2016 school year. Students misconceptions was determined by Three-tier Diagnostic Test. The result shows that the average percentage of misconceptions reduced on topics of ideal gas law, equation of ideal gases and kinetic theory of gases respectively are 38%, 34% and 38%.

  3. A Comparative Cross-Cultural Study of the Prevalence and Nature of Misconceptions in Physics amongst English and Chinese Undergraduate Students

    Science.gov (United States)

    Abrahams, Ian; Homer, Matt; Sharpe, Rachael; Zhou, Mengyuan

    2015-01-01

    Background: Despite the large body of literature regarding student misconceptions, there has been relatively little cross-cultural research to directly compare the prevalence of common scientific misconceptions amongst students from different cultural backgrounds. Whilst previous research does suggest the international nature of many…

  4. A Probabilistic Model for Diagnosing Misconceptions by a Pattern Classification Approach.

    Science.gov (United States)

    Tatsuoka, Kikumi K.

    A probabilistic approach is introduced to classify and diagnose erroneous rules of operation resulting from a variety of misconceptions ("bugs") in a procedural domain of arithmetic. The model is contrasted with the deterministic approach which has commonly been used in the field of artificial intelligence, and the advantage of treating the…

  5. Mental Models and other Misconceptions in Children's Understanding of the Earth

    Science.gov (United States)

    Panagiotaki, Georgia; Nobes, Gavin; Potton, Anita

    2009-01-01

    This study investigated the claim (e.g., Vosniadou & Brewer's, 1992) that children have naive ''mental models'' of the earth and believe, for example, that the earth is flat or hollow. It tested the proposal that children appear to have these misconceptions because they find the researchers' tasks and questions to be confusing and ambiguous.…

  6. Emergence, Learning Difficulties, and Misconceptions in Chemistry Undergraduate Students' Conceptualizations of Acid Strength

    Science.gov (United States)

    Tümay, Halil

    2016-03-01

    Philosophical debates about chemistry have clarified that the issue of emergence plays a critical role in the epistemology and ontology of chemistry. In this article, it is argued that the issue of emergence has also significant implications for understanding learning difficulties and finding ways of addressing them in chemistry. Particularly, it is argued that many misconceptions in chemistry may derive from students' failure to consider emergence in a systemic manner by taking into account all relevant factors in conjunction. Based on this argument, undergraduate students' conceptions of acids, and acid strength (an emergent chemical property) were investigated and it was examined whether or not they conceptualized acid strength as an emergent chemical property. The participants were 41 third- and fourth-year undergraduate students. A concept test and semi-structured interviews were used to probe students' conceptualizations and reasoning about acid strength. Findings of the study revealed that the majority of the undergraduate students did not conceptualize acid strength as an emergent property that arises from interactions among multiple factors. They generally focused on a single factor to predict and explain acid strength, and their faulty responses stemmed from their failure to recognize and consider all factors that affect acid strength. Based on these findings and insights from philosophy of chemistry, promoting system thinking and epistemologically sound argumentative discourses among students is suggested for meaningful chemical education.

  7. The Origins of Force--Misconceptions and Classroom Controversy.

    Science.gov (United States)

    Steinberg, Melvin S.

    Misconceptions associated with the origins of force and the effectiveness of a bridging strategy for developing correct conceptual models in mechanics are identified for high school physics teachers in this paper. The situation investigated was whether a table exerts an upward force on a book. Student misconceptions related to this phenomenon as…

  8. Trends Concerning Four Misconceptions in Students' Intuitively-Based Probabilistic Reasoning Sourced in the Heuristic of Representativeness

    Science.gov (United States)

    Kustos, Paul Nicholas

    2010-01-01

    Student difficulty in the study of probability arises in intuitively-based misconceptions derived from heuristics. One such heuristic, the one of note for this research study, is that of representativeness, in which an individual informally assesses the probability of an event based on the degree to which the event is similar to the sample from…

  9. The influence of implementation of interactive lecture demonstrations (ILD) conceptual change oriented toward the decreasing of the quantity students that misconception on the Newton's first law

    Science.gov (United States)

    Kurniawan, Yudi; Suhandi, Andi; Hasanah, Lilik

    2016-02-01

    This paper aims to know the influence of implementation of ILD conceptual change oriented (ILD-CC) toward the decreasing of the quantity of students that misconception on the Newton's First Law. The Newton's First Law misconceptions separated into five sub-misconceptions. This research is a quantitative research with one group pretest-posttest design. The samples of this research were 32 students on 9th grade of junior high school in Pandeglang, Banten, Indonesia. The diagnostic test is a multiple-choice form with three-tier test format. The result of this study found that there was decreasing of the quantity of students that misconception on the Newton's First Law. The largest percentage in the decreasing of the number of the students that misconception was on the Misconception 4 about 80, 77%. The Misconception 4 is "The cause of tendency of the body passenger that sat upright on the accelerated bus from motionless bus suddenly to backward be a backward force". For the future studies, it suggested to combine other methods to optimize the decreasing the number of students that misconception.

  10. Nigerian dental technology students and human immunodeficiency virus infection: knowledge, misconceptions and willingness to care.

    Science.gov (United States)

    Azodo, Cc; Omili, Ma; Akeredolu, Pa

    2014-05-01

    The rehabilitative dental care is important for maintaining adequate nutrition, guarding against wasting syndrome and malnutrition among human immunodeficiency virus (HIV)-infected individuals. The aim of this study is to determine the Nigerian dental technology students' knowledge and misconceptions about HIV infection and their willingness to care for HIV-infected patients. This descriptive cross-sectional study of dental technology students of Federal School of Dental Therapy and Technology Enugu, Nigeria was conducted in 2010. Data was subjected to descriptive, non-parametric and parametric statistics using the statistical package for the social sciences (SPSS) version 17.0 (Chicago Illinois, USA). P 4.0% (8/198) of the respondents erroneous described HIV as harmless, self-limitation and antibiotics responsive infection respectively. Of the respondents, 78.8% (156/198) and 83.3% (165/198) of them expressed willingness to care for HIV-infected patients and expressed need for training in the clinical care of HIV-infected patients respectively. Overall, the respondents opined that the dental therapists are the most suitable dental professional to pass HIV-related information to patients in the dental setting ahead of dentists and dental surgery assistants. The expressed willingness to care for HIV-infected patients, knowledge about the mode of HIV transmission and prevention among the respondents were high with existent misconceptions. There were no significant differences in the knowledge about HIV infection and willingness to care for HIV-infected patients among respondents in the lower class and those in upper class.

  11. A comparative cross-cultural study of the prevalence and nature of misconceptions in physics amongst English and Chinese undergraduate students

    Science.gov (United States)

    Abrahams, Ian; Homer, Matt; Sharpe, Rachael; Zhou, Mengyuan

    2015-01-01

    Background:Despite the large body of literature regarding student misconceptions, there has been relatively little cross-cultural research to directly compare the prevalence of common scientific misconceptions amongst students from different cultural backgrounds. Whilst previous research does suggest the international nature of many misconceptions, there is little evidence as to whether the prevalence of such common misconceptions varies from culture to culture. Purpose:To undertake a preliminary examination of the prevalence and reasons for some previously studied scientific misconceptions amongst English and Chinese undergraduate students so as to ascertain whether there is any evidence of cultural difference. Such a finding could help to identify teaching approaches in either country that are more effective in reducing the prevalence of common student misconceptions. Sample:The study involved a convenience sample of 40 undergraduate students - 20 English and 20 Chinese drawn equally from two universities in the North of England - whose formal science education ended at ages 16 and 15 respectively. Design and methods:The study employed semi-structured interview schedule containing eight questions. Results:Whilst similar misconceptions existed amongst both English and Chinese undergraduates, their prevalence was significantly higher amongst the English students (Overall mean score for scientifically correct answers amongst Chinese students was 27.7% higher, p Differences in the prevalence of misconceptions amongst English and Chinese undergraduates appear to arise from differences in the way in which specific areas of physics are taught in both countries. It might be possible to reduce the prevalence of misconceptions in both countries if a better understanding could be developed of how, and why, undergraduates use certain erroneous analogies, and why some teaching approaches seem more effective in reducing the prevalence of misconceptions than others.

  12. Using Three-Tier Test to Identify the Quantity of Student that Having Misconception on Newton's Laws of Motion Concept

    Directory of Open Access Journals (Sweden)

    Emi Sulistri

    2017-10-01

    Full Text Available This study aims to identify students quantity who are having the misconception on Newton's laws of motion concept using a Three-tiered Test. The sampling technique used in this study is purposive sampling technique and has been conducted on 56 students at Senior High School. A three-tier "Newton’s Law Of Motion Test" with 10 items is using as instrument to collected date in this study. The results showed that the quantity of students who experienced misconception with the highest category is on the concept of determining the relationship between the mass of objects and the time required for free fall that is equal to 89.3%. While the lowest category is in the concept of explaining the relationship between acceleration, mass and force with the time required for the object to fall freely that is equal to 26.8%.

  13. Pop Rocks! Engaging first-year geology students by deconstructing and correcting scientific misconceptions in popular culture. A Practice Report

    Directory of Open Access Journals (Sweden)

    Leslie Almberg

    2011-07-01

    Full Text Available Popular culture abounds with ill-conceived notions about Earth’s processes.  Movies, books, music, television and even video games frequently misrepresent fundamental scientific principles, warping viewers’ perceptions of the world around them.  First year geoscience students are not immune to pop culture’s portrayal of earth science and the misconceptions they bring to Geology 101 cloud their ability to differentiate between fact and fiction.  Working within an action research context, a semester-long assessment was designed with the intent to highlight and subsequently challenge students’ misconceptions using examples of “bad geoscience” from pop culture.  Students were required to practice and refine generic skills within this context.  This project succeeded in engaging students, but requires refinement to become more effective in enhancing their geoscience literacy. 

  14. Identifying the Misconceptions of Natural Science (IPA Using CRI (Certanty of Response Index at the Primary School Students in Tarakan

    Directory of Open Access Journals (Sweden)

    Muhsinah Annisa

    2017-10-01

    Full Text Available The objective of this study is to identify the misconceptions of Natural Science (IPA on primary school students in Tarakan. The output of this study is presented into a national scientific journal with ISSN. This study absolutely contributes to the schools and the education providers (universities. This study can identify the misconceptions of what happens to the students, so that teachers know how to handle and remediate these misconceptions. This study employs quantitative descriptive research. The population is the sixth grade students of primary schools in Tarakan. It is because the students of this grade have got the learning material on force, light, and simple machine. The technique.;s used in taking the sample is cluster sampling by considering on the three criteria, namely: superior, medium, and low school category which is based on the mean scores of final test (UAS on natural science subject. So, the sixth grade students of SDN A, SDN B Tarakan, and SDN C Tarakan are chosen as the sample of this study. The instrument of this research is a written test in a form of multiple choice test equiped with the CRI (certainty of response index answer sheet. The data are collected by distributing multiple-choice test which is consisted of 40 questions that are equipped with the CRI answer sheet.

  15. Students misconceptions on chemical equilibrium and their consequences to biochemistry learning

    Directory of Open Access Journals (Sweden)

    E. Montagna

    2011-04-01

    Full Text Available It is well documented that misconceptions onchemical equilibrium (CE are widespread among students in  higher education. Nevertheless CE concept is critical for biochemistry topics development such as buffer solutions, enzymekinetics, allosteric enzymes, metabolic networks, among others. In the present work weperformed tests in order to diagnose howstudents use the concepts of CE acquired inother courses. We tested high school andundergraduate students from two courses intwo institutions, in four moments of their course: a. freshmen; b. after basic general chemistry courses; c. along the biochemistrycourse and d. after physical chemistry courses. The tests dealt with: 1. tasks containing current terms, keywords and concepts about CE; 2. tests that exclusively use symbolic representations of CE and 3. application of elementary concepts of CE in biochemistry. The resultsshow that among thestudents: 1. more than 95% correctly answer questions of group1; 2. more than 50% fail in questions of group 2, and; 3. morethan 50% fail in questions of the group 3. We conclude that students solve tests  on CE without really understand the concepts involved; consequently studentsare unable to work CE concepts without mathematical tools or conventional formulas.Finally, the results show that students are restricted to use CE concept only in the context in which it was learned and this certainly impairs the significant learning of the forthcoming biochemical contents.

  16. Development of Two-Tier Diagnostic Test Pictorial-Based for Identifying High School Students Misconceptions on the Mole Concept

    Science.gov (United States)

    Siswaningsih, W.; Firman, H.; Zackiyah; Khoirunnisa, A.

    2017-02-01

    The aim of this study was to develop the two-tier pictorial-based diagnostic test for identifying student misconceptions on mole concept. The method of this study is used development and validation. The development of the test Obtained through four phases, development of any items, validation, determination key, and application test. Test was developed in the form of pictorial consisting of two tier, the first tier Consist of four possible answers and the second tier Consist of four possible reasons. Based on the results of content validity of 20 items using the CVR (Content Validity Ratio), a number of 18 items declared valid. Based on the results of the reliability test using SPSS, Obtained 17 items with Cronbach’s Alpha value of 0703, the which means that items have accepted. A total of 10 items was conducted to 35 students of senior high school students who have studied the mole concept on one of the high schools in Cimahi. Based on the results of the application test, student misconceptions were identified in each label concept in mole concept with the percentage of misconceptions on the label concept of mole (60.15%), Avogadro’s number (34.28%), relative atomic mass (62, 84%), relative molecule mass (77.08%), molar mass (68.53%), molar volume of gas (57.11%), molarity (71.32%), chemical equation (82.77%), limiting reactants (91.40%), and molecular formula (77.13%).

  17. Pop Rocks! Engaging first-year geology students by deconstructing and correcting scientific misconceptions in popular culture. A Practice Report

    OpenAIRE

    Leslie Almberg

    2011-01-01

    Popular culture abounds with ill-conceived notions about Earth’s processes.  Movies, books, music, television and even video games frequently misrepresent fundamental scientific principles, warping viewers’ perceptions of the world around them.  First year geoscience students are not immune to pop culture’s portrayal of earth science and the misconceptions they bring to Geology 101 cloud their ability to differentiate between fact and fiction.  Working within ...

  18. Comments and Criticism: Comment on "Identification of Student Misconceptions in Genetics Problem Solving via Computer Program."

    Science.gov (United States)

    Smith, Mike U.

    1991-01-01

    Criticizes an article by Browning and Lehman (1988) for (1) using "gene" instead of allele, (2) misusing the word "misconception," and (3) the possible influences of the computer environment on the results of the study. (PR)

  19. [Disease prevention in the elderly: misconceptions in current models].

    Science.gov (United States)

    Veras, Renato Peixoto

    2012-10-01

    The Brazilian population is aging significantly within a context of gradual improvement in the country's social and economic indicators. Increased longevity leads to increased use of health services, pressuring the public and social welfare health services, generating higher costs, and jeopardizing the system's sustainability. The alternative to avoid overburdening the system is to invest in policies for disease prevention, stabilization of chronic diseases, and maintenance of functional capacity. The current article aims to analyze the difficulties in implementing preventive programs and the reasons for the failure of various programs in health promotion, prevention, and management of chronic diseases in the elderly. There can be no solution to the crisis in financing and restructuring the health sector without implementing a preventive logic. Scientific research has already correctly identified the risk factors for the elderly population, but this is not enough. We must use such knowledge to promote the necessary transition from a healthcare-centered model to a preventive one.

  20. Misconception of biology education student of teacher training and education of Sriwijaya University to the concept of photosynthesis and respiration

    Science.gov (United States)

    Susanti, Rahmi

    2018-05-01

    This study aimed to gain an overview of misconceptions on the concept of photosynthesis and respiration. The study involved 58 students from Biology Education of Sriwijaya University. Collecting data used written test of 16 questions, which are 10 questions of multiple choice and 6 of choice with reason. The results showed that:photosynthesis occurs continuously (37.9%), energy used for photosynthesis are light and heat energy (34.5%), plants take CO2to respiration (47%), plants carry on respiration in the absence of light for photosynthesis (22.4%), respiration in plants occurs only in leaf cells (76.4%), and only animals that take O2 of photosynthesis to respiration (68.9%). The conclusion: 1) on the concept of photosynthesis is still prevailing misconceptions about the concept of the place and time of the occurrence of photosynthesis in plants, the role of the sun in photosynthesis, energy is required in the form of photosynthesis, and the role of photosynthesis for the plant. 2) on the concept of respiration is still prevailing misconceptions about the place of the respiration in plants, gas necessary for respiration of plants, and the plants perform respiration time, as well as the cycle of CO2 and O2 that occurs in nature.

  1. Free Fall Misconceptions: Results of a Graph Based Pre-Test of Sophomore Civil Engineering Students

    Science.gov (United States)

    Montecinos, Alicia M.

    2014-01-01

    A partially unusual behaviour was found among 14 sophomore students of civil engineering who took a pre test for a free fall laboratory session, in the context of a general mechanics course. An analysis contemplating mathematics models and physics models consistency was made. In all cases, the students presented evidence favoring a correct free…

  2. Students’ misconceptions on solubility equilibrium

    Science.gov (United States)

    Setiowati, H.; Utomo, S. B.; Ashadi

    2018-05-01

    This study investigated the students’ misconceptions of the solubility equilibrium. The participants of the study consisted of 164 students who were in the science class of second year high school. Instrument used is two-tier diagnostic test consisting of 15 items. Responses were marked and coded into four categories: understanding, misconception, understand little without misconception, and not understanding. Semi-structured interviews were carried out with 45 students according to their written responses which reflected different perspectives, to obtain a more elaborated source of data. Data collected from multiple methods were analyzed qualitatively and quantitatively. Based on the data analysis showed that the students misconceptions in all areas in solubility equilibrium. They had more misconceptions such as in the relation of solubility and solubility product, common-ion effect and pH in solubility, and precipitation concept.

  3. The Effects and Side-Effects of Statistics Education: Psychology Students' (Mis-)Conceptions of Probability

    Science.gov (United States)

    Morsanyi, Kinga; Primi, Caterina; Chiesi, Francesca; Handley, Simon

    2009-01-01

    In three studies we looked at two typical misconceptions of probability: the representativeness heuristic, and the equiprobability bias. The literature on statistics education predicts that some typical errors and biases (e.g., the equiprobability bias) increase with education, whereas others decrease. This is in contrast with reasoning theorists'…

  4. Genius Is Not Immune to Persistent Misconceptions: Conceptual Difficulties Impeding Isaac Newton and Contemporary Physics Students.

    Science.gov (United States)

    Steinberg, Melvin S.; And Others

    Recent research has shown that serious misconceptions frequently survive high school and university instruction in mechanics. It is interesting to inquire whether Newton himself encountered conceptual difficulties before he wrote the "Principia." This paper compares Newton's pre-"Principia" beliefs, based upon his writings,…

  5. Misconceptions and Biases in German Students' Perception of Multiple Energy Sources: Implications for Science Education

    Science.gov (United States)

    Lee, Roh Pin

    2016-01-01

    Misconceptions and biases in energy perception could influence people's support for developments integral to the success of restructuring a nation's energy system. Science education, in equipping young adults with the cognitive skills and knowledge necessary to navigate in the confusing energy environment, could play a key role in paving the way…

  6. The effect of student-centered and teacher-centered instruction with and without conceptual advocacy on biology students' misconceptions, achievement, attitudes toward science, and cognitive retention

    Science.gov (United States)

    Gallop, Roger Graham

    The purpose of this study was to investigate the effect of student-centered and teacher-centered instructional strategies with and without conceptual advocacy (CA) on ninth-grade biology students' misconceptions (MIS), biology achievement (ACH), attitudes toward science (ATT), and cognitive retention of scientific method and measurement, spontaneous generation, and characteristics of living things. Students were purposively selected using intact classes and assigned to one of four treatment groups (i.e., student-centered instruction without CA, student-centered instruction with CA, teacher-centered instruction with CA, and teacher-centered instruction without CA). A modified quasi-experimental design was used in which students were not matched in the conventional sense but instead, groups were shown to be equivalent on the dependent measure via a pretest. A 5-day treatment implementation period addressed science conceptions under investigation. The treatment period was based on the number of class periods teachers at the target school actually spend teaching the biological concepts under investigation using traditional instruction. At the end of the treatment period, students were posttested using the Concepts in Biology instrument and Science Questionnaire. Eight weeks after the posttest, these instruments were administered again as a delayed posttest to determine cognitive retention of the correct biological conceptions and attitudes toward science. MANCOVA and follow-up univariate ANCOVA results indicated that student-centered instruction without CA (i.e., Group 1) did not have a significant effect on students' MIS, ACH, and ATT (F = .029, p = .8658; F = .002, p =.9688, F = .292, p = .5897, respectively). On the other hand, student-centered instruction with CA (i.e., Group 2) had a significant effect on students' MIS and ACH (F =10.33, p = .0016 and F = 10.17, p = .0017, respectively), but did not on ATT (F = .433, p = .5117). Teacher-centered instruction with

  7. Undergraduates’ Misconceptions Concerning Plagiarism

    Directory of Open Access Journals (Sweden)

    Nermin Çakmak

    2015-06-01

    Full Text Available In their education lives undergraduate students’ one of the most encountered difficulty is to provide citations for their research projects and term papers. This difficulty drives students to two kinds of plagiarism: intentional or unintentional plagiarism. In this context, plagiarism is a no ethical  scientific behaviour we encounter most frequently among undergraduate students. When plagiarism is investigated in national and international literature, which is considered as an important problem regarding scientific communication and ethics principles, it is seen that research focused on intentional plagiarism. In this context the present study aimed to focus on university students’ unintentional plagiarism, a nonethical academic behaviour, based on their misconceptions. Adding it is aimed to attract the attention of the researchers in librarianship and information sciences to the problem, increase their awareness and to encourage them to make in-depth research. Thus the present study includes issues of conceptions; learning concepts; misconceptions; plagiarism; misconceptions of university students regarding plagiarism and the reasoning; defining and preventing misconceptions; the roles of librarianships and teachers in correcting the misconceptions regarding plagiarism. Present study followed a comprehensive review utilizing descriptive approaches to reveal the situation. At the end of the study a short summary evaluating the situation depending on the literature analysed is also added. Adding ideas and suggestions in how to reveal probable misconceptions and how to prevent or decrease their formation are also presented.

  8. Earth Science Misconceptions.

    Science.gov (United States)

    Philips, William C.

    1991-01-01

    Presented is a list of over 50 commonly held misconceptions based on a literature review found in students and adults. The list covers earth science topics such as space, the lithosphere, the biosphere, the atmosphere, the hydrosphere, and the cryosphere. (KR)

  9. The Students’ misconceptions profile on chapter gas kinetic theory

    Science.gov (United States)

    Jauhariyah, M. N. R.; Suprapto, N.; Suliyanah; Admoko, S.; Setyarsih, W.; Harizah, Z.; Zulfa, I.

    2018-03-01

    Students have conception and misconceptions in the learning process. Misconceptions are caused by the teacher, students, and learning source. In the previous study, the researcher developed a misconception diagnosis instrument using three-tier on chapter gas kinetic theory. There are 14 items including 5 sub-chapters on gas kinetic theory. The profile of students’ misconceptions shows that students have misconceptions in each sub-chapter. The cause of misconceptions came from preconceptions, associative thinking, reasoning, intuition, and false negative. The highest cause of misconception in this chapter is student’s humanistic thinking.

  10. Using intervention-oriented evaluation to diagnose and correct students' persistent climate change misconceptions: A Singapore case study.

    Science.gov (United States)

    Pascua, Liberty; Chang, Chew-Hung

    2015-10-01

    The evaluation of classroom-based educational interventions is fraught with tensions, the most critical of which is choosing between focusing the inquiry on measuring the effects of treatment or in proximately utilizing the data to improve practice. This paper attempted to achieve both goals through the use of intervention-oriented evaluation of a professional development program intended to diagnose and correct students' misconceptions of climate change. Data was gathered, monitored and analyzed in three stages of a time-series design: the baseline, treatment and follow-up stages. The evaluation itself was the 'intervention' such that the data was allowed to 'contaminate' the treatment. This was achieved through giving the teacher unimpeded access to the collected information and to introduce midcourse corrections as she saw fit to her instruction. Results showed a significant development in students' conceptual understanding only after the teacher's decision to use direct and explicit refutation of misconceptions. Due to the accessibility of feedback, it was possible to locate specifically at which point in the process that the intervention was most effective. The efficacy of the intervention was then measured through comparing the scores across the three research stages. The inclusion of a comparison group to the design is recommended for future studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Astronomical Misconceptions

    Science.gov (United States)

    Barrier, Regina M.

    2010-01-01

    Do you think that the Moon does not rotate? Do you think that the phases of the Moon are created by the Earth's shadow? Do you think that the seasons are a result of the Earth's distance from the Sun? If you answered "yes" to any of these, then you are one of many who possess misconceptions about astronomy.

  12. Closing the "Hole in the Sky": The Use of Refutation-Oriented Instruction to Correct Students' Climate Change Misconceptions

    Science.gov (United States)

    Chang, Chew-Hung; Pascua, Liberty; Ess, Frances

    2018-01-01

    This article discusses the implementation of a pedagogical tool aimed at the refutation of secondary school (grade ten-equivalent) students' persistent climate change misconceptions. Using a lesson study approach, the materials and intervention techniques used were developed collaboratively with geography teachers. The objective is two-pronged: to…

  13. Unweaving misconceptions: Guided learning, simulations, and misconceptions in learning principles of natural selection

    Science.gov (United States)

    Weeks, Brian E.

    College students often come to the study of evolutionary biology with many misconceptions of how the processes of natural selection and speciation occur. How to relinquish these misconceptions with learners is a question that many educators face in introductory biology courses. Constructivism as a theoretical framework has become an accepted and promoted model within the epistemology of science instruction. However, constructivism is not without its skeptics who see some problems of its application in lacking necessary guidance for novice learners. This study within a quantitative, quasi-experimental format tested whether guided online instruction in a video format of common misconceptions in evolutionary biology produced higher performance on a survey of knowledge of natural selection versus more constructivist style learning in the form of student exploration of computer simulations of the evolutionary process. Performances on surveys were also explored for a combination of constructivist and guided techniques to determine if a consolidation of approaches produced higher test scores. Out of the 94 participants 95% displayed at least one misconception of natural selection in the pre-test while the study treatments produced no statistically significant improvements in post-test scores except within the video (guided learning treatment). These overall results demonstrated the stubbornness of misconceptions involving natural selection for adult learners and the difficulty of helping them overcome them. It also bolsters the idea that some misconceptions of natural selection and evolution may be hardwired in a neurological sense and that new, more long-term teaching techniques may be warranted. Such long-term strategies may not be best implemented with constructivist techniques alone, and it is likely that some level of guidance may be necessary for novice adult learners. A more substantial, nuanced approach for undergraduates is needed that consolidates successful

  14. Misconceptions about the ether

    International Nuclear Information System (INIS)

    Duffy, M.C.

    1980-01-01

    Several misconceptions concerning the ether concept and ether models are reviewed and clarified so that the relationship between modern ether theory and orthodox relativity may be better understood. The question of the ether's supposed superfluidity as a concept, and its status in modern physics remains to be answered. (author)

  15. Is It the Earth That Turns or the Sun That Goes behind the Mountains? Students' Misconceptions about the Day/Night Cycle after Reading a Science Text

    Science.gov (United States)

    Vosniadou, Stella; Skopeliti, Irini

    2017-01-01

    The present research tested the hypothesis that the reading of science text can create new misconceptions in students with incongruent prior knowledge, and that these new misconceptions will be similar to the fragmented and synthetic conceptions obtained in prior developmental research. Ninety-nine third- and fifth-grade children read and recalled…

  16. Student certainty answering misconception question: study of Three-Tier Multiple-Choice Diagnostic Test in Acid-Base and Solubility Equilibrium

    Science.gov (United States)

    Ardiansah; Masykuri, M.; Rahardjo, S. B.

    2018-04-01

    Students’ concept comprehension in three-tier multiple-choice diagnostic test related to student confidence level. The confidence level related to certainty and student’s self-efficacy. The purpose of this research was to find out students’ certainty in misconception test. This research was quantitative-qualitative research method counting students’ confidence level. The research participants were 484 students that were studying acid-base and equilibrium solubility subject. Data was collected using three-tier multiple-choice (3TMC) with thirty questions and students’ questionnaire. The findings showed that #6 item gives the highest misconception percentage and high student confidence about the counting of ultra-dilute solution’s pH. Other findings were that 1) the student tendency chosen the misconception answer is to increase over item number, 2) student certainty decreased in terms of answering the 3TMC, and 3) student self-efficacy and achievement were related each other in the research. The findings suggest some implications and limitations for further research.

  17. Better Categorizing Misconceptions Using a Contemporary Cognitive Science Lens

    Science.gov (United States)

    Slater, S. J.; Slater, T. F.

    2013-12-01

    Much of the last three decades of discipline-based education research in the geosciences has focused on the important work of identifying the range and domain of misconceptions students bring into undergraduate science survey courses. Pinpointing students' prior knowledge is a cornerstone for developing constructivist approaches and learning environments for effective teaching. At the same time, the development of a robust a priori formula for professors to use in mitigating students' misconceptions remains elusive. An analysis of the literature and our own research has persuaded researchers at the CAPER Center for Astronomy & Physics Education Research to put forth a model that will allow professors to operate on students' various learning difficulties in a more productive manner. Previously, much of the field's work binned erroneous student thinking into a single construct, and from that basis, curriculum developers and instructors addressed student misconceptions with a single instructional strategy. In contrast, we propose a model based on the notion that 'misconceptions' are a mixture of at least four learning barriers: incorrect factual information, inappropriately applied mental algorithms (phenomenological primitives), insufficient cognitive structures (e.g. spatial reasoning), and affective/emotional difficulties (e.g. students' spiritual commitments). In this sense, each of these different types of learning barriers would be more effectively addressed with an instructional strategy purposefully targeting these different attributes. Initial applications of this model to learning problems in geosciences have been fruitful, suggesting that an effort towards categorizing persistent learning difficulties in the geosciences beyond the single generalized category of 'misconceptions' might allow our community to more effectively design learning experiences for our students and the general public

  18. Misconceptions Highlighted among Medical Students in the Annual International Intermedical School Physiology Quiz

    Science.gov (United States)

    Cheng, Hwee-Ming; Durairajanayagam, Damayanthi

    2012-01-01

    The annual Intermedical School Physiology Quiz (IMSPQ), initiated in 2003, is now an event that attracts a unique, large gathering of selected medical students from medical schools across the globe. The 8th IMSPQ, in 2010, hosted by the Department of Physiology, University of Malaya, in Kuala Lumpur, Malaysia, had 200 students representing 41…

  19. Growing Misconception of Technology: Investigation of Elementary Students' Recognition of and Reasoning about Technological Artifacts

    Science.gov (United States)

    Firat, Mehmet

    2017-01-01

    Knowledge of technology is an educational goal of science education. A primary way of increasing technology literacy in a society is to develop students' conception of technology starting from their elementary school years. However, there is a lack of research on student recognition of and reasoning about technology and technological artifacts. In…

  20. The Negative Sign and Exponential Expressions: Unveiling Students' Persistent Errors and Misconceptions

    Science.gov (United States)

    Cangelosi, Richard; Madrid, Silvia; Cooper, Sandra; Olson, Jo; Hartter, Beverly

    2013-01-01

    The purpose of this study was to determine whether or not certain errors made when simplifying exponential expressions persist as students progress through their mathematical studies. College students enrolled in college algebra, pre-calculus, and first- and second-semester calculus mathematics courses were asked to simplify exponential…

  1. An Analysis of Undergraduate General Chemistry Students' Misconceptions of the Submicroscopic Level of Precipitation Reactions

    Science.gov (United States)

    Kelly, Resa M.; Barrera, Juliet H.; Mohamed, Saheed C.

    2010-01-01

    This study examined how 21 college-level general chemistry students, who had received instruction that emphasized the symbolic level of ionic equations, explained their submicroscopic-level understanding of precipitation reactions. Students' explanations expressed through drawings and semistructured interviews revealed the nature of the…

  2. Understanding the Atom and Relevant Misconceptions: Students' Profiles in Relation to Three Cognitive Variables

    Science.gov (United States)

    Papageorgiou, George; Markos, Angelos; Zarkadis, Nikolaos

    2016-01-01

    This work investigates the formation of particular student profiles based on of their ideas relating to basic characteristics of the atom. Participants were secondary students of 8th, 10th and 12th grades from Northern Greece (n = 421), with specific cohort characteristics e.g. age, grade and class curriculum, and individual differences, e.g.…

  3. Misconception on Addition and Subtraction of Fraction at Primary School Students in Fifth-Grade

    Science.gov (United States)

    Trivena, V.; Ningsih, A. R.; Jupri, A.

    2017-09-01

    This study aims to investigate the mastery concept of the student in mathematics learning especially in addition and subtraction of fraction at primary school level. By using qualitative research method, the data were collected from 23 grade five students (10-11-year-old). Instruments included a test, that is accompanied by Certainty Response Index (CRI) and interview with students and teacher. The result of the test has been obtained, then processed by analyzing the student’s answers for each item and then grouped by the CRI categories that combined with the results of the interview with students and teacher. The results showed that student’s mastery-concept on additional and subtraction dominated by category ‘misconception’. So, we can say that mastery-concept on addition and subtraction of fraction at fifth-grade students is still low. Finally, the impact can make most of primary student think that learning addition and subtraction of fraction in mathematics is difficult.

  4. Knowledge and misconceptions about immunizations among medical students, pediatric, and family medicine resident.

    Science.gov (United States)

    Tañón, Vilmarie; Borrero, Clarimar; Pedrogo, Yasmín

    2010-01-01

    Previous research has indicated that, despite being the most trusted source of health information, medical students, residents and other health related professionals lack accurate and current knowledge regarding immunization practices. To evaluate medical students and primary care resident knowledge about immunizations. Self-administered survey given to students from four medical schools, Pediatrics residents (2 training programs) and Family Medicine residents (2 programs). Data was analyzed using Statistix 8.0. One-way ANOVA test was used to compare means, and a p-value less than 0.05 was considered statistically significant. Participants (N=376) included 3rd (64%) and 4th (18%) year medical students and a homogenous distribution of 1st, 2nd and 3rd year residents. The mean percent of correct answers about immunizations was 61%. The participants showed poor knowledge about indications (62% correct answers), contraindications (46% correct answers) and myths (71% correct answers). Knowledge about immunizations correlated with higher levels of education (p immunizations followed by books (48%) and the internet (36%). They referred poor exposure to immunizations in clinical settings. Most medical students do not have the expected knowledge about immunization indications and contraindications. Residents were not proficient in immunization contraindications. Both groups had an adequate understanding about vaccination myths. Efforts towards ensuring adequate exposure to immunizations education during training years are needed in order to eliminate one of the barriers to adequate immunizations in children.

  5. Neuromyths in Music Education: Prevalence and Predictors of Misconceptions among Teachers and Students.

    Science.gov (United States)

    Düvel, Nina; Wolf, Anna; Kopiez, Reinhard

    2017-01-01

    In the last decade, educational neuroscience has become increasingly important in the context of instruction, and its applications have been transformed into new teaching methods. Although teachers are interested in educational neuroscience, communication between scientists and teachers is not always straightforward. Thus, misunderstandings of neuroscientific research results can evolve into so-called neuromyths . The aim of the present study was to investigate the prevalence of such music-related neuromyths among music teachers and music students. Based on an extensive literature research, 26 theses were compiled and subsequently evaluated by four experts. Fourteen theses were selected, of which seven were designated as scientifically substantiated and seven as scientifically unsubstantiated (hereafter labeled as "neuromyths"). One group of adult music teachers ( n = 91) and one group of music education students ( n = 125) evaluated the theses (forced-choice discrimination task) in two separate online surveys. Additionally, in both surveys person-characteristic variables were gathered to determine possible predictors for the discrimination performance. As a result, identification rates of the seven scientifically substantiated theses were similar for teachers (76%) and students (78%). Teachers and students correctly rejected 60 and 59%, respectively, of the seven neuromyths as scientifically unsubstantiated statements. Sensitivity analysis by signal detection theory revealed a discrimination performance of d' = 1.25 ( SD = 1.12) for the group of teachers and d' = 1.48 ( SD = 1.22) for the students. Both groups showed a general tendency to evaluate the theses as scientifically substantiated (teachers: c = -0.35, students: c = -0.41). Specifically, buzz words such as "brain hemisphere" or "cognitive enhancement" were often classified as correct. For the group of teachers, the best predictor of discrimination performance was having read a large number of media about

  6. Neuromyths in Music Education: Prevalence and Predictors of Misconceptions among Teachers and Students

    Directory of Open Access Journals (Sweden)

    Reinhard Kopiez

    2017-04-01

    Full Text Available In the last decade, educational neuroscience has become increasingly important in the context of instruction, and its applications have been transformed into new teaching methods. Although teachers are interested in educational neuroscience, communication between scientists and teachers is not always straightforward. Thus, misunderstandings of neuroscientific research results can evolve into so-called neuromyths. The aim of the present study was to investigate the prevalence of such music-related neuromyths among music teachers and music students. Based on an extensive literature research, 26 theses were compiled and subsequently evaluated by four experts. Fourteen theses were selected, of which seven were designated as scientifically substantiated and seven as scientifically unsubstantiated (hereafter labeled as “neuromyths”. One group of adult music teachers (n = 91 and one group of music education students (n = 125 evaluated the theses (forced-choice discrimination task in two separate online surveys. Additionally, in both surveys person-characteristic variables were gathered to determine possible predictors for the discrimination performance. As a result, identification rates of the seven scientifically substantiated theses were similar for teachers (76% and students (78%. Teachers and students correctly rejected 60 and 59%, respectively, of the seven neuromyths as scientifically unsubstantiated statements. Sensitivity analysis by signal detection theory revealed a discrimination performance of d' = 1.25 (SD = 1.12 for the group of teachers and d' = 1.48 (SD = 1.22 for the students. Both groups showed a general tendency to evaluate the theses as scientifically substantiated (teachers: c = −0.35, students: c = −0.41. Specifically, buzz words such as “brain hemisphere” or “cognitive enhancement” were often classified as correct. For the group of teachers, the best predictor of discrimination performance was having read a large

  7. Neuromyths in Music Education: Prevalence and Predictors of Misconceptions among Teachers and Students

    Science.gov (United States)

    Düvel, Nina; Wolf, Anna; Kopiez, Reinhard

    2017-01-01

    In the last decade, educational neuroscience has become increasingly important in the context of instruction, and its applications have been transformed into new teaching methods. Although teachers are interested in educational neuroscience, communication between scientists and teachers is not always straightforward. Thus, misunderstandings of neuroscientific research results can evolve into so-called neuromyths. The aim of the present study was to investigate the prevalence of such music-related neuromyths among music teachers and music students. Based on an extensive literature research, 26 theses were compiled and subsequently evaluated by four experts. Fourteen theses were selected, of which seven were designated as scientifically substantiated and seven as scientifically unsubstantiated (hereafter labeled as “neuromyths”). One group of adult music teachers (n = 91) and one group of music education students (n = 125) evaluated the theses (forced-choice discrimination task) in two separate online surveys. Additionally, in both surveys person-characteristic variables were gathered to determine possible predictors for the discrimination performance. As a result, identification rates of the seven scientifically substantiated theses were similar for teachers (76%) and students (78%). Teachers and students correctly rejected 60 and 59%, respectively, of the seven neuromyths as scientifically unsubstantiated statements. Sensitivity analysis by signal detection theory revealed a discrimination performance of d' = 1.25 (SD = 1.12) for the group of teachers and d' = 1.48 (SD = 1.22) for the students. Both groups showed a general tendency to evaluate the theses as scientifically substantiated (teachers: c = −0.35, students: c = −0.41). Specifically, buzz words such as “brain hemisphere” or “cognitive enhancement” were often classified as correct. For the group of teachers, the best predictor of discrimination performance was having read a large number of

  8. Repairing Student Misconceptions in Heat Transfer Using Inquiry-Based Activities

    Science.gov (United States)

    Prince, Michael; Vigeant, Margot; Nottis, Katharyn

    2016-01-01

    Eight inquiry-based activities, described here in sufficient detail for faculty to adopt in their own courses, were designed to teach students fundamental concepts in heat transfer. The concept areas chosen were (1) factors affecting the rate vs. amount of heat transfer, (2) temperature vs. perceptions of hot and cold, (3) temperature vs. energy…

  9. The Use of Force Notation to Detect Students' Misconceptions: Mutual Interactions Case

    Science.gov (United States)

    Serhane, Ahcene; Zeghdaoui, Abdelhamid; Debiache, Mehdi

    2017-01-01

    Using a conventional notation for representing forces on diagrams, students were presented with questions on the interaction between two objects. The results show that complete understanding of Newton's Third Law of Motion is quite rare, and that some problems relate to misunderstanding which force acts on each body. The use of the terms…

  10. Misconceptions in the Earth Sciences: A Cross-Age Study.

    Science.gov (United States)

    Schoon, Kenneth J.

    Misconceptions interfere with the formation of new insights and provide a faulty foundation. This causes difficulty in the learning of new materials. Therefore, effective teachers strive to know which misconceptions students have, and then develop a plan by which these suspected misconceptions can be corrected or averted. This paper reports on an…

  11. Addressing Misconceptions

    Science.gov (United States)

    Dial, Katrina; Riddley, Diana; Williams, Kiesha; Sampson, Victor

    2009-01-01

    The law of conservation of mass can be counterintuitive for most students because they often think the mass of a substance is related to its physical state. As a result, students may hold a number of alternative conceptions related to this concept, including, for example, the believe that gas has no mass, that solids have greater mass than fluids,…

  12. Common Misconceptions about Cholesterol

    Science.gov (United States)

    ... Venous Thromboembolism Aortic Aneurysm More Common Misconceptions about Cholesterol Updated:Jan 29,2018 How much do you ... are some common misconceptions — and the truth. High cholesterol isn’t a concern for children. High cholesterol ...

  13. The use of astronomy questions as an instrument to detect student's misconceptions regarding physics concepts at high school level by using CRI (Certainty of Response Index) as identification methods

    Science.gov (United States)

    Utami, D. N.; Wulandari, H. R. T.

    2016-11-01

    The aim of this research is to detect misconceptions in the concept of physics at high school level by using astronomy questions as a testing instrument. Misconception is defined as a thought or an idea that is different from what has been agreed by experts who are reliable in the field, and it is believed to interfere with the acquisition of new understanding and integration of new knowledge or skills. While lack of concept or knowledge can be corrected with the next instruction and learning, students who have misconceptions have to “unlearn” their misconception before learning a correct one. Therefore, the ability to differentiate between these two things becomes crucial. CRI is one of the methods that can identify efficiently, between misconceptions and lack of knowledge that occur in the students. This research used quantitative- descriptive method with ex-post-facto research approach. An instrument used for the test is astronomy questions that require an understanding of physics concepts to solve the problem. By using astronomy questions, it is expected to raise a better understanding such that a concept can be viewed from various fields of science. Based on test results, misconceptions are found on several topics of physics. This test also revealed that student's ability to analyse a problem is still quite low.

  14. Exploring electrical resistance: a novel kinesthetic model helps to resolve some misconceptions

    Science.gov (United States)

    Cottle, Dan; Marshall, Rick

    2016-09-01

    A simple ‘hands on’ physical model is described which displays analogous behaviour to some aspects of the free electron theory of metals. Using it students can get a real feel for what is going on inside a metallic conductor. Ohms Law, the temperature dependence of resistivity, the dependence of resistance on geometry, how the conduction electrons respond to a potential difference and the concepts of mean free path and drift speed of the conduction electrons can all be explored. Some quantitative results obtained by using the model are compared with the predictions of Drude’s free electron theory of electrical conduction.

  15. Unweaving Misconceptions: Guided Learning, Simulations, and Misconceptions in Learning Principles of Natural Selection

    Science.gov (United States)

    Weeks, Brian E.

    2013-01-01

    College students often come to the study of evolutionary biology with many misconceptions of how the processes of natural selection and speciation occur. How to relinquish these misconceptions with learners is a question that many educators face in introductory biology courses. Constructivism as a theoretical framework has become an accepted and…

  16. INVESTIGATION OF THE MISCONCEPTION IN NEWTON II LAW

    Directory of Open Access Journals (Sweden)

    Yudi Kurniawan

    2018-04-01

    Full Text Available This study aims to provide a comprehensive description of the level of the number of students who have misconceptions about Newton's II Law. This research is located at one State Junior High School in Kab. Pandeglang. The purposive sampling was considering used in this study because it is important to distinguish students who do not know the concept of students who experience misconception. Data were collected using a three tier-test diagnostic test and analyzed descriptively quantitatively. The results showed that the level of misconception was in the two categories of high and medium levels. It needs an innovative teaching technique for subsequent research to treat Newton's Newton misconception.

  17. Linking neuroscientific research on decision making to the educational context of novice students assigned to a multiple-choice scientific task involving common misconceptions about electrical circuits

    Directory of Open Access Journals (Sweden)

    Patrice ePotvin

    2014-01-01

    Full Text Available Functional magnetic resonance imaging was used to identify the brain-based mechanisms of uncertainty and certainty associated with answers to multiple-choice questions involving common misconceptions about electric circuits. Twenty-two (22 scientifically novice participants (humanities and arts college students were asked, in an fMRI study, whether or not they thought the light bulbs in images presenting electric circuits were lighted up correctly, and if they were certain or uncertain of their answers. When participants reported that they were unsure of their responses, analyses revealed significant activations in brain areas typically involved in uncertainty (anterior cingulate cortex, anterior insula cortex, and superior/dorsomedial frontal cortex and in the left middle/superior temporal lobe. Certainty was associated with large bilateral activations in the occipital and parietal regions usually involved in visuospatial processing. Correct-and-certain answers were associated with activations that suggest a stronger mobilization of visual attention resources when compared to incorrect-and-certain answers. These findings provide insights into brain-based mechanisms of uncertainty that are activated when common misconceptions, identified as such by science education research literature, interfere in decision making in a school-like task. We also discuss the implications of these results from an educational perspective.

  18. Spore: Spawning Evolutionary Misconceptions?

    Science.gov (United States)

    Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.

    2010-10-01

    The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an immutable essence), teleological (assignment of purpose to living things and/or parts of living things that may not be purposeful), and intentionality (assumption that events are caused by an intelligent agent) biases may be reinforced through the use of computer simulations, rather than addressed with instruction. We examine the video game Spore for its depiction of evolutionary content and its potential to reinforce these cognitive biases. In particular, we discuss three pedagogical strategies to mitigate weaknesses of Spore and other computer simulations: directly targeting misconceptions through refutational approaches, targeting specific principles of scientific inquiry, and directly addressing issues related to models as cognitive tools.

  19. A Simple Exercise Reveals the Way Students Think about Scientific Modeling

    Science.gov (United States)

    Ruebush, Laura; Sulikowski, Michelle; North, Simon

    2009-01-01

    Scientific modeling is an integral part of contemporary science, yet many students have little understanding of how models are developed, validated, and used to predict and explain phenomena. A simple modeling exercise led to significant gains in understanding key attributes of scientific modeling while revealing some stubborn misconceptions.…

  20. Childhood Obesity: Common Misconceptions

    Science.gov (United States)

    ... Issues Listen Español Text Size Email Print Share Childhood Obesity: Common Misconceptions Page Content Article Body Everyone, it ... for less than 1% of the cases of childhood obesity. Yes, hypothyroidism (a deficit in thyroid secretion) and ...

  1. Correcting Misconceptions on Electronics: Effects of a Simulation-Based Learning Environment Backed by a Conceptual Change Model

    Science.gov (United States)

    Chen, Yu-Lung; Pan, Pei-Rong; Sung, Yao-Ting; Chang, Kuo-En

    2013-01-01

    Computer simulation has significant potential as a supplementary tool for effective conceptual-change learning based on the integration of technology and appropriate instructional strategies. This study elucidates misconceptions in learning on diodes and constructs a conceptual-change learning system that incorporates…

  2. Asymptote Misconception on Graphing Functions: Does Graphing Software Resolve It?

    Directory of Open Access Journals (Sweden)

    Mehmet Fatih Öçal

    2017-01-01

    Full Text Available Graphing function is an important issue in mathematics education due to its use in various areas of mathematics and its potential roles for students to enhance learning mathematics. The use of some graphing software assists students’ learning during graphing functions. However, the display of graphs of functions that students sketched by hand may be relatively different when compared to the correct forms sketched using graphing software. The possible misleading effects of this situation brought a discussion of a misconception (asymptote misconception on graphing functions. The purpose of this study is two- fold. First of all, this study investigated whether using graphing software (GeoGebra in this case helps students to determine and resolve this misconception in calculus classrooms. Second, the reasons for this misconception are sought. The multiple case study was utilized in this study. University students in two calculus classrooms who received instructions with (35 students or without GeoGebra assisted instructions (32 students were compared according to whether they fell into this misconception on graphing basic functions (1/x, lnx, ex. In addition, students were interviewed to reveal the reasons behind this misconception. Data were analyzed by means of descriptive and content analysis methods. The findings indicated that those who received GeoGebra assisted instruction were better in resolving it. In addition, the reasons behind this misconception were found to be teacher-based, exam-based and some other factors.

  3. Flawed Assumptions, Models and Decision Making: Misconceptions Concerning Human Elements in Complex System

    International Nuclear Information System (INIS)

    FORSYTHE, JAMES C.; WENNER, CAREN A.

    1999-01-01

    The history of high consequence accidents is rich with events wherein the actions, or inaction, of humans was critical to the sequence of events preceding the accident. Moreover, it has been reported that human error may contribute to 80% of accidents, if not more (dougherty and Fragola, 1988). Within the safety community, this reality is widely recognized and there is a substantially greater awareness of the human contribution to system safety today than has ever existed in the past. Despite these facts, and some measurable reduction in accident rates, when accidents do occur, there is a common lament. No matter how hard we try, we continue to have accidents. Accompanying this lament, there is often bewilderment expressed in statements such as, ''There's no explanation for why he/she did what they did''. It is believed that these statements are a symptom of inadequacies in how they think about humans and their role within technological systems. In particular, while there has never been a greater awareness of human factors, conceptual models of human involvement in engineered systems are often incomplete and in some cases, inaccurate

  4. Prevalence and Persistence of Misconceptions in Tree Thinking.

    Science.gov (United States)

    Kummer, Tyler A; Whipple, Clinton J; Jensen, Jamie L

    2016-12-01

    Darwin described evolution as "descent with modification." Descent, however, is not an explicit focus of most evolution instruction and often leaves deeply held misconceptions to dominate student understanding of common ancestry and species relatedness. Evolutionary trees are ways of visually depicting descent by illustrating the relationships between species and groups of species. The ability to properly interpret and use evolutionary trees has become known as "tree thinking." We used a 20-question assessment to measure misconceptions in tree thinking and compare the proportion of students who hold these misconceptions in an introductory biology course with students in two higher-level courses including a senior level biology course. We found that misconceptions related to reading the graphic ( reading the tips and node counting ) were variably influenced across time with reading the tips decreasing and node counting increasing in prevalence. On the other hand, misconceptions related to the fundamental underpinnings of evolutionary theory ( ladder thinking and similarity equals relatedness ) proved resistant to change during a typical undergraduate study of biology. A possible new misconception relating to the length of the branches in an evolutionary tree is described. Understanding the prevalence and persistence of misconceptions informs educators as to which misconceptions should be targeted in their courses.

  5. Prevalence and Persistence of Misconceptions in Tree Thinking†

    Science.gov (United States)

    Kummer, Tyler A.; Whipple, Clinton J.; Jensen, Jamie L.

    2016-01-01

    Darwin described evolution as “descent with modification.” Descent, however, is not an explicit focus of most evolution instruction and often leaves deeply held misconceptions to dominate student understanding of common ancestry and species relatedness. Evolutionary trees are ways of visually depicting descent by illustrating the relationships between species and groups of species. The ability to properly interpret and use evolutionary trees has become known as “tree thinking.” We used a 20-question assessment to measure misconceptions in tree thinking and compare the proportion of students who hold these misconceptions in an introductory biology course with students in two higher-level courses including a senior level biology course. We found that misconceptions related to reading the graphic (reading the tips and node counting) were variably influenced across time with reading the tips decreasing and node counting increasing in prevalence. On the other hand, misconceptions related to the fundamental underpinnings of evolutionary theory (ladder thinking and similarity equals relatedness) proved resistant to change during a typical undergraduate study of biology. A possible new misconception relating to the length of the branches in an evolutionary tree is described. Understanding the prevalence and persistence of misconceptions informs educators as to which misconceptions should be targeted in their courses. PMID:28101265

  6. Prevalence and Persistence of Misconceptions in Tree Thinking

    Directory of Open Access Journals (Sweden)

    Tyler A. Kummer

    2016-12-01

    Full Text Available Darwin described evolution as “descent with modification.” Descent, however, is not an explicit focus of most evolution instruction and often leaves deeply held misconceptions to dominate student understanding of common ancestry and species relatedness. Evolutionary trees are ways of visually depicting descent by illustrating the relationships between species and groups of species. The ability to properly interpret and use evolutionary trees has become known as “tree thinking.” We used a 20-question assessment to measure misconceptions in tree thinking and compare the proportion of students who hold these misconceptions in an introductory biology course with students in two higher-level courses including a senior level biology course. We found that misconceptions related to reading the graphic (reading the tips and node counting were variably influenced across time with reading the tips decreasing and node counting increasing in prevalence. On the other hand, misconceptions related to the fundamental underpinnings of evolutionary theory (ladder thinking and similarity equals relatedness proved resistant to change during a typical undergraduate study of biology. A possible new misconception relating to the length of the branches in an evolutionary tree is described. Understanding the prevalence and persistence of misconceptions informs educators as to which misconceptions should be targeted in their courses.

  7. Teachers' Misconceptions about the Effects of Addition of More Reactants or Products on Chemical Equilibrium

    Science.gov (United States)

    Cheung, Derek; Ma, Hong-jia; Yang, Jie

    2009-01-01

    The importance of research on misconceptions about chemical equilibrium is well recognized by educators, but in the past, researchers' interest has centered on student misconceptions and has neglected teacher misconceptions. Focusing on the effects of adding more reactants or products on chemical equilibrium, this article discusses the various…

  8. Eliminate with Created Argument Environment after Evaluated and Categorized Misconceptions in an Ontological Sense

    Science.gov (United States)

    Kinik Topalsan, Aysegul; Bayram, Hale

    2017-01-01

    This study aimed to ascertain misconceptions of students about basic physical concepts in the "Force and Motion" unit of secondary school seventh class curriculum, to eliminate the misconceptions with created argument environment and traditional approaches after evaluated, and categorize these misconceptions in an ontological sense.…

  9. Investigation to reduce students’ misconception in energy material

    Science.gov (United States)

    Wijayanti, M. D.; Raharjo, S. B.; Saputro, S.; Mulyani, S.

    2018-05-01

    The purpose of this study is to analyse the misconception of Teacher Candidate of Elementary School (PGSD) on energy materials. This research is expected to be a common misconception in teaching and learning activities. One solution to overcome misconceptions is by investigation. This study uses qualitative research. The subject of this research needs 35 students. Data analysis is done by comparing the observation and test results. The results of this study is the result of students learning outcomes through cycle I and cycle II. The first cycle is due to overweight misconceptions of 18.57% and cycle II of 35.71%. Misconception can be caused by a procedural negligence. Students of PGSD Are examined to show if they understood in a simple movement problem which needs a neverse proportionality concept, to find out a way to prevent misunderstanding. The examination may consist of the question of energy materials by different representation for each student. The conceptual knowledge of the students show incorrectness because they feel confused of existing knowledge they got in their daily lives. It can cause scientific misunderstanding. The declining in student misconceptions is caused by investigation process. Search and data collection are helpful in improving their thinking skills.

  10. Misconceptions about optics: An effect of misleading explanations?

    Science.gov (United States)

    Favale, Fabrizio; Bondani, Maria

    2014-07-01

    During our activities of physics dissemination with High School students especially concerning optics, we are used to distribute a questionnaire about colors and image formation by mirrors and lenses. The answers to some questions clearly show misconceptions and naïve ideas about colors, ray tracing, image formation in reflection and refraction. These misconceptions are widespread and do not depend on the gender, the level, and the age of the students: they seem to depend on some wrong ideas and explanatory models that are not changed by the curricular studies at school. In fact, the same errors are present in groups of students before and after taking optics courses at High School. On the other hand we have also found some misleading explanations of the phenomena both in textbooks and websites. Most of the time, errors occur in the explanatory drawings accompanying the text, which are based on some hybrid description of the optical processes: sometimes the description of the path of the ray light is confused with the image reconstruction by the lenses. We think that to partially avoid some errors it is important to use a teaching path centered on the actual path of the rays and not on what eyes see (the vision). Here we present the results of data collected from more than 200 students and some considerations about figures and explanations found in textbooks.

  11. Revealing physical education students’ misconception in sport biomechanics

    Science.gov (United States)

    Kartiko, D. C.

    2018-04-01

    The aim of this research is reveal Physical Education students’ misconception in several concepts of Sport Biomechanics. The Data of misconception collected by standard question of Diagnostic Test that given to 30 students of Physical Education, Faculty of Sport, State University of Surabaya in academic year 2017/2018. Diagnostic Test completed with CRI (Certainty of Response Index) in order to collect data of students’ certain in answered test. The data result of diagnostic test analysed through compilation graph of CRI right, CRI wrong and right fraction in every single question. Furthermore, students’ answer result of diagnostic test categorized in to 4 quadrants, these: correct concepts, lucky guess, misconceptions, and lack of knowledge. Its categorizing data to know percentage of misconceptions that arise in every concept tested. These sport biomechanics concepts tested are limited on frictional force, deference of distance and displacement, deference of velocity and acceleration, and free fall motion. The result obtained arise misconception in frictional force 52,78%; deference of distance and displacement 36,67%; deference of velocity and acceleration 56,67%; and free fall motion 53,33%. Result of t-test in diagnostic test misconception percentage showed that percentage of misconception arises in every student above 50%.

  12. The Heat Is On! Using Particle Models to Change Students' Conceptions of Heat and Temperature

    Science.gov (United States)

    Hitt, Austin Manning; Townsend, J. Scott

    2015-01-01

    Elementary, middle-level, and high school science teachers commonly find their students have misconceptions about heat and temperature. Unfortunately, student misconceptions are difficult to modify or change and can prevent students from learning the accurate scientific explanation. In order to improve our students' understanding of heat and…

  13. Misconceptions and constraints

    International Nuclear Information System (INIS)

    Whitten, M.; Mahon, R.

    2005-01-01

    In theory, the sterile insect technique (SIT) is applicable to a wide variety of invertebrate pests. However, in practice, the approach has been successfully applied to only a few major pests. Chapters in this volume address possible reasons for this discrepancy, e.g. Klassen, Lance and McInnis, and Robinson and Hendrichs. The shortfall between theory and practice is partly due to the persistence of some common misconceptions, but it is mainly due to one constraint, or a combination of constraints, that are biological, financial, social or political in nature. This chapter's goal is to dispel some major misconceptions, and view the constraints as challenges to overcome, seeing them as opportunities to exploit. Some of the common misconceptions include: (1) released insects retain residual radiation, (2) females must be monogamous, (3) released males must be fully sterile, (4) eradication is the only goal, (5) the SIT is too sophisticated for developing countries, and (6) the SIT is not a component of an area-wide integrated pest management (AW-IPM) strategy. The more obvious constraints are the perceived high costs of the SIT, and the low competitiveness of released sterile males. The perceived high up-front costs of the SIT, their visibility, and the lack of private investment (compared with alternative suppression measures) emerge as serious constraints. Failure to appreciate the true nature of genetic approaches, such as the SIT, may pose a significant constraint to the wider adoption of the SIT and other genetically-based tactics, e.g. transgenic genetically modified organisms (GMOs). Lack of support for the necessary underpinning strategic research also appears to be an important constraint. Hence the case for extensive strategic research in ecology, population dynamics, genetics, and insect behaviour and nutrition is a compelling one. Raising the competitiveness of released sterile males remains the major research objective of the SIT. (author)

  14. The Initial Knowledge State of High School Astronomy Students

    Science.gov (United States)

    Sadler, Philip Michael

    1992-01-01

    This study of 1,414 high school earth science and astronomy students characterizes the prevalence of their astronomical misconceptions. The multiple-choice instrument was prepared by scouring the literature on scientific misconceptions for evidence of preconceptions and from the author's interviews with students. Views that were incorrect, but espoused by a large fraction of students, were included as distractors. Results have been analyzed using classical test theory. A linear multiple regression model has helped to show the relative contributions of demographic and school factors to the number of misconceptions held by students. The instrument was found to be a reliable and valid test of students' misconceptions. The mean student score was 34 percent. Fifty-one student misconceptions were revealed by this test, nineteen of which were preferred by students to the correct answer. Several misconceptions appeared more frequently among the higher-performing students. Significant differences in student performance were found in several subgroups based upon schooling and demographic factors. Twenty -five percent out of a total of 30 percent of the variance in total test score could be accounted for by gender, race, and math level courses taken. Grade level and previous enrollment in an earth science course were not found to be predictive of total score. Mother's education proved to be of small import; level of father's education was not significant. This test is a useful addition to instruments that measure student misconceptions. It could find application in tests of effective intervention for conceptual learning. Significantly shortened versions of this instrument that account for 75 and 90 percent of the variance in the forty-seven-item instrument are recommended. Such tests of misconceptions may be somewhat disheartening to teachers and their students. A test made up of only misconception questions will probably have average total scores less than 40 percent. If

  15. Blockchain: properties and misconceptions

    Directory of Open Access Journals (Sweden)

    Daniel Conte de Leon

    2017-12-01

    Full Text Available Purpose - The purpose of this article is to clarify current and widespread misconceptions about the properties of blockchain technologies and to describe challenges and avenues for correct and trustworthy design and implementation of distributed ledger system (DLS or Technology (DLT. Design/methodology/approach - The authors contrast the properties of a blockchain with desired, however emergent, properties of a DLS, which is a complex and distributed system. They point out and justify, with facts and analysis, current misconceptions about the blockchain and DLSs. They describe challenges that these systems will need to address and possible solution avenues for achieving trustworthiness. Findings - Many of the statements that have appeared on the internet, news and academic articles, such as immutable ledger and exact copies, may be misleading. These are desired emergent properties of a complex system, not assured properties. It is well-known within the distributed systems and critical software community that it is extremely hard to prove that a complex system correctly and completely implements emergent properties. Further research and development for trustworthy DLS design and implementation is needed, both practical and theoretical. Research limitations/implications - This is the first known published attempt at describing current misconceptions about blockchain technologies. Further collaborative work, discussions, potential solutions, evaluations, resulting publications and verified reference implementations are needed to ensure DLTs are safe, secure, and trustworthy. Practical implications - Interdisciplinary teams with members from academia, business and industry, and from disciplines such as business, entrepreneurship, theoretical and practical computer science, cybersecurity, finance, mathematics and statistics, must be formed. Such teams must collaborate with the objective of developing strategies and techniques for ensuring the

  16. Development and Application of a Four-Tier Test to Assess Pre-Service Physics Teachers' Misconceptions about Geometrical Optics

    Science.gov (United States)

    Kaltakci-Gurel, Derya; Eryilmaz, Ali; McDermott, Lillian Christie

    2017-01-01

    Background: Correct identification of misconceptions is an important first step in order to gain an understanding of student learning. More recently, four-tier multiple choice tests have been found to be effective in assessing misconceptions. Purpose: The purposes of this study are (1) to develop and validate a four-tier misconception test to…

  17. Myths and Misconceptions about LGBTQ Youth: School Counselors' Role in Advocacy

    Science.gov (United States)

    Abreu, Roberto L.; McEachern, Adriana G.; Kenny, Maureen C.

    2017-01-01

    Although schools are thought to be safe environments for all students, sexual minority and gender expansive (i.e., LGBTQ) students often feel unsafe and unwelcome as a result of misconceptions about their identity. This paper explores eight commonly held myths and misconceptions about LGBTQ youth. The role of professional school counselors (PSCs)…

  18. Development of the kinetic molecular theory of gases concept inventory: Preliminary results on university students’ misconceptions

    Directory of Open Access Journals (Sweden)

    Nataša Erceg

    2016-11-01

    Full Text Available In this study, we investigated students’ understanding of concepts related to the microscopic model of gas. We thoroughly reviewed the relevant literature and conducted think alouds with students by asking them to answer open-ended questions about the kinetic molecular theory of gases. Thereafter, we transformed the open-ended questions into multiple-choice questions, whereby distractors were based on the results of the think alouds. Thus, we obtained a set of 22 questions, which constitutes our current version of the kinetic molecular theory of gases concept inventory. The inventory has been administered to 250 students from different universities in Croatia, and its content validity has been investigated trough physics teacher surveys. The results of our study not only corroborate the existence of some already known student misconceptions, but also reveal new insights about a great spectrum of students’ misconceptions that had not been reported in earlier research (e.g., misconceptions about intermolecular potential energy and molecular velocity distribution. Moreover, we identified similar distribution of students’ responses across the surveyed student groups, despite the fact that they had been enrolled in different curricular environments.

  19. Automated Student Model Improvement

    Science.gov (United States)

    Koedinger, Kenneth R.; McLaughlin, Elizabeth A.; Stamper, John C.

    2012-01-01

    Student modeling plays a critical role in developing and improving instruction and instructional technologies. We present a technique for automated improvement of student models that leverages the DataShop repository, crowd sourcing, and a version of the Learning Factors Analysis algorithm. We demonstrate this method on eleven educational…

  20. Combining Different Conceptual Change Methods within 5E Model: A Sample Teaching Design of "Cell" Concept and its Organelles

    Science.gov (United States)

    Urey, Mustafa; Calik, Muammer

    2008-01-01

    Since students' misconceptions are not completely remedied by means of only one conceptual change method, the authors assume that using different conceptual methods embedded within the 5E model will not only be more effective in enhancing students' conceptual understanding, but also may eliminate all students' misconceptions. The aim of this study…

  1. Rethinking Therapeutic Misconception in Biobanking

    DEFF Research Database (Denmark)

    Tupasela, Aaro; Snell, Karoliina; Cañada, Jose

    2017-01-01

    Some authors have noted that in biobank research participants may be guided by what is called therapeutic misconception, whereby participants attribute therapeutic intent to research procedures.This article argues that the notion of therapeutic misconception is increasingly less justified when...... underpinnings for the need to separate research and treatment, and thus the notion of therapeutic misconception in the fi rst place. We call this tension between research and treatment ambivalent research advancement to highlight the difficulties that various actors have in managing such shifts within...

  2. Investigating Undergraduate Science Students’ Conceptions and Misconceptions of Ocean Acidification

    Science.gov (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. PMID:26163563

  3. Misconceptions about traumatic brain injuries among South African ...

    African Journals Online (AJOL)

    Objective. To investigate the incidence and type of misconceptions about traumatic brain injuries (TBIs) harboured by university students. Method. A convenience sample of 705 university students were recruited and data were collected using an electronic survey. The link to the survey was sent via e-mail to all registered ...

  4. Hybrid orbitals notation: Some misconceptions in an undergraduate ...

    African Journals Online (AJOL)

    This work reports a study performed involving 26 students of an undergraduate basic chemistry course class at Federal University of Rio Grande do Norte, Brazil. The study was performed in order to evaluate the misconceptions about hybridization that students bring from high school courses and how to overcame such ...

  5. Genetics and Cinema: Personal Misconceptions That Constitute Obstacles to Learning

    Science.gov (United States)

    Muela, Francisco Javier; Abril, Ana María

    2014-01-01

    The primary objective of this paper is to find out whether the genetic concepts conveyed by cinema could encourage students' personal misconceptions in this area. To that end, two sources of conceptions were compared: the students' personal concepts (from a consolidated bibliography and from an experimental sample) and the concepts conveyed by…

  6. Internet as a Source of Misconception: "Radiation and Radioactivity"

    Science.gov (United States)

    Acar Sesen, Burcin; Ince, Elif

    2010-01-01

    The purpose of this study is to examine students' usage styles of the Internet for seeking information and to investigate whether information obtained from the Internet is a source of misconceptions. For this reason, a two-stage study was conducted. At the first stage, a questionnaire was developed to get information about students' Internet usage…

  7. Turkish Undergraduates' Misconceptions of Evaporation, Evaporation Rate, and Vapour Pressure

    Science.gov (United States)

    Canpolat, Nurtac

    2006-01-01

    This study focused on students' misconceptions related to evaporation, evaporation rate, and vapour pressure. Open-ended diagnostic questions were used with 107 undergraduates in the Primary Science Teacher Training Department in a state university in Turkey. In addition, 14 students from that sample were interviewed to clarify their written…

  8. Misconceptions of genetics concepts among pre-service teachers ...

    African Journals Online (AJOL)

    Students' misconceptions are often deeply rooted and instruction-resistant obstacles to the acquizition of scientific concepts and remain even after instruction. A large number of prior studies reported that primary and secondary school students have many conceptional problems concerning cell biology and genetics.

  9. Revising Psychology Misconceptions by Integrating a Refutation-Style Text Framework into Poster Presentations

    Science.gov (United States)

    Lassonde, Karla A.; Kolquist, Molly; Vergin, Megan

    2017-01-01

    Refutation-style texts have been considered a viable strategy for changing psychological misconceptions. The current study aims to integrate refutation-style texts into a classroom-based method of learning. Psychology students were administered a true/false misconception survey and then viewed several refutation-style poster presentations…

  10. Analysis misconception of integers in microteaching activities

    Science.gov (United States)

    Setyawati, R. D.; Indiati, I.

    2018-05-01

    This study view to analyse student misconceptions on integers in microteaching activities. This research used qualitative research design. An integers test contained questions from eight main areas of integers. The Integers material test includes (a) converting the image into fractions, (b) examples of positive numbers including rational numbers, (c) operations in fractions, (d) sorting fractions from the largest to the smallest, and vice versa; e) equate denominator, (f) concept of ratio mark, (g) definition of fraction, and (h) difference between fractions and parts. The results indicated an integers concepts: (1) the students have not been able to define concepts well based on the classification of facts in organized part; (2) The correlational concept: students have not been able to combine interrelated events in the form of general principles; and (3) theoretical concepts: students have not been able to use concepts that facilitate in learning the facts or events in an organized system.

  11. Misconceptions in Astronomy: Before and After a Constructivist Learning Environment

    Science.gov (United States)

    Ruzhitskaya, Lanika; Speck, A.

    2009-01-01

    We present results of a pilot study on college students’ misconceptions in astronomy. The study was conducted on the campus of a Midwestern university among 43 non-science major students enrolled in an introductory astronomy laboratory course. The laboratory course was based on a constructivist learning environment where students learned astronomy by doing astronomy. During the course, students worked with educational simulations created by Project CLEA team and RedShift College Education Astronomy Workbook by Bill Walker as well as were involved in think-pair-share discussions based on Lecture-Tutorials (Prather et al 2008). Several laboratories were prompted by an instructor's brief presentations. On the first and last days of the course students were surveyed on what their beliefs were about causes of the seasons, the moon's apparent size in the sky and its phases, planetary orbits, structure of the solar system, the sun, distant stars, and the nature of light. The majority of the surveys’ questions were based on Neil Comins’ 50 most commonly cited misconceptions. The outcome of the study showed that while students constructed correct understanding of a number of phenomena, they also created a set of new misconceptions. For example, if on the first day of the course, nine out of 43 students knew what caused the seasons on Earth; on the last day of the course, 20 students gained the similar understanding. However, by the end of the course more students believed that smaller planets must rotate faster based on the conservation of angular momentum and Kepler's laws. Our findings suggest that misconceptions pointed out by Neil Comins over a decade ago are still relevant today; and that learning based exclusively on simulations and collaborative group discussions does not necessarily produce the best results, but may set a ground for creating new misconceptions.

  12. Student Modeling and Machine Learning

    OpenAIRE

    Sison , Raymund; Shimura , Masamichi

    1998-01-01

    After identifying essential student modeling issues and machine learning approaches, this paper examines how machine learning techniques have been used to automate the construction of student models as well as the background knowledge necessary for student modeling. In the process, the paper sheds light on the difficulty, suitability and potential of using machine learning for student modeling processes, and, to a lesser extent, the potential of using student modeling techniques in machine le...

  13. Adolescence: myths and misconceptions.

    Science.gov (United States)

    Dhall, A

    1995-01-01

    Adolescence is the period of physical and psychological growth between childhood and adulthood. The author is a practicing obstetrician and gynecologist in New Delhi. Over the course of her medical career, she has identified many myths and misconceptions about adolescents and adolescence. With regard to male adolescents, masturbation-related myths may be the most frequently harbored. Male adolescents have a hormone-driven need to have sexual intercourse, frequently. Masturbation is a healthy, no-cost way to relieve sexual tension. There is neither need to pay a prostitute nor fear of contracting a sexually transmitted disease. A young man can masturbate virtually whenever he wants. Despite the guilt and misinformation implanted by adults that masturbation causes weakness, boys masturbate rather frequently. Also contrary to popular myth, the nocturnal emissions which may result in growing boys as a result of sexual excitement during a dream are completely normal and no reason for concern. Further, boys should not worry about penis size, for, when erect, they all work just fine. People grow at different rates. Menstruation starts when 17% of a woman's body weight is fat. The onset of menstruation may therefore start earlier in well-fed girls compared to in girls who are more lean. The frequency and duration of menses are not constant. Menstrual irregularity therefore does not necessarily mean that a young woman is pregnant or that professional medical treatment is required. Breasts, like penises, serve their intended function irrespective of size. The hymen is a membrane at the opening of the vagina. It may have a hole in the center or the side for the escape of menstrual blood. There are myths that an intact hymen is indicative of virginity, the hymen should be intact until marriage, and the first sexual experience should be painful for a woman. The hymen is elastic and even some prostitutes have been found to have intact hymens. The hymen also may tear due to a

  14. Analysis of statistical misconception in terms of statistical reasoning

    Science.gov (United States)

    Maryati, I.; Priatna, N.

    2018-05-01

    Reasoning skill is needed for everyone to face globalization era, because every person have to be able to manage and use information from all over the world which can be obtained easily. Statistical reasoning skill is the ability to collect, group, process, interpret, and draw conclusion of information. Developing this skill can be done through various levels of education. However, the skill is low because many people assume that statistics is just the ability to count and using formulas and so do students. Students still have negative attitude toward course which is related to research. The purpose of this research is analyzing students’ misconception in descriptive statistic course toward the statistical reasoning skill. The observation was done by analyzing the misconception test result and statistical reasoning skill test; observing the students’ misconception effect toward statistical reasoning skill. The sample of this research was 32 students of math education department who had taken descriptive statistic course. The mean value of misconception test was 49,7 and standard deviation was 10,6 whereas the mean value of statistical reasoning skill test was 51,8 and standard deviation was 8,5. If the minimal value is 65 to state the standard achievement of a course competence, students’ mean value is lower than the standard competence. The result of students’ misconception study emphasized on which sub discussion that should be considered. Based on the assessment result, it was found that students’ misconception happen on this: 1) writing mathematical sentence and symbol well, 2) understanding basic definitions, 3) determining concept that will be used in solving problem. In statistical reasoning skill, the assessment was done to measure reasoning from: 1) data, 2) representation, 3) statistic format, 4) probability, 5) sample, and 6) association.

  15. 高中生海洋科學素養及迷思概念評量分析 Marine Science Literacy and Misconceptions among Senior High School Students

    Directory of Open Access Journals (Sweden)

    羅綸新 Lwun-Syin Lwo

    2013-09-01

    Full Text Available 本研究旨在:一、應用概念圖命題模式及開放性問答評量高中生海洋科學概念與素養之現況。二、以問卷試題診斷高中生海洋科學迷思概念之情形。研究以基隆市5 所公立高級中學學生為對象,共計發出361 份問卷,有效樣本346 份,回收率為96%。研究結果顯示:一、高中生在海洋科學概念詞彙運用前三名為暖化、地震及地球。二、高中生在海洋科學概念詞彙運用產生迷思的三大詞彙為生質能源、黑潮及親潮。三、高中生海洋概念以知識面向的概念最高。四、高中生在海洋科學迷思概念試題評量中,平均答對率只有53%。五、黑潮得名緣由為高中生在海洋科學迷思概念評量中答對率最低的題目,僅有16%。六、「瞭解冰期與間冰期海平面的升降,對全球生物與自然環境可能造成影響」為高中生最常帶有迷思概念的能力指標。研究的結果可供我國海洋教育相關人員及高中教師參考,以提升海洋教育實施之成效與國民海洋科學素養。 The purposes of this study were to examine the literacy of senior high school students regarding marine-science concepts by using the concept-map method (open-ended tasks and an open-ended question, and to assess their misconceptions about marine science. A survey was conducted among students from five senior high schools in northern Taiwan. A total of 361 questionnaires were distributed and a validity count of 346 was returned. The results of this study were as follows: (1 The terms “warming,” “earthquake,” and “earth” were most commonly used by students to express marine-science concepts. (2 The terms “bioenergy,” “Kuroshio Currents,” and “Oyashio Currents” caused the most confusion among students. (3 The marine concepts described by the students were more in cognitive domain, than in attitude and affective domains. (4 The students

  16. Using Analogies to Prevent Misconceptions about Chemical Equilibrium

    Science.gov (United States)

    Sahin Pekmez, Esin

    2010-01-01

    The main purpose of this study was to find the effectiveness of using analogies to prevent misconceptions about chemical equilibrium. Nineteen analogies, which were based on dynamic aspects of chemical equilibrium and application of Le Chatelier's principle, were developed. The participations of this study consisted of 11th grade students (n: 151)…

  17. hybrid orbitals notation: some misconceptions in an undergraduate

    African Journals Online (AJOL)

    Temechegn

    chemistry course class at Federal University of Rio Grande do Norte, Brazil. The study was ... high school courses and how to overcame such misconceptions. Methane ... [African Journal of Chemical Education—AJCE 7(1), January 2017] ... [2], in both research and teaching. In high .... feature of the freshman student profile.

  18. Identifying Students’ Misconceptions on Basic Algorithmic Concepts Through Flowchart Analysis

    NARCIS (Netherlands)

    Rahimi, E.; Barendsen, E.; Henze, I.; Dagienė, V.; Hellas, A.

    2017-01-01

    In this paper, a flowchart-based approach to identifying secondary school students’ misconceptions (in a broad sense) on basic algorithm concepts is introduced. This approach uses student-generated flowcharts as the units of analysis and examines them against plan composition and construct-based

  19. Common Earth Science Misconceptions in Science Teaching

    Science.gov (United States)

    King, Chris

    2012-01-01

    A survey of the Earth science content of science textbooks found a wide range of misconceptions. These are discussed in this article with reference to the published literature on Earth science misconceptions. Most misconceptions occurred in the "sedimentary rocks and processes" and "Earth's structure and plate tectonics"…

  20. Misconceptions in Reporting Oxygen Saturation

    NARCIS (Netherlands)

    Toffaletti, John; Zijlstra, Willem G.

    2007-01-01

    BACKGROUND: We describe some misconceptions that have become common practice in reporting blood gas and cooximetry results. In 1980, oxygen saturation was incorrectly redefined in a report of a new instrument for analysis of hemoglobin (Hb) derivatives. Oxygen saturation (sO(2)) was redefined as the

  1. Relations between Intuitive Biological Thinking and Biological Misconceptions in Biology Majors and Nonmajors

    Science.gov (United States)

    Coley, John D.; Tanner, Kimberly

    2015-01-01

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed "misconceptions," among biology students across biological domains. In parallel, cognitive and developmental psychologists…

  2. An investigation of difficulties experienced by students developing unified modelling language (UML) class and sequence diagrams

    Science.gov (United States)

    Sien, Ven Yu

    2011-12-01

    Object-oriented analysis and design (OOAD) is not an easy subject to learn. There are many challenges confronting students when studying OOAD. Students have particular difficulty abstracting real-world problems within the context of OOAD. They are unable to effectively build object-oriented (OO) models from the problem domain because they essentially do not know "what" to model. This article investigates the difficulties and misconceptions undergraduate students have with analysing systems using unified modelling language analysis class and sequence diagrams. These models were chosen because they represent important static and dynamic aspects of the software system under development. The results of this study will help students produce effective OO models, and facilitate software engineering lecturers design learning materials and approaches for introductory OOAD courses.

  3. A Model of Student Workload

    Science.gov (United States)

    Bowyer, Kyle

    2012-01-01

    Student workload is a contributing factor to students deciding to withdraw from their study before completion of the course, at significant cost to students, institutions and society. The aim of this paper is to create a basic workload model for a group of undergraduate students studying business law units at Curtin University in Western…

  4. Concept cartoons for diagnosing student’s misconceptions in the topic of buffers

    Science.gov (United States)

    Kusumaningrum, I. A.; Ashadi; Indriyanti, N. Y.

    2018-05-01

    Student’s misconceptions have been concerned over twenty years in the chemistry education research. It influences students to learn new knowledge and gain a correct concept. The buffer solution is found as a difficult topic due to student’s misconception. However, the research related this subject are still rare. Concept cartoon has been used as one of the effective tools to diagnose misconceptions. This study aims to identify the effectiveness of concept cartoon to diagnose them. The concept cartoon consists of three concept questions. 98 students of grade 11 as respondents of this research and followed by interview for selected students. The data obtain of the study are analyzed by using a scoring key. The detected misconceptions are about what buffers do, what buffers are, and how buffers are able to do what they do. Concept cartoon is potential as a basic tool for remedial teaching.

  5. Misconceptions Surrounding Climate Change: A Review of the Literature

    Science.gov (United States)

    Templeton, C. M.; McNeal, K. S.; Libarkin, J.

    2011-12-01

    Misconceptions about climate change abound in every corner of society. The result manifests itself ranging from apprehension to total disregard for climate change conditions. According to several sources, however, a large percentage of the U. S. population do, indeed indicate some concern over global warming and climate change in general. These climate change misconceptions are numerous and include, to name a few; confusion between weather and climate, how greenhouse gases are affecting the earth, the effects of ozone depletion, earth's natural cycles, volcanic activity, nuclear waste and a host of other anthropogenic influences. This paper is a review of the current research literature relating to climate change misconceptions. These errant views will be addressed, cataloged, enumerated, and ranked to get a grasp on where the general population, politicians, scientists, and educators as well as students stand on informed climate change information. The categories where misconceptions arise have been identified in this literature review study and include the following: Natural cycles of the earth, ecological which include deforestation, urban development and any human intervention on the environment, educational - including teacher strategies, student understanding and textbook updates, emotional, ozone layer and its interactions, polar ice, political regulations, mandates and laws, pollution from human sources as well as from nature, religious beliefs and dogma and social beliefs. We suggest appropriate solutions for addressing these misconceptions, especially in the classroom setting, and broadly include available funding sources for work in climate change education. Some solutions include need for compilation of appropriate education resources and materials for public use, need for the development of educational materials that appropriately address the variety of publics, and need for programs that are conducting climate change education research and EPO work to

  6. A Study on Identifying the Misconceptions of Pre-Service and In-Service Teachers about Basic Astronomy Concepts

    Science.gov (United States)

    Kanli, Uygar

    2014-01-01

    Nowadays, the importance given to astronomy teaching in science and physics education has been gradually increasing. At the same time, teachers play an important role in remediating the misconceptions about astronomy concepts held by students. The present study aims to determine the misconceptions of pre-service physics teachers (n = 117),…

  7. Addressing climate and energy misconceptions - teaching tools offered by the Climate Literacy and Energy Awareness Network (CLEAN)

    Science.gov (United States)

    Gold, A. U.; Ledley, T. S.; Kirk, K. B.; Grogan, M.; McCaffrey, M. S.; Buhr, S. M.; Manduca, C. A.; Fox, S.; Niepold, F.; Howell, C.; Lynds, S. E.

    2011-12-01

    Despite a prevalence of peer-reviewed scientific research and high-level reports by intergovernmental agencies (e.g., IPCC) that document changes in our climate and consequences for human societies, the public discourse regards these topics as controversial and sensitive. The chasm between scientific-based understanding of climate systems and public understanding can most easily be addressed via high quality, science-based education on these topics. Well-trained and confident educators are required to provide this education. However, climate science and energy awareness are complex topics that are rapidly evolving and have a great potential for controversy. Furthermore, the interdisciplinary nature of climate science further increases the difficulty for teachers to stay abreast of the science and the policy. Research has shown that students and educators alike hold misconceptions about the climate system in general and the causes and effects of climate change in particular. The NSF-funded CLEAN Pathway (http://cleanet.org) as part of the National Science Digital Library (http://www.nsdl.org) strives to address these needs and help educators address misconceptions by providing high quality learning resources and professional development opportunities to support educators of grade levels 6 through 16. The materials focus on teaching climate science and energy use. The scope and framework of the CLEAN Pathway is defined by the Essential Principles of Climate Science (CCSP, 2009) and the Energy Literacy Principles recently developed by the Department of Energy. Following this literacy-based approach, CLEAN helps with developing mental models to address misconceptions around climate science and energy awareness through a number of different avenues. These are: 1) Professional development opportunities for educators - interactive webinars for secondary teachers and virtual workshops for college faculty, 2) A collection of scientifically and pedagogically reviewed, high

  8. Challenging pre-galilean misconceptions through alternative visualizations

    OpenAIRE

    Blanquet, Estelle; Picholle, Eric

    2011-01-01

    International audience; While duly Copernican, a significant part of primary school teachers-in-training fail to see the point of the (Galilean) principle of relativity. Two inquiry based teaching sequences involving the notion of reference frame were designed to challenge the students' robust pre-Galilean misconceptions, without mathematical requirements. The first sequence makes use of an artist view ("Framed Earth", by Manchu, 1989) and literary representations of the Earth as seen from a ...

  9. The Effects of Computer-Assisted Instruction Designed According to 7E Model of Constructivist Learning on Physics Student Teachers' Achievement, Concept Learning, Self-Efficacy Perceptions and Attitudes

    Science.gov (United States)

    Kocakaya, Serhat; Gonen, Selahattin

    2010-01-01

    The purpose of this study was to investigate the effects of a Computer-Assisted Instruction designed according to 7E model of constructivist learning(CAI7E) related to "electrostatic'' topic on physics student teachers' cognitive development, misconceptions, self-efficacy perceptions and attitudes. The study was conducted in 2006-2007…

  10. Relations between Intuitive Biological Thinking and Biological Misconceptions in Biology Majors and Nonmajors

    Science.gov (United States)

    Coley, John D.; Tanner, Kimberly

    2015-01-01

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed misconceptions, among biology students across biological domains. In parallel, cognitive and developmental psychologists have described intuitive conceptual systems—teleological, essentialist, and anthropocentric thinking—that humans use to reason about biology. We hypothesize that seemingly unrelated biological misconceptions may have common origins in these intuitive ways of knowing, termed cognitive construals. We presented 137 undergraduate biology majors and nonmajors with six biological misconceptions. They indicated their agreement with each statement, and explained their rationale for their response. Results indicate frequent agreement with misconceptions, and frequent use of construal-based reasoning among both biology majors and nonmajors in their written explanations. Moreover, results also show associations between specific construals and the misconceptions hypothesized to arise from those construals. Strikingly, such associations were stronger among biology majors than nonmajors. These results demonstrate important linkages between intuitive ways of thinking and misconceptions in discipline-based reasoning, and raise questions about the origins, persistence, and generality of relations between intuitive reasoning and biological misconceptions. PMID:25713093

  11. Five misconceptions in cancer diagnosis

    Science.gov (United States)

    Hamilton, William

    2009-01-01

    Much investment has been put into facilities for early cancer diagnosis. It is difficult to know how successful this investment has been. New facilities for rapid investigation in the UK have not reduced mortality, and may cause delays in diagnosis of patients with low-risk, or atypical, symptoms. In part, the failure of new facilities to translate into mortality benefits can be explained by five misconceptions. These are described, along with suggested research and organisational remedies. The first misconception is that cancer is diagnosed in hospitals. Consequently, secondary care data have been used to drive primary care decisions. Second, GPs are thought to be poor at cancer diagnosis, yet the type of education on offer to improve this may not be what is needed. Third, symptomatic cancer diagnosis has been downgraded in importance with the introduction of screening, yet screening identifies only a small minority of cancers. Fourth, pressure is put on GPs to make referrals for those with an individual high risk of cancer — disenfranchising those with ‘low-risk but not no-risk’ symptoms. Finally, considerable nihilism exists about the value of early diagnosis, despite considerable observational evidence that earlier diagnosis of symptomatic cancer is beneficial. PMID:19520027

  12. A Study on Overcoming Misconceptions of 6th Graders About Equations

    Directory of Open Access Journals (Sweden)

    Gözde AKYÜZ

    2014-01-01

    Full Text Available The aim of this study is to determine and overcome misconceptions of 6th graders about first degree equations with one unknown. The study has a mixed research design and was conducted with 25 sixth graders in a public school during the spring semester of the 2011-2012 academic year. Data were collected through a test of 20 open-ended items developed by the researcher. The misconceptions were detected through descriptive analysis of the test. Then, students were being taught based on activity-based instructional methods for eight hours. The test was also given at the end of the instruction as a post-test to examine the effectiveness of the activity-based instruction with overcoming their misconceptions. Data were analyzed by paired samples t test through SPSS 16.0. Findings indicated that activity-based instruction was effective in overcoming students’ misconceptions.

  13. Overcoming misconceptions in quantum mechanics with the time evolution operator

    International Nuclear Information System (INIS)

    Garcia Quijas, P C; Arevalo Aguilar, L M

    2007-01-01

    Recently, there have been many efforts to use the research techniques developed in the field of physics education research to improve the teaching and learning of quantum mechanics. In particular, part of this research is focusing on misconceptions held by students. For instance, a set of misconceptions is associated with the concept of stationary states. In this paper, we argue that a possible way to remove these is to solve the Schroedinger equation using the evolution operator method (EOM), and stress the fact that to find stationary states is only the first step in solving that equation. The EOM consists in solving the Schroedinger equation by direct integration, i.e. Ψ(x, t) = U(t)Ψ(x, 0), where U(t)=e -itH-hat/h is the time evolution operator, and Ψ(x, 0) is the initial state. We apply the evolution operator method in the case of the harmonic oscillator

  14. Supporting conceptual modelling of dynamic systems: A knowledge engineering perspective on qualitative reasoning

    NARCIS (Netherlands)

    Liem, J.

    2013-01-01

    Research has shown that even students educated in science at prestigious universities have misconceptions about the systems underlying climate change, sustainability and government spending. Interactive conceptual modelling and simulation tools, which are based on Artificial Intelligence techniques,

  15. Regression assumptions in clinical psychology research practice—a systematic review of common misconceptions

    NARCIS (Netherlands)

    Ernst, Anja F.; Albers, Casper J.

    2017-01-01

    Misconceptions about the assumptions behind the standard linear regression model are widespread and dangerous. These lead to using linear regression when inappropriate, and to employing alternative procedures with less statistical power when unnecessary. Our systematic literature review investigated

  16. Identification student’s misconception of heat and temperature using three-tier diagnostic test

    Science.gov (United States)

    Suliyanah; Putri, H. N. P. A.; Rohmawati, L.

    2018-03-01

    The objective of this research is to develop a Three-Tier Diagnostic Test (TTDT) to identify the student's misconception of heat and temperature. Stages of development include: analysis, planning, design, development, evaluation and revise. The results of this study show that (1) the quality of the three-tier type diagnostic test instrument developed has been expressed well with the following details: (a) Internal validity of 88.19% belonging to the valid category. (b) External validity of empirical construct validity test using Pearson Product Moment obtained 0.43 is classified and result of empirical construct validity test obtained false positives 6.1% and false negatives 5.9% then the instrument was valid. (c) Test reliability by using Cronbach’s Alpha of 0.98 which means acceptable. (d) The 80% difficulty level test is quite difficult. (2) Student misconceptions on the temperature of heat and displacement materials based on the II test the highest (84%), the lowest (21%), and the non-misconceptions (7%). (3) The highest cause of misconception among students is associative thinking (22%) and the lowest is caused by incomplete or incomplete reasoning (11%). Three-Tier Diagnostic Test (TTDT) could identify the student's misconception of heat and temperature.

  17. The Effects of Concept Cartoons on Eliminating Students’ Misconceptions: Greenhouse Effect and Global Warming

    Directory of Open Access Journals (Sweden)

    Lale Cerrah Ozsevgeç

    2012-10-01

    Full Text Available The aim of the study is to examine the effects of concept cartoons on eliminating students’ misconceptions about the global warming and greenhouse effect. The sample of the study is consisted of 17 students from the 7 grade of Rize Çay Primary School. Simple experimental study design was used in the study. Test and semi-structured interview were used to collect the data. The results of the study showed that the students had misconceptions about global warming and greenhouse effect. The teaching process comprising concept cartoons treated most of these misconceptions. Students indicated that the teaching process was enjoyable and it eased the students’ remembering of the given knowledge. Based on the results, it was suggested that the teachers should be informed about the usage of concept cartoon in the classroom and combination of different teaching methods which is supported by concept cartoon may be more useful for different science subjects.

  18. Detection of Misconceptions about Colour and an Experimentally Tested Proposal to Combat them

    Science.gov (United States)

    Martinez-Borreguero, Guadalupe; Pérez-Rodríguez, Ángel Luis; Suero-López, María Isabel; José Pardo-Fernández, Pedro

    2013-06-01

    We study the misconceptions about colour that most people hold, determining the general phenomenological laws that govern them. Concept mapping was used to combat the misconceptions which were found in the application of a test specifically designed to determine these misconceptions, while avoiding the possible misleading inductions that could have arisen from the use of everyday language. In particular, care was taken to avoid the distorting effect that the use of the verb 'to be' applied to coloured objects could have on the responses. The misconceptions found were shown to have an internal consistency in the form of authentic mini-theories (implicit theories). We compared experimentally the results of two different teaching methods applied to combat these misconceptions. This study was conducted with 470 undergraduates of the University of Extremadura. We analysed the persistence over time of their learning made to overcome those misconceptions. The students were divided randomly into an experimental group (EG) and a control group (CG). To combat their misconceptions, EG were taught following a method based on the use of concept maps, and CG were taught following traditional teaching methods. The results of a pre-test and a post-test were compared for the two groups, finding statistically significant differences. The results allowed the principal working hypothesis to be accepted-concept maps are learning tools which foster conceptual change and allow misconceptions to be eradicated via meaningful learning maintained over time, i.e. EG acquired a relative long-lasting gain in learning that was superior to that acquired by CG.

  19. Effects of Computer-Assisted Instruction with Conceptual Change Texts on Removing the Misconceptions of Radioactivity

    Directory of Open Access Journals (Sweden)

    Ahmet YUMUŞAK

    2016-12-01

    Full Text Available Training young scientists, enabling conceptual understanding in science education is quite important. Misconception is one of the important indications for whether the concepts are understood or not. The most important educational tools to remove misconceptions are conceptual change texts. In addition, one of the important methods to remove misconceptions is computer-assisted instruction. The goal of this study is to research the effects of the use of computer-assisted instruction (CAI, conceptual change texts (CCT, computer-assisted instruction with conceptual change texts (CAI+CCT, and use of traditional teaching method (TTM on removing the misconceptions of science teacher candidates on the subject of radioactivity. Research sample was made of totally 92 students studying at four different groups of senior students in Celal Bayar University, Faculty of Education, Department of Science Education in 2011-2012 academic year. A different teaching method was used in each group. Experimental groups were randomly determined; in the first experimental group, computer-assisted instruction was used (23 students; in the second experimental group, conceptual change texts were used (23 students; in the third experimental group, computer-assisted instruction with conceptual change texts were used (23 students; and the fourth group, on which traditional education method was used, was called control group (23 students. Two-tier misconception diagnostic instrument, which was developed by the researcher, was used as data collection tool of the research. “Nonequivalent Control Groups Experimental Design” was used in this research in order to determine the efficiency of different teaching methods. Obtained data were analyzed by using SPSS 21.0. As a result of the research, it was determined that methods used on experimental groups were more successful than traditional teaching method practiced on control group in terms of removing misconceptions on

  20. diagnosing the diagnostics: misconceptions of twelfth grade ...

    African Journals Online (AJOL)

    Preferred Customer

    In the area of chemical research, a significant number of studies involving ... be introduced as similar concepts in early high school (3). Second, the ..... misconceptions about physics concepts in Yasin, K. (2004), a M.Sc. dissertation thesis.

  1. Student’s Misconception of Digestive System Materials in MTs Eight Grade of Malang City and the Role of Teacher’s Pedadogic Competency in MTs

    Directory of Open Access Journals (Sweden)

    Yuswa Istikomayanti

    2017-07-01

    Full Text Available Misconception research has important value in the development of students' thinking processes especially in science field. As the identification of important concepts that must be mastered by the students can be done, the teacher will easily able to emphasis the important or main concepts. This study aims to identify the students’ misconception in digestive system materials in eight grade of MTs and teacher pedagogic competence role. The survey was conducted in 8A (16 students and 8B (17 students MTs Muhammadiyah 1 and 8E (19 students Surya Buana Malang. The stages of research survey were: preparation of research goals (formulation, sample determination, preparation and instruments validation, data collection, and data analysis. The instruments used were: misconception test, student response questionnaire, learning observation guide, and teacher pedagogic competency form. The findings of the learning outcomes were discussed with the observer team, which then were assessed by using the assessment rubric and classified into the categories of student misconceptions. The results showed that the three teachers, neither certified nor uncertified were proved to be limited in overcoming misconceptions in the learning process; meanwhile, the results of students’ misconception test were mostly reach only level 3 (medium. Thus, the study of misconceptions of the digestive system material or other physiological material matter needs to get the attention of the teachers and educational practitioners.

  2. Education of a model student.

    Science.gov (United States)

    Novikoff, Timothy P; Kleinberg, Jon M; Strogatz, Steven H

    2012-02-07

    A dilemma faced by teachers, and increasingly by designers of educational software, is the trade-off between teaching new material and reviewing what has already been taught. Complicating matters, review is useful only if it is neither too soon nor too late. Moreover, different students need to review at different rates. We present a mathematical model that captures these issues in idealized form. The student's needs are modeled as constraints on the schedule according to which educational material and review are spaced over time. Our results include algorithms to construct schedules that adhere to various spacing constraints, and bounds on the rate at which new material can be introduced under these schedules.

  3. A Lakatosian Conceptual Change Teaching Strategy Based on Student Ability to Build Models with Varying Degrees of Conceptual Understanding of Chemical Equilibrium

    Science.gov (United States)

    Niaz, M.

    The main objective of this study is to construct a Lakatosian teaching strategy that can facilitate conceptual change in students'' understanding of chemical equilibrium. The strategy is based on the premise that cognitive conflicts must have been engendered by the students themselves in trying to cope with different problem solving strategies. Results obtained (based on Venezuelan freshman students) show that the performance of the experimental group of students was generally better (especially on the immediate post tests) than that of the control group. It is concluded that a conceptual change teaching strategy must take into consideration the following aspects: a) core beliefs of the students in the topic (cf. ''hard core'', Lakatos 1970); b) exploration of the relationship between core beliefs and student alternative conceptions (misconceptions); c) cognitive complexity of the core belief can be broken down into a series of related and probing questions; d) students resist changes in their core beliefs by postulating ''auxiliary hypotheses'' in order to resolve their contradictions; e) students'' responses based on their alternative conceptions must be considered not as wrong, but rather as models, perhaps in the same sense as used by scientists to break the complexity of a problem; and f) students'' misconceptions be considered as alternative conceptions (theories) that compete with the present scientific theories and at times recapitulate theories scientists held in the past.

  4. Three Misconceptions About Radiation — And What We Teachers Can Do to Confront Them

    Science.gov (United States)

    Neumann, Susanne

    2014-09-01

    During the last few years teaching physics, I have noticed that my students are becoming more and more interested in the topic of radiation. Mobile phones, modern game consoles, and WiFi—all of these devices involving some kind of radiation are part of our students' everyday lives. Students are also frequently confronted in the media with debates relating to different types of radiation: What are the effects of nuclear contamination going to be after the Fukushima accident? Can radiation from mobile phones really cause cancer? Should the use of tanning booths be forbidden for teenagers? Although students seem to be very motivated to learn about the topic of radiation, I have encountered several misconceptions about this topic that my students bring into the physics classroom. Some of these misconceptions might be caused by biased media reports, while others can be attributed to a different usage of the word radiation in everyday language (when compared to the scientific usage of this term). In this paper, I would like to present the most common misconceptions about radiation that I have encountered in my physics courses and I would like to give some ideas how to confront these ideas in teaching. A detailed description of these misconceptions discovered through empirical research can be found in one of my research articles.1

  5. Relations between intuitive biological thinking and biological misconceptions in biology majors and nonmajors.

    Science.gov (United States)

    Coley, John D; Tanner, Kimberly

    2015-03-02

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed misconceptions, among biology students across biological domains. In parallel, cognitive and developmental psychologists have described intuitive conceptual systems--teleological, essentialist, and anthropocentric thinking--that humans use to reason about biology. We hypothesize that seemingly unrelated biological misconceptions may have common origins in these intuitive ways of knowing, termed cognitive construals. We presented 137 undergraduate biology majors and nonmajors with six biological misconceptions. They indicated their agreement with each statement, and explained their rationale for their response. Results indicate frequent agreement with misconceptions, and frequent use of construal-based reasoning among both biology majors and nonmajors in their written explanations. Moreover, results also show associations between specific construals and the misconceptions hypothesized to arise from those construals. Strikingly, such associations were stronger among biology majors than nonmajors. These results demonstrate important linkages between intuitive ways of thinking and misconceptions in discipline-based reasoning, and raise questions about the origins, persistence, and generality of relations between intuitive reasoning and biological misconceptions. © 2015 J. D. Coley and K. Tanner. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Unconscious emotional reasoning and the therapeutic misconception.

    Science.gov (United States)

    Charuvastra, A; Marder, S R

    2008-03-01

    The "therapeutic misconception" describes a process whereby research volunteers misinterpret the intentions of researchers and the nature of clinical research. This misinterpretation leads research volunteers to falsely attribute a therapeutic potential to clinical research, and compromises informed decision making, therefore compromising the ethical integrity of a clinical experiment. We review recent evidence from the neurobiology of social cognition to provide a novel framework for thinking about the therapeutic misconception. We argue that the neurobiology of social cognition should be considered in any ethical analysis of how people make decisions about participating in clinical trials. The neurobiology of social cognition also suggests how the complicated dynamics of the doctor-patient relationship may unavoidably interfere with the process of obtaining informed consent. Following this argument we suggest new ways to prevent or at least mitigate the therapeutic misconception.

  7. What We Call Misconceptions May Be Necessary Stepping-Stones toward Making Sense of the World

    Science.gov (United States)

    Campbell, Todd; Schwarz, Christina; Windschitl, Mark

    2016-01-01

    The vision of Next Generation Science Standards (NGSS) "requires a dramatic departure from approaches to teaching and learning science occurring today in most science classrooms K-12" (Reiser 2013, p. 2). In this article the authors emphasize the importance of examining student misconceptions and correcting them with sense-making…

  8. Using Structured Examples and Prompting Reflective Questions to Correct Misconceptions about Thermodynamic Concepts

    Science.gov (United States)

    Olakanmi, E. O.; Doyoyo, M.

    2014-01-01

    This paper explores the effectiveness of using "structured examples in concert with prompting reflective questions" to address misconceptions held by mechanical engineering students about thermodynamic principles by employing pre-test and post-test design, a structured questionnaire, lecture room observation, and participants'…

  9. Reconsidering Learning Difficulties and Misconceptions in Chemistry: Emergence in Chemistry and Its Implications for Chemical Education

    Science.gov (United States)

    Tümay, Halil

    2016-01-01

    Identifying students' misconceptions and learning difficulties and finding effective ways of addressing them has been one of the major concerns in chemistry education. However, the chemistry education community has paid little attention to determining discipline-specific aspects of chemistry that can lead to learning difficulties and…

  10. Organic Chemistry Educators' Perspectives on Fundamental Concepts and Misconceptions: An Exploratory Study

    Science.gov (United States)

    Duis, Jennifer M.

    2011-01-01

    An exploratory study was conducted with 23 organic chemistry educators to discover what general chemistry concepts they typically review, the concepts they believe are fundamental to introductory organic chemistry, the topics students find most difficult in the subject, and the misconceptions they observe in undergraduate organic chemistry…

  11. Teachers' Cognitive Flexibility on Engagement and Their Ability to Engage Students: A Theoretical and Empirical Exploration

    Science.gov (United States)

    Stein, Kristy Cooper; Miness, Andrew; Kintz, Tara

    2018-01-01

    Background: Student engagement is a cognitively complex domain that is often oversimplified in theory and practice. Reliance on a single model overlooks the sophisticated nature of student engagement and can lead to misconceptions and limited understandings that hinder teachers' ability to engage all of their students. Assessing varied models…

  12. IMPLEMENTATION OF TEXT TRANSFORMATION IN PHYSICS EDUCATION TO REDUCE STUDENTS’ MISCONCEPTION

    Directory of Open Access Journals (Sweden)

    Soeharto Soeharto

    2016-09-01

    Full Text Available This research aimed to know the effect of  text transformation in educational physics especially Impuls and momentum to reduce students’ misconception. This study was held at state senior high school (SMAN 2 in Pontianak, West Borneo.  The instrument in this study has made with diagnostic test using  certainly of responden index method. The research design in this study using one group pretest-posttest design. Population in this research is all students of science major in state senior high school 2 in Pontianak. This study have found that implementation of text transformation giving effect significantly to reduce students’ misconception according Wilcoxon test (Z = -3,418, p = 0.01. However, this research is not finding corelation which is significantly between skill to make a note using text transformation and reduction of students’ misconception ( = 0.119, p = 0.490. The value of effect size in this research is 1.65.

  13. Dynamic Processes of Conceptual Change: Analysis of Constructing Mental Models of Chemical Equilibrium.

    Science.gov (United States)

    Chiu, Mei-Hung; Chou, Chin-Cheng; Liu, Chia-Ju

    2002-01-01

    Investigates students' mental models of chemical equilibrium using dynamic science assessments. Reports that students at various levels have misconceptions about chemical equilibrium. Involves 10th grade students (n=30) in the study doing a series of hands-on chemical experiments. Focuses on the process of constructing mental models, dynamic…

  14. What Is a Psychological Misconception? Moving toward an Empirical Answer

    Science.gov (United States)

    Bensley, D. Alan; Lilienfeld, Scott O.

    2015-01-01

    Studies of psychological misconceptions have often used tests with methodological shortcomings, unknown psychometric properties, and ad hoc methods for identifying misconceptions, creating problems for estimating frequencies of specific misconceptions. To address these problems, we developed a new test, the Test of Psychological Knowledge and…

  15. Towards a comprehensive knowledge package for teaching proof: A focus on the misconception that empirical arguments are proofs

    Directory of Open Access Journals (Sweden)

    Andreas J. Stylianides

    2011-08-01

    Full Text Available The concept of proof is central to meaningful learning of mathematics, but is hard for students to learn. A serious misconception dominant amongst students at all levels of schooling is that empirical arguments are proofs. An important question, then, is the following: What knowledge might enable teachers to help students overcome this misconception? Earlier research led to construction of a significant but rather incomplete ‘knowledge package’ for teaching in this area. Major elements of this knowledge package are summarised and its further development is contributed to by discussing a research-based instructional intervention found to be effective in helping secondary students begin to overcome the misconception that empirical arguments are proofs. Implications for mathematics teacher education are considered.

  16. Students’ misconceptions about Newton's second law in outer space

    International Nuclear Information System (INIS)

    Temiz, B K; Yavuz, A

    2014-01-01

    Students’ misconceptions about Newton's second law in frictionless outer space were investigated. The research was formed according to an epistemic game theoretical framework. The term ‘epistemic’ refers to students’ participation in problem-solving activities as a means of constructing new knowledge. The term ‘game’ refers to a coherent activity that consists of moves and rules. A set of questions in which students are asked to solve two similar Newton's second law problems, one of which is on the Earth and the other in outer space, was administered to 116 undergraduate students. The findings indicate that there is a significant difference between students’ epistemic game preferences and race-type (outer space or frictional surface) question. So students who used Newton's second law on the ground did not apply this law and used primitive reasoning when it came to space. Among these students, voluntary interviews were conducted with 18 students. Analysis of interview transcripts showed that: (1) the term ‘space’ causes spontaneity among students that prevents the use of the law; (2) students hesitate to apply Newton's second law in space due to the lack of a condition—the friction; (3) students feel that Newton's second law is not valid in space for a variety of reasons, but mostly for the fact that the body in space is not in contact with a surface. (paper)

  17. Defying ideological misconceptions through information and ...

    African Journals Online (AJOL)

    Abstract. This article seeks to provide a critique on various ideological misconceptions regarding the integration of information and communication technology (ICT) and African languages in higher education. It further seeks to provide insight into various ICT localisation opportunities within the higher education domain.

  18. Reply to ‘Misconceptions indeed’

    Science.gov (United States)

    Fotou, N.; Abrahams, I.

    2016-11-01

    In a recent letter to the editor (2016 Phys. Educ. 51 066503), Schumayer and Scott raised concerns about one of the novel situations presented in our article titled 'Students’ analogical reasoning in novel situations: theory-like misconceptions or p-prims?' (2016 Phys. Educ. 51 044003). We greatly appreciate their interest in our study and in this reply we address the concerns raised.

  19. Misconceptions in global reactions and formula writing

    Directory of Open Access Journals (Sweden)

    Stig R. Johansson

    2016-10-01

    Full Text Available The frequently used concept of “global reaction” is discussed and the reason for the confusion behind explained. The misconception is cleared by formula writing based on the donor–acceptor (donac reaction concept and by applying the Grand Rule of Formula Writing that is based on it.

  20. Palaeomagnetism or Palaeomagic? Misconceptions about Rock Magnetism

    Science.gov (United States)

    Murphy, Phil

    2016-01-01

    The study and understanding of paleomagnetism has been pivotal in the development of the theory of plate tectonics. When it is taught in schools there are a number possible misconceptions that need to be addressed. This article attempts to provide an explanation of rock magnetism as well as strategies to avoid reinforcing some commonly identified…

  1. Misconceptions about Seasonal Flu and Flu Vaccines

    Science.gov (United States)

    ... Vaccine (LAIV) Misconceptions about Flu Vaccines Vaccine Supply & Distribution Vaccine Supply for 2017-2018 Season Frequently Asked ... conditions. Flu vaccination has been associated with lower rates of some cardiac ... a baby after birth from flu. (Mom passes antibodies onto the developing ...

  2. Misconceptions about diabetes mellitus among adult male ...

    African Journals Online (AJOL)

    Background: Diabetes mellitus (DM) is a major public health problem in Saudi Arabia. Its prevalence is on the increase, being as high as 23.7% among adult citizens. Misconceptions and wrong beliefs regarding DM and its management among those attending primary health care centres (PHCCs) can result in poor control, ...

  3. Tackling Misconceptions about Linear Associations

    Science.gov (United States)

    Huey, Maryann E.; Baker, Deidra L.

    2015-01-01

    Many teachers of required secondary school mathematics classes are introducing statistics and probability topics traditionally relegated to college or AP Statistics courses. As a result, they need guidance in preparing lesson plans and orchestrating effective classroom discussions. In this article, the authors will describe the students' learning…

  4. STUDENTS’ MISCONCEPTIONS ABOUT THE NATURE OF MATTER AND HOW IT IMPAIRS BIOCHEMISTRY LEARNING

    Directory of Open Access Journals (Sweden)

    E. Montagna

    2015-08-01

    Full Text Available Introduction: It is widely known that misconceptions impairs student’s learning. IUBMB proposed a concept inventory which defines biochemistry’s teaching scope. Even though it is known that many of them are subject of misconceptions by students, we collected informal data suggesting a deeper and most pervasive misconception related to the students’ perceptions about what is and is not a molecule through their classroom statements and tests. We hypothesize that students’ impairments on biochemistry learning possibly come from failure to assume that names are related to well defined molecules indicating lack of matter’s representative levels of integration. Objectives The present work aims to detect in freshmen students’ misconceptions about the chemical nature of main small and macromolecules which potentialy impairs biochemistry learning. Materials and methods: A list of assertions about real life situations involving and citing main biomolecules – ATP, DNA, protein, lipid, carbohydrate, enzyme, hormon, vitamin – were mixed with other containing vague common terms – toxin, transgenic, healthy, unwanted elements, chemical compound – not suggesting hazardous situations in order to capture students’ impressions. More than 150 students from five courses in three different higher education institutions answered true or false on 35 assertions. Results and discussion: More than 70% of students had more than 80% error in this task designed to be not tricky, misleading or with unpreviously studied concepts. Results suggests students do not understand compounds as molecules but as entities unrelated to real life situations; on the other hand vague terms triggers a negative perception not necessarily related to harm or hazardous situations. We suggest that it is originated by poor scientific literacy from previous scholarity as well as lack of criteria on media vehicles about the topics here cited. Conclusion: We conclude that many

  5. Development of a Three-Tier Test as a Valid Diagnostic Tool for Identification of Misconceptions Related to Carbohydrates

    Science.gov (United States)

    Milenkovic, Dusica D.; Hrin, Tamara N.; Segedinac, Mirjana D.; Horvat, Sasa

    2016-01-01

    This study describes the development and application of a three-tier test as a valid and reliable tool in diagnosing students' misconceptions regarding some basic concepts about carbohydrates. The test was administrated to students of the Pharmacy Department at the University of Bijeljina (Serb Republic). The results denoted construct and content…

  6. Using Think-Aloud Protocols to Uncover Misconceptions and Improve Developmental Math Instruction: An Exploratory Study

    Directory of Open Access Journals (Sweden)

    Charles Secolsky

    2016-01-01

    Full Text Available Deficiencies in education continue to escalate around the world. The focus on outcomes assessment has narrowed instructional research and curriculum evaluation to standardized testing in certain subject areas. A prototype for a quantitative literacy assessment instrument was developed with the goal of diagnosing student misconceptions of basic mathematics content and changing instructional practices to undo the misconceptions by applying cognitive psychological theory. Two hundred thirty-eight basic math high school students and 209 remedial community college students in New Jersey and New York were administered the instrument, which had been based on coded data from think-aloud protocols. The instrument asked students to answer 20 basic mathematics items and, in addition, to evaluate four possible solution strategies. For each item, frequencies of selected solution strategies and the association between strategy selection and performance on the 20-question math test are presented as a means for improving instruction. Follow-up research is proposed for determining whether undoing the student misconceptions first before teaching material on a new unit of instruction may yield more positive student outcomes.

  7. An inventory on rotational kinematics of a particle: unravelling misconceptions and pitfalls in reasoning

    International Nuclear Information System (INIS)

    Mashood, K K; Singh, Vijay A

    2012-01-01

    Student difficulties regarding the angular velocity and angular acceleration of a particle have remained relatively unexplored in contrast to their linear counterparts. We present an inventory comprising multiple choice questions aimed at probing misconceptions and eliciting ill-suited reasoning patterns. The development of the inventory was based on interactions with students, teachers and experts. We report misconceptions, some of which are parallel to those found earlier in linear kinematics. Fixations with inappropriate prototypes were uncovered. Many students and even teachers mistakenly assume that all rotational motion is necessarily circular. A persistent notion that the direction of angular velocity and angular acceleration should be ‘along’ the motion exists. Instances of indiscriminate usage of equations were identified. (paper)

  8. Misconceptions about children`s pain

    OpenAIRE

    Miloseva, Lence; Vukosavljevic-Gvozden, Tanja; Milosev, Vladimir

    2014-01-01

    Managing hospitalized children's pain is challenging for health care professionals. The ethical principles of the duty to benefit another and the duty to do no harm oblige health care professionals to provide pain management to all patients, including children, who are vulnerable because of their constant developmental changes, being ill, and being hospitalized. During the last 20 years, researchers started to show an interest in misconceptions about children`s pain. Literature review showed...

  9. Using the Activity Model of Inquiry to Enhance General Chemistry Students' Understanding of Nature of Science

    Science.gov (United States)

    Marchlewicz, Sara C.; Wink, Donald J.

    2011-01-01

    Nature of science refers to the processes of scientific activity and the social and cultural premises involved in the creation of scientific knowledge. Having an informed view of nature of science is important in the development of scientifically literate citizens. However, students often come to the classroom with misconceptions about nature of…

  10. Supporting Students' Knowledge Transfer in Modeling Activities

    Science.gov (United States)

    Piksööt, Jaanika; Sarapuu, Tago

    2014-01-01

    This study investigates ways to enhance secondary school students' knowledge transfer in complex science domains by implementing question prompts. Two samples of students applied two web-based models to study molecular genetics--the model of genetic code (n = 258) and translation (n = 245). For each model, the samples were randomly divided into…

  11. Impact of Learning Model Based on Cognitive Conflict toward Student’s Conceptual Understanding

    Science.gov (United States)

    Mufit, F.; Festiyed, F.; Fauzan, A.; Lufri, L.

    2018-04-01

    The problems that often occur in the learning of physics is a matter of misconception and low understanding of the concept. Misconceptions do not only happen to students, but also happen to college students and teachers. The existing learning model has not had much impact on improving conceptual understanding and remedial efforts of student misconception. This study aims to see the impact of cognitive-based learning model in improving conceptual understanding and remediating student misconceptions. The research method used is Design / Develop Research. The product developed is a cognitive conflict-based learning model along with its components. This article reports on product design results, validity tests, and practicality test. The study resulted in the design of cognitive conflict-based learning model with 4 learning syntaxes, namely (1) preconception activation, (2) presentation of cognitive conflict, (3) discovery of concepts & equations, (4) Reflection. The results of validity tests by some experts on aspects of content, didactic, appearance or language, indicate very valid criteria. Product trial results also show a very practical product to use. Based on pretest and posttest results, cognitive conflict-based learning models have a good impact on improving conceptual understanding and remediating misconceptions, especially in high-ability students.

  12. Therapeutic misconception in early phase gene transfer trials.

    Science.gov (United States)

    Henderson, Gail E; Easter, Michele M; Zimmer, Catherine; King, Nancy M P; Davis, Arlene M; Rothschild, Barbra Bluestone; Churchill, Larry R; Wilfond, Benjamin S; Nelson, Daniel K

    2006-01-01

    Many subjects in early phase clinical trials expect to benefit in some way from the research intervention. It is understandable that people hope for improvement in their condition, no matter what the evidence. Yet unreasonable expectation of medical benefit may reflect problems with informed consent: Investigators may not disclose clearly that direct medical benefit from an early phase experimental intervention is unlikely or impossible, or subjects may not appreciate the differences between treatment and research. This paper presents findings from recent interviews with researchers and subjects and analysis of consent forms in early phase gene transfer research, a cutting-edge technology often called 'gene therapy'. We use three variables to construct a composite measure of therapeutic misconception TM, tapping misconceptions about the purposes of early phase research and the potential for direct medical benefit in these trials. Our multivariate model demonstrates the importance of both subject- and study-level factors as predictors of this TM index: education, disease type, and communication by study personnel about the likelihood of benefit. We hope that this work will deepen the discussion of how to define and measure TM, and refine the specification of factors that are related to subjects' TM.

  13. Seafarers, Great Circles, and a Tad of Rhumb: Understanding the Mercator Misconception

    Science.gov (United States)

    DiSpezio, Michael A.

    2010-01-01

    Being flat, Mercator maps inherently misrepresent some aspects of Earth's geography. That's because there is absolutely no way to simultaneously conserve all of the elements of three-dimensional space in a two-dimensional model. To dispel misconceptions, check out the Activity Worksheet and the website resources included in this article. Along…

  14. Dynamic Bayesian Network Modeling of Game Based Diagnostic Assessments. CRESST Report 837

    Science.gov (United States)

    Levy, Roy

    2014-01-01

    Digital games offer an appealing environment for assessing student proficiencies, including skills and misconceptions in a diagnostic setting. This paper proposes a dynamic Bayesian network modeling approach for observations of student performance from an educational video game. A Bayesian approach to model construction, calibration, and use in…

  15. Using PCR to Target Misconceptions about Gene Expression

    Directory of Open Access Journals (Sweden)

    Leslie K. Wright

    2013-02-01

    Full Text Available We present a PCR-based laboratory exercise that can be used with first- or second-year biology students to help overcome common misconceptions about gene expression. Biology students typically do not have a clear understanding of the difference between genes (DNA and gene expression (mRNA/protein and often believe that genes exist in an organism or cell only when they are expressed. This laboratory exercise allows students to carry out a PCR-based experiment designed to challenge their misunderstanding of the difference between genes and gene expression. Students first transform E. coli with an inducible GFP gene containing plasmid and observe induced and un-induced colonies. The following exercise creates cognitive dissonance when actual PCR results contradict their initial (incorrect predictions of the presence of the GFP gene in transformed cells. Field testing of this laboratory exercise resulted in learning gains on both knowledge and application questions on concepts related to genes and gene expression.

  16. PENGEMBANGAN MODEL PEMBELAJARAN PREDICT-OBSERVE-EXPLAIN-WRITE UNTUK MENDAPATKAN GAMBARAN KUANTITAS MISKONSEPSI SISWA SMA MATERI SUHU DAN KALOR

    Directory of Open Access Journals (Sweden)

    Supriyati Supriyati

    2015-09-01

    Full Text Available Application of learning models POEW done to minimize the quantity of misconceptions experienced by students. The research was conducted by applying the POEW model of the experimental class and POE model of the control class. A method use quasi-experimental by design “Randomized Control Group Pretest-Posttest Design” implemented in X class one of high school at the city Cimahi in 2012/2013. Research results show that the description of misconception experienced by students in the experimental class lower than the control class. Responses of students to learn with the application of this POEW generally positive.

  17. Digital Competence Model of Distance Learning Students

    Science.gov (United States)

    da Silva, Ketia Kellen A.; Behar, Patricia A.

    2017-01-01

    This article presents the development of a digital competency model of Distance Learning (DL) students in Brazil called CompDigAl_EAD. The following topics were addressed in this study: Educational Competences, Digital Competences, and Distance Learning students. The model was developed between 2015 and 2016 and is being validated in 2017. It was…

  18. Millennial Students' Mental Models of Information Retrieval

    Science.gov (United States)

    Holman, Lucy

    2009-01-01

    This qualitative study examines first-year college students' online search habits in order to identify patterns in millennials' mental models of information retrieval. The study employed a combination of modified contextual inquiry and concept mapping methodologies to elicit students' mental models. The researcher confirmed previously observed…

  19. University Students' Meta-Modelling Knowledge

    Science.gov (United States)

    Krell, Moritz; Krüger, Dirk

    2017-01-01

    Background: As one part of scientific meta-knowledge, students' meta-modelling knowledge should be promoted on different educational levels such as primary school, secondary school and university. This study focuses on the assessment of university students' meta-modelling knowledge using a paper-pencil questionnaire. Purpose: The general purpose…

  20. Seeing & Feeling How Enzymes Work Using Tangible Models

    Science.gov (United States)

    Lau, Kwok-chi

    2013-01-01

    This article presents a tangible model used to help students tackle some misconceptions about enzyme actions, particularly the induced-fit model, enzyme-substrate complementarity, and enzyme inhibition. The model can simulate how substrates induce a change in the shape of the active site and the role of attraction force during enzyme-substrate…

  1. The Effectiveness of Peer Tutoring in Remedying Misconceptions of Operating System Concepts: A Design-Based Approach

    Science.gov (United States)

    Çakiroglu, Ünal; Öngöz, Sakine

    2017-01-01

    This study attempted to examine students' experiences on collaborative work with peer tutoring in projects. The study also focused impact of peer tutoring on remedying misconceptions. The study was conducted in the context of an operating system course in which 30 pre-service ICT teachers are the participants. Data were gathered from pre-tests,…

  2. Misconceptions about Human Rights and Women's Rights in Islam

    Science.gov (United States)

    Syed, Khalida Tanvir

    2008-01-01

    This paper aims to clarify three current misconceptions about the Islamic faith and issues of human rights and women's rights in the West. The first misconception is that Muslims are terrorists because they believe in Jihad. It is factually the case that Islamic teachings stress the value of peace and prosperity for all human beings. The second…

  3. More Misconceptions to Avoid When Teaching about Plants

    Science.gov (United States)

    Hershey, David R.

    2005-01-01

    As follow-up to a previous article "Avoid Misconceptions When Teaching about Plants," the author identifies fifty additional misconceptions. Undergeneralizations are added to the list of oversimplifications, obsolete concepts, terms, misidentifications, and flawed research. A glossary at the end of the article compares words used in botany with…

  4. Misconceptions Regarding the Brain: The Neuromyths of Preservice Teachers

    Science.gov (United States)

    Dündar, Sefa; Gündüz, Nazan

    2016-01-01

    Understanding preservice teachers' misconceptions regarding the brain and neuroscience (neuromyths) can provide information that helps teachers to apply neuroscience knowledge in an educational context. The objective of this study was to investigate these misconceptions. Following preliminary research, a questionnaire comprising 59 challenging…

  5. Clarifying the Misconception about the Principle of Floatation

    Science.gov (United States)

    Yadav, Manoj K.

    2014-01-01

    This paper aims to clarify the misconception about the violation of the principle of floatation. Improper understanding of the definition of "displaced fluid" by a floating body leads to the misconception. With the help of simple experiments, this article shows that there is no violation of the principle of floatation.

  6. Giving students the run of sprinting models

    Science.gov (United States)

    Heck, André; Ellermeijer, Ton

    2009-11-01

    A biomechanical study of sprinting is an interesting task for students who have a background in mechanics and calculus. These students can work with real data and do practical investigations similar to the way sports scientists do research. Student research activities are viable when the students are familiar with tools to collect and work with data from sensors and video recordings and with modeling tools for comparing simulation and experimental results. This article describes a multipurpose system, named COACH, that offers a versatile integrated set of tools for learning, doing, and teaching mathematics and science in a computer-based inquiry approach. Automated tracking of reference points and correction of perspective distortion in videos, state-of-the-art algorithms for data smoothing and numerical differentiation, and graphical system dynamics based modeling are some of the built-in techniques that are suitable for motion analysis. Their implementation and their application in student activities involving models of running are discussed.

  7. The effect of education type on common misconceptions of traumatic brain injury.

    Science.gov (United States)

    De Iorio, Monica L; Nolan, Susan A; Teague, Susan

    2017-11-01

    In the current study, we investigated the effects of existing education materials-either a Traumatic Brain Injury (TBI) factsheet or personal stories of people with TBI-on undergraduate students' misconceptions and attributions about the causes of TBI-related behavior. Undergraduate students (N = 164) were recruited through the university participant pool. The participants were randomly assigned to receive either a factsheet about TBI, personal stories of people with TBI, or a control reading. Groups were compared on the number of TBI misconceptions endorsed, scores on an attribution measure, and their willingness to interact with people who have TBIs. Both the TBI factsheet group and the personal stories group endorsed fewer misconceptions, on average, than the control group (p = .02). Additionally, those who read either the personal stories or the factsheet had significantly lower attribution scores, on average, than the control group (p = .001; p = .03). That is, those who read either of the educational materials were more likely to endorse a TBI explanation over an adolescent explanation, compared to those who read a control reading. The groups did not significantly differ on their willingness for social interaction. Results suggest that, on average, factsheets and personal stories are effective for increasing knowledge about moderate-to-severe TBI as compared to a control group. Personal stories and factsheets may also be useful, on average, for addressing tendencies to discount TBIs as explanations for behavioral change, as compared to a control group. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Glucose as the Sole Metabolic Fuel: The Possible Influence of Formal Teaching on the Establishment of a Misconception about Energy-Yielding Metabolism among Students from Rio de Janeiro, Brazil

    Science.gov (United States)

    Luz, Mauricio R. M. P.; de Oliveira, Gabriel Aguiar; de Sousa, Cristiane Ribeiro; Da Poian, Andrea T.

    2008-01-01

    Energy-yielding metabolism is an important biochemistry subject that is related to many daily experiences and health issues of students. An adequate knowledge of the general features of EYM is therefore important, both from an academic and social point of view. In a previous study, we have shown that high-school students present the misconception…

  9. Modeling Mathematical Ideas: Developing Strategic Competence in Elementary and Middle School

    Science.gov (United States)

    Suh, Jennifer M.; Seshaiyer, Padmanabhan

    2016-01-01

    "Modeling Mathematical Ideas" combining current research and practical strategies to build teachers and students strategic competence in problem solving.This must-have book supports teachers in understanding learning progressions that addresses conceptual guiding posts as well as students' common misconceptions in investigating and…

  10. Strategies to Support Students' Mathematical Modeling

    Science.gov (United States)

    Jung, Hyunyi

    2015-01-01

    An important question for mathematics teachers is this: "How can we help students learn mathematics to solve everyday problems, rather than teaching them only to memorize rules and practice mathematical procedures?" Teaching students using modeling activities can help them learn mathematics in real-world problem-solving situations that…

  11. Measuring University students' understanding of the greenhouse effect - a comparison of multiple-choice, short answer and concept sketch assessment tools with respect to students' mental models

    Science.gov (United States)

    Gold, A. U.; Harris, S. E.

    2013-12-01

    The greenhouse effect comes up in most discussions about climate and is a key concept related to climate change. Existing studies have shown that students and adults alike lack a detailed understanding of this important concept or might hold misconceptions. We studied the effectiveness of different interventions on University-level students' understanding of the greenhouse effect. Introductory level science students were tested for their pre-knowledge of the greenhouse effect using validated multiple-choice questions, short answers and concept sketches. All students participated in a common lesson about the greenhouse effect and were then randomly assigned to one of two lab groups. One group explored an existing simulation about the greenhouse effect (PhET-lesson) and the other group worked with absorption spectra of different greenhouse gases (Data-lesson) to deepen the understanding of the greenhouse effect. All students completed the same assessment including multiple choice, short answers and concept sketches after participation in their lab lesson. 164 students completed all the assessments, 76 completed the PhET lesson and 77 completed the data lesson. 11 students missed the contrasting lesson. In this presentation we show the comparison between the multiple-choice questions, short answer questions and the concept sketches of students. We explore how well each of these assessment types represents student's knowledge. We also identify items that are indicators of the level of understanding of the greenhouse effect as measured in correspondence of student answers to an expert mental model and expert responses. Preliminary data analysis shows that student who produce concept sketch drawings that come close to expert drawings also choose correct multiple-choice answers. However, correct multiple-choice answers are not necessarily an indicator that a student produces an expert-like correlating concept sketch items. Multiple-choice questions that require detailed

  12. Reducing therapeutic misconception: A randomized intervention trial in hypothetical clinical trials.

    Directory of Open Access Journals (Sweden)

    Paul P Christopher

    Full Text Available Participants in clinical trials frequently fail to appreciate key differences between research and clinical care. This phenomenon, known as therapeutic misconception, undermines informed consent to clinical research, but to date there have been no effective interventions to reduce it and concerns have been expressed that to do so might impede recruitment. We determined whether a scientific reframing intervention reduces therapeutic misconception without significantly reducing willingness to participate in hypothetical clinical trials.This prospective randomized trial was conducted from 2015 to 2016 to test the efficacy of an informed consent intervention based on scientific reframing compared to a traditional informed consent procedure (control in reducing therapeutic misconception among patients considering enrollment in hypothetical clinical trials modeled on real-world studies for one of five disease categories. Patients with diabetes mellitus, hypertension, coronary artery disease, head/neck cancer, breast cancer, and major depression were recruited from medical clinics and a clinical research volunteer database. The primary outcomes were therapeutic misconception, as measured by a validated, ten-item Therapeutic Misconception Scale (range = 10-50, and willingness to participate in the clinical trial.154 participants completed the study (age range, 23-87 years; 92.3% white, 56.5% female; 74 (48.1% had been randomized to receive the experimental intervention. Therapeutic misconception was significantly lower (p = 0.004 in the scientific reframing group (26.4, 95% CI [23.7 to 29.1] compared to the control group (30.9, 95% CI [28.4 to 33.5], and remained so after controlling for education (p = 0.017. Willingness to participate in the hypothetical trial was not significantly different (p = 0.603 between intervention (52.1%, 95% CI [40.2% to 62.4%] and control (56.3%, 95% CI [45.3% to 66.6%] groups.An enhanced educational intervention augmenting

  13. Teaching evolution (and all of biology) more effectively: Strategies for engagement, critical reasoning, and confronting misconceptions.

    Science.gov (United States)

    Nelson, Craig E

    2008-08-01

    The strength of the evidence supporting evolution has increased markedly since the discovery of DNA but, paradoxically, public resistance to accepting evolution seems to have become stronger. A key dilemma is that science faculty have often continued to teach evolution ineffectively, even as the evidence that traditional ways of teaching are inferior has become stronger and stronger. Three pedagogical strategies that together can make a large difference in students' understanding and acceptance of evolution are extensive use of interactive engagement, a focus on critical thinking in science (especially on comparisons and explicit criteria) and using both of these in helping the students actively compare their initial conceptions (and publicly popular misconceptions) with more fully scientific conceptions. The conclusion that students' misconceptions must be dealt with systematically can be difficult for faculty who are teaching evolution since much of the students' resistance is framed in religious terms and one might be reluctant to address religious ideas in class. Applications to teaching evolution are illustrated with examples that address criteria and critical thinking, standard geology versus flood geology, evolutionary developmental biology versus organs of extreme perfection, and the importance of using humans as a central example. It is also helpful to bridge the false dichotomy, seen by many students, between atheistic evolution versus religious creationism. These applications are developed in detail and are intended to be sufficient to allow others to use these approaches in their teaching. Students and other faculty were quite supportive of these approaches as implemented in my classes.

  14. REMEDIASI MISKONSEPSI MAHASISWA CALON GURU FISIKA PADA KONSEP GAYA MELALUI PENERAPAN MODEL SIKLUS BELAJAR (LEARNING CYCLE 5E

    Directory of Open Access Journals (Sweden)

    Muhamad Taufiq

    2012-10-01

    Full Text Available Penelitian ini mengenai upaya identifikasi miskonsepsi mahasiswa berkaitan dengan konsep gaya menggunakan Certainty of Response Index (CRI dan Wawancara. Dari hasil analisis data menunjukkan bahwa mahasiswa mengalami miskonsepsi berkaitan dengan konsep gaya dengan berbagai tingkatan yang berbeda-beda yaitu tingkat tinggi, sedang, dan rendah. Penggunaan tes model Certainty of Response Index (CRI dalam penelitian ini sangat membantu peneliti khususnya untuk memetakan tingkat miskonsepsi yang dialami oleh mahasiswa. Implementasi model pembelajaran siklus belajar (learning cycle 5E mampu menurunkan proporsi siswa yang mengalami miskonsepsi mahasiswa pada konsep gaya, yakni dari 46% menjadi 2,8%. Dengan demikian ada peningkatan proporsi penurunan jumlah siswa yang mengalami miskonsepsi sebanyak 43,2%, Hal ini menunjukkan bahwa model pembelajaran siklus belajar (learning cycle 5E efektif mampu untuk meningkatkan proporsi penurunan jumlah siswa yang mengalami miskonsepsi.   This research is about identification of student misconceptions related to the concept of force using Certainty of Response Index (CRI and Interview. From the analysis of the data showed that students had misconceptions related to the concept of force with a variety of different levels, are: high, medium, and low. The use of model tests Certainty of Response Index (CRI in this study greatly helps researchers to map the particular misconceptions experienced by students. The implementation result of the learning cycle instructional model 5E able to reduce the proportion of students who have misconceptions in the concept of force, from 46% to 2.8%. Thus, there is an increase in the proportion of reduction in the number of students who have misconceptions as much as 43.2%, This result shows that the model of the learning cycle model 5E effectively able to decrease the proportion of students who have misconceptions.

  15. The Loyalty Model of Private University Student

    Directory of Open Access Journals (Sweden)

    Leonnard

    2014-04-01

    Full Text Available This study investigates Loyalty Model of Private University Student by using STIKOM London School of Public Relation as a study case. This study examined the model from service quality, college image, price, trust and satisfaction perspective. Thus, the objective of this study is to examine and analyze the effect of service quality, college image, tuition fee, trust and satisfaction towards students’ loyalty; the effect of service quality, college image, price and satisfaction towards trust; and the effect of service quality, college image and price towards satisfaction. This study used survey methodology with causal design. The samples of the study are 320 college students. The gathering of data is conducted by using questionnaire in likert scale. The analysis of the data used a Structural Equation Model (SEM approach. The implication of this study is portraying a full contextual description of loyalty model in private university by giving an integrated and innovated contribution to Student Loyalty Model in private university..

  16. The Loyalty Model of Private University Student

    Directory of Open Access Journals (Sweden)

    Leonnard

    2014-04-01

    Full Text Available This study investigates Loyalty Model of Private University Student by using STIKOM London School of Public Relation as a study case. This study examined the model from service quality, college image, price, trust and satisfaction perspective. Thus, the objective of this study is to examine and analyze the effect of service quality, college image, tuition fee, trust and satisfaction towards students’ loyalty; the effect of service quality, college image, price and satisfaction towards trust; and the effect of service quality, college image and price towards satisfaction. This study used survey methodology with causal design. The samples of the study are 320 college students. The gathering of data is conducted by using questionnaire in likert scale. The analysis of the data used a Structural Equation Model (SEM approach. The implication of this study is portraying a full contextual description of loyalty model in private university by giving an integrated and innovated contribution to Student Loyalty Model in private university.

  17. Modeling student success in engineering education

    Science.gov (United States)

    Jin, Qu

    In order for the United States to maintain its global competitiveness, the long-term success of our engineering students in specific courses, programs, and colleges is now, more than ever, an extremely high priority. Numerous studies have focused on factors that impact student success, namely academic performance, retention, and/or graduation. However, there are only a limited number of works that have systematically developed models to investigate important factors and to predict student success in engineering. Therefore, this research presents three separate but highly connected investigations to address this gap. The first investigation involves explaining and predicting engineering students' success in Calculus I courses using statistical models. The participants were more than 4000 first-year engineering students (cohort years 2004 - 2008) who enrolled in Calculus I courses during the first semester in a large Midwestern university. Predictions from statistical models were proposed to be used to place engineering students into calculus courses. The success rates were improved by 12% in Calculus IA using predictions from models developed over traditional placement method. The results showed that these statistical models provided a more accurate calculus placement method than traditional placement methods and help improve success rates in those courses. In the second investigation, multi-outcome and single-outcome neural network models were designed to understand and to predict first-year retention and first-year GPA of engineering students. The participants were more than 3000 first year engineering students (cohort years 2004 - 2005) enrolled in a large Midwestern university. The independent variables include both high school academic performance factors and affective factors measured prior to entry. The prediction performances of the multi-outcome and single-outcome models were comparable. The ability to predict cumulative GPA at the end of an engineering

  18. The effect of 5E-SWH learning model on students' view of nature of science

    Science.gov (United States)

    Sinthuwa, Waralee; Sangpradit, Theerapong

    2018-01-01

    View of Nature of Science (NOS) is one of key factors to support students' scientific literacy. So, it includes in scientific learning goals internationally. As in the literature, the many potential benefits associated with appropriate view of NOS. For instance, it influences students' learning achievement in science and lets students see how science connected to their real world. The aim of this study was to develop the 5E-SWH learning model to enhance 12th grade students' view of NOS. Eighty-eight students participated in this study. They were separated into two groups. Forty-four students had learnt biology by using 5E-SWH learning unit, but another group had learnt by using traditional 5E. View of NOS questionnaire that was adapted from the Views of NOS Questionnaire (VNOS-C) was applied with the both groups as pretest and posttest. The questionnaire consisted of ten open-ended items. The semi-structured interview protocol was also used with thirty students and feedback on the lesson record was provided in order to triangulate students' view of NOS. The analyzed results were approved by peer review. In addition, the during the implementation, data from voice recorder was transcribed and used discourse analysis to show students' NOS views. There were three aspects that relate to genetics technology content. These aspects included the subjective, empirical, and social and culture. Students' responses were categorized into 3 groups including informed, adequate and inadequate view. The results showed that the majority of participants held inadequate views of the subjective and empirical aspect at the beginning of the study. In addition, almost student as well as held adequate view of the social and culture aspect and they had misconception in some target NOS aspects. After that, they had learnt genetics technology content by using 5E-SWH learning model for 15 periods (50 min/ period). Both student groups' view of NOS was compared with each other. The study showed

  19. Developing Automatic Student Motivation Modeling System

    Science.gov (United States)

    Destarianto, P.; Etikasari, B.; Agustianto, K.

    2018-01-01

    Achievement motivation is one of the internal factors in encouraging a person to perform the best activity in achieving its goals. The importance of achievement motivation must be possessed as an incentive to compete so that the person will always strive to achieve success and avoid failure. Based on this, the system is developed to determine the achievement motivation of students, so that students can do self-reflection in improving achievement motivation. The test results of the system using Naïve Bayes Classifier showed an average rate of accuracy of 91,667% in assessing student achievement motivation. By modeling the students ‘motivation generated by the system, students’ achievement motivation level can be known. This class of motivation will be used to determine appropriate counseling decisions, and ultimately is expected to improve student achievement motivation.

  20. Evaluation of Student's Environment by DEA Models

    Directory of Open Access Journals (Sweden)

    F. Moradi

    2016-11-01

    Full Text Available The important question here is, is there real evaluation in educational advance? In other words, if a student has been successful in mathematics or has been unsuccessful in mathematics, is it possible to find the reasons behind his advance or, is it possible to find the reasons behind his advance or weakness? If we want to respond to this significant question, it should be said that factors of educational advance must be divided into 5 main groups. 1-family, 2-teacher, 3- students 4-school and 5-manager of 3 schools It can then be said that a student's score does not just depend on a factor that people have imaged From this, it can be concluded that by using the DEA and SBM models, each student's efficiency must be researched and the factors of the student's strengths and weaknesses must be analyzed.

  1. Misconception of pre-service chemistry teachers about the concept of resonances in organic chemistry course

    Science.gov (United States)

    Widarti, Hayuni Retno; Retnosari, Rini; Marfu'ah, Siti

    2017-08-01

    A descriptive quantitative research has been done to identify the level of understanding and misconceptions of the pre-service chemistry teachers related to the concept of resonance in the organic chemistry course. The subjects of the research were 51 students of State University of Malang, majoring Chemistry Education, currently in their fourth semester, 2015-2016 academic year who have taken the course of Organic Chemistry I. The instruments used in this research is a combination of 8 numbers of multiple choice tests with open answer questions and certainty of response index (CRI). The research findings revealed that there are still misconceptions found in the organic chemistry course, especially about the concept of resonance. There were several misconceptions of the pre-service chemistry teachers, such as resonance structures are in equilibrium with each other; resonance structures are two or more Lewis structures with different in arrangement of both atom and electron; resonance structures are only structures containing charged atoms; formal charge and resonance structures are not related; and the stability of resonance structures are only determined by location of charges in atoms found in such structures. There is also a lack of understanding of curved arrows notation to show electron pair movement.

  2. Perceptions and Misconceptions Regarding Climate Change: Politics versus Education

    Science.gov (United States)

    Gil, Elia O.

    Climate change has been increasingly becoming a commonly debated topic among the public (Lambert & Bleicher, 2013). This is especially true with scientists and educators (Cooney, 2010). Terminology, politics, and misconceptions can bias perceptions. Scientists also tend to disagree over the cause of climate change and the data resulting from different studies (Idso, Carter, & Singer, 2016). The pilot study was conducted to examine perceptions of preservice teachers regarding climate change. There were forty participants, comprised of twenty Hispanic, nineteen Anglo American, and one African American, enrolled in a required course for future science educators in a medium-sized south Texas university. The pilot study included pre- and post-tests distributed to all of the participants and one on one interviews with three randomly selected pre-service teachers. The post-test results showed a significant difference in statements about the belief that climate change is real, about there being enough scientific evidence to prove the climate is changing, and the belief we are experiencing an extinction event due to climate change. While one lesson on climate change may not prove to be enough to change all of the participants' perceptions, there were some pre-service teachers who did begin to think differently about the impact of human activities and became more aware of climate change issues. The findings from this research show how beneficial a lesson on climate change can be to the future careers of science educators and in turn contribute considerably to the education of future students.

  3. HIV/AIDS misconceptions may be associated with condom use ...

    African Journals Online (AJOL)

    HIV/AIDS misconceptions may be associated with condom use among black South Africans: an exploratory analysis. Laura M Bogart, Donald Skinner, Lance S Weinhardt, Laura Glasman, Cheryl Sitzler, Yoesrie Toefy, Seth C Kalichman ...

  4. Trade Issues in the Doha Round; Dispelling Some Misconceptions

    OpenAIRE

    Stephen Tokarick

    2006-01-01

    The current round of multilateral trade negotiations-the Doha Round-presents an opportunity for countries to reap the benefits of trade liberalization. Unfortunately, a number of misconceptions about the likely impact of trade reforms has, in part, impeded more rapid progress toward completion of the Round. This paper addresses some of the most egregious of these misconceptions and presents results from IMF research that sheds light on these issues. In particular, this paper argues that: (i) ...

  5. Understanding your student: Using the VARK model

    Directory of Open Access Journals (Sweden)

    I J Prithishkumar

    2014-01-01

    Full Text Available Background: Students have different preferences in the assimilation and processing of information. The VARK learning style model introduced by Fleming includes a questionnaire that identifies a person′s sensory modality preference in learning. This model classifies students into four different learning modes; visual (V, aural (A, read/write (R, and kinesthetic (K. Materials and Methods: The 16-point multiple choice VARK questionnaire version 7.1 was distributed to first year undergraduate medical students after obtaining permission for use.Results: Seventy-nine students (86.8% were multimodal in their learning preference, and 12 students (13.8% were unimodal. The highest unimodal preference was K-7.7%. Surprisingly, there were no visual unimodal learners. The commonest learning preference was the bimodal category, of which the highest percentage was seen in the AK (33% and AR (16.5% category. The most common trimodal preference was ARK (8.9%. The total individual scores in each category were V-371, A-588, R/W-432, and K-581; auditory and kinesthetic being the highest preference. Visual mode had the lowest overall score. There was no significant difference in preference between the sexes. Conclusion: Students possess a wide diversity in learning preferences. This necessitates teachers to effectively deliver according to the needs of the student. Multiple modalities of information presentation are necessary to keep the attention and motivation of our students requiring a shift from the traditional large-group teacher-centric lecture method to an interactive, student-centric multimodal approach.

  6. Modelling students' knowledge organisation: Genealogical conceptual networks

    Science.gov (United States)

    Koponen, Ismo T.; Nousiainen, Maija

    2018-04-01

    Learning scientific knowledge is largely based on understanding what are its key concepts and how they are related. The relational structure of concepts also affects how concepts are introduced in teaching scientific knowledge. We model here how students organise their knowledge when they represent their understanding of how physics concepts are related. The model is based on assumptions that students use simple basic linking-motifs in introducing new concepts and mostly relate them to concepts that were introduced a few steps earlier, i.e. following a genealogical ordering. The resulting genealogical networks have relatively high local clustering coefficients of nodes but otherwise resemble networks obtained with an identical degree distribution of nodes but with random linking between them (i.e. the configuration-model). However, a few key nodes having a special structural role emerge and these nodes have a higher than average communicability betweenness centralities. These features agree with the empirically found properties of students' concept networks.

  7. Students’ analogical reasoning in novel situations: theory-like misconceptions or p-prims?

    Science.gov (United States)

    Fotou, Nikolaos; Abrahams, Ian

    2016-07-01

    Over the past 50 years there has been much research in the area of students’ misconceptions. Whilst this research has been useful in helping to inform the design of instructional approaches and curriculum development it has not provided much insight into how students reason when presented with a novel situation and, in particular, the knowledge they draw upon in an attempt to make predictions about that novel situation. This article reports on a study of Greek students, aged from 10 to 17 years old, who were asked to make predictions in novel situations and to then provide, without being told whether their predictions were correct or incorrect, explanations about their predictions. Indeed, their explanations in such novel situations have the potential to reveal how their ideas, as articulated as predictions, are formed as well as the sources they draw upon to make those predictions. We also consider in this article the extent to which student ideas can be seen either as theory-like misconceptions or, alternatively, as situated acts of construction involving the activation of fragmented pieces of knowledge referred to as phenomenological primitives (p-prims). Our findings suggest that in most cases students’ reasoning in novel situations can be better understood in terms of their use of p-prims and that teaching might be made more effective if teachers were more aware of the p-prims that students were likely to be using when presented with new situations in physics.

  8. Possibilistic networks for uncertainty knowledge processing in student diagnosis

    Directory of Open Access Journals (Sweden)

    Adina COCU

    2006-12-01

    Full Text Available In this paper, a possibilistic network implementation for uncertain knowledge modeling of the diagnostic process is proposed as a means to achieve student diagnosis in intelligent tutoring system. This approach is proposed in the object oriented programming domain for diagnosis of students learning errors and misconception. In this expertise domain dependencies between data exist that are encoded in the structure of network. Also, it is available qualitative information about these data which are represented and interpreted with qualitative approach of possibility theory. The aim of student diagnosis system is to ensure an adapted support for the student and to sustain the student in personalized learning process and errors explanation.

  9. Student Modeling in an Intelligent Tutoring System

    Science.gov (United States)

    1996-12-17

    Multi-Agent Architecture." Advances in Artificial Intelligence : Proceedings of the 12 th Brazilian Symposium on Aritificial Intelligence , edited by...STUDENT MODELING IN AN INTELLIGENT TUTORING SYSTEM THESIS Jeremy E. Thompson Captain, USAF AFIT/GCS/ENG/96D-27 DIMTVMON* fCKAJWINT A Appr"v*d t=i...Air Force Base, Ohio AFIT/GCS/ENG/96D-27 STUDENT MODELING IN AN INTELLIGENT TUTORING SYSTEM THESIS Jeremy E. Thompson Captain, USAF AFIT/GCS/ENG/96D

  10. A Working Model of Natural Selection Illustrated by Table Tennis

    Science.gov (United States)

    Dinc, Muhittin; Kilic, Selda; Aladag, Caner

    2013-01-01

    Natural selection is one of the most important topics in biology and it helps to clarify the variety and complexity of organisms. However, students in almost every stage of education find it difficult to understand the mechanism of natural selection and they can develop misconceptions about it. This article provides an active model of natural…

  11. [Blind alleys and misconceptions in public health].

    Science.gov (United States)

    Müller, H E

    1995-07-01

    The concept of hygiene was created in the 19th century although Hippocrates had already conceived an influence of atmosphere, soil and water on human health. The concept of a public health organisation, however, is a fairly recent one. Environmental and social hygiene were the two poles of the new discipline that focussed on public health. However, the ideologies of capitalism, communism and socialism as well as of social darwinism and "survival of the elite" discredited social hygiene. The decline of totalitarianism was associated with a "loss of face" of state-controlled medicine, including social hygiene. Both the post-World War II German constitution and the previous German statutory health insurance ordinance had blocked it, and hence, no Federal bill on public health was carried. The consequences of this disregard of public health are poor protection by vaccination, a gap in compulsory notification and in epidemics control and high rates of nosocomial infections. Absolutely no development of the science of epidemiology was possible whereas that of medical microbiology is choked by the system now in existence. There is a great misconception within individual hygiene by identifying it merely with cleanliness. Hygiene became a synonym for cleanliness, although that had evolved during a long cultural sociological process centuries before hygiene was established. The modern evolution of the science of hygiene shows the danger that emphasis on healthy lifestyles or on environmental protection may result in regulations and finally in a tyranny that may threaten the liberty of human rights. The so-called "principle of concern" is an example of such irrationality because there is no sensible proportion between risk and expense.

  12. Mathematical Modeling Projects: Success for All Students

    Science.gov (United States)

    Shelton, Therese

    2018-01-01

    Mathematical modeling allows flexibility for a project-based experience. We share details of our regular capstone course, successful for virtually 100% of our math majors for almost two decades. Our research-like approach in this course accommodates a variety of student backgrounds and interests, and has produced some award-winning student…

  13. Metrics for Evaluation of Student Models

    Science.gov (United States)

    Pelanek, Radek

    2015-01-01

    Researchers use many different metrics for evaluation of performance of student models. The aim of this paper is to provide an overview of commonly used metrics, to discuss properties, advantages, and disadvantages of different metrics, to summarize current practice in educational data mining, and to provide guidance for evaluation of student…

  14. The Gravity Model for High School Students

    Science.gov (United States)

    Tribble, Paul; Mitchell, William A.

    1977-01-01

    The authors suggest ways in which the gravity model can be used in high school geography classes. Based on Newton's Law of Molecular Gravitation, the law states that gravitation is in direct ratio to mass and inverse ratio to distance. One activity for students involves determination of zones of influence of cities of various sizes. (Author/AV)

  15. School Improvement Model to Foster Student Learning

    Science.gov (United States)

    Rulloda, Rudolfo Barcena

    2011-01-01

    Many classroom teachers are still using the traditional teaching methods. The traditional teaching methods are one-way learning process, where teachers would introduce subject contents such as language arts, English, mathematics, science, and reading separately. However, the school improvement model takes into account that all students have…

  16. Modeling Environmental Literacy of University Students

    Science.gov (United States)

    Teksoz, Gaye; Sahin, Elvan; Tekkaya-Oztekin, Ceren

    2012-01-01

    The present study proposed an Environmental Literacy Components Model to explain how environmental attitudes, environmental responsibility, environmental concern, and environmental knowledge as well as outdoor activities related to each other. A total of 1,345 university students responded to an environmental literacy survey (Kaplowitz and Levine…

  17. Identification of Misconceptions through Multiple Choice Tasks at Municipal Chemistry Competition Test

    Directory of Open Access Journals (Sweden)

    Dušica D Milenković

    2016-01-01

    Full Text Available In this paper, the level of conceptual understanding of chemical contents among seventh grade students who participated in the municipal Chemistry competition in Novi Sad, Serbia, in 2013 have been examined. Tests for the municipal chemistry competition were used as a measuring instrument, wherein only multiple choice tasks were considered and analyzed. Determination of the level of conceptual understanding of the tested chemical contents was based on the calculation of the frequency of choosing the correct answers. Thereby, identification of areas of satisfactory conceptual understanding, areas of roughly adequate performance, areas of inadequate performance, and areas of quite inadequate performance have been conducted. On the other hand, the analysis of misconceptions was based on the analysis of distractors. The results showed that satisfactory level of conceptual understanding and roughly adequate performance characterize majority of contents, which was expected since only the best students who took part in the contest were surveyed. However, this analysis identified a large number of misunderstandings, as well. In most of the cases, these misconceptions were related to the inability to distinguish elements, compounds, homogeneous and heterogeneous mixtures. Besides, it is shown that students are not familiar with crystal structure of the diamond, and with metric prefixes. The obtained results indicate insufficient visualization of the submicroscopic level in school textbooks, the imprecise use of chemical language by teachers and imprecise use of language in chemistry textbooks.

  18. The Empathic Process and Misconceptions that Lead to Burnout in Healthcare Professionals.

    Science.gov (United States)

    Villacieros, Marta; Olmos, Ricardo; Bermejo, José Carlos

    2017-12-04

    Empathy has been identified as a relevant variable in order to predict burnout in healthcare professionals. In addition, assertiveness and self-esteem have been considered relevant variables to develop empathic capacity. In the other hand, misconceptions surrounding empathy constitute a risk factor for burnout. Two adult samples (N = 252 and N = 275) were used to explore and confirm the underlying structure of two questionnaires. The Exercise of Process of Empathy (EPE) scale (18 items) confirmatory factor analysis including 5 dimensions (cognitive and emotional comprehension, attention, clarity and assertiveness), showed reasonable goodness- of-fit indices χ2(130) = 269.63, p empathy scale (16 items) confirmatory factor analysis, including 3 dimensions (feeling, confluence and character misconceptions) also obtained reasonable goodness-of-fit indices χ 2 (101) = 250.59, p empathy process) a protection factor (b* = -.183). The model partially explains how misconceptions empathy process and self-esteem (b* = -.334) relate to burnout syndrome in healthcare professionals; what is more, it heralds a potential means to prevent it.

  19. Thai students' mental model of chemical bonding

    Science.gov (United States)

    Sarawan, Supawadee; Yuenyong, Chokchai

    2018-01-01

    This Research was finding the viewing about concept of chemical bonding is fundamental to subsequent learning of various other topics related to this concept in chemistry. Any conceptions about atomic structures that students have will be shown their further learning. The purpose of this study is to interviews conceptions held by high school chemistry students about metallic bonding and to reveal mental model of atomic structures show according to the educational level. With this aim, the questionnaire prepared making use of the literature and administered for analysis about mental model of chemical bonding. It was determined from the analysis of answers of questionnaire the 10th grade, 11th grade and 12th grade students. Finally, each was shown prompts in the form of focus cards derived from curriculum material that showed ways in which the bonding in specific metallic substances had been depicted. Students' responses revealed that learners across all three levels prefer simple, realistic mental models for metallic bonding and reveal to chemical bonding.

  20. Bad-breath: Perceptions and misconceptions of Nigerian adults.

    Science.gov (United States)

    Nwhator, S O; Isiekwe, G I; Soroye, M O; Agbaje, M O

    2015-01-01

    To provide baseline data about bad-breath perception and misconceptions among Nigerian adults. Multi-center cross-sectional study of individuals aged 18-64 years using examiner-administered questionnaires. Age comparisons were based on the model of emerging adults versus full adults. Data were recoded for statistical analyses and univariate and secondary log-linear statistics applied. Participants had lopsided perceptions about bad-breath. While 730 (90.8%) identified the dentist as the expert on halitosis and 719 (89.4%) knew that bad-breath is not contagious, only 4.4% and 2.5% associated bad-breath with tooth decay and gum disease respectively. There were no significant sex differences but the older adults showed better knowledge in a few instances. Most respondents (747, 92.9%) would tell a spouse about their bad-breath and 683 (85%) would tell a friend. Participants had lop-sided knowledge and perceptions about bad-breath. Most Nigerian adults are their "brothers' keepers" who would tell a spouse or friend about their halitosis so they could seek treatment.

  1. Prevalence and pattern of misconceptions about semen loss and sexual prowess among male medical interns

    Directory of Open Access Journals (Sweden)

    Ajish G Mangot

    2017-01-01

    Full Text Available Introduction: Sexual misconceptions have been around in India for a very long time. Growing liberal attitudes toward sex and sexual permissiveness can be expected to occur in the context of improved sexual knowledge among people. However, sexual myths continue to remain rampant. Therefore, the present study was planned with the aim to assess the level of sexual misconceptions regarding semen loss prevalent among male medical interns. Participants and Methods: This was a cross-sectional study among unmarried male medical students doing an internship. Eighty-one interns were recruited after fulfilling predecided inclusion/exclusion criteria and were asked to complete a specially made questionnaire to assess their sexual beliefs anonymously in complete privacy. Responses were analyzed using frequency distribution. Results: Seventy-nine percent of the participants believed that loss of semen can lead to reduction in the size of the penis, while 44.44% (n = 36 believed that it leads to sexual weakness, 56.8% (n = 46 believed it can lead to physical weakness, and 56.8% (n = 46 believed that excess masturbation can decrease sexual prowess. Discussion: This study helps bring to light the prevalence of sexual misconceptions among medical interns in spite of reaching a stage where they are expected to have sound conceptual, theoretical, and practical knowledge about sexual health and wellbeing. There is a dearth of national and international studies exploring the sociocultural aspects of sexuality specifically among medical students. The findings from this study are expected to stimulate researchers and academicians into further exploring the aspect of sexuality among the young medical fraternity.

  2. Developing the conceptual instructional design with inquiry-based instruction model of secondary students at the 10th grade level on digestion system and cellular degradation issue

    Science.gov (United States)

    Rotjanakunnatam, Boonthida; Chayaburakul, Kanokporn

    2018-01-01

    The aims of this research study was to develop the conceptual instructional design with the Inquiry-Based Instruction Model (IBIM) of secondary students at the 10th grade level on Digestion System and Cellular Degradation issue using both oxygen and oxygen-degrading cellular nutrients were designed instructional model with a sample size of 45 secondary students at the 10th Grade level. Data were collected by asking students to do a questionnaire pre and post learning processes. The questionnaire consists of two main parts that composed of students' perception questionnaire and the questionnaire that asked the question answer concept for the selected questionnaire. The 10-item Conceptual Thinking Test (CTT) was assessed students' conceptual thinking evaluation that it was covered in two main concepts, namely; Oxygen degradation nutrients and degradation nutrients without oxygen. The data by classifying students' answers into 5 groups and measuring them in frequency and a percentage of students' performances of their learning pre and post activities with the Inquiry-Based Instruction Model were analyzed as a tutorial. The results of this research found that: After the learning activities with the IBIM, most students developed concepts of both oxygen and oxygen-degrading cellular nutrients in the correct, complete and correct concept, and there are a number of students who have conceptual ideas in the wrong concept, and no concept was clearly reduced. However, the results are still found that; some students have some misconceptions, such as; the concept of direction of electron motion and formation of the ATP of bioactivities of life. This cause may come from the nature of the content, the complexity, the continuity, the movement, and the time constraints only in the classroom. Based on this research, it is suggested that some students may take some time, and the limited time in the classroom to their learning activity with content creation content binding and

  3. Myths and misconceptions about abortion among marginalized underserved community.

    Science.gov (United States)

    Thapa, K; Karki, Y; Bista, K P

    2009-01-01

    Unsafe abortion remains a huge problem in Nepal even after legalization of abortion. Various myths and misconceptions persist which prompt women towards unsafe abortive practices. A qualitative study was conducted among different groups of women using focus group discussions and in depth interviews. Perception and understanding of the participants on abortion, methods and place of abortion were evaluated. A number of misconceptions were prevalent like drinking vegetable and herbal juices, and applying hot pot over the abdomen could abort pregnancy. However, many participants also believed that health care providers should be consulted for abortion. Although majority of the women knew that they should seek medical aid for abortion, they were still possessed with various misconceptions. Merely legalizing abortion services is not enough to reduce the burden of unsafe abortion. Focus has to be given on creating awareness and proper advocacy in this issue.

  4. Penerapan Model Pembelajaran Conceptual Understanding Procedures (CUPS sebagai Upaya Mengatasi Miskonsepsi Matematis Siswa

    Directory of Open Access Journals (Sweden)

    Asri Gita

    2018-01-01

    Full Text Available Kesalahan dalam memahami konsep menjadi salah satu faktor yang menyebabkan miskonsepsi pada pelajaran matematika. Miskonsepsi pada materi bangun datar disebabkan oleh cara belajar siswa yang hanya menghafalkan bentuk dasar tanpa memahami hubungan antar bangun datar dan sifat-sifatnya. Upaya yang dilakukan dalam mengatasi miskonsepsi tersebut adalah dengan menerapkan pembelajaran konstruktivis. Salah satu model pembelajaran konstruktivis adalah Conceptual Understanding Procedures (CUPs. Tujuan dari penelitian ini adalah untuk mengetahui penerapan model pembelajaran Conceptual Understanding Procedures (CUPs sebagai upaya mengatasi miskonsepsi matematis siswa pada materi sifat-sifat bangun datar segiempat. Subjek penelitian adalah 12 orang siswa SMP yang mengalami miskonsepsi pada materi sifat-sifat bangun datar segiempat. Teknik pengumpulan data pada penelitian ini melalui tes, video, observasi, dan wawancara. Validitas dan reliabilitas data melalui credibility, dependability, transferability, dan confirmability. Hasil dari penelitian ini menunjukkan bahwa penerapan model pembelajaran Conceptual Understanding Procedures (CUPs yang terdiri dari fase individu, fase kelompok triplet, dan fase interpretasi seluruh kelas dapat mengatasi miskonsepsi siswa pada materi sifat-sifat bangun datar segiempat. Perubahan miskonsepsi siswa juga dapat dilihat dari nilai tes yang mengalami peningkatan nilai berdasarkan nilai tes awal dan tes akhir siswa. Kata Kunci: Conceptual Understanding Procedures (CUPs, miskonsepsi, segiempat.   ABSTRACT Mistakes in understanding the concept became one of the factors that led to misconceptions in mathematics. The misconceptions in plane shapes are caused by the way of learning of students who only memorize the basic form without understanding the relationship between the plane shapes and its properties. Efforts made in overcoming these misconceptions is to apply constructivist learning. One of the constructivist learning

  5. WWC Review of the Report "Conceptualizing Astronomical Scale: Virtual Simulations on Handheld Tablet Computers Reverse Misconceptions." What Works Clearinghouse Single Study Review

    Science.gov (United States)

    What Works Clearinghouse, 2014

    2014-01-01

    The 2014 study, "Conceptualizing Astronomical Scale: Virtual Simulations on Handheld Tablet Computers Reverse Misconceptions," examined the effects of using the true-to-scale (TTS) display mode versus the orrery display mode in the iPad's Solar Walk software application on students' knowledge of the Earth's place in the solar system. The…

  6. MISCONCEPTIONS AND NON-SCIENTIFIC CONCEPTS ON FREE RADICALS

    Directory of Open Access Journals (Sweden)

    Rosiris Sindeaux de Alencar Pires de Oliveira

    2016-11-01

    Full Text Available INTRODUCTION: Misconceptions or alternative conceptions are defined as conceptions that are somewhat different from the scientifically accepted ones and are known to be highly resistant to changes. Free radicals are a widely publicized subject in the media due to their putative importance in human aging and health. Free radicals are a subject susceptible to misconceptions widely spread by the media supporting prejudicial advertising inducing antioxidant consumption. OBJECTIVES: Identify and categorized different free radicals misconceptions published in printed media. MATERIALS AND METHODS: Revista Veja (Digital Archive, the weekly magazine with the largest circulation in Brazil, was selected for this investigation. Period analyzed: from 01/01/2000 to 31/07/2014 with search terms Free radicals and antioxidants. Passages selected were classified as: Right Concept (RC, Wrong Concept (WC, Misconception (MC, Inadequate generalization (IG, Inductive [to misconceptions] Concept (IC, Inductive [to misconceptions] Information (II, and Not fit the inclusion criteria (NFIC. Each one of these categories were further subdivided. DISCUSSION AND RESULTS: 79 magazine articles, advertisements and information materials were found which led to 293 text passages. 56.3% were MC, 21.4% II, 8.8% IC, 5.4% IG, 3.4% RC, 2.7% WR, 2.0% NFIC. The most frequently subcategory in each category was: MC: x [something] combats free radicals (22.6%; II: x [substance] is antioxidant (54.0%; IC: x [something] increases free radicals production (34.6%; IG: antioxidant x [substance] combats cancer (56.3%; RC: too much vitamins and minerals is harmful to health (30.0%; WR: free radicals are formed during oxygen conversion to energy process (25.0%. CONCLUSION: Magazine analysis reveal non-scientific concepts (MC, II, IC and IG to be highly frequent, notably misconceptions. Moreover, non-scientific concepts together reach 91.8% of all concepts while right concepts respond for only 2

  7. Examining the Conceptual Understandings of Geoscience Concepts of Students with Visual Impairments: Implications of 3-D Printing

    Science.gov (United States)

    Koehler, Karen E.

    The purpose of this qualitative study was to explore the use of 3-D printed models as an instructional tool in a middle school science classroom for students with visual impairments and compare their use to traditional tactile graphics for aiding conceptual understanding of geoscience concepts. Specifically, this study examined if the students' conceptual understanding of plate tectonics was different when 3-D printed objects were used versus traditional tactile graphics and explored the misconceptions held by students with visual impairments related to plate tectonics and associated geoscience concepts. Interview data was collected one week prior to instruction and one week after instruction and throughout the 3-week instructional period and additional ata sources included student journals, other student documents and audio taped instructional sessions. All students in the middle school classroom received instruction on plate tectonics using the same inquiry-based curriculum but during different time periods of the day. One group of students, the 3D group, had access to 3-D printed models illustrating specific geoscience concepts and the group of students, the TG group, had access to tactile graphics illustrating the same geoscience concepts. The videotaped pre and post interviews were transcribed, analyzed and coded for conceptual understanding using constant comparative analysis and to uncover student misconceptions. All student responses to the interview questions were categorized in terms of conceptual understanding. Analysis of student journals and classroom talk served to uncover student mental models and misconceptions about plate tectonics and associated geoscience concepts to measure conceptual understanding. A slight majority of the conceptual understanding before instruction was categorized as no understanding or alternative understanding and after instruction the larger majority of conceptual understanding was categorized as scientific or scientific

  8. Biogeochemistry Science and Education Part One: Using Non-Traditional Stable Isotopes as Environmental Tracers Part Two: Identifying and Measuring Undergraduate Misconceptions in Biogeochemistry

    Science.gov (United States)

    Mead, Chris

    This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one. Fe and Hg are each biogeochemically important elements in their own way. Fe is a critical nutrient for phytoplankton, while Hg is detrimental to nearly all forms of life. Fe is often a limiting factor in marine phytoplankton growth. The largest source, by mass, of Fe to the open ocean is windblown mineral dust, but other more soluble sources are more bioavailable. To look for evidence of these non-soil dust sources of Fe to the open ocean, I measured the isotopic composition of aerosol samples collected on Bermuda. I found clear evidence in the fine size fraction of a non-soil dust Fe source, which I conclude is most likely from biomass burning. Widespread adoption of compact fluorescent lamps (CFL) has increased their importance as a source of environmental Hg. Isotope analysis would be a useful tool in quantifying this impact if the isotopic composition of Hg from CFL were known. My measurements show that CFL-Hg is isotopically fractionated, in a unique pattern, during normal operation. This fractionation is large and has a distinctive, mass-independent signature, such that CFL Hg can be uniquely identified from other sources. Misconceptions research in geology has been a very active area of research, but student thinking regarding the related field of biogeochemistry has not yet been studied in detail. From interviews with 40 undergraduates, I identified over 150 specific misconceptions. I also designed a multiple-choice survey (concept inventory) to measure understanding of these same biogeochemistry concepts. I present statistical evidence, based on the Rasch model, for the reliability and validity of this instrument. This instrument will allow teachers and researchers to

  9. Seventh Grade Students' Mental Models of the Greenhouse Effect

    Science.gov (United States)

    Shepardson, Daniel P.; Choi, Soyoung; Niyogi, Dev; Charusombat, Umarporn

    2011-01-01

    This constructivist study investigates 225 student drawings and explanations from three different schools in the midwest in the US, to identify seventh grade students' mental models of the greenhouse effect. Five distinct mental models were derived from an inductive analysis of the content of the students' drawings and explanations: Model 1, a…

  10. A Model for Teaching Electronic Commerce Students

    Directory of Open Access Journals (Sweden)

    Howard C. Woodard

    2002-10-01

    Full Text Available The teaching of information technology in an ever-changing world at universities presents a challenge. Are courses taught as concepts, while ignoring hands-on courses, leaving the hands-on classes to the technical colleges or trade schools? Does this produce the best employees for industry or give students the knowledge and skills necessary to function in a high-tech world? At GeorgiaCollege & StateUniversity (GC&SU a model was developed that combines both concepts and practical hands-on skill to meet this challenge. Using this model, a program was developed that consists of classroom lecture of concepts as well as practical hands-on exercises for mastering the knowledge and developing the skills necessary to succeed in the high-tech world of electronic commerce. The students become productive day one of a new job assignment. This solves the problem of students having the "book knowledge" but not knowing how to apply what has been learned.

  11. Experimenter Confirmation Bias and the Correction of Science Misconceptions

    Science.gov (United States)

    Allen, Michael; Coole, Hilary

    2012-01-01

    This paper describes a randomised educational experiment (n = 47) that examined two different teaching methods and compared their effectiveness at correcting one science misconception using a sample of trainee primary school teachers. The treatment was designed to promote engagement with the scientific concept by eliciting emotional responses from…

  12. Misconceptions of Concepts in Chemistry among Senior Secondary ...

    African Journals Online (AJOL)

    This study examined the misconceptions by chemistry teachers of senior secondary three (SSIII) in Cross River State, Nigeria. Concepts investigated were hydrocarbons, alkanols, alkanoic acids, pollution, classification and nomenclature of carbon compounds, natural products, chemistry in industry, extraction of metals, fats ...

  13. Neuromyths in education: Prevalence and predictors of misconceptions among teachers

    NARCIS (Netherlands)

    Dekker, S.J.; Lee, N.C.; Howard-Jones, P.; Jolles, J.

    2012-01-01

    The OECD's Brain and Learning project (2002) emphasized that many misconceptions about the brain exist among professionals in the field of education.Though these so-called "neuromyths" are loosely based on scientific facts, they may have adverse effects on educational practice.The present study

  14. Knowledge of and misconceptions about the spread and prevention ...

    African Journals Online (AJOL)

    Three or more misconceptions were present in 48% of the participants, such as HIV spread by casual contact, the sharing of personal items, air-borne infection, mosquito bites, HIV testing and AIDS prevention or cure by traditional medicines or alternatives. Sixty-two per cent of the older women were found to have adequate ...

  15. Bad-breath: Perceptions and misconceptions of Nigerian adults

    African Journals Online (AJOL)

    2015-03-02

    Mar 2, 2015 ... Key words: Bad‑breath, emerging adults, misconceptions, Nigeria, perceptions. Date of ... negligible minority being attributable to food and ill health. Many cases of ..... Intra‑ and extra‑oral halitosis: finding of a new form of ...

  16. Entropy and Entropy Production: Old Misconceptions and New Breakthroughs

    Directory of Open Access Journals (Sweden)

    Leonid M. Martyushev

    2013-03-01

    Full Text Available Persistent misconceptions existing for dozens of years and influencing progress in various fields of science are sometimes encountered in the scientific and especially, the popular-science literature. The present brief review deals with two such interrelated misconceptions (misunderstandings. The first misunderstanding: entropy is a measure of disorder. This is an old and very common opinion. The second misconception is that the entropy production minimizes in the evolution of nonequilibrium systems. However, as it has recently become clear, evolution (progress in Nature demonstrates the opposite, i.e., maximization of the entropy production. The principal questions connected with this maximization are considered herein. The two misconceptions mentioned above can lead to the apparent contradiction between the conclusions of modern thermodynamics and the basic conceptions of evolution existing in biology. In this regard, the analysis of these issues seems extremely important and timely as it contributes to the deeper understanding of the laws of development of the surrounding World and the place of humans in it.

  17. A Computer-Based Instrument That Identifies Common Science Misconceptions

    Science.gov (United States)

    Larrabee, Timothy G.; Stein, Mary; Barman, Charles

    2006-01-01

    This article describes the rationale for and development of a computer-based instrument that helps identify commonly held science misconceptions. The instrument, known as the Science Beliefs Test, is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. The use of an online data collection system…

  18. A Compilation and Review of over 500 Geoscience Misconceptions

    Science.gov (United States)

    Francek, Mark

    2013-01-01

    This paper organizes and analyses over 500 geoscience misconceptions relating to earthquakes, earth structure, geologic resources, glaciers, historical geology, karst (limestone terrains), plate tectonics, rivers, rocks and minerals, soils, volcanoes, and weathering and erosion. Journal and reliable web resources were reviewed to discover (1) the…

  19. Knowledge of and misconceptions about the spread and prevention ...

    African Journals Online (AJOL)

    2009-05-27

    May 27, 2009 ... and misconceptions regarding the spread and prevention of HIV in ... personal items, air-borne infection, mosquito bites, HIV testing and AIDS prevention or cure by traditional medicines or .... related stigmatisation, discrimination, isolation and the ... services to the patients living in the central and eastern.

  20. Modeling Environmental Literacy of Malaysian Pre-University Students

    Science.gov (United States)

    Shamuganathan, Sheila; Karpudewan, Mageswary

    2015-01-01

    In this study attempt was made to model the environmental literacy of Malaysian pre-university students enrolled in a matriculation college. Students enrolled in the matriculation colleges in Malaysia are the top notch students in the country. Environmental literacy of this group is perceived important because in the future these students will be…

  1. A Collective Case Study of Secondary Students' Model-Based Inquiry on Natural Selection through Programming in an Agent-Based Modeling Environment

    Science.gov (United States)

    Xiang, Lin

    This is a collective case study seeking to develop detailed descriptions of how programming an agent-based simulation influences a group of 8 th grade students' model-based inquiry (MBI) by examining students' agent-based programmable modeling (ABPM) processes and the learning outcomes. The context of the present study was a biology unit on natural selection implemented in a charter school of a major California city during spring semester of 2009. Eight 8th grade students, two boys and six girls, participated in this study. All of them were low socioeconomic status (SES). English was a second language for all of them, but they had been identified as fluent English speakers at least a year before the study. None of them had learned either natural selection or programming before the study. The study spanned over 7 weeks and was comprised of two study phases. In phase one the subject students learned natural selection in science classroom and how to do programming in NetLogo, an ABPM tool, in a computer lab; in phase two, the subject students were asked to program a simulation of adaptation based on the natural selection model in NetLogo. Both qualitative and quantitative data were collected in this study. The data resources included (1) pre and post test questionnaire, (2) student in-class worksheet, (3) programming planning sheet, (4) code-conception matching sheet, (5) student NetLogo projects, (6) videotaped programming processes, (7) final interview, and (8) investigator's field notes. Both qualitative and quantitative approaches were applied to analyze the gathered data. The findings suggested that students made progress on understanding adaptation phenomena and natural selection at the end of ABPM-supported MBI learning but the progress was limited. These students still held some misconceptions in their conceptual models, such as the idea that animals need to "learn" to adapt into the environment. Besides, their models of natural selection appeared to be

  2. Mathematical Creative Thinking Ability of the Seventh Grade Students in Terms of Learning Styles to the Preview-Question-Read-Reflect-Recite-Review (PQ4R Learning

    Directory of Open Access Journals (Sweden)

    Fiatun Istiqomah

    2017-08-01

    Full Text Available The purpose of this study are: (1 to know the effectiveness of PQ4R learning model in improving the creative thinking skills of the learners; (2 to know the classifications of the learners based on the levels of creative thinking skills; and (3 to describe the misconception which hampers the creative thinking skills at low level in  from the learning styles of the learners. The population in this study is the seventh grade students of SMP N 21 Semarang. The method in this study is mixed method research. Quantitative data analysis uses t-test, z-test, and normalized gain test. Analysis of qualitative data using data reduction stages, data presentation, and conclusions. The results show: (1 PQ4R learning model is effective in improving the creative thinking ability of the learners; (2 the classifications of the learners based on the levels of creative thinking ability which have variations the are many of the learners who are different in each level; and (3 misconception which hampers the creative thinking skills at low level with the learning styles: (a visual meets four misconception indicators, (b auditorial meets three misconception indicators, and (c kinesthetic meets six misconception indicators.

  3. Misconception of emergency contraception among tertiary school ...

    African Journals Online (AJOL)

    Objective: To assess the degree of awareness and use of emergency contraception among tertiary school students in Akwa Ibom State, Nigeria. Design: A self-administered questionnaire survey. Setting: The Akwa Ibom State Polytechnic, Ikot Osurua, located on the outskirts of Ikot Ekpene local government area between ...

  4. Misconceptions in Electricity and Conceptual Change Strategy

    Directory of Open Access Journals (Sweden)

    Yunus Karakuyu

    2011-12-01

    Full Text Available This research is about the contribution of conceptual change texts in accompanying with the concept mapping instruction to tenth-grade students‟ understanding of electricity concepts, and their retention of this understanding. Electricity concepts test are improved as a result of interview with teachers who observe students problems and literature search about this topic. The test was applied as pre-test, post-test, and delayed post-test total of 66 tenth-grade students in two classes of the same high school in center of Afyonkarahisar, taught by the same teacher. Electricity is the subject of tenth-grade according to the new secondary physics program. The experimental group was 32 students who received conceptual change texts in accompanying with concept mapping instruction in a class. The control group was a class of 34 students who received traditional instruction. In this study besides practice, previous information and the ability of logical thinking formed the other independent variations. Conclusions show that logical thinking, treatment and previous knowledge about concepts of electricity make a major contribution on students‟ understanding of these concepts. Result shows that in terms of keeping in mind, concept change texts in accompanying with concept map teaching better than traditional education

  5. Critical Thinking: Discovery of a Misconception

    Science.gov (United States)

    Rohrer, Sandie

    2014-01-01

    Critical thinking skills in the healthcare field are imperative when making quick-thinking decisions. This descriptive comparative study investigated to what extent completing a critical thinking course improved college students' critical thinking skills. The study further investigated whether the instructors' critical thinking skills were…

  6. Counteracting Misconceptions About the Socratic Method.

    Science.gov (United States)

    Fishman, Ethan M.

    1985-01-01

    The Socratic method, while utilizing student participation, emphasizes self-knowledge, not self-expression. This is accomplished on the basis of successive stages of issue analysis and self-examination. The Socratic method strives to get at the root of belief by studying assumptions. (MLW)

  7. Investigating Climate Science Misconceptions Using a Teacher Professional Development Workshop Registration Survey

    Science.gov (United States)

    Lynds, S. E.; Gold, A. U.; McNeal, K.; Libarkin, J. C.; Buhr Sullivan, S. M.; Ledley, T. S.; Haddad, N.; Ellins, K. K.

    2013-12-01

    The EarthLabs Climate project, an NSF-Discovery Research K12 program, has developed a suite of three online classroom-ready modules: Climate and the Cryosphere; Climate and the Carbon Cycle; and Climate and the Biosphere. The EarthLabs Climate project included week-long professional development workshops during June of 2012 and 2013 in Texas and Mississippi. Evaluation of the 2012 and 2013 workshops included participant self-reported learning levels in many areas of climate science. Teachers' answers indicated they had increased their understanding of the topics addressed in the workshops. However, the project team was interested in refining the evaluation process to determine exactly those areas of climate science in which participants increased content knowledge and ameliorated misconceptions. Therefore, to enhance the investigation into what teachers got out of the workshop, a pre-test/post-test design was implemented for 2013. In particular, the evaluation team was interested in discovering the degree to which participants held misconceptions and whether those beliefs were modified by attendance at the workshops. For the 2013 workshops, a registration survey was implemented that included the Climate Concept Inventory (a climate content knowledge quiz developed by the education research team for the project). The multiple-choice questions are also part of the pre/post student quiz used in classrooms in which the EarthLabs Climate curriculum was implemented. Many of the questions in this instrument assess common misconceptions by using them as distractors in the multiple choice options. The registration survey also asked respondents to indicate their confidence in their answer to each question, because, in addition to knowledge limitations, lack of confidence also can be a barrier to effective teaching. Data from the registration survey informed workshop managers of the topic content knowledge of participants, allowing fine-tuning of the professional development

  8. Teaching genetics using hands-on models, problem solving, and inquiry-based methods

    Science.gov (United States)

    Hoppe, Stephanie Ann

    Teaching genetics can be challenging because of the difficulty of the content and misconceptions students might hold. This thesis focused on using hands-on model activities, problem solving, and inquiry-based teaching/learning methods in order to increase student understanding in an introductory biology class in the area of genetics. Various activities using these three methods were implemented into the classes to address any misconceptions and increase student learning of the difficult concepts. The activities that were implemented were shown to be successful based on pre-post assessment score comparison. The students were assessed on the subjects of inheritance patterns, meiosis, and protein synthesis and demonstrated growth in all of the areas. It was found that hands-on models, problem solving, and inquiry-based activities were more successful in learning concepts in genetics and the students were more engaged than tradition styles of lecture.

  9. The Impact on Individualizing Student Models on Necessary Practice Opportunities

    Science.gov (United States)

    Lee, Jung In; Brunskill, Emma

    2012-01-01

    When modeling student learning, tutors that use the Knowledge Tracing framework often assume that all students have the same set of model parameters. We find that when fitting parameters to individual students, there is significant variation among the individual's parameters. We examine if this variation is important in terms of instructional…

  10. Regression assumptions in clinical psychology research practice-a systematic review of common misconceptions.

    Science.gov (United States)

    Ernst, Anja F; Albers, Casper J

    2017-01-01

    Misconceptions about the assumptions behind the standard linear regression model are widespread and dangerous. These lead to using linear regression when inappropriate, and to employing alternative procedures with less statistical power when unnecessary. Our systematic literature review investigated employment and reporting of assumption checks in twelve clinical psychology journals. Findings indicate that normality of the variables themselves, rather than of the errors, was wrongfully held for a necessary assumption in 4% of papers that use regression. Furthermore, 92% of all papers using linear regression were unclear about their assumption checks, violating APA-recommendations. This paper appeals for a heightened awareness for and increased transparency in the reporting of statistical assumption checking.

  11. Applying Agnotology-Based Learning in a Mooc to Counter Climate Misconceptions

    Science.gov (United States)

    Cook, J.

    2014-12-01

    A key challenge facing educators and climate communicators is the wide array of misconceptions about climate science, often fostered by misinformation. A number of myths interfere with a sound understanding of the science, with key myths moderating public support for mitigation policies. An effective way to reduce the influence of misinformation is through agnotology-based learning. Agnotology is the study of ignorance while agnotology-based learning teaches students through the direct addressing of myths and misconceptions. This approach of "refutational teaching" is being applied in a MOOC (Massive Online Open Course) currently being developed by Skeptical Science and The University of Queensland, in collaboration with universities in Canada, USA and the UK. The MOOC will examine the science of climate change denial. Why is the issue so controversial given there is an overwhelming consensus on human-caused global warming? How do climate myths distort the science? What can scientists and laypeople do in response to misinformation? The MOOC will be released on the EdX platform in early 2015. I will summarise the research underpinning agnotology-based learning and present the approach taken in the MOOC to be released in early 2015

  12. The efficacy of print and video in correcting cognitive misconceptions in science

    Science.gov (United States)

    Finney, Mary Jo

    One hundred fifty-three fifth grade students found to have misconceptions about seasonal change were randomly assigned to either a video-print or print-video group. In Study One, each group read or viewed content about seasonal change and a free recall, multiple choice and application task were administered during the following week. Two weeks later, Study Two replicated the procedures with the groups receiving content in the alternate media. Hypotheses predicting video would be more effective than print in correcting misconceptions were rejected since there was either no significance on the measures or performance was higher after reading. Exposure to both media favored the video-print order. Low and high ability readers performed better after print treatment with no significant difference between media among average ability readers. More concepts than content vocabulary were present in written responses by both video and print groups. Post-hoc analysis revealed no gender differences, no significant difference in length of free recall between Study One and Study Two and significant differences between reading abilities on all measures.

  13. Identification of Chemistry Learning Problems Viewed From Conceptual Change Model

    OpenAIRE

    Redhana, I. W; Sudria, I. B. N; Hidayat, I; Merta, L. M

    2017-01-01

    This study aimed at describing and explaining chemistry learning problems viewed from conceptual change model and misconceptions of students. The study was qualitative research of case study type conducted in one class of SMAN 1 Singaraja. Subjects of the study were a chemistry teacher and students. Data were obtained through classroom observation, interviews, and conception tests. The chemistry learning problems were grouped based on aspects of necessity, intelligibility, plausibility, and f...

  14. Expedition Earth and Beyond: Student Scientist Guidebook. Model Research Investigation

    Science.gov (United States)

    Graff, Paige Valderrama

    2009-01-01

    The Expedition Earth and Beyond Student Scientist Guidebook is designed to help student researchers model the process of science and conduct a research investigation. The Table of Contents listed outlines the steps included in this guidebook

  15. MODEL DEVELOPMENT OF NURSING STUDENT LOYALTY IN POLITEKNIK OF HEALTH

    Directory of Open Access Journals (Sweden)

    Hammad Hammad

    2017-04-01

    Full Text Available Introduction: Loyalty of nursing student is an important factor that nursing education should pay attention in order to compete with other nursing educations; involved by perceived value, expectation, and quality assurance in nursing higher education. The purpose of this study was to develop a loyalty model of nursing student in nursing higher education. Methods: This study was an explanatory research with cross sectional approach. Population were nursing student in Poltekkes Banjarmasin, with 112 samples which is selected by proportional random sampling. Data was collected by giving questionnaire and analyzed by partial least square. Result: Result of this study indicates that was an effect of costumer expectation on quality assurance in nursing higher education, there was effect of costumer expectation on perceived value in nursing student, there was an effect of customer expectation on student satisfaction (4 there was effect of quality assurance in nursing higher education, there wasn’t any affect of quality assurance in nursing higher education on student satisfaction, there was effect of perceived value in nursing student on student satisfaction, there was effect of student satisfaction on student loyalty. Discussion: Overall result of this research were, student loyalty in nursing higher education developed by student satisfaction. Student satisfaction formed by perceived value. Perceived value developed from two aspects quality assurance, and student expectation, quality assurance of higher education wasn’t directly effect to student sasfaction. However, indirectly effect through student perceived value. Student satisfaction in nursing higher education was stronger effect than any other variable in this loyalty model. Loyalty model in this research can be use for improvement student loyalty on health education that focused on improvement student satisfaction without deny the other aspect. Further research is needed to analyze word of

  16. Assessing Climate Misconceptions of Middle School Learners and Teachers

    Science.gov (United States)

    Sahagian, D. L.; Anastasio, D. J.; Bodzin, A.; Cirucci, L.; Bressler, D.; Dempsey, C.; Peffer, T.

    2012-12-01

    Middle School students and their teachers are among the many populations in the U.S. with misconceptions regarding the science or even reality of climate change. Teaching climate change science in schools is of paramount importance since all school-age children will eventually assume responsibility for the management and policy-making decisions of our planet. The recently published Framework for K-12 Science Education (National Research Council, 2012) emphasizes the importance of students understanding global climate change and its impacts on society. A preliminary assessment of over a thousand urban middles school students found the following from pretests prior to a climate literacy curriculum: - Do not understand that climate occurs on a time scale of decades (most think it is weeks or months) -Do not know the main atmospheric contributors to global warming -Do not understand the role of greenhouse gases as major contributors to increasing Earth's surface temperature -Do not understand the role of water vapor to trap heat and add to the greenhouse effect -Cannot identify some of the human activities that increase the amount of CO2 -Cannot identify sources of carbon emissions produced by US citizens -Cannot describe human activities that are causing the long-term increase of carbon -dioxide levels over the last 100 years -Cannot describe carbon reduction strategies that are feasible for lowering the levels of carbon dioxide in the atmosphere To address the lack of a well-designed middle school science climate change curriculum that can be used to help teachers promote the teaching and learning of important climate change concepts, we developed a 20-day Environmental Literacy and Inquiry (ELI): Climate Change curriculum in partnership with a local school district. Comprehension increased significantly from pre- to post-test after enactment of the ELI curriculum in the classrooms. This work is part of an ongoing systemic curriculum reform initiative to promote (1

  17. Eliciting physics students mental models via science fiction stories

    International Nuclear Information System (INIS)

    Acar, H.

    2005-01-01

    This paper presents the results of an experiment which investigated the effects of the using science fiction stories in physics lessons. A questionnaire form containing 2 open-ended questions related to Jules Vernes story From the Earth to the Moon was used with 353, 9th and 10th grade students to determine their pre-conceptions about gravity and weightlessness. Mental models explaining students scientific and alternative views were constructed, according to students replies. After these studies, 6 students were interviewed. In this interview, researches were done about whether science fiction stories had an effect on bringing students pre-conceptions related to physics subjects out, on students inquiring their own concepts and on increasing students interest and motivation towards physics subjects. Studies in this research show that science fiction stories have an effect on arousing students interest and curiosity, have a role encouraging students to inquire their own concepts and are effective in making students alternative views come out

  18. Neuromyths in Education: Prevalence and Predictors of Misconceptions among Teachers

    OpenAIRE

    Dekker, Sanne; Lee, Nikki C.; Howard-Jones, Paul; Jolles, Jelle

    2012-01-01

    The OECD's Brain and Learning project (2002) emphasized that many misconceptions about the brain exist among professionals in the field of education.Though these so-called "neuromyths" are loosely based on scientific facts, they may have adverse effects on educational practice.The present study investigated the prevalence and predictors of neuromyths among teachers in selected regions in the United Kingdom and the Netherlands. A large observational survey design was used to assess general kno...

  19. Honors and Non-Honors Student Engagement: A Model of Student, Curricular, and Institutional Characteristics

    Science.gov (United States)

    Buckner, Ellen; Shores, Melanie; Sloane, Michael; Dantzler, John; Shields, Catherine; Shader, Karen; Newcomer, Bradley

    2016-01-01

    The purpose of this study was to apply several measures of learning and engagement to a comparable cohort of honors and non-honors students in order to generate a preliminary model of student engagement. Specific purposes were the following: (1) to determine the feasibility for use of several measures of student characteristics that may affect…

  20. Student Government and Student Participation in Junior College Governance--Models for the 1970's.

    Science.gov (United States)

    Deegan, William L.

    It is the author's contention that student government revitalization will come only when student government begins to play a substantive role in policy making and implementation. The purpose of this paper is to consider, criticize, and propose a number of models for student participation in junior college governance. The first, a traditional…

  1. A Model for Random Student Drug Testing

    Science.gov (United States)

    Nelson, Judith A.; Rose, Nancy L.; Lutz, Danielle

    2011-01-01

    The purpose of this case study was to examine random student drug testing in one school district relevant to: (a) the perceptions of students participating in competitive extracurricular activities regarding drug use and abuse; (b) the attitudes and perceptions of parents, school staff, and community members regarding student drug involvement; (c)…

  2. Student Centric Learning Through Planned Hard work - An Innovative Model

    OpenAIRE

    Aithal, Sreeramana; Aithal, Shubrajyotsna

    2016-01-01

    The strategies followed by educational institutions and the students become very important when the performance of students in the examinations is concerned. By means of properly planned and well guided model of training and motivation to do hard work, students can follow a well disciplined study plan and become exceptionally successful in examinations. Teaching and training by experienced and dedicated faculty members, continuous support by parents and motivating the students based on settin...

  3. Misconceptions and false expectations in neutral evolution

    Directory of Open Access Journals (Sweden)

    CARLOS Y. VALENZUELA

    2000-01-01

    Full Text Available Neutral evolution results from random recurrent mutation and genetic drift. A small part of random evolution, that which is related to protein or DNA polymorphisms, is the subject of the Neutral Theory of Evolution. One of the foundations of this theory is the demonstration that the mutation rate (m is equal to the substitution rate. Since both rates are independent of population size, they are independent of drift, which is dependent upon population size. Neutralists have erroneously equated the substitution rate with the fixation rate, despite the fact that they are antithetical conceptions. The neutralists then applied the random walk stochastic model to justify alleles or bases that were fixated or eliminated. In this model, once the allele or base frequencies reach the monomorphic states (values of 1.0 or 0.0, the absorbing barriers, they can no longer return to the polymorphic state. This operates in a pure mathematical model. If recurrent mutation occurs (as in biotic real systems fixation and elimination are impossible. A population of bacteria in which m=10-8 base mutation (or substitution/site/generation and the reproduction rate is 1000 cell cycle/year should replace all its genome bases in approximately 100,000 years. The expected situation for all sites is polymorphism for the four bases rather than monomorphism at 1.0 or 0.0 frequencies. If fixation and elimination of a base for more than 500,000 years are impossible, then most of the neutral theory is untenable. A new complete neutral model, which allows for recurrent substitutions, is proposed here based on recurrent mutation or substitution and drift alone. The model fits a binomial or Poisson distribution and not a geometric one, as does neutral theory.

  4. Students' Development and Use of Models to Explain Electrostatic Interactions

    Science.gov (United States)

    Mayer, Kristin Elizabeth

    The National Research Council (2012) recently published A Framework for K-12 Science Education that describes a vision for science classrooms where students engage in three dimensions--scientific and engineering practices, crosscutting concepts, and disciplinary core ideas--to explain phenomena or observations they can make about the universe around them. This vision of science instruction is a significant shift from current classroom instruction. This dissertation provides detailed examples of how students developed and used models to build causal explanations of phenomena. I co-taught classes that focused on having students develop and revise models of electric fields and atomic structure using a curriculum that was designed to align with the three-dimensional vision of learning. I developed case studies of eleven students from these classes. I analyzed the students' responses and interviewed the students throughout the school year. By comparing and contrasting the analysis across the analysis of students' interviews, I identified four themes: 1) students could apply their ideas to explain novel and abstract phenomena; 2) students struggled to connect changes in their atomic models to evidence, but ended up with dynamic models of atomic structure that they could apply to explain phenomena; 3) students developed models of atomic structure that they applied to explain phenomena, but they did not use models of electric fields in this way; and 4) too much focus on details interfered with students' ability to apply their models to explain new phenomena. This dissertation highlights the importance of focusing on phenomena in classrooms that aim at aligning with three-dimensional learning. Students struggled to focus on specific content and apply their ideas to explain phenomena at the same time. In order to apply ideas to new context, students had to shift their focus from recalling ideas to applying the ideas they do have. A focus on phenomena allowed students to show

  5. From Biology to Mathematical Models and Back: Teaching Modeling to Biology Students, and Biology to Math and Engineering Students

    Science.gov (United States)

    Chiel, Hillel J.; McManus, Jeffrey M.; Shaw, Kendrick M.

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge…

  6. From biology to mathematical models and back: teaching modeling to biology students, and biology to math and engineering students.

    Science.gov (United States)

    Chiel, Hillel J; McManus, Jeffrey M; Shaw, Kendrick M

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a "live" textbook that allows students to explore models and mathematical processes interactively; 2) benchmark problems providing key skills on which students make continuous progress; 3) assignment of students to teams of two throughout the semester; 4) regular one-on-one interactions with instructors throughout the semester; and 5) a term project in which students reconstruct, analyze, extend, and then write in detail about a recently published biological model. Based on student evaluations and comments, an attitude survey, and the quality of the students' term papers, the course has significantly increased the ability and willingness of biology students to use mathematical concepts and modeling tools to understand biological systems, and it has significantly enhanced engineering students' appreciation of biology.

  7. From Biology to Mathematical Models and Back: Teaching Modeling to Biology Students, and Biology to Math and Engineering Students

    Science.gov (United States)

    McManus, Jeffrey M.; Shaw, Kendrick M.

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a “live” textbook that allows students to explore models and mathematical processes interactively; 2) benchmark problems providing key skills on which students make continuous progress; 3) assignment of students to teams of two throughout the semester; 4) regular one-on-one interactions with instructors throughout the semester; and 5) a term project in which students reconstruct, analyze, extend, and then write in detail about a recently published biological model. Based on student evaluations and comments, an attitude survey, and the quality of the students' term papers, the course has significantly increased the ability and willingness of biology students to use mathematical concepts and modeling tools to understand biological systems, and it has significantly enhanced engineering students' appreciation of biology. PMID:20810957

  8. A Tiered Model for Linking Students to the Community

    Science.gov (United States)

    Meyer, Laura Landry; Gerard, Jean M.; Sturm, Michael R.; Wooldridge, Deborah G.

    2016-01-01

    A tiered practice model (introductory, pre-internship, and internship) embedded in the curriculum facilitates community engagement and creates relevance for students as they pursue a professional identity in Human Development and Family Studies. The tiered model integrates high-impact teaching practices (HIP) and student engagement pedagogies…

  9. The Effect of Math Modeling on Student's Emerging Understanding

    Science.gov (United States)

    Sokolowski, Andrzej

    2015-01-01

    This study investigated the effects of applying mathematical modeling on revising students' preconception of the process of optimizing area enclosed by a string of a fixed length. A group of 28 high school pre-calculus students were immersed in modeling activity that included direct measurements, data collecting, and formulating algebraic…

  10. Validating a Technology Enhanced Student-Centered Learning Model

    Science.gov (United States)

    Kang, Myunghee; Hahn, Jungsun; Chung, Warren

    2015-01-01

    The Technology Enhanced Student Centered Learning (TESCL) Model in this study presents the core factors that ensure the quality of learning in a technology-supported environment. Although the model was conceptually constructed using a student-centered learning framework and drawing upon previous studies, it should be validated through real-world…

  11. Faculty Women as Models for Women Students: How Context Matters

    Science.gov (United States)

    van Mens-Verhulst, Janneke; Woertman, Liesbeth; Radtke, Lorraine

    2015-01-01

    We explored how frequently academic staff serve as role models for women undergraduate students, how this compares to the family context, and the qualities associated with potential role models in both contexts. Participants were 138 psychology students at a Dutch university. They completed a self-administered, online survey about inspirational…

  12. The HAWK Highway: A Vertical Model for Student IEP Participation

    Science.gov (United States)

    Quann, Monica; Lyman, Jennifer; Crumlish, Jamie; Hines, Sally; Williams, Lynn; Pleet-Odle, Amy; Eisenman, Laura

    2015-01-01

    Special educators at an inclusive career-technical high school created a model to support annually increasing expectations for self-determination and levels of student participation in Individualized Education Program (IEP) planning and implementation. The grade-specific components of the model and supporting context are described. Students were…

  13. AN ANALYSIS OF MISCONCEPTIONS IN SCIENCE TEXTBOOKS: EARTH SCIENCE IN ENGLAND AND WALES

    OpenAIRE

    King , Chris John Henry

    2010-01-01

    Abstract Surveys of the earth science content of all secondary (high school) science textbooks and related publications used in England and Wales have revealed high levels of error/ misconception. The 29 science textbooks or textbook series surveyed (51 texts in all) showed poor coverage of National Curriculum earth science and contained a mean level of one earth science error/ misconception per page. Science syllabuses and examinations surveyed also showed errors/ misconceptions. ...

  14. Peer Assessment with Online Tools to Improve Student Modeling

    Science.gov (United States)

    Atkins, Leslie J.

    2012-11-01

    Introductory physics courses often require students to develop precise models of phenomena and represent these with diagrams, including free-body diagrams, light-ray diagrams, and maps of field lines. Instructors expect that students will adopt a certain rigor and precision when constructing these diagrams, but we want that rigor and precision to be an aid to sense-making rather than meeting seemingly arbitrary requirements set by the instructor. By giving students the authority to develop their own models and establish requirements for their diagrams, the sense that these are arbitrary requirements diminishes and students are more likely to see modeling as a sense-making activity. The practice of peer assessment can help students take ownership; however, it can be difficult for instructors to manage. Furthermore, it is not without risk: students can be reluctant to critique their peers, they may view this as the job of the instructor, and there is no guarantee that students will employ greater rigor and precision as a result of peer assessment. In this article, we describe one approach for peer assessment that can establish norms for diagrams in a way that is student driven, where students retain agency and authority in assessing and improving their work. We show that such an approach does indeed improve students' diagrams and abilities to assess their own work, without sacrificing students' authority and agency.

  15. Student perception and conceptual development as represented by student mental models of atomic structure

    Science.gov (United States)

    Park, Eun Jung

    The nature of matter based upon atomic theory is a principal concept in science; hence, how to teach and how to learn about atoms is an important subject for science education. To this end, this study explored student perceptions of atomic structure and how students learn about this concept by analyzing student mental models of atomic structure. Changes in student mental models serve as a valuable resource for comprehending student conceptual development. Data was collected from students who were taking the introductory chemistry course. Responses to course examinations, pre- and post-questionnaires, and pre- and post-interviews were used to analyze student mental models of atomic structure. First, this study reveals that conceptual development can be achieved, either by elevating mental models toward higher levels of understanding or by developing a single mental model. This study reinforces the importance of higher-order thinking skills to enable students to relate concepts in order to construct a target model of atomic structure. Second, Bohr's orbital structure seems to have had a strong influence on student perceptions of atomic structure. With regard to this finding, this study suggests that it is instructionally important to teach the concept of "orbitals" related to "quantum theory." Third, there were relatively few students who had developed understanding at the level of the target model, which required student understanding of the basic ideas of quantum theory. This study suggests that the understanding of atomic structure based on the idea of quantum theory is both important and difficult. Fourth, this study included different student assessments comprised of course examinations, questionnaires, and interviews. Each assessment can be used to gather information to map out student mental models. Fifth, in the comparison of the pre- and post-interview responses, this study showed that high achieving students moved toward more improved models or to advanced

  16. Model construction by students within an integrated medical curriculum.

    Science.gov (United States)

    Barling, Peter M; Ramasamy, Perumal

    2011-03-01

    This paper presents our experience of running a special study module (SSM) in the second semester of the first year of our 5-year medical programme, worth 10 per cent of that semester's assessment, in which each student constructs an individually selected model illustrating a specific aspect of the teaching course. Each student conceptualises and develops his or her model, to clarify a specific aspect of medical teaching. The use of non-traditional materials in construction is strongly encouraged. Six weeks later, each student presents their model for assessment by four first-year academic teaching staff. The student is quizzed about the concepts that he or she presents, the mode of construction and the materials used. The students' projects broadly cover the disciplines of physiology, biochemistry and anatomy, but are somewhat biased towards anatomy. Students spend on average about 14 hours planning and building their models, at a time when they are busy with other teaching activities. The marks awarded for the projects closely follow a normal distribution. A survey suggests that most students enjoy the exercise and feel that it has enhanced their learning and understanding. It is clear from the wide variety of different topics, models and materials that students are highly resourceful in their modelling. Creative activity does not generally play a substantial part in medical education, but is of considerable importance. The development of their models stimulates, informs and educates the constructors, and provides a teaching resource for later use in didactic teaching. © Blackwell Publishing Ltd 2011.

  17. Modeling Student Success in Engineering Education

    Science.gov (United States)

    Jin, Qu

    2013-01-01

    In order for the United States to maintain its global competitiveness, the long-term success of our engineering students in specific courses, programs, and colleges is now, more than ever, an extremely high priority. Numerous studies have focused on factors that impact student success, namely academic performance, retention, and/or graduation.…

  18. A Model of Students' Combinatorial Thinking

    Science.gov (United States)

    Lockwood, Elise

    2013-01-01

    Combinatorial topics have become increasingly prevalent in K-12 and undergraduate curricula, yet research on combinatorics education indicates that students face difficulties when solving counting problems. The research community has not yet addressed students' ways of thinking at a level that facilitates deeper understanding of how students…

  19. Managing Student Affairs Programs: Methods, Models, Muddles.

    Science.gov (United States)

    Deegan, William L.

    Management processes and problems are examined in a variety of student affairs contexts. This book (1) proposes a theoretical framework for the analysis of management functions in colleges and universities, (2) studies the practice of management in several different student affairs contexts to uncover current practices, issues, problems, and…

  20. THE FUZZY OVERLAY STUDENT MODEL IN AN INTELLIGENT TUTORING SYSTEM

    Directory of Open Access Journals (Sweden)

    D. I. Popov

    2015-01-01

    Full Text Available The article is devoted to the development of the student model for use in an intelligent tutoring system (ITS designed for the evaluation of students’ competencies in different Higher Education Facilities. There are classification and examples of the various student models, the most suitable for the evaluation of competencies is selected and finalized. The dynamic overlay fuzzy student model builded on the domain model based on the concept of didactic units is described in this work. The formulas, chart and diagrams are provided.

  1. Using Simple Manipulatives to Improve Student Comprehension of a Complex Biological Process: Protein Synthesis

    Science.gov (United States)

    Guzman, Karen; Bartlett, John

    2012-01-01

    Biological systems and living processes involve a complex interplay of biochemicals and macromolecular structures that can be challenging for undergraduate students to comprehend and, thus, misconceptions abound. Protein synthesis, or translation, is an example of a biological process for which students often hold many misconceptions. This article…

  2. Misconception p value among Chilean and Italian academic psychologists

    Directory of Open Access Journals (Sweden)

    Laura Badenes-Ribera

    2016-08-01

    Full Text Available The p value misconceptions are based on certain beliefs and attributions about the significance of the results. Thus, they affect the professionals’ decisions and jeopardize the quality of interventions and the accumulation of valid scientific knowledge. We conducted a survey on 164 academic psychologists (134 Italians, 30 Chileans, questioned on this topic. Our findings are consistent with original research and suggest that some participants do not know how to correctly interpret p values. The inverse probability fallacy presents the greatest comprehension problems, followed by the replication fallacy. These results highlight the importance of the statistical re-education of researchers. Recommendations for improving statistical cognition are proposed.

  3. LMS learning algorithms: misconceptions and new results on converence.

    Science.gov (United States)

    Wang, Z Q; Manry, M T; Schiano, J L

    2000-01-01

    The Widrow-Hoff delta rule is one of the most popular rules used in training neural networks. It was originally proposed for the ADALINE, but has been successfully applied to a few nonlinear neural networks as well. Despite its popularity, there exist a few misconceptions on its convergence properties. In this paper we consider repetitive learning (i.e., a fixed set of samples are used for training) and provide an in-depth analysis in the least mean square (LMS) framework. Our main result is that contrary to common belief, the nonbatch Widrow-Hoff rule does not converge in general. It converges only to a limit cycle.

  4. US students have wrong view of teaching

    Science.gov (United States)

    Kruesi, Liz

    2017-04-01

    Students taking science, technology, engineering and mathematics (STEM) subjects in the US have a number of misconceptions about teaching that may be leading them to choose other careers, according to a study by the American Physical Society (APS).

  5. Middle School Teacher Misconceptions and Anxieties Concerning Space Science Disciplinary Core Ideas in NGSS

    Science.gov (United States)

    Larsen, Kristine

    2017-01-01

    The Disciplinary Core Ideas (DCI) of the Next Generation Science Standards (NGSS) are grouped into the broad disciplinary areas of Physical Sciences, Life Sciences, Earth and Space Sciences, and Engineering, Technology and Application of Science, and feature learning progressions based on endpoint targets for each grade band. Since the Middle School DCIs build on the expected learning achievements to be reached by the end of Fifth Grade, and High School DCI similarly build on the expected learning achievements expected for the end of Eighth Grade, the Middle School grade band is of particular importance as the bridge between the Elementary and High School curriculum. In states where there is not a special Middle School Certification many of these science classes are taught by teachers prepared to teach at the Elementary level (and who may have limited content background). As a result, some pre-service and in-service teachers have expressed reduced self-confidence in both their own science content knowledge and their ability to apply it in the NGSS-based classroom, while decades of research has demonstrated the pervasiveness of science misconceptions among teachers. Thus the adoption of NGSS has the potential to drive talented teachers out of the profession who feel that they are ill-prepared for this sweeping transition. The key is providing rigorous education in both content and pedagogy for pre-service teachers and quality targeted professional development for in-service teachers. This report focuses on the Middle School Space Sciences grade band DCIs and presents research on specific difficulties, misconceptions and uncertainties with the material demonstrated by pre-service education students over the past four years in a required university science content course, as well as two year-long granted workshop series for current Middle School teachers. This information is relevant to the development of both new content courses aligned with NGSS for pre

  6. Examining Attitudes of Students Regarding the Sports Education Model and Direct Teaching Model

    Science.gov (United States)

    Bilgin, Nevruz; Dalkiran, Oguzhan

    2017-01-01

    The aim of the research was to investigate the effects of sports education model and direct teaching model on the attitudes of the students, and the differences among the attitudes of students. The study group of the research included 29 students from 6th and 7th grade of a secondary school in the 2015-2016 academic years. The experimental group…

  7. The Binary System Laboratory Activities Based on Students Mental Model

    Science.gov (United States)

    Albaiti, A.; Liliasari, S.; Sumarna, O.; Martoprawiro, M. A.

    2017-09-01

    Generic science skills (GSS) are required to develop student conception in learning binary system. The aim of this research was to know the improvement of students GSS through the binary system labotoratory activities based on their mental model using hypothetical-deductive learning cycle. It was a mixed methods embedded experimental model research design. This research involved 15 students of a university in Papua, Indonesia. Essay test of 7 items was used to analyze the improvement of students GSS. Each items was designed to interconnect macroscopic, sub-microscopic and symbolic levels. Students worksheet was used to explore students mental model during investigation in laboratory. The increase of students GSS could be seen in their N-Gain of each GSS indicators. The results were then analyzed descriptively. Students mental model and GSS have been improved from this study. They were interconnect macroscopic and symbolic levels to explain binary systems phenomena. Furthermore, they reconstructed their mental model with interconnecting the three levels of representation in Physical Chemistry. It necessary to integrate the Physical Chemistry Laboratory into a Physical Chemistry course for effectiveness and efficiency.

  8. Automated expert modeling for automated student evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Robert G.

    2006-01-01

    The 8th International Conference on Intelligent Tutoring Systems provides a leading international forum for the dissemination of original results in the design, implementation, and evaluation of intelligent tutoring systems and related areas. The conference draws researchers from a broad spectrum of disciplines ranging from artificial intelligence and cognitive science to pedagogy and educational psychology. The conference explores intelligent tutoring systems increasing real world impact on an increasingly global scale. Improved authoring tools and learning object standards enable fielding systems and curricula in real world settings on an unprecedented scale. Researchers deploy ITS's in ever larger studies and increasingly use data from real students, tasks, and settings to guide new research. With high volumes of student interaction data, data mining, and machine learning, tutoring systems can learn from experience and improve their teaching performance. The increasing number of realistic evaluation studies also broaden researchers knowledge about the educational contexts for which ITS's are best suited. At the same time, researchers explore how to expand and improve ITS/student communications, for example, how to achieve more flexible and responsive discourse with students, help students integrate Web resources into learning, use mobile technologies and games to enhance student motivation and learning, and address multicultural perspectives.

  9. Assessing a Theoretical Model on EFL College Students

    Science.gov (United States)

    Chang, Yu-Ping

    2011-01-01

    This study aimed to (1) integrate relevant language learning models and theories, (2) construct a theoretical model of college students' English learning performance, and (3) assess the model fit between empirically observed data and the theoretical model proposed by the researchers of this study. Subjects of this study were 1,129 Taiwanese EFL…

  10. Student Modelling in Adaptive E-Learning Systems

    Directory of Open Access Journals (Sweden)

    Clemens Bechter

    2011-09-01

    Full Text Available Most e-Learning systems provide web-based learning so that students can access the same online courses via the Internet without adaptation, based on each student's profile and behavior. In an e-Learning system, one size does not fit all. Therefore, it is a challenge to make e-Learning systems that are suitably “adaptive”. The aim of adaptive e-Learning is to provide the students the appropriate content at the right time, means that the system is able to determine the knowledge level, keep track of usage, and arrange content automatically for each student for the best learning result. This study presents a proposed system which includes major adaptive features based on a student model. The proposed system is able to initialize the student model for determining the knowledge level of a student when the student registers for the course. After a student starts learning the lessons and doing many activities, the system can track information of the student until he/she takes a test. The student’s knowledge level, based on the test scores, is updated into the system for use in the adaptation process, which combines the student model with the domain model in order to deliver suitable course contents to the students. In this study, the proposed adaptive e-Learning system is implemented on an “Introduction to Java Programming Language” course, using LearnSquare software. After the system was tested, the results showed positive feedback towards the proposed system, especially in its adaptive capability.

  11. Prevenção de doenças em idosos: os equívocos dos atuais modelos Disease prevention in the elderly: misconceptions in current models

    Directory of Open Access Journals (Sweden)

    Renato Peixoto Veras

    2012-10-01

    implementing a preventive logic. Scientific research has already correctly identified the risk factors for the elderly population, but this is not enough. We must use such knowledge to promote the necessary transition from a healthcare-centered model to a preventive one.

  12. The Relationship between Race and Students' Identified Career Role Models and Perceived Role Model Influence

    Science.gov (United States)

    Karunanayake, Danesh; Nauta, Margaret M.

    2004-01-01

    The authors examined whether college students' race was related to the modal race of their identified career role models, the number of identified career role models, and their perceived influence from such models. Consistent with A. Bandura's (1977, 1986) social learning theory, students tended to have role models whose race was the same as…

  13. Sustainable rare diseases business and drug access: no time for misconceptions.

    Science.gov (United States)

    Rollet, Pierrick; Lemoine, Adrien; Dunoyer, Marc

    2013-07-23

    Legislative incentives enacted in Europe through the Regulation (EC) No. 141/2000 to incentivize orphan drug development have over the last 12 years constituted a powerful impetus toward R&D directed at the rare diseases population. However, despite therapeutic promises contained in these projects and significant economic impact linked to burgeoning R&D expenditures, the affordability and value of OMPs has become a topic of health policy debate in Europe fueled by the perception that OMPs have high acquisition costs, and by misconceptions around pricing dynamics and rare-diseases business models. In order to maintain sustainable patient access to new and innovative therapies, it is essential to address these misconceptions, and to ensure the successful continuation of a dynamic OMPs R&D within rare-diseases public health policy. Misconceptions abound regarding the pricing of rare diseases drugs and reflect a poor appreciation of the R&D model and the affordability and value of OMPs. Simulation of potential financial returns of small medium sized rare diseases companies focusing on high priced drugs show that their economic returns are likely to be close to their cost of capital. Research in rare diseases is a challenging endeavour characterised by high fixed costs in which companies accrue substantial costs for several years before potentially generating returns from the fruits of their investments. Although heavily dependent upon R&D capabilities of each individual company or R&D organization, continuous flow of R&D financial investment should allow industry to increasingly include efficiencies in research and development in cost considerations to its customers. Industry should also pro-actively work on facilitating development of a specific value based pricing approach to help understanding what constitute value in rare diseases. Policy makers must reward innovation based upon unmet need and patient outcome. Broader understanding by clinicians, the public, and

  14. Using the UTAUT Model to Analyze Students' ICT Adoption

    Science.gov (United States)

    Attuquayefio, Samuel NiiBoi; Addo, Hillar

    2014-01-01

    This paper seeks to provide further understanding of issues surrounding acceptance of information and communication technology (ICT) by students of tertiary institutions. The Unified Theory of Acceptance and Use of Technology (UTAUT) model Venkatesh et al (2003) was employed by the researchers to determine the strength of predictors for students'…

  15. Elementary Students' Mental Models of the Solar System

    Science.gov (United States)

    Calderon-Canales, Elena; Flores-Camacho, Fernando; Gallegos-Cazares, Leticia

    2013-01-01

    This research project aimed to identify and analyze Mexican primary school students' ideas about the components of the solar system. In particular, this study focused on conceptions of the solar system and representations of the dynamics of the solar system based on the functional and structural models that students make in school. Using a…

  16. PACES: A Model of Student Well-Being

    Science.gov (United States)

    Nelson, Mark D.; Tarabochia, Dawn W.; Koltz, Rebecca L.

    2015-01-01

    School counselors design, deliver, and evaluate comprehensive, developmental school counseling programs that are focused on enhancing student development and success. A model of student well-being, known as PACES, is defined and described that consists of five distinct and interactive domains: physical, affective, cognitive, economic, and social.…

  17. Research on Model of Student Engagement in Online Learning

    Science.gov (United States)

    Peng, Wang

    2017-01-01

    In this study, online learning refers students under the guidance of teachers through the online learning platform for organized learning. Based on the analysis of related research results, considering the existing problems, the main contents of this paper include the following aspects: (1) Analyze and study the current student engagement model.…

  18. Designing a Predictive Model of Student Satisfaction in Online Learning

    Science.gov (United States)

    Parahoo, Sanjai K; Santally, Mohammad Issack; Rajabalee, Yousra; Harvey, Heather Lea

    2016-01-01

    Higher education institutions consider student satisfaction to be one of the major elements in determining the quality of their programs. The objective of the study was to develop a model of student satisfaction to identify the influencers that emerged in online higher education settings. The study adopted a mixed method approach to identify…

  19. Comparison of Student Performance, Student Perception, and Teacher Satisfaction with Traditional versus Flipped Classroom Models

    Directory of Open Access Journals (Sweden)

    Zafer Unal

    2017-11-01

    Full Text Available As new technologies become available, they are often embraced in educational innovation to enhance traditional instruction. The flipped teaching model is one of the most recent and popular technology-infused teaching models in which learning new concepts takes place at home while practice is conducted in the classroom. The purpose of this study was to investigate how using the flipped teaching model affects student performance, perceptions, and teacher satisfaction in comparison to the traditional model. Sixteen teachers implemented the flipped teaching model in their classrooms and reported the results of the flipped teaching model for the first time. Pretests and posttests were used to measure and compare student performance while student and teacher surveys facilitated data collection on student perception and teacher satisfaction. The results of the study showed that, in most cases, the flipped classroom model demonstrated higher student learning gains, more positive student perception, and higher teacher satisfaction compared to the traditional model. This study adds evidence to the current literature that, if the conditions are properly set, the flipped classroom should have the potential to be an extremely effective learning style.

  20. Modelling Students' Visualisation of Chemical Reaction

    Science.gov (United States)

    Cheng, Maurice M. W.; Gilbert, John K.

    2017-01-01

    This paper proposes a model-based notion of "submicro representations of chemical reactions". Based on three structural models of matter (the simple particle model, the atomic model and the free electron model of metals), we suggest there are two major models of reaction in school chemistry curricula: (a) reactions that are simple…

  1. Student Generated Rubrics: An Assessment Model To Help All Students Succeed. Assessment Bookshelf Series.

    Science.gov (United States)

    Ainsworth, Larry; Christinson, Jan

    The assessment model described in this guide was initially developed by a team of fifth-grade teachers who wrote objectives of integrating social studies and language arts. It helps the teacher guide students to create a task-specific rubric that they use to evaluate their own and peers' work. Teachers review the student evaluations, determine the…

  2. Factors associated with misconceptions about HIV transmission among ever-married women in Bangladesh.

    Science.gov (United States)

    Mondal, Md Nazrul Islam; Hoque, Nazrul; Chowdhury, Md Rocky Khan; Hossain, Md Sabbir

    2015-01-01

    The human immunodeficiency virus (HIV) epidemic continues to be associated with misconceptions and misinformed opinions, which increase the risk of HIV transmission. Therefore, the present study aimed to identify the determinant factors among different socioeconomic and demographic factors affecting misconceptions about HIV transmission among ever-married women in Bangladesh. Data and necessary information of 9,272 ever-married women were extracted from the Bangladesh Demographic and Health Survey 2011. Three types of misconceptions were considered. Both bivariate and multivariate analyses were used as the statistical tools to determine the factors affecting misconceptions about HIV transmission. The results revealed that misconceptions are more prevalent among women who are older, less educated, have husbands who are less educated, live in rural areas, have poor economic conditions, and have less access to mass media. The respondent's age, education, husband's education, place of residence, wealth index, and exposure to mass media are significantly associated with the misconceptions. Finally, logistic regression analysis identified age, education, place of residence, wealth index, and exposure to mass media as significant predictors. Because socioeconomic factors are the key determinants of misconceptions about HIV transmission, intervention programs should be aimed at HIV prevention via education and awareness programs to reduce misconceptions as important parts of the prevention strategy.

  3. Prevalence of Misconceptions, Dogmas, and Popular Views about Giftedness and Intelligence: A Case from Turkey

    Science.gov (United States)

    Sak, Ugur

    2011-01-01

    The purpose of this study was to investigate the prevalence of misconceptions, dogmas and popular views about giftedness and intelligence among Turkish lay people. A survey questionnaire consisting of 12 forced-choice items about global misconceptions, dogmatic beliefs and popular views related to giftedness and intelligence was used to collect…

  4. Preservice Science Teachers' Attitudes towards Chemistry and Misconceptions about Chemical Kinetics

    Science.gov (United States)

    Çam, Aylin; Topçu, Mustafa Sami; Sülün, Yusuf

    2015-01-01

    The present study investigates preservice science teachers' attitudes towards chemistry; their misconceptions about chemical kinetics; and relationships between pre-service science teachers' attitudes toward chemistry and misconceptions about chemical kinetics were examined. The sample of this study consisted of 81 freshman pre-service science…

  5. Cognitive Comparisons of Students' Systems Modeling in Ecology

    Science.gov (United States)

    Hogan, Kathleen; Thomas, David

    2001-12-01

    This study examined the cognition of five pairs of high school students over time as they built quantitative ecological models using STELLA software. One pair of students emerged as being particularly proficient at learning to model, and was able to use models productively to explore and explain ecological system behaviors. We present detailed contrasts between this and the other pairs of students' cognitive behaviors while modeling, in three areas that were crucial to their modeling productivity: (a) focusing on model output and net interactions versus on model input and individual relationships when building and revising models, (b) exploring the nature and implications of dependencies and feedbacks versus just creating these as properties of complex systems, and (c) using variables versus constants to represent continuous and periodic functions. We then apply theories of the multifaceted nature of cognition to describe object-level, metalevel, and emotional dimensions of cognitive performance that help to explain the observed differences among students' approaches to STELLA modeling. Finally, we suggest pedagogical strategies for supporting all types of students in learning the central scientific practice of model-based quantitative thinking.

  6. Sequence Modeling for Analysing Student Interaction with Educational Systems

    DEFF Research Database (Denmark)

    Hansen, Christian; Hansen, Casper; Hjuler, Niklas Oskar Daniel

    2017-01-01

    as exhibiting unproductive student behaviour. Based on our results this student representation is promising, especially for educational systems offering many different learning usages, and offers an alternative to common approaches like modelling student behaviour as a single Markov chain often done......The analysis of log data generated by online educational systems is an important task for improving the systems, and furthering our knowledge of how students learn. This paper uses previously unseen log data from Edulab, the largest provider of digital learning for mathematics in Denmark...

  7. Teaching leadership: the medical student society model.

    Science.gov (United States)

    Matthews, Jacob H; Morley, Gabriella L; Crossley, Eleanor; Bhanderi, Shivam

    2018-04-01

    All health care professionals in the UK are expected to have the medical leadership and management (MLM) skills necessary for improving patient care, as stipulated by the UK General Medical Council (GMC). Newly graduated doctors reported insufficient knowledge about leadership and quality improvement skills, despite all UK medical schools reporting that MLM is taught within their curriculum. A medical student society organised a series of extracurricular educational events focusing on leadership topics. The society recognised that the events needed to be useful and interesting to attract audiences. Therefore, clinical leaders in exciting fields were invited to talk about their experiences and case studies of personal leadership challenges. The emphasis on personal stories, from respected leaders, was a deliberate strategy to attract students and enhance learning. Evaluation data were collected from the audiences to improve the quality of the events and to support a business case for an intercalated degree in MLM. When leadership and management concepts are taught through personal stories, students find it interesting and are prepared to give up their leisure time to engage with the subject. Students appear to recognise the importance of MLM knowledge to their future careers, and are able to organise their own, and their peers', learning and development. Organising these events and collecting feedback can provide students with opportunities to practise leadership, management and quality improvement skills. These extracurricular events, delivered through a student society, allow for subjects to be discussed in more depth and can complement an already crowded undergraduate curriculum. Newly graduated doctors reported insufficient knowledge about leadership and quality improvement skills. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  8. Regression assumptions in clinical psychology research practice—a systematic review of common misconceptions

    Science.gov (United States)

    Ernst, Anja F.

    2017-01-01

    Misconceptions about the assumptions behind the standard linear regression model are widespread and dangerous. These lead to using linear regression when inappropriate, and to employing alternative procedures with less statistical power when unnecessary. Our systematic literature review investigated employment and reporting of assumption checks in twelve clinical psychology journals. Findings indicate that normality of the variables themselves, rather than of the errors, was wrongfully held for a necessary assumption in 4% of papers that use regression. Furthermore, 92% of all papers using linear regression were unclear about their assumption checks, violating APA-recommendations. This paper appeals for a heightened awareness for and increased transparency in the reporting of statistical assumption checking. PMID:28533971

  9. Regression assumptions in clinical psychology research practice—a systematic review of common misconceptions

    Directory of Open Access Journals (Sweden)

    Anja F. Ernst

    2017-05-01

    Full Text Available Misconceptions about the assumptions behind the standard linear regression model are widespread and dangerous. These lead to using linear regression when inappropriate, and to employing alternative procedures with less statistical power when unnecessary. Our systematic literature review investigated employment and reporting of assumption checks in twelve clinical psychology journals. Findings indicate that normality of the variables themselves, rather than of the errors, was wrongfully held for a necessary assumption in 4% of papers that use regression. Furthermore, 92% of all papers using linear regression were unclear about their assumption checks, violating APA-recommendations. This paper appeals for a heightened awareness for and increased transparency in the reporting of statistical assumption checking.

  10. Problem solving based learning model with multiple representations to improve student's mental modelling ability on physics

    Science.gov (United States)

    Haili, Hasnawati; Maknun, Johar; Siahaan, Parsaoran

    2017-08-01

    Physics is a lessons that related to students' daily experience. Therefore, before the students studying in class formally, actually they have already have a visualization and prior knowledge about natural phenomenon and could wide it themselves. The learning process in class should be aimed to detect, process, construct, and use students' mental model. So, students' mental model agree with and builds in the right concept. The previous study held in MAN 1 Muna informs that in learning process the teacher did not pay attention students' mental model. As a consequence, the learning process has not tried to build students' mental modelling ability (MMA). The purpose of this study is to describe the improvement of students' MMA as a effect of problem solving based learning model with multiple representations approach. This study is pre experimental design with one group pre post. It is conducted in XI IPA MAN 1 Muna 2016/2017. Data collection uses problem solving test concept the kinetic theory of gasses and interview to get students' MMA. The result of this study is clarification students' MMA which is categorized in 3 category; High Mental Modelling Ability (H-MMA) for 7Mental Modelling Ability (M-MMA) for 3Mental Modelling Ability (L-MMA) for 0 ≤ x ≤ 3 score. The result shows that problem solving based learning model with multiple representations approach can be an alternative to be applied in improving students' MMA.

  11. Assessing Understanding of Biological Processes: Elucidating Students' Models of Meiosis.

    Science.gov (United States)

    Kindfield, Ann C.

    1994-01-01

    Presents a meiosis reasoning problem that provides direct access to students' current models of chromosomes and meiosis. Also included in the article are tips for classroom implementation and a summary of the solution evaluation. (ZWH)

  12. A formative model for student nurse development and evaluation

    Directory of Open Access Journals (Sweden)

    A. S. van der Merwe

    1996-03-01

    Full Text Available Preparing student nurses for the profession is a complex task for nurse educators; especially when dealing with the development of personal and interpersonal skills, qualities and values held in high esteem by the nursing profession and the community they serve. These researchers developed a model for formative evaluation of students by using the principles of inductive and deductive reasoning. This model was implemented in clinical practice situations and evaluated for its usefulness. It seems that the model enhanced the standards of nursing care because it had a positive effect on the behaviour of students and they were better motivated; the model also improved interpersonal relationships and communication between practising nurses and students.

  13. Addressing student models of energy loss in quantum tunnelling

    International Nuclear Information System (INIS)

    Wittmann, Michael C; Morgan, Jeffrey T; Bao Lei

    2005-01-01

    We report on a multi-year, multi-institution study to investigate students' reasoning about energy in the context of quantum tunnelling. We use ungraded surveys, graded examination questions, individual clinical interviews and multiple-choice exams to build a picture of the types of responses that students typically give. We find that two descriptions of tunnelling through a square barrier are particularly common. Students often state that tunnelling particles lose energy while tunnelling. When sketching wavefunctions, students also show a shift in the axis of oscillation, as if the height of the axis of oscillation indicated the energy of the particle. We find inconsistencies between students' conceptual, mathematical and graphical models of quantum tunnelling. As part of a curriculum in quantum physics, we have developed instructional materials designed to help students develop a more robust and less inconsistent picture of tunnelling, and present data suggesting that we have succeeded in doing so

  14. Student Model Tools Code Release and Documentation

    DEFF Research Database (Denmark)

    Johnson, Matthew; Bull, Susan; Masci, Drew

    of its strengths and areas of improvement (Section 6). Several key appendices are attached to this report including user manuals for teacher and students (Appendix 3). Fundamentally, all relevant information is included in the report for those wishing to do further development work with the tool...

  15. A Model for Evaluating Student Clinical Psychomotor Skills.

    Science.gov (United States)

    And Others; Fiel, Nicholas J.

    1979-01-01

    A long-range plan to evaluate medical students' physical examination skills was undertaken at the Ingham Family Medical Clinic at Michigan State University. The development of the psychomotor skills evaluation model to evaluate the skill of blood pressure measurement, tests of the model's reliability, and the use of the model are described. (JMD)

  16. Engaging Students In Modeling Instruction for Introductory Physics

    Science.gov (United States)

    Brewe, Eric

    2016-05-01

    Teaching introductory physics is arguably one of the most important things that a physics department does. It is the primary way that students from other science disciplines engage with physics and it is the introduction to physics for majors. Modeling instruction is an active learning strategy for introductory physics built on the premise that science proceeds through the iterative process of model construction, development, deployment, and revision. We describe the role that participating in authentic modeling has in learning and then explore how students engage in this process in the classroom. In this presentation, we provide a theoretical background on models and modeling and describe how these theoretical elements are enacted in the introductory university physics classroom. We provide both quantitative and video data to link the development of a conceptual model to the design of the learning environment and to student outcomes. This work is supported in part by DUE #1140706.

  17. Patient misconceptions concerning lumbar spondylosis diagnosis and treatment.

    Science.gov (United States)

    Franz, Eric W; Bentley, J Nicole; Yee, Patricia P S; Chang, Kate W C; Kendall-Thomas, Jennifer; Park, Paul; Yang, Lynda J S

    2015-05-01

    results show that a surprisingly high percentage of patients have misconceptions regarding the diagnosis and treatment of lumbar spondylosis, and that these misconceptions persist in patients with a history of spine surgery. Specifically, patients overemphasize the value of radiological studies and have mixed perceptions of the relative risk and effectiveness of surgical intervention compared with more conservative management. These misconceptions have the potential to alter patient expectations and decrease satisfaction, which could negatively impact patient outcomes and subjective valuations of physician performance. While these results are preliminary, they highlight a need for improved communication and patient education during surgical consultation for lumbar spondylosis.

  18. A Framework for Understanding Physics Students' Computational Modeling Practices

    Science.gov (United States)

    Lunk, Brandon Robert

    With the growing push to include computational modeling in the physics classroom, we are faced with the need to better understand students' computational modeling practices. While existing research on programming comprehension explores how novices and experts generate programming algorithms, little of this discusses how domain content knowledge, and physics knowledge in particular, can influence students' programming practices. In an effort to better understand this issue, I have developed a framework for modeling these practices based on a resource stance towards student knowledge. A resource framework models knowledge as the activation of vast networks of elements called "resources." Much like neurons in the brain, resources that become active can trigger cascading events of activation throughout the broader network. This model emphasizes the connectivity between knowledge elements and provides a description of students' knowledge base. Together with resources resources, the concepts of "epistemic games" and "frames" provide a means for addressing the interaction between content knowledge and practices. Although this framework has generally been limited to describing conceptual and mathematical understanding, it also provides a means for addressing students' programming practices. In this dissertation, I will demonstrate this facet of a resource framework as well as fill in an important missing piece: a set of epistemic games that can describe students' computational modeling strategies. The development of this theoretical framework emerged from the analysis of video data of students generating computational models during the laboratory component of a Matter & Interactions: Modern Mechanics course. Student participants across two semesters were recorded as they worked in groups to fix pre-written computational models that were initially missing key lines of code. Analysis of this video data showed that the students' programming practices were highly influenced by

  19. The Effect of Computer Models as Formative Assessment on Student Understanding of the Nature of Models

    Science.gov (United States)

    Park, Mihwa; Liu, Xiufeng; Smith, Erica; Waight, Noemi

    2017-01-01

    This study reports the effect of computer models as formative assessment on high school students' understanding of the nature of models. Nine high school teachers integrated computer models and associated formative assessments into their yearlong high school chemistry course. A pre-test and post-test of students' understanding of the nature of…

  20. Development of a career coaching model for medical students.

    Science.gov (United States)

    Hur, Yera

    2016-03-01

    Deciding on a future career path or choosing a career specialty is an important academic decision for medical students. The purpose of this study is to develop a career coaching model for medical students. This research was carried out in three steps. The first step was systematic review of previous studies. The second step was a need assessment of medical students. The third step was a career coaching model using the results acquired from the researched literature and the survey. The career coaching stages were defined as three big phases: The career coaching stages were defined as the "crystallization" period (Pre-medical year 1 and 2), "specification" period (medical year 1 and 2), and "implementation" period (medical year 3 and 4). The career coaching model for medical students can be used in programming career coaching contents and also in identifying the outcomes of career coaching programs at an institutional level.

  1. Sexual-Reproductive Health Belief Model of college students

    Directory of Open Access Journals (Sweden)

    Masoomeh Simbar

    2004-09-01

    Full Text Available Sexual- reproductive health of youth is one of the most unknown aspects of our community, while the world, including our country is faced with the risk of AIDS spreading. The aim of this study was to describe Health Belief Model (HBM of the students about sexual-reproductive health behaviors and evaluate the ability of the model in predicting related behaviors. By using quota sampling, 1117 male and female students of Qazvin Medical Science and International universities were included in the study in 1991. A self-completed questionnaire was prepared containing close questions based on HBM components including perceived threats (susceptibility and severity of related diseases, perceived reproductive benefits and barriers and self efficacy of youth about reproductive health. A total of 645 of participants were female and 457 were male (Mean age 21.4±2.4 and 22.7±3.5, respectively. The Health Belief Model of the students showed that they perceived a moderate threat for AIDS and venereal diseases and their health outcomes. Most of them perceived the benefits of reproductive health behaviors. They believed that the ability of youth in considering reproductive health is low or moderate. However, they noted to some barriers for spreading of reproductive health in youth including inadequacy of services. Boys felt a higher level of threat for acquiring the AIDS and venereal diseases in compare to girls, but girls had a higher knowledge about these diseases and their complications. The Health Belief Model of the students with premarital intercourse behavior was not significantly different with the students without this behavior (Mann-Withney, P<0.05. Female students and the students without the history of premarital intercourse had significantly more positive attitude towards abstinence, comparing to male students and students with the history of premarital intercourse, respectively (Mann-Withney, P<0.05. Seventy five percent of students believed in

  2. Experimenter Confirmation Bias and the Correction of Science Misconceptions

    Science.gov (United States)

    Allen, Michael; Coole, Hilary

    2012-06-01

    This paper describes a randomised educational experiment ( n = 47) that examined two different teaching methods and compared their effectiveness at correcting one science misconception using a sample of trainee primary school teachers. The treatment was designed to promote engagement with the scientific concept by eliciting emotional responses from learners that were triggered by their own confirmation biases. The treatment group showed superior learning gains to control at post-test immediately after the lesson, although benefits had dissipated after 6 weeks. Findings are discussed with reference to the conceptual change paradigm and to the importance of feeling emotion during a learning experience, having implications for the teaching of pedagogies to adults that have been previously shown to be successful with children.

  3. History of pancreaticoduodenectomy: early misconceptions, initial milestones and the pioneers.

    Science.gov (United States)

    Are, Chandrakanth; Dhir, Mashaal; Ravipati, Lavanya

    2011-06-01

    Pancreaticoduodenectomy is one of the most challenging surgical procedures which requires the highest level of surgical expertise. This procedure has constantly evolved over the years through the meticulous efforts of a number of surgeons before reaching its current state. This review navigates through some of the early limitations and misconceptions and highlights the initial milestones which laid the foundation of this procedure. The current review also provides a few excerpts from the lives and illuminates on some of the seminal contributions of the three great surgeons: William Stewart Halsted, Walther Carl Eduard Kausch and Allen Oldfather Whipple. These surgeons pioneered the nascent stages of this procedure and paved the way for the modern day pancreaticoduodenectomy. © 2011 International Hepato-Pancreato-Biliary Association.

  4. Expression of therapeutic misconception amongst Egyptians: a qualitative pilot study.

    Science.gov (United States)

    Wazaify, Mayyada; Khalil, Susan S; Silverman, Henry J

    2009-06-30

    Studies have shown that research participants fail to appreciate the difference between research and medical care, labeling such phenomenon as a "therapeutic misconception" (TM). Since research activity involving human participants is increasing in the Middle East, qualitative research investigating aspects of TM is warranted. Our objective was to assess for the existence of therapeutic misconception amongst Egyptians. Study Tool: We developed a semi-structured interview guide to elicit the knowledge, attitudes, and perspectives of Egyptians regarding medical research. We recruited individuals from the outpatient settings (public and private) at Ain Shams University in Cairo, Egypt. Interviews were taped, transcribed, and translated. We analyzed the content of the transcribed text to identify the presence of a TM, defined in one of two ways: TM1 = inaccurate beliefs about how individualized care can be compromised by the procedures in the research and TM2 = inaccurate appraisal of benefit obtained from the research study. Our findings showed that a majority of participants (11/15) expressed inaccurate beliefs regarding the degree with which individualized care will be maintained in the research setting (TM1) and a smaller number of participants (5/15) manifested an unreasonable belief in the likelihood of benefits to be obtained from a research study (TM2). A total of 12 of the 15 participants were judged to have expressed a TM on either one of these bases. The presence of TM is not uncommon amongst Egyptian individuals. We recommend further qualitative studies investigating aspects of TM involving a larger sample size distinguished by different types of illnesses and socio-economic variables, as well as those who have and have not participated in clinical research.

  5. Diagnosing Students' Understanding of the Nature of Models

    Science.gov (United States)

    Gogolin, Sarah; Krüger, Dirk

    2017-10-01

    Students' understanding of models in science has been subject to a number of investigations. The instruments the researchers used are suitable for educational research but, due to their complexity, cannot be employed directly by teachers. This article presents forced choice (FC) tasks, which, assembled as a diagnostic instrument, are supposed to measure students' understanding of the nature of models efficiently, while being sensitive enough to detect differences between individuals. In order to evaluate if the diagnostic instrument is suitable for its intended use, we propose an approach that complies with the demand to integrate students' responses to the tasks into the validation process. Evidence for validity was gathered based on relations to other variables and on students' response processes. Students' understanding of the nature of models was assessed using three methods: FC tasks, open-ended tasks and interviews ( N = 448). Furthermore, concurrent think-aloud protocols ( N = 30) were performed. The results suggest that the method and the age of the students have an effect on their understanding of the nature of models. A good understanding of the FC tasks as well as a convergence in the findings across the three methods was documented for grades eleven and twelve. This indicates that teachers can use the diagnostic instrument for an efficient and, at the same time, valid diagnosis for this group. Finally, the findings of this article may provide a possible explanation for alternative findings from previous studies as a result of specific methods that were used.

  6. AWARENESS REGARDING MODES OF TRANSMISSION AND RELATED MISCONCEPTION ABOUT HIV/AIDS AMONG SECONDARY SCHOOL GOING FEMALES OF PUBLIC AND GOVT SCHOOLS

    Directory of Open Access Journals (Sweden)

    Chhabi Mohan

    2010-06-01

    Full Text Available .Research Question: What is the level of awareness about different modes of transmission and related misconception about HIV/AIDS among secondary school going females of public and Govt. Schools of Kanpur city. Study Area: Public and Govt. Schools of Kanpur city. Participatns: 120 Govt. and 120 Public secondary School females students. Results: 100% Public school female students knew about heterosexual mode of transmission of HI V/AIDS as compared to 80% of Govt. School students. Among Public School students knowledge about transmission of HIV/AIDS by contaminated needle and syringe intravenous drug abuse, blood transfusion and mother to child was known to almost 80% student. Among Govt. School students except for knowledge about transmission by contaminated needle and syringe (60% and mother to child transmission (55% the other modes were poorly known (<50%.

  7. Assessment of Primary 5 Students' Mathematical Modelling Competencies

    Science.gov (United States)

    Chan, Chun Ming Eric; Ng, Kit Ee Dawn; Widjaja, Wanty; Seto, Cynthia

    2012-01-01

    Mathematical modelling is increasingly becoming part of an instructional approach deemed to develop students with competencies to function as 21st century learners and problem solvers. As mathematical modelling is a relatively new domain in the Singapore primary school mathematics curriculum, many teachers may not be aware of the learning outcomes…

  8. Students To Compete in Model Solar Car Race

    Science.gov (United States)

    cars in the 1998 Junior Solar Sprint. The race will be held at the U.S. Department of Energy's (DOE Compete in Model Solar Car Race For more information contact: e:mail: Public Affairs Golden, Colo ., May 8, 1998 — Middle school students from across Colorado will design, build and race model solar

  9. Improving student success using predictive models and data visualisations

    Directory of Open Access Journals (Sweden)

    Hanan Ayad

    2012-08-01

    Full Text Available The need to educate a competitive workforce is a global problem. In the US, for example, despite billions of dollars spent to improve the educational system, approximately 35% of students never finish high school. The drop rate among some demographic groups is as high as 50–60%. At the college level in the US only 30% of students graduate from 2-year colleges in 3 years or less and approximately 50% graduate from 4-year colleges in 5 years or less. A basic challenge in delivering global education, therefore, is improving student success. By student success we mean improving retention, completion and graduation rates. In this paper we describe a Student Success System (S3 that provides a holistic, analytical view of student academic progress.1 The core of S3 is a flexible predictive modelling engine that uses machine intelligence and statistical techniques to identify at-risk students pre-emptively. S3 also provides a set of advanced data visualisations for reaching diagnostic insights and a case management tool for managing interventions. S3's open modular architecture will also allow integration and plug-ins with both open and proprietary software. Powered by learning analytics, S3 is intended as an end-to-end solution for identifying at-risk students, understanding why they are at risk, designing interventions to mitigate that risk and finally closing the feedback look by tracking the efficacy of the applied intervention.

  10. Developing a Model of Teaching English to Primary School Students

    Directory of Open Access Journals (Sweden)

    Suwarsih Madya

    2004-01-01

    Full Text Available Under the auspices of the Centre for Curriculum Decelopment, a three-cycle action research study was carried out in three primary schools in Yogyakarta with the aim of developing a model of teaching English to primary school students. The model consists of five parts: Opening, Content Focus, Language Focus, Communication Focus, and Closing. The model, requiring that learning tasks involve active participation of students, both physically and mentally, supported by the use of media suitable for young learners, was developmentally fully implemented. The results showed that efforts were mostly made to establish teacher-student rapport in the first cycle, in which success in classroom management was gradually reached. This led to the easier second cycle, which was characterized by increasing teacher talk (classroom English, the use of interesting media, and more active students' participation in the tasks involving various games which successfully elicited students' English. All of this was solidified in the third cycle. The conclusion is that with the three aspects being focused successively, teacher-student good rapport being established, various media being used, and competing and cooperative tasks being assigned in balance, joyful and effective learning is likely to occur.

  11. EPTS Curriculum Model in the Education of Gifted Students

    Directory of Open Access Journals (Sweden)

    Ugur Sak

    Full Text Available In this article, the author reviews the EPTS Model (Education Programs for Talented Students and discuss how it was developed through multiple stages, the ways it is used to develop programs for gifted students, and then presents research carried out on the effectiveness of this model in the education of gifted students. The EPTS Model has two dimensions: ability and content. The ability dimension has a hierarchical structure composed of three levels of cognitive skills. The content dimension is the extension of the regular curriculum but organized at four levels: data, concept, generalization and theory. Included in the article also is a brief critics of the current state of curricular programs in gifted education.

  12. A model for successful use of student response systems.

    Science.gov (United States)

    Klein, Kathleen; Kientz, Mary

    2013-01-01

    This article presents a model developed to assist teachers in selecting, implementing, and assessing student response system (SRS) use in the classroom. Research indicates that SRS technology is effective in achieving desired outcomes in higher education settings. Studies indicate that effective SRS use promotes greater achievement of learning outcomes, increased student attention, improved class participation, and active engagement. The model offered in this article is based on best practices described in the literature and several years of SRS use in a traditional higher education classroom setting. Student feedback indicates increased class participation and engagement with SRS technology. Teacher feedback indicates opportunities for contingent teaching. The model described in this article provides a process to assist teachers in the successful selection, implementation, and assessment of SRS technology in the classroom.

  13. Career and Technical Education (CTE) Student Success in Community Colleges: A Conceptual Model

    Science.gov (United States)

    Hirschy, Amy S.; Bremer, Christine D.; Castellano, Marisa

    2011-01-01

    Career and technical education (CTE) students pursuing occupational associate's degrees or certificates differ from students seeking academic majors at 2-year institutions in several ways. This article examines several theoretical models of student persistence and offers a conceptual model of student success focused on CTE students in community…

  14. STUDENT-DEFINED QUALITY BY KANO MODEL: A CASE STUDY OF ENGINEERING STUDENTS IN INDIA

    Directory of Open Access Journals (Sweden)

    Ismail Wilson Taifa

    2016-09-01

    Full Text Available Engineering Students in India like elsewhere worldwide need well designed classrooms furniture which can enable them to attend lectures without negative impact in the long run. Engineering students from India have not yet been involved in suggesting their requirements for improving the mostly out-dated furniture at their colleges. Among the available improvement techniques, Kano Model is one of the most effective improvement approaches. The main objective of the study was to identify and categorise all the main attributes regarding the classrooms furniture for the purpose of increasing student satisfaction in the long run. Kano Model has been well applied to make an exhaustive list of requirements for redesigning classroom furniture. Cronbach Alpha was computed with the help of SPSS 16.0 for validation purpose and it ranged between 0.8 and 0.9 which is a good internal consistency. Further research can be done by integrating Kano Model with Quality Function Deployment.

  15. Student Teacher Understanding of the Greenhouse Effect, Ozone Layer Depletion, and Acid Rain.

    Science.gov (United States)

    Dove, Jane

    1996-01-01

    Describes the results of a survey designed to ascertain details of student teachers' knowledge and misconceptions about the greenhouse effect, acid rain, and ozone layer depletion. Results indicate familiarity with the issues but little understanding of the concepts involved and many commonly held misconceptions. (JRH)

  16. Birthday and birthmate problems: misconceptions of probability among psychology undergraduates and casino visitors and personnel.

    Science.gov (United States)

    Voracek, Martin; Tran, Ulrich S; Formann, Anton K

    2008-02-01

    Subjective estimates and associated confidence ratings for the solutions of some classic occupancy problems were studied in samples of 721 psychology undergraduates, 39 casino visitors, and 34 casino employees. On tasks varying the classic birthday problem, i.e., the probability P for any coincidence among N individuals sharing the same birthday, clear majorities of respondents markedly overestimated N, given P, and markedly underestimated P, given N. Respondents did notedly better on tasks varying the birthmate problem, i.e., P for the specific coincidence among N individuals of having a birthday today. Psychology students and women did better on both task types, but were less confident about their estimates than casino visitors or per sonnel and men. Several further person variables, such as indicators of topical knowledge and familiarity, were associated with better and more confident performance on birthday problems, but not on birthmate problems. Likewise, higher confidence ratings were related to subjective estimates that were closer to the solutions of birthday problems, but not of birthmate problems. Implications of and possible explanations for these findings, study limitations, directions for further inquiry, and the real-world relevance of ameliorating misconceptions of probability are discussed.

  17. Penerapan Model Active Learning untuk Meremediasi Miskonsepsi Siswa pada Materi Gerak Lurus di SMP

    OpenAIRE

    Yulindar, Arvitri; Djudin, Tomo; Hamdani

    2017-01-01

    This study aims to determine effectiveness of remediation application of active learning models that have misconceptions on rectilinear motion in class VIII SMP Negeri 2 Pontianak. This research is the form of pre-experiment using a one group pretest-postest. The study sample consisted of 38 students of class VIII B SMP Negeri 2 Pontianak. Data collection technique used in the form of a measurement technique using multiple choice diagnostic tests with reason that have total 10 questions. The ...

  18. Early identification of at-risk nursing students: a student support model.

    Science.gov (United States)

    Hopkins, T Hampton

    2008-06-01

    Due to the shortage of nurses in the health care industry, colleges offering associate-degree nursing programs are beginning to pay more attention to attrition and the factors contributing to success. Alogistic regression model was used to explain the cognitive and noncognitive variables that contribute to success in a nursing fundamentals course. Although much work is necessary to fully understand first-semester nursing students' retention and success, an early identification model is explored to better support students as they enter associate-degree nursing programs.

  19. Rugby headgear and concussion prevention: misconceptions could increase aggressive play.

    Science.gov (United States)

    Menger, Richard; Menger, Austin; Nanda, Anil

    2016-04-01

    OBJECTIVE Multiple studies have illustrated that rugby headgear offers no statistically significant protection against concussions. However, there remains concern that many players believe rugby headgear in fact does prevent concussions. Further investigation was undertaken to illustrate that misconceptions about concussion prevention and rugby headgear may lead to an increase in aggressive play. METHODS Data were constructed by Internet survey solicitation among United States collegiate rugby players across 19 teams. Initial information given was related to club, age, experience, use of headgear, playing time, whether the rugger played football or wrestling in high school, and whether the player believed headgear prevented concussion. Data were then constructed as to whether wearing headgear would increase aggressive playing style secondary to a false sense of protection. RESULTS A total of 122 players responded. All players were male. The average player was 19.5 years old and had 2.7 years of experience. Twenty-three of 122 players (18.9%) wore protective headgear; 55.4% of players listed forward as their primary position. Overall, 45.8% (55/120) of players played 70-80 minutes per game, 44.6% (54/121) played football or wrestled in high school, 38.1% (45/118) believed headgear prevented concussions, and 42.2% (51/121) stated that if they were using headgear they would be more aggressive with their play in terms of running or tackling. Regression analysis illustrated that those who believed headgear prevented concussions were or would be more likely to engage in aggressive play (p = 0.001). CONCLUSIONS Nearly 40% of collegiate rugby players surveyed believed headgear helped to prevent concussions despite no scientific evidence that it does. This misconception about rugby headgear could increase aggressive play. Those who believed headgear prevented concussion were, on average, 4 times more likely to play with increased aggressive form than those who believed

  20. The Earth's Mantle Is Solid: Teachers' Misconceptions About the Earth and Plate Tectonics.

    Science.gov (United States)

    King, Chris

    2000-01-01

    Discusses the misconceptions revealed by the teachers' answers and outlines more accurate answers and explanations based on established evidence and uses these to provide a more complete understanding of plate tectonic process and the structure of Earth. (Author/YDS)

  1. An Analysis of Student Model Portability

    Science.gov (United States)

    Valdés Aguirre, Benjamín; Ramírez Uresti, Jorge A.; du Boulay, Benedict

    2016-01-01

    Sharing user information between systems is an area of interest for every field involving personalization. Recommender Systems are more advanced in this aspect than Intelligent Tutoring Systems (ITSs) and Intelligent Learning Environments (ILEs). A reason for this is that the user models of Intelligent Tutoring Systems and Intelligent Learning…

  2. Mathematical modeling courses for Media technology students

    DEFF Research Database (Denmark)

    Timcenko, Olga

    2009-01-01

    This paper addresses curriculum development for Mathematical Modeling course at Medialogy education. Medialogy as a study line was established in 2002 at Faculty for Engineering and Natural Sciences at Aalborg University, and mathematics curriculum has already been revised three times, Mathematic...

  3. An Emerging Theoretical Model of Music Therapy Student Development.

    Science.gov (United States)

    Dvorak, Abbey L; Hernandez-Ruiz, Eugenia; Jang, Sekyung; Kim, Borin; Joseph, Megan; Wells, Kori E

    2017-07-01

    Music therapy students negotiate a complex relationship with music and its use in clinical work throughout their education and training. This distinct, pervasive, and evolving relationship suggests a developmental process unique to music therapy. The purpose of this grounded theory study was to create a theoretical model of music therapy students' developmental process, beginning with a study within one large Midwestern university. Participants (N = 15) were music therapy students who completed one 60-minute intensive interview, followed by a 20-minute member check meeting. Recorded interviews were transcribed, analyzed, and coded using open and axial coding. The theoretical model that emerged was a six-step sequential developmental progression that included the following themes: (a) Personal Connection, (b) Turning Point, (c) Adjusting Relationship with Music, (d) Growth and Development, (e) Evolution, and (f) Empowerment. The first three steps are linear; development continues in a cyclical process among the last three steps. As the cycle continues, music therapy students continue to grow and develop their skills, leading to increased empowerment, and more specifically, increased self-efficacy and competence. Further exploration of the model is needed to inform educators' and other key stakeholders' understanding of student needs and concerns as they progress through music therapy degree programs. © the American Music Therapy Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  4. Lula VS. Larry Rohter: Misconceptions in international coverage

    Directory of Open Access Journals (Sweden)

    Heloiza Golbspan Herckovitz

    2007-06-01

    Full Text Available This article discusses the confl ict between the New York Times foreign correspondent Larry Rohter and Brazil’s President Luis Inácio Lula da Silva over a story published by the American newspaper on May 9, 2004 accusing the President of being a drunkard. Larry Rohter’s piece was criticized for its lack of facts and of reliable sources, and for its ironic overtone. President Lula was criticized for cancelling the journalist’s visa, a measure later revoked because of public pressure. The case exemplifi es a well-know sequence of misconceptions and stereotypes from both sides (the world’s most prestigious newspaper and the president of the largest country in Latin America, which brings to light a much needed discussion on the quality of international news coverage, press freedom and social responsibility. This article also attempts to advance the discussion on how framing – second level agenda-setting —may infl uence how we think about foreign political leaders.

  5. Therapeutic Misconception in Psychiatry Research: A Systematic Review.

    Science.gov (United States)

    Thong, Ivan Sk; Foo, Meng Yee; Sum, Min Yi; Capps, Benjamin; Lee, Tih-Shih; Ho, Calvin; Sim, Kang

    2016-02-29

    Therapeutic misconception (TM) denotes the phenomenon in which research subjects conflate research purpose, protocols and procedures with clinical treatment. We examined the prevalence, contributory factors, clinical associations, impact, and collated solutions on TM within psychiatric research, and made suggestions going ahead. Literature search for relevant empirical research papers was conducted until February 2015. Eighty-eight reports were extracted, of which 31 were selected, summarised into different headings for discussion of implications and collated solutions of TM. We found variable and high rates of TM (ranging from 12.5% to 86%) in some psychiatry research populations. Contributory factors to TM included perceived medical roles of researchers, media, research setting and subject factors. Greater TM in affective, neurodevelopmental and psychotic spectrum conditions were associated with demographic variables (such as lower education, increased age), clinical factors (such as poor insight, cognitive deficits, increased symptoms, poorer self-rated quality of health), and social functioning (such as decreased independence). Inattention to TM may lead to frustration, negative impression and abandonment of participation in psychiatry research. Strategies such as the employment of a neutral educator during the informed consent process and education modules may be effective in addressing TM. Further research is warranted to examine the different TM facets, specific clinical correlates and more effective management strategies.

  6. The danger of epigenetics misconceptions (epigenetics and stuff…).

    Science.gov (United States)

    Georgel, Philippe T

    2015-12-01

    Within the past two decades, the fields of chromatin structure and function and transcription regulation research started to fuse and overlap, as evidence mounted to support a very strong regulatory role in gene expression that was associated with histone post-translational modifications, DNA methylation, as well as various chromatin-associated proteins (the pillars of the "Epigenetics" building). The fusion and convergence of these complementary fields is now often simply referred to as "Epigenetics". During these same 20 years, numerous new research groups have started to recognize the importance of chromatin composition, conformation, and its plasticity. However, as the field started to grow exponentially, its growth came with the spreading of several important misconceptions, which have unfortunately led to improper or hasty conclusions. The goal of this short "opinion" piece is to attempt to minimize future misinterpretations of experimental results and ensure that the right sets of experiment are used to reach the proper conclusion, at least as far as epigenetic mechanisms are concerned.

  7. Misconceptions regarding the pathogenicity of silicas and silicates.

    Science.gov (United States)

    Feigin, D S

    1989-01-01

    Several inhaled substances, from occupational or other environmental exposure, produce significant pulmonary disease and abnormalities demonstrated by pulmonary imaging. Areas of controversy and misconception relate principally to the extent and nature of both the clinical disease and the imaging abnormalities specific to each substance. The size and shape of the inhaled particles is an important determinant of the nature and severity of the disease produced, with fibrous shapes usually being the most pathogenetic. Fibrogenicity is another important pathogenetic characteristic of talc and kaolin, as well as asbestos. Talc produces four distinct forms of pulmonary disease, depending not only on the other substances with which it is inhaled, but also whether it is inhaled or injected intravenously. When inhaled alone, talc does not appear to produce significant pulmonary fibrosis or malignancy. Kaolin, mica, fuller's earth, zeolite, and fiberglass all vary in disease production according to their shape and fibrogenicity. Silica, diatomaceous earth, and other forms of silica are all highly fibrogenic and thus produce clinically obvious disease with sufficient inhalation. The largest particles usually produce nodular patterns in the upper pulmonary fields, as is typical of silicosis. The fibrous particles are more likely to manifest themselves as interstitial patterns in the lower pulmonary fields.

  8. Most common misconceptions about informational communication technologies in education

    Directory of Open Access Journals (Sweden)

    Pešikan Ana Ž.

    2016-01-01

    Full Text Available The aim of this paper is to discuss analytically the use of informational communication technologies (ICT in education so that education system could have greater benefits from its carefully planned use. In this paper we tried to show the specificity of the relations between education and ICT. Many things in that relation are accepted for granted, often without much analyzing. We selected some of typical misconceptions which contribute to erroneous ideas about education and ICT relation resulting in limited opportunities for using up new technologies in education. When analyzing ICT in education there is no room for the question whether to use new technologies in the teaching/ learning process or not, but when, why and how to use them. In order to bring these decisions and use ICT potentials for educational purposes, thorough understanding of the nature of teaching and learning is necessary. Education should not be just a buyer or a prudent user of numerous ICT possibilities but it should carefully and thoughtfully transform the teaching/learning process in order equip future and nowadays citizens with skills necessary for living and working in the environment with significantly changed technology. Much more researching and theoretical work is needed in order to fully understand how ICT really influences the learning process and how to use that influence in order to enhance the quality of education.

  9. Applying an Employee-Motivation Model to Prevent Student Plagiarism.

    Science.gov (United States)

    Malouff, John M.; Sims, Randi L.

    1996-01-01

    A model based on Vroom's expectancy theory of employee motivation posits that instructors can prevent plagiarism by ensuring that students understand the rules of ethical writing, expect assignments to be manageable and have personal benefits, and expect plagiarism to be difficult and have important personal costs. (SK)

  10. Enhancing Students' Communication Skills through Treffinger Teaching Model

    Science.gov (United States)

    Alhaddad, Idrus; Kusumah, Yaya S.; Sabandar, Jozua; Dahlan, Jarnawi A.

    2015-01-01

    This research aims to investigate, compare, and describe the achievement and enhancement of students' mathematical communication skills (MCS). It based on the prior mathematical knowledge (PMK) category (high, medium and low) by using Treffinger models (TM) and conventional learning (CL). This research is an experimental study with the population…

  11. Medical students' emotional development in early clinical experience : a model

    NARCIS (Netherlands)

    Helmich, Esther; Bolhuis, Sanneke; Laan, Roland; Dornan, Tim; Koopmans, Raymond

    Dealing with emotions is a critical feature of professional behaviour. There are no comprehensive theoretical models, however, explaining how medical students learn about emotions. We aimed to explore factors affecting their emotions and how they learn to deal with emotions in themselves and others.

  12. Student Migration to Online Education: An Economic Model

    Science.gov (United States)

    Eisenhauer, Joseph G.

    2013-01-01

    The popularity of distance education has increasingly led universities to consider expanding their online offerings. Remarkably few financial models have been presented for online courses, however, and fewer still have investigated the economic consequences of the migration, or cross-over, of students from traditional classes within the…

  13. Three-Dimensional Models for Teaching Neuroanatomy to Blind Students.

    Science.gov (United States)

    Pietsch, Paul

    1980-01-01

    An audio/tactile course enables blind college students to understand the anatomy of the human brain. Models were designed which allow tactile exploration of the visual fields, retina, optic nerves, and the subdivisions of the tracts and radiations in the brain. (Author/PHR)

  14. A New Conceptual Model for Understanding International Students' College Needs

    Science.gov (United States)

    Alfattal, Eyad

    2016-01-01

    This study concerns the theory and practice of international marketing in higher education with the purpose of exploring a conceptual model for understanding international students' needs in the context of a four-year college in the United States. A transcendental phenomenological design was employed to investigate the essence of international…

  15. College Chemistry Students' Mental Models of Acids and Acid Strength

    Science.gov (United States)

    McClary, LaKeisha; Talanquer, Vicente

    2011-01-01

    The central goal of this study was to characterize the mental models of acids and acid strength expressed by advanced college chemistry students when engaged in prediction, explanation, and justification tasks that asked them to rank chemical compounds based on their relative acid strength. For that purpose we completed a qualitative research…

  16. Commentary: discovering a different model of medical student education.

    Science.gov (United States)

    Watson, Robert T

    2012-12-01

    Traditional medical schools in modern academic health centers make discoveries, create new knowledge and technology, provide innovative care to the sickest patients, and educate future academic and practicing physicians. Unfortunately, the growth of the research and clinical care missions has sometimes resulted in a loss of emphasis on the general professional education of medical students. The author concludes that it may not be practical for many established medical schools to functionally return to the reason they were created: for the education of medical students.He had the opportunity to discover a different model of medical student education at the first new MD-granting medical school created in the United States in 25 years (in 2000), the Florida State University College of Medicine. He was initially skeptical about how its distributed regional campuses model, using practicing primary care physicians to help medical students learn in mainly ambulatory settings, could be effective. But his experience as a faculty member at the school convinced him that the model works very well.He proposes a better alignment of form and function for many established medical schools and an extension of the regional community-based model to the formation of community-based primary care graduate medical education programs determined by physician workforce needs and available resources.

  17. International Students Take Up the Model Solar Car Challenge.

    Science.gov (United States)

    Wellington, Paul

    2000-01-01

    Introduces an event in which two school teams from Argentina and Vietnam joined those from each Australian state in a race of model cars powered by the sun that provides a challenging and exciting approach for students to apply their scientific and technological knowledge to design and build the most efficient vehicles possible to gain hands-on…

  18. A Functional Model for Counseling Parents of Gifted Students.

    Science.gov (United States)

    Dettmann, David F.; Colangelo, Nicholas

    1980-01-01

    The authors present a model of parent-school involvement in furthering the educational development of gifted students. The disadvantages and advantages of three counseling approaches are pointed out--parent centered approach, school centered approach, and the partnership approach. (SBH)

  19. Student feedback on an adapted appraisal model in resource ...

    African Journals Online (AJOL)

    Background. An appraisal model, a type of formal mentorship programme for a cohort of student doctors, is used at the University of Leeds, UK. The University of the Witwatersrand, Johannesburg, South Africa implemented an adapted version of the appraisal process that uses fewer resources. Objective. To explore ...

  20. Evolving an Accelerated School Model through Student Perceptions and Student Outcome Data

    Science.gov (United States)

    Braun, Donna L.; Gable, Robert K.; Billups, Felice D.; Vieira, Mary; Blasczak, Danielle

    2016-01-01

    A mixed methods convergent evaluation informed the redesign of an innovative public school that uses an accelerated model to serve grades 7-9 students who have been retained in grade level and are at risk for dropping out of school. After over 25 years in operation, a shift of practices/policies away from grade retention and toward social…

  1. A New Model of Clinical Education to Increase Student Placement Availability: The Capacity Development Facilitator Model

    Science.gov (United States)

    Fairbrother, Michele; Nicole, Madelyn; Blackford, Julia; Nagarajan, Srivalli Vilapakkam; McAllister, Lindy

    2016-01-01

    This paper reports on a trial of a new model of clinical education designed to increase student clinical placement availability and address workforce constraints on supervision. The University of Sydney deployed the Capacity Development Facilitators (CDF) in selected Sydney hospitals to work with staff to expand student clinical placement…

  2. Development of a career coaching model for medical students

    Directory of Open Access Journals (Sweden)

    Yera Hur

    2016-03-01

    Full Text Available Purpose: Deciding on a future career path or choosing a career specialty is an important academic decision for medical students. The purpose of this study is to develop a career coaching model for medical students. Methods: This research was carried out in three steps. The first step was systematic review of previous studies. The second step was a need assessment of medical students. The third step was a career coaching model using the results acquired from the researched literature and the survey. Results: The career coaching stages were defined as three big phases: The career coaching stages were defined as the “crystallization” period (Pre-medical year 1 and 2, “specification” period (medical year 1 and 2, and “implementation” period (medical year 3 and 4. Conclusion: The career coaching model for medical students can be used in programming career coaching contents and also in identifying the outcomes of career coaching programs at an institutional level.

  3. Marvels, mysteries, and misconceptions of vascular compensation to peripheral artery occlusion.

    Science.gov (United States)

    Ziegler, Matthew A; Distasi, Matthew R; Bills, Randall G; Miller, Steven J; Alloosh, Mouhamad; Murphy, Michael P; Akingba, A George; Sturek, Michael; Dalsing, Michael C; Unthank, Joseph L

    2010-01-01

    Peripheral arterial disease is a major health problem and there is a significant need to develop therapies to prevent its progression to claudication and critical limb ischemia. Promising results in rodent models of arterial occlusion have generally failed to predict clinical success and led to questions of their relevance. While sub-optimal models may have contributed to the lack of progress, we suggest that advancement has also been hindered by misconceptions of the human capacity for compensation and the specific vessels which are of primary importance. We present and summarize new and existing data from humans, Ossabaw miniature pigs, and rodents which provide compelling evidence that natural compensation to occlusion of a major artery (i) may completely restore perfusion, (ii) occurs in specific pre-existing small arteries, rather than the distal vasculature, via mechanisms involving flow-mediated dilation and remodeling (iii) is impaired by cardiovascular risk factors which suppress the flow-mediated mechanisms and (iv) can be restored by reversal of endothelial dysfunction. We propose that restoration of the capacity for flow-mediated dilation and remodeling in small arteries represents a largely unexplored potential therapeutic opportunity to enhance compensation for major arterial occlusion and prevent the progression to critical limb ischemia in the peripheral circulation.

  4. Personal Universes: revealing community college students' competences though their organization of the cosmos

    Science.gov (United States)

    Buck Bracey, Zoë

    2017-10-01

    In this article I present a study on learners' conceptions in cosmology by situating the results in the context of broader historical and sociocultural themes. Participants were community college students in California from non-dominant cultural and linguistic backgrounds finishing their first semester of astronomy. Data were collected through a drawing activity and card sort given during clinical-style interviews. This type of work is typically done from the perspective of conceptual change theory, using drawings to reveal student "misconceptions." I argue that in analyzing this kind of data, we need to come from the perspective that students are competent, and put their conceptions in context. I begin by presenting traditional frameworks for evaluating and describing learning, all of which rely on an outdated "banking" or "transmission" model of learning that puts an over-emphasis on the performance and attributes of individuals. Not only do these theories provide an incomplete picture of what learning looks like, they create and reify unnecessary divides between "scientific" and "unscientific" that can contribute to student alienation from the world of science. To illustrate this, I present my own results as a window into the logic of learners' assumptions within a sociocultural context, and suggest ways to support their learning trajectories, rather than figuring out how to unlearn their misconceptions. Through this analysis, I hope to show how taking student conceptions out of sociocultural context can potentially exclude students from non-dominant cultural and linguistic backgrounds from science.

  5. DISPELLING MYTHS AND MISCONCEPTIONS TO IMPLEMENT A SAFETY CULTURE

    Energy Technology Data Exchange (ETDEWEB)

    Potts, T. Todd; Smith, Ken; Hylko, James M.

    2003-02-27

    Industrial accidents are typically reported in terms of technological malfunctions, ignoring the human element in accident causation. However, over two-thirds of all accidents are attributable to human and organizational factors (e.g., planning, written procedures, job factors, training, communication, and teamwork), thereby affecting risk perception, behavior and attitudes. This paper reviews the development of WESKEM, LLC's Environmental, Safety, and Health (ES&H) Program that addresses human and organizational factors from a top-down, bottom-up approach. This approach is derived from the Department of Energy's Integrated Safety Management System. As a result, dispelling common myths and misconceptions about safety, while empowering employees to ''STOP work'' if necessary, have contributed to reducing an unusually high number of vehicle, ergonomic and slip/trip/fall incidents successfully. Furthermore, the safety culture that has developed within WESKEM, LLC's workforce consists of three common characteristics: (1) all employees hold safety as a value; (2) each individual feels responsible for the safety of their co-workers as well as themselves; and (3) each individual is willing and able to ''go beyond the call of duty'' on behalf of the safety of others. WESKEM, LLC as a company, upholds the safety culture and continues to enhance its existing ES&H program by incorporating employee feedback and lessons learned collected from other high-stress industries, thereby protecting its most vital resource - the employees. The success of this program is evident by reduced accident and injury rates, as well as the number of safe work hours accrued while performing hands-on field activities. WESKEM, LLC (Paducah + Oak Ridge) achieved over 800,000 safe work hours through August 2002. WESKEM-Paducah has achieved over 665,000 safe work hours without a recordable injury or lost workday case since it started operations on

  6. Neuromyths in Education: Prevalence and Predictors of Misconceptions among Teachers.

    Science.gov (United States)

    Dekker, Sanne; Lee, Nikki C; Howard-Jones, Paul; Jolles, Jelle

    2012-01-01

    The OECD's Brain and Learning project (2002) emphasized that many misconceptions about the brain exist among professionals in the field of education. Though these so-called "neuromyths" are loosely based on scientific facts, they may have adverse effects on educational practice. The present study investigated the prevalence and predictors of neuromyths among teachers in selected regions in the United Kingdom and the Netherlands. A large observational survey design was used to assess general knowledge of the brain and neuromyths. The sample comprised 242 primary and secondary school teachers who were interested in the neuroscience of learning. It would be of concern if neuromyths were found in this sample, as these teachers may want to use these incorrect interpretations of neuroscience findings in their teaching practice. Participants completed an online survey containing 32 statements about the brain and its influence on learning, of which 15 were neuromyths. Additional data was collected regarding background variables (e.g., age, sex, school type). Results showed that on average, teachers believed 49% of the neuromyths, particularly myths related to commercialized educational programs. Around 70% of the general knowledge statements were answered correctly. Teachers who read popular science magazines achieved higher scores on general knowledge questions. More general knowledge also predicted an increased belief in neuromyths. These findings suggest that teachers who are enthusiastic about the possible application of neuroscience findings in the classroom find it difficult to distinguish pseudoscience from scientific facts. Possessing greater general knowledge about the brain does not appear to protect teachers from believing in neuromyths. This demonstrates the need for enhanced interdisciplinary communication to reduce such misunderstandings in the future and establish a successful collaboration between neuroscience and education.

  7. Neuromyths in education: Prevalence and predictors of misconceptions among teachers

    Directory of Open Access Journals (Sweden)

    Sanne eDekker

    2012-10-01

    Full Text Available The OECD’s Brain and Learning project (2002 emphasized that many misconceptions about the brain exist among professionals in the field of education. Though these so-called ‘neuromyths’ are loosely based on scientific facts, they may have adverse effects on educational practice. The present study investigated the prevalence and predictors of neuromyths among teachers in selected regions in the United Kingdom and the Netherlands. A large observational survey design was used to assess general knowledge of the brain and neuromyths. The sample comprised 242 primary and secondary school teachers who were interested in the neuroscience of learning. It would be of concern if neuromyths were found in this sample, as these teachers may want to use these incorrect interpretations of neuroscience findings in their teaching practice. Participants completed an online survey containing 32 statements about the brain and its influence on learning, of which 15 were neuromyths. Additional data was collected regarding background variables (e.g., age, sex, school type. Results showed that on average, teachers believed 49% of the neuromyths, particularly myths related to commercialized educational programmes. Around 70% of the general knowledge statements were answered correctly. Teachers who read popular science magazines achieved higher scores on general knowledge questions. More general knowledge also predicted an increased belief in neuromyths. These findings suggest that teachers who are enthusiastic about the possible application of neuroscience findings in the classroom find it difficult to distinguish pseudoscience from scientific facts. Possessing greater general knowledge about the brain does not appear to protect teachers from believing in neuromyths. This demonstrates the need for enhanced interdisciplinary communication to reduce such misunderstandings in the future and establish a successful collaboration between neuroscience and education.

  8. Misconceptions of Synthetic Biology: Lessons from an Interdisciplinary Summer School

    Science.gov (United States)

    Verseux, Cyprien; Acevedo-Rocha, Carlos G.; Chizzolini, Fabio; Rothschild, Lynn J.

    2016-01-01

    In 2014, an international group of scholars from various fields analysed the "societal dimensions" of synthetic biology in an interdisciplinary summer school. Here, we report and discuss the biologists' observations on the general perception of synthetic biology by non-biologists who took part in this event. Most attendees mainly associated synthetic biology with contributions from the best-known public figures of the field, rarely mentioning other scientists. Media extrapolations of those contributions appeared to have created unrealistic expectations and irrelevant fears that were widely disconnected from the current research in synthetic biology. Another observation was that when debating developments in synthetic biology, semantics strongly mattered: depending on the terms used to present an application of synthetic biology, attendees reacted in radically different ways. For example, using the term "GMOs" (genetically modified organisms) rather than the term "genetic engineering" led to very different reactions. Stimulating debates also happened with participants having unanticipated points of view, for instance biocentrist ethicists who argued that engineered microbes should not be used for human purposes. Another communication challenge emerged from the connotations and inaccuracies surrounding the word "life", which impaired constructive debates, thus leading to misconceptions about the abilities of scientists to engineer or even create living organisms. Finally, it appeared that synthetic biologists tend to overestimate the knowledge of non-biologists, further affecting communication. The motivation and ability of synthetic biologists to communicate their work outside their research field needs to be fostered, notably towards policymakers who need a more accurate and technical understanding of the field to make informed decisions. Interdisciplinary events gathering scholars working in and around synthetic biology are an effective tool in addressing those

  9. Developing a Model to Support Students in Solving Subtraction

    Directory of Open Access Journals (Sweden)

    Nila Mareta Murdiyani

    2013-01-01

    Full Text Available Subtraction has two meanings and each meaning leads to the different strategies. The meaning of “taking away something” suggests a direct subtraction, while the meaning of “determining the difference between two numbers” is more likely to be modeled as indirect addition. Many prior researches found that the second meaning and second strategy rarely appeared in the mathematical textbooks and teacher explanations, including in Indonesia. Therefore, this study was conducted to contribute to the development of a local instruction theory for subtraction by designing instructional activities that can facilitate first grade of primary school students to develop a model in solving two digit numbers subtraction. Consequently, design research was chosen as an appropriate approach for achieving the research aim and Realistic Mathematics Education (RME was used as a guide to design the lesson. This study involved 6 students in the pilot experiment, 31 students in the teaching experiment, and a first grade teacher of SDN 179 Palembang. The  result of this study shows that the beads string could bridge students from the contextual problems (taking ginger candies and making grains bracelets to the use of the empty number line. It also shows that the empty number line could promote students to  use different strategies (direct subtraction, indirect addition, and indirect subtraction in solving subtraction problems. Based on these findings, it is recommended to apply RME in the teaching learning process to make it more meaningful for students. Keywords: Subtraction, Design Research, Realistic Mathematics Education, The Beads String, The Empty Number Line DOI: http://dx.doi.org/10.22342/jme.4.1.567.95-112

  10. Mathematical Modeling with Middle School Students: The Robot Art Model-Eliciting Activity

    Science.gov (United States)

    Stohlmann, Micah S.

    2017-01-01

    Internationally mathematical modeling is garnering more attention for the benefits associated with it. Mathematical modeling can develop students' communication skills and the ability to demonstrate understanding through different representations. With the increased attention on mathematical modeling, there is a need for more curricula to be…

  11. Periodic Properties and Inquiry: Student Mental Models Observed during a Periodic Table Puzzle Activity

    Science.gov (United States)

    Larson, Kathleen G.; Long, George R.; Briggs, Michael W.

    2012-01-01

    The mental models of both novice and advanced chemistry students were observed while the students performed a periodic table activity. The mental model framework seems to be an effective way of analyzing student behavior during learning activities. The analysis suggests that students do not recognize periodic trends through the examination of…

  12. Perceptions About Sex Related Myths And Misconceptions: Difference In Male And Female

    Directory of Open Access Journals (Sweden)

    Anupam Raizada

    1997-04-01

    Full Text Available Research problem: Perceptions about sex-re- iated myths and misconceptions. Objectives: To identify the difference in percep­tions of mates and females over sex-reiated myths and misconceptions. Study Design - Community based cross sectional study. Setting - Self-administered questionnaire study was un­dertaken in an urban area of Jhansi. Participants - Married couples with reproductive age wife. Sample size - 417 couples of the area. Study Variables-Sex-related myths and misconceptions. Outcome Variables - Masturbation, Penis-size and sexual performance, STD transmission. Intercourse with virgin and cure of STDs, Initiation of sexual act, Bleeding on first night. Statistical analysis - By chi - square test. Results: Response rate 63.8%. Only 8.6% females and 33.7% males knew correctly about masturbation. Males also knew better about route of STD infection (73.5% and about the fact that intercouse with a virgin cannot cure STDs (47.4%. Females, however, outnumber males on the question of relation between man's penis size and his sexual performance (70%, initiation of sexual act (58.6% and bleeding in females on first night of marriage (70%. Conclusion: Males and females had significantly different perceptions on sex related myths and misconceptions. Recommendations: Sex education campaigns should be designed and implemented to eliminate these age old sex related myths and misconceptions.

  13. Perceptions About Sex Related Myths And Misconceptions: Difference In Male And Female

    Directory of Open Access Journals (Sweden)

    Anupam Raizada

    1997-04-01

    Full Text Available Research problem: Perceptions about sex-re- iated myths and misconceptions.Objectives: To identify the difference in percep­tions of mates and females over sex-reiated myths and misconceptions.Study Design - Community based cross sectional study.Setting - Self-administered questionnaire study was un­dertaken in an urban area of Jhansi.Participants - Married couples with reproductive age wife.Sample size - 417 couples of the area.Study Variables-Sex-related myths and misconceptionsOutcome Variables - Masturbation, Penis-size and sexual performance, STD transmission. Intercourse with virgin and cure of STDs, Initiation of sexual act, Bleeding on first night.Statistical analysis - By chi - square test.Results: Response rate 63.8%. Only 8.6% females and 33.7% males knew correctly about masturbation. Males also knew better about route of STD infection (73.5% and about the fact that intercouse with a virgin cannot cure STDs (47.4%. Females, however, outnumber males on the question of relation between man's penis size and his sexual performance (70%, initiation of sexual act (58.6% and bleeding in females on first night of marriage (70%.Conclusion: Males and females had significantly different perceptions on sex related myths and misconceptions.Recommendations: Sex education campaigns should be designed and implemented to eliminate these age old sex related myths and misconceptions.

  14. Engineering Student's Ethical Awareness and Behavior: A New Motivational Model.

    Science.gov (United States)

    Bairaktarova, Diana; Woodcock, Anna

    2017-08-01

    Professional communities are experiencing scandals involving unethical and illegal practices daily. Yet it should not take a national major structure failure to highlight the importance of ethical awareness and behavior, or the need for the development and practice of ethical behavior in engineering students. Development of ethical behavior skills in future engineers is a key competency for engineering schools as ethical behavior is a part of the professional identity and practice of engineers. While engineering educators have somewhat established instructional methods to teach engineering ethics, they still rely heavily on teaching ethical awareness, and pay little attention to how well ethical awareness predicts ethical behavior. However the ability to exercise ethical judgement does not mean that students are ethically educated or likely to behave in an ethical manner. This paper argues measuring ethical judgment is insufficient for evaluating the teaching of engineering ethics, because ethical awareness has not been demonstrated to translate into ethical behavior. The focus of this paper is to propose a model that correlates with both, ethical awareness and ethical behavior. This model integrates the theory of planned behavior, person and thing orientation, and spheres of control. Applying this model will allow educators to build confidence and trust in their students' ability to build a professional identity and be prepared for the engineering profession and practice.

  15. Teacher’s role model ingender education of students

    Directory of Open Access Journals (Sweden)

    Elvira Dode

    2015-07-01

    Full Text Available Gender education as an important part of education, affects by the role and attitudes of teachers. Including gender perspective in schools is a prerequisite in alienable of human development, instead insuring gender equality it is considered as respecting human rights. Elimination of the gender stereotypes has a two-fold significance since itemsurest gender equality not only in the school system but even in the society as a whole. Gender stereotype messages, regardless by hidden or displayed form, unilaterally influence the development of the personality in its appearance as well as the formation of the individual. Children learn about gender identity simply by observing what happens in different circumstances around. In education exist gender disparities, which can be assessed by means of measurable indicators. So, the content of the curricula and instructive texts, the interactive relationships teacher-students, the institutional ambiance, etc. play an important role into the preservation and transmission of the gender disparity stereotypes through the messages they convey. The purpose of thestudy is to perform a systematic research in order to show the scale and shape in which gender stereotypes are portrayed and shown in social life, even through the role model of teacher and their affecting the education for a democratic society. To achieve this goal, we use the method of studying the existing literature; a detailed analysis of the questionnaires and interviews content with school directors and teachers of pre-university education in city: Shkodër, Tiranë, Elbasan, Pogradec, Korçë. Parents and teachers attitudes, seems to be a role model and affect the education of students. Therefore it is necessary before to teach students about gender equality, teachers need to be careful in their behavior about gender equality as an integral part of thinking. Need to have successful teacher, to get successful students otherwise should be successful

  16. PARENTAL MISCONCEPTIONS ABOUT URTI AETIOLOGY AND TREATMENT ARE COMMON

    Directory of Open Access Journals (Sweden)

    Chan GC

    2007-01-01

    Full Text Available Most children have about 4 to 6 acute upper respiratory tract infections (URTIs each year. The majority of acute URTIs is caused by viruses and usually self-limiting. Improper use of antibiotic is associated with bacterial resistance and waste of health care resources. The inappropriate use could be partly due to mistaken belief of parents therefore their knowledge, attitudes and antibiotic use for acute URTIs in children are the main concern of this study.This cross-sectional study involved 421 parents, using an interviewer-administered questionnaire, at Batu 9 Health Clinic of Hulu Langat district. Malay parents formed over half of the respondents followed by Chinese and Indian with mean age over 33 years old. Approximately 59% of parents believed that weather was the main cause of acute URTIs of their children, 13% thought it was due to food and only about 27% by germ. The majority of parents (68-76% believed that antibiotic was helpful in treating common cold, cough and fever. Twenty-nine percent of parents who thought that their child needed an antibiotic were not prescribed with any. On the other hand, 17% believed that an antibiotic was unnecessary when prescribed. Twenty-eight percent requested for an antibiotic and majority received what they asked for. About 31% of parents did not request any antibiotics but private general practitioners habitually prescribed them. The antibiotic compliance was poor with only 74% completing the entire course; 85% stopped once they improved symptomatically. Fifteen percent of parents gave a “left over” antibiotic; 24% gave a “shared” antibiotic, and 5.5% bought antibiotics without consultation. This study illustrated that parents generally have misconception and inappropriate use of antibiotics. This could be caused by lack of proper explanation and education. Besides this, past experience, traditional cultural and food belief also play a part here. Consequently, effective educational

  17. A Fuzzy Knowledge Representation Model for Student Performance Assessment

    DEFF Research Database (Denmark)

    Badie, Farshad

    Knowledge representation models based on Fuzzy Description Logics (DLs) can provide a foundation for reasoning in intelligent learning environments. While basic DLs are suitable for expressing crisp concepts and binary relationships, Fuzzy DLs are capable of processing degrees of truth/completene......Knowledge representation models based on Fuzzy Description Logics (DLs) can provide a foundation for reasoning in intelligent learning environments. While basic DLs are suitable for expressing crisp concepts and binary relationships, Fuzzy DLs are capable of processing degrees of truth....../completeness about vague or imprecise information. This paper tackles the issue of representing fuzzy classes using OWL2 in a dataset describing Performance Assessment Results of Students (PARS)....

  18. Primary Student-Teachers' Conceptual Understanding of the Greenhouse Effect: A mixed method study

    Science.gov (United States)

    Ratinen, Ilkka Johannes

    2013-04-01

    The greenhouse effect is a reasonably complex scientific phenomenon which can be used as a model to examine students' conceptual understanding in science. Primary student-teachers' understanding of global environmental problems, such as climate change and ozone depletion, indicates that they have many misconceptions. The present mixed method study examines Finnish primary student-teachers' understanding of the greenhouse effect based on the results obtained via open-ended and closed-form questionnaires. The open-ended questionnaire considers primary student-teachers' spontaneous ideas about the greenhouse effect depicted by concept maps. The present study also uses statistical analysis to reveal respondents' conceptualization of the greenhouse effect. The concept maps and statistical analysis reveal that the primary student-teachers' factual knowledge and their conceptual understanding of the greenhouse effect are incomplete and even misleading. In the light of the results of the present study, proposals for modifying the instruction of climate change in science, especially in geography, are presented.

  19. Model analysis: Representing and assessing the dynamics of student learning

    Directory of Open Access Journals (Sweden)

    Lei Bao

    2006-02-01

    Full Text Available Decades of education research have shown that students can simultaneously possess alternate knowledge frameworks and that the development and use of such knowledge are context dependent. As a result of extensive qualitative research, standardized multiple-choice tests such as Force Concept Inventory and Force-Motion Concept Evaluation tests provide instructors tools to probe their students’ conceptual knowledge of physics. However, many existing quantitative analysis methods often focus on a binary question of whether a student answers a question correctly or not. This greatly limits the capacity of using the standardized multiple-choice tests in assessing students’ alternative knowledge. In addition, the context dependence issue, which suggests that a student may apply the correct knowledge in some situations and revert to use alternative types of knowledge in others, is often treated as random noise in current analyses. In this paper, we present a model analysis, which applies qualitative research to establish a quantitative representation framework. With this method, students’ alternative knowledge and the probabilities for students to use such knowledge in a range of equivalent contexts can be quantitatively assessed. This provides a way to analyze research-based multiple choice questions, which can generate much richer information than what is available from score-based analysis.

  20. Medical students on the value of role models for developing 'soft skills'

    African Journals Online (AJOL)

    Adele

    of medical students, especially their doctor-patient interaction skills and .... how they adapted their own personalities with patients…] ... students learning from role models. Students .... Role models and the learning environment: essential elements in ... Paice E, Heard S, Moss F. How important are role models in making.

  1. Modeling Signal-Noise Processes Supports Student Construction of a Hierarchical Image of Sample

    Science.gov (United States)

    Lehrer, Richard

    2017-01-01

    Grade 6 (modal age 11) students invented and revised models of the variability generated as each measured the perimeter of a table in their classroom. To construct models, students represented variability as a linear composite of true measure (signal) and multiple sources of random error. Students revised models by developing sampling…

  2. Freshman Biology Majors' Misconceptions about Diffusion and Osmosis.

    Science.gov (United States)

    Odom, A. Louis; Barrow, Lloyd H.

    The data for this study were obtained from a sample of 117 biology majors enrolled in an introductory biology course. The Diffusion and Osmosis Diagnostic Test, composed of 12 two-tier items, was administered to the students. Among the major findings are: (1) there was no significant difference in scores of male and female students; (2) math…

  3. A comparative qualitative study of misconceptions associated with contraceptive use in southern and northern Ghana

    Directory of Open Access Journals (Sweden)

    Philip Baba Adongo

    2014-09-01

    Full Text Available Evidence from Ghana consistently shows that unmet need for contraception is pervasive with many possible causes, yet how these may differ by cultural zone remains poorly understood. This qualitative study was designed to elicit information on the nature and form of misconceptions associated with contraceptive use among northern and southern Ghanaians. Twenty-two focus group discussions (FGDs with married community members were carried out. Community Health Officers, Community Health Volunteers, and Health Care Managers were also interviewed using a semi-structured interview guide. Focus group discussions and in-depth interviews were recorded digitally, transcribed verbatim, and analyzed using QSR Nvivo 10 to compare contraceptive misconceptions in northern and southern Ghana. Results indicate that misconceptions associated with the use of contraceptives were widespread but similar in both settings. Contraceptives were perceived to predispose women to both primary and secondary infertility, uterine fibroids, and cancers. As regular menstrual flow was believed to prevent uterine fibroids, contraceptive use-related amenorrhea was thought to render acceptors vulnerable to uterine fibroids as well as cervical and breast cancers. Contraceptive acceptors were stigmatized and ridiculed as promiscuous. Among northern respondents, condom use was generally perceived to inhibit erection and therefore capable of inducing male impotence, while in southern Ghana, condom use was believed to reduce sensation and sexual gratification. The study indicates that misconceptions associated with contraceptive use are widespread in both regions. Moreover, despite profound social and contextual differences that distinguish northern and southern Ghanaians, prevailing fears and misconceptions are shared by respondents from both settings. Findings attest to the need for improved communication to provide accurate information for dispelling these misconceptions.

  4. Applying the Health Belief Model to college students' health behavior

    Science.gov (United States)

    Kim, Hak-Seon; Ahn, Joo

    2012-01-01

    The purpose of this research was to investigate how university students' nutrition beliefs influence their health behavioral intention. This study used an online survey engine (Qulatrics.com) to collect data from college students. Out of 253 questionnaires collected, 251 questionnaires (99.2%) were used for the statistical analysis. Confirmatory Factor Analysis (CFA) revealed that six dimensions, "Nutrition Confidence," "Susceptibility," "Severity," "Barrier," "Benefit," "Behavioral Intention to Eat Healthy Food," and "Behavioral Intention to do Physical Activity," had construct validity; Cronbach's alpha coefficient and composite reliabilities were tested for item reliability. The results validate that objective nutrition knowledge was a good predictor of college students' nutrition confidence. The results also clearly showed that two direct measures were significant predictors of behavioral intentions as hypothesized. Perceived benefit of eating healthy food and perceived barrier for eat healthy food to had significant effects on Behavioral Intentions and was a valid measurement to use to determine Behavioral Intentions. These findings can enhance the extant literature on the universal applicability of the model and serve as useful references for further investigations of the validity of the model within other health care or foodservice settings and for other health behavioral categories. PMID:23346306

  5. Evaluating Behavioral Economic Models of Heavy Drinking Among College Students.

    Science.gov (United States)

    Acuff, Samuel F; Soltis, Kathryn E; Dennhardt, Ashley A; Berlin, Kristoffer S; Murphy, James G

    2018-05-14

    Heavy drinking among college students is a significant public health concern that can lead to profound social and health consequences, including alcohol use disorder. Behavioral economics posits that low future orientation and high valuation of alcohol (alcohol demand) combined with deficits in alternative reinforcement increase the likelihood of alcohol misuse (Bickel et al., 2011). Despite this, no study has examined the incremental utility of all three variables simultaneously in a comprehensive model METHOD: The current study uses structural equation modeling to test the associations between behavioral economic variables - alcohol demand (latent), future orientation (measured with a delay discounting task and the Consideration of Future Consequences (CFC) scale), and proportionate substance-related reinforcement - and alcohol consumption and problems among 393 heavy drinking college students. Two models are tested: 1) an iteration of the reinforcer pathology model that includes an interaction between future orientation and alcohol demand; and 2) an alternative model evaluating the interconnectedness of behavioral economic variables in predicting problematic alcohol use RESULTS: The interaction effects in model 1 were nonsignificant. Model 2 suggests that greater alcohol demand and proportionate substance-related reinforcement is associated with greater alcohol consumption and problems. Further, CFC was associated with alcohol-related problems and lower proportionate substance-related reinforcement but was not significantly associated with alcohol consumption or alcohol demand. Finally, greater proportionate substance-related reinforcement was associated with greater alcohol demand CONCLUSIONS: Our results support the validity of the behavioral economic reinforcer pathology model as applied to young adult heavy drinking. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. MODEL REMEDIASI MISKONSEPSI MATERI RANGKAIAN LISTRIK DENGAN PENDEKATAN SIMULASI PhET

    Directory of Open Access Journals (Sweden)

    Mursalin -

    2013-01-01

    Full Text Available Penelitian ini menggunakan metode eksperimen dengan rancangan “One-Group Pretest-Posttest Design”. Sampel penelitian adalah mahasiswa calon guru fisika yang dipilih dengan teknik random sampling. Instrumen penelitian menggunakan tes pilihan ganda dengan pertanyaan (alasan terbuka disertai dengan model Certainty of Response Index. Tujuan penelitian ini adalah meremediasi miskonsepsi mahasiswa calon guru pada topik rangkaian listrik dengan model simulasi PhET berbantuan lembar kerja. Hasil penelitian pasca pretest diperoleh persentase mahasiswa yang miskonsepsi, terbesar pada konsep: (a arus listrik pada lampu-2 pasca lampu-1 dicabut pada rangkaian paralel (53%, (b beda potensial rangkaian terbuka yang mengandung sumber tegangan (48%, (c gaya gerak listrik dan tegangan jepit (47%, (d tegangan jepit dan arus listrik rangkaian yang mengandung sumber tegangan paralel (37%, dan (e arus listrik pada hubungan singkat (28%. Pasca treatment dengan model simulasi PhET berbantuan lembar kerja, hasil posttest menunjukkan 9 konsep (90% berhasil dipahami dengan baik oleh mahasiswa termasuk yang berstatus menebak konsep, kurang paham konsep, dan miskonsepsi; sedangkan konsep ggl dan tegangan jepit (1 konsep hanya berhasil meminimalkan pemahaman konsep dan miskonsepsi mahasiswa dengan persentase menebak konsep 22%, kurang paham konsep 17%, dan miskonsepsi 11%. This research used the experiment method withOne-Group Pretest-Posttest Design. The research samples were students of physics teacher candidates that selected by random sampling technique. The research instrument used a multiple-choice test accompanied by Certainty of Response Index model. The aims of this research was to remediate misconceptions of students of physics teacher candidates on the electrical circuits topic with the PhET simulation model. The results of this research after pretest showed that the largest percentage of students’ misconceptions was on the concept of (a an

  7. Climate Change Student Summits: A Model that Works (Invited)

    Science.gov (United States)

    Huffman, L. T.

    2013-12-01

    The C2S2: Climate Change Student Summit project has completed four years of activities plus a year-long longitudinal evaluation with demonstrated positive impacts beyond the life of the project on both students and teachers. This presentation will share the lessons learned about implementing this climate change science education program and suggest that it is a successful model that can be used to scale up from its Midwestern roots to achieve measurable national impact. A NOAA Environmental Literacy grant allowed ANDRILL (ANtarctic geological DRILLing) to grow a 2008 pilot program involving 2 Midwestern sites, to a program 4 years later involving 10 sites. The excellent geographical coverage included 9 of the U.S. National Climate Assessment regions defined by the U.S. Global Change Research Program. Through the delivery of two professional development (PD) workshops, a unique opportunity was provided for both formal and informal educators to engage their classrooms/audiences in understanding the complexities of climate change. For maximum contact hours, the PD experience was extended throughout the school year through the use of an online grouphub. Student teams were involved in a creative investigative science research and presentation experience culminating in a Climate Change Student Summit, an on-site capstone event including a videoconference connecting all sites. The success of this program was based on combining multiple aspects, such as encouraging the active involvement of scientists and early career researchers both in the professional development workshops and in the Student Summit. Another key factor was the close working relationships between informal and formal science entities, including involvement of informal science learning facilities and informal science education leaders. The program also created cutting-edge curriculum materials titled the ELF, (Environmental Literacy Framework with a focus on climate change), providing an earth systems

  8. Student perspectives of a Student-Led Groups Program model of professional practice education in a brain injury rehabilitation unit.

    Science.gov (United States)

    Patterson, Freyr; Fleming, Jennifer; Marshall, Kathryn; Ninness, Nadine

    2017-10-01

    Professional practice education is a core and essential component of occupational therapy training. With increasing numbers of education programmes and more students requiring professional practice placements, development of innovative models of professional practice education has emerged, but these require investigation. The aim of this study was to investigate student experiences and perceptions of the Student-Led Groups Program model of professional practice education in an inpatient brain injury rehabilitation unit. A qualitative approach, guided by phenomenological theory was used. Participants were 15 students who had completed a professional practice placement in the Student-Led Groups Program. Data were collected using in-depth semi-structured interviews and analysed thematically. Three over-arching themes emerged from the data; balance of support and freedom, development of clinical skills and missed opportunities. Students described how the structure of the placement facilitated independent learning and autonomy that was balanced with support from clinicians and student peers. Students perceived that they had developed a breadth of clinical skills and also had missed some learning opportunities in this professional practice placement structure. Overall student perceptions of the Student-Led Groups Program were positive, supporting the continued use of this model of professional practice education in this setting. The results highlight the value of structured and consistent approaches for supervision, including the use of formal approaches to peer supervision in the initial stages of learning. © 2017 Occupational Therapy Australia.

  9. Physics Learning using Inquiry-Student Team Achievement Division (ISTAD and Guided Inquiry Models Viewed by Students Achievement Motivation

    Directory of Open Access Journals (Sweden)

    S. H. Sulistijo

    2017-04-01

    Full Text Available This study aims to determine the differences in learning outcomes of between students that are given the Physics learning models of Inquiry-Student Team Achievement Division (ISTAD and guided inquiry, between students who have high achievement motivation and low achievement motivation. This study was an experimental study with a 2x2x2 factorial design. The study population was the students of class X of SMAN 1 Toroh Grobogan of academic year 2016/2017. Samples were obtained by cluster random sampling technique consists of two classes, class X IPA 3 is used as an experimental class using ISTAD model and class X IPA 4 as the control class using guided inquiry model. Data collection techniques using test techniques for learning outcomes, and technical questionnaire to obtain the data of students' achievement motivation. Analysis of data using two-way ANOVA. The results showed that: (1 there is a difference between the learning outcomes of students with the ISTAD Physics models and with the physics model of guided inquiry. (2 There are differences in learning outcomes between students who have high achievement motivation and low achievement motivation. (3 There is no interaction between ISTAD and guided inquiry Physics models learning and achievement motivation of students.

  10. Effect Of Inquiry Learning Model And Motivation On Physics Outcomes Learning Students

    OpenAIRE

    Pardede, Dahlia Megawati; Manurung, Sondang Rina

    2016-01-01

    The purposes of the research are: (a) to determine differences in learning outcomes of students with Inquiry Training models and conventional models, (b) to determine differences in physics learning outcomes of students who have high motivation and low motivation, (c) to determine the interaction between learning models with the level of motivation in improving student Physics learning outcomes. The results were found: (a) there are differences in physical students learning outcomes are taugh...

  11. Understanding of photosynthesis among students of biology and non-biology programmes of study

    OpenAIRE

    Lekan, Erika

    2016-01-01

    Photosynthesis is one of the most important processes on Earth, thus knowing at least its basic principles is essential. In Slovenia, the students become acquainted with these principles in the fifth form of elementary school. Due to the complexity of the photosynthesis process, the students hold misconceptions about it since the very beginning of the learning process. Due to several factors and reasons, these misconceptions persist throughout the secondary school and university studies. ...

  12. EFFECT OF INQUIRY LEARNING MODEL AND MOTIVATION ON PHYSICS OUTCOMES LEARNING STUDENTS

    Directory of Open Access Journals (Sweden)

    Dahlia Megawati Pardede

    2016-06-01

    Full Text Available The purposes of the research are: (a to determine differences in learning outcomes of students with Inquiry Training models and conventional models, (b to determine differences in physics learning outcomes of students who have high motivation and low motivation, (c to determine the interaction between learning models with the level of motivation in improving student Physics learning outcomes. The results were found: (a there are differences in physical students learning outcomes are taught by Inquiry Training models and conventional models. (b learning outcomes of students who are taught by Inquiry Learning Model Training better than student learning outcomes are taught with conventional model. (c there is a difference in student's learning outcomes that have high motivation and low motivation. (d Student learning outcomes that have a high motivation better than student learning outcomes than have a low motivation. (e there is interaction between learning and motivation to student learning outcomes. Learning outcomes of students who are taught by the model is influenced also by the motivation, while learning outcomes of students who are taught with conventional models are not affected by motivation.

  13. Model answers in pure mathematics for a-level students

    CERN Document Server

    Pratt, GA; Schofield, C W

    1967-01-01

    Model Answers in Pure Mathematics for A-Level Students provides a set of solutions that indicate what is required and expected in an Advanced Level examination in Pure Mathematics. This book serves as a guide to the length of answer required, layout of the solution, and methods of selecting the best approach to any particular type of math problem. This compilation intends to supplement, not replace, the normal textbook and provides a varied selection of questions for practice in addition to the worked solutions. The subjects covered in this text include algebra, trigonometry, coordinate geomet

  14. Modeling Students' Problem Solving Performance in the Computer-Based Mathematics Learning Environment

    Science.gov (United States)

    Lee, Young-Jin

    2017-01-01

    Purpose: The purpose of this paper is to develop a quantitative model of problem solving performance of students in the computer-based mathematics learning environment. Design/methodology/approach: Regularized logistic regression was used to create a quantitative model of problem solving performance of students that predicts whether students can…

  15. Dynamic Cognitive Tracing: Towards Unified Discovery of Student and Cognitive Models

    Science.gov (United States)

    Gonzalez-Brenes, Jose P.; Mostow, Jack

    2012-01-01

    This work describes a unified approach to two problems previously addressed separately in Intelligent Tutoring Systems: (i) Cognitive Modeling, which factorizes problem solving steps into the latent set of skills required to perform them; and (ii) Student Modeling, which infers students' learning by observing student performance. The practical…

  16. A Problem Solving Model for Use in Science Student Teacher Supervision.

    Science.gov (United States)

    Cavallo, Ann M. L.; Tice, Craig J.

    1993-01-01

    Describes and suggests the use of a problem-solving model that improves communication between student teachers and supervisors through the student teaching practicum. The aim of the model is to promote experimentation with various teaching techniques and to stimulate thinking among student teachers about their teaching experiences. (PR)

  17. Predicting the Risk of Attrition for Undergraduate Students with Time Based Modelling

    Science.gov (United States)

    Chai, Kevin E. K.; Gibson, David

    2015-01-01

    Improving student retention is an important and challenging problem for universities. This paper reports on the development of a student attrition model for predicting which first year students are most at-risk of leaving at various points in time during their first semester of study. The objective of developing such a model is to assist…

  18. Student Identification with Business Education Models: Measurement and Relationship to Educational Outcomes

    Science.gov (United States)

    Halbesleben, Jonathon R. B.; Wheeler, Anthony R.

    2009-01-01

    Although management scholars have provided a variety of metaphors to describe the role of students in management courses, researchers have yet to explore students' identification with the models and how they are linked to educational outcomes. This article develops a measurement tool for students' identification with business education models and…

  19. Modeling Success: Using Preenrollment Data to Identify Academically At-Risk Students

    Science.gov (United States)

    Gansemer-Topf, Ann M.; Compton, Jonathan; Wohlgemuth, Darin; Forbes, Greg; Ralston, Ekaterina

    2015-01-01

    Improving student success and degree completion is one of the core principles of strategic enrollment management. To address this principle, institutional data were used to develop a statistical model to identify academically at-risk students. The model employs multiple linear regression techniques to predict students at risk of earning below a…

  20. Using Consumer Behavior and Decision Models to Aid Students in Choosing a Major.

    Science.gov (United States)

    Kaynama, Shohreh A.; Smith, Louise W.

    1996-01-01

    A study found that using consumer behavior and decision models to guide students to a major can be useful and enjoyable for students. Students consider many of the basic parameters through multi-attribute and decision-analysis models, so time with professors, who were found to be the most influential group, can be used for more individual and…

  1. Secondary Students' Interpretations of Photosynthesis and Plant Nutrition.

    Science.gov (United States)

    Ozay, Esra; Oztas, Haydar

    2003-01-01

    Studies misconceptions held by grade 9 students (14-15-years old) in Turkey about photosynthesis and plant nutrition. Uses a questionnaire to test students' conceptions and reports conflicting and often incorrect ideas about photosynthesis, respiration, and energy flow in plants. Suggests that there are difficulties in changing students' prior…

  2. Springing into Inquiry: Using Student Ideas to Investigate Seasons

    Science.gov (United States)

    Wilcox, Jesse; Kruse, Jerrid

    2012-01-01

    Although inquiry is more engaging and results in more meaningful learning (Minner, Levy, and Century 2010) than traditional science classroom instruction, actually involving students in the process is difficult. Furthermore, many students have misconceptions about Earth's seasons, which are supported by students' prior knowledge of heat sources.…

  3. Flyover Modeling of Planetary Pits - Undergraduate Student Instrument Project

    Science.gov (United States)

    Bhasin, N.; Whittaker, W.

    2015-12-01

    On the surface of the moon and Mars there are hundreds of skylights, which are collapsed holes that are believed to lead to underground caves. This research uses Vision, Inertial, and LIDAR sensors to build a high resolution model of a skylight as a landing vehicle flies overhead. We design and fabricate a pit modeling instrument to accomplish this task, implement software, and demonstrate sensing and modeling capability on a suborbital reusable launch vehicle flying over a simulated pit. Future missions on other planets and moons will explore pits and caves, led by the technology developed by this research. Sensor software utilizes modern graph-based optimization techniques to build 3D models using camera, LIDAR, and inertial data. The modeling performance was validated with a test flyover of a planetary skylight analog structure on the Masten Xombie sRLV. The trajectory profile closely follows that of autonomous planetary powered descent, including translational and rotational dynamics as well as shock and vibration. A hexagonal structure made of shipping containers provides a terrain feature that serves as an appropriate analog for the rim and upper walls of a cylindrical planetary skylight. The skylight analog floor, walls, and rim are modeled in elevation with a 96% coverage rate at 0.25m2 resolution. The inner skylight walls have 5.9cm2 color image resolution and the rims are 6.7cm2 with measurement precision superior to 1m. The multidisciplinary student team included students of all experience levels, with backgrounds in robotics, physics, computer science, systems, mechanical and electrical engineering. The team was commited to authentic scientific experimentation, and defined specific instrument requirements and measurable experiment objectives to verify successful completion.This work was made possible by the NASA Undergraduate Student Instrument Project Educational Flight Opportunity 2013 program. Additional support was provided by the sponsorship of an

  4. Should students design or interact with models? Using the Bifocal Modelling Framework to investigate model construction in high school science

    Science.gov (United States)

    Fuhrmann, Tamar; Schneider, Bertrand; Blikstein, Paulo

    2018-05-01

    The Bifocal Modelling Framework (BMF) is an approach for science learning which links students' physical experimentation with computer modelling in real time, focusing on the comparison of the two media. In this paper, we explore how a Bifocal Modelling implementation supported learning outcomes related to both content and metamodeling knowledge, focusing on the role of designing models. Our study consisted of three conditions implemented with a total of 69 9th grade high-school students. The first and second classes were assigned two implementation modes of BMF: with and without a model design module. The third condition, employed as a control, consisted of a class that received instruction in the school's traditional approach. Our results indicate that students participating in both BMF implementations demonstrated improved content knowledge and a better understanding of metamodeling. However, only the 'BMF-with-design' group improved significantly in both content and metamodeling knowledge. Our qualitative analyses indicate that both BMF groups designed detailed models that included scientific explanations. However only students who engaged in the model design component: (1) completed a detailed model displaying molecular interaction; and (2) developed a critical perspective about models. We discuss the implications of those results for teaching scientific science concepts and metamodeling knowledge.

  5. Coherent Backscattering: Conceptions and Misconceptions (Reply to Comments by Bruce W. Hapke and Robert M. Nelson)

    Science.gov (United States)

    Tishkovets, Victor P.; Mishchenko, Michael

    2010-01-01

    Although the note by Hapke and Nelson has virtually no relevance to our original publication, it contains a number of statements that are misleading and/or wrong. We, therefore, use this opportunity to dispel several profound misconceptions that continue to hinder the progress in remote sensing of planetary surfaces.

  6. The Surprise Element: How Allaying Parents' Misconceptions Improves a Teacher's Communicative Process

    Science.gov (United States)

    Kumar, Rashmi

    2010-01-01

    Challenged by parents' misconceptions about the role of cooperative learning activities in developing their gifted children, a teacher began to mentor the parents. The act of mentoring those parents resulted in the teacher's longer-term professional development: specifically, creating a process of seeking structured feedback from parents and…

  7. Distance Education in the Digital Age: Common Misconceptions and Challenging Tasks

    Science.gov (United States)

    Guri-Rosenblit, Sarah

    2009-01-01

    This article discusses in its first part three common misconceptions related to the operation of distance education providers in the digital age: The tendency to relate to e-learning as the new generation of distance education; the confusion between ends and means of distance education; and the absence of the teachers' crucial role in the…

  8. Questions about Answers: Probing Teachers' Awareness and Planned Remediation of Learners' Misconceptions about Electric Circuits

    Science.gov (United States)

    Gaigher, Estelle

    2014-01-01

    This article reports an exploratory multi-case study on how science teachers understand and envisage addressing learners' misconceptions about electric circuits. Four teachers from schools in and around a large South African city participated in the study. An open-ended questionnaire was designed in a novel way, questioning teachers about wrong…

  9. Pre-Service Teachers' Knowledge, Misconceptions and Gaps about Autism Spectrum Disorder

    Science.gov (United States)

    Sanz-Cervera, Pilar; Fernández-Andrés, María-Inmaculada; Pastor-Cerezuela, Gemma; Tárraga-Mínguez, Raúl

    2017-01-01

    The inclusive education framework and the increase in autism diagnoses have led to an overwhelming challenge for pre-service teachers who need to be qualified to teach all children. To test the quality of their training, the main purpose of this study was to compare 866 pre-service teachers' knowledge, misconceptions, and gaps about autism in…

  10. Conceptions and Misconceptions about Neuroscience in Preschool Teachers: A Study from Argentina

    Science.gov (United States)

    Hermida, M. J.; Segretin, M. S.; Soni García, A.; Lipina, S. J.

    2016-01-01

    Background: Teachers' conceptions and misconceptions about neuroscience are crucial in establishing a proper dialogue between neuroscience and education. In recent years, studies in different countries have examined primary and secondary school teachers' conceptions. However, although preschool education has proved its importance to later academic…

  11. Prospective Chemistry Teachers' Misconceptions about Colligative Properties: Boiling Point Elevation and Freezing Point Depression

    Science.gov (United States)

    Pinarbasi, Tacettin; Sozbilir, Mustafa; Canpolat, Nurtac

    2009-01-01

    This study aimed at identifying prospective chemistry teachers' misconceptions of colligative properties. In order to fulfill this aim, a diagnostic test composed of four open-ended questions was used. The test was administered to seventy-eight prospective chemistry teachers just before qualifying to teaching in secondary schools. Nine different…

  12. What Are They Thinking? The Development and Use of an Instrument that Identifies Common Science Misconceptions

    Science.gov (United States)

    Stein, Mary; Barman, Charles R.; Larrabee, Timothy

    2007-01-01

    This article describes the rationale for, and development of, an online instrument that helps identify commonly held science misconceptions. Science Beliefs is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. It utilizes a true or false, along with a written-explanation, format. The true or…

  13. An Analysis of Misconceptions in Science Textbooks: Earth Science in England and Wales

    Science.gov (United States)

    King, Chris John Henry

    2010-01-01

    Surveys of the earth science content of all secondary (high school) science textbooks and related publications used in England and Wales have revealed high levels of error/misconception. The 29 science textbooks or textbook series surveyed (51 texts in all) showed poor coverage of National Curriculum earth science and contained a mean level of one…

  14. Measurement of Online Student Engagement: Utilization of Continuous Online Student Behavior Indicators as Items in a Partial Credit Rasch Model

    Science.gov (United States)

    Anderson, Elizabeth

    2017-01-01

    Student engagement has been shown to be essential to the development of research-based best practices for K-12 education. It has been defined and measured in numerous ways. The purpose of this research study was to develop a measure of online student engagement for grades 3 through 8 using a partial credit Rasch model and validate the measure…

  15. Taiwanese Students' Science Learning Self-Efficacy and Teacher and Student Science Hardiness: A Multilevel Model Approach

    Science.gov (United States)

    Wang, Ya-Ling; Tsai, Chin-Chung

    2016-01-01

    This study aimed to investigate the factors accounting for science learning self-efficacy (the specific beliefs that people have in their ability to complete tasks in science learning) from both the teacher and the student levels. We thus propose a multilevel model to delineate its relationships with teacher and student science hardiness (i.e.,…

  16. Student Learning of Complex Earth Systems: A Model to Guide Development of Student Expertise in Problem-Solving

    Science.gov (United States)

    Holder, Lauren N.; Scherer, Hannah H.; Herbert, Bruce E.

    2017-01-01

    Engaging students in problem-solving concerning environmental issues in near-surface complex Earth systems involves developing student conceptualization of the Earth as a system and applying that scientific knowledge to the problems using practices that model those used by professionals. In this article, we review geoscience education research…

  17. Mental Models Research to Inform Community Outreach for a Campus Recycling Program

    Science.gov (United States)

    Olson, Lauren; Arvai, Joseph; Thorp, Laurie

    2011-01-01

    Purpose: The purpose of this paper is to develop a better understanding of the state of knowledge of students and faculty on the Michigan State University (MSU) campus; identify relevant gaps in knowledge and misconceptions about recycling; and provide recommendations regarding how these gaps and misconceptions may be addressed through education…

  18. A student's guide to Python for physical modeling

    CERN Document Server

    Kinder, Jesse M

    2015-01-01

    Python is a computer programming language that is rapidly gaining popularity throughout the sciences. A Student’s Guide to Python for Physical Modeling aims to help you, the student, teach yourself enough of the Python programming language to get started with physical modeling. You will learn how to install an open-source Python programming environment and use it to accomplish many common scientific computing tasks: importing, exporting, and visualizing data; numerical analysis; and simulation. No prior programming experience is assumed. This tutorial focuses on fundamentals and introduces a wide range of useful techniques, including: Basic Python programming and scripting Numerical arrays Two- and three-dimensional graphics Monte Carlo simulations Numerical methods, including solving ordinary differential equations Image processing Animation Numerous code samples and exercises—with solutions—illustrate new ideas as they are introduced. A website that accompanies this guide provides additional resourc...

  19. PARAMETRIC MODELING, CREATIVITY, AND DESIGN: TWO EXPERIENCES WITH ARCHITECTURE’ STUDENTS

    Directory of Open Access Journals (Sweden)

    Wilson Florio

    2012-02-01

    Full Text Available The aim of this article is to reflect on the use of the parametric modeling in two didactic experiences. The first experiment involved resources of the Paracloud program and its relation with the Rhinoceros program, that resulted in the production of physical models produced with the aid of the laser cutting. In the second experiment, the students had produced algorithms in the Grasshopper, resulting in families of structures and coverings. The study objects are both the physical models and digital algorithms resultants from this experimentation. For the analysis and synthesis of the results, we adopted four important assumptions: 1. the value of attitudes and environment of work; 2. the importance of experimentation and improvisation; 3. understanding of the design process as a situated act and as a ill-defined problem; 4. the inclusion of creative and critical thought in the disciplines. The results allow us to affirm that the parametric modeling stimulates creativity, therefore allowing combination of different parameters, that result in unexpected discoveries. Keywords: Teach-Learning, Parametric Modeling, Laser Cutter, Grasshopper, Design Process, Creativity.

  20. EFFECTS OF INQUIRY TRAINING LEARNING MODEL BASED MULTIMEDIA AND MOTIVATION OF PHYSICS STUDENT LEARNING OUTCOMES

    OpenAIRE

    Hayati .; Retno Dwi Suyanti

    2013-01-01

    The objective in this research: (1) Determine a better learning model to improve learning outcomes physics students among learning model Inquiry Training based multimedia and Inquiry Training learning model. (2) Determine the level of motivation to learn in affects physics student learning outcomes. (3) Knowing the interactions between the model of learning and motivation in influencing student learning outcomes. This research is a quasi experimental. The population in this research was all s...

  1. Traumatic Brain Injury: Persistent Misconceptions and Knowledge Gaps among Educators

    Science.gov (United States)

    Ettel, Deborah; Glang, Ann E.; Todis, Bonnie; Davies, Susan C.

    2016-01-01

    Each year approximately 700,000 U.S. children aged 0-19 years sustain a traumatic brain injury (TBI) placing them at risk for academic, cognitive, and behavioural challenges. Although TBI has been a special education disability category for 25 years, prevalence studies show that of the 145,000 students each year who sustain long-term injury from…

  2. Chemistry Misconceptions Associated with Understanding Calcium and Phosphate Homeostasis

    Science.gov (United States)

    Cliff, William H.

    2009-01-01

    Successful learning of many aspects in physiology depends on a meaningful understanding of fundamental chemistry concepts. Two conceptual diagnostic questions measured student understanding of the chemical equilibrium underlying calcium and phosphate homeostasis. One question assessed the ability to predict the change in phosphate concentration…

  3. Modeling Human Serum Albumin Tertiary Structure to Teach Upper-Division Chemistry Students Bioinformatics and Homology Modeling Basics

    Science.gov (United States)

    Petrovic, Dus?an; Zlatovic´, Mario

    2015-01-01

    A homology modeling laboratory experiment has been developed for an introductory molecular modeling course for upper-division undergraduate chemistry students. With this experiment, students gain practical experience in homology model preparation and assessment as well as in protein visualization using the educational version of PyMOL…

  4. Supporting Teachers in Identifying Students' Learning Styles in Learning Management Systems: An Automatic Student Modelling Approach

    Science.gov (United States)

    Graf, Sabine; Kinshuk; Liu, Tzu-Chien

    2009-01-01

    In learning management systems (LMSs), teachers have more difficulties to notice and know how individual students behave and learn in a course, compared to face-to-face education. Enabling teachers to know their students' learning styles and making students aware of their own learning styles increases teachers' and students' understanding about…

  5. Evaluation of a 2 to 1 peer placement supervision model by physiotherapy students and their educators.

    Science.gov (United States)

    Alpine, Lucy M; Caldas, Francieli Tanji; Barrett, Emer M

    2018-04-02

    The objective of the study was to investigate student and practice educator evaluations of practice placements using a structured 2 to 1 supervision and implementation model. Cross-sectional pilot study set in clinical sites providing placements for physiotherapy students in Ireland. Students and practice educators completing a 2.1 peer placement between 2013 and 2015 participated. A self-reported questionnaire which measured indicators linked to quality assured placements was used. Three open-ended questions captured comments on the benefits and challenges associated with the 2 to 1 model. Ten students (10/20; 50% response rate) and 10 practice educators (10/10; 100% response rate) responded to the questionnaire. Student responses included four pairs of students and one student from a further two pairs. There was generally positive agreement with the questionnaire indicating that placements using the 2 to 1 model were positively evaluated by participants. There were no significant differences between students and practice educators. The main benefits of the 2 to 1 model were shared learning experiences, a peer supported environment, and the development of peer evaluation and feedback skills by students. A key component of the model was the peer scripting process which provided time for reflection, self-evaluation, and peer review. 2 to 1 placements were positively evaluated by students and educators when supported by a structured supervision model. Clear guidance to students on the provision of peer feedback and support for educators providing feedback to two different students is recommended.

  6. "She came out of mum's tummy the wrong way". (Mis)conceptions among siblings of children with rare disorders.

    Science.gov (United States)

    Vatne, Torun M; Helmen, Ingerid Østborg; Bahr, David; Kanavin, Øivind; Nyhus, Livø

    2015-04-01

    Misconceptions or uncertainty about the rare disorder of a sibling may cause adjustment problems among children. New knowledge about their misconceptions may enable genetic counselors to provide targeted information and increase siblings' knowledge. This study aims to describe misconceptions and uncertainties of siblings of children with rare disorders. Content analysis was applied to videotapes of 11 support group sessions with 56 children aged 6 to 17. First, children's statements about the disorder (turns) were categorized into the categories "identity," "cause," "cure," "timeline," and "consequences" and then coded as medically "correct," "misunderstood," or "uncertain." Next, turns categorized as "misunderstood" or "uncertain" were analyzed to explore prominent trends. Associations between sibling age, type of disorder, and frequency of misconceptions or uncertainties were analyzed statistically. Approximately 16 % of the children's turns were found to involve misconceptions or uncertainty about the disorder, most commonly about the identity or cause of the disorder. Misconceptions seemed to originate from information available in everyday family life, generalization of lay beliefs, or through difficulties understanding abstract medical concepts. Children expressed uncertainty about the reasons for everyday experiences (e.g. the abnormal behavior they observed). A lack of available information was described as causing uncertainty. Misconceptions and uncertainties were unrelated to child age or type of disorder. The information needs of siblings should always be addressed during genetic counseling, and advice and support offered to parents when needed. Information provided to siblings should be based on an exploration of their daily experiences and thoughts about the rare disorder.

  7. Comparison of oral health behavior among dental students, students of other disciplines, and fashion models in Switzerland.

    Science.gov (United States)

    Kirchhoff, Julien; Filippi, Andreas

    Self-reliant oral health behavior exert great influence on the oral health of our society. The aim of the present study was to find out whether there is an occupation-related difference in the oral health behavior between dental students, students of other disciplines, and fashion models in German-speaking Switzerland. The survey comprised 19 questions which were asked using a web-based anonymous questionnaire. The investigation particularly inquired about employed auxiliaries and their application for an improvement of oral hygiene. In addition, the satisfaction with the own teeth and smile as well as the influence of the occupation or the study on oral hygiene were examined. Included in this evaluation were 204 dental students, 257 students of other disciplines, and 117 fashion models aged between 21 and 25 years. The evaluation reveals that the state of knowledge and the professional relationship affect the practice of oral hygiene, in particular among dental students. Fashion models, however, are most intensively concerned with body care and oral hygiene. Their attention is directed particularly to means supposed to improve the smile as well as to ensure fresh breath. Dental students and fashion models constitute a selected minority clearly demarcated from students of other disciplines regarding a higher awareness of self-reliant oral hygiene. The comparatively minor rating of oral health in a group of basically well-trained individuals suggests great need of educational work in the general population.

  8. The effect of mining data k-means clustering toward students profile model drop out potential

    Science.gov (United States)

    Purba, Windania; Tamba, Saut; Saragih, Jepronel

    2018-04-01

    The high of student success and the low of student failure can reflect the quality of a college. One of the factors of fail students was drop out. To solve the problem, so mining data with K-means Clustering was applied. K-Means Clustering method would be implemented to clustering the drop out students potentially. Firstly the the result data would be clustering to get the information of all students condition. Based on the model taken was found that students who potentially drop out because of the unexciting students in learning, unsupported parents, diffident students and less of students behavior time. The result of process of K-Means Clustering could known that students who more potentially drop out were in Cluster 1 caused Credit Total System, Quality Total, and the lowest Grade Point Average (GPA) compared between cluster 2 and 3.

  9. Fighting against a misconception about the Energy Yielding Metabolism: a proposal for starting the teaching of human nutrition in schools

    Directory of Open Access Journals (Sweden)

    F. Souza Silva

    2005-07-01

    Full Text Available We have demonstrated that undergraduate and high school students share two contradictory concep- tions  regarding  the  energy  yielding  metabolism  (EYM:  the  incorrect  notion  that only glucose can be used for ATP  production together  with  more appropriated conception  according  to which other molecules,  mainly  lipids can also be used for ATP  production.  We have  deepened  the  study  about the origin of such conceptual  profile. Using questionnaires, we have determined that 7th grade school students do not  present  the  erroneous  conception,  but those  from the 8th  grade  (and  later  grades do.  This  finding has led us to  propose  the  hypothesis  that the wrong conception  may  emerge as a result of formal learning during 8th grade.  Indeed, the analysis of 8th grade textbooks  showed that the carbohydrates were associated  mainly  with  energy production by the  cells, while proteins  and  lipids were regarded  only as structural and storage  molecules, respectively.  In addition, only the glycolytic pathway was taught in high school, reinforcing  the  misconception.   We have also demonstrated that the conceptual  profile was widely distributed among students from different schools of different regions of the Rio de Janeiro  state,  reinforcing the importance of reformulation of the teaching of EYM-related topics  both  in grade  and  high schools.  Here we describe  the  development and  the  evaluation of an investigation-based approach  to human  nutrition to be used with  8th grade  students.  This  method- ology is based  in the  use of the  nutritional tables  found  in Brazilian  food packages  and  allows the students to identify not only which of the main nutrients do contain  calories (and thus can be used for,, energy production,, but the amount of calories found in 1g of each of them.  The methodology wastested

  10. Evaluating Educational Practices for Positively Affecting Student Perceptions of a Sales Career

    Science.gov (United States)

    Cummins, Shannon; Peltier, James W.; Pomirleanu, Nadia; Cross, James; Simon, Rob

    2015-01-01

    Despite demand for new graduates seeking a sales position, student reticence toward pursuing a sales career remains. While all students will not choose a sales career, diminishing the existence of sales-related misconceptions among the student population should establish sales as a viable career path for a larger number of students. We test six…

  11. Analogies and the 5E Model

    Science.gov (United States)

    Orgill, Mary Kay; Thomas, Megan

    2007-01-01

    Science classes are full of abstract or challenging concepts that are easier to understand if an analogy is used to illustrate the points. Effective analogies motivate students, clarify students' thinking, help students overcome misconceptions, and give students ways to visualize abstract concepts. When they are used appropriately, analogies can…

  12. A picture is worth a thousand words: helping students visualize a conceptual model.

    Science.gov (United States)

    Johnson, S E

    1989-01-01

    Communicating the functional applicability of a conceptual framework to nursing students can be a challenge of considerable magnitude. Nurse educators are convinced that nursing practice and process should stem from theory. However, when attempting to teach this, many educators have struggled with the expressions of confused, skeptical students. To provide a better understanding of a nursing model, the author uses a visual representation of the Neuman Systems Model variables. The student can then visualize application of the Model to nursing practice.

  13. Growing up and Role Modeling: A Theory in Iranian Nursing Students? Education

    OpenAIRE

    Nouri, Jamileh Mokhtari; Ebadi, Abbas; Alhani, Fatemeh; Rejeh, Nahid

    2014-01-01

    One of the key strategies in students? learning is being affected by models. Understanding the role-modeling process in education will help to make greater use of this training strategy. The aim of this grounded theory study was to explore Iranian nursing students and instructors? experiences about role modeling process. Data was analyzed by Glaserian?s Grounded Theory methodology through semi-structured interviews with 7 faculty members, 2 nursing students; the three focus group discussions ...

  14. Measuring Teacher Effectiveness through Hierarchical Linear Models: Exploring Predictors of Student Achievement and Truancy

    Science.gov (United States)

    Subedi, Bidya Raj; Reese, Nancy; Powell, Randy

    2015-01-01

    This study explored significant predictors of student's Grade Point Average (GPA) and truancy (days absent), and also determined teacher effectiveness based on proportion of variance explained at teacher level model. We employed a two-level hierarchical linear model (HLM) with student and teacher data at level-1 and level-2 models, respectively.…

  15. Investigating and Developing Engineering Students' Mathematical Modelling and Problem-Solving Skills

    Science.gov (United States)

    Wedelin, Dag; Adawi, Tom; Jahan, Tabassum; Andersson, Sven

    2015-01-01

    How do engineering students approach mathematical modelling problems and how can they learn to deal with such problems? In the context of a course in mathematical modelling and problem solving, and using a qualitative case study approach, we found that the students had little prior experience of mathematical modelling. They were also inexperienced…

  16. The Effects of Video Self-Modeling on High School Students with Emotional and Behavioral Disturbances

    Science.gov (United States)

    Chu, Szu-Yin; Baker, Sonia

    2015-01-01

    Video self-modeling has been proven to be effective with other populations with challenging behaviors, but only a few studies of video self-modeling have been conducted with high school students with emotional and behavioral disorders. This study aimed to focus on analyzing the effects of video self-modeling on four high school students with…

  17. Studying the Consistency between and within the Student Mental Models for Atomic Structure

    Science.gov (United States)

    Zarkadis, Nikolaos; Papageorgiou, George; Stamovlasis, Dimitrios

    2017-01-01

    Science education research has revealed a number of student mental models for atomic structure, among which, the one based on Bohr's model seems to be the most dominant. The aim of the current study is to investigate the coherence of these models when students apply them for the explanation of a variety of situations. For this purpose, a set of…

  18. Translation of overlay models of student knowledge for relative domains based on domain ontology mapping

    DEFF Research Database (Denmark)

    Sosnovsky, Sergey; Dolog, Peter; Henze, Nicola

    2007-01-01

    The effectiveness of an adaptive educational system in many respects depends on the precision of modeling assumptions it makes about a student. One of the well-known challenges in student modeling is to adequately assess the initial level of student's knowledge when s/he starts working...... with a system. Sometimes potentially handful data are available as a part of user model from a system used by the student before. The usage of external user modeling information is troublesome because of differences in system architecture, knowledge representation, modeling constraints, etc. In this paper, we...... argue that the implementation of underlying knowledge models in a sharable format, as domain ontologies - along with application of automatic ontology mapping techniques for model alignment - can help to overcome the "new-user" problem and will greatly widen opportunities for student model translation...

  19. Determining Student Competency in Field Placements: An Emerging Theoretical Model

    Directory of Open Access Journals (Sweden)

    Twyla L. Salm

    2016-06-01

    Full Text Available This paper describes a qualitative case study that explores how twenty-three field advisors, representing three human service professions including education, nursing, and social work, experience the process of assessment with students who are struggling to meet minimum competencies in field placements. Five themes emerged from the analysis of qualitative interviews. The field advisors primary concern was the level of professional competency achieved by practicum students. Related to competency were themes concerned with the field advisor's role in being accountable and protecting the reputation of his/her profession as well as the reputation of the professional program affiliated with the practicum student's professional education. The final theme – teacher-student relationship –emerged from the data, both as a stand-alone and global or umbrella theme. As an umbrella theme, teacher-student relationship permeated each of the other themes as the participants interpreted their experiences of the process of assessment through the mentor relationships. A theoretical model was derived from these findings and the description of the model is presented. Cet article décrit une étude de cas qualitative qui explore comment vingt-trois conseillers de stages, représentant trois professions de services sociaux comprenant l’éducation, les soins infirmiers et le travail social, ont vécu l’expérience du processus d’évaluation avec des étudiants qui ont des difficultés à acquérir les compétences minimales durant les stages. Cinq thèmes ont été identifiés lors de l’analyse des entrevues qualitatives. La préoccupation principale des conseillers de stages était le niveau de compétence professionnelle acquis par les stagiaires. Les thèmes liés à la compétence étaient le rôle des conseillers de stages dans leur responsabilité pour protéger la réputation de leur profession ainsi que la réputation d’un programme professionnel

  20. An Analysis of High School Students' Mental Models of Solid Friction in Physics

    Science.gov (United States)

    Kurnaz, Mehmet Altan; Eksi, Cigdem

    2015-01-01

    Students often have difficulties understanding abstract physics concepts, such as solid friction. This study examines high school students' mental models of solid friction through a case study of 215 high school students in the ninth through twelfth grades. An achievement test with three open-ended questions was created, with questions limited to…