Recent MEG Results and Predictive SO(10) Models
Fukuyama, Takeshi
2011-01-01
Recent MEG results of a search for the lepton flavor violating (LFV) muon decay, $\\mu \\to e \\gamma$, show 3 events as the best value for the number of signals in the maximally likelihood fit. Although this result is still far from the evidence/discovery in statistical point of view, it might be a sign of a certain new physics beyond the Standard Model. As has been well-known, supersymmetric (SUSY) models can generate the $\\mu \\to e \\gamma$ decay rate within the search reach of the MEG experiment. A certain class of SUSY grand unified theory (GUT) models such as the minimal SUSY SO(10) model (we call this class of models "predictive SO(10) models") can unambiguously determine fermion Yukawa coupling matrices, in particular, the neutrino Dirac Yukawa matrix. Based on the universal boundary conditions for soft SUSY breaking parameters at the GUT scale, we calculate the rate of the $\\mu \\to e \\gamma$ process by using the completely determined Dirac Yukawa matrix in two examples of predictive SO(10) models. If we ...
Operational results from a physical power prediction model
Energy Technology Data Exchange (ETDEWEB)
Landberg, L. [Risoe National Lab., Meteorology and Wind Energy Dept., Roskilde (Denmark)
1999-03-01
This paper will describe a prediction system which predicts the expected power output of a number of wind farms. The system is automatic and operates on-line. The paper will quantify the accuracy of the predictions and will also give examples of the performance for specific storm events. An actual implementation of the system will be described and the robustness demonstrated. (au) 11 refs.
Admission Laboratory Results to Enhance Prediction Models of Postdischarge Outcomes in Cardiac Care.
Pine, Michael; Fry, Donald E; Hannan, Edward L; Naessens, James M; Whitman, Kay; Reband, Agnes; Qian, Feng; Schindler, Joseph; Sonneborn, Mark; Roland, Jaclyn; Hyde, Linda; Dennison, Barbara A
Predictive modeling for postdischarge outcomes of inpatient care has been suboptimal. This study evaluated whether admission numerical laboratory data added to administrative models from New York and Minnesota hospitals would enhance the prediction accuracy for 90-day postdischarge deaths without readmission (PD-90) and 90-day readmissions (RA-90) following inpatient care for cardiac patients. Risk-adjustment models for the prediction of PD-90 and RA-90 were designed for acute myocardial infarction, percutaneous cardiac intervention, coronary artery bypass grafting, and congestive heart failure. Models were derived from hospital claims data and were then enhanced with admission laboratory predictive results. Case-level discrimination, goodness of fit, and calibration were used to compare administrative models (ADM) and laboratory predictive models (LAB). LAB models for the prediction of PD-90 were modestly enhanced over ADM, but negligible benefit was seen for RA-90. A consistent predictor of PD-90 and RA-90 was prolonged length of stay outliers from the index hospitalization.
Directory of Open Access Journals (Sweden)
Kattan Michael W
2007-06-01
Full Text Available Abstract Introduction The clinical significance of a treatment effect demonstrated in a randomized trial is typically assessed by reference to differences in event rates at the group level. An alternative is to make individualized predictions for each patient based on a prediction model. This approach is growing in popularity, particularly for cancer. Despite its intuitive advantages, it remains plausible that some prediction models may do more harm than good. Here we present a novel method for determining whether predictions from a model should be used to apply the results of a randomized trial to individual patients, as opposed to using group level results. Methods We propose applying the prediction model to a data set from a randomized trial and examining the results of patients for whom the treatment arm recommended by a prediction model is congruent with allocation. These results are compared with the strategy of treating all patients through use of a net benefit function that incorporates both the number of patients treated and the outcome. We examined models developed using data sets regarding adjuvant chemotherapy for colorectal cancer and Dutasteride for benign prostatic hypertrophy. Results For adjuvant chemotherapy, we found that patients who would opt for chemotherapy even for small risk reductions, and, conversely, those who would require a very large risk reduction, would on average be harmed by using a prediction model; those with intermediate preferences would on average benefit by allowing such information to help their decision making. Use of prediction could, at worst, lead to the equivalent of an additional death or recurrence per 143 patients; at best it could lead to the equivalent of a reduction in the number of treatments of 25% without an increase in event rates. In the Dutasteride case, where the average benefit of treatment is more modest, there is a small benefit of prediction modelling, equivalent to a reduction of
New Results on Robust Model Predictive Control for Time-Delay Systems with Input Constraints
Directory of Open Access Journals (Sweden)
Qing Lu
2014-01-01
Full Text Available This paper investigates the problem of model predictive control for a class of nonlinear systems subject to state delays and input constraints. The time-varying delay is considered with both upper and lower bounds. A new model is proposed to approximate the delay. And the uncertainty is polytopic type. For the state-feedback MPC design objective, we formulate an optimization problem. Under model transformation, a new model predictive controller is designed such that the robust asymptotical stability of the closed-loop system can be guaranteed. Finally, the applicability of the presented results are demonstrated by a practical example.
Quantifying Uncertainty in Model Predictions for the Pliocene (Plio-QUMP): Initial results
Pope, J.O.; Collins, M.; Haywood, A.M.; Dowsett, H.J.; Hunter, S.J.; Lunt, D.J.; Pickering, S.J.; Pound, M.J.
2011-01-01
Examination of the mid-Pliocene Warm Period (mPWP; ~. 3.3 to 3.0. Ma BP) provides an excellent opportunity to test the ability of climate models to reproduce warm climate states, thereby assessing our confidence in model predictions. To do this it is necessary to relate the uncertainty in model simulations of mPWP climate to uncertainties in projections of future climate change. The uncertainties introduced by the model can be estimated through the use of a Perturbed Physics Ensemble (PPE). Developing on the UK Met Office Quantifying Uncertainty in Model Predictions (QUMP) Project, this paper presents the results from an initial investigation using the end members of a PPE in a fully coupled atmosphere-ocean model (HadCM3) running with appropriate mPWP boundary conditions. Prior work has shown that the unperturbed version of HadCM3 may underestimate mPWP sea surface temperatures at higher latitudes. Initial results indicate that neither the low sensitivity nor the high sensitivity simulations produce unequivocally improved mPWP climatology relative to the standard. Whilst the high sensitivity simulation was able to reconcile up to 6 ??C of the data/model mismatch in sea surface temperatures in the high latitudes of the Northern Hemisphere (relative to the standard simulation), it did not produce a better prediction of global vegetation than the standard simulation. Overall the low sensitivity simulation was degraded compared to the standard and high sensitivity simulations in all aspects of the data/model comparison. The results have shown that a PPE has the potential to explore weaknesses in mPWP modelling simulations which have been identified by geological proxies, but that a 'best fit' simulation will more likely come from a full ensemble in which simulations that contain the strengths of the two end member simulations shown here are combined. ?? 2011 Elsevier B.V.
Comparison of TS and ANN Models with the Results of Emission Scenarios in Rainfall Prediction
Directory of Open Access Journals (Sweden)
S. Babaei Hessar
2016-02-01
Full Text Available Introduction: Precipitation is one of the most important and sensitive parameters of the tropical climate that influence the catchments hydrological regime. The prediction of rainfall is vital for strategic planning and water resources management. Despite its importance, statistical rainfall forecasting, especially for long-term, has been proven to be a great challenge due to the dynamic nature of climate phenomena and random fluctuations involved in the process. Various methods, such as time series and artificial neural network models, have been proposed to predict the level of rainfall. But there is not enough attention to global warming and climate change issues. The main aim of this study is to investigate the conformity of artificial neural network and time series models with climate scenarios. Materials and Methods: For this study, 50 years of daily rainfall data (1961 to 2010 of the synoptic station of Urmia, Tabriz and Khoy was investigated. Data was obtained from Meteorological Organization of Iran. In the present study, the results of two Artificial Neural Network (ANN and Time Seri (TS methods were compared with the result of the Emission Scenarios (A2 & B1. HadCM3 model in LARS-WG software was used to generate rainfall for the next 18 years (2011-2029. The results of models were compared with climate scenarios over the next 18 years in the three synoptic stations located in the basin of the Lake Urmia. At the first stage, the best model of time series method was selected. The precipitation was estimated for the next 18 years using these models. For the same period, precipitation was forecast using artificial neural networks. Finally, the results of two models were compared with data generated under two scenarios (B1 and A2 in LARS-WG. Results and Discussion: Different order of AR, MA and ARMA was examined to select the best model of TS The results show that AR(1 was suitable for Tabriz and Khoy stations .In the Urmia station MA(1 was
DEFF Research Database (Denmark)
Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo;
2016-01-01
Background: Combination treatment is increasingly used to fight infections caused by bacteria resistant to two or more antimicrobials. While multiple studies have evaluated treatment strategies to minimize the emergence of resistant strains for single antimicrobial treatment, fewer studies have...... generated by a mathematical model of the competitive growth of multiple strains of Escherichia coli.Results: Simulation studies showed that sequential use of tetracycline and ampicillin reduced the level of double resistance, when compared to the combination treatment. The effect of the cycling frequency...... frequency did not play a role in suppressing the growth of resistant strains, but the specific order of the two antimicrobials did. Predictions made from the study could be used to redesign multidrug treatment strategies not only for intramuscular treatment in pigs, but also for other dosing routes....
Bergeot, Baptiste; Vergez, Christophe; Gazengel, Bruno
2014-01-01
Simple models of clarinet instruments based on iterated maps have been used in the past to successfully estimate the threshold of oscillation of this instrument as a function of a constant blowing pressure. However, when the blowing pressure gradually increases through time, the oscillations appear at a much higher value than what is predicted in the static case. This is known as bifurcation delay, a phenomenon studied in [1] for a clarinet model. In numerical simulations the bifurcation delay showed a strong sensitivity to numerical precision.
Prediction of the result in race walking using regularized regression models
Directory of Open Access Journals (Sweden)
Krzysztof Przednowek
2013-04-01
Full Text Available The following paper presents the use of regularized linear models as tools to optimize training process. The models were calculated by using data collected from race-walkers' training events. The models used predict the outcomes over a 3 km race and following a prescribed training plan. The material included a total of 122 training patterns made by 21 players. The methods of analysis include: classical model of OLS regression, ridge regression, LASSO regression and elastic net regression. In order to compare and choose the best method a cross-validation of the extit{leave-one-out} was used. All models were calculated using R language with additional packages. The best model was determined by the LASSO method which generates an error of about 26 seconds. The method has simplified the structure of the model by eliminating 5 out of 18 predictors.
DEFF Research Database (Denmark)
Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo;
2016-01-01
considered combination treatments. The current study modeled bacterial growth in the intestine of pigs after intramuscular combination treatment (i.e. using two antibiotics simultaneously) and sequential treatments (i.e. alternating between two antibiotics) in order to identify the factors that favor...... the sensitive fraction of the commensal flora.Growth parameters for competing bacterial strains were estimated from the combined in vitro pharmacodynamic effect of two antimicrobials using the relationship between concentration and net bacterial growth rate. Predictions of in vivo bacterial growth were...
Application of Physics Model in prediction of the Hellas Euro election results
Directory of Open Access Journals (Sweden)
L. Magafas
2009-01-01
Full Text Available In this paper we use chaos theory to predict the Hellenic Euro election results in the form of time series for Hellenic political parties New Democracy (ND, Panhellenic Socialistic Movement (PASOK, Hellenic Communistic Party (KKE , Coalition of the Radical Left (SYRIZA and (Popular Orthodox Rally LAOS, using the properties of the reconstructed strange attrac-tor of the corresponding non linear system, creating a new scientific field called “DemoscopoPhysics”. For this purpose we found the optimal delay time, the correlation and embedding dimension with the method of Grassberger and Procassia. With the help of topological properties of the corresponding strange attractor we achieved up to a 60 time steps out of sample pre-diction of the public survey.
Predictive Modelling of Toxicity Resulting from Radiotherapy Treatments of Head and Neck Cancer
Dean, Jamie A; Harrington, Kevin J; Nutting, Christopher M; Gulliford, Sarah L
2014-01-01
In radiotherapy for head and neck cancer, the radiation dose delivered to the pharyngeal mucosa (mucosal lining of the throat) is thought to be a major contributing factor to dysphagia (swallowing dysfunction), the most commonly reported severe toxicity. There is a variation in the severity of dysphagia experienced by patients. Understanding the role of the dose distribution in dysphagia would allow improvements in the radiotherapy technique to be explored. The 3D dose distributions delivered to the pharyngeal mucosa of 249 patients treated as part of clinical trials were reconstructed. Pydicom was used to extract DICOM (digital imaging and communications in medicine) data (the standard file formats for medical imaging and radiotherapy data). NumPy and SciPy were used to manipulate the data to generate 3D maps of the dose distribution delivered to the pharyngeal mucosa and calculate metrics describing the dose distribution. Multivariate predictive modelling of severe dysphagia, including descriptions of the d...
DEFF Research Database (Denmark)
Tarrero, A.I.; Martín, M.A.; González, J.
2008-01-01
to predict scattering effects when sound propagates in outdoor spaces with obstacles. The comparison of experimental results and predictions shows that the Nord 2000 model predicts the ground effect dip in forests with acceptable accuracy in about 60% of the cases if the flow resistivity of the ground......The purpose of the work described in this paper is twofold: (i) to present the results of an experimental investigation of the sound attenuation in different types of forest, and (ii) to validate a part of the Nord 2000 model. A number of measurements have been carried out in regular and irregular...... forests with trees with deciduous and evergreen leaves, different tree density, different trunk diameter, etc. The experimental results indicate that trees have a noticeable effect on sound propagation at medium and high frequencies at distances longer than 40m. The Nord 2000 model uses a simple algorithm...
Vertical Instability in EAST: Comparison of Model Predictions with Experimental Results
Institute of Scientific and Technical Information of China (English)
QIAN Jinping; WAN Baonian; SHEN Biao; XIAO Bingjia; SUN Youwen; SHI Yuejiang; LIN Shiyao; LI Jiangang; GONG Xianzu
2008-01-01
Growth rates of the axisymmetric mode in elongated plasmas in the experimental advanced superconducting tokamak (EAST) are measured with zero feedback gains and then compared with numerically calculated growth rates for the reconstructed shapes. The comparison is made after loss of vertical position control. The open-loop growth rates were scanned with the number of vessel eigenmodes, which up to 20 is enough to make the growth rates settled. The agreement between the growth rates measured experimentally and the growth rates determined numerically is good. The results show that a linear RZIP model is essentially good enough for the vertical position feedback control.
Christianen, Miranda E M C; Schilstra, Cornelis; Beetz, Ivo; Muijs, C.T.; Chouvalova, Olga; Burlage, Fred R.; Doornaert, P.; Koken, P.W.; Leemans, C.R.; Rinkel, R.N.; de Bruijn, M.J.; de Bock, G.H.; Roodenburg, J.L.; van der Laan, B.F.; Slotman, B.J.; Verdonck-de Leeuw, I.M.; Bijl, Hendrik P.; Langendijk, J.A.
2012-01-01
Background and purpose: The purpose of this large multicentre prospective cohort study was to identify which dose volume histogram parameters and pre-treatment factors are most important to predict physician-rated and patient-rated radiation-induced swallowing dysfunction (RISD) in order to develop
Pre- and post-radiotherapy MRI results as a predictive model for response in laryngeal carcinoma
Ljumanovic, Redina; Langendijk, Johannes A.; Hoekstra, Otto S.; Knol, Dirk L.; Leemans, C. Rene; Castelijns, Jonas A.
2008-01-01
The purpose was to determine if pre-radiotherapy (RT) and/or post-radiotherapy magnetic resonance (MR) imaging can predict response in patients with laryngeal carcinoma treated with RT. Pre- and post-RT MR examinations of 80 patients were retrospectively reviewed and associated with regard to local
DEFF Research Database (Denmark)
Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo
2016-01-01
Background: Combination treatment is increasingly used to fight infections caused by bacteria resistant to two or more antimicrobials. While multiple studies have evaluated treatment strategies to minimize the emergence of resistant strains for single antimicrobial treatment, fewer studies have...... frequency did not play a role in suppressing the growth of resistant strains, but the specific order of the two antimicrobials did. Predictions made from the study could be used to redesign multidrug treatment strategies not only for intramuscular treatment in pigs, but also for other dosing routes....... the sensitive fraction of the commensal flora.Growth parameters for competing bacterial strains were estimated from the combined in vitro pharmacodynamic effect of two antimicrobials using the relationship between concentration and net bacterial growth rate. Predictions of in vivo bacterial growth were...
Unal, E.; Tan, E.; Mentes, S. S.; Caglar, F.; Turkmen, M.; Unal, Y. S.; Onol, B.; Ozdemir, E. T.
2012-04-01
Although discontinuous behavior of wind field makes energy production more difficult, wind energy is the fastest growing renewable energy sector in Turkey which is the 6th largest electricity market in Europe. Short-term prediction systems, which capture the dynamical and statistical nature of the wind field in spatial and time scales, need to be advanced in order to increase the wind power prediction accuracy by using appropriate numerical weather forecast models. Therefore, in this study, performances of the next generation mesoscale Numerical Weather Forecasting model, WRF, and The Fifth-Generation NCAR/Penn State Mesoscale Model, MM5, have been compared for the Western Part of Turkey. MM5 has been widely used by Turkish State Meteorological Service from which MM5 results were also obtained. Two wind farms of the West Turkey have been analyzed for the model comparisons by using two different model domain structures. Each model domain has been constructed by 3 nested domains downscaling from 9km to 1km resolution by the ratio of 3. Since WRF and MM5 models have no exactly common boundary layer, cumulus, and microphysics schemes, the similar physics schemes have been chosen for these two models in order to have reasonable comparisons. The preliminary results show us that, depending on the location of the wind farms, MM5 wind speed RMSE values are 1 to 2 m/s greater than that of WRF values. Since 1 to 2 m/s errors can be amplified when wind speed is converted to wind power; it is decided that the WRF model results are going to be used for the rest of the project.
Declair, Stefan; Stephan, Klaus; Potthast, Roland
2015-04-01
Determining the amount of weather dependent renewable energy is a demanding task for transmission system operators (TSOs). In the project EWeLiNE funded by the German government, the German Weather Service and the Fraunhofer Institute on Wind Energy and Energy System Technology strongly support the TSOs by developing innovative weather- and power forecasting models and tools for grid integration of weather dependent renewable energy. The key in the energy prediction process chain is the numerical weather prediction (NWP) system. With focus on wind energy, we face the model errors in the planetary boundary layer, which is characterized by strong spatial and temporal fluctuations in wind speed, to improve the basis of the weather dependent renewable energy prediction. Model data can be corrected by postprocessing techniques such as model output statistics and calibration using historical observational data. On the other hand, latest observations can be used in a preprocessing technique called data assimilation (DA). In DA, the model output from a previous time step is combined such with observational data, that the new model data for model integration initialization (analysis) fits best to the latest model data and the observational data as well. Therefore, model errors can be already reduced before the model integration. In this contribution, the results of an impact study are presented. A so-called OSSE (Observation Simulation System Experiment) is performed using the convective-resoluted COSMO-DE model of the German Weather Service and a 4D-DA technique, a Newtonian relaxation method also called nudging. Starting from a nature run (treated as the truth), conventional observations and artificial wind observations at hub height are generated. In a control run, the basic model setup of the nature run is slightly perturbed to drag the model away from the beforehand generated truth and a free forecast is computed based on the analysis using only conventional
Directory of Open Access Journals (Sweden)
Alessandro OGGIONI
2006-02-01
Full Text Available This study reports the first preliminary results of the DYRESM-CAEDYM model application to a mid size sub-alpine lake (Lake Pusiano North Italy. The in-lake modelling is a part of a more general project called Pusiano Integrated Lake/Catchment project (PILE whose final goal is to understand the hydrological and trophic relationship between lake and catchment, supporting the restoration plan of the lake through field data analysis and numerical models. DYRESM is a 1D-3D hydrodynamics model for predicting the vertical profile of temperature, salinity and density. CAEDYM is multi-component ecological model, used here as a phytoplankton-zooplankton processes based model, which includes algorithms to simulate the nutrient cycles within the water column as well as the air-water gas exchanges and the water-sediments fluxes. The first results of the hydrodynamics simulations underline the capability of the model to accurately simulate the surface temperature seasonal trend and the thermal gradient whereas, during summer stratification, the model underestimates the bottom temperature of around 2 °C. The ecological model describes the epilimnetic reactive phosphorus (PO4 depletion (due to the phytoplankton uptake and the increase in PO4 concentrations in the deepest layers of the lake (due to the mineralization processes and the sediments release. In terms of phytoplankton dynamics the model accounts for the Planktothrix rubescens dominance during the whole season, whereas it seems to underestimate the peak in primary production related to both the simulated algal groups (P. rubescens and the rest of the other species aggregated in a single class. The future aims of the project are to complete the model parameterization and to connect the in-lake and the catchment modelling in order to gain an integrated view of the lake-catchment ecosystem as well as to develop a three dimensional model of the lake.
Directory of Open Access Journals (Sweden)
Leo Oey
2013-01-01
Full Text Available A data-assimilated Taiwan Ocean Prediction (ATOP system is being developed at the National Central University, Taiwan. The model simulates sea-surface height, three-dimensional currents, temperature and salinity and turbulent mixing. The model has options for tracer and particle-tracking algorithms, as well as for wave-induced Stokes drift and wave-enhanced mixing and bottom drag. Two different forecast domains have been tested: a large-grid domain that encompasses the entire North Pacific Ocean at 0.1° × 0.1° horizontal resolution and 41 vertical sigma levels, and a smaller western North Pacific domain which at present also has the same horizontal resolution. In both domains, 25-year spin-up runs from 1988 - 2011 were first conducted, forced by six-hourly Cross-Calibrated Multi-Platform (CCMP and NCEP reanalysis Global Forecast System (GSF winds. The results are then used as initial conditions to conduct ocean analyses from January 2012 through February 2012, when updated hindcasts and real-time forecasts begin using the GFS winds. This paper describes the ATOP system and compares the forecast results against satellite altimetry data for assessing model skills. The model results are also shown to compare well with observations of (i the Kuroshio intrusion in the northern South China Sea, and (ii subtropical counter current. Review and comparison with other models in the literature of ¡§(i¡¨ are also given.
Cortés, J.-C.; Colmenar, J.-M.; Hidalgo, J.-I.; Sánchez-Sánchez, A.; Santonja, F.-J.; Villanueva, R.-J.
2016-01-01
Academic performance is a concern of paramount importance in Spain, where around of 30 % of the students in the last two courses in high school, before to access to the labor market or to the university, do not achieve the minimum knowledge required according to the Spanish educational law in force. In order to analyze this problem, we propose a random network model to study the dynamics of the academic performance in Spain. Our approach is based on the idea that both, good and bad study habits, are a mixture of personal decisions and influence of classmates. Moreover, in order to consider the uncertainty in the estimation of model parameters, we perform a lot of simulations taking as the model parameters the ones that best fit data returned by the Differential Evolution algorithm. This technique permits to forecast model trends in the next few years using confidence intervals.
Predictive aging results in radiation environments
Gillen, Kenneth T.; Clough, Roger L.
1993-06-01
We have previously derived a time-temperature-dose rate superposition methodology, which, when applicable, can be used to predict polymer degradation versus dose rate, temperature and exposure time. This methodology results in predictive capabilities at the low dose rates and long time periods appropriate, for instance, to ambient nuclear power plant environments. The methodology was successfully applied to several polymeric cable materials and then verified for two of the materials by comparisons of the model predictions with 12 year, low-dose-rate aging data on these materials from a nuclear environment. In this paper, we provide a more detailed discussion of the methodology and apply it to data obtained on a number of additional nuclear power plant cable insulation (a hypalon, a silicone rubber and two ethylene-tetrafluoroethylenes) and jacket (a hypalon) materials. We then show that the predicted, low-dose-rate results for our materials are in excellent agreement with long-term (7-9 year) low-dose-rate results recently obtained for the same material types actually aged under bnuclear power plant conditions. Based on a combination of the modelling and long-term results, we find indications of reasonably similar degradation responses among several different commercial formulations for each of the following "generic" materials: hypalon, ethylene-tetrafluoroethylene, silicone rubber and PVC. If such "generic" behavior can be further substantiated through modelling and long-term results on additional formulations, predictions of cable life for other commercial materials of the same generic types would be greatly facilitated.
Ishii, Masahiro; Yahiro, Masanobu
2016-01-01
We propose a practical effective model by introducing temperature ($T$) dependence to the coupling strengths of four-quark and six-quark Kobayashi-Maskawa-'t Hooft interactions in the 2+1 flavor Polyakov-loop extended Nambu-Jona-Lasinio model. The $T$ dependence is determined from LQCD data on the renormalized chiral condensate around the pseudocritical temperature $T_c^{\\chi}$ of chiral crossover and the screening-mass difference between $\\pi$ and $a_0$ mesons in $T > 1.1T_c^\\chi$ where only the $U(1)_{\\rm A}$-symmetry breaking survives. The model well reproduces LQCD data on screening masses $M_{\\xi}^{\\rm scr}(T)$ for both scalar and pseudoscalar mesons, particularly in $T \\ge T_c^{\\chi}$. Using this effective model, we predict meson pole masses $M_{\\xi}^{\\rm pole}(T)$ for scalar and pseudoscalar mesons. For $\\eta'$ meson, the prediction is consistent with the experimental value at finite $T$ measured in heavy-ion collisions. We point out that the relation $M_{\\xi}^{\\rm scr}(T)-M_{\\xi}^{\\rm pole}(T) \\approx...
Wilczek, Michael; Meneveau, Charles
2016-01-01
Wavenumber-frequency spectra of the streamwise velocity component obtained from large-eddy simulations are presented. Following a recent paper [Wilczek et al., J. Fluid. Mech., 769:R1, 2015] we show that the main features, a Doppler shift and a Doppler broadening of frequencies, are captured by an advection model based on the Tennekes-Kraichnan random-sweeping hypothesis with additional mean flow. In this paper, we focus on the height-dependence of the spectra within the logarithmic layer of the flow. We furthermore benchmark an analytical model spectrum that takes the predictions of the random-sweeping model as a starting point and find good agreement with the LES data. We also quantify the influence of LES grid resolution on the wavenumber-frequency spectra.
Marinaccio, Alessandro; Montanaro, Fabio; Mastrantonio, Marina; Uccelli, Raffaella; Altavista, Pierluigi; Nesti, Massimo; Costantini, Adele Seniori; Gorini, Giuseppe
2005-05-20
Italy was the second main asbestos producer in Europe, after the Soviet Union, until the end of the 1980s, and raw asbestos was imported on a large scale until 1992. The Italian pattern of asbestos consumption lags on average about 10 years behind the United States, Australia, the United Kingdom and the Nordic countries. Measures to reduce exposure were introduced in the mid-1970s in some workplaces. In 1986, limitations were imposed on the use of crocidolite and in 1992 asbestos was definitively banned. We have used primary pleural cancer mortality figures (1970-1999) to predict mortality from mesothelioma among Italian men in the next 30 years by age-cohort-period models and by a model based on asbestos consumption figures. The pleural cancer/mesothelioma ratio and mesothelioma misdiagnosis in the past were taken into account in the analysis. Estimated risks of birth cohorts born after 1945 decrease less quickly in Italy than in other Western countries. The findings predict a peak with about 800 mesothelioma annual deaths in the period 2012-2024. Results estimated using age-period-cohort models were similar to those obtained from the asbestos consumption model.
Energy Technology Data Exchange (ETDEWEB)
Novak, C.F.; Moore, R.C. [Sandia National Labs., Albuquerque, NM (United States); Bynum, R.V. [Science Applications International Corp., Albuquerque, NM (United States)
1996-10-25
The conceptual model for WIPP dissolved concentrations is a description of the complex natural and artificial chemical conditions expected to influence dissolved actinide concentrations in the repository. By a set of physical and chemical assumptions regarding chemical kinetics, sorption substrates, and waste-brine interactions, the system was simplified to be amenable to mathematical description. The analysis indicated that an equilibrium thermodynamic model for describing actinide solubilities in brines would be tractable and scientifically supportable. This paper summarizes the conceptualization and modeling approach and the computational results as used in the WIPP application for certification of compliance with relevant regulations for nuclear waste repositories. The WIPP site contains complex natural brines ranging from sea water to 10x more concentrated than sea water. Data bases for predicting solubility of Am(III) (as well as Pu(III) and Nd(III)), Th(IV), and Np(V) in these brines under potential repository conditions have been developed, focusing on chemical interactions with Na, K, Mg, Cl, SO{sub 4}, and CO{sub 3} ions, and the organic acid anions acetate, citrate, EDTA, and oxalate. The laboratory and modeling effort augmented the Harvie et al. parameterization of the Pitzer activity coefficient model so that it could be applied to the actinides and oxidation states important to the WIPP system.
Predictive Surface Complexation Modeling
Energy Technology Data Exchange (ETDEWEB)
Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences
2016-11-29
Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO_{2} and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.
Levy, R.; Mcginness, H.
1976-01-01
Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.
Cestari, Andrea
2013-01-01
Predictive modeling is emerging as an important knowledge-based technology in healthcare. The interest in the use of predictive modeling reflects advances on different fronts such as the availability of health information from increasingly complex databases and electronic health records, a better understanding of causal or statistical predictors of health, disease processes and multifactorial models of ill-health and developments in nonlinear computer models using artificial intelligence or neural networks. These new computer-based forms of modeling are increasingly able to establish technical credibility in clinical contexts. The current state of knowledge is still quite young in understanding the likely future direction of how this so-called 'machine intelligence' will evolve and therefore how current relatively sophisticated predictive models will evolve in response to improvements in technology, which is advancing along a wide front. Predictive models in urology are gaining progressive popularity not only for academic and scientific purposes but also into the clinical practice with the introduction of several nomograms dealing with the main fields of onco-urology.
Manfreda, G.; Bellina, F.; Bajas, H.; Perez, J. C.
2016-12-01
To improve the technology of the new generation of accelerator magnets, prototypes are being manufactured and tested in several laboratories. In parallel, many numerical analyses are being carried out to predict the magnets behaviour and interpret the experimental results. This paper focuses on the quench propagation velocity, which is a crucial parameter as regards the energy dissipation along the magnet conductor. The THELMA code, originally developed for cable-in-conduit conductors for fusion magnets, has been used to study such quench propagation. To this purpose, new code modules have been added to describe the Rutherford cable geometry, the material non-linear thermal properties and to describe the thermal conduction problem in transient regime. THELMA can describe the Rutherford cable at the strand level, modelling both the electrical and thermal contact resistances between strands and enabling the analysis of the effects of local hot spots and quench heaters. This paper describes the model application to a sample of Short Model Coil tested at CERN: a comparison is made between the experimental results and the model prediction, showing a good agreement. A comparison is also made with the prediction of the most common analytical models, which give large inaccuracies when dealing with low n-index cables like Nb3Sn cables.
Predictions of High Energy Experimental Results
Directory of Open Access Journals (Sweden)
Comay E.
2010-10-01
Full Text Available Eight predictions of high energy experimental results are presented. The predictions contain the $Sigma ^+$ charge radius and results of two kinds of experiments using energetic pionic beams. In addition, predictions of the failure to find the following objects are presented: glueballs, pentaquarks, Strange Quark Matter, magnetic monopoles searched by their direct interaction with charges and the Higgs boson. The first seven predictions rely on the Regular Charge-Monopole Theory and the last one relies on mathematical inconsistencies of the Higgs Lagrangian density.
Predictions of High Energy Experimental Results
Directory of Open Access Journals (Sweden)
Comay E.
2010-10-01
Full Text Available Eight predictions of high energy experimental results are presented. The predictions contain the + charge radius and results of two kinds of experiments using energetic pionic beams. In addition, predictions of the failure to find the following objects are presented: glueballs, pentaquarks, Strange Quark Matter, magnetic monopoles searched by their direct interaction with charges and the Higgs boson. The first seven predictions rely on the Regular Charge-Monopole Theory and the last one relies on mathematical inconsistencies of the Higgs Lagrangian density.
Melanoma risk prediction models
Directory of Open Access Journals (Sweden)
Nikolić Jelena
2014-01-01
Full Text Available Background/Aim. The lack of effective therapy for advanced stages of melanoma emphasizes the importance of preventive measures and screenings of population at risk. Identifying individuals at high risk should allow targeted screenings and follow-up involving those who would benefit most. The aim of this study was to identify most significant factors for melanoma prediction in our population and to create prognostic models for identification and differentiation of individuals at risk. Methods. This case-control study included 697 participants (341 patients and 356 controls that underwent extensive interview and skin examination in order to check risk factors for melanoma. Pairwise univariate statistical comparison was used for the coarse selection of the most significant risk factors. These factors were fed into logistic regression (LR and alternating decision trees (ADT prognostic models that were assessed for their usefulness in identification of patients at risk to develop melanoma. Validation of the LR model was done by Hosmer and Lemeshow test, whereas the ADT was validated by 10-fold cross-validation. The achieved sensitivity, specificity, accuracy and AUC for both models were calculated. The melanoma risk score (MRS based on the outcome of the LR model was presented. Results. The LR model showed that the following risk factors were associated with melanoma: sunbeds (OR = 4.018; 95% CI 1.724- 9.366 for those that sometimes used sunbeds, solar damage of the skin (OR = 8.274; 95% CI 2.661-25.730 for those with severe solar damage, hair color (OR = 3.222; 95% CI 1.984-5.231 for light brown/blond hair, the number of common naevi (over 100 naevi had OR = 3.57; 95% CI 1.427-8.931, the number of dysplastic naevi (from 1 to 10 dysplastic naevi OR was 2.672; 95% CI 1.572-4.540; for more than 10 naevi OR was 6.487; 95%; CI 1.993-21.119, Fitzpatricks phototype and the presence of congenital naevi. Red hair, phototype I and large congenital naevi were
MODEL PREDICTIVE CONTROL FUNDAMENTALS
African Journals Online (AJOL)
2012-07-02
Jul 2, 2012 ... paper, we will present an introduction to the theory and application of MPC with Matlab codes written to ... model predictive control, linear systems, discrete-time systems, ... and then compute very rapidly for this open-loop con-.
Turan, Nurdan Gamze; Gümüşel, Emine Beril; Ozgonenel, Okan
2013-01-01
An intensive study has been made to see the performance of the different liner materials with bentonite on the removal efficiency of Cu(II) and Zn(II) from industrial leachate. An artificial neural network (ANN) was used to display the significant levels of the analyzed liner materials on the removal efficiency. The statistical analysis proves that the effect of natural zeolite was significant by a cubic spline model with a 99.93% removal efficiency. Optimization of liner materials was achieved by minimizing bentonite mixtures, which were costly, and maximizing Cu(II) and Zn(II) removal efficiency. The removal efficiencies were calculated as 45.07% and 48.19% for Cu(II) and Zn(II), respectively, when only bentonite was used as liner material. However, 60% of natural zeolite with 40% of bentonite combination was found to be the best for Cu(II) removal (95%), and 80% of vermiculite and pumice with 20% of bentonite combination was found to be the best for Zn(II) removal (61.24% and 65.09%). Similarly, 60% of natural zeolite with 40% of bentonite combination was found to be the best for Zn(II) removal (89.19%), and 80% of vermiculite and pumice with 20% of bentonite combination was found to be the best for Zn(II) removal (82.76% and 74.89%). PMID:23844384
Norman, L.M.; Guertin, D.P.; Feller, M.
2008-01-01
The development of new approaches for understanding processes of urban development and their environmental effects, as well as strategies for sustainable management, is essential in expanding metropolitan areas. This study illustrates the potential of linking urban growth and watershed models to identify problem areas and support long-term watershed planning. Sediment is a primary source of nonpoint-source pollution in surface waters. In urban areas, sediment is intermingled with other surface debris in transport. In an effort to forecast the effects of development on surface-water quality, changes predicted in urban areas by the SLEUTH urban growth model were applied in the context of erosion-sedimentation models (Universal Soil Loss Equation and Spatially Explicit Delivery Models). The models are used to simulate the effect of excluding hot-spot areas of erosion and sedimentation from future urban growth and to predict the impacts of alternative erosion-control scenarios. Ambos Nogales, meaning 'both Nogaleses,' is a name commonly used for the twin border cities of Nogales, Arizona and Nogales, Sonora, Mexico. The Ambos Nogales watershed has experienced a decrease in water quality as a result of urban development in the twin-city area. Population growth rates in Ambos Nogales are high and the resources set in place to accommodate the rapid population influx will soon become overburdened. Because of its remote location and binational governance, monitoring and planning across the border is compromised. One scenario described in this research portrays an improvement in water quality through the identification of high-risk areas using models that simulate their protection from development and replanting with native grasses, while permitting the predicted and inevitable growth elsewhere. This is meant to add to the body of knowledge about forecasting the impact potential of urbanization on sediment delivery to streams for sustainable development, which can be
Nominal model predictive control
Grüne, Lars
2013-01-01
5 p., to appear in Encyclopedia of Systems and Control, Tariq Samad, John Baillieul (eds.); International audience; Model Predictive Control is a controller design method which synthesizes a sampled data feedback controller from the iterative solution of open loop optimal control problems.We describe the basic functionality of MPC controllers, their properties regarding feasibility, stability and performance and the assumptions needed in order to rigorously ensure these properties in a nomina...
Nominal Model Predictive Control
Grüne, Lars
2014-01-01
5 p., to appear in Encyclopedia of Systems and Control, Tariq Samad, John Baillieul (eds.); International audience; Model Predictive Control is a controller design method which synthesizes a sampled data feedback controller from the iterative solution of open loop optimal control problems.We describe the basic functionality of MPC controllers, their properties regarding feasibility, stability and performance and the assumptions needed in order to rigorously ensure these properties in a nomina...
Candidate Prediction Models and Methods
DEFF Research Database (Denmark)
Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Madsen, Henrik
2005-01-01
This document lists candidate prediction models for Work Package 3 (WP3) of the PSO-project called ``Intelligent wind power prediction systems'' (FU4101). The main focus is on the models transforming numerical weather predictions into predictions of power production. The document also outlines...... the possibilities w.r.t. different numerical weather predictions actually available to the project....
Rauser, F.
2013-12-01
We present results from the German BMBF initiative 'High Definition Cloud and Precipitation for advancing Climate Prediction -HD(CP)2'. This initiative addresses most of the problems that are discussed in this session in one, unified approach: cloud physics, convection, boundary layer development, radiation and subgrid variability are approached in one organizational framework. HD(CP)2 merges both observation and high performance computing / model development communities to tackle a shared problem: how to improve the understanding of the most important subgrid-scale processes of cloud and precipitation physics, and how to utilize this knowledge for improved climate predictions. HD(CP)2 is a coordinated initiative to: (i) realize; (ii) evaluate; and (iii) statistically characterize and exploit for the purpose of both parameterization development and cloud / precipitation feedback analysis; ultra-high resolution (100 m in the horizontal, 10-50 m in the vertical) regional hind-casts over time periods (3-15 y) and spatial scales (1000-1500 km) that are climatically meaningful. HD(CP)2 thus consists of three elements (the model development and simulations, their observational evaluation and exploitation/synthesis to advance CP prediction) and its first three-year phase has started on October 1st 2012. As a central part of HD(CP)2, the HD(CP)2 Observational Prototype Experiment (HOPE) has been carried out in spring 2013. In this campaign, high resolution measurements with a multitude of instruments from all major centers in Germany have been carried out in a limited domain, to allow for unprecedented resolution and precision in the observation of microphysics parameters on a resolution that will allow for evaluation and improvement of ultra-high resolution models. At the same time, a local area version of the new climate model ICON of the Max Planck Institute and the German weather service has been developed that allows for LES-type simulations on high resolutions on
Candidate Prediction Models and Methods
DEFF Research Database (Denmark)
Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Madsen, Henrik
2005-01-01
This document lists candidate prediction models for Work Package 3 (WP3) of the PSO-project called ``Intelligent wind power prediction systems'' (FU4101). The main focus is on the models transforming numerical weather predictions into predictions of power production. The document also outlines...
Keye, Stefan; Togiti, Vamish; Eisfeld, Bernhard; Brodersen, Olaf P.; Rivers, Melissa B.
2013-01-01
The accurate calculation of aerodynamic forces and moments is of significant importance during the design phase of an aircraft. Reynolds-averaged Navier-Stokes (RANS) based Computational Fluid Dynamics (CFD) has been strongly developed over the last two decades regarding robustness, efficiency, and capabilities for aerodynamically complex configurations. Incremental aerodynamic coefficients of different designs can be calculated with an acceptable reliability at the cruise design point of transonic aircraft for non-separated flows. But regarding absolute values as well as increments at off-design significant challenges still exist to compute aerodynamic data and the underlying flow physics with the accuracy required. In addition to drag, pitching moments are difficult to predict because small deviations of the pressure distributions, e.g. due to neglecting wing bending and twisting caused by the aerodynamic loads can result in large discrepancies compared to experimental data. Flow separations that start to develop at off-design conditions, e.g. in corner-flows, at trailing edges, or shock induced, can have a strong impact on the predictions of aerodynamic coefficients too. Based on these challenges faced by the CFD community a working group of the AIAA Applied Aerodynamics Technical Committee initiated in 2001 the CFD Drag Prediction Workshop (DPW) series resulting in five international workshops. The results of the participants and the committee are summarized in more than 120 papers. The latest, fifth workshop took place in June 2012 in conjunction with the 30th AIAA Applied Aerodynamics Conference. The results in this paper will evaluate the influence of static aeroelastic wing deformations onto pressure distributions and overall aerodynamic coefficients based on the NASA finite element structural model and the common grids.
Gabbanini, Massimo; Privitera, Laura; Monzó, Ana; Higueras, Gemma; Fuster, Sonia; Garrido, Nicolás; Bosch, Ernesto; Pellicer, Antonio
2010-11-01
To evaluate the applicability of prediction models (PM) of spontaneous pregnancy (SP) in a population of infertile patients from a university-affiliated private assisted reproductive technology center (Instituto Valenciano de Infertilidad) and in the reproductive medicine section of a public university hospital (La Fe), both belonging to the same city (Valencia, Spain) between January and December 2008. We calculated the probability of SP using the PM developed by Hunault et al. in our two populations, and observed an estimated probability of SP<40% or the PM applicable in approximately 97% of the studied couples, and statistical differences between pregnancy probabilities in the two settings that were mainly a result of different age, sperm quality, and referral policies, leading us to conclude that the usefulness of PMs is limited in our environment. Copyright © 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Miller, Thomas E.; Tyree, Tracy; Riegler, Keri K.; Herreid, Charlene
2010-01-01
This article describes the early outcomes of an ongoing project at the University of South Florida in Tampa that involves using a logistics regression formula derived from pre-matriculation characteristics to predict the risk of individual student attrition. In this piece, the authors will describe the results of the prediction formula and the…
Miller, Thomas E.; Tyree, Tracy; Riegler, Keri K.; Herreid, Charlene
2010-01-01
This article describes the early outcomes of an ongoing project at the University of South Florida in Tampa that involves using a logistics regression formula derived from pre-matriculation characteristics to predict the risk of individual student attrition. In this piece, the authors will describe the results of the prediction formula and the…
Predicting Collision Damage and Resulting Consequences
DEFF Research Database (Denmark)
Ravn, Erik Sonne; Friis-Hansen, Peter
2004-01-01
. The predicted output is the size of the hole (or holes in case of striking ship as a bulbous bow), which is given as the dimensions of a box. The ANN for damage prediction is used in connection with the risk evaluation of a selected navigational area, where the cost related to oil spills from tankers...... are insensitive to variation of distributional assumptions of difficult tangible single event losses. The paper compares the accumulated loss over time resulting from oil spills in a given navigational area. The considered area is also evaluated in a future situation where the majority of all oil tankers have...... double hull. The expected socio-economic gain discussed. The ANN and the simulation procedure of oil spill cost are implemented into Excel, which can be downloaded at http://www.mek.dtu.dk/staff/esr/Collsion/SpillCost.xls....
2012-12-01
FFACTR” which is a part of the Engineers Refractive Index Prediction System (EREPS) Tactical Decision Aid ( TDA ) developed by what is now SPAWARS SSC San...currently used in JSAF is “FFACTR” which is a part of the Engineers Refractive Index Prediction System (EREPS) Tactical Decision Aid ( TDA ) developed by what...Decision Aid ( TDA ) developed by what is now SPAWARS SSC San Diego in 1988. This model is no longer supported by SPAWARS or any other group and has been
Schmitt, R. J.; Bernardi, D.; Bizzi, S.; Castelletti, A.; Soncini-Sessa, R.
2013-12-01
sediment balance over an extended time-horizon (>15 yrs.), upstream impoundments induce a much more rapid adaptation (1-5 yrs.). The applicability of the ANN as predictive model was evaluated by comparing its results with a traditional, 1D bed evolution model. The next decade's morphologic evolution under an ensemble of scenarios, considering uncertainties in climatic change, socio-economic development and upstream reservoir release policies was derived from both models. The ANN greatly outperforms the 1D model in computational requirements and presents a powerful tool for effective assessment of scenario ensembles and quantification of uncertainties in river hydro-morphology. In contrast, the processes-based model provides detailed, spatio-temporally distributed outputs and validation of the ANN's results for selected scenarios. We conclude that the application of both approaches constitutes a mutually enriching strategy for modern, quantitative catchment management. We argue that physically based modeling can have specific spatial and temporal constrains (e.g. in terms of identifying key drivers and associated temporal and spatial domains) and that linking physically-based with data-driven approaches largely increases the potential for including hydro-morphology into basin-scale water resource management.
Paiement, Jean-François; Grandvalet, Yves; Bengio, Samy
2008-01-01
Modeling long-term dependencies in time series has proved very difficult to achieve with traditional machine learning methods. This problem occurs when considering music data. In this paper, we introduce generative models for melodies. We decompose melodic modeling into two subtasks. We first propose a rhythm model based on the distributions of distances between subsequences. Then, we define a generative model for melodies given chords and rhythms based on modeling sequences of Narmour featur...
EFFICIENT PREDICTIVE MODELLING FOR ARCHAEOLOGICAL RESEARCH
Balla, A.; Pavlogeorgatos, G.; Tsiafakis, D.; Pavlidis, G.
2014-01-01
The study presents a general methodology for designing, developing and implementing predictive modelling for identifying areas of archaeological interest. The methodology is based on documented archaeological data and geographical factors, geospatial analysis and predictive modelling, and has been applied to the identification of possible Macedonian tombs’ locations in Northern Greece. The model was tested extensively and the results were validated using a commonly used predictive gain,...
Numerical weather prediction model tuning via ensemble prediction system
Jarvinen, H.; Laine, M.; Ollinaho, P.; Solonen, A.; Haario, H.
2011-12-01
This paper discusses a novel approach to tune predictive skill of numerical weather prediction (NWP) models. NWP models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. Currently, numerical values of these parameters are specified manually. In a recent dual manuscript (QJRMS, revised) we developed a new concept and method for on-line estimation of the NWP model parameters. The EPPES ("Ensemble prediction and parameter estimation system") method requires only minimal changes to the existing operational ensemble prediction infra-structure and it seems very cost-effective because practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating each member of the ensemble of predictions using different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In the presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an atmospheric general circulation model based ensemble prediction system show that the NWP model tuning capacity of EPPES scales up to realistic models and ensemble prediction systems. Finally, a global top-end NWP model tuning exercise with preliminary results is published.
Zephyr - the prediction models
DEFF Research Database (Denmark)
Nielsen, Torben Skov; Madsen, Henrik; Nielsen, Henrik Aalborg
2001-01-01
This paper briefly describes new models and methods for predicationg the wind power output from wind farms. The system is being developed in a project which has the research organization Risø and the department of Informatics and Mathematical Modelling (IMM) as the modelling team and all the Dani...
Nonlinear chaotic model for predicting storm surges
Directory of Open Access Journals (Sweden)
M. Siek
2010-09-01
Full Text Available This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.
Mennini, Francesco Saverio; Marcellusi, Andrea; Andreoni, Massimo; Gasbarrini, Antonio; Salomone, Salvatore; Craxì, Antonio
2014-01-01
treated with anti-HCV drugs. A reduction of health care costs is associated with a prevalence decrease. Indeed, once the spending peak is reached during this decade (about €527 million), the model predicts a cost reduction in the following 18 years. In 2030, based on the more effective treatments currently available, the direct health care cost associated with the management of HCV patients may reach €346 million (-34.3% compared to 2012). The first scenario (new treatment in 2015 with SVR =90% and same number of treated patients) was associated with a significant reduction in HCV-induced clinical consequences (prevalence =-3%) and a decrease in direct health care expenses, corresponding to €11.1 million. The second scenario (increase in treated patients to 12,790) produced an incremental cost reduction of €7.3 million, reaching a net decrease equal to €18.4 million. In the third scenario (treated patients =16,770), a higher net direct health care cost decrease versus the base-case (€44.0 million) was estimated. Our model showed that the introduction of new treatments that are more effective could result in a quasi-eradication of HCV, with a very strong reduction in prevalence.
Confidence scores for prediction models
DEFF Research Database (Denmark)
Gerds, Thomas Alexander; van de Wiel, MA
2011-01-01
modelling strategy is applied to different training sets. For each modelling strategy we estimate a confidence score based on the same repeated bootstraps. A new decomposition of the expected Brier score is obtained, as well as the estimates of population average confidence scores. The latter can be used...... to distinguish rival prediction models with similar prediction performances. Furthermore, on the subject level a confidence score may provide useful supplementary information for new patients who want to base a medical decision on predicted risk. The ideas are illustrated and discussed using data from cancer...
Modelling, controlling, predicting blackouts
Wang, Chengwei; Baptista, Murilo S
2016-01-01
The electric power system is one of the cornerstones of modern society. One of its most serious malfunctions is the blackout, a catastrophic event that may disrupt a substantial portion of the system, playing havoc to human life and causing great economic losses. Thus, understanding the mechanisms leading to blackouts and creating a reliable and resilient power grid has been a major issue, attracting the attention of scientists, engineers and stakeholders. In this paper, we study the blackout problem in power grids by considering a practical phase-oscillator model. This model allows one to simultaneously consider different types of power sources (e.g., traditional AC power plants and renewable power sources connected by DC/AC inverters) and different types of loads (e.g., consumers connected to distribution networks and consumers directly connected to power plants). We propose two new control strategies based on our model, one for traditional power grids, and another one for smart grids. The control strategie...
Melanoma Risk Prediction Models
Developing statistical models that estimate the probability of developing melanoma cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Prediction models in complex terrain
DEFF Research Database (Denmark)
Marti, I.; Nielsen, Torben Skov; Madsen, Henrik
2001-01-01
are calculated using on-line measurements of power production as well as HIRLAM predictions as input thus taking advantage of the auto-correlation, which is present in the power production for shorter pediction horizons. Statistical models are used to discribe the relationship between observed energy production......The objective of the work is to investigatethe performance of HIRLAM in complex terrain when used as input to energy production forecasting models, and to develop a statistical model to adapt HIRLAM prediction to the wind farm. The features of the terrain, specially the topography, influence...... and HIRLAM predictions. The statistical models belong to the class of conditional parametric models. The models are estimated using local polynomial regression, but the estimation method is here extended to be adaptive in order to allow for slow changes in the system e.g. caused by the annual variations...
Directory of Open Access Journals (Sweden)
Mennini FS
2014-06-01
randomized clinical trial (RCT relating to boceprevir and telaprevir. For genotypes 2/3 patients it was assumed that treatment efficacy with dual therapy was equal to a SVR rate from the literature. According to the aim of this study, only direct health care costs (hospital admissions, drugs, treatment, and care of patients incurred by the Italian NHS have been included in the model. Costs have been extrapolated using the published scientific literature available in Italy and actualized with the 2012 ISTAT (Istituto Nazionale di Statistica Price Index system for monetary revaluation. Three different scenarios were assumed in order to evaluate the impact of future anti-HCV treatments on the burden of disease.Results: Overall, in Italy, 1.2 million infected subjects were estimated in 2012. Of these, about 211,000 patients were diagnosed, while only about 11,800 subjects were actually being treated with anti-HCV drugs. A reduction of health care costs is associated with a prevalence decrease. Indeed, once the spending peak is reached during this decade (about €527 million, the model predicts a cost reduction in the following 18 years. In 2030, based on the more effective treatments currently available, the direct health care cost associated with the management of HCV patients may reach €346 million (−34.3% compared to 2012. The first scenario (new treatment in 2015 with SVR =90% and same number of treated patients was associated with a significant reduction in HCV-induced clinical consequences (prevalence =−3% and a decrease in direct health care expenses, corresponding to €11.1 million. The second scenario (increase in treated patients to 12,790 produced an incremental cost reduction of €7.3 million, reaching a net decrease equal to €18.4 million. In the third scenario (treated patients =16,770, a higher net direct health care cost decrease versus the base-case (€44.0 million was estimated.Conclusion: Our model showed that the introduction of new treatments
Prediction models in complex terrain
DEFF Research Database (Denmark)
Marti, I.; Nielsen, Torben Skov; Madsen, Henrik
2001-01-01
The objective of the work is to investigatethe performance of HIRLAM in complex terrain when used as input to energy production forecasting models, and to develop a statistical model to adapt HIRLAM prediction to the wind farm. The features of the terrain, specially the topography, influence...
Predictive models of forest dynamics.
Purves, Drew; Pacala, Stephen
2008-06-13
Dynamic global vegetation models (DGVMs) have shown that forest dynamics could dramatically alter the response of the global climate system to increased atmospheric carbon dioxide over the next century. But there is little agreement between different DGVMs, making forest dynamics one of the greatest sources of uncertainty in predicting future climate. DGVM predictions could be strengthened by integrating the ecological realities of biodiversity and height-structured competition for light, facilitated by recent advances in the mathematics of forest modeling, ecological understanding of diverse forest communities, and the availability of forest inventory data.
Massive Predictive Modeling using Oracle R Enterprise
CERN. Geneva
2014-01-01
R is fast becoming the lingua franca for analyzing data via statistics, visualization, and predictive analytics. For enterprise-scale data, R users have three main concerns: scalability, performance, and production deployment. Oracle's R-based technologies - Oracle R Distribution, Oracle R Enterprise, Oracle R Connector for Hadoop, and the R package ROracle - address these concerns. In this talk, we introduce Oracle's R technologies, highlighting how each enables R users to achieve scalability and performance while making production deployment of R results a natural outcome of the data analyst/scientist efforts. The focus then turns to Oracle R Enterprise with code examples using the transparency layer and embedded R execution, targeting massive predictive modeling. One goal behind massive predictive modeling is to build models per entity, such as customers, zip codes, simulations, in an effort to understand behavior and tailor predictions at the entity level. Predictions...
Precision Plate Plan View Pattern Predictive Model
Institute of Scientific and Technical Information of China (English)
ZHAO Yang; YANG Quan; HE An-rui; WANG Xiao-chen; ZHANG Yun
2011-01-01
According to the rolling features of plate mill, a 3D elastic-plastic FEM （finite element model） based on full restart method of ANSYS/LS-DYNA was established to study the inhomogeneous plastic deformation of multipass plate rolling. By analyzing the simulation results, the difference of head and tail ends predictive models was found and modified. According to the numerical simulation results of 120 different kinds of conditions, precision plate plan view pattern predictive model was established. Based on these models, the sizing MAS （mizushima automatic plan view pattern control system） method was designed and used on a 2 800 mm plate mill. Comparing the rolled plates with and without PVPP （plan view pattern predictive） model, the reduced width deviation indicates that the olate !olan view Dattern predictive model is preeise.
Equivalency and unbiasedness of grey prediction models
Institute of Scientific and Technical Information of China (English)
Bo Zeng; Chuan Li; Guo Chen; Xianjun Long
2015-01-01
In order to deeply research the structure discrepancy and modeling mechanism among different grey prediction mo-dels, the equivalence and unbiasedness of grey prediction mo-dels are analyzed and verified. The results show that al the grey prediction models that are strictly derived from x(0)(k) +az(1)(k) = b have the identical model structure and simulation precision. Moreover, the unbiased simulation for the homoge-neous exponential sequence can be accomplished. However, the models derived from dx(1)/dt+ax(1) =b are only close to those derived from x(0)(k)+az(1)(k)=b provided that|a|has to satisfy|a| < 0.1; neither could the unbiased simulation for the homoge-neous exponential sequence be achieved. The above conclusions are proved and verified through some theorems and examples.
Hybrid modeling and prediction of dynamical systems
Lloyd, Alun L.; Flores, Kevin B.
2017-01-01
Scientific analysis often relies on the ability to make accurate predictions of a system’s dynamics. Mechanistic models, parameterized by a number of unknown parameters, are often used for this purpose. Accurate estimation of the model state and parameters prior to prediction is necessary, but may be complicated by issues such as noisy data and uncertainty in parameters and initial conditions. At the other end of the spectrum exist nonparametric methods, which rely solely on data to build their predictions. While these nonparametric methods do not require a model of the system, their performance is strongly influenced by the amount and noisiness of the data. In this article, we consider a hybrid approach to modeling and prediction which merges recent advancements in nonparametric analysis with standard parametric methods. The general idea is to replace a subset of a mechanistic model’s equations with their corresponding nonparametric representations, resulting in a hybrid modeling and prediction scheme. Overall, we find that this hybrid approach allows for more robust parameter estimation and improved short-term prediction in situations where there is a large uncertainty in model parameters. We demonstrate these advantages in the classical Lorenz-63 chaotic system and in networks of Hindmarsh-Rose neurons before application to experimentally collected structured population data. PMID:28692642
Dompka, R. V.
1989-01-01
Under the NASA-sponsored Design Analysis Methods for VIBrationS (DAMVIBS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AH-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, fuel, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the ground vibration testing are presented.
Dompka, R. V.
1989-01-01
Under the NASA-sponsored DAMVIBS (Design Analysis Methods for VIBrationS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AG-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, furl, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the NASTRAN FEM correlations are given.
Evaluation of CASP8 model quality predictions
Cozzetto, Domenico
2009-01-01
The model quality assessment problem consists in the a priori estimation of the overall and per-residue accuracy of protein structure predictions. Over the past years, a number of methods have been developed to address this issue and CASP established a prediction category to evaluate their performance in 2006. In 2008 the experiment was repeated and its results are reported here. Participants were invited to infer the correctness of the protein models submitted by the registered automatic servers. Estimates could apply to both whole models and individual amino acids. Groups involved in the tertiary structure prediction categories were also asked to assign local error estimates to each predicted residue in their own models and their results are also discussed here. The correlation between the predicted and observed correctness measures was the basis of the assessment of the results. We observe that consensus-based methods still perform significantly better than those accepting single models, similarly to what was concluded in the previous edition of the experiment. © 2009 WILEY-LISS, INC.
Performance results of HESP physical model
Chanumolu, Anantha; Thirupathi, Sivarani; Jones, Damien; Giridhar, Sunetra; Grobler, Deon; Jakobsson, Robert
2017-02-01
As a continuation to the published work on model based calibration technique with HESP(Hanle Echelle Spectrograph) as a case study, in this paper we present the performance results of the technique. We also describe how the open parameters were chosen in the model for optimization, the glass data accuracy and handling the discrepancies. It is observed through simulations that the discrepancies in glass data can be identified but not quantifiable. So having an accurate glass data is important which is possible to obtain from the glass manufacturers. The model's performance in various aspects is presented using the ThAr calibration frames from HESP during its pre-shipment tests. Accuracy of model predictions and its wave length calibration comparison with conventional empirical fitting, the behaviour of open parameters in optimization, model's ability to track instrumental drifts in the spectrum and the double fibres performance were discussed. It is observed that the optimized model is able to predict to a high accuracy the drifts in the spectrum from environmental fluctuations. It is also observed that the pattern in the spectral drifts across the 2D spectrum which vary from image to image is predictable with the optimized model. We will also discuss the possible science cases where the model can contribute.
PREDICTIVE CAPACITY OF ARCH FAMILY MODELS
Directory of Open Access Journals (Sweden)
Raphael Silveira Amaro
2016-03-01
Full Text Available In the last decades, a remarkable number of models, variants from the Autoregressive Conditional Heteroscedastic family, have been developed and empirically tested, making extremely complex the process of choosing a particular model. This research aim to compare the predictive capacity, using the Model Confidence Set procedure, than five conditional heteroskedasticity models, considering eight different statistical probability distributions. The financial series which were used refers to the log-return series of the Bovespa index and the Dow Jones Industrial Index in the period between 27 October 2008 and 30 December 2014. The empirical evidences showed that, in general, competing models have a great homogeneity to make predictions, either for a stock market of a developed country or for a stock market of a developing country. An equivalent result can be inferred for the statistical probability distributions that were used.
PREDICT : model for prediction of survival in localized prostate cancer
Kerkmeijer, Linda G W; Monninkhof, Evelyn M.; van Oort, Inge M.; van der Poel, Henk G.; de Meerleer, Gert; van Vulpen, Marco
2016-01-01
Purpose: Current models for prediction of prostate cancer-specific survival do not incorporate all present-day interventions. In the present study, a pre-treatment prediction model for patients with localized prostate cancer was developed.Methods: From 1989 to 2008, 3383 patients were treated with I
Directory of Open Access Journals (Sweden)
Muminović Saša
2012-06-01
Full Text Available Although they can be a subject of criticism and have been challenged from its beginnings, bankruptcy prediction models have often been used in practice for more than four decades. The following models for predicting bankruptcy are applied in this issue: Altman's Z'-Score, Zmijewski model, Taffler's model and Sandin and Porporato model. Out of the creditworthiness assessment models (solvency analysis, the following models have been applied: Z''-Score (Altman, Hartzell and Peck and the BEX model. A significant shortcoming of the observed models is their failure to take investment into account. Beside, some models have inadequately assessed the transition of operations to lohn production, while others have not.
NONLINEAR MODEL PREDICTIVE CONTROL OF CHEMICAL PROCESSES
Directory of Open Access Journals (Sweden)
R. G. SILVA
1999-03-01
Full Text Available A new algorithm for model predictive control is presented. The algorithm utilizes a simultaneous solution and optimization strategy to solve the model's differential equations. The equations are discretized by equidistant collocation, and along with the algebraic model equations are included as constraints in a nonlinear programming (NLP problem. This algorithm is compared with the algorithm that uses orthogonal collocation on finite elements. The equidistant collocation algorithm results in simpler equations, providing a decrease in computation time for the control moves. Simulation results are presented and show a satisfactory performance of this algorithm.
Predictive Modeling of Cardiac Ischemia
Anderson, Gary T.
1996-01-01
The goal of the Contextual Alarms Management System (CALMS) project is to develop sophisticated models to predict the onset of clinical cardiac ischemia before it occurs. The system will continuously monitor cardiac patients and set off an alarm when they appear about to suffer an ischemic episode. The models take as inputs information from patient history and combine it with continuously updated information extracted from blood pressure, oxygen saturation and ECG lines. Expert system, statistical, neural network and rough set methodologies are then used to forecast the onset of clinical ischemia before it transpires, thus allowing early intervention aimed at preventing morbid complications from occurring. The models will differ from previous attempts by including combinations of continuous and discrete inputs. A commercial medical instrumentation and software company has invested funds in the project with a goal of commercialization of the technology. The end product will be a system that analyzes physiologic parameters and produces an alarm when myocardial ischemia is present. If proven feasible, a CALMS-based system will be added to existing heart monitoring hardware.
Marano, Rachel M; Mercurio, Laura; Kanter, Rebecca; Doyle, Richard; Abuelo, Dianne; Morrow, Eric M; Shur, Natasha
2013-03-01
Array comparative genomic hybridization (aCGH) testing can diagnose chromosomal microdeletions and duplications too small to be detected by conventional cytogenetic techniques. We need to consider which patients are more likely to receive a diagnosis from aCGH testing versus patients that have lower likelihood and may benefit from broader genome wide scanning. We retrospectively reviewed charts of a population of 200 patients, 117 boys and 83 girls, who underwent aCGH testing in Genetics Clinic at Rhode Island hospital between 1 January/2008 and 31 December 2010. Data collected included sex, age at initial clinical presentation, aCGH result, history of seizures, autism, dysmorphic features, global developmental delay/intellectual disability, hypotonia and failure to thrive. aCGH analysis revealed abnormal results in 34 (17%) and variants of unknown significance in 24 (12%). Patients with three or more clinical diagnoses had a 25.0% incidence of abnormal aCGH findings, while patients with two or fewer clinical diagnoses had a 12.5% incidence of abnormal aCGH findings. Currently, we provide families with a range of 10-30% of a diagnosis with aCGH testing. With increased clinical complexity, patients have an increased probability of having an abnormal aCGH result. With this, we can provide individualized risk estimates for each patient.
Predicting health inspection results from online restaurant reviews
Wong, Samantha; Chinaei, Hamidreza; Rudzicz, Frank
2016-01-01
Informatics around public health are increasingly shifting from the professional to the public spheres. In this work, we apply linguistic analytics to restaurant reviews, from Yelp, in order to automatically predict official health inspection reports. We consider two types of feature sets, i.e., keyword detection and topic model features, and use these in several classification methods. Our empirical analysis shows that these extracted features can predict public health inspection reports wit...
Directory of Open Access Journals (Sweden)
García-Gallego, Ana
2013-01-01
Full Text Available El objetivo de este artículo es la obtención de sendos modelos de predicción del fracaso empresarial en una muestra emparejada y otra aleatoria de pequeñas y medianas empresas con domicilio en Castilla y León (España, a fin de determinar si el poder predictivo de los modelos elaborados está afectado por el método utilizado para seleccionar la muestra objeto de cada estudio. Para ello, consideramos como variables independientes un conjunto de ratios financieros, que reducimos a partir de la aplicación previa de un análisis de componentes principales. Mediante regresión logística, identificamos los factores que mejor predicen el fracaso en ambas muestras, observándose diferencias no solo en las variables significativas, sino también en los resultados de clasificación, lo que conforma la influencia del método de muestreo en los modelos. || This paper focuses on the development of both failure prediction models on a paired sample and a random sample of small and medium-sized firms with head offices located in the region of Castilla y León (Spain, in order to prove if the predictive power of the developed models is affected by the method used to derive the sample aim of each study. To estimate both models, we consider a set of financial ratios as independent variables in each one, which is first reduced by the application of a principal components analysis. Next, a logistic regression analysis is applied to identify those variables that best explain and predict failure in the two samples, where differences in the significant variables and the classification results are observed, which confirms the influence of the sampling method on the business failure prediction results.
Calibrated predictions for multivariate competing risks models.
Gorfine, Malka; Hsu, Li; Zucker, David M; Parmigiani, Giovanni
2014-04-01
Prediction models for time-to-event data play a prominent role in assessing the individual risk of a disease, such as cancer. Accurate disease prediction models provide an efficient tool for identifying individuals at high risk, and provide the groundwork for estimating the population burden and cost of disease and for developing patient care guidelines. We focus on risk prediction of a disease in which family history is an important risk factor that reflects inherited genetic susceptibility, shared environment, and common behavior patterns. In this work family history is accommodated using frailty models, with the main novel feature being allowing for competing risks, such as other diseases or mortality. We show through a simulation study that naively treating competing risks as independent right censoring events results in non-calibrated predictions, with the expected number of events overestimated. Discrimination performance is not affected by ignoring competing risks. Our proposed prediction methodologies correctly account for competing events, are very well calibrated, and easy to implement.
Caries risk assessment models in caries prediction
Directory of Open Access Journals (Sweden)
Amila Zukanović
2013-11-01
Full Text Available Objective. The aim of this research was to assess the efficiency of different multifactor models in caries prediction. Material and methods. Data from the questionnaire and objective examination of 109 examinees was entered into the Cariogram, Previser and Caries-Risk Assessment Tool (CAT multifactor risk assessment models. Caries risk was assessed with the help of all three models for each patient, classifying them as low, medium or high-risk patients. The development of new caries lesions over a period of three years [Decay Missing Filled Tooth (DMFT increment = difference between Decay Missing Filled Tooth Surface (DMFTS index at baseline and follow up], provided for examination of the predictive capacity concerning different multifactor models. Results. The data gathered showed that different multifactor risk assessment models give significantly different results (Friedman test: Chi square = 100.073, p=0.000. Cariogram is the model which identified the majority of examinees as medium risk patients (70%. The other two models were more radical in risk assessment, giving more unfavorable risk –profiles for patients. In only 12% of the patients did the three multifactor models assess the risk in the same way. Previser and CAT gave the same results in 63% of cases – the Wilcoxon test showed that there is no statistically significant difference in caries risk assessment between these two models (Z = -1.805, p=0.071. Conclusions. Evaluation of three different multifactor caries risk assessment models (Cariogram, PreViser and CAT showed that only the Cariogram can successfully predict new caries development in 12-year-old Bosnian children.
Disease prediction models and operational readiness.
Directory of Open Access Journals (Sweden)
Courtney D Corley
Full Text Available The objective of this manuscript is to present a systematic review of biosurveillance models that operate on select agents and can forecast the occurrence of a disease event. We define a disease event to be a biological event with focus on the One Health paradigm. These events are characterized by evidence of infection and or disease condition. We reviewed models that attempted to predict a disease event, not merely its transmission dynamics and we considered models involving pathogens of concern as determined by the US National Select Agent Registry (as of June 2011. We searched commercial and government databases and harvested Google search results for eligible models, using terms and phrases provided by public health analysts relating to biosurveillance, remote sensing, risk assessments, spatial epidemiology, and ecological niche modeling. After removal of duplications and extraneous material, a core collection of 6,524 items was established, and these publications along with their abstracts are presented in a semantic wiki at http://BioCat.pnnl.gov. As a result, we systematically reviewed 44 papers, and the results are presented in this analysis. We identified 44 models, classified as one or more of the following: event prediction (4, spatial (26, ecological niche (28, diagnostic or clinical (6, spread or response (9, and reviews (3. The model parameters (e.g., etiology, climatic, spatial, cultural and data sources (e.g., remote sensing, non-governmental organizations, expert opinion, epidemiological were recorded and reviewed. A component of this review is the identification of verification and validation (V&V methods applied to each model, if any V&V method was reported. All models were classified as either having undergone Some Verification or Validation method, or No Verification or Validation. We close by outlining an initial set of operational readiness level guidelines for disease prediction models based upon established Technology
教员队伍变化对教学成果影响的预测模型%Prediction Model on Influence of Teacher Quantity on Teaching Result
Institute of Scientific and Technical Information of China (English)
韩维; 岳奎志; 杨帆; 史建国
2012-01-01
This paper builts the stock and flow diagrams about every element of impacting on teaching result with the change of teacher quantity on the basis of system dynamics, establishes the prediction model about teaching result in college, and simulates with Vensim PLE 5.9 to solve the bad influence on the teaching experience and teaching result when the teacher quantity has changed in a college. The simulation test shows that the model can make prediction on the teaching result trend and provide theoretical evidence for making plan of hiring and firing teachers with consideration of teaching result.%为解决院校教员数量波动对教学经验及教学成果的影响问题,基于系统动力学理论,构建影响教员队伍变化对教学成果影响的各元素存量流量图,建立院校教学成果预测模型,并以系统动力学软件Vensim PLE 5.9为平台进行建模仿真.运行结果表明,该模型能进行教学成果趋势的预测,可为考虑教学成果因素时教员应聘与解聘方案的制定提供理论依据.
Specialized Language Models using Dialogue Predictions
Popovici, C; Popovici, Cosmin; Baggia, Paolo
1996-01-01
This paper analyses language modeling in spoken dialogue systems for accessing a database. The use of several language models obtained by exploiting dialogue predictions gives better results than the use of a single model for the whole dialogue interaction. For this reason several models have been created, each one for a specific system question, such as the request or the confirmation of a parameter. The use of dialogue-dependent language models increases the performance both at the recognition and at the understanding level, especially on answers to system requests. Moreover other methods to increase performance, like automatic clustering of vocabulary words or the use of better acoustic models during recognition, does not affect the improvements given by dialogue-dependent language models. The system used in our experiments is Dialogos, the Italian spoken dialogue system used for accessing railway timetable information over the telephone. The experiments were carried out on a large corpus of dialogues coll...
Disease Prediction Models and Operational Readiness
Energy Technology Data Exchange (ETDEWEB)
Corley, Courtney D.; Pullum, Laura L.; Hartley, David M.; Benedum, Corey M.; Noonan, Christine F.; Rabinowitz, Peter M.; Lancaster, Mary J.
2014-03-19
INTRODUCTION: The objective of this manuscript is to present a systematic review of biosurveillance models that operate on select agents and can forecast the occurrence of a disease event. One of the primary goals of this research was to characterize the viability of biosurveillance models to provide operationally relevant information for decision makers to identify areas for future research. Two critical characteristics differentiate this work from other infectious disease modeling reviews. First, we reviewed models that attempted to predict the disease event, not merely its transmission dynamics. Second, we considered models involving pathogens of concern as determined by the US National Select Agent Registry (as of June 2011). Methods: We searched dozens of commercial and government databases and harvested Google search results for eligible models utilizing terms and phrases provided by public health analysts relating to biosurveillance, remote sensing, risk assessments, spatial epidemiology, and ecological niche-modeling, The publication date of search results returned are bound by the dates of coverage of each database and the date in which the search was performed, however all searching was completed by December 31, 2010. This returned 13,767 webpages and 12,152 citations. After de-duplication and removal of extraneous material, a core collection of 6,503 items was established and these publications along with their abstracts are presented in a semantic wiki at http://BioCat.pnnl.gov. Next, PNNL’s IN-SPIRE visual analytics software was used to cross-correlate these publications with the definition for a biosurveillance model resulting in the selection of 54 documents that matched the criteria resulting Ten of these documents, However, dealt purely with disease spread models, inactivation of bacteria, or the modeling of human immune system responses to pathogens rather than predicting disease events. As a result, we systematically reviewed 44 papers and the
Gas explosion prediction using CFD models
Energy Technology Data Exchange (ETDEWEB)
Niemann-Delius, C.; Okafor, E. [RWTH Aachen Univ. (Germany); Buhrow, C. [TU Bergakademie Freiberg Univ. (Germany)
2006-07-15
A number of CFD models are currently available to model gaseous explosions in complex geometries. Some of these tools allow the representation of complex environments within hydrocarbon production plants. In certain explosion scenarios, a correction is usually made for the presence of buildings and other complexities by using crude approximations to obtain realistic estimates of explosion behaviour as can be found when predicting the strength of blast waves resulting from initial explosions. With the advance of computational technology, and greater availability of computing power, computational fluid dynamics (CFD) tools are becoming increasingly available for solving such a wide range of explosion problems. A CFD-based explosion code - FLACS can, for instance, be confidently used to understand the impact of blast overpressures in a plant environment consisting of obstacles such as buildings, structures, and pipes. With its porosity concept representing geometry details smaller than the grid, FLACS can represent geometry well, even when using coarse grid resolutions. The performance of FLACS has been evaluated using a wide range of field data. In the present paper, the concept of computational fluid dynamics (CFD) and its application to gas explosion prediction is presented. Furthermore, the predictive capabilities of CFD-based gaseous explosion simulators are demonstrated using FLACS. Details about the FLACS-code, some extensions made to FLACS, model validation exercises, application, and some results from blast load prediction within an industrial facility are presented. (orig.)
Return Predictability, Model Uncertainty, and Robust Investment
DEFF Research Database (Denmark)
Lukas, Manuel
Stock return predictability is subject to great uncertainty. In this paper we use the model confidence set approach to quantify uncertainty about expected utility from investment, accounting for potential return predictability. For monthly US data and six representative return prediction models, we...
Predictive Model Assessment for Count Data
2007-09-05
critique count regression models for patent data, and assess the predictive performance of Bayesian age-period-cohort models for larynx cancer counts...the predictive performance of Bayesian age-period-cohort models for larynx cancer counts in Germany. We consider a recent suggestion by Baker and...Figure 5. Boxplots for various scores for patent data count regressions. 11 Table 1 Four predictive models for larynx cancer counts in Germany, 1998–2002
Electrostatic ion thrusters - towards predictive modeling
Energy Technology Data Exchange (ETDEWEB)
Kalentev, O.; Matyash, K.; Duras, J.; Lueskow, K.F.; Schneider, R. [Ernst-Moritz-Arndt Universitaet Greifswald, D-17489 (Germany); Koch, N. [Technische Hochschule Nuernberg Georg Simon Ohm, Kesslerplatz 12, D-90489 Nuernberg (Germany); Schirra, M. [Thales Electronic Systems GmbH, Soeflinger Strasse 100, D-89077 Ulm (Germany)
2014-02-15
The development of electrostatic ion thrusters so far has mainly been based on empirical and qualitative know-how, and on evolutionary iteration steps. This resulted in considerable effort regarding prototype design, construction and testing and therefore in significant development and qualification costs and high time demands. For future developments it is anticipated to implement simulation tools which allow for quantitative prediction of ion thruster performance, long-term behavior and space craft interaction prior to hardware design and construction. Based on integrated numerical models combining self-consistent kinetic plasma models with plasma-wall interaction modules a new quality in the description of electrostatic thrusters can be reached. These open the perspective for predictive modeling in this field. This paper reviews the application of a set of predictive numerical modeling tools on an ion thruster model of the HEMP-T (High Efficiency Multi-stage Plasma Thruster) type patented by Thales Electron Devices GmbH. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Statistical assessment of predictive modeling uncertainty
Barzaghi, Riccardo; Marotta, Anna Maria
2017-04-01
When the results of geophysical models are compared with data, the uncertainties of the model are typically disregarded. We propose a method for defining the uncertainty of a geophysical model based on a numerical procedure that estimates the empirical auto and cross-covariances of model-estimated quantities. These empirical values are then fitted by proper covariance functions and used to compute the covariance matrix associated with the model predictions. The method is tested using a geophysical finite element model in the Mediterranean region. Using a novel χ2 analysis in which both data and model uncertainties are taken into account, the model's estimated tectonic strain pattern due to the Africa-Eurasia convergence in the area that extends from the Calabrian Arc to the Alpine domain is compared with that estimated from GPS velocities while taking into account the model uncertainty through its covariance structure and the covariance of the GPS estimates. The results indicate that including the estimated model covariance in the testing procedure leads to lower observed χ2 values that have better statistical significance and might help a sharper identification of the best-fitting geophysical models.
Modelling rainfall erosion resulting from climate change
Kinnell, Peter
2016-04-01
It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.
Directory of Open Access Journals (Sweden)
Jing Lu
2014-11-01
Full Text Available We propose a weather prediction model in this article based on neural network and fuzzy inference system (NFIS-WPM, and then apply it to predict daily fuzzy precipitation given meteorological premises for testing. The model consists of two parts: the first part is the “fuzzy rule-based neural network”, which simulates sequential relations among fuzzy sets using artificial neural network; and the second part is the “neural fuzzy inference system”, which is based on the first part, but could learn new fuzzy rules from the previous ones according to the algorithm we proposed. NFIS-WPM (High Pro and NFIS-WPM (Ave are improved versions of this model. It is well known that the need for accurate weather prediction is apparent when considering the benefits. However, the excessive pursuit of accuracy in weather prediction makes some of the “accurate” prediction results meaningless and the numerical prediction model is often complex and time-consuming. By adapting this novel model to a precipitation prediction problem, we make the predicted outcomes of precipitation more accurate and the prediction methods simpler than by using the complex numerical forecasting model that would occupy large computation resources, be time-consuming and which has a low predictive accuracy rate. Accordingly, we achieve more accurate predictive precipitation results than by using traditional artificial neural networks that have low predictive accuracy.
Nonlinear chaotic model for predicting storm surges
Siek, M.; Solomatine, D.P.
This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables.
Nonlinear model predictive control theory and algorithms
Grüne, Lars
2017-01-01
This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. T...
Foundation Settlement Prediction Based on a Novel NGM Model
Directory of Open Access Journals (Sweden)
Peng-Yu Chen
2014-01-01
Full Text Available Prediction of foundation or subgrade settlement is very important during engineering construction. According to the fact that there are lots of settlement-time sequences with a nonhomogeneous index trend, a novel grey forecasting model called NGM (1,1,k,c model is proposed in this paper. With an optimized whitenization differential equation, the proposed NGM (1,1,k,c model has the property of white exponential law coincidence and can predict a pure nonhomogeneous index sequence precisely. We used two case studies to verify the predictive effect of NGM (1,1,k,c model for settlement prediction. The results show that this model can achieve excellent prediction accuracy; thus, the model is quite suitable for simulation and prediction of approximate nonhomogeneous index sequence and has excellent application value in settlement prediction.
How to Establish Clinical Prediction Models
Directory of Open Access Journals (Sweden)
Yong-ho Lee
2016-03-01
Full Text Available A clinical prediction model can be applied to several challenging clinical scenarios: screening high-risk individuals for asymptomatic disease, predicting future events such as disease or death, and assisting medical decision-making and health education. Despite the impact of clinical prediction models on practice, prediction modeling is a complex process requiring careful statistical analyses and sound clinical judgement. Although there is no definite consensus on the best methodology for model development and validation, a few recommendations and checklists have been proposed. In this review, we summarize five steps for developing and validating a clinical prediction model: preparation for establishing clinical prediction models; dataset selection; handling variables; model generation; and model evaluation and validation. We also review several studies that detail methods for developing clinical prediction models with comparable examples from real practice. After model development and vigorous validation in relevant settings, possibly with evaluation of utility/usability and fine-tuning, good models can be ready for the use in practice. We anticipate that this framework will revitalize the use of predictive or prognostic research in endocrinology, leading to active applications in real clinical practice.
Comparison of Prediction-Error-Modelling Criteria
DEFF Research Database (Denmark)
Jørgensen, John Bagterp; Jørgensen, Sten Bay
2007-01-01
is a realization of a continuous-discrete multivariate stochastic transfer function model. The proposed prediction error-methods are demonstrated for a SISO system parameterized by the transfer functions with time delays of a continuous-discrete-time linear stochastic system. The simulations for this case suggest......Single and multi-step prediction-error-methods based on the maximum likelihood and least squares criteria are compared. The prediction-error methods studied are based on predictions using the Kalman filter and Kalman predictors for a linear discrete-time stochastic state space model, which...... computational resources. The identification method is suitable for predictive control....
Predicting Football Matches Results using Bayesian Networks for English Premier League (EPL)
Razali, Nazim; Mustapha, Aida; Yatim, Faiz Ahmad; Aziz, Ruhaya Ab
2017-08-01
The issues of modeling asscoiation football prediction model has become increasingly popular in the last few years and many different approaches of prediction models have been proposed with the point of evaluating the attributes that lead a football team to lose, draw or win the match. There are three types of approaches has been considered for predicting football matches results which include statistical approaches, machine learning approaches and Bayesian approaches. Lately, many studies regarding football prediction models has been produced using Bayesian approaches. This paper proposes a Bayesian Networks (BNs) to predict the results of football matches in term of home win (H), away win (A) and draw (D). The English Premier League (EPL) for three seasons of 2010-2011, 2011-2012 and 2012-2013 has been selected and reviewed. K-fold cross validation has been used for testing the accuracy of prediction model. The required information about the football data is sourced from a legitimate site at http://www.football-data.co.uk. BNs achieved predictive accuracy of 75.09% in average across three seasons. It is hoped that the results could be used as the benchmark output for future research in predicting football matches results.
Experimental study of the Timoshenko beam theory predictions: Further results
Monsivais, G.; Díaz-de-Anda, A.; Flores, J.; Gutiérrez, L.; Morales, A.
2016-08-01
In a previous paper (2012) we presented experimental results proving that the critical frequency fC predicted by Timoshenko beam theory indeed exists. We also showed that for frequencies f smaller than fC the spectrum is formed by almost equally spaced levels whereas for f >fC the spectrum consists of pairs of eigenvalues very close to each other as predicted by numerical solutions of Timoshenko's equation: we shall refer to them as Timoshenko doublets. In this work we measure for the first time experimental dispersion relations. For this purpose it was necessary to obtain normal-mode amplitudes with a high precision, which was done with a new experimental setup developed by us. We found that experimental dispersion relations coincide very well with theoretical predictions. Furthermore, we provide an explanation of Timoshenko doublets.
Modelling microbial interactions and food structure in predictive microbiology
Malakar, P.K.
2002-01-01
Keywords: modelling, dynamic models, microbial interactions, diffusion, microgradients, colony growth, predictive microbiology.
Growth response of microorganisms in foods is a complex process. Innovations in food production and preservation techniques have resulted in adoption of
Modelling microbial interactions and food structure in predictive microbiology
Malakar, P.K.
2002-01-01
Keywords: modelling, dynamic models, microbial interactions, diffusion, microgradients, colony growth, predictive microbiology. Growth response of microorganisms in foods is a complex process. Innovations in food production and preservation techniques have resulted in adoption of new technologies
Predictions of models for environmental radiological assessment
Energy Technology Data Exchange (ETDEWEB)
Peres, Sueli da Silva; Lauria, Dejanira da Costa, E-mail: suelip@ird.gov.br, E-mail: dejanira@irg.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Servico de Avaliacao de Impacto Ambiental, Rio de Janeiro, RJ (Brazil); Mahler, Claudio Fernando [Coppe. Instituto Alberto Luiz Coimbra de Pos-Graduacao e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro (UFRJ) - Programa de Engenharia Civil, RJ (Brazil)
2011-07-01
In the field of environmental impact assessment, models are used for estimating source term, environmental dispersion and transfer of radionuclides, exposure pathway, radiation dose and the risk for human beings Although it is recognized that the specific information of local data are important to improve the quality of the dose assessment results, in fact obtaining it can be very difficult and expensive. Sources of uncertainties are numerous, among which we can cite: the subjectivity of modelers, exposure scenarios and pathways, used codes and general parameters. The various models available utilize different mathematical approaches with different complexities that can result in different predictions. Thus, for the same inputs different models can produce very different outputs. This paper presents briefly the main advances in the field of environmental radiological assessment that aim to improve the reliability of the models used in the assessment of environmental radiological impact. The intercomparison exercise of model supplied incompatible results for {sup 137}Cs and {sup 60}Co, enhancing the need for developing reference methodologies for environmental radiological assessment that allow to confront dose estimations in a common comparison base. The results of the intercomparison exercise are present briefly. (author)
A prediction model for Clostridium difficile recurrence
Directory of Open Access Journals (Sweden)
Francis D. LaBarbera
2015-02-01
Full Text Available Background: Clostridium difficile infection (CDI is a growing problem in the community and hospital setting. Its incidence has been on the rise over the past two decades, and it is quickly becoming a major concern for the health care system. High rate of recurrence is one of the major hurdles in the successful treatment of C. difficile infection. There have been few studies that have looked at patterns of recurrence. The studies currently available have shown a number of risk factors associated with C. difficile recurrence (CDR; however, there is little consensus on the impact of most of the identified risk factors. Methods: Our study was a retrospective chart review of 198 patients diagnosed with CDI via Polymerase Chain Reaction (PCR from February 2009 to Jun 2013. In our study, we decided to use a machine learning algorithm called the Random Forest (RF to analyze all of the factors proposed to be associated with CDR. This model is capable of making predictions based on a large number of variables, and has outperformed numerous other models and statistical methods. Results: We came up with a model that was able to accurately predict the CDR with a sensitivity of 83.3%, specificity of 63.1%, and area under curve of 82.6%. Like other similar studies that have used the RF model, we also had very impressive results. Conclusions: We hope that in the future, machine learning algorithms, such as the RF, will see a wider application.
Artificial Neural Network Model for Predicting Compressive
Directory of Open Access Journals (Sweden)
Salim T. Yousif
2013-05-01
Full Text Available Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature. The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor affecting the output of the model. The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.
Statistical Seasonal Sea Surface based Prediction Model
Suarez, Roberto; Rodriguez-Fonseca, Belen; Diouf, Ibrahima
2014-05-01
The interannual variability of the sea surface temperature (SST) plays a key role in the strongly seasonal rainfall regime on the West African region. The predictability of the seasonal cycle of rainfall is a field widely discussed by the scientific community, with results that fail to be satisfactory due to the difficulty of dynamical models to reproduce the behavior of the Inter Tropical Convergence Zone (ITCZ). To tackle this problem, a statistical model based on oceanic predictors has been developed at the Universidad Complutense of Madrid (UCM) with the aim to complement and enhance the predictability of the West African Monsoon (WAM) as an alternative to the coupled models. The model, called S4CAST (SST-based Statistical Seasonal Forecast) is based on discriminant analysis techniques, specifically the Maximum Covariance Analysis (MCA) and Canonical Correlation Analysis (CCA). Beyond the application of the model to the prediciton of rainfall in West Africa, its use extends to a range of different oceanic, atmospheric and helth related parameters influenced by the temperature of the sea surface as a defining factor of variability.
Case studies in archaeological predictive modelling
Verhagen, Jacobus Wilhelmus Hermanus Philippus
2007-01-01
In this thesis, a collection of papers is put together dealing with various quantitative aspects of predictive modelling and archaeological prospection. Among the issues covered are the effects of survey bias on the archaeological data used for predictive modelling, and the complexities of testing p
Childhood asthma prediction models: a systematic review.
Smit, Henriette A; Pinart, Mariona; Antó, Josep M; Keil, Thomas; Bousquet, Jean; Carlsen, Kai H; Moons, Karel G M; Hooft, Lotty; Carlsen, Karin C Lødrup
2015-12-01
Early identification of children at risk of developing asthma at school age is crucial, but the usefulness of childhood asthma prediction models in clinical practice is still unclear. We systematically reviewed all existing prediction models to identify preschool children with asthma-like symptoms at risk of developing asthma at school age. Studies were included if they developed a new prediction model or updated an existing model in children aged 4 years or younger with asthma-like symptoms, with assessment of asthma done between 6 and 12 years of age. 12 prediction models were identified in four types of cohorts of preschool children: those with health-care visits, those with parent-reported symptoms, those at high risk of asthma, or children in the general population. Four basic models included non-invasive, easy-to-obtain predictors only, notably family history, allergic disease comorbidities or precursors of asthma, and severity of early symptoms. Eight extended models included additional clinical tests, mostly specific IgE determination. Some models could better predict asthma development and other models could better rule out asthma development, but the predictive performance of no single model stood out in both aspects simultaneously. This finding suggests that there is a large proportion of preschool children with wheeze for which prediction of asthma development is difficult.
The RCT Approach for Cell Coverage Prediction ( Ⅱ ): Experiment and Early Results
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
We study on the implementation flow of the radio computerized tomography (RCT) prediction method. A case in real cellular mobile radio (CMR) system together with the prediction results are also presented. As shown by the results, the RCT prediction method is marked for its convenience and rapidity, as well as its relative high precision even when the prediction procedure is highly simplified. Since it is developed according to the characteristics of wireless communication environments of our country and has concurrently merits from both statistical and deterministic prediction models, the RCT prediction method is in good agreement with engineering practices in cellular mobile communication in cities at home. Optimized by combining with other techniques, further improvement could be achieved in the stability and precision of the RCT prediction method which now serves as the core part of a software tool for commercial use in CMR system analysis and optimization.
Predictive modeling of dental pain using neural network.
Kim, Eun Yeob; Lim, Kun Ok; Rhee, Hyun Sill
2009-01-01
The mouth is a part of the body for ingesting food that is the most basic foundation and important part. The dental pain predicted by the neural network model. As a result of making a predictive modeling, the fitness of the predictive modeling of dental pain factors was 80.0%. As for the people who are likely to experience dental pain predicted by the neural network model, preventive measures including proper eating habits, education on oral hygiene, and stress release must precede any dental treatment.
Optimal feedback scheduling of model predictive controllers
Institute of Scientific and Technical Information of China (English)
Pingfang ZHOU; Jianying XIE; Xiaolong DENG
2006-01-01
Model predictive control (MPC) could not be reliably applied to real-time control systems because its computation time is not well defined. Implemented as anytime algorithm, MPC task allows computation time to be traded for control performance, thus obtaining the predictability in time. Optimal feedback scheduling (FS-CBS) of a set of MPC tasks is presented to maximize the global control performance subject to limited processor time. Each MPC task is assigned with a constant bandwidth server (CBS), whose reserved processor time is adjusted dynamically. The constraints in the FSCBS guarantee scheduler of the total task set and stability of each component. The FS-CBS is shown robust against the variation of execution time of MPC tasks at runtime. Simulation results illustrate its effectiveness.
A Prediction Model of the Capillary Pressure J-Function
Xu, W. S.; Luo, P. Y.; Sun, L.; Lin, N.
2016-01-01
The capillary pressure J-function is a dimensionless measure of the capillary pressure of a fluid in a porous medium. The function was derived based on a capillary bundle model. However, the dependence of the J-function on the saturation Sw is not well understood. A prediction model for it is presented based on capillary pressure model, and the J-function prediction model is a power function instead of an exponential or polynomial function. Relative permeability is calculated with the J-function prediction model, resulting in an easier calculation and results that are more representative. PMID:27603701
A model to predict the power output from wind farms
Energy Technology Data Exchange (ETDEWEB)
Landberg, L. [Riso National Lab., Roskilde (Denmark)
1997-12-31
This paper will describe a model that can predict the power output from wind farms. To give examples of input the model is applied to a wind farm in Texas. The predictions are generated from forecasts from the NGM model of NCEP. These predictions are made valid at individual sites (wind farms) by applying a matrix calculated by the sub-models of WASP (Wind Atlas Application and Analysis Program). The actual wind farm production is calculated using the Riso PARK model. Because of the preliminary nature of the results, they will not be given. However, similar results from Europe will be given.
Objective calibration of numerical weather prediction models
Voudouri, A.; Khain, P.; Carmona, I.; Bellprat, O.; Grazzini, F.; Avgoustoglou, E.; Bettems, J. M.; Kaufmann, P.
2017-07-01
Numerical weather prediction (NWP) and climate models use parameterization schemes for physical processes, which often include free or poorly confined parameters. Model developers normally calibrate the values of these parameters subjectively to improve the agreement of forecasts with available observations, a procedure referred as expert tuning. A practicable objective multi-variate calibration method build on a quadratic meta-model (MM), that has been applied for a regional climate model (RCM) has shown to be at least as good as expert tuning. Based on these results, an approach to implement the methodology to an NWP model is presented in this study. Challenges in transferring the methodology from RCM to NWP are not only restricted to the use of higher resolution and different time scales. The sensitivity of the NWP model quality with respect to the model parameter space has to be clarified, as well as optimize the overall procedure, in terms of required amount of computing resources for the calibration of an NWP model. Three free model parameters affecting mainly turbulence parameterization schemes were originally selected with respect to their influence on the variables associated to daily forecasts such as daily minimum and maximum 2 m temperature as well as 24 h accumulated precipitation. Preliminary results indicate that it is both affordable in terms of computer resources and meaningful in terms of improved forecast quality. In addition, the proposed methodology has the advantage of being a replicable procedure that can be applied when an updated model version is launched and/or customize the same model implementation over different climatological areas.
An Anisotropic Hardening Model for Springback Prediction
Zeng, Danielle; Xia, Z. Cedric
2005-08-01
As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.
Effect on Prediction when Modeling Covariates in Bayesian Nonparametric Models.
Cruz-Marcelo, Alejandro; Rosner, Gary L; Müller, Peter; Stewart, Clinton F
2013-04-01
In biomedical research, it is often of interest to characterize biologic processes giving rise to observations and to make predictions of future observations. Bayesian nonparametric methods provide a means for carrying out Bayesian inference making as few assumptions about restrictive parametric models as possible. There are several proposals in the literature for extending Bayesian nonparametric models to include dependence on covariates. Limited attention, however, has been directed to the following two aspects. In this article, we examine the effect on fitting and predictive performance of incorporating covariates in a class of Bayesian nonparametric models by one of two primary ways: either in the weights or in the locations of a discrete random probability measure. We show that different strategies for incorporating continuous covariates in Bayesian nonparametric models can result in big differences when used for prediction, even though they lead to otherwise similar posterior inferences. When one needs the predictive density, as in optimal design, and this density is a mixture, it is better to make the weights depend on the covariates. We demonstrate these points via a simulated data example and in an application in which one wants to determine the optimal dose of an anticancer drug used in pediatric oncology.
Are the Federal Reserve's Stress Test Results Predictable?
Paul Glasserman; Gowtham Tangirala
2015-01-01
Regulatory stress tests have become a key tool for setting bank capital levels. Publicly disclosed results for four rounds of stress tests suggest that as the stress testing process has evolved, its outcomes have become more predictable and therefore arguably less informative. In particular, projected stress losses in the 2013 and 2014 stress tests are nearly perfectly correlated for bank holding companies that participated in both rounds. We also compare projected losses across different sce...
Successful prediction of horse racing results using a neural network
Allinson, N. M.; Merritt, D.
1991-01-01
Most application work within neural computing continues to employ multi-layer perceptrons (MLP). Though many variations of the fully interconnected feed-forward MLP, and even more variations of the back propagation learning rule, exist; the first section of the paper attempts to highlight several properties of these standard networks. The second section outlines an application-namely the prediction of horse racing results
A Modified Model Predictive Control Scheme
Institute of Scientific and Technical Information of China (English)
Xiao-Bing Hu; Wen-Hua Chen
2005-01-01
In implementations of MPC (Model Predictive Control) schemes, two issues need to be addressed. One is how to enlarge the stability region as much as possible. The other is how to guarantee stability when a computational time limitation exists. In this paper, a modified MPC scheme for constrained linear systems is described. An offline LMI-based iteration process is introduced to expand the stability region. At the same time, a database of feasible control sequences is generated offline so that stability can still be guaranteed in the case of computational time limitations. Simulation results illustrate the effectiveness of this new approach.
Explicit model predictive control accuracy analysis
Knyazev, Andrew; Zhu, Peizhen; Di Cairano, Stefano
2015-01-01
Model Predictive Control (MPC) can efficiently control constrained systems in real-time applications. MPC feedback law for a linear system with linear inequality constraints can be explicitly computed off-line, which results in an off-line partition of the state space into non-overlapped convex regions, with affine control laws associated to each region of the partition. An actual implementation of this explicit MPC in low cost micro-controllers requires the data to be "quantized", i.e. repre...
Model predictive control classical, robust and stochastic
Kouvaritakis, Basil
2016-01-01
For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplic...
Model predictive control of MSMPR crystallizers
Moldoványi, Nóra; Lakatos, Béla G.; Szeifert, Ferenc
2005-02-01
A multi-input-multi-output (MIMO) control problem of isothermal continuous crystallizers is addressed in order to create an adequate model-based control system. The moment equation model of mixed suspension, mixed product removal (MSMPR) crystallizers that forms a dynamical system is used, the state of which is represented by the vector of six variables: the first four leading moments of the crystal size, solute concentration and solvent concentration. Hence, the time evolution of the system occurs in a bounded region of the six-dimensional phase space. The controlled variables are the mean size of the grain; the crystal size-distribution and the manipulated variables are the input concentration of the solute and the flow rate. The controllability and observability as well as the coupling between the inputs and the outputs was analyzed by simulation using the linearized model. It is shown that the crystallizer is a nonlinear MIMO system with strong coupling between the state variables. Considering the possibilities of the model reduction, a third-order model was found quite adequate for the model estimation in model predictive control (MPC). The mean crystal size and the variance of the size distribution can be nearly separately controlled by the residence time and the inlet solute concentration, respectively. By seeding, the controllability of the crystallizer increases significantly, and the overshoots and the oscillations become smaller. The results of the controlling study have shown that the linear MPC is an adaptable and feasible controller of continuous crystallizers.
Institute of Scientific and Technical Information of China (English)
余飞; 丁慧
2015-01-01
基于人体试验的实际应用及伦理方面的考虑，合适的动物模型对于肿瘤药物研发至关重要。制药公司和研究机构在肿瘤治疗新药的开发过程中消耗大量资源，最佳动物体内模型的选择可以改进或缩短研发进程。在技术复杂性方面，肿瘤遗传工程小鼠模型（ GEMM）已逐步完善，并且GEMM能够准确重建人类肿瘤的同源发生，为加快肿瘤药物的开发提供机遇。本文主要综合比较预测肿瘤药物临床试验效果的不同类型动物模型，探讨其优劣，并对体内模型的评估方法及与临床转化等进行简述，为肿瘤药物临床前试验提供参考。%Due to practical and ethical concerns associated with human experiments, animal models have been essential in cancer research.Vast resources are expended during the development of new cancer therapeutics, and selection of optimal in vivo models should improve this process.Genetically engineered mouse models ( GEMM) of cancer have progressively improved in technical sophistication and, accurately recapitulating the human cognate condition, have provided opportunities to accelerate the development of cancer drugs.In this article we consider the different types of animal models used for predicting the results of clinical trials of cancer drugs, and discuss the strengths and weaknesses of each in this regard.In addition, the methods of predicting in vivo models and clinical translation are discussed.
Prediction Model of Sewing Technical Condition by Grey Neural Network
Institute of Scientific and Technical Information of China (English)
DONG Ying; FANG Fang; ZHANG Wei-yuan
2007-01-01
The grey system theory and the artificial neural network technology were applied to predict the sewing technical condition. The representative parameters, such as needle, stitch, were selected. Prediction model was established based on the different fabrics' mechanical properties that measured by KES instrument. Grey relevant degree analysis was applied to choose the input parameters of the neural network. The result showed that prediction model has good precision. The average relative error was 4.08% for needle and 4.25% for stitch.
New encouraging developments in contact prediction: Assessment of the CASP11 results
Monastyrskyy, Bohdan
2015-10-01
© 2015 Wiley Periodicals, Inc. This article provides a report on the state-of-the-art in the prediction of intra-molecular residue-residue contacts in proteins based on the assessment of the predictions submitted to the CASP11 experiment. The assessment emphasis is placed on the accuracy in predicting long-range contacts. Twenty-nine groups participated in contact prediction in CASP11. At least eight of them used the recently developed evolutionary coupling techniques, with the top group (CONSIP2) reaching precision of 27% on target proteins that could not be modeled by homology. This result indicates a breakthrough in the development of methods based on the correlated mutation approach. Successful prediction of contacts was shown to be practically helpful in modeling three-dimensional structures; in particular target T0806 was modeled exceedingly well with accuracy not yet seen for ab initio targets of this size (>250 residues).
Energy based prediction models for building acoustics
DEFF Research Database (Denmark)
Brunskog, Jonas
2012-01-01
In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...
Intelligent predictive model of ventilating capacity of imperial smelt furnace
Institute of Scientific and Technical Information of China (English)
唐朝晖; 胡燕瑜; 桂卫华; 吴敏
2003-01-01
In order to know the ventilating capacity of imperial smelt furnace (ISF), and increase the output of plumbum, an intelligent modeling method based on gray theory and artificial neural networks(ANN) is proposed, in which the weight values in the integrated model can be adjusted automatically. An intelligent predictive model of the ventilating capacity of the ISF is established and analyzed by the method. The simulation results and industrial applications demonstrate that the predictive model is close to the real plant, the relative predictive error is 0.72%, which is 50% less than the single model, leading to a notable increase of the output of plumbum.
Analyzing online sentiment to predict telephone poll results.
Fu, King-wa; Chan, Chee-hon
2013-09-01
The telephone survey is a common social science research method for capturing public opinion, for example, an individual's values or attitudes, or the government's approval rating. However, reducing domestic landline usage, increasing nonresponse rate, and suffering from response bias of the interviewee's self-reported data pose methodological challenges to such an approach. Because of the labor cost of administration, a phone survey is often conducted on a biweekly or monthly basis, and therefore a daily reflection of public opinion is usually not available. Recently, online sentiment analysis of user-generated content has been deployed to predict public opinion and human behavior. However, its overall effectiveness remains uncertain. This study seeks to examine the temporal association between online sentiment reflected in social media content and phone survey poll results in Hong Kong. Specifically, it aims to find the extent to which online sentiment can predict phone survey results. Using autoregressive integrated moving average time-series analysis, this study suggested that online sentiment scores can lead phone survey results by about 8-15 days, and their correlation coefficients were about 0.16. The finding is significant to the study of social media in social science research, because it supports the conclusion that daily sentiment observed in social media content can serve as a leading predictor for phone survey results, keeping as much as 2 weeks ahead of the monthly announcement of opinion polls. We also discuss the practical and theoretical implications of this study.
Liver Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing liver cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Colorectal Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing colorectal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Cervical Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Prostate Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing prostate cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Pancreatic Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing pancreatic cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Colorectal Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing colorectal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Bladder Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing bladder cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Esophageal Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing esophageal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Lung Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing lung cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Breast Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing breast cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Ovarian Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing ovarian cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Testicular Cancer Risk Prediction Models
Developing statistical models that estimate the probability of testicular cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Posterior Predictive Model Checking in Bayesian Networks
Crawford, Aaron
2014-01-01
This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…
MULTI MODEL DATA MINING APPROACH FOR HEART FAILURE PREDICTION
Directory of Open Access Journals (Sweden)
Priyanka H U
2016-09-01
Full Text Available Developing predictive modelling solutions for risk estimation is extremely challenging in health-care informatics. Risk estimation involves integration of heterogeneous clinical sources having different representation from different health-care provider making the task increasingly complex. Such sources are typically voluminous, diverse, and significantly change over the time. Therefore, distributed and parallel computing tools collectively termed big data tools are in need which can synthesize and assist the physician to make right clinical decisions. In this work we propose multi-model predictive architecture, a novel approach for combining the predictive ability of multiple models for better prediction accuracy. We demonstrate the effectiveness and efficiency of the proposed work on data from Framingham Heart study. Results show that the proposed multi-model predictive architecture is able to provide better accuracy than best model approach. By modelling the error of predictive models we are able to choose sub set of models which yields accurate results. More information was modelled into system by multi-level mining which has resulted in enhanced predictive accuracy.
A Course in... Model Predictive Control.
Arkun, Yaman; And Others
1988-01-01
Describes a graduate engineering course which specializes in model predictive control. Lists course outline and scope. Discusses some specific topics and teaching methods. Suggests final projects for the students. (MVL)
Prediction using patient comparison vs. modeling: a case study for mortality prediction.
Hoogendoorn, Mark; El Hassouni, Ali; Mok, Kwongyen; Ghassemi, Marzyeh; Szolovits, Peter
2016-08-01
Information in Electronic Medical Records (EMRs) can be used to generate accurate predictions for the occurrence of a variety of health states, which can contribute to more pro-active interventions. The very nature of EMRs does make the application of off-the-shelf machine learning techniques difficult. In this paper, we study two approaches to making predictions that have hardly been compared in the past: (1) extracting high-level (temporal) features from EMRs and building a predictive model, and (2) defining a patient similarity metric and predicting based on the outcome observed for similar patients. We analyze and compare both approaches on the MIMIC-II ICU dataset to predict patient mortality and find that the patient similarity approach does not scale well and results in a less accurate model (AUC of 0.68) compared to the modeling approach (0.84). We also show that mortality can be predicted within a median of 72 hours.
Predictability of extreme values in geophysical models
Directory of Open Access Journals (Sweden)
A. E. Sterk
2012-09-01
Full Text Available Extreme value theory in deterministic systems is concerned with unlikely large (or small values of an observable evaluated along evolutions of the system. In this paper we study the finite-time predictability of extreme values, such as convection, energy, and wind speeds, in three geophysical models. We study whether finite-time Lyapunov exponents are larger or smaller for initial conditions leading to extremes. General statements on whether extreme values are better or less predictable are not possible: the predictability of extreme values depends on the observable, the attractor of the system, and the prediction lead time.
Risk terrain modeling predicts child maltreatment.
Daley, Dyann; Bachmann, Michael; Bachmann, Brittany A; Pedigo, Christian; Bui, Minh-Thuy; Coffman, Jamye
2016-12-01
As indicated by research on the long-term effects of adverse childhood experiences (ACEs), maltreatment has far-reaching consequences for affected children. Effective prevention measures have been elusive, partly due to difficulty in identifying vulnerable children before they are harmed. This study employs Risk Terrain Modeling (RTM), an analysis of the cumulative effect of environmental factors thought to be conducive for child maltreatment, to create a highly accurate prediction model for future substantiated child maltreatment cases in the City of Fort Worth, Texas. The model is superior to commonly used hotspot predictions and more beneficial in aiding prevention efforts in a number of ways: 1) it identifies the highest risk areas for future instances of child maltreatment with improved precision and accuracy; 2) it aids the prioritization of risk-mitigating efforts by informing about the relative importance of the most significant contributing risk factors; 3) since predictions are modeled as a function of easily obtainable data, practitioners do not have to undergo the difficult process of obtaining official child maltreatment data to apply it; 4) the inclusion of a multitude of environmental risk factors creates a more robust model with higher predictive validity; and, 5) the model does not rely on a retrospective examination of past instances of child maltreatment, but adapts predictions to changing environmental conditions. The present study introduces and examines the predictive power of this new tool to aid prevention efforts seeking to improve the safety, health, and wellbeing of vulnerable children.
Property predictions using microstructural modeling
Energy Technology Data Exchange (ETDEWEB)
Wang, K.G. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, CII 9219, 110 8th Street, Troy, NY 12180-3590 (United States)]. E-mail: wangk2@rpi.edu; Guo, Z. [Sente Software Ltd., Surrey Technology Centre, 40 Occam Road, Guildford GU2 7YG (United Kingdom); Sha, W. [Metals Research Group, School of Civil Engineering, Architecture and Planning, The Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Glicksman, M.E. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, CII 9219, 110 8th Street, Troy, NY 12180-3590 (United States); Rajan, K. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, CII 9219, 110 8th Street, Troy, NY 12180-3590 (United States)
2005-07-15
Precipitation hardening in an Fe-12Ni-6Mn maraging steel during overaging is quantified. First, applying our recent kinetic model of coarsening [Phys. Rev. E, 69 (2004) 061507], and incorporating the Ashby-Orowan relationship, we link quantifiable aspects of the microstructures of these steels to their mechanical properties, including especially the hardness. Specifically, hardness measurements allow calculation of the precipitate size as a function of time and temperature through the Ashby-Orowan relationship. Second, calculated precipitate sizes and thermodynamic data determined with Thermo-Calc[copyright] are used with our recent kinetic coarsening model to extract diffusion coefficients during overaging from hardness measurements. Finally, employing more accurate diffusion parameters, we determined the hardness of these alloys independently from theory, and found agreement with experimental hardness data. Diffusion coefficients determined during overaging of these steels are notably higher than those found during the aging - an observation suggesting that precipitate growth during aging and precipitate coarsening during overaging are not controlled by the same diffusion mechanism.
A predictive fitness model for influenza
Łuksza, Marta; Lässig, Michael
2014-03-01
The seasonal human influenza A/H3N2 virus undergoes rapid evolution, which produces significant year-to-year sequence turnover in the population of circulating strains. Adaptive mutations respond to human immune challenge and occur primarily in antigenic epitopes, the antibody-binding domains of the viral surface protein haemagglutinin. Here we develop a fitness model for haemagglutinin that predicts the evolution of the viral population from one year to the next. Two factors are shown to determine the fitness of a strain: adaptive epitope changes and deleterious mutations outside the epitopes. We infer both fitness components for the strains circulating in a given year, using population-genetic data of all previous strains. From fitness and frequency of each strain, we predict the frequency of its descendent strains in the following year. This fitness model maps the adaptive history of influenza A and suggests a principled method for vaccine selection. Our results call for a more comprehensive epidemiology of influenza and other fast-evolving pathogens that integrates antigenic phenotypes with other viral functions coupled by genetic linkage.
Spatial Economics Model Predicting Transport Volume
Directory of Open Access Journals (Sweden)
Lu Bo
2016-10-01
Full Text Available It is extremely important to predict the logistics requirements in a scientific and rational way. However, in recent years, the improvement effect on the prediction method is not very significant and the traditional statistical prediction method has the defects of low precision and poor interpretation of the prediction model, which cannot only guarantee the generalization ability of the prediction model theoretically, but also cannot explain the models effectively. Therefore, in combination with the theories of the spatial economics, industrial economics, and neo-classical economics, taking city of Zhuanghe as the research object, the study identifies the leading industry that can produce a large number of cargoes, and further predicts the static logistics generation of the Zhuanghe and hinterlands. By integrating various factors that can affect the regional logistics requirements, this study established a logistics requirements potential model from the aspect of spatial economic principles, and expanded the way of logistics requirements prediction from the single statistical principles to an new area of special and regional economics.
Models Predicting Success of Infertility Treatment: A Systematic Review
Zarinara, Alireza; Zeraati, Hojjat; Kamali, Koorosh; Mohammad, Kazem; Shahnazari, Parisa; Akhondi, Mohammad Mehdi
2016-01-01
Background: Infertile couples are faced with problems that affect their marital life. Infertility treatment is expensive and time consuming and occasionally isn’t simply possible. Prediction models for infertility treatment have been proposed and prediction of treatment success is a new field in infertility treatment. Because prediction of treatment success is a new need for infertile couples, this paper reviewed previous studies for catching a general concept in applicability of the models. Methods: This study was conducted as a systematic review at Avicenna Research Institute in 2015. Six data bases were searched based on WHO definitions and MESH key words. Papers about prediction models in infertility were evaluated. Results: Eighty one papers were eligible for the study. Papers covered years after 1986 and studies were designed retrospectively and prospectively. IVF prediction models have more shares in papers. Most common predictors were age, duration of infertility, ovarian and tubal problems. Conclusion: Prediction model can be clinically applied if the model can be statistically evaluated and has a good validation for treatment success. To achieve better results, the physician and the couples’ needs estimation for treatment success rate were based on history, the examination and clinical tests. Models must be checked for theoretical approach and appropriate validation. The privileges for applying the prediction models are the decrease in the cost and time, avoiding painful treatment of patients, assessment of treatment approach for physicians and decision making for health managers. The selection of the approach for designing and using these models is inevitable. PMID:27141461
Modeling and Prediction Using Stochastic Differential Equations
DEFF Research Database (Denmark)
Juhl, Rune; Møller, Jan Kloppenborg; Jørgensen, John Bagterp
2016-01-01
Pharmacokinetic/pharmakodynamic (PK/PD) modeling for a single subject is most often performed using nonlinear models based on deterministic ordinary differential equations (ODEs), and the variation between subjects in a population of subjects is described using a population (mixed effects) setup...... that describes the variation between subjects. The ODE setup implies that the variation for a single subject is described by a single parameter (or vector), namely the variance (covariance) of the residuals. Furthermore the prediction of the states is given as the solution to the ODEs and hence assumed...... deterministic and can predict the future perfectly. A more realistic approach would be to allow for randomness in the model due to e.g., the model be too simple or errors in input. We describe a modeling and prediction setup which better reflects reality and suggests stochastic differential equations (SDEs...
Image-Based Visual Servoing for Manipulation Via Predictive Control – A Survey of Some Results
Directory of Open Access Journals (Sweden)
Corneliu Lazăr
2016-09-01
Full Text Available In this paper, a review of predictive control algorithms developed by the authors for visual servoing of robots in manipulation applications is presented. Using these algorithms, a control predictive framework was created for image-based visual servoing (IBVS systems. Firstly, considering the point features, in the year 2008 we introduced an internal model predictor based on the interaction matrix. Secondly, distinctly from the set-point trajectory, we introduced in 2011 the reference trajectory using the concept from predictive control. Finally, minimizing a sum of squares of predicted errors, the optimal input trajectory was obtained. The new concept of predictive control for IBVS systems was employed to develop a cascade structure for motion control of robot arms. Simulation results obtained with a simulator for predictive IBVS systems are also presented.
Comparison of Simple Versus Performance-Based Fall Prediction Models
Directory of Open Access Journals (Sweden)
Shekhar K. Gadkaree BS
2015-05-01
Full Text Available Objective: To compare the predictive ability of standard falls prediction models based on physical performance assessments with more parsimonious prediction models based on self-reported data. Design: We developed a series of fall prediction models progressing in complexity and compared area under the receiver operating characteristic curve (AUC across models. Setting: National Health and Aging Trends Study (NHATS, which surveyed a nationally representative sample of Medicare enrollees (age ≥65 at baseline (Round 1: 2011-2012 and 1-year follow-up (Round 2: 2012-2013. Participants: In all, 6,056 community-dwelling individuals participated in Rounds 1 and 2 of NHATS. Measurements: Primary outcomes were 1-year incidence of “any fall” and “recurrent falls.” Prediction models were compared and validated in development and validation sets, respectively. Results: A prediction model that included demographic information, self-reported problems with balance and coordination, and previous fall history was the most parsimonious model that optimized AUC for both any fall (AUC = 0.69, 95% confidence interval [CI] = [0.67, 0.71] and recurrent falls (AUC = 0.77, 95% CI = [0.74, 0.79] in the development set. Physical performance testing provided a marginal additional predictive value. Conclusion: A simple clinical prediction model that does not include physical performance testing could facilitate routine, widespread falls risk screening in the ambulatory care setting.
Comparison of Simple Versus Performance-Based Fall Prediction Models
Directory of Open Access Journals (Sweden)
Shekhar K. Gadkaree BS
2015-05-01
Full Text Available Objective: To compare the predictive ability of standard falls prediction models based on physical performance assessments with more parsimonious prediction models based on self-reported data. Design: We developed a series of fall prediction models progressing in complexity and compared area under the receiver operating characteristic curve (AUC across models. Setting: National Health and Aging Trends Study (NHATS, which surveyed a nationally representative sample of Medicare enrollees (age ≥65 at baseline (Round 1: 2011-2012 and 1-year follow-up (Round 2: 2012-2013. Participants: In all, 6,056 community-dwelling individuals participated in Rounds 1 and 2 of NHATS. Measurements: Primary outcomes were 1-year incidence of “ any fall ” and “ recurrent falls .” Prediction models were compared and validated in development and validation sets, respectively. Results: A prediction model that included demographic information, self-reported problems with balance and coordination, and previous fall history was the most parsimonious model that optimized AUC for both any fall (AUC = 0.69, 95% confidence interval [CI] = [0.67, 0.71] and recurrent falls (AUC = 0.77, 95% CI = [0.74, 0.79] in the development set. Physical performance testing provided a marginal additional predictive value. Conclusion: A simple clinical prediction model that does not include physical performance testing could facilitate routine, widespread falls risk screening in the ambulatory care setting.
NBC Hazard Prediction Model Capability Analysis
1999-09-01
Puff( SCIPUFF ) Model Verification and Evaluation Study, Air Resources Laboratory, NOAA, May 1998. Based on the NOAA review, the VLSTRACK developers...TO SUBSTANTIAL DIFFERENCES IN PREDICTIONS HPAC uses a transport and dispersion (T&D) model called SCIPUFF and an associated mean wind field model... SCIPUFF is a model for atmospheric dispersion that uses the Gaussian puff method - an arbitrary time-dependent concentration field is represented
Energy Technology Data Exchange (ETDEWEB)
Ajami, N K; Duan, Q; Gao, X; Sorooshian, S
2005-04-11
This paper examines several multi-model combination techniques: the Simple Multi-model Average (SMA), the Multi-Model Super Ensemble (MMSE), Modified Multi-Model Super Ensemble (M3SE) and the Weighted Average Method (WAM). These model combination techniques were evaluated using the results from the Distributed Model Intercomparison Project (DMIP), an international project sponsored by the National Weather Service (NWS) Office of Hydrologic Development (OHD). All of the multi-model combination results were obtained using uncalibrated DMIP model outputs and were compared against the best uncalibrated as well as the best calibrated individual model results. The purpose of this study is to understand how different combination techniques affect the skill levels of the multi-model predictions. This study revealed that the multi-model predictions obtained from uncalibrated single model predictions are generally better than any single member model predictions, even the best calibrated single model predictions. Furthermore, more sophisticated multi-model combination techniques that incorporated bias correction steps work better than simple multi-model average predictions or multi-model predictions without bias correction.
RFI modeling and prediction approach for SATOP applications: RFI prediction models
Nguyen, Tien M.; Tran, Hien T.; Wang, Zhonghai; Coons, Amanda; Nguyen, Charles C.; Lane, Steven A.; Pham, Khanh D.; Chen, Genshe; Wang, Gang
2016-05-01
This paper describes a technical approach for the development of RFI prediction models using carrier synchronization loop when calculating Bit or Carrier SNR degradation due to interferences for (i) detecting narrow-band and wideband RFI signals, and (ii) estimating and predicting the behavior of the RFI signals. The paper presents analytical and simulation models and provides both analytical and simulation results on the performance of USB (Unified S-Band) waveforms in the presence of narrow-band and wideband RFI signals. The models presented in this paper will allow the future USB command systems to detect the RFI presence, estimate the RFI characteristics and predict the RFI behavior in real-time for accurate assessment of the impacts of RFI on the command Bit Error Rate (BER) performance. The command BER degradation model presented in this paper also allows the ground system operator to estimate the optimum transmitted SNR to maintain a required command BER level in the presence of both friendly and un-friendly RFI sources.
Corporate prediction models, ratios or regression analysis?
Bijnen, E.J.; Wijn, M.F.C.M.
1994-01-01
The models developed in the literature with respect to the prediction of a company s failure are based on ratios. It has been shown before that these models should be rejected on theoretical grounds. Our study of industrial companies in the Netherlands shows that the ratios which are used in
McGurk, B. J.; Painter, T. H.
2014-12-01
Deterministic snow accumulation and ablation simulation models are widely used by runoff managers throughout the world to predict runoff quantities and timing. Model fitting is typically based on matching modeled runoff volumes and timing with observed flow time series at a few points in the basin. In recent decades, sparse networks of point measurements of the mountain snowpacks have been available to compare with modeled snowpack, but the comparability of results from a snow sensor or course to model polygons of 5 to 50 sq. km is suspect. However, snowpack extent, depth, and derived snow water equivalent have been produced by the NASA/JPL Airborne Snow Observatory (ASO) mission for spring of 20013 and 2014 in the Tuolumne River basin above Hetch Hetchy Reservoir. These high-resolution snowpack data have exposed the weakness in a model calibration based on runoff alone. The U.S. Geological Survey's Precipitation Runoff Modeling System (PRMS) calibration that was based on 30-years of inflow to Hetch Hetchy produces reasonable inflow results, but modeled spatial snowpack location and water quantity diverged significantly from the weekly measurements made by ASO during the two ablation seasons. The reason is that the PRMS model has many flow paths, storages, and water transfer equations, and a calibrated outflow time series can be right for many wrong reasons. The addition of a detailed knowledge of snow extent and water content constrains the model so that it is a better representation of the actual watershed hydrology. The mechanics of recalibrating PRMS to the ASO measurements will be described, and comparisons in observed versus modeled flow for both a small subbasin and the entire Hetch Hetchy basin will be shown. The recalibrated model provided a bitter fit to the snowmelt recession, a key factor for water managers as they balance declining inflows with demand for power generation and ecosystem releases during the final months of snow melt runoff.
Modelling Chemical Reasoning to Predict Reactions
Segler, Marwin H S
2016-01-01
The ability to reason beyond established knowledge allows Organic Chemists to solve synthetic problems and to invent novel transformations. Here, we propose a model which mimics chemical reasoning and formalises reaction prediction as finding missing links in a knowledge graph. We have constructed a knowledge graph containing 14.4 million molecules and 8.2 million binary reactions, which represents the bulk of all chemical reactions ever published in the scientific literature. Our model outperforms a rule-based expert system in the reaction prediction task for 180,000 randomly selected binary reactions. We show that our data-driven model generalises even beyond known reaction types, and is thus capable of effectively (re-) discovering novel transformations (even including transition-metal catalysed reactions). Our model enables computers to infer hypotheses about reactivity and reactions by only considering the intrinsic local structure of the graph, and because each single reaction prediction is typically ac...
The regional prediction model of PM10 concentrations for Turkey
Güler, Nevin; Güneri İşçi, Öznur
2016-11-01
This study is aimed to predict a regional model for weekly PM10 concentrations measured air pollution monitoring stations in Turkey. There are seven geographical regions in Turkey and numerous monitoring stations at each region. Predicting a model conventionally for each monitoring station requires a lot of labor and time and it may lead to degradation in quality of prediction when the number of measurements obtained from any õmonitoring station is small. Besides, prediction models obtained by this way only reflect the air pollutant behavior of a small area. This study uses Fuzzy C-Auto Regressive Model (FCARM) in order to find a prediction model to be reflected the regional behavior of weekly PM10 concentrations. The superiority of FCARM is to have the ability of considering simultaneously PM10 concentrations measured monitoring stations in the specified region. Besides, it also works even if the number of measurements obtained from the monitoring stations is different or small. In order to evaluate the performance of FCARM, FCARM is executed for all regions in Turkey and prediction results are compared to statistical Autoregressive (AR) Models predicted for each station separately. According to Mean Absolute Percentage Error (MAPE) criteria, it is observed that FCARM provides the better predictions with a less number of models.
Energy Technology Data Exchange (ETDEWEB)
Ajami, N; Duan, Q; Gao, X; Sorooshian, S
2006-05-08
This paper examines several multi-model combination techniques: the Simple Multimodel Average (SMA), the Multi-Model Super Ensemble (MMSE), Modified Multi-Model Super Ensemble (M3SE) and the Weighted Average Method (WAM). These model combination techniques were evaluated using the results from the Distributed Model Intercomparison Project (DMIP), an international project sponsored by the National Weather Service (NWS) Office of Hydrologic Development (OHD). All of the multi-model combination results were obtained using uncalibrated DMIP model outputs and were compared against the best uncalibrated as well as the best calibrated individual model results. The purpose of this study is to understand how different combination techniques affect the skill levels of the multi-model predictions. This study revealed that the multi-model predictions obtained from uncalibrated single model predictions are generally better than any single member model predictions, even the best calibrated single model predictions. Furthermore, more sophisticated multi-model combination techniques that incorporated bias correction steps work better than simple multi-model average predictions or multi-model predictions without bias correction.
Application of Nonlinear Predictive Control Based on RBF Network Predictive Model in MCFC Plant
Institute of Scientific and Technical Information of China (English)
CHEN Yue-hua; CAO Guang-yi; ZHU Xin-jian
2007-01-01
This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was too complicated to be used in a control system. Consequently, an off line radial basis function (RBF) network was introduced to build a nonlinear predictive model. And then, the optimal control sequences were obtained by applying golden mean method. The models and controller have been realized in the MATLAB environment. Simulation results indicate the proposed algorithm exhibits satisfying control effect even when the current densities vary largely.
Predictive modeling for EBPC in EBDW
Zimmermann, Rainer; Schulz, Martin; Hoppe, Wolfgang; Stock, Hans-Jürgen; Demmerle, Wolfgang; Zepka, Alex; Isoyan, Artak; Bomholt, Lars; Manakli, Serdar; Pain, Laurent
2009-10-01
We demonstrate a flow for e-beam proximity correction (EBPC) to e-beam direct write (EBDW) wafer manufacturing processes, demonstrating a solution that covers all steps from the generation of a test pattern for (experimental or virtual) measurement data creation, over e-beam model fitting, proximity effect correction (PEC), and verification of the results. We base our approach on a predictive, physical e-beam simulation tool, with the possibility to complement this with experimental data, and the goal of preparing the EBPC methods for the advent of high-volume EBDW tools. As an example, we apply and compare dose correction and geometric correction for low and high electron energies on 1D and 2D test patterns. In particular, we show some results of model-based geometric correction as it is typical for the optical case, but enhanced for the particularities of e-beam technology. The results are used to discuss PEC strategies, with respect to short and long range effects.
Impact of modellers' decisions on hydrological a priori predictions
Holländer, H. M.; Bormann, H.; Blume, T.; Buytaert, W.; Chirico, G. B.; Exbrayat, J.-F.; Gustafsson, D.; Hölzel, H.; Krauße, T.; Kraft, P.; Stoll, S.; Blöschl, G.; Flühler, H.
2014-06-01
In practice, the catchment hydrologist is often confronted with the task of predicting discharge without having the needed records for calibration. Here, we report the discharge predictions of 10 modellers - using the model of their choice - for the man-made Chicken Creek catchment (6 ha, northeast Germany, Gerwin et al., 2009b) and we analyse how well they improved their prediction in three steps based on adding information prior to each following step. The modellers predicted the catchment's hydrological response in its initial phase without having access to the observed records. They used conceptually different physically based models and their modelling experience differed largely. Hence, they encountered two problems: (i) to simulate discharge for an ungauged catchment and (ii) using models that were developed for catchments, which are not in a state of landscape transformation. The prediction exercise was organized in three steps: (1) for the first prediction the modellers received a basic data set describing the catchment to a degree somewhat more complete than usually available for a priori predictions of ungauged catchments; they did not obtain information on stream flow, soil moisture, nor groundwater response and had therefore to guess the initial conditions; (2) before the second prediction they inspected the catchment on-site and discussed their first prediction attempt; (3) for their third prediction they were offered additional data by charging them pro forma with the costs for obtaining this additional information. Holländer et al. (2009) discussed the range of predictions obtained in step (1). Here, we detail the modeller's assumptions and decisions in accounting for the various processes. We document the prediction progress as well as the learning process resulting from the availability of added information. For the second and third steps, the progress in prediction quality is evaluated in relation to individual modelling experience and costs of
Adding propensity scores to pure prediction models fails to improve predictive performance
Directory of Open Access Journals (Sweden)
Amy S. Nowacki
2013-08-01
Full Text Available Background. Propensity score usage seems to be growing in popularity leading researchers to question the possible role of propensity scores in prediction modeling, despite the lack of a theoretical rationale. It is suspected that such requests are due to the lack of differentiation regarding the goals of predictive modeling versus causal inference modeling. Therefore, the purpose of this study is to formally examine the effect of propensity scores on predictive performance. Our hypothesis is that a multivariable regression model that adjusts for all covariates will perform as well as or better than those models utilizing propensity scores with respect to model discrimination and calibration.Methods. The most commonly encountered statistical scenarios for medical prediction (logistic and proportional hazards regression were used to investigate this research question. Random cross-validation was performed 500 times to correct for optimism. The multivariable regression models adjusting for all covariates were compared with models that included adjustment for or weighting with the propensity scores. The methods were compared based on three predictive performance measures: (1 concordance indices; (2 Brier scores; and (3 calibration curves.Results. Multivariable models adjusting for all covariates had the highest average concordance index, the lowest average Brier score, and the best calibration. Propensity score adjustment and inverse probability weighting models without adjustment for all covariates performed worse than full models and failed to improve predictive performance with full covariate adjustment.Conclusion. Propensity score techniques did not improve prediction performance measures beyond multivariable adjustment. Propensity scores are not recommended if the analytical goal is pure prediction modeling.
Model-based uncertainty in species range prediction
DEFF Research Database (Denmark)
Pearson, R. G.; Thuiller, Wilfried; Bastos Araujo, Miguel;
2006-01-01
Aim Many attempts to predict the potential range of species rely on environmental niche (or 'bioclimate envelope') modelling, yet the effects of using different niche-based methodologies require further investigation. Here we investigate the impact that the choice of model can have on predictions...... day (using the area under the receiver operating characteristic curve (AUC) and kappa statistics) and by assessing consistency in predictions of range size changes under future climate (using cluster analysis). Results Our analyses show significant differences between predictions from different models......, with predicted changes in range size by 2030 differing in both magnitude and direction (e.g. from 92% loss to 322% gain). We explain differences with reference to two characteristics of the modelling techniques: data input requirements (presence/absence vs. presence-only approaches) and assumptions made by each...
A new ensemble model for short term wind power prediction
DEFF Research Database (Denmark)
Madsen, Henrik; Albu, Razvan-Daniel; Felea, Ioan;
2012-01-01
As the objective of this study, a non-linear ensemble system is used to develop a new model for predicting wind speed in short-term time scale. Short-term wind power prediction becomes an extremely important field of research for the energy sector. Regardless of the recent advancements in the re......-search of prediction models, it was observed that different models have different capabilities and also no single model is suitable under all situations. The idea behind EPS (ensemble prediction systems) is to take advantage of the unique features of each subsystem to detain diverse patterns that exist in the dataset....... The conferred results show that the prediction errors can be decreased, while the computation time is reduced....
Predicting Middle Level State Standardized Test Results Using Family and Community Demographic Data
Tienken, Christopher H.; Colella, Anthony; Angelillo, Christian; Fox, Meredith; McCahill, Kevin R.; Wolfe, Adam
2017-01-01
The use of standardized test results to drive school administrator evaluations pervades education policymaking in more than 40 states. However, the results of state standardized tests are strongly influenced by non-school factors. The models of best fit (n = 18) from this correlational, explanatory, longitudinal study predicted accurately the…
Genetic models of homosexuality: generating testable predictions
Gavrilets, Sergey; Rice, William R.
2006-01-01
Homosexuality is a common occurrence in humans and other species, yet its genetic and evolutionary basis is poorly understood. Here, we formulate and study a series of simple mathematical models for the purpose of predicting empirical patterns that can be used to determine the form of selection that leads to polymorphism of genes influencing homosexuality. Specifically, we develop theory to make contrasting predictions about the genetic characteristics of genes influencing homosexuality inclu...
The application of modeling and prediction with MRA wavelet network
Institute of Scientific and Technical Information of China (English)
LU Shu-ping; YANG Xue-jing; ZHAO Xi-ren
2004-01-01
As there are lots of non-linear systems in the real engineering, it is very important to do more researches on the modeling and prediction of non-linear systems. Based on the multi-resolution analysis (MRA) of wavelet theory, this paper combined the wavelet theory with neural network and established a MRA wavelet network with the scaling function and wavelet function as its neurons. From the analysis in the frequency domain, the results indicated that MRA wavelet network was better than other wavelet networks in the ability of approaching to the signals. An essential research was carried out on modeling and prediction with MRA wavelet network in the non-linear system. Using the lengthwise sway data received from the experiment of ship model, a model of offline prediction was established and was applied to the short-time prediction of ship motion. The simulation results indicated that the forecasting model improved the prediction precision effectively, lengthened the forecasting time and had a better prediction results than that of AR linear model.The research indicates that it is feasible to use the MRA wavelet network in the short -time prediction of ship motion.
Wind farm production prediction - The Zephyr model
Energy Technology Data Exchange (ETDEWEB)
Landberg, L. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Giebel, G. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Madsen, H. [IMM (DTU), Kgs. Lyngby (Denmark); Nielsen, T.S. [IMM (DTU), Kgs. Lyngby (Denmark); Joergensen, J.U. [Danish Meteorologisk Inst., Copenhagen (Denmark); Lauersen, L. [Danish Meteorologisk Inst., Copenhagen (Denmark); Toefting, J. [Elsam, Fredericia (DK); Christensen, H.S. [Eltra, Fredericia (Denmark); Bjerge, C. [SEAS, Haslev (Denmark)
2002-06-01
This report describes a project - funded by the Danish Ministry of Energy and the Environment - which developed a next generation prediction system called Zephyr. The Zephyr system is a merging between two state-of-the-art prediction systems: Prediktor of Risoe National Laboratory and WPPT of IMM at the Danish Technical University. The numerical weather predictions were generated by DMI's HIRLAM model. Due to technical difficulties programming the system, only the computational core and a very simple version of the originally very complex system were developed. The project partners were: Risoe, DMU, DMI, Elsam, Eltra, Elkraft System, SEAS and E2. (au)
A burnout prediction model based around char morphology
Energy Technology Data Exchange (ETDEWEB)
T. Wu; E. Lester; M. Cloke [University of Nottingham, Nottingham (United Kingdom). Nottingham Energy and Fuel Centre
2005-07-01
Poor burnout in a coal-fired power plant has marked penalties in the form of reduced energy efficiency and elevated waste material that can not be utilized. The prediction of coal combustion behaviour in a furnace is of great significance in providing valuable information not only for process optimization but also for coal buyers in the international market. Coal combustion models have been developed that can make predictions about burnout behaviour and burnout potential. Most of these kinetic models require standard parameters such as volatile content, particle size and assumed char porosity in order to make a burnout prediction. This paper presents a new model called the Char Burnout Model (ChB) that also uses detailed information about char morphology in its prediction. The model can use data input from one of two sources. Both sources are derived from image analysis techniques. The first from individual analysis and characterization of real char types using an automated program. The second from predicted char types based on data collected during the automated image analysis of coal particles. Modelling results were compared with a different carbon burnout kinetic model and burnout data from re-firing the chars in a drop tube furnace operating at 1300{sup o}C, 5% oxygen across several residence times. An improved agreement between ChB model and DTF experimental data proved that the inclusion of char morphology in combustion models can improve model predictions. 27 refs., 4 figs., 4 tabs.
Predictive model for segmented poly(urea
Directory of Open Access Journals (Sweden)
Frankl P.
2012-08-01
Full Text Available Segmented poly(urea has been shown to be of significant benefit in protecting vehicles from blast and impact and there have been several experimental studies to determine the mechanisms by which this protective function might occur. One suggested route is by mechanical activation of the glass transition. In order to enable design of protective structures using this material a constitutive model and equation of state are needed for numerical simulation hydrocodes. Determination of such a predictive model may also help elucidate the beneficial mechanisms that occur in polyurea during high rate loading. The tool deployed to do this has been Group Interaction Modelling (GIM – a mean field technique that has been shown to predict the mechanical and physical properties of polymers from their structure alone. The structure of polyurea has been used to characterise the parameters in the GIM scheme without recourse to experimental data and the equation of state and constitutive model predicts response over a wide range of temperatures and strain rates. The shock Hugoniot has been predicted and validated against existing data. Mechanical response in tensile tests has also been predicted and validated.
Assessment of performance of survival prediction models for cancer prognosis
Directory of Open Access Journals (Sweden)
Chen Hung-Chia
2012-07-01
Full Text Available Abstract Background Cancer survival studies are commonly analyzed using survival-time prediction models for cancer prognosis. A number of different performance metrics are used to ascertain the concordance between the predicted risk score of each patient and the actual survival time, but these metrics can sometimes conflict. Alternatively, patients are sometimes divided into two classes according to a survival-time threshold, and binary classifiers are applied to predict each patient’s class. Although this approach has several drawbacks, it does provide natural performance metrics such as positive and negative predictive values to enable unambiguous assessments. Methods We compare the survival-time prediction and survival-time threshold approaches to analyzing cancer survival studies. We review and compare common performance metrics for the two approaches. We present new randomization tests and cross-validation methods to enable unambiguous statistical inferences for several performance metrics used with the survival-time prediction approach. We consider five survival prediction models consisting of one clinical model, two gene expression models, and two models from combinations of clinical and gene expression models. Results A public breast cancer dataset was used to compare several performance metrics using five prediction models. 1 For some prediction models, the hazard ratio from fitting a Cox proportional hazards model was significant, but the two-group comparison was insignificant, and vice versa. 2 The randomization test and cross-validation were generally consistent with the p-values obtained from the standard performance metrics. 3 Binary classifiers highly depended on how the risk groups were defined; a slight change of the survival threshold for assignment of classes led to very different prediction results. Conclusions 1 Different performance metrics for evaluation of a survival prediction model may give different conclusions in
Predictive QSAR modeling of phosphodiesterase 4 inhibitors.
Kovalishyn, Vasyl; Tanchuk, Vsevolod; Charochkina, Larisa; Semenuta, Ivan; Prokopenko, Volodymyr
2012-02-01
A series of diverse organic compounds, phosphodiesterase type 4 (PDE-4) inhibitors, have been modeled using a QSAR-based approach. 48 QSAR models were compared by following the same procedure with different combinations of descriptors and machine learning methods. QSAR methodologies used random forests and associative neural networks. The predictive ability of the models was tested through leave-one-out cross-validation, giving a Q² = 0.66-0.78 for regression models and total accuracies Ac=0.85-0.91 for classification models. Predictions for the external evaluation sets obtained accuracies in the range of 0.82-0.88 (for active/inactive classifications) and Q² = 0.62-0.76 for regressions. The method showed itself to be a potential tool for estimation of IC₅₀ of new drug-like candidates at early stages of drug development. Copyright © 2011 Elsevier Inc. All rights reserved.
Noncausal spatial prediction filtering based on an ARMA model
Institute of Scientific and Technical Information of China (English)
Liu Zhipeng; Chen Xiaohong; Li Jingye
2009-01-01
Conventional f-x prediction filtering methods are based on an autoregressive model. The error section is first computed as a source noise but is removed as additive noise to obtain the signal, which results in an assumption inconsistency before and after filtering. In this paper, an autoregressive, moving-average model is employed to avoid the model inconsistency. Based on the ARMA model, a noncasual prediction filter is computed and a self-deconvolved projection filter is used for estimating additive noise in order to suppress random noise. The 1-D ARMA model is also extended to the 2-D spatial domain, which is the basis for noncasual spatial prediction filtering for random noise attenuation on 3-D seismic data. Synthetic and field data processing indicate this method can suppress random noise more effectively and preserve the signal simultaneously and does much better than other conventional prediction filtering methods.
A systematic review of predictive modeling for bronchiolitis.
Luo, Gang; Nkoy, Flory L; Gesteland, Per H; Glasgow, Tiffany S; Stone, Bryan L
2014-10-01
Bronchiolitis is the most common cause of illness leading to hospitalization in young children. At present, many bronchiolitis management decisions are made subjectively, leading to significant practice variation among hospitals and physicians caring for children with bronchiolitis. To standardize care for bronchiolitis, researchers have proposed various models to predict the disease course to help determine a proper management plan. This paper reviews the existing state of the art of predictive modeling for bronchiolitis. Predictive modeling for respiratory syncytial virus (RSV) infection is covered whenever appropriate, as RSV accounts for about 70% of bronchiolitis cases. A systematic review was conducted through a PubMed search up to April 25, 2014. The literature on predictive modeling for bronchiolitis was retrieved using a comprehensive search query, which was developed through an iterative process. Search results were limited to human subjects, the English language, and children (birth to 18 years). The literature search returned 2312 references in total. After manual review, 168 of these references were determined to be relevant and are discussed in this paper. We identify several limitations and open problems in predictive modeling for bronchiolitis, and provide some preliminary thoughts on how to address them, with the hope to stimulate future research in this domain. Many problems remain open in predictive modeling for bronchiolitis. Future studies will need to address them to achieve optimal predictive models. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
The Effect of Bathymetric Filtering on Nearshore Process Model Results
2009-01-01
Filtering on Nearshore Process Model Results 6. AUTHOR(S) Nathaniel Plant, Kacey L. Edwards, James M. Kaihatu, Jayaram Veeramony, Yuan-Huang L. Hsu...filtering on nearshore process model results Nathaniel G. Plant **, Kacey L Edwardsb, James M. Kaihatuc, Jayaram Veeramony b, Larry Hsu’’, K. Todd Holland...assimilation efforts that require this information. Published by Elsevier B.V. 1. Introduction Nearshore process models are capable of predicting
Modelling the predictive performance of credit scoring
Directory of Open Access Journals (Sweden)
Shi-Wei Shen
2013-02-01
Full Text Available Orientation: The article discussed the importance of rigour in credit risk assessment.Research purpose: The purpose of this empirical paper was to examine the predictive performance of credit scoring systems in Taiwan.Motivation for the study: Corporate lending remains a major business line for financial institutions. However, in light of the recent global financial crises, it has become extremely important for financial institutions to implement rigorous means of assessing clients seeking access to credit facilities.Research design, approach and method: Using a data sample of 10 349 observations drawn between 1992 and 2010, logistic regression models were utilised to examine the predictive performance of credit scoring systems.Main findings: A test of Goodness of fit demonstrated that credit scoring models that incorporated the Taiwan Corporate Credit Risk Index (TCRI, micro- and also macroeconomic variables possessed greater predictive power. This suggests that macroeconomic variables do have explanatory power for default credit risk.Practical/managerial implications: The originality in the study was that three models were developed to predict corporate firms’ defaults based on different microeconomic and macroeconomic factors such as the TCRI, asset growth rates, stock index and gross domestic product.Contribution/value-add: The study utilises different goodness of fits and receiver operator characteristics during the examination of the robustness of the predictive power of these factors.
Modelling language evolution: Examples and predictions.
Gong, Tao; Shuai, Lan; Zhang, Menghan
2014-06-01
We survey recent computer modelling research of language evolution, focusing on a rule-based model simulating the lexicon-syntax coevolution and an equation-based model quantifying the language competition dynamics. We discuss four predictions of these models: (a) correlation between domain-general abilities (e.g. sequential learning) and language-specific mechanisms (e.g. word order processing); (b) coevolution of language and relevant competences (e.g. joint attention); (c) effects of cultural transmission and social structure on linguistic understandability; and (d) commonalities between linguistic, biological, and physical phenomena. All these contribute significantly to our understanding of the evolutions of language structures, individual learning mechanisms, and relevant biological and socio-cultural factors. We conclude the survey by highlighting three future directions of modelling studies of language evolution: (a) adopting experimental approaches for model evaluation; (b) consolidating empirical foundations of models; and (c) multi-disciplinary collaboration among modelling, linguistics, and other relevant disciplines.
Modelling language evolution: Examples and predictions
Gong, Tao; Shuai, Lan; Zhang, Menghan
2014-06-01
We survey recent computer modelling research of language evolution, focusing on a rule-based model simulating the lexicon-syntax coevolution and an equation-based model quantifying the language competition dynamics. We discuss four predictions of these models: (a) correlation between domain-general abilities (e.g. sequential learning) and language-specific mechanisms (e.g. word order processing); (b) coevolution of language and relevant competences (e.g. joint attention); (c) effects of cultural transmission and social structure on linguistic understandability; and (d) commonalities between linguistic, biological, and physical phenomena. All these contribute significantly to our understanding of the evolutions of language structures, individual learning mechanisms, and relevant biological and socio-cultural factors. We conclude the survey by highlighting three future directions of modelling studies of language evolution: (a) adopting experimental approaches for model evaluation; (b) consolidating empirical foundations of models; and (c) multi-disciplinary collaboration among modelling, linguistics, and other relevant disciplines.
Predicting Market Impact Costs Using Nonparametric Machine Learning Models.
Directory of Open Access Journals (Sweden)
Saerom Park
Full Text Available Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.
Predicting Market Impact Costs Using Nonparametric Machine Learning Models.
Park, Saerom; Lee, Jaewook; Son, Youngdoo
2016-01-01
Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.
Kaymakcalan, Marina D; Xie, Wanling; Albiges, Laurence; North, Scott A; Kollmannsberger, Christian K; Smoragiewicz, Martin; Kroeger, Nils; Wells, J Connor; Rha, Sun-Young; Lee, Jae Lyun; McKay, Rana R; Fay, André P; De Velasco, Guillermo; Heng, Daniel Y C; Choueiri, Toni K
2016-02-01
Vascular endothelial growth factor (VEGF)-targeted therapies are standard treatment for metastatic renal cell carcinoma (mRCC); however, toxicities can lead to drug discontinuation, which can affect patient outcomes. This study was aimed at identifying risk factors for toxicity and constructing the first model to predict toxicity-related treatment discontinuation (TrTD) in mRCC patients treated with VEGF-targeted therapies. The baseline characteristics, treatment outcomes, and toxicity data were collected for 936 mRCC patients receiving first-line VEGF-targeted therapy from the International Metastatic Renal Cell Carcinoma Database Consortium. A competing risk regression model was used to identify risk factors for TrTD, and it accounted for other causes as competing risks. Overall, 198 (23.8%) experienced TrTD. Sunitinib was the most common VEGF-targeted therapy (77%), and it was followed by sorafenib (18.4%). The median time on therapy was 7.1 months for all patients and 4.4 months for patients with TrTD. The most common toxicities leading to TrTD included fatigue, diarrhea, and mucositis. In a multivariate analysis, significant predictors for TrTD were a baseline age ≥60 years, a glomerular filtration rate (GFR) factors to predict the risk of TrTD. In the largest series to date, age, GFR, number of metastatic sites, and baseline sodium level were found to be independent risk factors for TrTD in mRCC patients receiving VEGF-targeted therapy. Based on the number of risk factors present, a model for predicting TrTD was built to be used as a tool for toxicity monitoring in clinical practice. © 2015 American Cancer Society.
Global Solar Dynamo Models: Simulations and Predictions
Indian Academy of Sciences (India)
Mausumi Dikpati; Peter A. Gilman
2008-03-01
Flux-transport type solar dynamos have achieved considerable success in correctly simulating many solar cycle features, and are now being used for prediction of solar cycle timing and amplitude.We first define flux-transport dynamos and demonstrate how they work. The essential added ingredient in this class of models is meridional circulation, which governs the dynamo period and also plays a crucial role in determining the Sun’s memory about its past magnetic fields.We show that flux-transport dynamo models can explain many key features of solar cycles. Then we show that a predictive tool can be built from this class of dynamo that can be used to predict mean solar cycle features by assimilating magnetic field data from previous cycles.
Model Predictive Control of Sewer Networks
Pedersen, Einar B.; Herbertsson, Hannes R.; Niemann, Henrik; Poulsen, Niels K.; Falk, Anne K. V.
2017-01-01
The developments in solutions for management of urban drainage are of vital importance, as the amount of sewer water from urban areas continues to increase due to the increase of the world’s population and the change in the climate conditions. How a sewer network is structured, monitored and controlled have thus become essential factors for effcient performance of waste water treatment plants. This paper examines methods for simplified modelling and controlling a sewer network. A practical approach to the problem is used by analysing simplified design model, which is based on the Barcelona benchmark model. Due to the inherent constraints the applied approach is based on Model Predictive Control.
Models for short term malaria prediction in Sri Lanka
Directory of Open Access Journals (Sweden)
Galappaththy Gawrie NL
2008-05-01
Full Text Available Abstract Background Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long time series of monitored/diagnosed malaria cases allows for the study of forecasting models, with an aim to developing a forecasting system which could assist in the efficient allocation of resources for malaria control. Methods Exponentially weighted moving average models, autoregressive integrated moving average (ARIMA models with seasonal components, and seasonal multiplicative autoregressive integrated moving average (SARIMA models were compared on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to four months ahead. The addition of covariates such as the number of malaria cases in neighbouring districts or rainfall were assessed for their ability to improve prediction of selected (seasonal ARIMA models. Results The best model for forecasting and the forecasting error varied strongly among the districts. The addition of rainfall as a covariate improved prediction of selected (seasonal ARIMA models modestly in some districts but worsened prediction in other districts. Improvement by adding rainfall was more frequent at larger forecasting horizons. Conclusion Heterogeneity of patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error was large at a minimum of 22% (for one of the districts for one month ahead predictions. The modest improvement made in short term prediction by adding rainfall as a covariate to these prediction models may not be sufficient to merit investing in a forecasting system for which rainfall data are routinely processed.
DKIST Polarization Modeling and Performance Predictions
Harrington, David
2016-05-01
Calibrating the Mueller matrices of large aperture telescopes and associated coude instrumentation requires astronomical sources and several modeling assumptions to predict the behavior of the system polarization with field of view, altitude, azimuth and wavelength. The Daniel K Inouye Solar Telescope (DKIST) polarimetric instrumentation requires very high accuracy calibration of a complex coude path with an off-axis f/2 primary mirror, time dependent optical configurations and substantial field of view. Polarization predictions across a diversity of optical configurations, tracking scenarios, slit geometries and vendor coating formulations are critical to both construction and contined operations efforts. Recent daytime sky based polarization calibrations of the 4m AEOS telescope and HiVIS spectropolarimeter on Haleakala have provided system Mueller matrices over full telescope articulation for a 15-reflection coude system. AEOS and HiVIS are a DKIST analog with a many-fold coude optical feed and similar mirror coatings creating 100% polarization cross-talk with altitude, azimuth and wavelength. Polarization modeling predictions using Zemax have successfully matched the altitude-azimuth-wavelength dependence on HiVIS with the few percent amplitude limitations of several instrument artifacts. Polarization predictions for coude beam paths depend greatly on modeling the angle-of-incidence dependences in powered optics and the mirror coating formulations. A 6 month HiVIS daytime sky calibration plan has been analyzed for accuracy under a wide range of sky conditions and data analysis algorithms. Predictions of polarimetric performance for the DKIST first-light instrumentation suite have been created under a range of configurations. These new modeling tools and polarization predictions have substantial impact for the design, fabrication and calibration process in the presence of manufacturing issues, science use-case requirements and ultimate system calibration
Modelling Chemical Reasoning to Predict Reactions
Segler, Marwin H. S.; Waller, Mark P.
2016-01-01
The ability to reason beyond established knowledge allows Organic Chemists to solve synthetic problems and to invent novel transformations. Here, we propose a model which mimics chemical reasoning and formalises reaction prediction as finding missing links in a knowledge graph. We have constructed a knowledge graph containing 14.4 million molecules and 8.2 million binary reactions, which represents the bulk of all chemical reactions ever published in the scientific literature. Our model outpe...
Predictive Modeling of the CDRA 4BMS
Coker, Robert; Knox, James
2016-01-01
Fully predictive models of the Four Bed Molecular Sieve of the Carbon Dioxide Removal Assembly on the International Space Station are being developed. This virtual laboratory will be used to help reduce mass, power, and volume requirements for future missions. In this paper we describe current and planned modeling developments in the area of carbon dioxide removal to support future crewed Mars missions as well as the resolution of anomalies observed in the ISS CDRA.
Raman Model Predicting Hardness of Covalent Crystals
Zhou, Xiang-Feng; Qian, Quang-Rui; Sun, Jian; Tian, Yongjun; Wang, Hui-Tian
2009-01-01
Based on the fact that both hardness and vibrational Raman spectrum depend on the intrinsic property of chemical bonds, we propose a new theoretical model for predicting hardness of a covalent crystal. The quantitative relationship between hardness and vibrational Raman frequencies deduced from the typical zincblende covalent crystals is validated to be also applicable for the complex multicomponent crystals. This model enables us to nondestructively and indirectly characterize the hardness o...
Predictive Modelling of Mycotoxins in Cereals
Fels, van der H.J.; Liu, C.
2015-01-01
In dit artikel worden de samenvattingen van de presentaties tijdens de 30e bijeenkomst van de Werkgroep Fusarium weergegeven. De onderwerpen zijn: Predictive Modelling of Mycotoxins in Cereals.; Microbial degradation of DON.; Exposure to green leaf volatiles primes wheat against FHB but boosts
Unreachable Setpoints in Model Predictive Control
DEFF Research Database (Denmark)
Rawlings, James B.; Bonné, Dennis; Jørgensen, John Bagterp
2008-01-01
steady state is established for terminal constraint model predictive control (MPC). The region of attraction is the steerable set. Existing analysis methods for closed-loop properties of MPC are not applicable to this new formulation, and a new analysis method is developed. It is shown how to extend...
Predictive Modelling of Mycotoxins in Cereals
Fels, van der H.J.; Liu, C.
2015-01-01
In dit artikel worden de samenvattingen van de presentaties tijdens de 30e bijeenkomst van de Werkgroep Fusarium weergegeven. De onderwerpen zijn: Predictive Modelling of Mycotoxins in Cereals.; Microbial degradation of DON.; Exposure to green leaf volatiles primes wheat against FHB but boosts produ
Prediction modelling for population conviction data
Tollenaar, N.
2017-01-01
In this thesis, the possibilities of using prediction models for judicial penal case data are investigated. The development and refinement of a risk taxation scale based on these data is discussed. When false positives are weighted equally severe as false negatives, 70% can be classified correctly.
A Predictive Model for MSSW Student Success
Napier, Angela Michele
2011-01-01
This study tested a hypothetical model for predicting both graduate GPA and graduation of University of Louisville Kent School of Social Work Master of Science in Social Work (MSSW) students entering the program during the 2001-2005 school years. The preexisting characteristics of demographics, academic preparedness and culture shock along with…
Predictability of extreme values in geophysical models
Sterk, A.E.; Holland, M.P.; Rabassa, P.; Broer, H.W.; Vitolo, R.
2012-01-01
Extreme value theory in deterministic systems is concerned with unlikely large (or small) values of an observable evaluated along evolutions of the system. In this paper we study the finite-time predictability of extreme values, such as convection, energy, and wind speeds, in three geophysical model
A revised prediction model for natural conception
Bensdorp, A.J.; Steeg, J.W. van der; Steures, P.; Habbema, J.D.; Hompes, P.G.; Bossuyt, P.M.; Veen, F. van der; Mol, B.W.; Eijkemans, M.J.; Kremer, J.A.M.; et al.,
2017-01-01
One of the aims in reproductive medicine is to differentiate between couples that have favourable chances of conceiving naturally and those that do not. Since the development of the prediction model of Hunault, characteristics of the subfertile population have changed. The objective of this analysis
Distributed Model Predictive Control via Dual Decomposition
DEFF Research Database (Denmark)
Biegel, Benjamin; Stoustrup, Jakob; Andersen, Palle
2014-01-01
This chapter presents dual decomposition as a means to coordinate a number of subsystems coupled by state and input constraints. Each subsystem is equipped with a local model predictive controller while a centralized entity manages the subsystems via prices associated with the coupling constraints...
Predictive Modelling of Mycotoxins in Cereals
Fels, van der H.J.; Liu, C.
2015-01-01
In dit artikel worden de samenvattingen van de presentaties tijdens de 30e bijeenkomst van de Werkgroep Fusarium weergegeven. De onderwerpen zijn: Predictive Modelling of Mycotoxins in Cereals.; Microbial degradation of DON.; Exposure to green leaf volatiles primes wheat against FHB but boosts produ
Leptogenesis in minimal predictive seesaw models
Björkeroth, Fredrik; Varzielas, Ivo de Medeiros; King, Stephen F
2015-01-01
We estimate the Baryon Asymmetry of the Universe (BAU) arising from leptogenesis within a class of minimal predictive seesaw models involving two right-handed neutrinos and simple Yukawa structures with one texture zero. The two right-handed neutrinos are dominantly responsible for the "atmospheric" and "solar" neutrino masses with Yukawa couplings to $(\
A Predictive Model of High Shear Thrombus Growth.
Mehrabadi, Marmar; Casa, Lauren D C; Aidun, Cyrus K; Ku, David N
2016-08-01
The ability to predict the timescale of thrombotic occlusion in stenotic vessels may improve patient risk assessment for thrombotic events. In blood contacting devices, thrombosis predictions can lead to improved designs to minimize thrombotic risks. We have developed and validated a model of high shear thrombosis based on empirical correlations between thrombus growth and shear rate. A mathematical model was developed to predict the growth of thrombus based on the hemodynamic shear rate. The model predicts thrombus deposition based on initial geometric and fluid mechanic conditions, which are updated throughout the simulation to reflect the changing lumen dimensions. The model was validated by comparing predictions against actual thrombus growth in six separate in vitro experiments: stenotic glass capillary tubes (diameter = 345 µm) at three shear rates, the PFA-100(®) system, two microfluidic channel dimensions (heights = 300 and 82 µm), and a stenotic aortic graft (diameter = 5.5 mm). Comparison of the predicted occlusion times to experimental results shows excellent agreement. The model is also applied to a clinical angiography image to illustrate the time course of thrombosis in a stenotic carotid artery after plaque cap rupture. Our model can accurately predict thrombotic occlusion time over a wide range of hemodynamic conditions.
A burnout prediction model based around char morphology
Energy Technology Data Exchange (ETDEWEB)
Tao Wu; Edward Lester; Michael Cloke [University of Nottingham, Nottingham (United Kingdom). School of Chemical, Environmental and Mining Engineering
2006-05-15
Several combustion models have been developed that can make predictions about coal burnout and burnout potential. Most of these kinetic models require standard parameters such as volatile content and particle size to make a burnout prediction. This article presents a new model called the char burnout (ChB) model, which also uses detailed information about char morphology in its prediction. The input data to the model is based on information derived from two different image analysis techniques. One technique generates characterization data from real char samples, and the other predicts char types based on characterization data from image analysis of coal particles. The pyrolyzed chars in this study were created in a drop tube furnace operating at 1300{sup o}C, 200 ms, and 1% oxygen. Modeling results were compared with a different carbon burnout kinetic model as well as the actual burnout data from refiring the same chars in a drop tube furnace operating at 1300{sup o}C, 5% oxygen, and residence times of 200, 400, and 600 ms. A good agreement between ChB model and experimental data indicates that the inclusion of char morphology in combustion models could well improve model predictions. 38 refs., 5 figs., 6 tabs.
Model Predictive Control based on Finite Impulse Response Models
DEFF Research Database (Denmark)
Prasath, Guru; Jørgensen, John Bagterp
2008-01-01
We develop a regularized l2 finite impulse response (FIR) predictive controller with input and input-rate constraints. Feedback is based on a simple constant output disturbance filter. The performance of the predictive controller in the face of plant-model mismatch is investigated by simulations...
Groundwater Level Prediction using M5 Model Trees
Nalarajan, Nitha Ayinippully; Mohandas, C.
2015-01-01
Groundwater is an important resource, readily available and having high economic value and social benefit. Recently, it had been considered a dependable source of uncontaminated water. During the past two decades, increased rate of extraction and other greedy human actions have resulted in the groundwater crisis, both qualitatively and quantitatively. Under prevailing circumstances, the availability of predicted groundwater levels increase the importance of this valuable resource, as an aid in the planning of groundwater resources. For this purpose, data-driven prediction models are widely used in the present day world. M5 model tree (MT) is a popular soft computing method emerging as a promising method for numeric prediction, producing understandable models. The present study discusses the groundwater level predictions using MT employing only the historical groundwater levels from a groundwater monitoring well. The results showed that MT can be successively used for forecasting groundwater levels.
A Fusion Model for CPU Load Prediction in Cloud Computing
Directory of Open Access Journals (Sweden)
Dayu Xu
2013-11-01
Full Text Available Load prediction plays a key role in cost-optimal resource allocation and datacenter energy saving. In this paper, we use real-world traces from Cloud platform and propose a fusion model to forecast the future CPU loads. First, long CPU load time series data are divided into short sequences with same length from the historical data on the basis of cloud control cycle. Then we use kernel fuzzy c-means clustering algorithm to put the subsequences into different clusters. For each cluster, with current load sequence, a genetic algorithm optimized wavelet Elman neural network prediction model is exploited to predict the CPU load in next time interval. Finally, we obtain the optimal cloud computing CPU load prediction results from the cluster and its corresponding predictor with minimum forecasting error. Experimental results show that our algorithm performs better than other models reported in previous works.
Results on Three predictions on July 2012 Federal Elections in Mexico based on past regularities
Hernández-Saldaña, H
2013-01-01
July 2012 Presidential Election in Mexico has been the third occasion that the PREP, the Previous Electoral Results Program, works. PREP results give the voter turnout based in electoral certificates of each polling station that arrives to the capture centres. In the previous ones some statistical regularities had been observed, three of them were selected to made predictions and published in \\texttt{arXiv:1207.0078 [physics.soc-ph]}. Two of the predictions were completely fulfilled and the third one was not measured since the electoral authorities changed the information in the data base for the 2012 process. The two confirmed predictions by actual measures are: (ii) The Partido Revolucionario Institucional is a sprinter and have a better performance in polling station which arrive late in the process. (iii) Distribution of vote of this party is well described by a smooth function named a Daisy model. A Gamma distribution, but compatible with a Daisy model, fits the distribution as well.
Research on Drag Torque Prediction Model for the Wet Clutches
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Considering the surface tension effect and centrifugal effect, a mathematical model based on Reynolds equation for predicting the drag torque of disengage wet clutches is presented. The model indicates that the equivalent radius is a function of clutch speed and flow rate. The drag torque achieves its peak at a critical speed. Above this speed, drag torque drops due to the shrinking of the oil film. The model also points out that viscosity and flow rate effects on drag torque. Experimental results indicate that the model is reasonable and it performs well for predicting the drag torque peak.
Model for predicting mountain wave field uncertainties
Damiens, Florentin; Lott, François; Millet, Christophe; Plougonven, Riwal
2017-04-01
Studying the propagation of acoustic waves throughout troposphere requires knowledge of wind speed and temperature gradients from the ground up to about 10-20 km. Typical planetary boundary layers flows are known to present vertical low level shears that can interact with mountain waves, thereby triggering small-scale disturbances. Resolving these fluctuations for long-range propagation problems is, however, not feasible because of computer memory/time restrictions and thus, they need to be parameterized. When the disturbances are small enough, these fluctuations can be described by linear equations. Previous works by co-authors have shown that the critical layer dynamics that occur near the ground produces large horizontal flows and buoyancy disturbances that result in intense downslope winds and gravity wave breaking. While these phenomena manifest almost systematically for high Richardson numbers and when the boundary layer depth is relatively small compare to the mountain height, the process by which static stability affects downslope winds remains unclear. In the present work, new linear mountain gravity wave solutions are tested against numerical predictions obtained with the Weather Research and Forecasting (WRF) model. For Richardson numbers typically larger than unity, the mesoscale model is used to quantify the effect of neglected nonlinear terms on downslope winds and mountain wave patterns. At these regimes, the large downslope winds transport warm air, a so called "Foehn" effect than can impact sound propagation properties. The sensitivity of small-scale disturbances to Richardson number is quantified using two-dimensional spectral analysis. It is shown through a pilot study of subgrid scale fluctuations of boundary layer flows over realistic mountains that the cross-spectrum of mountain wave field is made up of the same components found in WRF simulations. The impact of each individual component on acoustic wave propagation is discussed in terms of
Personalized Predictive Modeling and Risk Factor Identification using Patient Similarity.
Ng, Kenney; Sun, Jimeng; Hu, Jianying; Wang, Fei
2015-01-01
Personalized predictive models are customized for an individual patient and trained using information from similar patients. Compared to global models trained on all patients, they have the potential to produce more accurate risk scores and capture more relevant risk factors for individual patients. This paper presents an approach for building personalized predictive models and generating personalized risk factor profiles. A locally supervised metric learning (LSML) similarity measure is trained for diabetes onset and used to find clinically similar patients. Personalized risk profiles are created by analyzing the parameters of the trained personalized logistic regression models. A 15,000 patient data set, derived from electronic health records, is used to evaluate the approach. The predictive results show that the personalized models can outperform the global model. Cluster analysis of the risk profiles show groups of patients with similar risk factors, differences in the top risk factors for different groups of patients and differences between the individual and global risk factors.
ENSO Prediction using Vector Autoregressive Models
Chapman, D. R.; Cane, M. A.; Henderson, N.; Lee, D.; Chen, C.
2013-12-01
A recent comparison (Barnston et al, 2012 BAMS) shows the ENSO forecasting skill of dynamical models now exceeds that of statistical models, but the best statistical models are comparable to all but the very best dynamical models. In this comparison the leading statistical model is the one based on the Empirical Model Reduction (EMR) method. Here we report on experiments with multilevel Vector Autoregressive models using only sea surface temperatures (SSTs) as predictors. VAR(L) models generalizes Linear Inverse Models (LIM), which are a VAR(1) method, as well as multilevel univariate autoregressive models. Optimal forecast skill is achieved using 12 to 14 months of prior state information (i.e 12-14 levels), which allows SSTs alone to capture the effects of other variables such as heat content as well as seasonality. The use of multiple levels allows the model advancing one month at a time to perform at least as well for a 6 month forecast as a model constructed to explicitly forecast 6 months ahead. We infer that the multilevel model has fully captured the linear dynamics (cf. Penland and Magorian, 1993 J. Climate). Finally, while VAR(L) is equivalent to L-level EMR, we show in a 150 year cross validated assessment that we can increase forecast skill by improving on the EMR initialization procedure. The greatest benefit of this change is in allowing the prediction to make effective use of information over many more months.
Genetic models of homosexuality: generating testable predictions.
Gavrilets, Sergey; Rice, William R
2006-12-22
Homosexuality is a common occurrence in humans and other species, yet its genetic and evolutionary basis is poorly understood. Here, we formulate and study a series of simple mathematical models for the purpose of predicting empirical patterns that can be used to determine the form of selection that leads to polymorphism of genes influencing homosexuality. Specifically, we develop theory to make contrasting predictions about the genetic characteristics of genes influencing homosexuality including: (i) chromosomal location, (ii) dominance among segregating alleles and (iii) effect sizes that distinguish between the two major models for their polymorphism: the overdominance and sexual antagonism models. We conclude that the measurement of the genetic characteristics of quantitative trait loci (QTLs) found in genomic screens for genes influencing homosexuality can be highly informative in resolving the form of natural selection maintaining their polymorphism.
Characterizing Attention with Predictive Network Models.
Rosenberg, M D; Finn, E S; Scheinost, D; Constable, R T; Chun, M M
2017-04-01
Recent work shows that models based on functional connectivity in large-scale brain networks can predict individuals' attentional abilities. While being some of the first generalizable neuromarkers of cognitive function, these models also inform our basic understanding of attention, providing empirical evidence that: (i) attention is a network property of brain computation; (ii) the functional architecture that underlies attention can be measured while people are not engaged in any explicit task; and (iii) this architecture supports a general attentional ability that is common to several laboratory-based tasks and is impaired in attention deficit hyperactivity disorder (ADHD). Looking ahead, connectivity-based predictive models of attention and other cognitive abilities and behaviors may potentially improve the assessment, diagnosis, and treatment of clinical dysfunction. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Study On Distributed Model Predictive Consensus
Keviczky, Tamas
2008-01-01
We investigate convergence properties of a proposed distributed model predictive control (DMPC) scheme, where agents negotiate to compute an optimal consensus point using an incremental subgradient method based on primal decomposition as described in Johansson et al. [2006, 2007]. The objective of the distributed control strategy is to agree upon and achieve an optimal common output value for a group of agents in the presence of constraints on the agent dynamics using local predictive controllers. Stability analysis using a receding horizon implementation of the distributed optimal consensus scheme is performed. Conditions are given under which convergence can be obtained even if the negotiations do not reach full consensus.
Wu, Jie; Ren, Hong-Li; Zuo, Jinqing; Zhao, Chongbo; Chen, Lijuan; Li, Qiaoping
2016-09-01
This study evaluates performance of Madden-Julian oscillation (MJO) prediction in the Beijing Climate Center Atmospheric General Circulation Model (BCC_AGCM2.2). By using the real-time multivariate MJO (RMM) indices, it is shown that the MJO prediction skill of BCC_AGCM2.2 extends to about 16-17 days before the bivariate anomaly correlation coefficient drops to 0.5 and the root-mean-square error increases to the level of the climatological prediction. The prediction skill showed a seasonal dependence, with the highest skill occurring in boreal autumn, and a phase dependence with higher skill for predictions initiated from phases 2-4. The results of the MJO predictability analysis showed that the upper bounds of the prediction skill can be extended to 26 days by using a single-member estimate, and to 42 days by using the ensemble-mean estimate, which also exhibited an initial amplitude and phase dependence. The observed relationship between the MJO and the North Atlantic Oscillation was accurately reproduced by BCC_AGCM2.2 for most initial phases of the MJO, accompanied with the Rossby wave trains in the Northern Hemisphere extratropics driven by MJO convection forcing. Overall, BCC_AGCM2.2 displayed a significant ability to predict the MJO and its teleconnections without interacting with the ocean, which provided a useful tool for fully extracting the predictability source of subseasonal prediction.
Endometrial cancer risk prediction including serum-based biomarkers : results from the EPIC cohort
Fortner, Renée T.; Hüsing, Anika; Kühn, Tilman; Konar, Meric; Overvad, Kim; Tjønneland, Anne; Hansen, Louise; Boutron-Ruault, Marie Christine; Severi, Gianluca; Fournier, Agnès; Boeing, Heiner; Trichopoulou, Antonia; Benetou, Vasiliki; Orfanos, Philippos; Masala, Giovanna; Agnoli, Claudia; Mattiello, Amalia; Tumino, Rosario; Sacerdote, Carlotta; Bueno-de-Mesquita, H. Bas; Peeters, Petra H M; Weiderpass, Elisabete; Gram, Inger T.; Gavrilyuk, Oxana; Quirós, J. Ramón; Maria Huerta, José; Ardanaz, Eva; Larrañaga, Nerea; Lujan-Barroso, Leila; Sánchez-Cantalejo, Emilio; Butt, Salma Tunå; Borgquist, Signe; Idahl, Annika; Lundin, Eva; Khaw, Kay Tee; Allen, Naomi E.; Rinaldi, Sabina; Dossus, Laure; Gunter, Marc; Merritt, Melissa A.; Tzoulaki, Ioanna; Riboli, Elio; Kaaks, Rudolf
2017-01-01
Endometrial cancer risk prediction models including lifestyle, anthropometric and reproductive factors have limited discrimination. Adding biomarker data to these models may improve predictive capacity; to our knowledge, this has not been investigated for endometrial cancer. Using a nested
Hybrid Corporate Performance Prediction Model Considering Technical Capability
Directory of Open Access Journals (Sweden)
Joonhyuck Lee
2016-07-01
Full Text Available Many studies have tried to predict corporate performance and stock prices to enhance investment profitability using qualitative approaches such as the Delphi method. However, developments in data processing technology and machine-learning algorithms have resulted in efforts to develop quantitative prediction models in various managerial subject areas. We propose a quantitative corporate performance prediction model that applies the support vector regression (SVR algorithm to solve the problem of the overfitting of training data and can be applied to regression problems. The proposed model optimizes the SVR training parameters based on the training data, using the genetic algorithm to achieve sustainable predictability in changeable markets and managerial environments. Technology-intensive companies represent an increasing share of the total economy. The performance and stock prices of these companies are affected by their financial standing and their technological capabilities. Therefore, we apply both financial indicators and technical indicators to establish the proposed prediction model. Here, we use time series data, including financial, patent, and corporate performance information of 44 electronic and IT companies. Then, we predict the performance of these companies as an empirical verification of the prediction performance of the proposed model.
Using Pareto points for model identification in predictive toxicology.
Palczewska, Anna; Neagu, Daniel; Ridley, Mick
2013-03-22
: Predictive toxicology is concerned with the development of models that are able to predict the toxicity of chemicals. A reliable prediction of toxic effects of chemicals in living systems is highly desirable in cosmetics, drug design or food protection to speed up the process of chemical compound discovery while reducing the need for lab tests. There is an extensive literature associated with the best practice of model generation and data integration but management and automated identification of relevant models from available collections of models is still an open problem. Currently, the decision on which model should be used for a new chemical compound is left to users. This paper intends to initiate the discussion on automated model identification. We present an algorithm, based on Pareto optimality, which mines model collections and identifies a model that offers a reliable prediction for a new chemical compound. The performance of this new approach is verified for two endpoints: IGC50 and LogP. The results show a great potential for automated model identification methods in predictive toxicology.
Validation of a multi-objective, predictive urban traffic model
Wilmink, I.R.; Haak, P. van den; Woldeab, Z.; Vreeswijk, J.
2013-01-01
This paper describes the results of the verification and validation of the ecoStrategic Model, which was developed, implemented and tested in the eCoMove project. The model uses real-time and historical traffic information to determine the current, predicted and desired state of traffic in a network
A Climate System Model, Numerical Simulation and Climate Predictability
Institute of Scientific and Technical Information of China (English)
ZENG Qingcun; WANG Huijun; LIN Zhaohui; ZHOU Guangqing; YU Yongqiang
2007-01-01
@@ The implementation of the project has lasted for more than 20 years. As a result, the following key innovative achievements have been obtained, ranging from the basic theory of climate dynamics, numerical model development and its related computational theory to the dynamical climate prediction using the climate system models:
Performance model to predict overall defect density
Directory of Open Access Journals (Sweden)
J Venkatesh
2012-08-01
Full Text Available Management by metrics is the expectation from the IT service providers to stay as a differentiator. Given a project, the associated parameters and dynamics, the behaviour and outcome need to be predicted. There is lot of focus on the end state and in minimizing defect leakage as much as possible. In most of the cases, the actions taken are re-active. It is too late in the life cycle. Root cause analysis and corrective actions can be implemented only to the benefit of the next project. The focus has to shift left, towards the execution phase than waiting for lessons to be learnt post the implementation. How do we pro-actively predict defect metrics and have a preventive action plan in place. This paper illustrates the process performance model to predict overall defect density based on data from projects in an organization.
Neuro-fuzzy modeling in bankruptcy prediction
Directory of Open Access Journals (Sweden)
Vlachos D.
2003-01-01
Full Text Available For the past 30 years the problem of bankruptcy prediction had been thoroughly studied. From the paper of Altman in 1968 to the recent papers in the '90s, the progress of prediction accuracy was not satisfactory. This paper investigates an alternative modeling of the system (firm, combining neural networks and fuzzy controllers, i.e. using neuro-fuzzy models. Classical modeling is based on mathematical models that describe the behavior of the firm under consideration. The main idea of fuzzy control, on the other hand, is to build a model of a human control expert who is capable of controlling the process without thinking in a mathematical model. This control expert specifies his control action in the form of linguistic rules. These control rules are translated into the framework of fuzzy set theory providing a calculus, which can stimulate the behavior of the control expert and enhance its performance. The accuracy of the model is studied using datasets from previous research papers.
Using connectome-based predictive modeling to predict individual behavior from brain connectivity.
Shen, Xilin; Finn, Emily S; Scheinost, Dustin; Rosenberg, Monica D; Chun, Marvin M; Papademetris, Xenophon; Constable, R Todd
2017-03-01
Neuroimaging is a fast-developing research area in which anatomical and functional images of human brains are collected using techniques such as functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and electroencephalography (EEG). Technical advances and large-scale data sets have allowed for the development of models capable of predicting individual differences in traits and behavior using brain connectivity measures derived from neuroimaging data. Here, we present connectome-based predictive modeling (CPM), a data-driven protocol for developing predictive models of brain-behavior relationships from connectivity data using cross-validation. This protocol includes the following steps: (i) feature selection, (ii) feature summarization, (iii) model building, and (iv) assessment of prediction significance. We also include suggestions for visualizing the most predictive features (i.e., brain connections). The final result should be a generalizable model that takes brain connectivity data as input and generates predictions of behavioral measures in novel subjects, accounting for a considerable amount of the variance in these measures. It has been demonstrated that the CPM protocol performs as well as or better than many of the existing approaches in brain-behavior prediction. As CPM focuses on linear modeling and a purely data-driven approach, neuroscientists with limited or no experience in machine learning or optimization will find it easy to implement these protocols. Depending on the volume of data to be processed, the protocol can take 10-100 min for model building, 1-48 h for permutation testing, and 10-20 min for visualization of results.
Pressure prediction model for compression garment design.
Leung, W Y; Yuen, D W; Ng, Sun Pui; Shi, S Q
2010-01-01
Based on the application of Laplace's law to compression garments, an equation for predicting garment pressure, incorporating the body circumference, the cross-sectional area of fabric, applied strain (as a function of reduction factor), and its corresponding Young's modulus, is developed. Design procedures are presented to predict garment pressure using the aforementioned parameters for clinical applications. Compression garments have been widely used in treating burning scars. Fabricating a compression garment with a required pressure is important in the healing process. A systematic and scientific design method can enable the occupational therapist and compression garments' manufacturer to custom-make a compression garment with a specific pressure. The objectives of this study are 1) to develop a pressure prediction model incorporating different design factors to estimate the pressure exerted by the compression garments before fabrication; and 2) to propose more design procedures in clinical applications. Three kinds of fabrics cut at different bias angles were tested under uniaxial tension, as were samples made in a double-layered structure. Sets of nonlinear force-extension data were obtained for calculating the predicted pressure. Using the value at 0° bias angle as reference, the Young's modulus can vary by as much as 29% for fabric type P11117, 43% for fabric type PN2170, and even 360% for fabric type AP85120 at a reduction factor of 20%. When comparing the predicted pressure calculated from the single-layered and double-layered fabrics, the double-layered construction provides a larger range of target pressure at a particular strain. The anisotropic and nonlinear behaviors of the fabrics have thus been determined. Compression garments can be methodically designed by the proposed analytical pressure prediction model.
A Novel Trigger Model for Sales Prediction with Data Mining Techniques
Directory of Open Access Journals (Sweden)
Wenjie Huang
2015-05-01
Full Text Available Previous research on sales prediction has always used a single prediction model. However, no single model can perform the best for all kinds of merchandise. Accurate prediction results for just one commodity are meaningless to sellers. A general prediction for all commodities is needed. This paper illustrates a novel trigger system that can match certain kinds of commodities with a prediction model to give better prediction results for different kinds of commodities. We find some related factors for classification. Several classical prediction models are included as basic models for classification. We compared the results of the trigger model with other single models. The results show that the accuracy of the trigger model is better than that of a single model. This has implications for business in that sellers can utilize the proposed system to effectively predict the sales of several commodities.
QSPR Models for Octane Number Prediction
Directory of Open Access Journals (Sweden)
Jabir H. Al-Fahemi
2014-01-01
Full Text Available Quantitative structure-property relationship (QSPR is performed as a means to predict octane number of hydrocarbons via correlating properties to parameters calculated from molecular structure; such parameters are molecular mass M, hydration energy EH, boiling point BP, octanol/water distribution coefficient logP, molar refractivity MR, critical pressure CP, critical volume CV, and critical temperature CT. Principal component analysis (PCA and multiple linear regression technique (MLR were performed to examine the relationship between multiple variables of the above parameters and the octane number of hydrocarbons. The results of PCA explain the interrelationships between octane number and different variables. Correlation coefficients were calculated using M.S. Excel to examine the relationship between multiple variables of the above parameters and the octane number of hydrocarbons. The data set was split into training of 40 hydrocarbons and validation set of 25 hydrocarbons. The linear relationship between the selected descriptors and the octane number has coefficient of determination (R2=0.932, statistical significance (F=53.21, and standard errors (s =7.7. The obtained QSPR model was applied on the validation set of octane number for hydrocarbons giving RCV2=0.942 and s=6.328.
Seasonal Predictability in a Model Atmosphere.
Lin, Hai
2001-07-01
The predictability of atmospheric mean-seasonal conditions in the absence of externally varying forcing is examined. A perfect-model approach is adopted, in which a global T21 three-level quasigeostrophic atmospheric model is integrated over 21 000 days to obtain a reference atmospheric orbit. The model is driven by a time-independent forcing, so that the only source of time variability is the internal dynamics. The forcing is set to perpetual winter conditions in the Northern Hemisphere (NH) and perpetual summer in the Southern Hemisphere.A significant temporal variability in the NH 90-day mean states is observed. The component of that variability associated with the higher-frequency motions, or climate noise, is estimated using a method developed by Madden. In the polar region, and to a lesser extent in the midlatitudes, the temporal variance of the winter means is significantly greater than the climate noise, suggesting some potential predictability in those regions.Forecast experiments are performed to see whether the presence of variance in the 90-day mean states that is in excess of the climate noise leads to some skill in the prediction of these states. Ensemble forecast experiments with nine members starting from slightly different initial conditions are performed for 200 different 90-day means along the reference atmospheric orbit. The serial correlation between the ensemble means and the reference orbit shows that there is skill in the 90-day mean predictions. The skill is concentrated in those regions of the NH that have the largest variance in excess of the climate noise. An EOF analysis shows that nearly all the predictive skill in the seasonal means is associated with one mode of variability with a strong axisymmetric component.
Technical note: A linear model for predicting δ13 Cprotein.
Pestle, William J; Hubbe, Mark; Smith, Erin K; Stevenson, Joseph M
2015-08-01
Development of a model for the prediction of δ(13) Cprotein from δ(13) Ccollagen and Δ(13) Cap-co . Model-generated values could, in turn, serve as "consumer" inputs for multisource mixture modeling of paleodiet. Linear regression analysis of previously published controlled diet data facilitated the development of a mathematical model for predicting δ(13) Cprotein (and an experimentally generated error term) from isotopic data routinely generated during the analysis of osseous remains (δ(13) Cco and Δ(13) Cap-co ). Regression analysis resulted in a two-term linear model (δ(13) Cprotein (%) = (0.78 × δ(13) Cco ) - (0.58× Δ(13) Cap-co ) - 4.7), possessing a high R-value of 0.93 (r(2) = 0.86, P < 0.01), and experimentally generated error terms of ±1.9% for any predicted individual value of δ(13) Cprotein . This model was tested using isotopic data from Formative Period individuals from northern Chile's Atacama Desert. The model presented here appears to hold significant potential for the prediction of the carbon isotope signature of dietary protein using only such data as is routinely generated in the course of stable isotope analysis of human osseous remains. These predicted values are ideal for use in multisource mixture modeling of dietary protein source contribution. © 2015 Wiley Periodicals, Inc.
Hidden Markov models for prediction of protein features
DEFF Research Database (Denmark)
Bystroff, Christopher; Krogh, Anders
2008-01-01
Hidden Markov Models (HMMs) are an extremely versatile statistical representation that can be used to model any set of one-dimensional discrete symbol data. HMMs can model protein sequences in many ways, depending on what features of the protein are represented by the Markov states. For protein...... structure prediction, states have been chosen to represent either homologous sequence positions, local or secondary structure types, or transmembrane locality. The resulting models can be used to predict common ancestry, secondary or local structure, or membrane topology by applying one of the two standard...... algorithms for comparing a sequence to a model. In this chapter, we review those algorithms and discuss how HMMs have been constructed and refined for the purpose of protein structure prediction....
Modeling, Prediction, and Control of Heating Temperature for Tube Billet
Directory of Open Access Journals (Sweden)
Yachun Mao
2015-01-01
Full Text Available Annular furnaces have multivariate, nonlinear, large time lag, and cross coupling characteristics. The prediction and control of the exit temperature of a tube billet are important but difficult. We establish a prediction model for the final temperature of a tube billet through OS-ELM-DRPLS method. We address the complex production characteristics, integrate the advantages of PLS and ELM algorithms in establishing linear and nonlinear models, and consider model update and data lag. Based on the proposed model, we design a prediction control algorithm for tube billet temperature. The algorithm is validated using the practical production data of Baosteel Co., Ltd. Results show that the model achieves the precision required in industrial applications. The temperature of the tube billet can be controlled within the required temperature range through compensation control method.
Experimental study on prediction model for maximum rebound ratio
Institute of Scientific and Technical Information of China (English)
LEI Wei-dong; TENG Jun; A.HEFNY; ZHAO Jian; GUAN Jiong
2007-01-01
The proposed prediction model for estimating the maximum rebound ratio was applied to a field explosion test, Mandai test in Singapore.The estimated possible maximum Deak particle velocities(PPVs)were compared with the field records.Three of the four available field-recorded PPVs lie exactly below the estimated possible maximum values as expected.while the fourth available field-recorded PPV lies close to and a bit higher than the estimated maximum possible PPV The comparison results show that the predicted PPVs from the proposed prediction model for the maximum rebound ratio match the field.recorded PPVs better than those from two empirical formulae.The very good agreement between the estimated and field-recorded values validates the proposed prediction model for estimating PPV in a rock mass with a set of ipints due to application of a two dimensional compressional wave at the boundary of a tunnel or a borehole.
A kinetic model for predicting biodegradation.
Dimitrov, S; Pavlov, T; Nedelcheva, D; Reuschenbach, P; Silvani, M; Bias, R; Comber, M; Low, L; Lee, C; Parkerton, T; Mekenyan, O
2007-01-01
Biodegradation plays a key role in the environmental risk assessment of organic chemicals. The need to assess biodegradability of a chemical for regulatory purposes supports the development of a model for predicting the extent of biodegradation at different time frames, in particular the extent of ultimate biodegradation within a '10 day window' criterion as well as estimating biodegradation half-lives. Conceptually this implies expressing the rate of catabolic transformations as a function of time. An attempt to correlate the kinetics of biodegradation with molecular structure of chemicals is presented. A simplified biodegradation kinetic model was formulated by combining the probabilistic approach of the original formulation of the CATABOL model with the assumption of first order kinetics of catabolic transformations. Nonlinear regression analysis was used to fit the model parameters to OECD 301F biodegradation kinetic data for a set of 208 chemicals. The new model allows the prediction of biodegradation multi-pathways, primary and ultimate half-lives and simulation of related kinetic biodegradation parameters such as biological oxygen demand (BOD), carbon dioxide production, and the nature and amount of metabolites as a function of time. The model may also be used for evaluating the OECD ready biodegradability potential of a chemical within the '10-day window' criterion.
Generalised Chou-Yang model and recent results
Energy Technology Data Exchange (ETDEWEB)
Fazal-e-Aleem [International Centre for Theoretical Physics, Trieste (Italy); Rashid, H. [Punjab Univ., Lahore (Pakistan). Centre for High Energy Physics
1996-12-31
It is shown that most recent results of E710 and UA4/2 collaboration for the total cross section and {rho} together with earlier measurements give good agreement with measurements for the differential cross section at 546 and 1800 GeV within the framework of Generalised Chou-Yang model. These results are also compared with the predictions of other models. (author) 16 refs.
Model predictive torque control with an extended prediction horizon for electrical drive systems
Wang, Fengxiang; Zhang, Zhenbin; Kennel, Ralph; Rodríguez, José
2015-07-01
This paper presents a model predictive torque control method for electrical drive systems. A two-step prediction horizon is achieved by considering the reduction of the torque ripples. The electromagnetic torque and the stator flux error between predicted values and the references, and an over-current protection are considered in the cost function design. The best voltage vector is selected by minimising the value of the cost function, which aims to achieve a low torque ripple in two intervals. The study is carried out experimentally. The results show that the proposed method achieves good performance in both steady and transient states.
Multi-model ensemble hydrologic prediction and uncertainties analysis
Directory of Open Access Journals (Sweden)
S. Jiang
2014-09-01
Full Text Available Modelling uncertainties (i.e. input errors, parameter uncertainties and model structural errors inevitably exist in hydrological prediction. A lot of recent attention has focused on these, of which input error modelling, parameter optimization and multi-model ensemble strategies are the three most popular methods to demonstrate the impacts of modelling uncertainties. In this paper the Xinanjiang model, the Hybrid rainfall–runoff model and the HYMOD model were applied to the Mishui Basin, south China, for daily streamflow ensemble simulation and uncertainty analysis. The three models were first calibrated by two parameter optimization algorithms, namely, the Shuffled Complex Evolution method (SCE-UA and the Shuffled Complex Evolution Metropolis method (SCEM-UA; next, the input uncertainty was accounted for by introducing a normally-distributed error multiplier; then, the simulation sets calculated from the three models were combined by Bayesian model averaging (BMA. The results show that both these parameter optimization algorithms generate good streamflow simulations; specifically the SCEM-UA can imply parameter uncertainty and give the posterior distribution of the parameters. Considering the precipitation input uncertainty, the streamflow simulation precision does not improve very much. While the BMA combination not only improves the streamflow prediction precision, it also gives quantitative uncertainty bounds for the simulation sets. The SCEM-UA calculated prediction interval is better than the SCE-UA calculated one. These results suggest that considering the model parameters' uncertainties and doing multi-model ensemble simulations are very practical for streamflow prediction and flood forecasting, from which more precision prediction and more reliable uncertainty bounds can be generated.
Curtis, Gary P.; Lu, Dan; Ye, Ming
2015-01-01
While Bayesian model averaging (BMA) has been widely used in groundwater modeling, it is infrequently applied to groundwater reactive transport modeling because of multiple sources of uncertainty in the coupled hydrogeochemical processes and because of the long execution time of each model run. To resolve these problems, this study analyzed different levels of uncertainty in a hierarchical way, and used the maximum likelihood version of BMA, i.e., MLBMA, to improve the computational efficiency. This study demonstrates the applicability of MLBMA to groundwater reactive transport modeling in a synthetic case in which twenty-seven reactive transport models were designed to predict the reactive transport of hexavalent uranium (U(VI)) based on observations at a former uranium mill site near Naturita, CO. These reactive transport models contain three uncertain model components, i.e., parameterization of hydraulic conductivity, configuration of model boundary, and surface complexation reactions that simulate U(VI) adsorption. These uncertain model components were aggregated into the alternative models by integrating a hierarchical structure into MLBMA. The modeling results of the individual models and MLBMA were analyzed to investigate their predictive performance. The predictive logscore results show that MLBMA generally outperforms the best model, suggesting that using MLBMA is a sound strategy to achieve more robust model predictions relative to a single model. MLBMA works best when the alternative models are structurally distinct and have diverse model predictions. When correlation in model structure exists, two strategies were used to improve predictive performance by retaining structurally distinct models or assigning smaller prior model probabilities to correlated models. Since the synthetic models were designed using data from the Naturita site, the results of this study are expected to provide guidance for real-world modeling. Limitations of applying MLBMA to the
Predictive Modeling in Actinide Chemistry and Catalysis
Energy Technology Data Exchange (ETDEWEB)
Yang, Ping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-05-16
These are slides from a presentation on predictive modeling in actinide chemistry and catalysis. The following topics are covered in these slides: Structures, bonding, and reactivity (bonding can be quantified by optical probes and theory, and electronic structures and reaction mechanisms of actinide complexes); Magnetic resonance properties (transition metal catalysts with multi-nuclear centers, and NMR/EPR parameters); Moving to more complex systems (surface chemistry of nanomaterials, and interactions of ligands with nanoparticles); Path forward and conclusions.
Engineering Glass Passivation Layers -Model Results
Energy Technology Data Exchange (ETDEWEB)
Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.; Lepry, William C.
2011-08-08
The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting that the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and we plan
Predicting soil acidification trends at Plynlimon using the SAFE model
Directory of Open Access Journals (Sweden)
B. Reynolds
1997-01-01
Full Text Available The SAFE model has been applied to an acid grassland site, located on base-poor stagnopodzol soils derived from Lower Palaeozoic greywackes. The model predicts that acidification of the soil has occurred in response to increased acid deposition following the industrial revolution. Limited recovery is predicted following the decline in sulphur deposition during the mid to late 1970s. Reducing excess sulphur and NOx deposition in 1998 to 40% and 70% of 1980 levels results in further recovery but soil chemical conditions (base saturation, soil water pH and ANC do not return to values predicted in pre-industrial times. The SAFE model predicts that critical loads (expressed in terms of the (Ca+Mg+K:Alcrit ratio for six vegetation species found in acid grassland communities are not exceeded despite the increase in deposited acidity following the industrial revolution. The relative growth response of selected vegetation species characteristic of acid grassland swards has been predicted using a damage function linking growth to soil solution base cation to aluminium ratio. The results show that very small growth reductions can be expected for 'acid tolerant' plants growing in acid upland soils. For more sensitive species such as Holcus lanatus, SAFE predicts that growth would have been reduced by about 20% between 1951 and 1983, when acid inputs were greatest. Recovery to c. 90% of normal growth (under laboratory conditions is predicted as acidic inputs decline.
Quantitative magnetospheric models: results and perspectives.
Kuznetsova, M.; Hesse, M.; Gombosi, T.; Csem Team
Global magnetospheric models are indispensable tool that allow multi-point measurements to be put into global context Significant progress is achieved in global MHD modeling of magnetosphere structure and dynamics Medium resolution simulations confirm general topological pictures suggested by Dungey State of the art global models with adaptive grids allow performing simulations with highly resolved magnetopause and magnetotail current sheet Advanced high-resolution models are capable to reproduced transient phenomena such as FTEs associated with formation of flux ropes or plasma bubbles embedded into magnetopause and demonstrate generation of vortices at magnetospheric flanks On the other hand there is still controversy about the global state of the magnetosphere predicted by MHD models to the point of questioning the length of the magnetotail and the location of the reconnection sites within it For example for steady southwards IMF driving condition resistive MHD simulations produce steady configuration with almost stationary near-earth neutral line While there are plenty of observational evidences of periodic loading unloading cycle during long periods of southward IMF Successes and challenges in global modeling of magnetispheric dynamics will be addessed One of the major challenges is to quantify the interaction between large-scale global magnetospheric dynamics and microphysical processes in diffusion regions near reconnection sites Possible solutions to controversies will be discussed
Probabilistic prediction models for aggregate quarry siting
Robinson, G.R.; Larkins, P.M.
2007-01-01
Weights-of-evidence (WofE) and logistic regression techniques were used in a GIS framework to predict the spatial likelihood (prospectivity) of crushed-stone aggregate quarry development. The joint conditional probability models, based on geology, transportation network, and population density variables, were defined using quarry location and time of development data for the New England States, North Carolina, and South Carolina, USA. The Quarry Operation models describe the distribution of active aggregate quarries, independent of the date of opening. The New Quarry models describe the distribution of aggregate quarries when they open. Because of the small number of new quarries developed in the study areas during the last decade, independent New Quarry models have low parameter estimate reliability. The performance of parameter estimates derived for Quarry Operation models, defined by a larger number of active quarries in the study areas, were tested and evaluated to predict the spatial likelihood of new quarry development. Population density conditions at the time of new quarry development were used to modify the population density variable in the Quarry Operation models to apply to new quarry development sites. The Quarry Operation parameters derived for the New England study area, Carolina study area, and the combined New England and Carolina study areas were all similar in magnitude and relative strength. The Quarry Operation model parameters, using the modified population density variables, were found to be a good predictor of new quarry locations. Both the aggregate industry and the land management community can use the model approach to target areas for more detailed site evaluation for quarry location. The models can be revised easily to reflect actual or anticipated changes in transportation and population features. ?? International Association for Mathematical Geology 2007.
Predicting Footbridge Response using Stochastic Load Models
DEFF Research Database (Denmark)
Pedersen, Lars; Frier, Christian
2013-01-01
Walking parameters such as step frequency, pedestrian mass, dynamic load factor, etc. are basically stochastic, although it is quite common to adapt deterministic models for these parameters. The present paper considers a stochastic approach to modeling the action of pedestrians, but when doing s...... as it pinpoints which decisions to be concerned about when the goal is to predict footbridge response. The studies involve estimating footbridge responses using Monte-Carlo simulations and focus is on estimating vertical structural response to single person loading....
Nonconvex Model Predictive Control for Commercial Refrigeration
DEFF Research Database (Denmark)
Hovgaard, Tobias Gybel; Larsen, Lars F.S.; Jørgensen, John Bagterp
2013-01-01
is to minimize the total energy cost, using real-time electricity prices, while obeying temperature constraints on the zones. We propose a variation on model predictive control to achieve this goal. When the right variables are used, the dynamics of the system are linear, and the constraints are convex. The cost...... the iterations, which is more than fast enough to run in real-time. We demonstrate our method on a realistic model, with a full year simulation and 15 minute time periods, using historical electricity prices and weather data, as well as random variations in thermal load. These simulations show substantial cost...
Outcome Prediction in Mathematical Models of Immune Response to Infection.
Directory of Open Access Journals (Sweden)
Manuel Mai
Full Text Available Clinicians need to predict patient outcomes with high accuracy as early as possible after disease inception. In this manuscript, we show that patient-to-patient variability sets a fundamental limit on outcome prediction accuracy for a general class of mathematical models for the immune response to infection. However, accuracy can be increased at the expense of delayed prognosis. We investigate several systems of ordinary differential equations (ODEs that model the host immune response to a pathogen load. Advantages of systems of ODEs for investigating the immune response to infection include the ability to collect data on large numbers of 'virtual patients', each with a given set of model parameters, and obtain many time points during the course of the infection. We implement patient-to-patient variability v in the ODE models by randomly selecting the model parameters from distributions with coefficients of variation v that are centered on physiological values. We use logistic regression with one-versus-all classification to predict the discrete steady-state outcomes of the system. We find that the prediction algorithm achieves near 100% accuracy for v = 0, and the accuracy decreases with increasing v for all ODE models studied. The fact that multiple steady-state outcomes can be obtained for a given initial condition, i.e. the basins of attraction overlap in the space of initial conditions, limits the prediction accuracy for v > 0. Increasing the elapsed time of the variables used to train and test the classifier, increases the prediction accuracy, while adding explicit external noise to the ODE models decreases the prediction accuracy. Our results quantify the competition between early prognosis and high prediction accuracy that is frequently encountered by clinicians.
Development of Interpretable Predictive Models for BPH and Prostate Cancer
Bermejo, Pablo; Vivo, Alicia; Tárraga, Pedro J; Rodríguez-Montes, JA
2015-01-01
BACKGROUND Traditional methods for deciding whether to recommend a patient for a prostate biopsy are based on cut-off levels of stand-alone markers such as prostate-specific antigen (PSA) or any of its derivatives. However, in the last decade we have seen the increasing use of predictive models that combine, in a non-linear manner, several predictives that are better able to predict prostate cancer (PC), but these fail to help the clinician to distinguish between PC and benign prostate hyperplasia (BPH) patients. We construct two new models that are capable of predicting both PC and BPH. METHODS An observational study was performed on 150 patients with PSA ≥3 ng/mL and age >50 years. We built a decision tree and a logistic regression model, validated with the leave-one-out methodology, in order to predict PC or BPH, or reject both. RESULTS Statistical dependence with PC and BPH was found for prostate volume (P-value < 0.001), PSA (P-value < 0.001), international prostate symptom score (IPSS; P-value < 0.001), digital rectal examination (DRE; P-value < 0.001), age (P-value < 0.002), antecedents (P-value < 0.006), and meat consumption (P-value < 0.08). The two predictive models that were constructed selected a subset of these, namely, volume, PSA, DRE, and IPSS, obtaining an area under the ROC curve (AUC) between 72% and 80% for both PC and BPH prediction. CONCLUSION PSA and volume together help to build predictive models that accurately distinguish among PC, BPH, and patients without any of these pathologies. Our decision tree and logistic regression models outperform the AUC obtained in the compared studies. Using these models as decision support, the number of unnecessary biopsies might be significantly reduced. PMID:25780348
Prediction horizon effects on stochastic modelling hints for neural networks
Energy Technology Data Exchange (ETDEWEB)
Drossu, R.; Obradovic, Z. [Washington State Univ., Pullman, WA (United States)
1995-12-31
The objective of this paper is to investigate the relationship between stochastic models and neural network (NN) approaches to time series modelling. Experiments on a complex real life prediction problem (entertainment video traffic) indicate that prior knowledge can be obtained through stochastic analysis both with respect to an appropriate NN architecture as well as to an appropriate sampling rate, in the case of a prediction horizon larger than one. An improvement of the obtained NN predictor is also proposed through a bias removal post-processing, resulting in much better performance than the best stochastic model.
Comparison of Linear Prediction Models for Audio Signals
Directory of Open Access Journals (Sweden)
2009-03-01
Full Text Available While linear prediction (LP has become immensely popular in speech modeling, it does not seem to provide a good approach for modeling audio signals. This is somewhat surprising, since a tonal signal consisting of a number of sinusoids can be perfectly predicted based on an (all-pole LP model with a model order that is twice the number of sinusoids. We provide an explanation why this result cannot simply be extrapolated to LP of audio signals. If noise is taken into account in the tonal signal model, a low-order all-pole model appears to be only appropriate when the tonal components are uniformly distributed in the Nyquist interval. Based on this observation, different alternatives to the conventional LP model can be suggested. Either the model should be changed to a pole-zero, a high-order all-pole, or a pitch prediction model, or the conventional LP model should be preceded by an appropriate frequency transform, such as a frequency warping or downsampling. By comparing these alternative LP models to the conventional LP model in terms of frequency estimation accuracy, residual spectral flatness, and perceptual frequency resolution, we obtain several new and promising approaches to LP-based audio modeling.
Comparison of Linear Prediction Models for Audio Signals
Directory of Open Access Journals (Sweden)
van Waterschoot Toon
2008-01-01
Full Text Available While linear prediction (LP has become immensely popular in speech modeling, it does not seem to provide a good approach for modeling audio signals. This is somewhat surprising, since a tonal signal consisting of a number of sinusoids can be perfectly predicted based on an (all-pole LP model with a model order that is twice the number of sinusoids. We provide an explanation why this result cannot simply be extrapolated to LP of audio signals. If noise is taken into account in the tonal signal model, a low-order all-pole model appears to be only appropriate when the tonal components are uniformly distributed in the Nyquist interval. Based on this observation, different alternatives to the conventional LP model can be suggested. Either the model should be changed to a pole-zero, a high-order all-pole, or a pitch prediction model, or the conventional LP model should be preceded by an appropriate frequency transform, such as a frequency warping or downsampling. By comparing these alternative LP models to the conventional LP model in terms of frequency estimation accuracy, residual spectral flatness, and perceptual frequency resolution, we obtain several new and promising approaches to LP-based audio modeling.
Predictive In Vivo Models for Oncology.
Behrens, Diana; Rolff, Jana; Hoffmann, Jens
2016-01-01
Experimental oncology research and preclinical drug development both substantially require specific, clinically relevant in vitro and in vivo tumor models. The increasing knowledge about the heterogeneity of cancer requested a substantial restructuring of the test systems for the different stages of development. To be able to cope with the complexity of the disease, larger panels of patient-derived tumor models have to be implemented and extensively characterized. Together with individual genetically engineered tumor models and supported by core functions for expression profiling and data analysis, an integrated discovery process has been generated for predictive and personalized drug development.Improved “humanized” mouse models should help to overcome current limitations given by xenogeneic barrier between humans and mice. Establishment of a functional human immune system and a corresponding human microenvironment in laboratory animals will strongly support further research.Drug discovery, systems biology, and translational research are moving closer together to address all the new hallmarks of cancer, increase the success rate of drug development, and increase the predictive value of preclinical models.
Constructing predictive models of human running.
Maus, Horst-Moritz; Revzen, Shai; Guckenheimer, John; Ludwig, Christian; Reger, Johann; Seyfarth, Andre
2015-02-06
Running is an essential mode of human locomotion, during which ballistic aerial phases alternate with phases when a single foot contacts the ground. The spring-loaded inverted pendulum (SLIP) provides a starting point for modelling running, and generates ground reaction forces that resemble those of the centre of mass (CoM) of a human runner. Here, we show that while SLIP reproduces within-step kinematics of the CoM in three dimensions, it fails to reproduce stability and predict future motions. We construct SLIP control models using data-driven Floquet analysis, and show how these models may be used to obtain predictive models of human running with six additional states comprising the position and velocity of the swing-leg ankle. Our methods are general, and may be applied to any rhythmic physical system. We provide an approach for identifying an event-driven linear controller that approximates an observed stabilization strategy, and for producing a reduced-state model which closely recovers the observed dynamics. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Predicting Solar Cycle 25 using Surface Flux Transport Model
Imada, Shinsuke; Iijima, Haruhisa; Hotta, Hideyuki; Shiota, Daiko; Kusano, Kanya
2017-08-01
It is thought that the longer-term variations of the solar activity may affect the Earth’s climate. Therefore, predicting the next solar cycle is crucial for the forecast of the “solar-terrestrial environment”. To build prediction schemes for the next solar cycle is a key for the long-term space weather study. Recently, the relationship between polar magnetic field at the solar minimum and next solar activity is intensively discussed. Because we can determine the polar magnetic field at the solar minimum roughly 3 years before the next solar maximum, we may discuss the next solar cycle 3years before. Further, the longer term (~5 years) prediction might be achieved by estimating the polar magnetic field with the Surface Flux Transport (SFT) model. Now, we are developing a prediction scheme by SFT model as a part of the PSTEP (Project for Solar-Terrestrial Environment Prediction) and adapting to the Cycle 25 prediction. The predicted polar field strength of Cycle 24/25 minimum is several tens of percent smaller than Cycle 23/24 minimum. The result suggests that the amplitude of Cycle 25 is weaker than the current cycle. We also try to obtain the meridional flow, differential rotation, and turbulent diffusivity from recent modern observations (Hinode and Solar Dynamics Observatory). These parameters will be used in the SFT models to predict the polar magnetic fields strength at the solar minimum. In this presentation, we will explain the outline of our strategy to predict the next solar cycle and discuss the initial results for Cycle 25 prediction.
Preoperative prediction model of outcome after cholecystectomy for symptomatic gallstones
DEFF Research Database (Denmark)
Borly, L; Anderson, I B; Bardram, Linda
1999-01-01
BACKGROUND: After cholecystectomy for symptomatic gallstone disease 20%-30% of the patients continue to have abdominal pain. The aim of this study was to investigate whether preoperative variables could predict the symptomatic outcome after cholecystectomy. METHODS: One hundred and two patients...... and sonography evaluated gallbladder motility, gallstones, and gallbladder volume. Preoperative variables in patients with or without postcholecystectomy pain were compared statistically, and significant variables were combined in a logistic regression model to predict the postoperative outcome. RESULTS: Eighty...
A predictive fatigue life model for anodized 7050 aluminium alloy
Chaussumier, Michel; Mabru, Catherine; Shahzad, Majid; Chieragatti, Rémy; Rezaï-Aria, Farhad
2013-01-01
International audience; The objective of this study is to predict fatigue life of anodized 7050 aluminum alloy specimens. In the case of anodized 7050-T7451 alloy, fractographic observations of fatigue tested specimens showed that pickling pits were the predominant sites for crack nucleation and subsequent failure. It has been shown that fatigue failure was favored by the presence of multiple cracks. From these experimental results, a fatigue life predictive model has been developed including...
Extended Range Hydrological Predictions: Uncertainty Associated with Model Parametrization
Joseph, J.; Ghosh, S.; Sahai, A. K.
2016-12-01
The better understanding of various atmospheric processes has led to improved predictions of meteorological conditions at various temporal scale, ranging from short term which cover a period up to 2 days to long term covering a period of more than 10 days. Accurate prediction of hydrological variables can be done using these predicted meteorological conditions, which would be helpful in proper management of water resources. Extended range hydrological simulation includes the prediction of hydrological variables for a period more than 10 days. The main sources of uncertainty in hydrological predictions include the uncertainty in the initial conditions, meteorological forcing and model parametrization. In the present study, the Extended Range Prediction developed for India for monsoon by Indian Institute of Tropical Meteorology (IITM), Pune is used as meteorological forcing for the Variable Infiltration Capacity (VIC) model. Sensitive hydrological parameters, as derived from literature, along with a few vegetation parameters are assumed to be uncertain and 1000 random values are generated given their prescribed ranges. Uncertainty bands are generated by performing Monte-Carlo Simulations (MCS) for the generated sets of parameters and observed meteorological forcings. The basins with minimum human intervention, within the Indian Peninsular region, are identified and validation of results are carried out using the observed gauge discharge. Further, the uncertainty bands are generated for the extended range hydrological predictions by performing MCS for the same set of parameters and extended range meteorological predictions. The results demonstrate the uncertainty associated with the model parametrisation for the extended range hydrological simulations. Keywords: Extended Range Prediction, Variable Infiltration Capacity model, Monte Carlo Simulation.
Precise methods for conducted EMI modeling,analysis,and prediction
Institute of Scientific and Technical Information of China (English)
2008-01-01
Focusing on the state-of-the-art conducted EMI prediction, this paper presents a noise source lumped circuit modeling and identification method, an EMI modeling method based on multiple slope approximation of switching transitions, and dou-ble Fourier integral method modeling PWM conversion units to achieve an accurate modeling of EMI noise source. Meanwhile, a new sensitivity analysis method, a general coupling model for steel ground loops, and a partial element equivalent circuit method are proposed to identify and characterize conducted EMI coupling paths. The EMI noise and propagation modeling provide an accurate prediction of conducted EMI in the entire frequency range (0―10 MHz) with good practicability and generality. Finally a new measurement approach is presented to identify the surface current of large dimensional metal shell. The proposed analytical modeling methodology is verified by experimental results.
Precise methods for conducted EMI modeling,analysis, and prediction
Institute of Scientific and Technical Information of China (English)
MA WeiMing; ZHAO ZhiHua; MENG Jin; PAN QiJun; ZHANG Lei
2008-01-01
Focusing on the state-of-the-art conducted EMI prediction, this paper presents a noise source lumped circuit modeling and identification method, an EMI modeling method based on multiple slope approximation of switching transitions, and dou-ble Fourier integral method modeling PWM conversion units to achieve an accurate modeling of EMI noise source. Meanwhile, a new sensitivity analysis method, a general coupling model for steel ground loops, and a partial element equivalent circuit method are proposed to identify and characterize conducted EMI coupling paths. The EMI noise and propagation modeling provide an accurate prediction of conducted EMI in the entire frequency range (0-10 MHz) with good practicability and generality. Finally a new measurement approach is presented to identify the surface current of large dimensional metal shell. The proposed analytical modeling methodology is verified by experimental results.
Predictive modeling by the cerebellum improves proprioception.
Bhanpuri, Nasir H; Okamura, Allison M; Bastian, Amy J
2013-09-04
Because sensation is delayed, real-time movement control requires not just sensing, but also predicting limb position, a function hypothesized for the cerebellum. Such cerebellar predictions could contribute to perception of limb position (i.e., proprioception), particularly when a person actively moves the limb. Here we show that human cerebellar patients have proprioceptive deficits compared with controls during active movement, but not when the arm is moved passively. Furthermore, when healthy subjects move in a force field with unpredictable dynamics, they have active proprioceptive deficits similar to cerebellar patients. Therefore, muscle activity alone is likely insufficient to enhance proprioception and predictability (i.e., an internal model of the body and environment) is important for active movement to benefit proprioception. We conclude that cerebellar patients have an active proprioceptive deficit consistent with disrupted movement prediction rather than an inability to generally enhance peripheral proprioceptive signals during action and suggest that active proprioceptive deficits should be considered a fundamental cerebellar impairment of clinical importance.
Embryo quality predictive models based on cumulus cells gene expression
Directory of Open Access Journals (Sweden)
Devjak R
2016-06-01
Full Text Available Since the introduction of in vitro fertilization (IVF in clinical practice of infertility treatment, the indicators for high quality embryos were investigated. Cumulus cells (CC have a specific gene expression profile according to the developmental potential of the oocyte they are surrounding, and therefore, specific gene expression could be used as a biomarker. The aim of our study was to combine more than one biomarker to observe improvement in prediction value of embryo development. In this study, 58 CC samples from 17 IVF patients were analyzed. This study was approved by the Republic of Slovenia National Medical Ethics Committee. Gene expression analysis [quantitative real time polymerase chain reaction (qPCR] for five genes, analyzed according to embryo quality level, was performed. Two prediction models were tested for embryo quality prediction: a binary logistic and a decision tree model. As the main outcome, gene expression levels for five genes were taken and the area under the curve (AUC for two prediction models were calculated. Among tested genes, AMHR2 and LIF showed significant expression difference between high quality and low quality embryos. These two genes were used for the construction of two prediction models: the binary logistic model yielded an AUC of 0.72 ± 0.08 and the decision tree model yielded an AUC of 0.73 ± 0.03. Two different prediction models yielded similar predictive power to differentiate high and low quality embryos. In terms of eventual clinical decision making, the decision tree model resulted in easy-to-interpret rules that are highly applicable in clinical practice.
Initial CGE Model Results Summary Exogenous and Endogenous Variables Tests
Energy Technology Data Exchange (ETDEWEB)
Edwards, Brian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boero, Riccardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rivera, Michael Kelly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-08-07
The following discussion presents initial results of tests of the most recent version of the National Infrastructure Simulation and Analysis Center Dynamic Computable General Equilibrium (CGE) model developed by Los Alamos National Laboratory (LANL). The intent of this is to test and assess the model’s behavioral properties. The test evaluated whether the predicted impacts are reasonable from a qualitative perspective. This issue is whether the predicted change, be it an increase or decrease in other model variables, is consistent with prior economic intuition and expectations about the predicted change. One of the purposes of this effort is to determine whether model changes are needed in order to improve its behavior qualitatively and quantitatively.
Interpreting Results from the Multinomial Logit Model
DEFF Research Database (Denmark)
Wulff, Jesper
2015-01-01
This article provides guidelines and illustrates practical steps necessary for an analysis of results from the multinomial logit model (MLM). The MLM is a popular model in the strategy literature because it allows researchers to examine strategic choices with multiple outcomes. However, there see...
Predicting the Yield Stress of SCC using Materials Modelling
DEFF Research Database (Denmark)
Thrane, Lars Nyholm; Hasholt, Marianne Tange; Pade, Claus
2005-01-01
A conceptual model for predicting the Bingham rheological parameter yield stress of SCC has been established. The model used here is inspired by previous work of Oh et al. (1), predicting that the yield stress of concrete relative to the yield stress of paste is a function of the relative thickness...... of excess paste around the aggregate. The thickness of excess paste is itself a function of particle shape, particle size distribution, and particle packing. Seven types of SCC were tested at four different excess paste contents in order to verify the conceptual model. Paste composition and aggregate shape...... and distribution were varied between SCC types. The results indicate that yield stress of SCC may be predicted using the model....
Desseilles, Martin
2012-01-01
In general, it appears that the suicidal act is highly unpredictable with the current scientific means available. In this article, the author submits the hypothesis that predicting suicide is complex because it results in predicting a choice, in itself unpredictable. The article proposes a Reinforcement learning model-based analysis. In this model, we integrate on the one hand, four ascending modulatory neurotransmitter systems (acetylcholine, noradrenalin, serotonin, and dopamine) with their regions of respective projections and afferences, and on the other hand, various observations of brain imaging identified until now in the suicidal process.
Gamma-Ray Pulsars Models and Predictions
Harding, A K
2001-01-01
Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10^{12} - 10^{13} G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers at around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. N...
Ground Motion Prediction Models for Caucasus Region
Jorjiashvili, Nato; Godoladze, Tea; Tvaradze, Nino; Tumanova, Nino
2016-04-01
Ground motion prediction models (GMPMs) relate ground motion intensity measures to variables describing earthquake source, path, and site effects. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration or spectral acceleration because this parameter gives useful information for Seismic Hazard Assessment. Since 2003 development of Georgian Digital Seismic Network has started. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models is obtained by classical, statistical way, regression analysis. In this study site ground conditions are additionally considered because the same earthquake recorded at the same distance may cause different damage according to ground conditions. Empirical ground-motion prediction models (GMPMs) require adjustment to make them appropriate for site-specific scenarios. However, the process of making such adjustments remains a challenge. This work presents a holistic framework for the development of a peak ground acceleration (PGA) or spectral acceleration (SA) GMPE that is easily adjustable to different seismological conditions and does not suffer from the practical problems associated with adjustments in the response spectral domain.
Modeling and Prediction of Krueger Device Noise
Guo, Yueping; Burley, Casey L.; Thomas, Russell H.
2016-01-01
This paper presents the development of a noise prediction model for aircraft Krueger flap devices that are considered as alternatives to leading edge slotted slats. The prediction model decomposes the total Krueger noise into four components, generated by the unsteady flows, respectively, in the cove under the pressure side surface of the Krueger, in the gap between the Krueger trailing edge and the main wing, around the brackets supporting the Krueger device, and around the cavity on the lower side of the main wing. For each noise component, the modeling follows a physics-based approach that aims at capturing the dominant noise-generating features in the flow and developing correlations between the noise and the flow parameters that control the noise generation processes. The far field noise is modeled using each of the four noise component's respective spectral functions, far field directivities, Mach number dependencies, component amplitudes, and other parametric trends. Preliminary validations are carried out by using small scale experimental data, and two applications are discussed; one for conventional aircraft and the other for advanced configurations. The former focuses on the parametric trends of Krueger noise on design parameters, while the latter reveals its importance in relation to other airframe noise components.
A generative model for predicting terrorist incidents
Verma, Dinesh C.; Verma, Archit; Felmlee, Diane; Pearson, Gavin; Whitaker, Roger
2017-05-01
A major concern in coalition peace-support operations is the incidence of terrorist activity. In this paper, we propose a generative model for the occurrence of the terrorist incidents, and illustrate that an increase in diversity, as measured by the number of different social groups to which that an individual belongs, is inversely correlated with the likelihood of a terrorist incident in the society. A generative model is one that can predict the likelihood of events in new contexts, as opposed to statistical models which are used to predict the future incidents based on the history of the incidents in an existing context. Generative models can be useful in planning for persistent Information Surveillance and Reconnaissance (ISR) since they allow an estimation of regions in the theater of operation where terrorist incidents may arise, and thus can be used to better allocate the assignment and deployment of ISR assets. In this paper, we present a taxonomy of terrorist incidents, identify factors related to occurrence of terrorist incidents, and provide a mathematical analysis calculating the likelihood of occurrence of terrorist incidents in three common real-life scenarios arising in peace-keeping operations
A Prediction Model of MF Radiation in Environmental Assessment
Institute of Scientific and Technical Information of China (English)
HE-SHAN GE; YAN-FENG HONG
2006-01-01
Objective To predict the impact of MF radiation on human health.Methods The vertical distribution of field intensity was estimated by analogism on the basis of measured values from simulation measurement. Results A kind of analogism on the basis of geometric proportion decay pattern is put forward in the essay. It showed that with increasing of height the field intensity increased according to geometric proportion law. Conclusion This geometric proportion prediction model can be used to estimate the impact of MF radiation on inhabited environment, and can act as a reference pattern in predicting the environmental impact level of MF radiation.
Econometric models for predicting confusion crop ratios
Umberger, D. E.; Proctor, M. H.; Clark, J. E.; Eisgruber, L. M.; Braschler, C. B. (Principal Investigator)
1979-01-01
Results for both the United States and Canada show that econometric models can provide estimates of confusion crop ratios that are more accurate than historical ratios. Whether these models can support the LACIE 90/90 accuracy criterion is uncertain. In the United States, experimenting with additional model formulations could provide improved methods models in some CRD's, particularly in winter wheat. Improved models may also be possible for the Canadian CD's. The more aggressive province/state models outperformed individual CD/CRD models. This result was expected partly because acreage statistics are based on sampling procedures, and the sampling precision declines from the province/state to the CD/CRD level. Declining sampling precision and the need to substitute province/state data for the CD/CRD data introduced measurement error into the CD/CRD models.
Implications of LHC search results on the W boson mass prediction in the MSSM
Energy Technology Data Exchange (ETDEWEB)
Heinemeyer, S. [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Hollik, W. [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut; Weiglein, W.; Zeune, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-12-15
We present the currently most precise W boson mass (M{sub W}) prediction in the Minimal Supersymmetric Standard Model (MSSM) and discuss how it is affected by recent results from the LHC. The evaluation includes the full one-loop result and all known higher order corrections of SM and SUSY type. We show the MSSM prediction in the M{sub W}-m{sub t} plane, taking into account constraints from Higgs and SUSY searches. We point out that even if stops and sbottoms are heavy, relatively large SUSY contributions to M{sub W} are possible if either charginos, neutralinos or sleptons are light. In particular we analyze the effect on the M{sub W} prediction of the Higgs signal at about 125.6 GeV, which within the MSSM can in principle be interpreted as the light or the heavy CP-even Higgs boson. For both interpretations the predicted MSSM region for M{sub W} is in good agreement with the experimental measurement. We furthermore discuss the impact of possible future LHC results in the stop sector on the M{sub W} prediction, considering both the cases of improved limits and of the detection of a scalar top quark.
An evaporation duct prediction model coupled with the MM5
Institute of Scientific and Technical Information of China (English)
JIAO Lin; ZHANG Yonggang
2015-01-01
Evaporation duct is an abnormal refractive phenomenon in the marine atmosphere boundary layer. It has been generally accepted that the evaporation duct prominently affects the performance of the electronic equipment over the sea because of its wide distribution and frequent occurrence. It has become a research focus of the navies all over the world. At present, the diagnostic models of the evaporation duct are all based on the Monin-Obukhov similarity theory, with only differences in the flux and character scale calculations in the surface layer. These models are applicable to the stationary and uniform open sea areas without considering the alongshore effect. This paper introduces the nonlinear factorav and the gust wind itemwg into the Babin model, and thus extends the evaporation duct diagnostic model to the offshore area under extremely low wind speed. In addition, an evaporation duct prediction model is designed and coupled with the fifth generation mesoscale model (MM5). The tower observational data and radar data at the Pingtan island of Fujian Province on May 25–26, 2002 were used to validate the forecast results. The outputs of the prediction model agree with the observations from 0 to 48 h. The relative error of the predicted evaporation duct height is 19.3% and the prediction results are consistent with the radar detection.
A CHAID Based Performance Prediction Model in Educational Data Mining
Directory of Open Access Journals (Sweden)
R. Bhaskaran
2010-01-01
Full Text Available The performance in higher secondary school education in India is a turning point in the academic lives of all students. As this academic performance is influenced by many factors, it is essential to develop predictive data mining model for students' performance so as to identify the slow learners and study the influence of the dominant factors on their academic performance. In the present investigation, a survey cum experimental methodology was adopted to generate a database and it was constructed from a primary and a secondary source. While the primary data was collected from the regular students, the secondary data was gathered from the school and office of the Chief Educational Officer (CEO. A total of 1000 datasets of the year 2006 from five different schools in three different districts of Tamilnadu were collected. The raw data was preprocessed in terms of filling up missing values, transforming values in one form into another and relevant attribute/ variable selection. As a result, we had 772 student records, which were used for CHAID prediction model construction. A set of prediction rules were extracted from CHIAD prediction model and the efficiency of the generated CHIAD prediction model was found. The accuracy of the present model was compared with other model and it has been found to be satisfactory.
Meteorological Uncertainty of atmospheric Dispersion model results (MUD)
DEFF Research Database (Denmark)
Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik
The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the 'most likely' dispersion scenario...... of the meteorological model results. These uncertainties stem from e.g. limits in meteorological obser-vations used to initialise meteorological forecast series. By perturbing the initial state of an NWP model run in agreement with the available observa-tional data, an ensemble of meteorological forecasts is produced....... However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent uncertainties...
Meteorological Uncertainty of atmospheric Dispersion model results (MUD)
DEFF Research Database (Denmark)
Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik
The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as possibilities for optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the ‘most likely...... uncertainties of the meteorological model results. These uncertainties stem from e.g. limits in meteorological observations used to initialise meteorological forecast series. By perturbing e.g. the initial state of an NWP model run in agreement with the available observational data, an ensemble......’ dispersion scenario. However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for long-range atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent...
Prediction models from CAD models of 3D objects
Camps, Octavia I.
1992-11-01
In this paper we present a probabilistic prediction based approach for CAD-based object recognition. Given a CAD model of an object, the PREMIO system combines techniques of analytic graphics and physical models of lights and sensors to predict how features of the object will appear in images. In nearly 4,000 experiments on analytically-generated and real images, we show that in a semi-controlled environment, predicting the detectability of features of the image can successfully guide a search procedure to make informed choices of model and image features in its search for correspondences that can be used to hypothesize the pose of the object. Furthermore, we provide a rigorous experimental protocol that can be used to determine the optimal number of correspondences to seek so that the probability of failing to find a pose and of finding an inaccurate pose are minimized.
Predicting nucleosome positioning using a duration Hidden Markov Model
Directory of Open Access Journals (Sweden)
Widom Jonathan
2010-06-01
Full Text Available Abstract Background The nucleosome is the fundamental packing unit of DNAs in eukaryotic cells. Its detailed positioning on the genome is closely related to chromosome functions. Increasing evidence has shown that genomic DNA sequence itself is highly predictive of nucleosome positioning genome-wide. Therefore a fast software tool for predicting nucleosome positioning can help understanding how a genome's nucleosome organization may facilitate genome function. Results We present a duration Hidden Markov model for nucleosome positioning prediction by explicitly modeling the linker DNA length. The nucleosome and linker models trained from yeast data are re-scaled when making predictions for other species to adjust for differences in base composition. A software tool named NuPoP is developed in three formats for free download. Conclusions Simulation studies show that modeling the linker length distribution and utilizing a base composition re-scaling method both improve the prediction of nucleosome positioning regarding sensitivity and false discovery rate. NuPoP provides a user-friendly software tool for predicting the nucleosome occupancy and the most probable nucleosome positioning map for genomic sequences of any size. When compared with two existing methods, NuPoP shows improved performance in sensitivity.
Institute of Scientific and Technical Information of China (English)
杨衿记; 董嵩
2009-01-01
1文献来源，Herder GJ，van Tinteren H，Golding RP，et al．Clinical prediction model to characterize pulmonary nodules：Validation and added value of 18F-fluorodeoxyglucose positron emission tomography[J]．Chest，2005，128，2490-2496．2证据水平3。
On Practical tuning of Model Uncertainty in Wind Turbine Model Predictive Control
DEFF Research Database (Denmark)
Odgaard, Peter Fogh; Hovgaard, Tobias
2015-01-01
Model predictive control (MPC) has in previous works been applied on wind turbines with promising results. These results apply linear MPC, i.e., linear models linearized at different operational points depending on the wind speed. The linearized models are derived from a nonlinear first principle...
Predictive modeling of coral disease distribution within a reef system.
Directory of Open Access Journals (Sweden)
Gareth J Williams
Full Text Available Diseases often display complex and distinct associations with their environment due to differences in etiology, modes of transmission between hosts, and the shifting balance between pathogen virulence and host resistance. Statistical modeling has been underutilized in coral disease research to explore the spatial patterns that result from this triad of interactions. We tested the hypotheses that: 1 coral diseases show distinct associations with multiple environmental factors, 2 incorporating interactions (synergistic collinearities among environmental variables is important when predicting coral disease spatial patterns, and 3 modeling overall coral disease prevalence (the prevalence of multiple diseases as a single proportion value will increase predictive error relative to modeling the same diseases independently. Four coral diseases: Porites growth anomalies (PorGA, Porites tissue loss (PorTL, Porites trematodiasis (PorTrem, and Montipora white syndrome (MWS, and their interactions with 17 predictor variables were modeled using boosted regression trees (BRT within a reef system in Hawaii. Each disease showed distinct associations with the predictors. Environmental predictors showing the strongest overall associations with the coral diseases were both biotic and abiotic. PorGA was optimally predicted by a negative association with turbidity, PorTL and MWS by declines in butterflyfish and juvenile parrotfish abundance respectively, and PorTrem by a modal relationship with Porites host cover. Incorporating interactions among predictor variables contributed to the predictive power of our models, particularly for PorTrem. Combining diseases (using overall disease prevalence as the model response, led to an average six-fold increase in cross-validation predictive deviance over modeling the diseases individually. We therefore recommend coral diseases to be modeled separately, unless known to have etiologies that respond in a similar manner to
Three-model ensemble wind prediction in southern Italy
Torcasio, Rosa Claudia; Federico, Stefano; Calidonna, Claudia Roberta; Avolio, Elenio; Drofa, Oxana; Landi, Tony Christian; Malguzzi, Piero; Buzzi, Andrea; Bonasoni, Paolo
2016-03-01
Quality of wind prediction is of great importance since a good wind forecast allows the prediction of available wind power, improving the penetration of renewable energies into the energy market. Here, a 1-year (1 December 2012 to 30 November 2013) three-model ensemble (TME) experiment for wind prediction is considered. The models employed, run operationally at National Research Council - Institute of Atmospheric Sciences and Climate (CNR-ISAC), are RAMS (Regional Atmospheric Modelling System), BOLAM (BOlogna Limited Area Model), and MOLOCH (MOdello LOCale in H coordinates). The area considered for the study is southern Italy and the measurements used for the forecast verification are those of the GTS (Global Telecommunication System). Comparison with observations is made every 3 h up to 48 h of forecast lead time. Results show that the three-model ensemble outperforms the forecast of each individual model. The RMSE improvement compared to the best model is between 22 and 30 %, depending on the season. It is also shown that the three-model ensemble outperforms the IFS (Integrated Forecasting System) of the ECMWF (European Centre for Medium-Range Weather Forecast) for the surface wind forecasts. Notably, the three-model ensemble forecast performs better than each unbiased model, showing the added value of the ensemble technique. Finally, the sensitivity of the three-model ensemble RMSE to the length of the training period is analysed.
Frontier Fields: High-Redshift Predictions and Early Results
Coe, Dan; Zitrin, Adi
2014-01-01
The Frontier Fields program is obtaining deep Hubble and Spitzer Space Telescope images of new "blank" fields and nearby fields gravitationally lensed by massive galaxy clusters. The Hubble images of the lensed fields are revealing nJy sources (AB mag > 31), the faintest galaxies yet observed. In this paper, we present high-redshift (z > 6) number count predictions for the full program and candidates in three of the first Hubble Frontier Fields images. The full program will transform our understanding of galaxy evolution in the first 600 million years (z > 9). Where previous programs yielded perhaps a dozen z > 9 candidates, the Frontier Fields may yield ~70 (~6 per field). We base this estimate on an extrapolation of luminosity functions observed between 4 9. This might suggest a deficit of faint z > 9 galaxies as also reported in the Ultra Deep Field (even while excesses of brighter z > 9 galaxies were reported in shallower fields). At these redshifts, cosmic variance (field-to-field variation) is expected...
Support vector machine-based multi-model predictive control
Institute of Scientific and Technical Information of China (English)
Zhejing BA; Youxian SUN
2008-01-01
In this paper,a support vector machine-based multi-model predictive control is proposed,in which SVM classification combines well with SVM regression.At first,each working environment is modeled by SVM regression and the support vector machine network-based model predictive control(SVMN-MPC)algorithm corresponding to each environment is developed,and then a multi-class SVM model is established to recognize multiple operating conditions.As for control,the current environment is identified by the multi-class SVM model and then the corresponding SVMN.MPCcontroller is activated at each sampling instant.The proposed modeling,switching and controller design is demonstrated in simulation results.
Robust Model Predictive Control of a Wind Turbine
DEFF Research Database (Denmark)
Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik
2012-01-01
In this work the problem of robust model predictive control (robust MPC) of a wind turbine in the full load region is considered. A minimax robust MPC approach is used to tackle the problem. Nonlinear dynamics of the wind turbine are derived by combining blade element momentum (BEM) theory...... and first principle modeling of the turbine flexible structure. Thereafter the nonlinear model is linearized using Taylor series expansion around system operating points. Operating points are determined by effective wind speed and an extended Kalman filter (EKF) is employed to estimate this. In addition...... of the uncertain system is employed and a norm-bounded uncertainty model is used to formulate a minimax model predictive control. The resulting optimization problem is simplified by semidefinite relaxation and the controller obtained is applied on a full complexity, high fidelity wind turbine model. Finally...
Predictive modelling of ferroelectric tunnel junctions
Velev, Julian P.; Burton, John D.; Zhuravlev, Mikhail Ye; Tsymbal, Evgeny Y.
2016-05-01
Ferroelectric tunnel junctions combine the phenomena of quantum-mechanical tunnelling and switchable spontaneous polarisation of a nanometre-thick ferroelectric film into novel device functionality. Switching the ferroelectric barrier polarisation direction produces a sizable change in resistance of the junction—a phenomenon known as the tunnelling electroresistance effect. From a fundamental perspective, ferroelectric tunnel junctions and their version with ferromagnetic electrodes, i.e., multiferroic tunnel junctions, are testbeds for studying the underlying mechanisms of tunnelling electroresistance as well as the interplay between electric and magnetic degrees of freedom and their effect on transport. From a practical perspective, ferroelectric tunnel junctions hold promise for disruptive device applications. In a very short time, they have traversed the path from basic model predictions to prototypes for novel non-volatile ferroelectric random access memories with non-destructive readout. This remarkable progress is to a large extent driven by a productive cycle of predictive modelling and innovative experimental effort. In this review article, we outline the development of the ferroelectric tunnel junction concept and the role of theoretical modelling in guiding experimental work. We discuss a wide range of physical phenomena that control the functional properties of ferroelectric tunnel junctions and summarise the state-of-the-art achievements in the field.
Simple predictions from multifield inflationary models.
Easther, Richard; Frazer, Jonathan; Peiris, Hiranya V; Price, Layne C
2014-04-25
We explore whether multifield inflationary models make unambiguous predictions for fundamental cosmological observables. Focusing on N-quadratic inflation, we numerically evaluate the full perturbation equations for models with 2, 3, and O(100) fields, using several distinct methods for specifying the initial values of the background fields. All scenarios are highly predictive, with the probability distribution functions of the cosmological observables becoming more sharply peaked as N increases. For N=100 fields, 95% of our Monte Carlo samples fall in the ranges ns∈(0.9455,0.9534), α∈(-9.741,-7.047)×10-4, r∈(0.1445,0.1449), and riso∈(0.02137,3.510)×10-3 for the spectral index, running, tensor-to-scalar ratio, and isocurvature-to-adiabatic ratio, respectively. The expected amplitude of isocurvature perturbations grows with N, raising the possibility that many-field models may be sensitive to postinflationary physics and suggesting new avenues for testing these scenarios.
Predicting Protein Secondary Structure with Markov Models
DEFF Research Database (Denmark)
Fischer, Paul; Larsen, Simon; Thomsen, Claus
2004-01-01
we are considering here, is to predict the secondary structure from the primary one. To this end we train a Markov model on training data and then use it to classify parts of unknown protein sequences as sheets, helices or coils. We show how to exploit the directional information contained......The primary structure of a protein is the sequence of its amino acids. The secondary structure describes structural properties of the molecule such as which parts of it form sheets, helices or coils. Spacial and other properties are described by the higher order structures. The classification task...
Hierarchical Model Predictive Control for Resource Distribution
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob
2010-01-01
This paper deals with hierarchichal model predictive control (MPC) of distributed systems. A three level hierachical approach is proposed, consisting of a high level MPC controller, a second level of so-called aggregators, controlled by an online MPC-like algorithm, and a lower level of autonomous...... facilitates plug-and-play addition of subsystems without redesign of any controllers. The method is supported by a number of simulations featuring a three-level smart-grid power control system for a small isolated power grid....
Support vector regression model for complex target RCS predicting
Institute of Scientific and Technical Information of China (English)
Wang Gu; Chen Weishi; Miao Jungang
2009-01-01
The electromagnetic scattering computation has developed rapidly for many years; some computing problems for complex and coated targets cannot be solved by using the existing theory and computing models. A computing model based on data is established for making up the insufficiency of theoretic models. Based on the "support vector regression method", which is formulated on the principle of minimizing a structural risk, a data model to predicate the unknown radar cross section of some appointed targets is given. Comparison between the actual data and the results of this predicting model based on support vector regression method proved that the support vector regression method is workable and with a comparative precision.
Critical conceptualism in environmental modeling and prediction.
Christakos, G
2003-10-15
Many important problems in environmental science and engineering are of a conceptual nature. Research and development, however, often becomes so preoccupied with technical issues, which are themselves fascinating, that it neglects essential methodological elements of conceptual reasoning and theoretical inquiry. This work suggests that valuable insight into environmental modeling can be gained by means of critical conceptualism which focuses on the software of human reason and, in practical terms, leads to a powerful methodological framework of space-time modeling and prediction. A knowledge synthesis system develops the rational means for the epistemic integration of various physical knowledge bases relevant to the natural system of interest in order to obtain a realistic representation of the system, provide a rigorous assessment of the uncertainty sources, generate meaningful predictions of environmental processes in space-time, and produce science-based decisions. No restriction is imposed on the shape of the distribution model or the form of the predictor (non-Gaussian distributions, multiple-point statistics, and nonlinear models are automatically incorporated). The scientific reasoning structure underlying knowledge synthesis involves teleologic criteria and stochastic logic principles which have important advantages over the reasoning method of conventional space-time techniques. Insight is gained in terms of real world applications, including the following: the study of global ozone patterns in the atmosphere using data sets generated by instruments on board the Nimbus 7 satellite and secondary information in terms of total ozone-tropopause pressure models; the mapping of arsenic concentrations in the Bangladesh drinking water by assimilating hard and soft data from an extensive network of monitoring wells; and the dynamic imaging of probability distributions of pollutants across the Kalamazoo river.
Predicting functional brain ROIs via fiber shape models.
Zhang, Tuo; Guo, Lei; Li, Kaiming; Zhu, Dajing; Cui, Guangbin; Liu, Tianming
2011-01-01
Study of structural and functional connectivities of the human brain has received significant interest and effort recently. A fundamental question arises when attempting to measure the structural and/or functional connectivities of specific brain networks: how to best identify possible Regions of Interests (ROIs)? In this paper, we present a novel ROI prediction framework that localizes ROIs in individual brains based on learned fiber shape models from multimodal task-based fMRI and diffusion tensor imaging (DTI) data. In the training stage, ROIs are identified as activation peaks in task-based fMRI data. Then, shape models of white matter fibers emanating from these functional ROIs are learned. In addition, ROIs' location distribution model is learned to be used as an anatomical constraint. In the prediction stage, functional ROIs are predicted in individual brains based on DTI data. The ROI prediction is formulated and solved as an energy minimization problem, in which the two learned models are used as energy terms. Our experiment results show that the average ROI prediction error is 3.45 mm, in comparison with the benchmark data provided by working memory task-based fMRI. Promising results were also obtained on the ADNI-2 longitudinal DTI dataset.
Charge transport model to predict intrinsic reliability for dielectric materials
Energy Technology Data Exchange (ETDEWEB)
Ogden, Sean P. [Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); GLOBALFOUNDRIES, 400 Stonebreak Rd. Ext., Malta, New York 12020 (United States); Borja, Juan; Plawsky, Joel L., E-mail: plawsky@rpi.edu; Gill, William N. [Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lu, T.-M. [Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Yeap, Kong Boon [GLOBALFOUNDRIES, 400 Stonebreak Rd. Ext., Malta, New York 12020 (United States)
2015-09-28
Several lifetime models, mostly empirical in nature, are used to predict reliability for low-k dielectrics used in integrated circuits. There is a dispute over which model provides the most accurate prediction for device lifetime at operating conditions. As a result, there is a need to transition from the use of these largely empirical models to one built entirely on theory. Therefore, a charge transport model was developed to predict the device lifetime of low-k interconnect systems. The model is based on electron transport and donor-type defect formation. Breakdown occurs when a critical defect concentration accumulates, resulting in electron tunneling and the emptying of positively charged traps. The enhanced local electric field lowers the barrier for electron injection into the dielectric, causing a positive feedforward failure. The charge transport model is able to replicate experimental I-V and I-t curves, capturing the current decay at early stress times and the rapid current increase at failure. The model is based on field-driven and current-driven failure mechanisms and uses a minimal number of parameters. All the parameters have some theoretical basis or have been measured experimentally and are not directly used to fit the slope of the time-to-failure versus applied field curve. Despite this simplicity, the model is able to accurately predict device lifetime for three different sources of experimental data. The simulation's predictions at low fields and very long lifetimes show that the use of a single empirical model can lead to inaccuracies in device reliability.
Hierarchical Neural Regression Models for Customer Churn Prediction
Directory of Open Access Journals (Sweden)
Golshan Mohammadi
2013-01-01
Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.
Directory of Open Access Journals (Sweden)
Mitja Morgut
2012-01-01
Full Text Available The numerical predictions of the cavitating flow around two model scale propellers in uniform inflow are presented and discussed. The simulations are carried out using a commercial CFD solver. The homogeneous model is used and the influence of three widespread mass transfer models, on the accuracy of the numerical predictions, is evaluated. The mass transfer models in question share the common feature of employing empirical coefficients to adjust mass transfer rate from water to vapour and back, which can affect the stability and accuracy of the predictions. Thus, for a fair and congruent comparison, the empirical coefficients of the different mass transfer models are first properly calibrated using an optimization strategy. The numerical results obtained, with the three different calibrated mass transfer models, are very similar to each other for two selected model scale propellers. Nevertheless, a tendency to overestimate the cavity extension is observed, and consequently the thrust, in the most severe operational conditions, is not properly predicted.
Predictive Capability Maturity Model for computational modeling and simulation.
Energy Technology Data Exchange (ETDEWEB)
Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.
2007-10-01
The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.
Predicting nucleic acid binding interfaces from structural models of proteins.
Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael
2012-02-01
The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Copyright © 2011 Wiley Periodicals, Inc.
Improving Saliency Models by Predicting Human Fixation Patches
Dubey, Rachit
2015-04-16
There is growing interest in studying the Human Visual System (HVS) to supplement and improve the performance of computer vision tasks. A major challenge for current visual saliency models is predicting saliency in cluttered scenes (i.e. high false positive rate). In this paper, we propose a fixation patch detector that predicts image patches that contain human fixations with high probability. Our proposed model detects sparse fixation patches with an accuracy of 84 % and eliminates non-fixation patches with an accuracy of 84 % demonstrating that low-level image features can indeed be used to short-list and identify human fixation patches. We then show how these detected fixation patches can be used as saliency priors for popular saliency models, thus, reducing false positives while maintaining true positives. Extensive experimental results show that our proposed approach allows state-of-the-art saliency methods to achieve better prediction performance on benchmark datasets.
A Model to Predict Rolling Force of Finishing Stands with RBF Neural Networks
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
In view of intrinsic imperfection of traditional models of rolling force, in order to improve the prediction accuracy of rolling force, a new method combining radial basis function (RBF) neural networks with traditional models to predict rolling force was proposed. The off-line simulation indicates that the predicted results are much more accurate than that with traditional models.
Hydraulic fracture model comparison study: Complete results
Energy Technology Data Exchange (ETDEWEB)
Warpinski, N.R. [Sandia National Labs., Albuquerque, NM (United States); Abou-Sayed, I.S. [Mobil Exploration and Production Services (United States); Moschovidis, Z. [Amoco Production Co. (US); Parker, C. [CONOCO (US)
1993-02-01
Large quantities of natural gas exist in low permeability reservoirs throughout the US. Characteristics of these reservoirs, however, make production difficult and often economic and stimulation is required. Because of the diversity of application, hydraulic fracture design models must be able to account for widely varying rock properties, reservoir properties, in situ stresses, fracturing fluids, and proppant loads. As a result, fracture simulation has emerged as a highly complex endeavor that must be able to describe many different physical processes. The objective of this study was to develop a comparative study of hydraulic-fracture simulators in order to provide stimulation engineers with the necessary information to make rational decisions on the type of models most suited for their needs. This report compares the fracture modeling results of twelve different simulators, some of them run in different modes for eight separate design cases. Comparisons of length, width, height, net pressure, maximum width at the wellbore, average width at the wellbore, and average width in the fracture have been made, both for the final geometry and as a function of time. For the models in this study, differences in fracture length, height and width are often greater than a factor of two. In addition, several comparisons of the same model with different options show a large variability in model output depending upon the options chosen. Two comparisons were made of the same model run by different companies; in both cases the agreement was good. 41 refs., 54 figs., 83 tabs.
THE THEORETICAL MODEL FOR PREDICTING CIRCULATION VELOCITY OF HYDRAULIC BRAKE
Institute of Scientific and Technical Information of China (English)
刘英林; 侯春生
1997-01-01
By rational hypothesis of fluid flow pattern, applied the law of conservation of energy and integrated the laboratory test results, finished the prediction by the theoretical model of circulation velocity of hydraulic brake which is important parameter. Thus provide the theoritical basis for hydraulic brake of belt conveyor whose research has just been started.
A Predictive Maintenance Model for Railway Tracks
DEFF Research Database (Denmark)
Li, Rui; Wen, Min; Salling, Kim Bang
2015-01-01
For the modern railways, maintenance is critical for ensuring safety, train punctuality and overall capacity utilization. The cost of railway maintenance in Europe is high, on average between 30,000 – 100,000 Euro per km per year [1]. Aiming to reduce such maintenance expenditure, this paper...... presents a mathematical model based on Mixed Integer Programming (MIP) which is designed to optimize the predictive railway tamping activities for ballasted track for the time horizon up to four years. The objective function is setup to minimize the actual costs for the tamping machine (measured by time...... recovery on the track quality after tamping operation and (5) Tamping machine operation factors. A Danish railway track between Odense and Fredericia with 57.2 km of length is applied for a time period of two to four years in the proposed maintenance model. The total cost can be reduced with up to 50...
Community monitoring for youth violence surveillance: testing a prediction model.
Henry, David B; Dymnicki, Allison; Kane, Candice; Quintana, Elena; Cartland, Jenifer; Bromann, Kimberly; Bhatia, Shaun; Wisnieski, Elise
2014-08-01
Predictive epidemiology is an embryonic field that involves developing informative signatures for disorder and tracking them using surveillance methods. Through such efforts assistance can be provided to the planning and implementation of preventive interventions. Believing that certain minor crimes indicative of gang activity are informative signatures for the emergence of serious youth violence in communities, in this study we aim to predict outbreaks of violence in neighborhoods from pre-existing levels and changes in reports of minor offenses. We develop a prediction equation that uses publicly available neighborhood-level data on disorderly conduct, vandalism, and weapons violations to predict neighborhoods likely to have increases in serious violent crime. Data for this study were taken from the Chicago Police Department ClearMap reporting system, which provided data on index and non-index crimes for each of the 844 Chicago census tracts. Data were available in three month segments for a single year (fall 2009, winter, spring, and summer 2010). Predicted change in aggravated battery and overall violent crime correlated significantly with actual change. The model was evaluated by comparing alternative models using randomly selected training and test samples, producing favorable results with reference to overfitting, seasonal variation, and spatial autocorrelation. A prediction equation based on winter and spring levels of the predictors had area under the curve ranging from .65 to .71 for aggravated battery, and .58 to .69 for overall violent crime. We discuss future development of such a model and its potential usefulness in violence prevention and community policing.
Predictability of Shanghai Stock Market by Agent-based Mix-game Model
Gou, C
2005-01-01
This paper reports the effort of using agent-based mix-game model to predict financial time series. It introduces the prediction methodology by means of mix-game model and gives an example of its application to forecasting Shanghai Index. The results show that this prediction methodology is effective and agent-based mix-game model is a potential good model to predict time series of financial markets.
PEEX Modelling Platform for Seamless Environmental Prediction
Baklanov, Alexander; Mahura, Alexander; Arnold, Stephen; Makkonen, Risto; Petäjä, Tuukka; Kerminen, Veli-Matti; Lappalainen, Hanna K.; Ezau, Igor; Nuterman, Roman; Zhang, Wen; Penenko, Alexey; Gordov, Evgeny; Zilitinkevich, Sergej; Kulmala, Markku
2017-04-01
The Pan-Eurasian EXperiment (PEEX) is a multidisciplinary, multi-scale research programme stared in 2012 and aimed at resolving the major uncertainties in Earth System Science and global sustainability issues concerning the Arctic and boreal Northern Eurasian regions and in China. Such challenges include climate change, air quality, biodiversity loss, chemicalization, food supply, and the use of natural resources by mining, industry, energy production and transport. The research infrastructure introduces the current state of the art modeling platform and observation systems in the Pan-Eurasian region and presents the future baselines for the coherent and coordinated research infrastructures in the PEEX domain. The PEEX modeling Platform is characterized by a complex seamless integrated Earth System Modeling (ESM) approach, in combination with specific models of different processes and elements of the system, acting on different temporal and spatial scales. The ensemble approach is taken to the integration of modeling results from different models, participants and countries. PEEX utilizes the full potential of a hierarchy of models: scenario analysis, inverse modeling, and modeling based on measurement needs and processes. The models are validated and constrained by available in-situ and remote sensing data of various spatial and temporal scales using data assimilation and top-down modeling. The analyses of the anticipated large volumes of data produced by available models and sensors will be supported by a dedicated virtual research environment developed for these purposes.
Predictive Model of Radiative Neutrino Masses
Babu, K S
2013-01-01
We present a simple and predictive model of radiative neutrino masses. It is a special case of the Zee model which introduces two Higgs doublets and a charged singlet. We impose a family-dependent Z_4 symmetry acting on the leptons, which reduces the number of parameters describing neutrino oscillations to four. A variety of predictions follow: The hierarchy of neutrino masses must be inverted; the lightest neutrino mass is extremely small and calculable; one of the neutrino mixing angles is determined in terms of the other two; the phase parameters take CP-conserving values with \\delta_{CP} = \\pi; and the effective mass in neutrinoless double beta decay lies in a narrow range, m_{\\beta \\beta} = (17.6 - 18.5) meV. The ratio of vacuum expectation values of the two Higgs doublets, tan\\beta, is determined to be either 1.9 or 0.19 from neutrino oscillation data. Flavor-conserving and flavor-changing couplings of the Higgs doublets are also determined from neutrino data. The non-standard neutral Higgs bosons, if t...
Murari, A.; Peluso, E.; Vega, J.; Gelfusa, M.; Lungaroni, M.; Gaudio, P.; Martínez, F. J.; Contributors, JET
2017-01-01
Understanding the many aspects of tokamak physics requires the development of quite sophisticated models. Moreover, in the operation of the devices, prediction of the future evolution of discharges can be of crucial importance, particularly in the case of the prediction of disruptions, which can cause serious damage to various parts of the machine. The determination of the limits of predictability is therefore an important issue for modelling, classifying and forecasting. In all these cases, once a certain level of performance has been reached, the question typically arises as to whether all the information available in the data has been exploited, or whether there are still margins for improvement of the tools being developed. In this paper, a theoretical information approach is proposed to address this issue. The excellent properties of the developed indicator, called the prediction factor (PF), have been proved with the help of a series of numerical tests. Its application to some typical behaviour relating to macroscopic instabilities in tokamaks has shown very positive results. The prediction factor has also been used to assess the performance of disruption predictors running in real time in the JET system, including the one systematically deployed in the feedback loop for mitigation purposes. The main conclusion is that the most advanced predictors basically exploit all the information contained in the locked mode signal on which they are based. Therefore, qualitative improvements in disruption prediction performance in JET would need the processing of additional signals, probably profiles.
Statistical procedures for evaluating daily and monthly hydrologic model predictions
Coffey, M.E.; Workman, S.R.; Taraba, J.L.; Fogle, A.W.
2004-01-01
The overall study objective was to evaluate the applicability of different qualitative and quantitative methods for comparing daily and monthly SWAT computer model hydrologic streamflow predictions to observed data, and to recommend statistical methods for use in future model evaluations. Statistical methods were tested using daily streamflows and monthly equivalent runoff depths. The statistical techniques included linear regression, Nash-Sutcliffe efficiency, nonparametric tests, t-test, objective functions, autocorrelation, and cross-correlation. None of the methods specifically applied to the non-normal distribution and dependence between data points for the daily predicted and observed data. Of the tested methods, median objective functions, sign test, autocorrelation, and cross-correlation were most applicable for the daily data. The robust coefficient of determination (CD*) and robust modeling efficiency (EF*) objective functions were the preferred methods for daily model results due to the ease of comparing these values with a fixed ideal reference value of one. Predicted and observed monthly totals were more normally distributed, and there was less dependence between individual monthly totals than was observed for the corresponding predicted and observed daily values. More statistical methods were available for comparing SWAT model-predicted and observed monthly totals. The 1995 monthly SWAT model predictions and observed data had a regression Rr2 of 0.70, a Nash-Sutcliffe efficiency of 0.41, and the t-test failed to reject the equal data means hypothesis. The Nash-Sutcliffe coefficient and the R r2 coefficient were the preferred methods for monthly results due to the ability to compare these coefficients to a set ideal value of one.
A predictive model for dimensional errors in fused deposition modeling
DEFF Research Database (Denmark)
Stolfi, A.
2015-01-01
This work concerns the effect of deposition angle (a) and layer thickness (L) on the dimensional performance of FDM parts using a predictive model based on the geometrical description of the FDM filament profile. An experimental validation over the whole a range from 0° to 177° at 3° steps and two...
DEFF Research Database (Denmark)
Jørgensen, John Bagterp; Jørgensen, Sten Bay
2007-01-01
model is realized from a continuous-discrete-time linear stochastic system specified using transfer functions with time-delays. It is argued that the prediction-error criterion should be selected such that it is compatible with the objective function of the predictive controller in which the model......A Prediction-error-method tailored for model based predictive control is presented. The prediction-error method studied are based on predictions using the Kalman filter and Kalman predictors for a linear discrete-time stochastic state space model. The linear discrete-time stochastic state space...
Should we believe model predictions of future climate change? (Invited)
Knutti, R.
2009-12-01
As computers get faster and our understanding of the climate system improves, climate models to predict the future are getting more complex by including more and more processes, and they are run at higher and higher resolution to resolve more of the small scale processes. As a result, some of the simulated features and structures, e.g. ocean eddies or tropical cyclones look surprisingly real. But are these deceptive? A pattern can look perfectly real but be in the wrong place. So can the current global models really provide the kind of information on local scales and on the quantities (e.g. extreme events) that the decision maker would need to know to invest for example in adaptation? A closer look indicates that evaluating skill of climate models and quantifying uncertainties in predictions is very difficult. This presentation shows that while models are improving in simulating the climate features we observe (e.g. the present day mean state, or the El Nino Southern Oscillation), the spread from multiple models in predicting future changes is often not decreasing. The main problem is that (unlike with weather forecasts for example) we cannot evaluate the model on a prediction (for example for the year 2100) and we have to use the present, or past changes as metrics of skills. But there are infinite ways of testing a model, and many metrics used to test models do not clearly relate to the prediction. Therefore there is little agreement in the community on metrics to separate ‘good’ and ‘bad’ models, and there is a concern that model development, evaluation and posterior weighting or ranking of models are all using the same datasets. While models are continuously improving in representing what we believe to be the key processes, many models also share ideas, parameterizations or even pieces of model code. The current models can therefore not be considered independent. Robustness of a model simulated result is often interpreted as increasing the confidence
Unascertained measurement classifying model of goaf collapse prediction
Institute of Scientific and Technical Information of China (English)
DONG Long-jun; PENG Gang-jian; FU Yu-hua; BAI Yun-fei; LIU You-fang
2008-01-01
Based on optimized forecast method of unascertained classifying, a unascertained measurement classifying model (UMC) to predict mining induced goaf collapse was established. The discriminated factors of the model are influential factors including overburden layer type, overburden layer thickness, the complex degree of geologic structure,the inclination angle of coal bed, volume rate of the cavity region, the vertical goaf depth from the surface and space superposition layer of the goaf region. Unascertained measurement (UM) function of each factor was calculated. The unascertained measurement to indicate the classification center and the grade of waiting forecast sample was determined by the UM distance between the synthesis index of waiting forecast samples and index of every classification. The training samples were tested by the established model, and the correct rate is 100%. Furthermore, the seven waiting forecast samples were predicted by the UMC model. The results show that the forecast results are fully consistent with the actual situation.
Predictions of titanium alloy properties using thermodynamic modeling tools
Zhang, F.; Xie, F.-Y.; Chen, S.-L.; Chang, Y. A.; Furrer, D.; Venkatesh, V.
2005-12-01
Thermodynamic modeling tools have become essential in understanding the effect of alloy chemistry on the final microstructure of a material. Implementation of such tools to improve titanium processing via parameter optimization has resulted in significant cost savings through the elimination of shop/laboratory trials and tests. In this study, a thermodynamic modeling tool developed at CompuTherm, LLC, is being used to predict β transus, phase proportions, phase chemistries, partitioning coefficients, and phase boundaries of multicomponent titanium alloys. This modeling tool includes Pandat, software for multicomponent phase equilibrium calculations, and PanTitanium, a thermodynamic database for titanium alloys. Model predictions are compared with experimental results for one α-β alloy (Ti-64) and two near-β alloys (Ti-17 and Ti-10-2-3). The alloying elements, especially the interstitial elements O, N, H, and C, have been shown to have a significant effect on the β transus temperature, and are discussed in more detail herein.
The ARIC predictive model reliably predicted risk of type II diabetes in Asian populations
Directory of Open Access Journals (Sweden)
Chin Calvin
2012-04-01
Full Text Available Abstract Background Identification of high-risk individuals is crucial for effective implementation of type 2 diabetes mellitus prevention programs. Several studies have shown that multivariable predictive functions perform as well as the 2-hour post-challenge glucose in identifying these high-risk individuals. The performance of these functions in Asian populations, where the rise in prevalence of type 2 diabetes mellitus is expected to be the greatest in the next several decades, is relatively unknown. Methods Using data from three Asian populations in Singapore, we compared the performance of three multivariate predictive models in terms of their discriminatory power and calibration quality: the San Antonio Health Study model, Atherosclerosis Risk in Communities model and the Framingham model. Results The San Antonio Health Study and Atherosclerosis Risk in Communities models had better discriminative powers than using only fasting plasma glucose or the 2-hour post-challenge glucose. However, the Framingham model did not perform significantly better than fasting glucose or the 2-hour post-challenge glucose. All published models suffered from poor calibration. After recalibration, the Atherosclerosis Risk in Communities model achieved good calibration, the San Antonio Health Study model showed a significant lack of fit in females and the Framingham model showed a significant lack of fit in both females and males. Conclusions We conclude that adoption of the ARIC model for Asian populations is feasible and highly recommended when local prospective data is unavailable.
Modeling Malaysia's Energy System: Some Preliminary Results
Directory of Open Access Journals (Sweden)
Ahmad M. Yusof
2011-01-01
Full Text Available Problem statement: The current dynamic and fragile world energy environment necessitates the development of new energy model that solely caters to analyze Malaysias energy scenarios. Approach: The model is a network flow model that traces the flow of energy carriers from its sources (import and mining through some conversion and transformation processes for the production of energy products to final destinations (energy demand sectors. The integration to the economic sectors is done exogeneously by specifying the annual sectoral energy demand levels. The model in turn optimizes the energy variables for a specified objective function to meet those demands. Results: By minimizing the inter temporal petroleum product imports for the crude oil system the annual extraction level of Tapis blend is projected at 579600 barrels per day. The aggregate demand for petroleum products is projected to grow at 2.1% year-1 while motor gasoline and diesel constitute 42 and 38% of the petroleum products demands mix respectively over the 5 year planning period. Petroleum products import is expected to grow at 6.0% year-1. Conclusion: The preliminary results indicate that the model performs as expected. Thus other types of energy carriers such as natural gas, coal and biomass will be added to the energy system for the overall development of Malaysia energy model.
In silico modeling to predict drug-induced phospholipidosis
Energy Technology Data Exchange (ETDEWEB)
Choi, Sydney S.; Kim, Jae S.; Valerio, Luis G., E-mail: luis.valerio@fda.hhs.gov; Sadrieh, Nakissa
2013-06-01
Drug-induced phospholipidosis (DIPL) is a preclinical finding during pharmaceutical drug development that has implications on the course of drug development and regulatory safety review. A principal characteristic of drugs inducing DIPL is known to be a cationic amphiphilic structure. This provides evidence for a structure-based explanation and opportunity to analyze properties and structures of drugs with the histopathologic findings for DIPL. In previous work from the FDA, in silico quantitative structure–activity relationship (QSAR) modeling using machine learning approaches has shown promise with a large dataset of drugs but included unconfirmed data as well. In this study, we report the construction and validation of a battery of complementary in silico QSAR models using the FDA's updated database on phospholipidosis, new algorithms and predictive technologies, and in particular, we address high performance with a high-confidence dataset. The results of our modeling for DIPL include rigorous external validation tests showing 80–81% concordance. Furthermore, the predictive performance characteristics include models with high sensitivity and specificity, in most cases above ≥ 80% leading to desired high negative and positive predictivity. These models are intended to be utilized for regulatory toxicology applied science needs in screening new drugs for DIPL. - Highlights: • New in silico models for predicting drug-induced phospholipidosis (DIPL) are described. • The training set data in the models is derived from the FDA's phospholipidosis database. • We find excellent predictivity values of the models based on external validation. • The models can support drug screening and regulatory decision-making on DIPL.
Evaluation of Spatial Agreement of Distinct Landslide Prediction Models
Sterlacchini, Simone; Bordogna, Gloria; Frigerio, Ivan
2013-04-01
The aim of the study was to assess the degree of spatial agreement of different predicted patterns in a majority of coherent landslide prediction maps with almost similar success and prediction rate curves. If two or more models have a similar performance, the choice of the best one is not a trivial operation and cannot be based on success and prediction rate curves only. In fact, it may happen that two or more prediction maps with similar accuracy and predictive power do not have the same degree of agreement in terms of spatial predicted patterns. The selected study area is the high Valtellina valley, in North of Italy, covering a surface of about 450 km2 where mapping of historical landslides is available. In order to assess landslide susceptibility, we applied the Weights of Evidence (WofE) modeling technique implemented by USGS by means of ARC-SDM tool. WofE efficiently investigate the spatial relationships among past events and multiple predisposing factors, providing useful information to identify the most probable location of future landslide occurrences. We have carried out 13 distinct experiments by changing the number of morphometric and geo-environmental explanatory variables in each experiment with the same training set and thus generating distinct models of landslide prediction, computing probability degrees of occurrence of landslides in each pixel. Expert knowledge and previous results from indirect statistically-based methods suggested slope, land use, and geology the best "driving controlling factors". The Success Rate Curve (SRC) was used to estimate how much the results of each model fit the occurrence of landslides used for the training of the models. The Prediction Rate Curve (PRC) was used to estimate how much the model predict the occurrence of landslides in the validation set. We found that the performances were very similar for different models. Also the dendrogram of the Cohen's kappa statistic and Principal Component Analysis (PCA) were
Application of Improved Grey Prediction Model to Petroleum Cost Forecasting
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The grey theory is a multidisciplinary and generic theory that deals with systems that lack adequate information and/or have only poor information. In this paper, an improved grey model using step function was proposed.Petroleum cost forecast of the Henan oil field was used as the case study to test the efficiency and accuracy of the proposed method. According to the experimental results, the proposed method obviously could improve the prediction accuracy of the original grey model.
Anatomy, modelling and prediction of aeroservoelastic rotorcraft-pilot-coupling.
Gennaretti, M.; Collela, M.M.; Serafini, J.; Dang Vu, B.; Masarati, P.; Quaranta, G; Muscarello, V.; Jump, M.; M. Jones; Lu, L.(Bergische Universität Wuppertal, Wuppertal, Germany); Ionita, A.; Fuiorea, I.; Mihaila-Andres, M.; Stefan, R
2013-01-01
Research activity and results obtained within the European project ARISTOTEL (2010-2013) are presented. It deals with anatomy, modelling and prediction of Rotorcraft Pilot Coupling (RPC) phenomena, which are a really broad and wide category of events, ranging from discomfort to catastrophic crash. The main topics concerning piloted helicopter simulation that are of interest for designers are examined. These include comprehensive rotorcraft modelling suited for Pilot Assisted Oscillations (PAO...
A Novel Exercise Thermophysiology Comfort Prediction Model with Fuzzy Logic
Directory of Open Access Journals (Sweden)
Nan Jia
2016-01-01
Full Text Available Participation in a regular exercise program can improve health status and contribute to an increase in life expectancy. However, exercise accidents like dehydration, exertional heatstroke, syncope, and even sudden death exist. If these accidents can be analyzed or predicted before they happen, it will be beneficial to alleviate or avoid uncomfortable or unacceptable human disease. Therefore, an exercise thermophysiology comfort prediction model is needed. In this paper, coupling the thermal interactions among human body, clothing, and environment (HCE as well as the human body physiological properties, a human thermophysiology regulatory model is designed to enhance the human thermophysiology simulation in the HCE system. Some important thermal and physiological performances can be simulated. According to the simulation results, a human exercise thermophysiology comfort prediction method based on fuzzy inference system is proposed. The experiment results show that there is the same prediction trend between the experiment result and simulation result about thermophysiology comfort. At last, a mobile application platform for human exercise comfort prediction is designed and implemented.
Consumer Choice Prediction: Artificial Neural Networks versus Logistic Models
Directory of Open Access Journals (Sweden)
Christopher Gan
2005-01-01
Full Text Available Conventional econometric models, such as discriminant analysis and logistic regression have been used to predict consumer choice. However, in recent years, there has been a growing interest in applying artificial neural networks (ANN to analyse consumer behaviour and to model the consumer decision-making process. The purpose of this paper is to empirically compare the predictive power of the probability neural network (PNN, a special class of neural networks and a MLFN with a logistic model on consumers choices between electronic banking and non-electronic banking. Data for this analysis was obtained through a mail survey sent to 1,960 New Zealand households. The questionnaire gathered information on the factors consumers use to decide between electronic banking versus non-electronic banking. The factors include service quality dimensions, perceived risk factors, user input factors, price factors, service product characteristics and individual factors. In addition, demographic variables including age, gender, marital status, ethnic background, educational qualification, employment, income and area of residence are considered in the analysis. Empirical results showed that both ANN models (MLFN and PNN exhibit a higher overall percentage correct on consumer choice predictions than the logistic model. Furthermore, the PNN demonstrates to be the best predictive model since it has the highest overall percentage correct and a very low percentage error on both Type I and Type II errors.
Hybrid multiscale modeling and prediction of cancer cell behavior.
Zangooei, Mohammad Hossein; Habibi, Jafar
2017-01-01
Understanding cancer development crossing several spatial-temporal scales is of great practical significance to better understand and treat cancers. It is difficult to tackle this challenge with pure biological means. Moreover, hybrid modeling techniques have been proposed that combine the advantages of the continuum and the discrete methods to model multiscale problems. In light of these problems, we have proposed a new hybrid vascular model to facilitate the multiscale modeling and simulation of cancer development with respect to the agent-based, cellular automata and machine learning methods. The purpose of this simulation is to create a dataset that can be used for prediction of cell phenotypes. By using a proposed Q-learning based on SVR-NSGA-II method, the cells have the capability to predict their phenotypes autonomously that is, to act on its own without external direction in response to situations it encounters. Computational simulations of the model were performed in order to analyze its performance. The most striking feature of our results is that each cell can select its phenotype at each time step according to its condition. We provide evidence that the prediction of cell phenotypes is reliable. Our proposed model, which we term a hybrid multiscale modeling of cancer cell behavior, has the potential to combine the best features of both continuum and discrete models. The in silico results indicate that the 3D model can represent key features of cancer growth, angiogenesis, and its related micro-environment and show that the findings are in good agreement with biological tumor behavior. To the best of our knowledge, this paper is the first hybrid vascular multiscale modeling of cancer cell behavior that has the capability to predict cell phenotypes individually by a self-generated dataset.
Results on three predictions for July 2012 federal elections in Mexico based on past regularities.
Directory of Open Access Journals (Sweden)
H Hernández-Saldaña
Full Text Available The Presidential Election in Mexico of July 2012 has been the third time that PREP, Previous Electoral Results Program works. PREP gives voting outcomes based in electoral certificates of each polling station that arrive to capture centers. In previous ones, some statistical regularities had been observed, three of them were selected to make predictions and were published in arXiv:1207.0078 [physics.soc-ph]. Using the database made public in July 2012, two of the predictions were completely fulfilled, while, the third one was measured and confirmed using the database obtained upon request to the electoral authorities. The first two predictions confirmed by actual measures are: (ii The Partido Revolucionario Institucional, PRI, is a sprinter and has a better performance in polling stations arriving late to capture centers during the process. (iii Distribution of vote of this party is well described by a smooth function named a Daisy model. A Gamma distribution, but compatible with a Daisy model, fits the distribution as well. The third prediction confirms that errare humanum est, since the error distributions of all the self-consistency variables appeared as a central power law with lateral lobes as in 2000 and 2006 electoral processes. The three measured regularities appeared no matter the political environment.
Results on three predictions for July 2012 federal elections in Mexico based on past regularities.
Hernández-Saldaña, H
2013-01-01
The Presidential Election in Mexico of July 2012 has been the third time that PREP, Previous Electoral Results Program works. PREP gives voting outcomes based in electoral certificates of each polling station that arrive to capture centers. In previous ones, some statistical regularities had been observed, three of them were selected to make predictions and were published in arXiv:1207.0078 [physics.soc-ph]. Using the database made public in July 2012, two of the predictions were completely fulfilled, while, the third one was measured and confirmed using the database obtained upon request to the electoral authorities. The first two predictions confirmed by actual measures are: (ii) The Partido Revolucionario Institucional, PRI, is a sprinter and has a better performance in polling stations arriving late to capture centers during the process. (iii) Distribution of vote of this party is well described by a smooth function named a Daisy model. A Gamma distribution, but compatible with a Daisy model, fits the distribution as well. The third prediction confirms that errare humanum est, since the error distributions of all the self-consistency variables appeared as a central power law with lateral lobes as in 2000 and 2006 electoral processes. The three measured regularities appeared no matter the political environment.
A physiological production model for cacao : results of model simulations
Zuidema, P.A.; Leffelaar, P.A.
2002-01-01
CASE2 is a physiological model for cocoa (Theobroma cacao L.) growth and yield. This report introduces the CAcao Simulation Engine for water-limited production in a non-technical way and presents simulation results obtained with the model.
A physiological production model for cacao : results of model simulations
Zuidema, P.A.; Leffelaar, P.A.
2002-01-01
CASE2 is a physiological model for cocoa (Theobroma cacao L.) growth and yield. This report introduces the CAcao Simulation Engine for water-limited production in a non-technical way and presents simulation results obtained with the model.
Two criteria for evaluating risk prediction models.
Pfeiffer, R M; Gail, M H
2011-09-01
We propose and study two criteria to assess the usefulness of models that predict risk of disease incidence for screening and prevention, or the usefulness of prognostic models for management following disease diagnosis. The first criterion, the proportion of cases followed PCF (q), is the proportion of individuals who will develop disease who are included in the proportion q of individuals in the population at highest risk. The second criterion is the proportion needed to follow-up, PNF (p), namely the proportion of the general population at highest risk that one needs to follow in order that a proportion p of those destined to become cases will be followed. PCF (q) assesses the effectiveness of a program that follows 100q% of the population at highest risk. PNF (p) assess the feasibility of covering 100p% of cases by indicating how much of the population at highest risk must be followed. We show the relationship of those two criteria to the Lorenz curve and its inverse, and present distribution theory for estimates of PCF and PNF. We develop new methods, based on influence functions, for inference for a single risk model, and also for comparing the PCFs and PNFs of two risk models, both of which were evaluated in the same validation data.
Methods for Handling Missing Variables in Risk Prediction Models
Held, Ulrike; Kessels, Alfons; Aymerich, Judith Garcia; Basagana, Xavier; ter Riet, Gerben; Moons, Karel G. M.; Puhan, Milo A.
2016-01-01
Prediction models should be externally validated before being used in clinical practice. Many published prediction models have never been validated. Uncollected predictor variables in otherwise suitable validation cohorts are the main factor precluding external validation.We used individual patient
Hardikar, Kedar Y.; Liu, Bill J. J.; Bheemreddy, Venkata
2016-09-01
Gaining an understanding of degradation mechanisms and their characterization are critical in developing relevant accelerated tests to ensure PV module performance warranty over a typical lifetime of 25 years. As newer technologies are adapted for PV, including new PV cell technologies, new packaging materials, and newer product designs, the availability of field data over extended periods of time for product performance assessment cannot be expected within the typical timeframe for business decisions. In this work, to enable product design decisions and product performance assessment for PV modules utilizing newer technologies, Simulation and Mechanism based Accelerated Reliability Testing (SMART) methodology and empirical approaches to predict field performance from accelerated test results are presented. The method is demonstrated for field life assessment of flexible PV modules based on degradation mechanisms observed in two accelerated tests, namely, Damp Heat and Thermal Cycling. The method is based on design of accelerated testing scheme with the intent to develop relevant acceleration factor models. The acceleration factor model is validated by extensive reliability testing under different conditions going beyond the established certification standards. Once the acceleration factor model is validated for the test matrix a modeling scheme is developed to predict field performance from results of accelerated testing for particular failure modes of interest. Further refinement of the model can continue as more field data becomes available. While the demonstration of the method in this work is for thin film flexible PV modules, the framework and methodology can be adapted to other PV products.
Simulation Modeling of Radio Direction Finding Results
Directory of Open Access Journals (Sweden)
K. Pelikan
1994-12-01
Full Text Available It is sometimes difficult to determine analytically error probabilities of direction finding results for evaluating algorithms of practical interest. Probalistic simulation models are described in this paper that can be to study error performance of new direction finding systems or to geographical modifications of existing configurations.
A COMPACT MODEL FOR PREDICTING ROAD TRAFFIC NOISE
Directory of Open Access Journals (Sweden)
R. Golmohammadi ، M. Abbaspour ، P. Nassiri ، H. Mahjub
2009-07-01
Full Text Available Noise is one of the most important sources of pollution in the metropolitan areas. The recognition of road traffic noise as one of the main sources of environmental pollution has led to develop models that enable us to predict noise level from fundamental variables. Traffic noise prediction models are required as aids in the design of roads and sometimes in the assessment of existing, or envisaged changes in, traffic noise conditions. The purpose of this study was to design a prediction road traffic noise model from traffic variables and conditions of transportation in Iran.This paper is the result of a research conducted in the city of Hamadan with the ultimate objective of setting up a traffic noise model based on the traffic conditions of Iranian cities. Noise levels and other variables have been measured in 282 samples to develop a statistical regression model based on A-weighted equivalent noise level for Iranian road condition. The results revealed that the average LAeq in all stations was 69.04± 4.25 dB(A, the average speed of vehicles was 44.57±11.46 km/h and average traffic load was 1231.9 ± 910.2 V/h.The developed model has seven explanatory entrance variables in order to achieve a high regression coefficient (R2=0.901. Comparing means of predicted and measuring equivalent sound pressure level (LAeq showed small difference less than -0.42 dB(A and -0.77 dB(A for Tehran and Hamadan cities, respectively. The suggested road traffic noise model can be effectively used as a decision support tool for predicting equivalent sound pressure level index in the cities of Iran.
Energy Technology Data Exchange (ETDEWEB)
Dubey, Gyan Prakash [Department of Chemistry, Kurukshetra University, Kurukshetra 136 119 (India)], E-mail: gyan.dubey@rediffmail.com; Sharma, Monika [Department of Chemistry, Kurukshetra University, Kurukshetra 136 119 (India); Oswal, Shantilal [R and D, Biochemistry, Span Diagnostics Ltd., 173-B, New Industrial Estate, Udhna, Surat 394 210 (India)], E-mail: oswalsl@yahoo.co.uk
2009-07-15
Density {rho}, speed of sound u, and viscosity {eta} of the binary systems 2-methyl-1-propanol + hexadecane and 2-methyl-1-propanol + squalane (2,6,10,15,19,23-hexamethyltetracosane) have been measured over the entire range of composition at T = (298.15, 303.15, and 308.15) K and atmospheric pressure using a vibrating tube densimeter and sound analyzer Anton Paar model DSA-5000 and Ubbelohde suspended level viscometer. Excess molar volume V{sub m}{sup E}, excess molar isentropic compressibility K{sub S,m}{sup E}, and deviations of the speed of sound u{sup D} from their ideal values u{sup id} and excess thermal expansion coefficient {alpha}{sup E} were evaluated from the experimental results obtained. These derived properties were fitted to variable-degree polynomials. Further, the Extended Real Associated Solution (ERAS) model has been applied to V{sub m}{sup E} for the present binary mixtures along with (2-methyl-1-propanol + hexane, + octane and + decane) and the findings are compared with the experimental results.
Boolean network model predicts knockout mutant phenotypes of fission yeast.
Directory of Open Access Journals (Sweden)
Maria I Davidich
Full Text Available BOOLEAN NETWORKS (OR: networks of switches are extremely simple mathematical models of biochemical signaling networks. Under certain circumstances, Boolean networks, despite their simplicity, are capable of predicting dynamical activation patterns of gene regulatory networks in living cells. For example, the temporal sequence of cell cycle activation patterns in yeasts S. pombe and S. cerevisiae are faithfully reproduced by Boolean network models. An interesting question is whether this simple model class could also predict a more complex cellular phenomenology as, for example, the cell cycle dynamics under various knockout mutants instead of the wild type dynamics, only. Here we show that a Boolean network model for the cell cycle control network of yeast S. pombe correctly predicts viability of a large number of known mutants. So far this had been left to the more detailed differential equation models of the biochemical kinetics of the yeast cell cycle network and was commonly thought to be out of reach for models as simplistic as Boolean networks. The new results support our vision that Boolean networks may complement other mathematical models in systems biology to a larger extent than expected so far, and may fill a gap where simplicity of the model and a preference for an overall dynamical blueprint of cellular regulation, instead of biochemical details, are in the focus.
Boolean Network Model Predicts Knockout Mutant Phenotypes of Fission Yeast
Davidich, Maria I.; Bornholdt, Stefan
2013-01-01
Boolean networks (or: networks of switches) are extremely simple mathematical models of biochemical signaling networks. Under certain circumstances, Boolean networks, despite their simplicity, are capable of predicting dynamical activation patterns of gene regulatory networks in living cells. For example, the temporal sequence of cell cycle activation patterns in yeasts S. pombe and S. cerevisiae are faithfully reproduced by Boolean network models. An interesting question is whether this simple model class could also predict a more complex cellular phenomenology as, for example, the cell cycle dynamics under various knockout mutants instead of the wild type dynamics, only. Here we show that a Boolean network model for the cell cycle control network of yeast S. pombe correctly predicts viability of a large number of known mutants. So far this had been left to the more detailed differential equation models of the biochemical kinetics of the yeast cell cycle network and was commonly thought to be out of reach for models as simplistic as Boolean networks. The new results support our vision that Boolean networks may complement other mathematical models in systems biology to a larger extent than expected so far, and may fill a gap where simplicity of the model and a preference for an overall dynamical blueprint of cellular regulation, instead of biochemical details, are in the focus. PMID:24069138
Comparison of NASCAP modelling results with lumped circuit analysis
Stang, D. B.; Purvis, C. K.
1980-01-01
Engineering design tools that can be used to predict the development of absolute and differential potentials by realistic spacecraft under geomagnetic substorm conditions are described. Two types of analyses are in use: (1) the NASCAP code, which computes quasistatic charging of geometrically complex objects with multiple surface materials in three dimensions; (2) lumped element equivalent circuit models that are used for analyses of particular spacecraft. The equivalent circuit models require very little computation time, however, they cannot account for effects, such as the formation of potential barriers, that are inherently multidimensional. Steady state potentials of structure and insulation are compared with those resulting from the equivalent circuit model.
Constraining hybrid inflation models with WMAP three-year results
Cardoso, A
2006-01-01
We reconsider the original model of quadratic hybrid inflation in light of the WMAP three-year results and study the possibility of obtaining a spectral index of primordial density perturbations, $n_s$, smaller than one from this model. The original hybrid inflation model naturally predicts $n_s\\geq1$ in the false vacuum dominated regime but it is also possible to have $n_s<1$ when the quadratic term dominates. We therefore investigate whether there is also an intermediate regime compatible with the latest constraints, where the scalar field value during the last 50 e-folds of inflation is less than the Planck scale.
Estimating the magnitude of prediction uncertainties for the APLE model
Models are often used to predict phosphorus (P) loss from agricultural fields. While it is commonly recognized that model predictions are inherently uncertain, few studies have addressed prediction uncertainties using P loss models. In this study, we conduct an uncertainty analysis for the Annual P ...
An evaluation of prior influence on the predictive ability of Bayesian model averaging.
St-Louis, Véronique; Clayton, Murray K; Pidgeon, Anna M; Radeloff, Volker C
2012-03-01
Model averaging is gaining popularity among ecologists for making inference and predictions. Methods for combining models include Bayesian model averaging (BMA) and Akaike's Information Criterion (AIC) model averaging. BMA can be implemented with different prior model weights, including the Kullback-Leibler prior associated with AIC model averaging, but it is unclear how the prior model weight affects model results in a predictive context. Here, we implemented BMA using the Bayesian Information Criterion (BIC) approximation to Bayes factors for building predictive models of bird abundance and occurrence in the Chihuahuan Desert of New Mexico. We examined how model predictive ability differed across four prior model weights, and how averaged coefficient estimates, standard errors and coefficients' posterior probabilities varied for 16 bird species. We also compared the predictive ability of BMA models to a best single-model approach. Overall, Occam's prior of parsimony provided the best predictive models. In general, the Kullback-Leibler prior, however, favored complex models of lower predictive ability. BMA performed better than a best single-model approach independently of the prior model weight for 6 out of 16 species. For 6 other species, the choice of the prior model weight affected whether BMA was better than the best single-model approach. Our results demonstrate that parsimonious priors may be favorable over priors that favor complexity for making predictions. The approach we present has direct applications in ecology for better predicting patterns of species' abundance and occurrence.
Prediction of blast-induced air overpressure: a hybrid AI-based predictive model.
Jahed Armaghani, Danial; Hajihassani, Mohsen; Marto, Aminaton; Shirani Faradonbeh, Roohollah; Mohamad, Edy Tonnizam
2015-11-01
Blast operations in the vicinity of residential areas usually produce significant environmental problems which may cause severe damage to the nearby areas. Blast-induced air overpressure (AOp) is one of the most important environmental impacts of blast operations which needs to be predicted to minimize the potential risk of damage. This paper presents an artificial neural network (ANN) optimized by the imperialist competitive algorithm (ICA) for the prediction of AOp induced by quarry blasting. For this purpose, 95 blasting operations were precisely monitored in a granite quarry site in Malaysia and AOp values were recorded in each operation. Furthermore, the most influential parameters on AOp, including the maximum charge per delay and the distance between the blast-face and monitoring point, were measured and used to train the ICA-ANN model. Based on the generalized predictor equation and considering the measured data from the granite quarry site, a new empirical equation was developed to predict AOp. For comparison purposes, conventional ANN models were developed and compared with the ICA-ANN results. The results demonstrated that the proposed ICA-ANN model is able to predict blast-induced AOp more accurately than other presented techniques.
Directory of Open Access Journals (Sweden)
César Hernández-Hernández
2017-06-01
Full Text Available Electricity load forecasting, optimal power system operation and energy management play key roles that can bring significant operational advantages to microgrids. This paper studies how methods based on time series and neural networks can be used to predict energy demand and production, allowing them to be combined with model predictive control. Comparisons of different prediction methods and different optimum energy distribution scenarios are provided, permitting us to determine when short-term energy prediction models should be used. The proposed prediction models in addition to the model predictive control strategy appear as a promising solution to energy management in microgrids. The controller has the task of performing the management of electricity purchase and sale to the power grid, maximizing the use of renewable energy sources and managing the use of the energy storage system. Simulations were performed with different weather conditions of solar irradiation. The obtained results are encouraging for future practical implementation.
Ensemble ecosystem modeling for predicting ecosystem response to predator reintroduction.
Baker, Christopher M; Gordon, Ascelin; Bode, Michael
2017-04-01
Introducing a new or extirpated species to an ecosystem is risky, and managers need quantitative methods that can predict the consequences for the recipient ecosystem. Proponents of keystone predator reintroductions commonly argue that the presence of the predator will restore ecosystem function, but this has not always been the case, and mathematical modeling has an important role to play in predicting how reintroductions will likely play out. We devised an ensemble modeling method that integrates species interaction networks and dynamic community simulations and used it to describe the range of plausible consequences of 2 keystone-predator reintroductions: wolves (Canis lupus) to Yellowstone National Park and dingoes (Canis dingo) to a national park in Australia. Although previous methods for predicting ecosystem responses to such interventions focused on predicting changes around a given equilibrium, we used Lotka-Volterra equations to predict changing abundances through time. We applied our method to interaction networks for wolves in Yellowstone National Park and for dingoes in Australia. Our model replicated the observed dynamics in Yellowstone National Park and produced a larger range of potential outcomes for the dingo network. However, we also found that changes in small vertebrates or invertebrates gave a good indication about the potential future state of the system. Our method allowed us to predict when the systems were far from equilibrium. Our results showed that the method can also be used to predict which species may increase or decrease following a reintroduction and can identify species that are important to monitor (i.e., species whose changes in abundance give extra insight into broad changes in the system). Ensemble ecosystem modeling can also be applied to assess the ecosystem-wide implications of other types of interventions including assisted migration, biocontrol, and invasive species eradication. © 2016 Society for Conservation Biology.
Prediction of Catastrophes: an experimental model
Peters, Randall D; Pomeau, Yves
2012-01-01
Catastrophes of all kinds can be roughly defined as short duration-large amplitude events following and followed by long periods of "ripening". Major earthquakes surely belong to the class of 'catastrophic' events. Because of the space-time scales involved, an experimental approach is often difficult, not to say impossible, however desirable it could be. Described in this article is a "laboratory" setup that yields data of a type that is amenable to theoretical methods of prediction. Observations are made of a critical slowing down in the noisy signal of a solder wire creeping under constant stress. This effect is shown to be a fair signal of the forthcoming catastrophe in both of two dynamical models. The first is an "abstract" model in which a time dependent quantity drifts slowly but makes quick jumps from time to time. The second is a realistic physical model for the collective motion of dislocations (the Ananthakrishna set of equations for creep). Hope thus exists that similar changes in the response to ...
Predictive modeling of low solubility semiconductor alloys
Rodriguez, Garrett V.; Millunchick, Joanna M.
2016-09-01
GaAsBi is of great interest for applications in high efficiency optoelectronic devices due to its highly tunable bandgap. However, the experimental growth of high Bi content films has proven difficult. Here, we model GaAsBi film growth using a kinetic Monte Carlo simulation that explicitly takes cation and anion reactions into account. The unique behavior of Bi droplets is explored, and a sharp decrease in Bi content upon Bi droplet formation is demonstrated. The high mobility of simulated Bi droplets on GaAsBi surfaces is shown to produce phase separated Ga-Bi droplets as well as depressions on the film surface. A phase diagram for a range of growth rates that predicts both Bi content and droplet formation is presented to guide the experimental growth of high Bi content GaAsBi films.
Distributed model predictive control made easy
Negenborn, Rudy
2014-01-01
The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, traffic and intermodal transport networks are now in the scope of control engineers. The sheer size of such large-scale systems requires the adoption of advanced distributed control approaches. Distributed model predictive control (MPC) is one of the promising control methodologies for control of such systems. This book provides a state-of-the-art overview of distributed MPC approaches, while at the same time making clear directions of research that deserve more attention. The core and rationale of 35 approaches are carefully explained. Moreover, detailed step-by-step algorithmic descriptions of each approach are provided. These features make the book a comprehensive guide both for those seeking an introduction to distributed MPC as well as for those ...
Leptogenesis in minimal predictive seesaw models
Björkeroth, Fredrik; de Anda, Francisco J.; de Medeiros Varzielas, Ivo; King, Stephen F.
2015-10-01
We estimate the Baryon Asymmetry of the Universe (BAU) arising from leptogenesis within a class of minimal predictive seesaw models involving two right-handed neutrinos and simple Yukawa structures with one texture zero. The two right-handed neutrinos are dominantly responsible for the "atmospheric" and "solar" neutrino masses with Yukawa couplings to ( ν e , ν μ , ν τ ) proportional to (0, 1, 1) and (1, n, n - 2), respectively, where n is a positive integer. The neutrino Yukawa matrix is therefore characterised by two proportionality constants with their relative phase providing a leptogenesis-PMNS link, enabling the lightest right-handed neutrino mass to be determined from neutrino data and the observed BAU. We discuss an SU(5) SUSY GUT example, where A 4 vacuum alignment provides the required Yukawa structures with n = 3, while a {{Z}}_9 symmetry fixes the relatives phase to be a ninth root of unity.
Predictive RANS simulations via Bayesian Model-Scenario Averaging
Edeling, W. N.; Cinnella, P.; Dwight, R. P.
2014-10-01
The turbulence closure model is the dominant source of error in most Reynolds-Averaged Navier-Stokes simulations, yet no reliable estimators for this error component currently exist. Here we develop a stochastic, a posteriori error estimate, calibrated to specific classes of flow. It is based on variability in model closure coefficients across multiple flow scenarios, for multiple closure models. The variability is estimated using Bayesian calibration against experimental data for each scenario, and Bayesian Model-Scenario Averaging (BMSA) is used to collate the resulting posteriors, to obtain a stochastic estimate of a Quantity of Interest (QoI) in an unmeasured (prediction) scenario. The scenario probabilities in BMSA are chosen using a sensor which automatically weights those scenarios in the calibration set which are similar to the prediction scenario. The methodology is applied to the class of turbulent boundary-layers subject to various pressure gradients. For all considered prediction scenarios the standard-deviation of the stochastic estimate is consistent with the measurement ground truth. Furthermore, the mean of the estimate is more consistently accurate than the individual model predictions.
Predictive RANS simulations via Bayesian Model-Scenario Averaging
Energy Technology Data Exchange (ETDEWEB)
Edeling, W.N., E-mail: W.N.Edeling@tudelft.nl [Arts et Métiers ParisTech, DynFluid laboratory, 151 Boulevard de l' Hospital, 75013 Paris (France); Delft University of Technology, Faculty of Aerospace Engineering, Kluyverweg 2, Delft (Netherlands); Cinnella, P., E-mail: P.Cinnella@ensam.eu [Arts et Métiers ParisTech, DynFluid laboratory, 151 Boulevard de l' Hospital, 75013 Paris (France); Dwight, R.P., E-mail: R.P.Dwight@tudelft.nl [Delft University of Technology, Faculty of Aerospace Engineering, Kluyverweg 2, Delft (Netherlands)
2014-10-15
The turbulence closure model is the dominant source of error in most Reynolds-Averaged Navier–Stokes simulations, yet no reliable estimators for this error component currently exist. Here we develop a stochastic, a posteriori error estimate, calibrated to specific classes of flow. It is based on variability in model closure coefficients across multiple flow scenarios, for multiple closure models. The variability is estimated using Bayesian calibration against experimental data for each scenario, and Bayesian Model-Scenario Averaging (BMSA) is used to collate the resulting posteriors, to obtain a stochastic estimate of a Quantity of Interest (QoI) in an unmeasured (prediction) scenario. The scenario probabilities in BMSA are chosen using a sensor which automatically weights those scenarios in the calibration set which are similar to the prediction scenario. The methodology is applied to the class of turbulent boundary-layers subject to various pressure gradients. For all considered prediction scenarios the standard-deviation of the stochastic estimate is consistent with the measurement ground truth. Furthermore, the mean of the estimate is more consistently accurate than the individual model predictions.
The Second Las Cruces Trench Experiment: Experimental Results and Two-Dimensional Flow Predictions
Hills, R. G.; Wierenga, P. J.; Hudson, D. B.; Kirkland, M. R.
1991-10-01
As part of a comprehensive field study designed to provide data to test stochastic and deterministic models of water flow and contaminant transport in the vadose zone, several trench experiments were performed in the semiarid region of southern New Mexico. The first trench experiment is discussed by Wierenga et al. (this issue). During the second trench experiment, a 1.2 m wide by 12 m long area on the north side of and parallel to a 26.4 m long by 4.8 m wide by 6m deep trench was irrigated with water containing tracers using a carefully controlled drip irrigation system. The irrigated area was heavily instrumented with tensiometers and neutron probe access tubes to monitor water movement, and with suction samplers to monitor solute transport. Water containing tritium and bromide was. applied during the first 11.5 days of the study. Thereafter, water was applied without tracers for an additional 64 days. Both water movement and tracer movement were monitored in the subsoil during infiltration and redistribution. The experimental results indicate that water and bromide moved fairly uniformly during infiltration and the bromide moved ahead of the tritium due to anion exclusion during redistribution. Comparisons between measurements and predictions made with a two-dimensional model show qualitative agreement for two of the three water content measurement planes. Model predictions of tritium and bromide transport were not as satisfactory. Measurements of both tritium and bromide show localized areas of high relative concentrations and a large downward motion of bromide relative to tritium during redistribution. While the simple deterministic model does show larger downward motions for bromide than for tritium during redistribution, it does not predict the high concentrations of solute observed during infiltration, nor can it predict the heterogeneous behavior observed for tritium during infiltration and for bromide during redistribution.
Comparing Sediment Yield Predictions from Different Hydrologic Modeling Schemes
Dahl, T. A.; Kendall, A. D.; Hyndman, D. W.
2015-12-01
Sediment yield, or the delivery of sediment from the landscape to a river, is a difficult process to accurately model. It is primarily a function of hydrology and climate, but influenced by landcover and the underlying soils. These additional factors make it much more difficult to accurately model than water flow alone. It is not intuitive what impact different hydrologic modeling schemes may have on the prediction of sediment yield. Here, two implementations of the Modified Universal Soil Loss Equation (MUSLE) are compared to examine the effects of hydrologic model choice. Both the Soil and Water Assessment Tool (SWAT) and the Landscape Hydrology Model (LHM) utilize the MUSLE for calculating sediment yield. SWAT is a lumped parameter hydrologic model developed by the USDA, which is commonly used for predicting sediment yield. LHM is a fully distributed hydrologic model developed primarily for integrated surface and groundwater studies at the watershed to regional scale. SWAT and LHM models were developed and tested for two large, adjacent watersheds in the Great Lakes region; the Maumee River and the St. Joseph River. The models were run using a variety of single model and ensemble downscaled climate change scenarios from the Coupled Model Intercomparison Project 5 (CMIP5). The initial results of this comparison are discussed here.
Predictive modeling of nanomaterial exposure effects in biological systems
Directory of Open Access Journals (Sweden)
Liu X
2013-09-01
Full Text Available Xiong Liu,1 Kaizhi Tang,1 Stacey Harper,2 Bryan Harper,2 Jeffery A Steevens,3 Roger Xu1 1Intelligent Automation, Inc., Rockville, MD, USA; 2Department of Environmental and Molecular Toxicology, School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA; 3ERDC Environmental Laboratory, Vicksburg, MS, USA Background: Predictive modeling of the biological effects of nanomaterials is critical for industry and policymakers to assess the potential hazards resulting from the application of engineered nanomaterials. Methods: We generated an experimental dataset on the toxic effects experienced by embryonic zebrafish due to exposure to nanomaterials. Several nanomaterials were studied, such as metal nanoparticles, dendrimer, metal oxide, and polymeric materials. The embryonic zebrafish metric (EZ Metric was used as a screening-level measurement representative of adverse effects. Using the dataset, we developed a data mining approach to model the toxic endpoints and the overall biological impact of nanomaterials. Data mining techniques, such as numerical prediction, can assist analysts in developing risk assessment models for nanomaterials. Results: We found several important attributes that contribute to the 24 hours post-fertilization (hpf mortality, such as dosage concentration, shell composition, and surface charge. These findings concur with previous studies on nanomaterial toxicity using embryonic zebrafish. We conducted case studies on modeling the overall effect/impact of nanomaterials and the specific toxic endpoints such as mortality, delayed development, and morphological malformations. The results show that we can achieve high prediction accuracy for certain biological effects, such as 24 hpf mortality, 120 hpf mortality, and 120 hpf heart malformation. The results also show that the weighting scheme for individual biological effects has a significant influence on modeling the overall impact of
Model for performance prediction in multi-axis machining
Lavernhe, Sylvain; Lartigue, Claire; 10.1007/s00170-007-1001-4
2009-01-01
This paper deals with a predictive model of kinematical performance in 5-axis milling within the context of High Speed Machining. Indeed, 5-axis high speed milling makes it possible to improve quality and productivity thanks to the degrees of freedom brought by the tool axis orientation. The tool axis orientation can be set efficiently in terms of productivity by considering kinematical constraints resulting from the set machine-tool/NC unit. Capacities of each axis as well as some NC unit functions can be expressed as limiting constraints. The proposed model relies on each axis displacement in the joint space of the machine-tool and predicts the most limiting axis for each trajectory segment. Thus, the calculation of the tool feedrate can be performed highlighting zones for which the programmed feedrate is not reached. This constitutes an indicator for trajectory optimization. The efficiency of the model is illustrated through examples. Finally, the model could be used for optimizing process planning.
The development of U. S. soil erosion prediction and modeling
Directory of Open Access Journals (Sweden)
John M. Laflen
2013-09-01
Full Text Available Soil erosion prediction technology began over 70 years ago when Austin Zingg published a relationship between soil erosion (by water and land slope and length, followed shortly by a relationship by Dwight Smith that expanded this equation to include conservation practices. But, it was nearly 20 years before this work's expansion resulted in the Universal Soil Loss Equation (USLE, perhaps the foremost achievement in soil erosion prediction in the last century. The USLE has increased in application and complexity, and its usefulness and limitations have led to the development of additional technologies and new science in soil erosion research and prediction. Main among these new technologies is the Water Erosion Prediction Project (WEPP model, which has helped to overcome many of the shortcomings of the USLE, and increased the scale over which erosion by water can be predicted. Areas of application of erosion prediction include almost all land types: urban, rural, cropland, forests, rangeland, and construction sites. Specialty applications of WEPP include prediction of radioactive material movement with soils at a superfund cleanup site, and near real-time daily estimation of soil erosion for the entire state of Iowa.
A prediction model for progressive disease in systemic sclerosis
Meijs, Jessica; Schouffoer, Anne A; Ajmone Marsan, Nina; Stijnen, Theo; Putter, Hein; Ninaber, Maarten K; Huizinga, Tom W J; de Vries-Bouwstra, Jeska K
2015-01-01
Objective To develop a model that assesses the risk for progressive disease in patients with systemic sclerosis (SSc) over the short term, in order to guide clinical management. Methods Baseline characteristics and 1 year follow-up results of 163 patients with SSc referred to a multidisciplinary healthcare programme were evaluated. Progressive disease was defined as: death, ≥10% decrease in forced vital capacity, ≥15% decrease in diffusing capacity for carbon monoxide, ≥10% decrease in body weight, ≥30% decrease in estimated-glomerular filtration rate, ≥30% increase in modified Rodnan Skin Score (with Δ≥5) or ≥0.25 increase in Scleroderma Health Assessment Questionnaire. The number of patients with progressive disease was determined. Univariable and multivariable logistic regression analyses were used to assess the probability of progressive disease for each individual patient. Performance of the prediction model was evaluated using a calibration plot and area under the receiver operating characteristic curve. Results 63 patients had progressive disease, including 8 patients who died ≤18 months after first evaluation. Multivariable analysis showed that friction rubs, proximal muscular weakness and decreased maximum oxygen uptake as % predicted, adjusted for age, gender and use of immunosuppressive therapy at baseline, were significantly associated with progressive disease. Using the prediction model, the predicted chance for progressive disease increased from a pretest chance of 37% to 67–89%. Conclusions Using the prediction model, the chance for progressive disease for individual patients could be doubled. Friction rubs, proximal muscular weakness and maximum oxygen uptake as % predicted were identified as relevant parameters. PMID:26688749
Formalization of the model of the enterprise insolvency risk prediction
Directory of Open Access Journals (Sweden)
Elena V. Shirinkina
2015-12-01
Full Text Available Objective to improve the conceptual apparatus and analytical procedures of insolvency risk identification. Methods general scientific methods of systemic and comparative analysis economicstatistical and dynamic analysis of economic processes and phenomena. Results nowadays managing the insolvency risk is relevant for any company regardless of the economy sector. Instability manifests itself through the uncertainty of the directions of the external environment changes and their high frequency. Analysis of the economic literature showed that currently there is no single approach to systematization of methods for insolvency risk prediction which means that there is no objective view on tools that can be used to monitor the insolvency risk. In this respect scientific and practical search of representative indicators for the formalization of the models predicting the insolvency is very important. Therefore the study has solved the following tasks defined the nature of the insolvency risk and its identification in the process of financial relations in management system proved the representativeness of the indicators in the insolvency risk prediction and formed the model of the risk insolvency prediction. Scientific novelty grounding the model of risk insolvency prediction. Practical significance development of a theoretical framework to address issues arising in the diagnosis of insolvent enterprises and application of the results obtained in the practice of the bankruptcy institution bodies. The presented model allows to predict the insolvency risk of the enterprise through the general development trend and the fluctuation boundaries of bankruptcy risk to determine the significance of each indicatorfactor its quantitative impact and therefore to avoid the risk of the enterprise insolvency. nbsp
Large eddy simulation subgrid model for soot prediction
El-Asrag, Hossam Abd El-Raouf Mostafa
Soot prediction in realistic systems is one of the most challenging problems in theoretical and applied combustion. Soot formation as a chemical process is very complicated and not fully understood. The major difficulty stems from the chemical complexity of the soot formation process as well as its strong coupling with the other thermochemical and fluid processes that occur simultaneously. Soot is a major byproduct of incomplete combustion, having a strong impact on the environment as well as the combustion efficiency. Therefore, innovative methods is needed to predict soot in realistic configurations in an accurate and yet computationally efficient way. In the current study, a new soot formation subgrid model is developed and reported here. The new model is designed to be used within the context of the Large Eddy Simulation (LES) framework, combined with Linear Eddy Mixing (LEM) as a subgrid combustion model. The final model can be applied equally to premixed and non-premixed flames over any required geometry and flow conditions in the free, the transition, and the continuum regimes. The soot dynamics is predicted using a Method of Moments approach with Lagrangian Interpolative Closure (MOMIC) for the fractional moments. Since no prior knowledge of the particles distribution is required, the model is generally applicable. The current model accounts for the basic soot transport phenomena as transport by molecular diffusion and Thermophoretic forces. The model is first validated against experimental results for non-sooting swirling non-premixed and partially premixed flames. Next, a set of canonical premixed sooting flames are simulated, where the effect of turbulence, binary diffusivity and C/O ratio on soot formation are studied. Finally, the model is validated against a non-premixed jet sooting flame. The effect of the flame structure on the different soot formation stages as well as the particle size distribution is described. Good results are predicted with
Aerodynamic Noise Prediction Using stochastic Turbulence Modeling
Directory of Open Access Journals (Sweden)
Arash Ahmadzadegan
2008-01-01
Full Text Available Amongst many approaches to determine the sound propagated from turbulent flows, hybrid methods, in which the turbulent noise source field is computed or modeled separately from the far field calculation, are frequently used. For basic estimation of sound propagation, less computationally intensive methods can be developed using stochastic models of the turbulent fluctuations (turbulent noise source field. A simple and easy to use stochastic model for generating turbulent velocity fluctuations called continuous filter white noise (CFWN model was used. This method based on the use of classical Langevian-equation to model the details of fluctuating field superimposed on averaged computed quantities. The resulting sound field due to the generated unsteady flow field was evaluated using Lighthill's acoustic analogy. Volume integral method used for evaluating the acoustic analogy. This formulation presents an advantage, as it confers the possibility to determine separately the contribution of the different integral terms and also integration regions to the radiated acoustic pressure. Our results validated by comparing the directivity and the overall sound pressure level (OSPL magnitudes with the available experimental results. Numerical results showed reasonable agreement with the experiments, both in maximum directivity and magnitude of the OSPL. This method presents a very suitable tool for the noise calculation of different engineering problems in early stages of the design process where rough estimates using cheaper methods are needed for different geometries.
Comparing model predictions for ecosystem-based management
DEFF Research Database (Denmark)
Jacobsen, Nis Sand; Essington, Timothy E.; Andersen, Ken Haste
2016-01-01
Ecosystem modeling is becoming an integral part of fisheries management, but there is a need to identify differences between predictions derived from models employed for scientific and management purposes. Here, we compared two models: a biomass-based food-web model (Ecopath with Ecosim (Ew......E)) and a size-structured fish community model. The models were compared with respect to predicted ecological consequences of fishing to identify commonalities and differences in model predictions for the California Current fish community. We compared the models regarding direct and indirect responses to fishing...... on one or more species. The size-based model predicted a higher fishing mortality needed to reach maximum sustainable yield than EwE for most species. The size-based model also predicted stronger top-down effects of predator removals than EwE. In contrast, EwE predicted stronger bottom-up effects...
Analyzing Medical Image Search Behavior: Semantics and Prediction of Query Results.
De-Arteaga, Maria; Eggel, Ivan; Kahn, Charles E; Müller, Henning
2015-10-01
Log files of information retrieval systems that record user behavior have been used to improve the outcomes of retrieval systems, understand user behavior, and predict events. In this article, a log file of the ARRS GoldMiner search engine containing 222,005 consecutive queries is analyzed. Time stamps are available for each query, as well as masked IP addresses, which enables to identify queries from the same person. This article describes the ways in which physicians (or Internet searchers interested in medical images) search and proposes potential improvements by suggesting query modifications. For example, many queries contain only few terms and therefore are not specific; others contain spelling mistakes or non-medical terms that likely lead to poor or empty results. One of the goals of this report is to predict the number of results a query will have since such a model allows search engines to automatically propose query modifications in order to avoid result lists that are empty or too large. This prediction is made based on characteristics of the query terms themselves. Prediction of empty results has an accuracy above 88%, and thus can be used to automatically modify the query to avoid empty result sets for a user. The semantic analysis and data of reformulations done by users in the past can aid the development of better search systems, particularly to improve results for novice users. Therefore, this paper gives important ideas to better understand how people search and how to use this knowledge to improve the performance of specialized medical search engines.
Prediction Markets and Beliefs about Climate: Results from Agent-Based Simulations
Gilligan, J. M.; John, N. J.; van der Linden, M.
2015-12-01
Climate scientists have long been frustrated by persistent doubts a large portion of the public expresses toward the scientific consensus about anthropogenic global warming. The political and ideological polarization of this doubt led Vandenbergh, Raimi, and Gilligan [1] to propose that prediction markets for climate change might influence the opinions of those who mistrust the scientific community but do trust the power of markets.We have developed an agent-based simulation of a climate prediction market in which traders buy and sell future contracts that will pay off at some future year with a value that depends on the global average temperature at that time. The traders form a heterogeneous population with different ideological positions, different beliefs about anthropogenic global warming, and different degrees of risk aversion. We also vary characteristics of the market, including the topology of social networks among the traders, the number of traders, and the completeness of the market. Traders adjust their beliefs about climate according to the gains and losses they and other traders in their social network experience. This model predicts that if global temperature is predominantly driven by greenhouse gas concentrations, prediction markets will cause traders' beliefs to converge toward correctly accepting anthropogenic warming as real. This convergence is largely independent of the structure of the market and the characteristics of the population of traders. However, it may take considerable time for beliefs to converge. Conversely, if temperature does not depend on greenhouse gases, the model predicts that traders' beliefs will not converge. We will discuss the policy-relevance of these results and more generally, the use of agent-based market simulations for policy analysis regarding climate change, seasonal agricultural weather forecasts, and other applications.[1] MP Vandenbergh, KT Raimi, & JM Gilligan. UCLA Law Rev. 61, 1962 (2014).
Predictive modeling of respiratory tumor motion for real-time prediction of baseline shifts
Balasubramanian, A.; Shamsuddin, R.; Prabhakaran, B.; Sawant, A.
2017-03-01
Baseline shifts in respiratory patterns can result in significant spatiotemporal changes in patient anatomy (compared to that captured during simulation), in turn, causing geometric and dosimetric errors in the administration of thoracic and abdominal radiotherapy. We propose predictive modeling of the tumor motion trajectories for predicting a baseline shift ahead of its occurrence. The key idea is to use the features of the tumor motion trajectory over a 1 min window, and predict the occurrence of a baseline shift in the 5 s that immediately follow (lookahead window). In this study, we explored a preliminary trend-based analysis with multi-class annotations as well as a more focused binary classification analysis. In both analyses, a number of different inter-fraction and intra-fraction training strategies were studied, both offline as well as online, along with data sufficiency and skew compensation for class imbalances. The performance of different training strategies were compared across multiple machine learning classification algorithms, including nearest neighbor, Naïve Bayes, linear discriminant and ensemble Adaboost. The prediction performance is evaluated using metrics such as accuracy, precision, recall and the area under the curve (AUC) for repeater operating characteristics curve. The key results of the trend-based analysis indicate that (i) intra-fraction training strategies achieve highest prediction accuracies (90.5-91.4%) (ii) the predictive modeling yields lowest accuracies (50-60%) when the training data does not include any information from the test patient; (iii) the prediction latencies are as low as a few hundred milliseconds, and thus conducive for real-time prediction. The binary classification performance is promising, indicated by high AUCs (0.96-0.98). It also confirms the utility of prior data from previous patients, and also the necessity of training the classifier on some initial data from the new patient for reasonable
Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP
Directory of Open Access Journals (Sweden)
F. Pattyn
2012-05-01
Full Text Available Predictions of marine ice-sheet behaviour require models that are able to robustly simulate grounding line migration. We present results of an intercomparison exercise for marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no effects of lateral buttressing. Unique steady state grounding line positions exist for ice sheets on a downward sloping bed, while hysteresis occurs across an overdeepened bed, and stable steady state grounding line positions only occur on the downward-sloping sections. Models based on the shallow ice approximation, which does not resolve extensional stresses, do not reproduce the approximate analytical results unless appropriate parameterizations for ice flux are imposed at the grounding line. For extensional-stress resolving "shelfy stream" models, differences between model results were mainly due to the choice of spatial discretization. Moving grid methods were found to be the most accurate at capturing grounding line evolution, since they track the grounding line explicitly. Adaptive mesh refinement can further improve accuracy, including fixed grid models that generally perform poorly at coarse resolution. Fixed grid models, with nested grid representations of the grounding line, are able to generate accurate steady state positions, but can be inaccurate over transients. Only one full-Stokes model was included in the intercomparison, and consequently the accuracy of shelfy stream models as approximations of full-Stokes models remains to be determined in detail, especially during transients.
Nonlinear turbulence models for predicting strong curvature effects
Institute of Scientific and Technical Information of China (English)
XU Jing-lei; MA Hui-yang; HUANG Yu-ning
2008-01-01
Prediction of the characteristics of turbulent flows with strong streamline curvature, such as flows in turbomachines, curved channel flows, flows around airfoils and buildings, is of great importance in engineering applicatious and poses a very practical challenge for turbulence modeling. In this paper, we analyze qualitatively the curvature effects on the structure of turbulence and conduct numerical simulations of a turbulent U- duct flow with a number of turbulence models in order to assess their overall performance. The models evaluated in this work are some typical linear eddy viscosity turbulence models, nonlinear eddy viscosity turbulence models (NLEVM) (quadratic and cubic), a quadratic explicit algebraic stress model (EASM) and a Reynolds stress model (RSM) developed based on the second-moment closure. Our numerical results show that a cubic NLEVM that performs considerably well in other benchmark turbulent flows, such as the Craft, Launder and Suga model and the Huang and Ma model, is able to capture the major features of the highly curved turbulent U-duct flow, including the damping of turbulence near the convex wall, the enhancement of turbulence near the concave wall, and the subsequent turbulent flow separation. The predictions of the cubic models are quite close to that of the RSM, in relatively good agreement with the experimental data, which suggests that these inodels may be employed to simulate the turbulent curved flows in engineering applications.
Surovyatkina, Elena; Stolbova, Veronika; Kurths, Jurgen
2017-04-01
started to decrease, and after two days meteorological stations reported 'No rain' in the EG and also in areas located across the subcontinent in the direction from the North Pakistan to the Bay of Bengal. Hence, the date of monsoon withdrawal - October 10-th, predicted 70 days in advance, lies within our prediction interval. Our results show that our method allows predicting a future monsoon, and not only retrospectively or hindcast. In 2016 we predicted of the onset and withdrawal dates of the Southwest monsoon over the Eastern Ghats region in Central India for 40 and 70 days in advance respectively. Our general framework for predicting spatial-temporal critical transitions is applicable for systems of different nature. It allows predicting future from observational data only, when the model of a transition does not exist yet. [1] Stolbova, V., E. Surovyatkina, B. Bookhagen, and J. Kurths (2016): Tipping elements of the Indian monsoon: Prediction of onset and withdrawal. Geophys. Res. Lett., 43, 1-9. [2]https://www.pik-potsdam.de/news/press-releases/indian-monsoon-novel-approach-allows-early-forecasting?set_language=en [3] https://www.pik-potsdam.de/kontakt/pressebuero/fotos/monsoon-withdrawal/view
Remaining Useful Lifetime (RUL - Probabilistic Predictive Model
Directory of Open Access Journals (Sweden)
Ephraim Suhir
2011-01-01
Full Text Available Reliability evaluations and assurances cannot be delayed until the device (system is fabricated and put into operation. Reliability of an electronic product should be conceived at the early stages of its design; implemented during manufacturing; evaluated (considering customer requirements and the existing specifications, by electrical, optical and mechanical measurements and testing; checked (screened during manufacturing (fabrication; and, if necessary and appropriate, maintained in the field during the product’s operation Simple and physically meaningful probabilistic predictive model is suggested for the evaluation of the remaining useful lifetime (RUL of an electronic device (system after an appreciable deviation from its normal operation conditions has been detected, and the increase in the failure rate and the change in the configuration of the wear-out portion of the bathtub has been assessed. The general concepts are illustrated by numerical examples. The model can be employed, along with other PHM forecasting and interfering tools and means, to evaluate and to maintain the high level of the reliability (probability of non-failure of a device (system at the operation stage of its lifetime.
A Predictive Model of Geosynchronous Magnetopause Crossings
Dmitriev, A; Chao, J -K
2013-01-01
We have developed a model predicting whether or not the magnetopause crosses geosynchronous orbit at given location for given solar wind pressure Psw, Bz component of interplanetary magnetic field (IMF) and geomagnetic conditions characterized by 1-min SYM-H index. The model is based on more than 300 geosynchronous magnetopause crossings (GMCs) and about 6000 minutes when geosynchronous satellites of GOES and LANL series are located in the magnetosheath (so-called MSh intervals) in 1994 to 2001. Minimizing of the Psw required for GMCs and MSh intervals at various locations, Bz and SYM-H allows describing both an effect of magnetopause dawn-dusk asymmetry and saturation of Bz influence for very large southward IMF. The asymmetry is strong for large negative Bz and almost disappears when Bz is positive. We found that the larger amplitude of negative SYM-H the lower solar wind pressure is required for GMCs. We attribute this effect to a depletion of the dayside magnetic field by a storm-time intensification of t...
Solubility of water in fluorocarbons: Experimental and COSMO-RS prediction results
Energy Technology Data Exchange (ETDEWEB)
Freire, Mara G.; Carvalho, Pedro J. [CICECO, Departamento de Quimica, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Santos, Luis M.N.B.F. [CIQ, Departamento de Quimica, Faculdade de Ciencias da Universidade do Porto, R. Campo Alegre 687, 4169-007 Porto (Portugal); Gomes, Ligia R. [REQUIMTE, Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, P-4169-007 Porto (Portugal); Marrucho, Isabel M. [CICECO, Departamento de Quimica, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Coutinho, Joao A.P., E-mail: jcoutinho@ua.p [CICECO, Departamento de Quimica, Universidade de Aveiro, 3810-193 Aveiro (Portugal)
2010-02-15
This work aims at providing experimental and theoretical information about the water-perfluorocarbon molecular interactions. For that purpose, experimental solubility results for water in cyclic and aromatic perfluorocarbons (PFCs), over the temperature range between (288.15 and 318.15) K, and at atmospheric pressure, were obtained and are presented. From the experimental solubility dependence on temperature, the partial molar solution and solvation thermodynamic functions such as Gibbs free energy, enthalpy and entropy were determined and are discussed. The process of dissolution of water in PFCs is shown to be spontaneous for cyclic and aromatic compounds. It is demonstrated that the interactions between the non-aromatic PFCs and water are negligible while those between aromatic PFCs and water are favourable. The COSMO-RS predictive capability was explored for the description of the water solubility in PFCs and others substituted fluorocompounds. The COSMO-RS is shown to be a useful model to provide reasonable predictions of the solubility values, as well as to describe their temperature and structural modifications dependence. Moreover, the molar Gibbs free energy and molar enthalpy of solution of water are predicted remarkably well by COSMO-RS while the main deviations appear for the prediction of the molar entropy of solution.
Formability prediction for AHSS materials using damage models
Amaral, R.; Santos, Abel D.; José, César de Sá; Miranda, Sara
2017-05-01
Advanced high strength steels (AHSS) are seeing an increased use, mostly due to lightweight design in automobile industry and strict regulations on safety and greenhouse gases emissions. However, the use of these materials, characterized by a high strength to weight ratio, stiffness and high work hardening at early stages of plastic deformation, have imposed many challenges in sheet metal industry, mainly their low formability and different behaviour, when compared to traditional steels, which may represent a defying task, both to obtain a successful component and also when using numerical simulation to predict material behaviour and its fracture limits. Although numerical prediction of critical strains in sheet metal forming processes is still very often based on the classic forming limit diagrams, alternative approaches can use damage models, which are based on stress states to predict failure during the forming process and they can be classified as empirical, physics based and phenomenological models. In the present paper a comparative analysis of different ductile damage models is carried out, in order numerically evaluate two isotropic coupled damage models proposed by Johnson-Cook and Gurson-Tvergaard-Needleman (GTN), each of them corresponding to the first two previous group classification. Finite element analysis is used considering these damage mechanics approaches and the obtained results are compared with experimental Nakajima tests, thus being possible to evaluate and validate the ability to predict damage and formability limits for previous defined approaches.
Validating predictions from climate envelope models
Watling, J.; Bucklin, D.; Speroterra, C.; Brandt, L.; Cabal, C.; Romañach, Stephanie S.; Mazzotti, Frank J.
2013-01-01
Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species’ distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967–1971 (t1) and evaluated using occurrence data from 1998–2002 (t2). Model sensitivity (the ability to correctly classify species presences) was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences) was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on species.
Prediction of benzodiazepines solubility using different cosolvency models.
Nokhodchi, A; Shokri, J; Barzegar-Jalali, M; Ghafourian, T
2002-07-01
The solubility of four benzodiazepines (BZPs) including diazepam (DIZ), lorazepam (LRZ) clonazepam (CLZ), and chlordiazepoxide (CHZ) in water-cosolvent (ethanol propylene glycol and polyethylene glycol 200) binary systems were studied. In general, increasing the volume fraction of cosolvents resulted in an increase in the solubility of benzodiazepines. The mole fraction solubilities were fitted to the various cosolvency models, namely extended Hildebrand approach (EHA), excess free energy (EFE), combined nearly ideal binary solvent/Redlich-Kister (CNIBS/R-K), general single model (GSM), mixture response surface (MR-S). double log-log (DL-L), and linear double log-log (LDL-L). The results showed that DL-L model was the best model in predicting the solubility of all drugs in all the water-cosolvent mixtures (OAE% = 4.71). The minimum and maximum errors were observed for benzodiazepine's solubility in water-propylene glycol and water-ethanol mixtures which were 2.67 and 11.78%, respectively. Three models (EFE, CNIBS/R-K and LDL-L) were chosen as general models for solubility descriptions of these structurally similar drugs in each of the solvent systems. Among these models, the EFE model was the best in predicting the solubility of benzodiazepines in binary solvent mixtures (OAE% = 11.19).
Geological modelling of mineral deposits for prediction in mining
Sides, E. J.
Accurate prediction of the shape, location, size and properties of the solid rock materials to be extracted during mining is essential for reliable technical and financial planning. This is achieved through geological modelling of the three-dimensional (3D) shape and properties of the materials present in mineral deposits, and the presentation of results in a form which is accessible to mine planning engineers. In recent years the application of interactive graphics software, offering 3D database handling, modelling and visualisation, has greatly enhanced the options available for predicting the subsurface limits and characteristics of mineral deposits. A review of conventional 3D geological interpretation methods, and the model struc- tures and modelling methods used in reserve estimation and mine planning software packages, illustrates the importance of such approaches in the modern mining industry. Despite the widespread introduction and acceptance of computer hardware and software in mining applications, in recent years, there has been little fundamental change in the way in which geology is used in orebody modelling for predictive purposes. Selected areas of current research, aimed at tackling issues such as the use of orientation data, quantification of morphological differences, incorporation of geological age relationships, multi-resolution models and the application of virtual reality hardware and software, are discussed.
Automatically updating predictive modeling workflows support decision-making in drug design.
Muegge, Ingo; Bentzien, Jörg; Mukherjee, Prasenjit; Hughes, Robert O
2016-09-01
Using predictive models for early decision-making in drug discovery has become standard practice. We suggest that model building needs to be automated with minimum input and low technical maintenance requirements. Models perform best when tailored to answering specific compound optimization related questions. If qualitative answers are required, 2-bin classification models are preferred. Integrating predictive modeling results with structural information stimulates better decision making. For in silico models supporting rapid structure-activity relationship cycles the performance deteriorates within weeks. Frequent automated updates of predictive models ensure best predictions. Consensus between multiple modeling approaches increases the prediction confidence. Combining qualified and nonqualified data optimally uses all available information. Dose predictions provide a holistic alternative to multiple individual property predictions for reaching complex decisions.
QSAR Models for the Prediction of Plasma Protein Binding
Directory of Open Access Journals (Sweden)
Zeshan Amin
2013-02-01
Full Text Available Introduction: The prediction of plasma protein binding (ppb is of paramount importance in the pharmacokinetics characterization of drugs, as it causes significant changes in volume of distribution, clearance and drug half life. This study utilized Quantitative Structure – Activity Relationships (QSAR for the prediction of plasma protein binding. Methods: Protein binding values for 794 compounds were collated from literature. The data was partitioned into a training set of 662 compounds and an external validation set of 132 compounds. Physicochemical and molecular descriptors were calculated for each compound using ACD labs/logD, MOE (Chemical Computing Group and Symyx QSAR software packages. Several data mining tools were employed for the construction of models. These included stepwise regression analysis, Classification and Regression Trees (CART, Boosted trees and Random Forest. Results: Several predictive models were identified; however, one model in particular produced significantly superior prediction accuracy for the external validation set as measured using mean absolute error and correlation coefficient. The selected model was a boosted regression tree model which had the mean absolute error for training set of 13.25 and for validation set of 14.96. Conclusion: Plasma protein binding can be modeled using simple regression trees or multiple linear regressions with reasonable model accuracies. These interpretable models were able to identify the governing molecular factors for a high ppb that included hydrophobicity, van der Waals surface area parameters, and aromaticity. On the other hand, the more complicated ensemble method of boosted regression trees produced the most accurate ppb estimations for the external validation set.
Estimating Predictive Variance for Statistical Gas Distribution Modelling
Lilienthal, Achim J.; Asadi, Sahar; Reggente, Matteo
2009-05-01
Recent publications in statistical gas distribution modelling have proposed algorithms that model mean and variance of a distribution. This paper argues that estimating the predictive concentration variance entails not only a gradual improvement but is rather a significant step to advance the field. This is, first, since the models much better fit the particular structure of gas distributions, which exhibit strong fluctuations with considerable spatial variations as a result of the intermittent character of gas dispersal. Second, because estimating the predictive variance allows to evaluate the model quality in terms of the data likelihood. This offers a solution to the problem of ground truth evaluation, which has always been a critical issue for gas distribution modelling. It also enables solid comparisons of different modelling approaches, and provides the means to learn meta parameters of the model, to determine when the model should be updated or re-initialised, or to suggest new measurement locations based on the current model. We also point out directions of related ongoing or potential future research work.
Impact injury prediction by FE human body model
Directory of Open Access Journals (Sweden)
Hynčík L.
2008-12-01
Full Text Available The biomechanical simulations as powerful instruments are used in many areas such as traffic, medicine, sport, army etc. The simulations are often performed with models, which are based on the Finite Element Method. The great ability of FE deformable models of human bodies is to predict the injuries during accidents. Due to its modular implementation of thorax and abdomen FE models, human articulated rigid body model ROBBY, which was previously developed at the University of West Bohemia in cooperation with ESI Group (Engineering Simulation for Industry, can be used for this purpose. ROBBY model representing average adult man is still being improved to obtain more precise model of human body with the possibility to predict injuries during accidents. Recently, new generated thoracic model was embedded into ROBBY model and this was subsequently satisfactorily validated. In this study the updated ROBBY model was used and injury of head and thorax were investigated during frontal crashes simulated by virtue of two types of sled tests with various types of restraint system (shoulder belt, lap belt and airbag. The results of the simulation were compared with the experimental ones.
Forecasts of time averages with a numerical weather prediction model
Roads, J. O.
1986-01-01
Forecasts of time averages of 1-10 days in duration by an operational numerical weather prediction model are documented for the global 500 mb height field in spectral space. Error growth in very idealized models is described in order to anticipate various features of these forecasts and in order to anticipate what the results might be if forecasts longer than 10 days were carried out by present day numerical weather prediction models. The data set for this study is described, and the equilibrium spectra and error spectra are documented; then, the total error is documented. It is shown how forecasts can immediately be improved by removing the systematic error, by using statistical filters, and by ignoring forecasts beyond about a week. Temporal variations in the error field are also documented.
Prediction of mortality rates using a model with stochastic parameters
Tan, Chon Sern; Pooi, Ah Hin
2016-10-01
Prediction of future mortality rates is crucial to insurance companies because they face longevity risks while providing retirement benefits to a population whose life expectancy is increasing. In the past literature, a time series model based on multivariate power-normal distribution has been applied on mortality data from the United States for the years 1933 till 2000 to forecast the future mortality rates for the years 2001 till 2010. In this paper, a more dynamic approach based on the multivariate time series will be proposed where the model uses stochastic parameters that vary with time. The resulting prediction intervals obtained using the model with stochastic parameters perform better because apart from having good ability in covering the observed future mortality rates, they also tend to have distinctly shorter interval lengths.
Adaptive quality prediction of batch processes based on PLS model
Institute of Scientific and Technical Information of China (English)
LI Chun-fu; ZHANG Jie; WANG Gui-zeng
2006-01-01
There are usually no on-line product quality measurements in batch and semi-batch processes,which make the process control task very difficult.In this paper,a model for predicting the end-product quality from the available on-line process variables at the early stage of a batch is developed using partial least squares (PLS)method.Furthermore,some available mid-course quality measurements are used to rectify the final prediction results.To deal with the problem that the process may change with time,recursive PLS (RPLS) algorithm is used to update the model based on the new batch data and the old model parameters after each batch.An application to a simulated batch MMA polymerization process demonstrates the effectiveness of the proposed method.
Prediction models : the right tool for the right problem
Kappen, Teus H.; Peelen, Linda M.
2016-01-01
PURPOSE OF REVIEW: Perioperative prediction models can help to improve personalized patient care by providing individual risk predictions to both patients and providers. However, the scientific literature on prediction model development and validation can be quite technical and challenging to unders
Predictive Models for Photovoltaic Electricity Production in Hot Weather Conditions
Directory of Open Access Journals (Sweden)
Jabar H. Yousif
2017-07-01
Full Text Available The process of finding a correct forecast equation for photovoltaic electricity production from renewable sources is an important matter, since knowing the factors affecting the increase in the proportion of renewable energy production and reducing the cost of the product has economic and scientific benefits. This paper proposes a mathematical model for forecasting energy production in photovoltaic (PV panels based on a self-organizing feature map (SOFM model. The proposed model is compared with other models, including the multi-layer perceptron (MLP and support vector machine (SVM models. Moreover, a mathematical model based on a polynomial function for fitting the desired output is proposed. Different practical measurement methods are used to validate the findings of the proposed neural and mathematical models such as mean square error (MSE, mean absolute error (MAE, correlation (R, and coefficient of determination (R2. The proposed SOFM model achieved a final MSE of 0.0007 in the training phase and 0.0005 in the cross-validation phase. In contrast, the SVM model resulted in a small MSE value equal to 0.0058, while the MLP model achieved a final MSE of 0.026 with a correlation coefficient of 0.9989, which indicates a strong relationship between input and output variables. The proposed SOFM model closely fits the desired results based on the R2 value, which is equal to 0.9555. Finally, the comparison results of MAE for the three models show that the SOFM model achieved a best result of 0.36156, whereas the SVM and MLP models yielded 4.53761 and 3.63927, respectively. A small MAE value indicates that the output of the SOFM model closely fits the actual results and predicts the desired output.
Predictive models of procedural human supervisory control behavior
Boussemart, Yves
Human supervisory control systems are characterized by the computer-mediated nature of the interactions between one or more operators and a given task. Nuclear power plants, air traffic management and unmanned vehicles operations are examples of such systems. In this context, the role of the operators is typically highly proceduralized due to the time and mission-critical nature of the tasks. Therefore, the ability to continuously monitor operator behavior so as to detect and predict anomalous situations is a critical safeguard for proper system operation. In particular, such models can help support the decision J]l8king process of a supervisor of a team of operators by providing alerts when likely anomalous behaviors are detected By exploiting the operator behavioral patterns which are typically reinforced through standard operating procedures, this thesis proposes a methodology that uses statistical learning techniques in order to detect and predict anomalous operator conditions. More specifically, the proposed methodology relies on hidden Markov models (HMMs) and hidden semi-Markov models (HSMMs) to generate predictive models of unmanned vehicle systems operators. Through the exploration of the resulting HMMs in two distinct single operator scenarios, the methodology presented in this thesis is validated and shown to provide models capable of reliably predicting operator behavior. In addition, the use of HSMMs on the same data scenarios provides the temporal component of the predictions missing from the HMMs. The final step of this work is to examine how the proposed methodology scales to more complex scenarios involving teams of operators. Adopting a holistic team modeling approach, both HMMs and HSMMs are learned based on two team-based data sets. The results show that the HSMMs can provide valuable timing information in the single operator case, whereas HMMs tend to be more robust to increased team complexity. In addition, this thesis discusses the
Aggregate driver model to enable predictable behaviour
Chowdhury, A.; Chakravarty, T.; Banerjee, T.; Balamuralidhar, P.
2015-09-01
The categorization of driving styles, particularly in terms of aggressiveness and skill is an emerging area of interest under the broader theme of intelligent transportation. There are two possible discriminatory techniques that can be applied for such categorization; a microscale (event based) model and a macro-scale (aggregate) model. It is believed that an aggregate model will reveal many interesting aspects of human-machine interaction; for example, we may be able to understand the propensities of individuals to carry out a given task over longer periods of time. A useful driver model may include the adaptive capability of the human driver, aggregated as the individual propensity to control speed/acceleration. Towards that objective, we carried out experiments by deploying smartphone based application to be used for data collection by a group of drivers. Data is primarily being collected from GPS measurements including position & speed on a second-by-second basis, for a number of trips over a two months period. Analysing the data set, aggregate models for individual drivers were created and their natural aggressiveness were deduced. In this paper, we present the initial results for 12 drivers. It is shown that the higher order moments of the acceleration profile is an important parameter and identifier of journey quality. It is also observed that the Kurtosis of the acceleration profiles stores major information about the driving styles. Such an observation leads to two different ranking systems based on acceleration data. Such driving behaviour models can be integrated with vehicle and road model and used to generate behavioural model for real traffic scenario.
Computational neurorehabilitation: modeling plasticity and learning to predict recovery.
Reinkensmeyer, David J; Burdet, Etienne; Casadio, Maura; Krakauer, John W; Kwakkel, Gert; Lang, Catherine E; Swinnen, Stephan P; Ward, Nick S; Schweighofer, Nicolas
2016-01-01
Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to understand and improve movement recovery of individuals with neurologic impairment. We first explain how the emergence of robotics and wearable sensors for rehabilitation is providing data that make development and testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the current benchmark in rehabilitation modeling - regression-based, prognostic modeling. We then critically discuss the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the upper extremity after stroke, and show how even simple models have produced novel ideas for future investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity.
Predictability of the Indian Ocean Dipole in the coupled models
Liu, Huafeng; Tang, Youmin; Chen, Dake; Lian, Tao
2017-03-01
In this study, the Indian Ocean Dipole (IOD) predictability, measured by the Indian Dipole Mode Index (DMI), is comprehensively examined at the seasonal time scale, including its actual prediction skill and potential predictability, using the ENSEMBLES multiple model ensembles and the recently developed information-based theoretical framework of predictability. It was found that all model predictions have useful skill, which is normally defined by the anomaly correlation coefficient larger than 0.5, only at around 2-3 month leads. This is mainly because there are more false alarms in predictions as leading time increases. The DMI predictability has significant seasonal variation, and the predictions whose target seasons are boreal summer (JJA) and autumn (SON) are more reliable than that for other seasons. All of models fail to predict the IOD onset before May and suffer from the winter (DJF) predictability barrier. The potential predictability study indicates that, with the model development and initialization improvement, the prediction of IOD onset is likely to be improved but the winter barrier cannot be overcome. The IOD predictability also has decadal variation, with a high skill during the 1960s and the early 1990s, and a low skill during the early 1970s and early 1980s, which is very consistent with the potential predictability. The main factors controlling the IOD predictability, including its seasonal and decadal variations, are also analyzed in this study.
Forced versus coupled dynamics in Earth system modelling and prediction
Directory of Open Access Journals (Sweden)
B. Knopf
2005-01-01
find it to be governed by a scaling law that allows us to estimate the probability of artificial predictive skill. In addition to artificial predictability we observe artificial bistability for the forced version, which has not been reported so far. The results suggest that bistability and intermittent predictability, when found in a forced model set-up, should always be cross-validated with alternative coupling designs before being taken for granted.
Standard Model physics results from ATLAS and CMS
Dordevic, Milos
2015-01-01
The most recent results of Standard Model physics studies in proton-proton collisions at 7 TeV and 8 TeV center-of-mass energy based on data recorded by ATLAS and CMS detectors during the LHC Run I are reviewed. This overview includes studies of vector boson production cross section and properties, results on V+jets production with light and heavy flavours, latest VBS and VBF results, measurement of diboson production with an emphasis on ATGC and QTGC searches, as well as results on inclusive jet cross sections with strong coupling constant measurement and PDF constraints. The outlined results are compared to the prediction of the Standard Model.
Manganelli, Serena; Benfenati, Emilio; Manganaro, Alberto; Kulkarni, Sunil; Barton-Maclaren, Tara S; Honma, Masamitsu
2016-10-01
Existing Quantitative Structure-Activity Relationship (QSAR) models have limited predictive capabilities for aromatic azo compounds. In this study, 2 new models were built to predict Ames mutagenicity of this class of compounds. The first one made use of descriptors based on simplified molecular input-line entry system (SMILES), calculated with the CORAL software. The second model was based on the k-nearest neighbors algorithm. The statistical quality of the predictions from single models was satisfactory. The performance further improved when the predictions from these models were combined. The prediction results from other QSAR models for mutagenicity were also evaluated. Most of the existing models were found to be good at finding toxic compounds but resulted in many false positive predictions. The 2 new models specific for this class of compounds avoid this problem thanks to a larger set of related compounds as training set and improved algorithms.
The Danish national passenger model – Model specification and results
DEFF Research Database (Denmark)
Rich, Jeppe; Hansen, Christian Overgaard
2016-01-01
The paper describes the structure of the new Danish National Passenger model and provides on this basis a general discussion of large-scale model design, cost-damping and model validation. The paper aims at providing three main contributions to the existing literature. Firstly, at the general level......, the paper provides a description of a large-scale forecast model with a discussion of the linkage between population synthesis, demand and assignment. Secondly, the paper gives specific attention to model specification and in particular choice of functional form and cost-damping. Specifically we suggest...... a family of logarithmic spline functions and illustrate how it is applied in the model. Thirdly and finally, we evaluate model sensitivity and performance by evaluating the distance distribution and elasticities. In the paper we present results where the spline-function is compared with more traditional...
The prediction of late-onset preeclampsia: Results from a longitudinal proteomics study
Erez, Offer; Romero, Roberto; Maymon, Eli; Chaemsaithong, Piya; Done, Bogdan; Pacora, Percy; Panaitescu, Bogdan; Chaiworapongsa, Tinnakorn; Hassan, Sonia S.
2017-01-01
Background Late-onset preeclampsia is the most prevalent phenotype of this syndrome; nevertheless, only a few biomarkers for its early diagnosis have been reported. We sought to correct this deficiency using a high through-put proteomic platform. Methods A case-control longitudinal study was conducted, including 90 patients with normal pregnancies and 76 patients with late-onset preeclampsia (diagnosed at ≥34 weeks of gestation). Maternal plasma samples were collected throughout gestation (normal pregnancy: 2–6 samples per patient, median of 2; late-onset preeclampsia: 2–6, median of 5). The abundance of 1,125 proteins was measured using an aptamers-based proteomics technique. Protein abundance in normal pregnancies was modeled using linear mixed-effects models to estimate mean abundance as a function of gestational age. Data was then expressed as multiples of-the-mean (MoM) values in normal pregnancies. Multi-marker prediction models were built using data from one of five gestational age intervals (8–16, 16.1–22, 22.1–28, 28.1–32, 32.1–36 weeks of gestation). The predictive performance of the best combination of proteins was compared to placental growth factor (PIGF) using bootstrap. Results 1) At 8–16 weeks of gestation, the best prediction model included only one protein, matrix metalloproteinase 7 (MMP-7), that had a sensitivity of 69% at a false positive rate (FPR) of 20% (AUC = 0.76); 2) at 16.1–22 weeks of gestation, MMP-7 was the single best predictor of late-onset preeclampsia with a sensitivity of 70% at a FPR of 20% (AUC = 0.82); 3) after 22 weeks of gestation, PlGF was the best predictor of late-onset preeclampsia, identifying 1/3 to 1/2 of the patients destined to develop this syndrome (FPR = 20%); 4) 36 proteins were associated with late-onset preeclampsia in at least one interval of gestation (after adjustment for covariates); 5) several biological processes, such as positive regulation of vascular endothelial growth factor
Nonconvex model predictive control for commercial refrigeration
Gybel Hovgaard, Tobias; Boyd, Stephen; Larsen, Lars F. S.; Bagterp Jørgensen, John
2013-08-01
We consider the control of a commercial multi-zone refrigeration system, consisting of several cooling units that share a common compressor, and is used to cool multiple areas or rooms. In each time period we choose cooling capacity to each unit and a common evaporation temperature. The goal is to minimise the total energy cost, using real-time electricity prices, while obeying temperature constraints on the zones. We propose a variation on model predictive control to achieve this goal. When the right variables are used, the dynamics of the system are linear, and the constraints are convex. The cost function, however, is nonconvex due to the temperature dependence of thermodynamic efficiency. To handle this nonconvexity we propose a sequential convex optimisation method, which typically converges in fewer than 5 or so iterations. We employ a fast convex quadratic programming solver to carry out the iterations, which is more than fast enough to run in real time. We demonstrate our method on a realistic model, with a full year simulation and 15-minute time periods, using historical electricity prices and weather data, as well as random variations in thermal load. These simulations show substantial cost savings, on the order of 30%, compared to a standard thermostat-based control system. Perhaps more important, we see that the method exhibits sophisticated response to real-time variations in electricity prices. This demand response is critical to help balance real-time uncertainties in generation capacity associated with large penetration of intermittent renewable energy sources in a future smart grid.
Leptogenesis in minimal predictive seesaw models
Energy Technology Data Exchange (ETDEWEB)
Björkeroth, Fredrik [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Anda, Francisco J. de [Departamento de Física, CUCEI, Universidad de Guadalajara,Guadalajara (Mexico); Varzielas, Ivo de Medeiros; King, Stephen F. [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom)
2015-10-15
We estimate the Baryon Asymmetry of the Universe (BAU) arising from leptogenesis within a class of minimal predictive seesaw models involving two right-handed neutrinos and simple Yukawa structures with one texture zero. The two right-handed neutrinos are dominantly responsible for the “atmospheric” and “solar” neutrino masses with Yukawa couplings to (ν{sub e},ν{sub μ},ν{sub τ}) proportional to (0,1,1) and (1,n,n−2), respectively, where n is a positive integer. The neutrino Yukawa matrix is therefore characterised by two proportionality constants with their relative phase providing a leptogenesis-PMNS link, enabling the lightest right-handed neutrino mass to be determined from neutrino data and the observed BAU. We discuss an SU(5) SUSY GUT example, where A{sub 4} vacuum alignment provides the required Yukawa structures with n=3, while a ℤ{sub 9} symmetry fixes the relatives phase to be a ninth root of unity.
Predictive models reduce talent development costs in female gymnastics.
Pion, Johan; Hohmann, Andreas; Liu, Tianbiao; Lenoir, Matthieu; Segers, Veerle
2017-04-01
This retrospective study focuses on the comparison of different predictive models based on the results of a talent identification test battery for female gymnasts. We studied to what extent these models have the potential to optimise selection procedures, and at the same time reduce talent development costs in female artistic gymnastics. The dropout rate of 243 female elite gymnasts was investigated, 5 years past talent selection, using linear (discriminant analysis) and non-linear predictive models (Kohonen feature maps and multilayer perceptron). The coaches classified 51.9% of the participants correct. Discriminant analysis improved the correct classification to 71.6% while the non-linear technique of Kohonen feature maps reached 73.7% correctness. Application of the multilayer perceptron even classified 79.8% of the gymnasts correctly. The combination of different predictive models for talent selection can avoid deselection of high-potential female gymnasts. The selection procedure based upon the different statistical analyses results in decrease of 33.3% of cost because the pool of selected athletes can be reduced to 92 instead of 138 gymnasts (as selected by the coaches). Reduction of the costs allows the limited resources to be fully invested in the high-potential athletes.
Application of a predictive Bayesian model to environmental accounting.
Anex, R P; Englehardt, J D
2001-03-30
Environmental accounting techniques are intended to capture important environmental costs and benefits that are often overlooked in standard accounting practices. Environmental accounting methods themselves often ignore or inadequately represent large but highly uncertain environmental costs and costs conditioned by specific prior events. Use of a predictive Bayesian model is demonstrated for the assessment of such highly uncertain environmental and contingent costs. The predictive Bayesian approach presented generates probability distributions for the quantity of interest (rather than parameters thereof). A spreadsheet implementation of a previously proposed predictive Bayesian model, extended to represent contingent costs, is described and used to evaluate whether a firm should undertake an accelerated phase-out of its PCB containing transformers. Variability and uncertainty (due to lack of information) in transformer accident frequency and severity are assessed simultaneously using a combination of historical accident data, engineering model-based cost estimates, and subjective judgement. Model results are compared using several different risk measures. Use of the model for incorporation of environmental risk management into a company's overall risk management strategy is discussed.
Lightweight ZERODUR: Validation of Mirror Performance and Mirror Modeling Predictions
Hull, Tony; Stahl, H. Philip; Westerhoff, Thomas; Valente, Martin; Brooks, Thomas; Eng, Ron
2017-01-01
Upcoming spaceborne missions, both moderate and large in scale, require extreme dimensional stability while relying both upon established lightweight mirror materials, and also upon accurate modeling methods to predict performance under varying boundary conditions. We describe tests, recently performed at NASA's XRCF chambers and laboratories in Huntsville Alabama, during which a 1.2 m diameter, f/1.2988% lightweighted SCHOTT lightweighted ZERODUR(TradeMark) mirror was tested for thermal stability under static loads in steps down to 230K. Test results are compared to model predictions, based upon recently published data on ZERODUR(TradeMark). In addition to monitoring the mirror surface for thermal perturbations in XRCF Thermal Vacuum tests, static load gravity deformations have been measured and compared to model predictions. Also the Modal Response(dynamic disturbance) was measured and compared to model. We will discuss the fabrication approach and optomechanical design of the ZERODUR(TradeMark) mirror substrate by SCHOTT, its optical preparation for test by Arizona Optical Systems (AOS). Summarize the outcome of NASA's XRCF tests and model validations
Prediction of Farmers’ Income and Selection of Model ARIMA
Institute of Scientific and Technical Information of China (English)
2010-01-01
Based on the research technology of scholars’ prediction of farmers’ income and the data of per capita annual net income in rural households in Henan Statistical Yearbook from 1979 to 2009,it is found that time series of farmers’ income is in accordance with I(2)non-stationary process.The order-determination and identification of the model are achieved by adopting the correlogram-based analytical method of Box-Jenkins.On the basis of comparing a group of model properties with different parameters,model ARIMA(4,2,2)is built up.The testing result shows that the residual error of the selected model is white noise and accords with the normal distribution,which can be used to predict farmers’ income.The model prediction indicates that income in rural households will continue to increase from 2009 to 2012 and will reach the value of 2 282.4,2 502.9,2 686.9 and 2 884.5 respectively.The growth speed will go down from fast to slow with weak sustainability.
Scaling predictive modeling in drug development with cloud computing.
Moghadam, Behrooz Torabi; Alvarsson, Jonathan; Holm, Marcus; Eklund, Martin; Carlsson, Lars; Spjuth, Ola
2015-01-26
Growing data sets with increased time for analysis is hampering predictive modeling in drug discovery. Model building can be carried out on high-performance computer clusters, but these can be expensive to purchase and maintain. We have evaluated ligand-based modeling on cloud computing resources where computations are parallelized and run on the Amazon Elastic Cloud. We trained models on open data sets of varying sizes for the end points logP and Ames mutagenicity and compare with model building parallelized on a traditional high-performance computing cluster. We show that while high-performance computing results in faster model building, the use of cloud computing resources is feasible for large data sets and scales well within cloud instances. An additional advantage of cloud computing is that the costs of predictive models can be easily quantified, and a choice can be made between speed and economy. The easy access to computational resources with no up-front investments makes cloud computing an attractive alternative for scientists, especially for those without access to a supercomputer, and our study shows that it enables cost-efficient modeling of large data sets on demand within reasonable time.
Ac Synchronous Servo Based On The Armature Voltage Prediction Model
Hoshino, Akihiro; Kuromaru, Hiroshi; Kobayashi, Shinichi
1987-10-01
A new control method of the AC synchro-nous servo-system (Brushless DC servo-system) is discussed. The new system is based on the armature voltage prediction model. Without a resolver-digital-conver-ter nor a tachometer-generator, the resolver provides following three signals to the system immediately, they are the current command, the induced voltage, and the rotor speed. The new method realizes a simple hardware configuration. Experimental results show a good performance of the system.
Predicting future glacial lakes in Austria using different modelling approaches
Otto, Jan-Christoph; Helfricht, Kay; Prasicek, Günther; Buckel, Johannes; Keuschnig, Markus
2017-04-01
Glacier retreat is one of the most apparent consequences of temperature rise in the 20th and 21th centuries in the European Alps. In Austria, more than 240 new lakes have formed in glacier forefields since the Little Ice Age. A similar signal is reported from many mountain areas worldwide. Glacial lakes can constitute important environmental and socio-economic impacts on high mountain systems including water resource management, sediment delivery, natural hazards, energy production and tourism. Their development significantly modifies the landscape configuration and visual appearance of high mountain areas. Knowledge on the location, number and extent of these future lakes can be used to assess potential impacts on high mountain geo-ecosystems and upland-lowland interactions. Information on new lakes is critical to appraise emerging threads and potentials for society. The recent development of regional ice thickness models and their combination with high resolution glacier surface data allows predicting the topography below current glaciers by subtracting ice thickness from glacier surface. Analyzing these modelled glacier bed surfaces reveals overdeepenings that represent potential locations for future lakes. In order to predict the location of future glacial lakes below recent glaciers in the Austrian Alps we apply different ice thickness models using high resolution terrain data and glacier outlines. The results are compared and validated with ice thickness data from geophysical surveys. Additionally, we run the models on three different glacier extents provided by the Austrian Glacier Inventories from 1969, 1998 and 2006. Results of this historical glacier extent modelling are compared to existing glacier lakes and discussed focusing on geomorphological impacts on lake evolution. We discuss model performance and observed differences in the results in order to assess the approach for a realistic prediction of future lake locations. The presentation delivers
A grey NGM(1,1, k) self-memory coupling prediction model for energy consumption prediction.
Guo, Xiaojun; Liu, Sifeng; Wu, Lifeng; Tang, Lingling
2014-01-01
Energy consumption prediction is an important issue for governments, energy sector investors, and other related corporations. Although there are several prediction techniques, selection of the most appropriate technique is of vital importance. As for the approximate nonhomogeneous exponential data sequence often emerging in the energy system, a novel grey NGM(1,1, k) self-memory coupling prediction model is put forward in order to promote the predictive performance. It achieves organic integration of the self-memory principle of dynamic system and grey NGM(1,1, k) model. The traditional grey model's weakness as being sensitive to initial value can be overcome by the self-memory principle. In this study, total energy, coal, and electricity consumption of China is adopted for demonstration by using the proposed coupling prediction technique. The results show the superiority of NGM(1,1, k) self-memory coupling prediction model when compared with the results from the literature. Its excellent prediction performance lies in that the proposed coupling model can take full advantage of the systematic multitime historical data and catch the stochastic fluctuation tendency. This work also makes a significant contribution to the enrichment of grey prediction theory and the extension of its application span.
A Grey NGM(1,1, k) Self-Memory Coupling Prediction Model for Energy Consumption Prediction
Guo, Xiaojun; Liu, Sifeng; Wu, Lifeng; Tang, Lingling
2014-01-01
Energy consumption prediction is an important issue for governments, energy sector investors, and other related corporations. Although there are several prediction techniques, selection of the most appropriate technique is of vital importance. As for the approximate nonhomogeneous exponential data sequence often emerging in the energy system, a novel grey NGM(1,1, k) self-memory coupling prediction model is put forward in order to promote the predictive performance. It achieves organic integration of the self-memory principle of dynamic system and grey NGM(1,1, k) model. The traditional grey model's weakness as being sensitive to initial value can be overcome by the self-memory principle. In this study, total energy, coal, and electricity consumption of China is adopted for demonstration by using the proposed coupling prediction technique. The results show the superiority of NGM(1,1, k) self-memory coupling prediction model when compared with the results from the literature. Its excellent prediction performance lies in that the proposed coupling model can take full advantage of the systematic multitime historical data and catch the stochastic fluctuation tendency. This work also makes a significant contribution to the enrichment of grey prediction theory and the extension of its application span. PMID:25054174
Reliable Estimation of Prediction Uncertainty for Physicochemical Property Models.
Proppe, Jonny; Reiher, Markus
2017-07-11
One of the major challenges in computational science is to determine the uncertainty of a virtual measurement, that is the prediction of an observable based on calculations. As highly accurate first-principles calculations are in general unfeasible for most physical systems, one usually resorts to parameteric property models of observables, which require calibration by incorporating reference data. The resulting predictions and their uncertainties are sensitive to systematic errors such as inconsistent reference data, parametric model assumptions, or inadequate computational methods. Here, we discuss the calibration of property models in the light of bootstrapping, a sampling method that can be employed for identifying systematic errors and for reliable estimation of the prediction uncertainty. We apply bootstrapping to assess a linear property model linking the (57)Fe Mössbauer isomer shift to the contact electron density at the iron nucleus for a diverse set of 44 molecular iron compounds. The contact electron density is calculated with 12 density functionals across Jacob's ladder (PWLDA, BP86, BLYP, PW91, PBE, M06-L, TPSS, B3LYP, B3PW91, PBE0, M06, TPSSh). We provide systematic-error diagnostics and reliable, locally resolved uncertainties for isomer-shift predictions. Pure and hybrid density functionals yield average prediction uncertainties of 0.06-0.08 mm s(-1) and 0.04-0.05 mm s(-1), respectively, the latter being close to the average experimental uncertainty of 0.02 mm s(-1). Furthermore, we show that both model parameters and prediction uncertainty depend significantly on the composition and number of reference data points. Accordingly, we suggest that rankings of density functionals based on performance measures (e.g., the squared coefficient of correlation, r(2), or the root-mean-square error, RMSE) should not be inferred from a single data set. This study presents the first statistically rigorous calibration analysis for theoretical M
Predictability in models of the atmospheric circulation.
Houtekamer, P.L.
1992-01-01
It will be clear from the above discussions that skill forecasts are still in their infancy. Operational skill predictions do not exist. One is still struggling to prove that skill predictions, at any range, have any quality at all. It is not clear what the statistics of the analysis error are. The
CMS standard model Higgs boson results
Directory of Open Access Journals (Sweden)
Garcia-Abia Pablo
2013-11-01
Full Text Available In July 2012 CMS announced the discovery of a new boson with properties resembling those of the long-sought Higgs boson. The analysis of the proton-proton collision data recorded by the CMS detector at the LHC, corresponding to integrated luminosities of 5.1 fb−1 at √s = 7 TeV and 19.6 fb−1 at √s = 8 TeV, confirm the Higgs-like nature of the new boson, with a signal strength associated with vector bosons and fermions consistent with the expectations for a standard model (SM Higgs boson, and spin-parity clearly favouring the scalar nature of the new boson. In this note I review the updated results of the CMS experiment.
Contact prediction in protein modeling: Scoring, folding and refinement of coarse-grained models
Directory of Open Access Journals (Sweden)
Kolinski Andrzej
2008-08-01
Full Text Available Abstract Background Several different methods for contact prediction succeeded within the Sixth Critical Assessment of Techniques for Protein Structure Prediction (CASP6. The most relevant were non-local contact predictions for targets from the most difficult categories: fold recognition-analogy and new fold. Such contacts could provide valuable structural information in case a template structure cannot be found in the PDB. Results We described comprehensive tests of the effectiveness of contact data in various aspects of de novo modeling with CABS, an algorithm which was used successfully in CASP6 by the Kolinski-Bujnicki group. We used the predicted contacts in a simple scoring function for the post-simulation ranking of protein models and as a soft bias in the folding simulations and in the fold-refinement procedure. The latter approach turned out to be the most successful. The CABS force field used in the Replica Exchange Monte Carlo simulations cooperated with the true contacts and discriminated the false ones, which resulted in an improvement of the majority of Kolinski-Bujnicki's protein models. In the modeling we tested different sets of predicted contact data submitted to the CASP6 server. According to our results, the best performing were the contacts with the accuracy balanced with the coverage, obtained either from the best two predictors only or by a consensus from as many predictors as possible. Conclusion Our tests have shown that theoretically predicted contacts can be very beneficial for protein structure prediction. Depending on the protein modeling method, a contact data set applied should be prepared with differently balanced coverage and accuracy of predicted contacts. Namely, high coverage of contact data is important for the model ranking and high accuracy for the folding simulations.
Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics
Directory of Open Access Journals (Sweden)
Cecilia Noecker
2015-03-01
Full Text Available Upon infection of a new host, human immunodeficiency virus (HIV replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccination and/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematical model of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV. First, we found that the mode of virus production by infected cells (budding vs. bursting has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral
An approach to model validation and model-based prediction -- polyurethane foam case study.
Energy Technology Data Exchange (ETDEWEB)
Dowding, Kevin J.; Rutherford, Brian Milne
2003-07-01
Enhanced software methodology and improved computing hardware have advanced the state of simulation technology to a point where large physics-based codes can be a major contributor in many systems analyses. This shift toward the use of computational methods has brought with it new research challenges in a number of areas including characterization of uncertainty, model validation, and the analysis of computer output. It is these challenges that have motivated the work described in this report. Approaches to and methods for model validation and (model-based) prediction have been developed recently in the engineering, mathematics and statistical literatures. In this report we have provided a fairly detailed account of one approach to model validation and prediction applied to an analysis investigating thermal decomposition of polyurethane foam. A model simulates the evolution of the foam in a high temperature environment as it transforms from a solid to a gas phase. The available modeling and experimental results serve as data for a case study focusing our model validation and prediction developmental efforts on this specific thermal application. We discuss several elements of the ''philosophy'' behind the validation and prediction approach: (1) We view the validation process as an activity applying to the use of a specific computational model for a specific application. We do acknowledge, however, that an important part of the overall development of a computational simulation initiative is the feedback provided to model developers and analysts associated with the application. (2) We utilize information obtained for the calibration of model parameters to estimate the parameters and quantify uncertainty in the estimates. We rely, however, on validation data (or data from similar analyses) to measure the variability that contributes to the uncertainty in predictions for specific systems or units (unit-to-unit variability). (3) We perform statistical
Models for predicting objective function weights in prostate cancer IMRT
Energy Technology Data Exchange (ETDEWEB)
Boutilier, Justin J., E-mail: j.boutilier@mail.utoronto.ca; Lee, Taewoo [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8 (Canada); Craig, Tim [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, 610 University of Avenue, Toronto, Ontario M5T 2M9, Canada and Department of Radiation Oncology, University of Toronto, 148 - 150 College Street, Toronto, Ontario M5S 3S2 (Canada); Sharpe, Michael B. [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, 610 University of Avenue, Toronto, Ontario M5T 2M9 (Canada); Department of Radiation Oncology, University of Toronto, 148 - 150 College Street, Toronto, Ontario M5S 3S2 (Canada); Techna Institute for the Advancement of Technology for Health, 124 - 100 College Street, Toronto, Ontario M5G 1P5 (Canada); Chan, Timothy C. Y. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada and Techna Institute for the Advancement of Technology for Health, 124 - 100 College Street, Toronto, Ontario M5G 1P5 (Canada)
2015-04-15
Purpose: To develop and evaluate the clinical applicability of advanced machine learning models that simultaneously predict multiple optimization objective function weights from patient geometry for intensity-modulated radiation therapy of prostate cancer. Methods: A previously developed inverse optimization method was applied retrospectively to determine optimal objective function weights for 315 treated patients. The authors used an overlap volume ratio (OV) of bladder and rectum for different PTV expansions and overlap volume histogram slopes (OVSR and OVSB for the rectum and bladder, respectively) as explanatory variables that quantify patient geometry. Using the optimal weights as ground truth, the authors trained and applied three prediction models: logistic regression (LR), multinomial logistic regression (MLR), and weighted K-nearest neighbor (KNN). The population average of the optimal objective function weights was also calculated. Results: The OV at 0.4 cm and OVSR at 0.1 cm features were found to be the most predictive of the weights. The authors observed comparable performance (i.e., no statistically significant difference) between LR, MLR, and KNN methodologies, with LR appearing to perform the best. All three machine learning models outperformed the population average by a statistically significant amount over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and dose to the bladder, rectum, CTV, and PTV. When comparing the weights directly, the LR model predicted bladder and rectum weights that had, on average, a 73% and 74% relative improvement over the population average weights, respectively. The treatment plans resulting from the LR weights had, on average, a rectum V70Gy that was 35% closer to the clinical plan and a bladder V70Gy that was 29% closer, compared to the population average weights. Similar results were observed for all other clinical metrics. Conclusions: The authors demonstrated that the KNN and MLR
The Prediction Model of Dam Uplift Pressure Based on Random Forest
Li, Xing; Su, Huaizhi; Hu, Jiang
2017-09-01
The prediction of the dam uplift pressure is of great significance in the dam safety monitoring. Based on the comprehensive consideration of various factors, 18 parameters are selected as the main factors affecting the prediction of uplift pressure, use the actual monitoring data of uplift pressure as the evaluation factors for the prediction model, based on the random forest algorithm and support vector machine to build the dam uplift pressure prediction model to predict the uplift pressure of the dam, and the predict performance of the two models were compared and analyzed. At the same time, based on the established random forest prediction model, the significance of each factor is analyzed, and the importance of each factor of the prediction model is calculated by the importance function. Results showed that: (1) RF prediction model can quickly and accurately predict the uplift pressure value according to the influence factors, the average prediction accuracy is above 96%, compared with the support vector machine (SVM) model, random forest model has better robustness, better prediction precision and faster convergence speed, and the random forest model is more robust to missing data and unbalanced data. (2) The effect of water level on uplift pressure is the largest, and the influence of rainfall on the uplift pressure is the smallest compared with other factors.
Predicting aquifer response time for application in catchment modeling.
Walker, Glen R; Gilfedder, Mat; Dawes, Warrick R; Rassam, David W
2015-01-01
It is well established that changes in catchment land use can lead to significant impacts on water resources. Where land-use changes increase evapotranspiration there is a resultant decrease in groundwater recharge, which in turn decreases groundwater discharge to streams. The response time of changes in groundwater discharge to a change in recharge is a key aspect of predicting impacts of land-use change on catchment water yield. Predicting these impacts across the large catchments relevant to water resource planning can require the estimation of groundwater response times from hundreds of aquifers. At this scale, detailed site-specific measured data are often absent, and available spatial data are limited. While numerical models can be applied, there is little advantage if there are no detailed data to parameterize them. Simple analytical methods are useful in this situation, as they allow the variability in groundwater response to be incorporated into catchment hydrological models, with minimal modeling overhead. This paper describes an analytical model which has been developed to capture some of the features of real, sloping aquifer systems. The derived groundwater response timescale can be used to parameterize a groundwater discharge function, allowing groundwater response to be predicted in relation to different broad catchment characteristics at a level of complexity which matches the available data. The results from the analytical model are compared to published field data and numerical model results, and provide an approach with broad application to inform water resource planning in other large, data-scarce catchments. © 2014, CommonWealth of Australia. Groundwater © 2014, National Ground Water Association.
Allostasis: a model of predictive regulation.
Sterling, Peter
2012-04-12
The premise of the standard regulatory model, "homeostasis", is flawed: the goal of regulation is not to preserve constancy of the internal milieu. Rather, it is to continually adjust the milieu to promote survival and reproduction. Regulatory mechanisms need to be efficient, but homeostasis (error-correction by feedback) is inherently inefficient. Thus, although feedbacks are certainly ubiquitous, they could not possibly serve as the primary regulatory mechanism. A newer model, "allostasis", proposes that efficient regulation requires anticipating needs and preparing to satisfy them before they arise. The advantages: (i) errors are reduced in magnitude and frequency; (ii) response capacities of different components are matched -- to prevent bottlenecks and reduce safety factors; (iii) resources are shared between systems to minimize reserve capacities; (iv) errors are remembered and used to reduce future errors. This regulatory strategy requires a dedicated organ, the brain. The brain tracks multitudinous variables and integrates their values with prior knowledge to predict needs and set priorities. The brain coordinates effectors to mobilize resources from modest bodily stores and enforces a system of flexible trade-offs: from each organ according to its ability, to each organ according to its need. The brain also helps regulate the internal milieu by governing anticipatory behavior. Thus, an animal conserves energy by moving to a warmer place - before it cools, and it conserves salt and water by moving to a cooler one before it sweats. The behavioral strategy requires continuously updating a set of specific "shopping lists" that document the growing need for each key component (warmth, food, salt, water). These appetites funnel into a common pathway that employs a "stick" to drive the organism toward filling the need, plus a "carrot" to relax the organism when the need is satisfied. The stick corresponds broadly to the sense of anxiety, and the carrot broadly to
Institute of Scientific and Technical Information of China (English)
LU Xiao-li
2012-01-01
I select 32 samples concerning per capita living consumption of rural residents in Sichuan Province during the period 1978-2009. First, using Markov prediction method, the growth rate of living consumption level in the future is predicted to largely range from 10% to 20%. Then, in order to improve the prediction accuracy, time variable t is added into the traditional ARMA model for modeling and prediction. The prediction results show that the average relative error rate is 1.56%, and the absolute value of relative error during the period 2006-2009 is less than 0.5%. Finally, I compare the prediction results during the period 2010-2012 by Markov prediction method and ARMA model, respectively, indicating that the two are consistent in terms of growth rate of living consumption, and the prediction results are reliable. The results show that under the similar policies, rural residents’ consumer demand in Sichuan Province will continue to grow in the short term, so it is necessary to further expand the consumer market.
Narayan, Hari K; Wei, Wei; Feng, Ziding; Lenihan, Daniel; Plappert, Ted; Englefield, Virginia; Fisch, Michael; Ky, Bonnie
2017-01-01
Background Our objective was to determine the relevance of changes in myocardial mechanics in diagnosing and predicting cancer therapeutics-related cardiac dysfunction (CTRCD) in a community-based population treated with anthracyclines. Methods Quantitative measures of cardiac mechanics were derived from 493 echocardiograms in 165 participants enrolled in the PREDICT study (A Multicenter Study in Patients Undergoing AnthRacycline-Based Chemotherapy to Assess the Effectiveness of Using Biomarkers to Detect and Identify Cardiotoxicity and Describe Treatment). Echocardiograms were obtained primarily at baseline (prior to anthracyclines), 6 and 12 months. Predictors included changes in strain; strain rate; indices of contractile function derived from the end-systolic pressure–volume relationship (end-systolic elastance (Eessb) and the left ventricular (LV) volume at an end-systolic pressure of 100 mm Hg (V100)); total arterial load (effective arterial elastance (Ea)) and ventricular–arterial coupling (Ea/Eessb). Logistic regression models determined the diagnostic and prognostic associations of changes in these measures and CTRCD, defined as a LV ejection fraction decline ≥10 to mechanics are diagnostic and predictive of cardiac dysfunction with anthracycline chemotherapy in community populations. Our findings support the non-invasive assessment of measures of myocardial mechanics more broadly in clinical practice and emphasise the role of serial assessments of these measures during and after cardiotoxic cancer therapy. Trial registration number NCT01032278; Pre-results. PMID:28123764
Predicting diabetic nephropathy using a multifactorial genetic model.
Directory of Open Access Journals (Sweden)
Ilana Blech
Full Text Available AIMS: The tendency to develop diabetic nephropathy is, in part, genetically determined, however this genetic risk is largely undefined. In this proof-of-concept study, we tested the hypothesis that combined analysis of multiple genetic variants can improve prediction. METHODS: Based on previous reports, we selected 27 SNPs in 15 genes from metabolic pathways involved in the pathogenesis of diabetic nephropathy and genotyped them in 1274 Ashkenazi or Sephardic Jewish patients with Type 1 or Type 2 diabetes of >10 years duration. A logistic regression model was built using a backward selection algorithm and SNPs nominally associated with nephropathy in our population. The model was validated by using random "training" (75% and "test" (25% subgroups of the original population and by applying the model to an independent dataset of 848 Ashkenazi patients. RESULTS: The logistic model based on 5 SNPs in 5 genes (HSPG2, NOS3, ADIPOR2, AGER, and CCL5 and 5 conventional variables (age, sex, ethnicity, diabetes type and duration, and allowing for all possible two-way interactions, predicted nephropathy in our initial population (C-statistic = 0.672 better than a model based on conventional variables only (C = 0.569. In the independent replication dataset, although the C-statistic of the genetic model decreased (0.576, it remained highly associated with diabetic nephropathy (χ(2 = 17.79, p<0.0001. In the replication dataset, the model based on conventional variables only was not associated with nephropathy (χ(2 = 3.2673, p = 0.07. CONCLUSION: In this proof-of-concept study, we developed and validated a genetic model in the Ashkenazi/Sephardic population predicting nephropathy more effectively than a similarly constructed non-genetic model. Further testing is required to determine if this modeling approach, using an optimally selected panel of genetic markers, can provide clinically useful prediction and if generic models can be
Study on Lumped Kinetic Model for FDFCC II. Validation and Prediction of Model
Institute of Scientific and Technical Information of China (English)
Wu Feiyue; Weng Huixin; Luo Shixian
2008-01-01
On the basis of formulating the 9-lump kinetic model for gasoline catalytic upgrading and the 12-lump kinetic model for heavy oil FCC, this paper is aimed at development of a combined kinetic model for a typical FDFCC process after analyzing the coupled relationship and combination of these two models. The model is also verified by using commercial data, the results of which showed that the model can better predict the product yields and their quality, with the relative errors between the main products of the unit and commercial data being less than five percent. Furthermore, the combined model is used to predict and optimize the operating conditions for gasoline riser and heavy oil riser in FDFCC. So this paper can offer some guidance for the processing of FDFCC and is instructive to model research and development of such multi-reactor process and combined process.
Applicative limitations of sediment transport on predictive modeling in geomorphology
Institute of Scientific and Technical Information of China (English)
WEIXiang; LIZhanbin
2004-01-01
Sources of uncertainty or error that arise in attempting to scale up the results of laboratory-scale sediment transport studies for predictive modeling of geomorphic systems include: (i) model imperfection, (ii) omission of important processes, (iii) lack of knowledge of initial conditions, (iv) sensitivity to initial conditions, (v) unresolved heterogeneity, (vi) occurrence of external forcing, and (vii) inapplicability of the factor of safety concept. Sources of uncertainty that are unimportant or that can be controlled at small scales and over short time scales become important in large-scale applications and over long time scales. Control and repeatability, hallmarks of laboratory-scale experiments, are usually lacking at the large scales characteristic of geomorphology. Heterogeneity is an important concomitant of size, and tends to make large systems unique. Uniqueness implies that prediction cannot be based upon first-principles quantitative modeling alone, but must be a function of system history as well. Periodic data collection, feedback, and model updating are essential where site-specific prediction is required.
Data-Driven Modeling and Prediction of Arctic Sea Ice
Kondrashov, Dmitri; Chekroun, Mickael; Ghil, Michael
2016-04-01
We present results of data-driven predictive analyses of sea ice over the main Arctic regions. Our approach relies on the Multilayer Stochastic Modeling (MSM) framework of Kondrashov, Chekroun and Ghil [Physica D, 2015] and it leads to probabilistic prognostic models of sea ice concentration (SIC) anomalies on seasonal time scales. This approach is applied to monthly time series of state-of-the-art data-adaptive decompositions of SIC and selected climate variables over the Arctic. We evaluate the predictive skill of MSM models by performing retrospective forecasts with "no-look ahead" for up to 6-months ahead. It will be shown in particular that the memory effects included intrinsically in the formulation of our non-Markovian MSM models allow for improvements of the prediction skill of large-amplitude SIC anomalies in certain Arctic regions on the one hand, and of September Sea Ice Extent, on the other. Further improvements allowed by the MSM framework will adopt a nonlinear formulation and explore next-generation data-adaptive decompositions, namely modification of Principal Oscillation Patterns (POPs) and rotated Multichannel Singular Spectrum Analysis (M-SSA).
Social network models predict movement and connectivity in ecological landscapes
Fletcher, Robert J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, Wiley M.
2011-01-01
Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.
Required Collaborative Work in Online Courses: A Predictive Modeling Approach
Smith, Marlene A.; Kellogg, Deborah L.
2015-01-01
This article describes a predictive model that assesses whether a student will have greater perceived learning in group assignments or in individual work. The model produces correct classifications 87.5% of the time. The research is notable in that it is the first in the education literature to adopt a predictive modeling methodology using data…
A prediction model for assessing residential radon concentration in Switzerland
Hauri, D.D.; Huss, A.; Zimmermann, F.; Kuehni, C.E.; Roosli, M.
2012-01-01
Indoor radon is regularly measured in Switzerland. However, a nationwide model to predict residential radon levels has not been developed. The aim of this study was to develop a prediction model to assess indoor radon concentrations in Switzerland. The model was based on 44,631 measurements from the
Directory of Open Access Journals (Sweden)
Edel Donnelly
2012-11-01
Full Text Available This paper reviews the selection methods used in the design of an ice-bank thermal energy storage (TES application in the Carroll’s building in Dundalk IT. The complexities of the interaction between the on- site wind turbine, existing campus load and the refurbished building meant that traditional calculation methods and programmes could not be used and specialist software had to be developed during the design process. The research reviews this tool against the actual results obtained from the operation in the building for one college term of full time use. The paper also examines the operation of the system in order to produce recommendations for its potential modification to improve its efficiency and utilisation. Simulation software is evaluated and maximum import capacity is minimised. Significant budget constraints limited the level of control and metering that could be provided for the project, and this paper demonstrates some investigative processes that were used to overcome the limitations on data availability.
Using Random Forest Models to Predict Organizational Violence
Levine, Burton; Bobashev, Georgly
2012-01-01
We present a methodology to access the proclivity of an organization to commit violence against nongovernment personnel. We fitted a Random Forest model using the Minority at Risk Organizational Behavior (MAROS) dataset. The MAROS data is longitudinal; so, individual observations are not independent. We propose a modification to the standard Random Forest methodology to account for the violation of the independence assumption. We present the results of the model fit, an example of predicting violence for an organization; and finally, we present a summary of the forest in a "meta-tree,"
Model Predictive Control for the Operation of Building Cooling Systems
Energy Technology Data Exchange (ETDEWEB)
Ma, Yudong; Borrelli, Francesco; Hencey, Brandon; Coffey, Brian; Bengea, Sorin; Haves, Philip
2010-06-29
A model-based predictive control (MPC) is designed for optimal thermal energy storage in building cooling systems. We focus on buildings equipped with a water tank used for actively storing cold water produced by a series of chillers. Typically the chillers are operated at night to recharge the storage tank in order to meet the building demands on the following day. In this paper, we build on our previous work, improve the building load model, and present experimental results. The experiments show that MPC can achieve reduction in the central plant electricity cost and improvement of its efficiency.
Fuel Conditioning Facility Electrorefiner Model Predictions versus Measurements
Energy Technology Data Exchange (ETDEWEB)
D Vaden
2007-10-01
Electrometallurgical treatment of spent nuclear fuel is performed in the Fuel Conditioning Facility (FCF) at the Idaho National Laboratory (INL) by electrochemically separating uranium from the fission products and structural materials in a vessel called an electrorefiner (ER). To continue processing without waiting for sample analyses to assess process conditions, an ER process model predicts the composition of the ER inventory and effluent streams via multicomponent, multi-phase chemical equilibrium for chemical reactions and a numerical solution to differential equations for electro-chemical transport. The results of the process model were compared to the electrorefiner measured data.
Prediction model based on decision tree analysis for laccase mediators.
Medina, Fabiola; Aguila, Sergio; Baratto, Maria Camilla; Martorana, Andrea; Basosi, Riccardo; Alderete, Joel B; Vazquez-Duhalt, Rafael
2013-01-10
A Structure Activity Relationship (SAR) study for laccase mediator systems was performed in order to correctly classify different natural phenolic mediators. Decision tree (DT) classification models with a set of five quantum-chemical calculated molecular descriptors were used. These descriptors included redox potential (ɛ°), ionization energy (E(i)), pK(a), enthalpy of formation of radical (Δ(f)H), and OH bond dissociation energy (D(O-H)). The rationale for selecting these descriptors is derived from the laccase-mediator mechanism. To validate the DT predictions, the kinetic constants of different compounds as laccase substrates, their ability for pesticide transformation as laccase-mediators, and radical stability were experimentally determined using Coriolopsis gallica laccase and the pesticide dichlorophen. The prediction capability of the DT model based on three proposed descriptors showed a complete agreement with the obtained experimental results. Copyright © 2012 Elsevier Inc. All rights reserved.
Interpolation techniques in robust constrained model predictive control
Kheawhom, Soorathep; Bumroongsri, Pornchai
2017-05-01
This work investigates interpolation techniques that can be employed on off-line robust constrained model predictive control for a discrete time-varying system. A sequence of feedback gains is determined by solving off-line a series of optimal control optimization problems. A sequence of nested corresponding robustly positive invariant set, which is either ellipsoidal or polyhedral set, is then constructed. At each sampling time, the smallest invariant set containing the current state is determined. If the current invariant set is the innermost set, the pre-computed gain associated with the innermost set is applied. If otherwise, a feedback gain is variable and determined by a linear interpolation of the pre-computed gains. The proposed algorithms are illustrated with case studies of a two-tank system. The simulation results showed that the proposed interpolation techniques significantly improve control performance of off-line robust model predictive control without much sacrificing on-line computational performance.
DEFF Research Database (Denmark)
Albitar, Maher; Ma, Wanlong; Lund, Lars;
2016-01-01
a scoring system to predict prostate biopsy results and the presence of high grade PCa. METHODS: Urine and plasma specimens were collected from 319 patients recommended for prostate biopsies. We measured the gene expression levels of UAP1, PDLIM5, IMPDH2, HSPD1, PCA3, PSA, TMPRSS2, ERG, GAPDH, B2M, AR......, and PTEN in plasma and urine. Patient age, serum prostate-specific antigen (sPSA) level, and biomarkers data were used to develop two independent algorithms, one for predicting the presence of PCa and the other for predicting high-grade PCa (Gleason score [GS] ≥7). RESULTS: Using training and validation...... data sets, a model for predicting the outcome of PCa biopsy was developed with an area under receiver operating characteristic curve (AUROC) of 0.87. The positive and negative predictive values (PPV and NPV) were 87% and 63%, respectively. We then developed a second algorithm to identify patients...
Distributional Analysis for Model Predictive Deferrable Load Control
Chen, Niangjun; Gan, Lingwen; Low, Steven H.; Wierman, Adam
2014-01-01
Deferrable load control is essential for handling the uncertainties associated with the increasing penetration of renewable generation. Model predictive control has emerged as an effective approach for deferrable load control, and has received considerable attention. In particular, previous work has analyzed the average-case performance of model predictive deferrable load control. However, to this point, distributional analysis of model predictive deferrable load control has been elusive. In ...
Roche, Daniel B; Buenavista, Maria T; Tetchner, Stuart J; McGuffin, Liam J
2011-07-01
The IntFOLD server is a novel independent server that integrates several cutting edge methods for the prediction of structure and function from sequence. Our guiding principles behind the server development were as follows: (i) to provide a simple unified resource that makes our prediction software accessible to all and (ii) to produce integrated output for predictions that can be easily interpreted. The output for predictions is presented as a simple table that summarizes all results graphically via plots and annotated 3D models. The raw machine readable data files for each set of predictions are also provided for developers, which comply with the Critical Assessment of Methods for Protein Structure Prediction (CASP) data standards. The server comprises an integrated suite of five novel methods: nFOLD4, for tertiary structure prediction; ModFOLD 3.0, for model quality assessment; DISOclust 2.0, for disorder prediction; DomFOLD 2.0 for domain prediction; and FunFOLD 1.0, for ligand binding site prediction. Predictions from the IntFOLD server were found to be competitive in several categories in the recent CASP9 experiment. The IntFOLD server is available at the following web site: http://www.reading.ac.uk/bioinf/IntFOLD/.
Prediction for Major Adverse Outcomes in Cardiac Surgery: Comparison of Three Prediction Models
Directory of Open Access Journals (Sweden)
Cheng-Hung Hsieh
2007-09-01
Conclusion: The Parsonnet score performed as well as the logistic regression models in predicting major adverse outcomes. The Parsonnet score appears to be a very suitable model for clinicians to use in risk stratification of cardiac surgery.
Addressing Conceptual Model Uncertainty in the Evaluation of Model Prediction Errors
Carrera, J.; Pool, M.
2014-12-01
Model predictions are uncertain because of errors in model parameters, future forcing terms, and model concepts. The latter remain the largest and most difficult to assess source of uncertainty in long term model predictions. We first review existing methods to evaluate conceptual model uncertainty. We argue that they are highly sensitive to the ingenuity of the modeler, in the sense that they rely on the modeler's ability to propose alternative model concepts. Worse, we find that the standard practice of stochastic methods leads to poor, potentially biased and often too optimistic, estimation of actual model errors. This is bad news because stochastic methods are purported to properly represent uncertainty. We contend that the problem does not lie on the stochastic approach itself, but on the way it is applied. Specifically, stochastic inversion methodologies, which demand quantitative information, tend to ignore geological understanding, which is conceptually rich. We illustrate some of these problems with the application to Mar del Plata aquifer, where extensive data are available for nearly a century. Geologically based models, where spatial variability is handled through zonation, yield calibration fits similar to geostatiscally based models, but much better predictions. In fact, the appearance of the stochastic T fields is similar to the geologically based models only in areas with high density of data. We take this finding to illustrate the ability of stochastic models to accommodate many data, but also, ironically, their inability to address conceptual model uncertainty. In fact, stochastic model realizations tend to be too close to the "most likely" one (i.e., they do not really realize the full conceptualuncertainty). The second part of the presentation is devoted to argue that acknowledging model uncertainty may lead to qualitatively different decisions than just working with "most likely" model predictions. Therefore, efforts should concentrate on
Predicting the ungauged basin: model validation and realism assessment
van Emmerik, Tim; Mulder, Gert; Eilander, Dirk; Piet, Marijn; Savenije, Hubert
2016-04-01
The hydrological decade on Predictions in Ungauged Basins (PUB) [1] led to many new insights in model development, calibration strategies, data acquisition and uncertainty analysis. Due to a limited amount of published studies on genuinely ungauged basins, model validation and realism assessment of model outcome has not been discussed to a great extent. With this study [2] we aim to contribute to the discussion on how one can determine the value and validity of a hydrological model developed for an ungauged basin. As in many cases no local, or even regional, data are available, alternative methods should be applied. Using a PUB case study in a genuinely ungauged basin in southern Cambodia, we give several examples of how one can use different types of soft data to improve model design, calibrate and validate the model, and assess the realism of the model output. A rainfall-runoff model was coupled to an irrigation reservoir, allowing the use of additional and unconventional data. The model was mainly forced with remote sensing data, and local knowledge was used to constrain the parameters. Model realism assessment was done using data from surveys. This resulted in a successful reconstruction of the reservoir dynamics, and revealed the different hydrological characteristics of the two topographical classes. We do not present a generic approach that can be transferred to other ungauged catchments, but we aim to show how clever model design and alternative data acquisition can result in a valuable hydrological model for ungauged catchments. [1] Sivapalan, M., Takeuchi, K., Franks, S., Gupta, V., Karambiri, H., Lakshmi, V., et al. (2003). IAHS decade on predictions in ungauged basins (PUB), 2003-2012: shaping an exciting future for the hydrological sciences. Hydrol. Sci. J. 48, 857-880. doi: 10.1623/hysj.48.6.857.51421 [2] van Emmerik, T., Mulder, G., Eilander, D., Piet, M. and Savenije, H. (2015). Predicting the ungauged basin: model validation and realism assessment
Committee neural network model for rock permeability prediction
Bagheripour, Parisa
2014-05-01
Quantitative formulation between conventional well log data and rock permeability, undoubtedly the most critical parameter of hydrocarbon reservoir, could be a potent tool for solving problems associated with almost all tasks involved in petroleum engineering. The present study proposes a novel approach in charge of the quest for high-accuracy method of permeability prediction. At the first stage, overlapping of conventional well log data (inputs) was eliminated by means of principal component analysis (PCA). Subsequently, rock permeability was predicted from extracted PCs using multi-layer perceptron (MLP), radial basis function (RBF), and generalized regression neural network (GRNN). Eventually, a committee neural network (CNN) was constructed by virtue of genetic algorithm (GA) to enhance the precision of ultimate permeability prediction. The values of rock permeability, derived from the MPL, RBF, and GRNN models, were used as inputs of CNN. The proposed CNN combines results of different ANNs to reap beneficial advantages of all models and consequently producing more accurate estimations. The GA, embedded in the structure of the CNN assigns a weight factor to each ANN which shows relative involvement of each ANN in overall prediction of rock permeability from PCs of conventional well logs. The proposed methodology was applied in Kangan and Dalan Formations, which are the major carbonate reservoir rocks of South Pars Gas Field-Iran. A group of 350 data points was used to establish the CNN model, and a group of 245 data points was employed to assess the reliability of constructed CNN model. Results showed that the CNN method performed better than individual intelligent systems performing alone.
On hydrological model complexity, its geometrical interpretations and prediction uncertainty
Arkesteijn, E.C.M.M.; Pande, S.
2013-01-01
Knowledge of hydrological model complexity can aid selection of an optimal prediction model out of a set of available models. Optimal model selection is formalized as selection of the least complex model out of a subset of models that have lower empirical risk. This may be considered equivalent to
Directory of Open Access Journals (Sweden)
Dillys van Vliet
Full Text Available In asthma management guidelines the primary goal of treatment is asthma control. To date, asthma control, guided by symptoms and lung function, is not optimal in many children and adults. Direct monitoring of airway inflammation in exhaled breath may improve asthma control and reduce the number of exacerbations.1 To study the use of fractional exhaled nitric oxide (FeNO and inflammatory markers in exhaled breath condensate (EBC, in the prediction of asthma exacerbations in a pediatric population. 2 To study the predictive power of these exhaled inflammatory markers combined with clinical parameters.96 asthmatic children were included in this one-year prospective observational study, with clinical visits every 2 months. Between visits, daily symptom scores and lung function were recorded using a home monitor. During clinical visits, asthma control and FeNO were assessed. Furthermore, lung function measurements were performed and EBC was collected. Statistical analysis was performed using a test dataset and validation dataset for 1 conditionally specified models, receiver operating characteristic-curves (ROC-curves; 2 k-nearest neighbors algorithm.Three conditionally specified predictive models were constructed. Model 1 included inflammatory markers in EBC alone, model 2 included FeNO plus clinical characteristics and the ACQ score, and model 3 included all the predictors used in model 1 and 2. The area under the ROC-curves was estimated as 47%, 54% and 59% for models 1, 2 and 3 respectively. The k-nearest neighbors predictive algorithm, using the information of all the variables in model 3, produced correct predictions for 52% of the exacerbations in the validation dataset.The predictive power of FeNO and inflammatory markers in EBC for prediction of an asthma exacerbation was low, even when combined with clinical characteristics and symptoms. Qualitative improvement of the chemical analysis of EBC may lead to a better non-invasive prediction of
Dinucleotide controlled null models for comparative RNA gene prediction
Directory of Open Access Journals (Sweden)
Gesell Tanja
2008-05-01
Full Text Available Abstract Background Comparative prediction of RNA structures can be used to identify functional noncoding RNAs in genomic screens. It was shown recently by Babak et al. [BMC Bioinformatics. 8:33] that RNA gene prediction programs can be biased by the genomic dinucleotide content, in particular those programs using a thermodynamic folding model including stacking energies. As a consequence, there is need for dinucleotide-preserving control strategies to assess the significance of such predictions. While there have been randomization algorithms for single sequences for many years, the problem has remained challenging for multiple alignments and there is currently no algorithm available. Results We present a program called SISSIz that simulates multiple alignments of a given average dinucleotide content. Meeting additional requirements of an accurate null model, the randomized alignments are on average of the same sequence diversity and preserve local conservation and gap patterns. We make use of a phylogenetic substitution model that includes overlapping dependencies and site-specific rates. Using fast heuristics and a distance based approach, a tree is estimated under this model which is used to guide the simulations. The new algorithm is tested on vertebrate genomic alignments and the effect on RNA structure predictions is studied. In addition, we directly combined the new null model with the RNAalifold consensus folding algorithm giving a new variant of a thermodynamic structure based RNA gene finding program that is not biased by the dinucleotide content. Conclusion SISSIz implements an efficient algorithm to randomize multiple alignments preserving dinucleotide content. It can be used to get more accurate estimates of false positive rates of existing programs, to produce negative controls for the training of machine learning based programs, or as standalone RNA gene finding program. Other applications in comparative genomics that require
Fuzzy-Based Trust Prediction Model for Routing in WSNs
Directory of Open Access Journals (Sweden)
X. Anita
2014-01-01
Full Text Available The cooperative nature of multihop wireless sensor networks (WSNs makes it vulnerable to varied types of attacks. The sensitive application environments and resource constraints of WSNs mandate the requirement of lightweight security scheme. The earlier security solutions were based on historical behavior of neighbor but the security can be enhanced by predicting the future behavior of the nodes in the network. In this paper, we proposed a fuzzy-based trust prediction model for routing (FTPR in WSNs with minimal overhead in regard to memory and energy consumption. FTPR incorporates a trust prediction model that predicts the future behavior of the neighbor based on the historical behavior, fluctuations in trust value over a period of time, and recommendation inconsistency. In order to reduce the control overhead, FTPR received recommendations from a subset of neighbors who had maximum number of interactions with the requestor. Theoretical analysis and simulation results of FTPR protocol demonstrate higher packet delivery ratio, higher network lifetime, lower end-to-end delay, and lower memory and energy consumption than the traditional and existing trust-based routing schemes.
A neural network model for predicting aquifer water level elevations.
Coppola, Emery A; Rana, Anthony J; Poulton, Mary M; Szidarovszky, Ferenc; Uhl, Vincent W
2005-01-01
Artificial neural networks (ANNs) were developed for accurately predicting potentiometric surface elevations (monitoring well water level elevations) in a semiconfined glacial sand and gravel aquifer under variable state, pumping extraction, and climate conditions. ANNs "learn" the system behavior of interest by processing representative data patterns through a mathematical structure analogous to the human brain. In this study, the ANNs used the initial water level measurements, production well extractions, and climate conditions to predict the final water level elevations 30 d into the future at two monitoring wells. A sensitivity analysis was conducted with the ANNs that quantified the importance of the various input predictor variables on final water level elevations. Unlike traditional physical-based models, ANNs do not require explicit characterization of the physical system and related physical data. Accordingly, ANN predictions were made on the basis of more easily quantifiable, measured variables, rather than physical model input parameters and conditions. This study demonstrates that ANNs can provide both excellent prediction capability and valuable sensitivity analyses, which can result in more appropriate ground water management strategies.
Probabilistic Modeling and Visualization for Bankruptcy Prediction
DEFF Research Database (Denmark)
Antunes, Francisco; Ribeiro, Bernardete; Pereira, Francisco Camara
2017-01-01
In accounting and finance domains, bankruptcy prediction is of great utility for all of the economic stakeholders. The challenge of accurate assessment of business failure prediction, specially under scenarios of financial crisis, is known to be complicated. Although there have been many successful...... studies on bankruptcy detection, seldom probabilistic approaches were carried out. In this paper we assume a probabilistic point-of-view by applying Gaussian Processes (GP) in the context of bankruptcy prediction, comparing it against the Support Vector Machines (SVM) and the Logistic Regression (LR......). Using real-world bankruptcy data, an in-depth analysis is conducted showing that, in addition to a probabilistic interpretation, the GP can effectively improve the bankruptcy prediction performance with high accuracy when compared to the other approaches. We additionally generate a complete graphical...
Prediction of survival with alternative modeling techniques using pseudo values.
Directory of Open Access Journals (Sweden)
Tjeerd van der Ploeg
Full Text Available BACKGROUND: The use of alternative modeling techniques for predicting patient survival is complicated by the fact that some alternative techniques cannot readily deal with censoring, which is essential for analyzing survival data. In the current study, we aimed to demonstrate that pseudo values enable statistically appropriate analyses of survival outcomes when used in seven alternative modeling techniques. METHODS: In this case study, we analyzed survival of 1282 Dutch patients with newly diagnosed Head and Neck Squamous Cell Carcinoma (HNSCC with conventional Kaplan-Meier and Cox regression analysis. We subsequently calculated pseudo values to reflect the individual survival patterns. We used these pseudo values to compare recursive partitioning (RPART, neural nets (NNET, logistic regression (LR general linear models (GLM and three variants of support vector machines (SVM with respect to dichotomous 60-month survival, and continuous pseudo values at 60 months or estimated survival time. We used the area under the ROC curve (AUC and the root of the mean squared error (RMSE to compare the performance of these models using bootstrap validation. RESULTS: Of a total of 1282 patients, 986 patients died during a median follow-up of 66 months (60-month survival: 52% [95% CI: 50%-55%]. The LR model had the highest optimism corrected AUC (0.791 to predict 60-month survival, followed by the SVM model with a linear kernel (AUC 0.787. The GLM model had the smallest optimism corrected RMSE when continuous pseudo values were considered for 60-month survival or the estimated survival time followed by SVM models with a linear kernel. The estimated importance of predictors varied substantially by the specific aspect of survival studied and modeling technique used. CONCLUSIONS: The use of pseudo values makes it readily possible to apply alternative modeling techniques to survival problems, to compare their performance and to search further for promising
Automatic prediction of facial trait judgments: appearance vs. structural models.
Directory of Open Access Journals (Sweden)
Mario Rojas
Full Text Available Evaluating other individuals with respect to personality characteristics plays a crucial role in human relations and it is the focus of attention for research in diverse fields such as psychology and interactive computer systems. In psychology, face perception has been recognized as a key component of this evaluation system. Multiple studies suggest that observers use face information to infer personality characteristics. Interactive computer systems are trying to take advantage of these findings and apply them to increase the natural aspect of interaction and to improve the performance of interactive computer systems. Here, we experimentally test whether the automatic prediction of facial trait judgments (e.g. dominance can be made by using the full appearance information of the face and whether a reduced representation of its structure is sufficient. We evaluate two separate approaches: a holistic representation model using the facial appearance information and a structural model constructed from the relations among facial salient points. State of the art machine learning methods are applied to a derive a facial trait judgment model from training data and b predict a facial trait value for any face. Furthermore, we address the issue of whether there are specific structural relations among facial points that predict perception of facial traits. Experimental results over a set of labeled data (9 different trait evaluations and classification rules (4 rules suggest that a prediction of perception of facial traits is learnable by both holistic and structural approaches; b the most reliable prediction of facial trait judgments is obtained by certain type of holistic descriptions of the face appearance; and c for some traits such as attractiveness and extroversion, there are relationships between specific structural features and social perceptions.
COGNITIVE MODELS OF PREDICTION THE DEVELOPMENT OF A DIVERSIFIED CORPORATION
Directory of Open Access Journals (Sweden)
Baranovskaya T. P.
2016-10-01
Full Text Available The application of classical forecasting methods applied to a diversified corporation faces some certain difficulties, due to its economic nature. Unlike other businesses, diversified corporations are characterized by multidimensional arrays of data with a high degree of distortion and fragmentation of information due to the cumulative effect of the incompleteness and distortion of accounting information from the enterprises in it. Under these conditions, the applied methods and tools must have high resolution and work effectively with large databases with incomplete information, ensure the correct common comparable quantitative processing of the heterogeneous nature of the factors measured in different units. It is therefore necessary to select or develop some methods that can work with complex poorly formalized tasks. This fact substantiates the relevance of the problem of developing models, methods and tools for solving the problem of forecasting the development of diversified corporations. This is the subject of this work, which makes it relevant. The work aims to: 1 analyze the forecasting methods to justify the choice of system-cognitive analysis as one of the effective methods for the prediction of semi-structured tasks; 2 to adapt and develop the method of systemic-cognitive analysis for forecasting of dynamics of development of the corporation subject to the scenario approach; 3 to develop predictive model scenarios of changes in basic economic indicators of development of the corporation and to assess their credibility; 4 determine the analytical form of the dependence between past and future scenarios of various economic indicators; 5 develop analytical models weighing predictable scenarios, taking into account all prediction results with positive levels of similarity, to increase the level of reliability of forecasts; 6 to develop a calculation procedure to assess the strength of influence on the corporation (sensitivity of its
Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate
Minh, Vu Trieu; Katushin, Dmitri; Antonov, Maksim; Veinthal, Renno
2017-03-01
This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM) based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock brittleness index (BI), the distance between planes of weakness (DPW), and the alpha angle (Alpha) between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP). Four (4) statistical regression models (two linear and two nonlinear) are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2) of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.
Robust predictive modelling of water pollution using biomarker data.
Budka, Marcin; Gabrys, Bogdan; Ravagnan, Elisa
2010-05-01
This paper describes the methodology of building a predictive model for the purpose of marine pollution monitoring, based on low quality biomarker data. A step-by-step, systematic data analysis approach is presented, resulting in design of a purely data-driven model, able to accurately discriminate between various coastal water pollution levels. The environmental scientists often try to apply various machine learning techniques to their data without much success, mostly because of the lack of experience with different methods and required 'under the hood' knowledge. Thus this paper is a result of a collaboration between the machine learning and environmental science communities, presenting a predictive model development workflow, as well as discussing and addressing potential pitfalls and difficulties. The novelty of the modelling approach presented lays in successful application of machine learning techniques to high dimensional, incomplete biomarker data, which to our knowledge has not been done before and is the result of close collaboration between machine learning and environmental science communities.
Mixing height computation from a numerical weather prediction model
Energy Technology Data Exchange (ETDEWEB)
Jericevic, A. [Croatian Meteorological and Hydrological Service, Zagreb (Croatia); Grisogono, B. [Univ. of Zagreb, Zagreb (Croatia). Andrija Mohorovicic Geophysical Inst., Faculty of Science
2004-07-01
Dispersion models require hourly values of the mixing height, H, that indicates the existence of turbulent mixing. The aim of this study was to investigate a model ability and characteristics in the prediction of H. The ALADIN, limited area numerical weather prediction (NWP) model for short-range 48-hour forecasts was used. The bulk Richardson number (R{sub iB}) method was applied to determine the height of the atmospheric boundary layer at one grid point nearest to Zagreb, Croatia. This specific location was selected because there were available radio soundings and the verification of the model could be done. Critical value of bulk Richardson number R{sub iBc}=0.3 was used. The values of H, modelled and measured, for 219 days at 12 UTC are compared, and the correlation coefficient of 0.62 is obtained. This indicates that ALADIN can be used for the calculation of H in the convective boundary layer. For the stable boundary layer (SBL), the model underestimated H systematically. Results showed that R{sub iBc} evidently increases with the increase of stability. Decoupling from the surface in the very SBL was detected, which is a consequence of the flow ease resulting in R{sub iB} becoming very large. Verification of the practical usage of the R{sub iB} method for H calculations from NWP model was performed. The necessity for including other stability parameters (e.g., surface roughness length) was evidenced. Since ALADIN model is in operational use in many European countries, this study would help the others in pre-processing NWP data for input to dispersion models. (orig.)
Predicting coastal cliff erosion using a Bayesian probabilistic model
Hapke, C.; Plant, N.
2010-01-01
Regional coastal cliff retreat is difficult to model due to the episodic nature of failures and the along-shore variability of retreat events. There is a growing demand, however, for predictive models that can be used to forecast areas vulnerable to coastal erosion hazards. Increasingly, probabilistic models are being employed that require data sets of high temporal density to define the joint probability density function that relates forcing variables (e.g. wave conditions) and initial conditions (e.g. cliff geometry) to erosion events. In this study we use a multi-parameter Bayesian network to investigate correlations between key variables that control and influence variations in cliff retreat processes. The network uses Bayesian statistical methods to estimate event probabilities using existing observations. Within this framework, we forecast the spatial distribution of cliff retreat along two stretches of cliffed coast in Southern California. The input parameters are the height and slope of the cliff, a descriptor of material strength based on the dominant cliff-forming lithology, and the long-term cliff erosion rate that represents prior behavior. The model is forced using predicted wave impact hours. Results demonstrate that the Bayesian approach is well-suited to the forward modeling of coastal cliff retreat, with the correct outcomes forecast in 70-90% of the modeled transects. The model also performs well in identifying specific locations of high cliff erosion, thus providing a foundation for hazard mapping. This approach can be employed to predict cliff erosion at time-scales ranging from storm events to the impacts of sea-level rise at the century-scale. ?? 2010.
Hybrid Model for Early Onset Prediction of Driver Fatigue with Observable Cues
Directory of Open Access Journals (Sweden)
Mingheng Zhang
2014-01-01
Full Text Available This paper presents a hybrid model for early onset prediction of driver fatigue, which is the major reason of severe traffic accidents. The proposed method divides the prediction problem into three stages, that is, SVM-based model for predicting the early onset driver fatigue state, GA-based model for optimizing the parameters in the SVM, and PCA-based model for reducing the dimensionality of the complex features datasets. The model and algorithm are illustrated with driving experiment data and comparison results also show that the hybrid method can generally provide a better performance for driver fatigue state prediction.
Prediction of peptide bonding affinity: kernel methods for nonlinear modeling
Bergeron, Charles; Sundling, C Matthew; Krein, Michael; Katt, Bill; Sukumar, Nagamani; Breneman, Curt M; Bennett, Kristin P
2011-01-01
This paper presents regression models obtained from a process of blind prediction of peptide binding affinity from provided descriptors for several distinct datasets as part of the 2006 Comparative Evaluation of Prediction Algorithms (COEPRA) contest. This paper finds that kernel partial least squares, a nonlinear partial least squares (PLS) algorithm, outperforms PLS, and that the incorporation of transferable atom equivalent features improves predictive capability.
Institute of Scientific and Technical Information of China (English)
ZHANG Hua; WANG Yun-jia; LI Yong-feng
2009-01-01
A new mathematical model to estimate the parameters of the probability-integral method for mining subsidence prediction is proposed. Based on least squares support vector machine (LS-SVM) theory, it is capable of improving the precision and reliability of mining subsidence prediction. Many of the geological and mining factors involved are related in a nonlinear way. The new model is based on statistical theory (SLT) and empirical risk minimization (ERM) principles. Typical data collected from observation stations were used for the learning and training samples. The calculated results from the LS-SVM model were compared with the prediction results of a back propagation neural network (BPNN) model. The results show that the parameters were more precisely predicted by the LS-SVM model than by the BPNN model. The LS-SVM model was faster in computation and had better generalized performance. It provides a highly effective method for calculating the predicting parameters of the probability-integral method.
Modeling Malaysia's Energy System: Some Preliminary Results
Ahmad M. Yusof
2011-01-01
Problem statement: The current dynamic and fragile world energy environment necessitates the development of new energy model that solely caters to analyze Malaysias energy scenarios. Approach: The model is a network flow model that traces the flow of energy carriers from its sources (import and mining) through some conversion and transformation processes for the production of energy products to final destinations (energy demand sectors). The integration to the economic sectors is done exogene...
Comparisons of Faulting-Based Pavement Performance Prediction Models
Directory of Open Access Journals (Sweden)
Weina Wang
2017-01-01
Full Text Available Faulting prediction is the core of concrete pavement maintenance and design. Highway agencies are always faced with the problem of lower accuracy for the prediction which causes costly maintenance. Although many researchers have developed some performance prediction models, the accuracy of prediction has remained a challenge. This paper reviews performance prediction models and JPCP faulting models that have been used in past research. Then three models including multivariate nonlinear regression (MNLR model, artificial neural network (ANN model, and Markov Chain (MC model are tested and compared using a set of actual pavement survey data taken on interstate highway with varying design features, traffic, and climate data. It is found that MNLR model needs further recalibration, while the ANN model needs more data for training the network. MC model seems a good tool for pavement performance prediction when the data is limited, but it is based on visual inspections and not explicitly related to quantitative physical parameters. This paper then suggests that the further direction for developing the performance prediction model is incorporating the advantages and disadvantages of different models to obtain better accuracy.
Directory of Open Access Journals (Sweden)
Juliana Yim
2009-06-01
Full Text Available This paper looks at the ability of a relatively new technique, hybrid ANN’s, to predict corporate distress in Brazil. These models are compared with traditional statistical techniques and conventional ANN models. The results suggest that hybrid neural networks outperform all other models in predicting firms in financial distress one year prior to the event. This suggests that for researchers, policymakers and others interested in early warning systems, hybrid networks may be a useful tool for predicting firm failure.
Directory of Open Access Journals (Sweden)
Juliana Yim
2005-01-01
Full Text Available This paper looks at the ability of a relatively new technique, hybrid ANN's, to predict corporate distress in Brazil. These models are compared with traditional statistical techniques and conventional ANN models. The results suggest that hybrid neural networks outperform all other models in predicting firms in financial distress one year prior to the event. This suggests that for researchers, policymakers and others interested in early warning systems, hybrid networks may be a useful tool for predicting firm failure.
An infinitesimal model for quantitative trait genomic value prediction.
Directory of Open Access Journals (Sweden)
Zhiqiu Hu
Full Text Available We developed a marker based infinitesimal model for quantitative trait analysis. In contrast to the classical infinitesimal model, we now have new information about the segregation of every individual locus of the entire genome. Under this new model, we propose that the genetic effect of an individual locus is a function of the genome location (a continuous quantity. The overall genetic value of an individual is the weighted integral of the genetic effect function along the genome. Numerical integration is performed to find the integral, which requires partitioning the entire genome into a finite number of bins. Each bin may contain many markers. The integral is approximated by the weighted sum of all the bin effects. We now turn the problem of marker analysis into bin analysis so that the model dimension has decreased from a virtual infinity to a finite number of bins. This new approach can efficiently handle virtually unlimited number of markers without marker selection. The marker based infinitesimal model requires high linkage disequilibrium of all markers within a bin. For populations with low or no linkage disequilibrium, we develop an adaptive infinitesimal model. Both the original and the adaptive models are tested using simulated data as well as beef cattle data. The simulated data analysis shows that there is always an optimal number of bins at which the predictability of the bin model is much greater than the original marker analysis. Result of the beef cattle data analysis indicates that the bin model can increase the predictability from 10% (multiple marker analysis to 33% (multiple bin analysis. The marker based infinitesimal model paves a way towards the solution of genetic mapping and genomic selection using the whole genome sequence data.
Directory of Open Access Journals (Sweden)
Kennedy Curtis E
2011-10-01
Full Text Available Abstract Background Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. Methods We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Results Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1 selecting candidate variables; 2 specifying measurement parameters; 3 defining data format; 4 defining time window duration and resolution; 5 calculating latent variables for candidate variables not directly measured; 6 calculating time series features as latent variables; 7 creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8
Models for Prediction, Explanation and Control: Recursive Bayesian Networks
Directory of Open Access Journals (Sweden)
Lorenzo Casini
2011-01-01
Full Text Available The Recursive Bayesian Net (RBN formalism was originally developed for modelling nested causal relationships. In this paper we argue that the formalism can also be applied to modelling the hierarchical structure of mechanisms. The resulting network contains quantitative information about probabilities, as well as qualitative information about mechanistic structure and causal relations. Since information about probabilities, mechanisms and causal relations is vital for prediction, explanation and control respectively, an RBN can be applied to all these tasks. We show in particular how a simple two-level RBN can be used to model a mechanism in cancer science. The higher level of our model contains variables at the clinical level, while the lower level maps the structure of the cell's mechanism for apoptosis.
DEFF Research Database (Denmark)
Gao, Jie; Wang, Yi; Wargocki, Pawel
2015-01-01
In this paper, a comparative analysis was performed on the human thermal sensation estimated by modified predicted mean vote (PMV) models and modified standard effective temperature (SET) models in naturally ventilated buildings; the data were collected in field study. These prediction models were...... between the measured and predicted values using the modified PMV models exceeded 25%, while the difference between the measured thermal sensation and the predicted thermal sensation using modified SET models was approximately less than 25%. It is concluded that the modified SET models can predict human...... developed on the basis of the original PMV/SET models and consider the influence of occupants' expectations and human adaptive functions, including the extended PMV/SET models and the adaptive PMV/SET models. The results showed that when the indoor air velocity ranged from 0 to 0.2m/s and from 0.2 to 0.8m...
Bankruptcy prediction for credit risk using neural networks: a survey and new results.
Atiya, A F
2001-01-01
The prediction of corporate bankruptcies is an important and widely studied topic since it can have significant impact on bank lending decisions and profitability. This work presents two contributions. First we review the topic of bankruptcy prediction, with emphasis on neural-network (NN) models. Second, we develop an NN bankruptcy prediction model. Inspired by one of the traditional credit risk models developed by Merton (1974), we propose novel indicators for the NN system. We show that the use of these indicators in addition to traditional financial ratio indicators provides a significant improvement in the (out-of-sample) prediction accuracy (from 81.46% to 85.5% for a three-year-ahead forecast).
DEFF Research Database (Denmark)
Rohde, Palle Duun; Demontis, Ditte; Børglum, Anders
Introduction: Accurate prediction of unobserved phenotypes from observed genotypes is essential for the success in predicting disease risk from genotypes. However, the performance is somewhat limited. Genomic feature best linear unbiased prediction (GFBLUP) models separate the total genomic...... is enriched for causal variants. Here we apply the GFBLUP model to a small schizophrenia case-control study to test the promise of this model on psychiatric disorders, and hypothesize that the performance will be increased when applying the model to a larger ADHD case-control study if the genomic feature...... contains the causal variants. Materials and Methods: The schizophrenia study consisted of 882 controls and 888 schizophrenia cases genotyped for 520,000 SNPs. The ADHD study contained 25,954 controls and 16,663 ADHD cases with 8,4 million imputed genotypes. Results: The predictive ability for schizophrenia...
Preliminary results of steel containment vessel model test
Energy Technology Data Exchange (ETDEWEB)
Luk, V.K.; Hessheimer, M.F. [Sandia National Labs., Albuquerque, NM (United States); Matsumoto, T.; Komine, K.; Arai, S. [Nuclear Power Engineering Corp., Tokyo (Japan); Costello, J.F. [Nuclear Regulatory Commission, Washington, DC (United States)
1998-04-01
A high pressure test of a mixed-scaled model (1:10 in geometry and 1:4 in shell thickness) of a steel containment vessel (SCV), representing an improved boiling water reactor (BWR) Mark II containment, was conducted on December 11--12, 1996 at Sandia National Laboratories. This paper describes the preliminary results of the high pressure test. In addition, the preliminary post-test measurement data and the preliminary comparison of test data with pretest analysis predictions are also presented.
Reflectance Prediction Modelling for Residual-Based Hyperspectral Image Coding
Xiao, Rui; Gao, Junbin; Bossomaier, Terry
2016-01-01
A Hyperspectral (HS) image provides observational powers beyond human vision capability but represents more than 100 times the data compared to a traditional image. To transmit and store the huge volume of an HS image, we argue that a fundamental shift is required from the existing “original pixel intensity”-based coding approaches using traditional image coders (e.g., JPEG2000) to the “residual”-based approaches using a video coder for better compression performance. A modified video coder is required to exploit spatial-spectral redundancy using pixel-level reflectance modelling due to the different characteristics of HS images in their spectral and shape domain of panchromatic imagery compared to traditional videos. In this paper a novel coding framework using Reflectance Prediction Modelling (RPM) in the latest video coding standard High Efficiency Video Coding (HEVC) for HS images is proposed. An HS image presents a wealth of data where every pixel is considered a vector for different spectral bands. By quantitative comparison and analysis of pixel vector distribution along spectral bands, we conclude that modelling can predict the distribution and correlation of the pixel vectors for different bands. To exploit distribution of the known pixel vector, we estimate a predicted current spectral band from the previous bands using Gaussian mixture-based modelling. The predicted band is used as the additional reference band together with the immediate previous band when we apply the HEVC. Every spectral band of an HS image is treated like it is an individual frame of a video. In this paper, we compare the proposed method with mainstream encoders. The experimental results are fully justified by three types of HS dataset with different wavelength ranges. The proposed method outperforms the existing mainstream HS encoders in terms of rate-distortion performance of HS image compression. PMID:27695102
Regional differences in prediction models of lung function in Germany
Directory of Open Access Journals (Sweden)
Schäper Christoph
2010-04-01
Full Text Available Abstract Background Little is known about the influencing potential of specific characteristics on lung function in different populations. The aim of this analysis was to determine whether lung function determinants differ between subpopulations within Germany and whether prediction equations developed for one subpopulation are also adequate for another subpopulation. Methods Within three studies (KORA C, SHIP-I, ECRHS-I in different areas of Germany 4059 adults performed lung function tests. The available data consisted of forced expiratory volume in one second, forced vital capacity and peak expiratory flow rate. For each study multivariate regression models were developed to predict lung function and Bland-Altman plots were established to evaluate the agreement between predicted and measured values. Results The final regression equations for FEV1 and FVC showed adjusted r-square values between 0.65 and 0.75, and for PEF they were between 0.46 and 0.61. In all studies gender, age, height and pack-years were significant determinants, each with a similar effect size. Regarding other predictors there were some, although not statistically significant, differences between the studies. Bland-Altman plots indicated that the regression models for each individual study adequately predict medium (i.e. normal but not extremely high or low lung function values in the whole study population. Conclusions Simple models with gender, age and height explain a substantial part of lung function variance whereas further determinants add less than 5% to the total explained r-squared, at least for FEV1 and FVC. Thus, for different adult subpopulations of Germany one simple model for each lung function measures is still sufficient.
Fuzzy predictive filtering in nonlinear economic model predictive control for demand response
DEFF Research Database (Denmark)
Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.;
2016-01-01
The performance of a model predictive controller (MPC) is highly correlated with the model's accuracy. This paper introduces an economic model predictive control (EMPC) scheme based on a nonlinear model, which uses a branch-and-bound tree search for solving the inherent non-convex optimization...... problem. Moreover, to reduce the computation time and improve the controller's performance, a fuzzy predictive filter is introduced. With the purpose of testing the developed EMPC, a simulation controlling the temperature levels of an intelligent office building (PowerFlexHouse), with and without fuzzy...
Predictive modeling and reducing cyclic variability in autoignition engines
Energy Technology Data Exchange (ETDEWEB)
Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob
2016-08-30
Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.
Preservation engineering assets developed from an oxidation predictive model
Directory of Open Access Journals (Sweden)
Coutelieris Frank A.
2016-01-01
Full Text Available A previously developed model which effectively predicts the probability of olive oil reaching the end of its shelf-life within a certain time frame was tested for its response when the convective diffusion of oxygen through packaging material is taken in account. Darcy’s Law was used to correlate the packaging permeability with the oxygen flow through the packaging materials. Mass transport within the food-packaging system was considered transient and the relative one-dimensional differential equations along with appropriate initial and boundary conditions were numerically solved. When the Peclet (Pe number was used to validate the significance of the oxygen transport mechanism through packaging, the model results confirmed the Arrhenius type dependency of diffusion, where the slope of the line per material actually indicated their –Ea/R. Furthermore, Pe could not be correlated to the hexanal produced in samples stored under light. Photo-oxidation has a significant role in the oxidative degradation of olive oil confirmed by the shelf-assessing test. The validity of our model for the oxygen diffusion driven systems, was also confirmed, for that reason the predictive boundaries were set. Results safely indicated the significance of applying a self-assessing process to confirm the packaging selection process for oxygen sensitive food via this model.
A nonlinear regression model-based predictive control algorithm.
Dubay, R; Abu-Ayyad, M; Hernandez, J M
2009-04-01
This paper presents a unique approach for designing a nonlinear regression model-based predictive controller (NRPC) for single-input-single-output (SISO) and multi-input-multi-output (MIMO) processes that are common in industrial applications. The innovation of this strategy is that the controller structure allows nonlinear open-loop modeling to be conducted while closed-loop control is executed every sampling instant. Consequently, the system matrix is regenerated every sampling instant using a continuous function providing a more accurate prediction of the plant. Computer simulations are carried out on nonlinear plants, demonstrating that the new approach is easily implemented and provides tight control. Also, the proposed algorithm is implemented on two real time SISO applications; a DC motor, a plastic injection molding machine and a nonlinear MIMO thermal system comprising three temperature zones to be controlled with interacting effects. The experimental closed-loop responses of the proposed algorithm were compared to a multi-model dynamic matrix controller (MPC) with improved results for various set point trajectories. Good disturbance rejection was attained, resulting in improved tracking of multi-set point profiles in comparison to multi-model MPC.
Using Topic Modeling and Text Embeddings to Predict Deleted Tweets
Energy Technology Data Exchange (ETDEWEB)
Potash, Peter J.; Bell, Eric B.; Harrison, Joshua J.
2016-02-29
Predictive models for tweet deletion have been a relatively unexplored area of Twitter-related computational research. We first approach the deletion of tweets as a spam detection problem, applying a small set of handcrafted features to improve upon the current state-of-the- art in predicting deleted tweets. Next, we apply our approach to a dataset of deleted tweets that better reflects the current deletion rate. Since tweets are deleted for reasons beyond just the presence of spam, we apply topic modeling and text embeddings in order to capture the semantic content of tweets that can lead to tweet deletion. Our goal is to create an effective model that has a low-dimensional feature space and is also language-independent. A lean model would be computationally advantageous processing high-volumes of Twitter data, which can reach 9,885 tweets per second. Our results show that a small set of spam-related features combined with word topics and character-level text embeddings provide the best f1 when trained with a random forest model. The highest precision of the deleted tweet class is achieved by a modification of paragraph2vec to capture author identity.
Adaptation of Predictive Models to PDA Hand-Held Devices
Directory of Open Access Journals (Sweden)
Lin, Edward J
2008-01-01
Full Text Available Prediction models using multiple logistic regression are appearing with increasing frequency in the medical literature. Problems associated with these models include the complexity of computations when applied in their pure form, and lack of availability at the bedside. Personal digital assistant (PDA hand-held devices equipped with spreadsheet software offer the clinician a readily available and easily applied means of applying predictive models at the bedside. The purposes of this article are to briefly review regression as a means of creating predictive models and to describe a method of choosing and adapting logistic regression models to emergency department (ED clinical practice.
Douglass, Anne R.; Stolarski, Richard S.; Strahan, Susan E.; Steenrod, Stephen D.; Polarsky, Brian C.
2004-01-01
Although chemistry and transport models (CTMs) include the same basic elements (photo- chemical mechanism and solver, photolysis scheme, meteorological fields, numerical transport scheme), they produce different results for the future recovery of stratospheric ozone as chlorofluorcarbons decrease. Three simulations will be contrasted: the Global Modeling Initiative (GMI) CTM driven by a single year\\'s winds from a general circulation model; the GMI CTM driven by a single year\\'s winds from a data assimilation system; the NASA GSFC CTM driven by a winds from a multi-year GCM simulation. CTM results for ozone and other constituents will be compared with each other and with observations from ground-based and satellite platforms to address the following: Does the simulated ozone tendency and its latitude, altitude and seasonal dependence match that derived from observations? Does the balance from analysis of observations? Does the balance among photochemical processes match that expected from observations? Can the differences in prediction for ozone recovery be anticipated from these comparisons?
Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?
Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander
2016-01-01
Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.
Predicting Career Advancement with Structural Equation Modelling
Heimler, Ronald; Rosenberg, Stuart; Morote, Elsa-Sofia
2012-01-01
Purpose: The purpose of this paper is to use the authors' prior findings concerning basic employability skills in order to determine which skills best predict career advancement potential. Design/methodology/approach: Utilizing survey responses of human resource managers, the employability skills showing the largest relationships to career…
Predicting Career Advancement with Structural Equation Modelling
Heimler, Ronald; Rosenberg, Stuart; Morote, Elsa-Sofia
2012-01-01
Purpose: The purpose of this paper is to use the authors' prior findings concerning basic employability skills in order to determine which skills best predict career advancement potential. Design/methodology/approach: Utilizing survey responses of human resource managers, the employability skills showing the largest relationships to career…
Modeling and prediction of surgical procedure times
P.S. Stepaniak (Pieter); C. Heij (Christiaan); G. de Vries (Guus)
2009-01-01
textabstractAccurate prediction of medical operation times is of crucial importance for cost efficient operation room planning in hospitals. This paper investigates the possible dependence of procedure times on surgeon factors like age, experience, gender, and team composition. The effect of these f
Active diagnosis of hybrid systems - A model predictive approach
2009-01-01
A method for active diagnosis of hybrid systems is proposed. The main idea is to predict the future output of both normal and faulty model of the system; then at each time step an optimization problem is solved with the objective of maximizing the difference between the predicted normal and faulty outputs constrained by tolerable performance requirements. As in standard model predictive control, the first element of the optimal input is applied to the system and the whole procedure is repeate...
Predicting plants -modeling traits as a function of environment
Franklin, Oskar
2016-04-01
A central problem in understanding and modeling vegetation dynamics is how to represent the variation in plant properties and function across different environments. Addressing this problem there is a strong trend towards trait-based approaches, where vegetation properties are functions of the distributions of functional traits rather than of species. Recently there has been enormous progress in in quantifying trait variability and its drivers and effects (Van Bodegom et al. 2012; Adier et al. 2014; Kunstler et al. 2015) based on wide ranging datasets on a small number of easily measured traits, such as specific leaf area (SLA), wood density and maximum plant height. However, plant function depends on many other traits and while the commonly measured trait data are valuable, they are not sufficient for driving predictive and mechanistic models of vegetation dynamics -especially under novel climate or management conditions. For this purpose we need a model to predict functional traits, also those not easily measured, and how they depend on the plants' environment. Here I present such a mechanistic model based on fitness concepts and focused on traits related to water and light limitation of trees, including: wood density, drought response, allocation to defense, and leaf traits. The model is able to predict observed patterns of variability in these traits in relation to growth and mortality, and their responses to a gradient of water limitation. The results demonstrate that it is possible to mechanistically predict plant traits as a function of the environment based on an eco-physiological model of plant fitness. References Adier, P.B., Salguero-Gómez, R., Compagnoni, A., Hsu, J.S., Ray-Mukherjee, J., Mbeau-Ache, C. et al. (2014). Functional traits explain variation in plant lifehistory strategies. Proc. Natl. Acad. Sci. U. S. A., 111, 740-745. Kunstler, G., Falster, D., Coomes, D.A., Hui, F., Kooyman, R.M., Laughlin, D.C. et al. (2015). Plant functional traits
Evaluation of Fast-Time Wake Vortex Prediction Models
Proctor, Fred H.; Hamilton, David W.
2009-01-01
Current fast-time wake models are reviewed and three basic types are defined. Predictions from several of the fast-time models are compared. Previous statistical evaluations of the APA-Sarpkaya and D2P fast-time models are discussed. Root Mean Square errors between fast-time model predictions and Lidar wake measurements are examined for a 24 hr period at Denver International Airport. Shortcomings in current methodology for evaluating wake errors are also discussed.
Testing and analysis of internal hardwood log defect prediction models
R. Edward. Thomas
2011-01-01
The severity and location of internal defects determine the quality and value of lumber sawn from hardwood logs. Models have been developed to predict the size and position of internal defects based on external defect indicator measurements. These models were shown to predict approximately 80% of all internal knots based on external knot indicators. However, the size...
Refining the Committee Approach and Uncertainty Prediction in Hydrological Modelling
Kayastha, N.
2014-01-01
Due to the complexity of hydrological systems a single model may be unable to capture the full range of a catchment response and accurately predict the streamflows. The multi modelling approach opens up possibilities for handling such difficulties and allows improve the predictive capability of mode
Refining the committee approach and uncertainty prediction in hydrological modelling
Kayastha, N.
2014-01-01
Due to the complexity of hydrological systems a single model may be unable to capture the full range of a catchment response and accurately predict the streamflows. The multi modelling approach opens up possibilities for handling such difficulties and allows improve the predictive capability of mode
Refining the Committee Approach and Uncertainty Prediction in Hydrological Modelling
Kayastha, N.
2014-01-01
Due to the complexity of hydrological systems a single model may be unable to capture the full range of a catchment response and accurately predict the streamflows. The multi modelling approach opens up possibilities for handling such difficulties and allows improve the predictive capability of mode
Refining the committee approach and uncertainty prediction in hydrological modelling
Kayastha, N.
2014-01-01
Due to the complexity of hydrological systems a single model may be unable to capture the full range of a catchment response and accurately predict the streamflows. The multi modelling approach opens up possibilities for handling such difficulties and allows improve the predictive capability of mode
Results of Satellite Brightness Modeling Using Kringing Optimized Interpolation
Weeden, C.; Hejduk, M.
At the 2005 AMOS conference, Kriging Optimized Interpolation (KOI) was presented as a tool to model satellite brightness as a function of phase angle and solar declination angle (J.M Okada and M.D. Hejduk). Since November 2005, this method has been used to support the tasking algorithm for all optical sensors in the Space Surveillance Network (SSN). The satellite brightness maps generated by the KOI program are compared to each sensor's ability to detect an object as a function of the brightness of the background sky and angular rate of the object. This will determine if the sensor can technically detect an object based on an explicit calculation of the object's probability of detection. In addition, recent upgrades at Ground-Based Electro Optical Deep Space Surveillance Sites (GEODSS) sites have increased the amount and quality of brightness data collected and therefore available for analysis. This in turn has provided enough data to study the modeling process in more detail in order to obtain the most accurate brightness prediction of satellites. Analysis of two years of brightness data gathered from optical sensors and modeled via KOI solutions are outlined in this paper. By comparison, geo-stationary objects (GEO) were tracked less than non-GEO objects but had higher density tracking in phase angle due to artifices of scheduling. A statistically-significant fit to a deterministic model was possible less than half the time in both GEO and non-GEO tracks, showing that a stochastic model must often be used alone to produce brightness results, but such results are nonetheless serviceable. Within the Kriging solution, the exponential variogram model was the most frequently employed in both GEO and non-GEO tracks, indicating that monotonic brightness variation with both phase and solar declination angle is common and testifying to the suitability to the application of regionalized variable theory to this particular problem. Finally, the average nugget value, or
Simple predictive electron transport models applied to sawtoothing plasmas
Kim, D.; Merle, A.; Sauter, O.; Goodman, T. P.
2016-05-01
In this work, we introduce two simple transport models to evaluate the time evolution of electron temperature and density profiles during sawtooth cycles (i.e. over a sawtooth period time-scale). Since the aim of these simulations is to estimate reliable profiles within a short calculation time, two simplified ad-hoc models have been developed. The goal for these models is to rely on a few easy-to-check free parameters, such as the confinement time scaling factor and the profiles’ averaged scale-lengths. Due to the simplicity and short calculation time of the models, it is expected that these models can also be applied to real-time transport simulations. We show that it works well for Ohmic and EC heated L- and H-mode plasmas. The differences between these models are discussed and we show that their predictive capabilities are similar. Thus only one model is used to reproduce with simulations the results of sawtooth control experiments on the TCV tokamak. For the sawtooth pacing, the calculated time delays between the EC power off and sawtooth crash time agree well with the experimental results. The map of possible locking range is also well reproduced by the simulation.
Experimental validation of the twins prediction program for rolling noise. Pt.2: results
Thompson, D.J.; Fodiman, P.; Mahé, H.
1996-01-01
Two extensive measurement campaigns have been carried out to validate the TWINS prediction program for rolling noise, as described in part 1 of this paper. This second part presents the experimental results of vibration and noise during train pass-bys and compares them with predictions from the TWIN
Experimental validation of the twins prediction program for rolling noise. Pt.2: results
Thompson, D.J.; Fodiman, P.; Mahé, H.
1996-01-01
Two extensive measurement campaigns have been carried out to validate the TWINS prediction program for rolling noise, as described in part 1 of this paper. This second part presents the experimental results of vibration and noise during train pass-bys and compares them with predictions from the
Models to predict intestinal absorption of therapeutic peptides and proteins.
Antunes, Filipa; Andrade, Fernanda; Ferreira, Domingos; Nielsen, Hanne Morck; Sarmento, Bruno
2013-01-01
Prediction of human intestinal absorption is a major goal in the design, optimization, and selection of drugs intended for oral delivery, in particular proteins, which possess intrinsic poor transport across intestinal epithelium. There are various techniques currently employed to evaluate the extension of protein absorption in the different phases of drug discovery and development. Screening protocols to evaluate protein absorption include a range of preclinical methodologies like in silico, in vitro, in situ, ex vivo and in vivo. It is the careful and critical use of these techniques that can help to identify drug candidates, which most probably will be well absorbed from the human intestinal tract. It is well recognized that the human intestinal permeability cannot be accurately predicted based on a single preclinical method. However, the present social and scientific concerns about the animal well care as well as the pharmaceutical industries need for rapid, cheap and reliable models predicting bioavailability give reasons for using methods providing an appropriate correlation between results of in vivo and in vitro drug absorption. The aim of this review is to describe and compare in silico, in vitro, in situ, ex vivo and in vivo methods used to predict human intestinal absorption, giving a special attention to the intestinal absorption of therapeutic peptides and proteins.
Directory of Open Access Journals (Sweden)
Mihaela Simionescu
2014-12-01
Full Text Available There are many types of econometric models used in predicting the inflation rate, but in this study we used a Bayesian shrinkage combination approach. This methodology is used in order to improve the predictions accuracy by including information that is not captured by the econometric models. Therefore, experts’ forecasts are utilized as prior information, for Romania these predictions being provided by Institute for Economic Forecasting (Dobrescu macromodel, National Commission for Prognosis and European Commission. The empirical results for Romanian inflation show the superiority of a fixed effects model compared to other types of econometric models like VAR, Bayesian VAR, simultaneous equations model, dynamic model, log-linear model. The Bayesian combinations that used experts’ predictions as priors, when the shrinkage parameter tends to infinite, improved the accuracy of all forecasts based on individual models, outperforming also zero and equal weights predictions and naïve forecasts.
Predicting chaotic time series with a partial model.
Hamilton, Franz; Berry, Tyrus; Sauer, Timothy
2015-07-01
Methods for forecasting time series are a critical aspect of the understanding and control of complex networks. When the model of the network is unknown, nonparametric methods for prediction have been developed, based on concepts of attractor reconstruction pioneered by Takens and others. In this Rapid Communication we consider how to make use of a subset of the system equations, if they are known, to improve the predictive capability of forecasting methods. A counterintuitive implication of the results is that knowledge of the evolution equation of even one variable, if known, can improve forecasting of all variables. The method is illustrated on data from the Lorenz attractor and from a small network with chaotic dynamics.
Modeling and predicting historical volatility in exchange rate markets
Lahmiri, Salim
2017-04-01
Volatility modeling and forecasting of currency exchange rate is an important task in several business risk management tasks; including treasury risk management, derivatives pricing, and portfolio risk evaluation. The purpose of this study is to present a simple and effective approach for predicting historical volatility of currency exchange rate. The approach is based on a limited set of technical indicators as inputs to the artificial neural networks (ANN). To show the effectiveness of the proposed approach, it was applied to forecast US/Canada and US/Euro exchange rates volatilities. The forecasting results show that our simple approach outperformed the conventional GARCH and EGARCH with different distribution assumptions, and also the hybrid GARCH and EGARCH with ANN in terms of mean absolute error, mean of squared errors, and Theil's inequality coefficient. Because of the simplicity and effectiveness of the approach, it is promising for US currency volatility prediction tasks.
Experimental and Modeling Studies on the Prediction of Gas Hydrate Formation
Directory of Open Access Journals (Sweden)
Jian-Yi Liu
2015-01-01
Full Text Available On the base of some kinetics model analysis and kinetic observation of hydrate formation process, a new prediction model of gas hydrate formation is proposed. The analysis of the present model shows that the formation of gas hydrate not only relevant with gas composition and free water content but also relevant with temperature and pressure. Through contrast experiment, the predicted result of the new prediction method of gas hydrate crystallization kinetics is close to measured result, it means that the prediction method can reflect the hydrate crystallization accurately.
Prediction Uncertainty Analyses for the Combined Physically-Based and Data-Driven Models
Demissie, Y. K.; Valocchi, A. J.; Minsker, B. S.; Bailey, B. A.
2007-12-01
The unavoidable simplification associated with physically-based mathematical models can result in biased parameter estimates and correlated model calibration errors, which in return affect the accuracy of model predictions and the corresponding uncertainty analyses. In this work, a physically-based groundwater model (MODFLOW) together with error-correcting artificial neural networks (ANN) are used in a complementary fashion to obtain an improved prediction (i.e. prediction with reduced bias and error correlation). The associated prediction uncertainty of the coupled MODFLOW-ANN model is then assessed using three alternative methods. The first method estimates the combined model confidence and prediction intervals using first-order least- squares regression approximation theory. The second method uses Monte Carlo and bootstrap techniques for MODFLOW and ANN, respectively, to construct the combined model confidence and prediction intervals. The third method relies on a Bayesian approach that uses analytical or Monte Carlo methods to derive the intervals. The performance of these approaches is compared with Generalized Likelihood Uncertainty Estimation (GLUE) and Calibration-Constrained Monte Carlo (CCMC) intervals of the MODFLOW predictions alone. The results are demonstrated for a hypothetical case study developed based on a phytoremediation site at the Argonne National Laboratory. This case study comprises structural, parameter, and measurement uncertainties. The preliminary results indicate that the proposed three approaches yield comparable confidence and prediction intervals, thus making the computationally efficient first-order least-squares regression approach attractive for estimating the coupled model uncertainty. These results will be compared with GLUE and CCMC results.
Gaussian mixture models as flux prediction method for central receivers
Grobler, Annemarie; Gauché, Paul; Smit, Willie
2016-05-01
Flux prediction methods are crucial to the design and operation of central receiver systems. Current methods such as the circular and elliptical (bivariate) Gaussian prediction methods are often used in field layout design and aiming strategies. For experimental or small central receiver systems, the flux profile of a single heliostat often deviates significantly from the circular and elliptical Gaussian models. Therefore a novel method of flux prediction was developed by incorporating the fitting of Gaussian mixture models onto flux profiles produced by flux measurement or ray tracing. A method was also developed to predict the Gaussian mixture model parameters of a single heliostat for a given time using image processing. Recording the predicted parameters in a database ensures that more accurate predictions are made in a shorter time frame.
Comparison of mixed layer models predictions with experimental data
Energy Technology Data Exchange (ETDEWEB)
Faggian, P.; Riva, G.M. [CISE Spa, Divisione Ambiente, Segrate (Italy); Brusasca, G. [ENEL Spa, CRAM, Milano (Italy)
1997-10-01
The temporal evolution of the PBL vertical structure for a North Italian rural site, situated within relatively large agricultural fields and almost flat terrain, has been investigated during the period 22-28 June 1993 by experimental and modellistic point of view. In particular, the results about a sunny day (June 22) and a cloudy day (June 25) are presented in this paper. Three schemes to estimate mixing layer depth have been compared, i.e. Holzworth (1967), Carson (1973) and Gryning-Batchvarova models (1990), which use standard meteorological observations. To estimate their degree of accuracy, model outputs were analyzed considering radio-sounding meteorological profiles and stability atmospheric classification criteria. Besides, the mixed layer depths prediction were compared with the estimated values obtained by a simple box model, whose input requires hourly measures of air concentrations and ground flux of {sup 222}Rn. (LN)
Explicit Nonlinear Model Predictive Control Theory and Applications
Grancharova, Alexandra
2012-01-01
Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: Ø Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; �...
Performance and Prediction: Bayesian Modelling of Fallible Choice in Chess
Haworth, Guy; Regan, Ken; di Fatta, Giuseppe
Evaluating agents in decision-making applications requires assessing their skill and predicting their behaviour. Both are well developed in Poker-like situations, but less so in more complex game and model domains. This paper addresses both tasks by using Bayesian inference in a benchmark space of reference agents. The concepts are explained and demonstrated using the game of chess but the model applies generically to any domain with quantifiable options and fallible choice. Demonstration applications address questions frequently asked by the chess community regarding the stability of the rating scale, the comparison of players of different eras and/or leagues, and controversial incidents possibly involving fraud. The last include alleged under-performance, fabrication of tournament results, and clandestine use of computer advice during competition. Beyond the model world of games, the aim is to improve fallible human performance in complex, high-value tasks.
A Model of Foam Density Prediction for Expanded Perlite Composites
Directory of Open Access Journals (Sweden)
Arifuzzaman Md
2015-01-01
Full Text Available Multiple sets of variables associated with expanded perlite particle consolidation in foam manufacturing were analyzed to develop a model for predicting perlite foam density. The consolidation of perlite particles based on the flotation method and compaction involves numerous variables leading to the final perlite foam density. The variables include binder content, compaction ratio, perlite particle size, various perlite particle densities and porosities, and various volumes of perlite at different stages of process. The developed model was found to be useful not only for prediction of foam density but also for optimization between compaction ratio and binder content to achieve a desired density. Experimental verification was conducted using a range of foam densities (0.15 – 0.5 g/cm3 produced with a range of compaction ratios (1.5 – 3.5, a range of sodium silicate contents (0.05 – 0.35 g/ml in dilution, a range of expanded perlite particle sizes (1 – 4 mm, and various perlite densities (such as skeletal, material, bulk, and envelope densities. A close agreement between predictions and experimental results was found.
Mutual information model for link prediction in heterogeneous complex networks
Shakibian, Hadi; Moghadam Charkari, Nasrollah
2017-01-01
Recently, a number of meta-path based similarity indices like PathSim, HeteSim, and random walk have been proposed for link prediction in heterogeneous complex networks. However, these indices suffer from two major drawbacks. Firstly, they are primarily dependent on the connectivity degrees of node pairs without considering the further information provided by the given meta-path. Secondly, most of them are required to use a single and usually symmetric meta-path in advance. Hence, employing a set of different meta-paths is not straightforward. To tackle with these problems, we propose a mutual information model for link prediction in heterogeneous complex networks. The proposed model, called as Meta-path based Mutual Information Index (MMI), introduces meta-path based link entropy to estimate the link likelihood and could be carried on a set of available meta-paths. This estimation measures the amount of information through the paths instead of measuring the amount of connectivity between the node pairs. The experimental results on a Bibliography network show that the MMI obtains high prediction accuracy compared with other popular similarity indices. PMID:28344326
Model for Predicting Climatic Yield of Sugarcane in Nanning City
Institute of Scientific and Technical Information of China (English)
Zhanggui; LAN; Guanghai; LI; Yulian; LIANG; Yuhong; YANG; Xiaoping; LI
2014-01-01
According to spatial distribution of climate disasters in Nanning City and physiological and ecological indicator demands of sugarcane,with the aid of HJ- 1 CCD satellite remote sensing images,basic meteorological data and geographic information data,this paper established the model for predicting climatic yield of sugarcane in Nanning City,to predict total yield of sugarcane in Nanning City. Results indicated that the distribution of sugarcane in Nanning City is greatly influenced by drought. In 2010,regions suffered from drought had sugarcane planting area of 346. 20 km2,accounting for 18.88% of the total sugarcane planting area. The influence of frost disaster on distribution of sugarcane in Nanning City is limited. Regions suffered from frost had sugarcane planting area of only 67. 1 km2,taking up 3.75% of the total sugarcane planting area. In 2010,the climatic yield of sugarcane in Nanning City was 8. 8446 million tons. It proved that the prediction accuracy of the model is up to 90%.
Energy Technology Data Exchange (ETDEWEB)
Blaise Collin
2014-09-01
Safety tests were conducted on fourteen fuel compacts from AGR-1, the first irradiation experiment of the Advanced Gas Reactor (AGR) Fuel Development and Qualification program, at temperatures ranging from 1600 to 1800°C to determine fission product release at temperatures that bound reactor accident conditions. The PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, strontium, and krypton from fuel compacts containing tristructural isotropic (TRISO) coated particles during the safety tests, and the predicted values were compared with experimental results. Preliminary comparisons between PARFUME predictions and post-irradiation examination (PIE) results of the safety tests show different trends in the prediction of the fractional release depending on the species, and it leads to different conclusions regarding the diffusivities used in the modeling of fission product transport in TRISO-coated particles: • For silver, the diffusivity in silicon carbide (SiC) might be over-estimated by a factor of at least 102 to 103 at 1600°C and 1700°C, and at least 10 to 102 at 1800°C. The diffusivity of silver in uranium oxy-carbide (UCO) might also be over-estimated, but the available data are insufficient to allow definitive conclusions to be drawn. • For cesium, the diffusivity in UCO might be over-estimated by a factor of at least 102 to 103 at 1600°C, 105 at 1700°C, and 103 at 1800°C. The diffusivity of cesium in SiC might also over-estimated, by a factor of 10 at 1600°C and 103 at 1700°C, based upon the comparisons between calculated and measured release fractions from intact particles. There is no available estimate at 1800°C since all the compacts heated up at 1800°C contain particles with failed SiC layers whose release dominates the release from intact particles. • For strontium, the diffusivity in SiC might be over-estimated by a factor of 10 to 102 at 1600 and 1700°C, and 102 to 103 at 1800°C. These
Dynamic Model Predicting Overweight, Obesity, and Extreme Obesity Prevalence Trends
Thomas, Diana M.; Weedermann, Marion; Fuemmeler, Bernard F.; Martin, Corby K.; Dhurandhar, Nikhil V.; Bredlau, Carl; Heymsfield, Steven B.; Ravussin, Eric; Bouchard, Claude
2013-01-01
Objective Obesity prevalence in the United States (US) appears to be leveling, but the reasons behind the plateau remain unknown. Mechanistic insights can be provided from a mathematical model. The objective of this study is to model known multiple population parameters associated with changes in body mass index (BMI) classes and to establish conditions under which obesity prevalence will plateau. Design and Methods A differential equation system was developed that predicts population-wide obesity prevalence trends. The model considers both social and non-social influences on weight gain, incorporates other known parameters affecting obesity trends, and allows for country specific population growth. Results The dynamic model predicts that: obesity prevalence is a function of birth rate and the probability of being born in an obesogenic environment; obesity prevalence will plateau independent of current prevention strategies; and the US prevalence of obesity, overweight, and extreme obesity will plateau by about 2030 at 28%, 32%, and 9%, respectively. Conclusions The US prevalence of obesity is stabilizing and will plateau, independent of current preventative strategies. This trend has important implications in accurately evaluating the impact of various anti-obesity strategies aimed at reducing obesity prevalence. PMID:23804487
Machine learning models in breast cancer survival prediction.
Montazeri, Mitra; Montazeri, Mohadeseh; Montazeri, Mahdieh; Beigzadeh, Amin
2016-01-01
Breast cancer is one of the most common cancers with a high mortality rate among women. With the early diagnosis of breast cancer survival will increase from 56% to more than 86%. Therefore, an accurate and reliable system is necessary for the early diagnosis of this cancer. The proposed model is the combination of rules and different machine learning techniques. Machine learning models can help physicians to reduce the number of false decisions. They try to exploit patterns and relationships among a large number of cases and predict the outcome of a disease using historical cases stored in datasets. The objective of this study is to propose a rule-based classification method with machine learning techniques for the prediction of different types of Breast cancer survival. We use a dataset with eight attributes that include the records of 900 patients in which 876 patients (97.3%) and 24 (2.7%) patients were females and males respectively. Naive Bayes (NB), Trees Random Forest (TRF), 1-Nearest Neighbor (1NN), AdaBoost (AD), Support Vector Machine (SVM), RBF Network (RBFN), and Multilayer Perceptron (MLP) machine learning techniques with 10-cross fold technique were used with the proposed model for the prediction of breast cancer survival. The performance of machine learning techniques were evaluated with accuracy, precision, sensitivity, specificity, and area under ROC curve. Out of 900 patients, 803 patients and 97 patients were alive and dead, respectively. In this study, Trees Random Forest (TRF) technique showed better results in comparison to other techniques (NB, 1NN, AD, SVM and RBFN, MLP). The accuracy, sensitivity and the area under ROC curve of TRF are 96%, 96%, 93%, respectively. However, 1NN machine learning technique provided poor performance (accuracy 91%, sensitivity 91% and area under ROC curve 78%). This study demonstrates that Trees Random Forest model (TRF) which is a rule-based classification model was the best model with the highest level of
Comparison of blade-strike modeling results with empirical data
Energy Technology Data Exchange (ETDEWEB)
Ploskey, Gene R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2004-03-01
This study is the initial stage of further investigation into the dynamics of injury to fish during passage through a turbine runner. As part of the study, Pacific Northwest National Laboratory (PNNL) estimated the probability of blade strike, and associated injury, as a function of fish length and turbine operating geometry at two adjacent turbines in Powerhouse 1 of Bonneville Dam. Units 5 and 6 had identical intakes, stay vanes, wicket gates, and draft tubes, but Unit 6 had a new runner and curved discharge ring to minimize gaps between the runner hub and blades and between the blade tips and discharge ring. We used a mathematical model to predict blade strike associated with two Kaplan turbines and compared results with empirical data from biological tests conducted in 1999 and 2000. Blade-strike models take into consideration the geometry of the turbine blades and discharges as well as fish length, orientation, and distribution along the runner. The first phase of this study included a sensitivity analysis to consider the effects of difference in geometry and operations between families of turbines on the strike probability response surface. The analysis revealed that the orientation of fish relative to the leading edge of a runner blade and the location that fish pass along the blade between the hub and blade tip are critical uncertainties in blade-strike models. Over a range of discharges, the average prediction of injury from blade strike was two to five times higher than average empirical estimates of visible injury from shear and mechanical devices. Empirical estimates of mortality may be better metrics for comparison to predicted injury rates than other injury measures for fish passing at mid-blade and blade-tip locations.
Results of the 2013 UT modeling benchmark obtained with models implemented in CIVA
Energy Technology Data Exchange (ETDEWEB)
Toullelan, Gwénaël; Raillon, Raphaële; Chatillon, Sylvain [CEA, LIST, 91191Gif-sur-Yvette (France); Lonne, Sébastien [EXTENDE, Le Bergson, 15 Avenue Emile Baudot, 91300 MASSY (France)
2014-02-18
The 2013 Ultrasonic Testing (UT) modeling benchmark concerns direct echoes from side drilled holes (SDH), flat bottom holes (FBH) and corner echoes from backwall breaking artificial notches inspected with a matrix phased array probe. This communication presents the results obtained with the models implemented in the CIVA software: the pencilmodel is used to compute the field radiated by the probe, the Kirchhoff approximation is applied to predict the response of FBH and notches and the SOV (Separation Of Variables) model is used for the SDH responses. The comparison between simulated and experimental results are presented and discussed.
Using CV-GLUE procedure in analysis of wetland model predictive uncertainty.
Huang, Chun-Wei; Lin, Yu-Pin; Chiang, Li-Chi; Wang, Yung-Chieh
2014-07-01
This study develops a procedure that is related to Generalized Likelihood Uncertainty Estimation (GLUE), called the CV-GLUE procedure, for assessing the predictive uncertainty that is associated with different model structures with varying degrees of complexity. The proposed procedure comprises model calibration, validation, and predictive uncertainty estimation in terms of a characteristic coefficient of variation (characteristic CV). The procedure first performed two-stage Monte-Carlo simulations to ensure predictive accuracy by obtaining behavior parameter sets, and then the estimation of CV-values of the model outcomes, which represent the predictive uncertainties for a model structure of interest with its associated behavior parameter sets. Three commonly used wetland models (the first-order K-C model, the plug flow with dispersion model, and the Wetland Water Quality Model; WWQM) were compared based on data that were collected from a free water surface constructed wetland with paddy cultivation in Taipei, Taiwan. The results show that the first-order K-C model, which is simpler than the other two models, has greater predictive uncertainty. This finding shows that predictive uncertainty does not necessarily increase with the complexity of the model structure because in this case, the more simplistic representation (first-order K-C model) of reality results in a higher uncertainty in the prediction made by the model. The CV-GLUE procedure is suggested to be a useful tool not only for designing constructed wetlands but also for other aspects of environmental management.
Software Defect Prediction Models for Quality Improvement: A Literature Study
Directory of Open Access Journals (Sweden)
Mrinal Singh Rawat
2012-09-01
Full Text Available In spite of meticulous planning, well documentation and proper process control during software development, occurrences of certain defects are inevitable. These software defects may lead to degradation of the quality which might be the underlying cause of failure. In todays cutting edge competition its necessary to make conscious efforts to control and minimize defects in software engineering. However, these efforts cost money, time and resources. This paper identifies causative factors which in turn suggest the remedies to improve software quality and productivity. The paper also showcases on how the various defect prediction models are implemented resulting in reduced magnitude of defects.