WorldWideScience

Sample records for model response regulator

  1. Reconstructing a Network of Stress-Response Regulators via Dynamic System Modeling of Gene Regulation

    Directory of Open Access Journals (Sweden)

    Wei-Sheng Wu

    2008-01-01

    Full Text Available Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene’s expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specifi c stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably suffi cient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  2. Mathematical model of the SOS response regulation in wild-type Escherichia coli

    International Nuclear Information System (INIS)

    Aksenov, S.V.

    1997-01-01

    Regulation of the SOS response in Escherichia coli, which is a set of inducible cellular reactions introduced after DNA damage, is due to specific interaction of LexA and RecA proteins. LexA protein is a common repressor of the genes of the SOS system, and RecA protein, once transiently activated by the so-called SOS-inducing signal, promotes LexA protein destruction. We have described the SOS regulation by means of differential equations with regard to LexA and RecA concentrations elsewhere. The 'input' function for model equations is the level of the SOS-inducing signal against time. Here we present a means for calculating the concentration of single-stranded DNA (SOS-inducing signal) as a function of time in wild-type cells after ultraviolet irradiation. With model equations one can simulate kinetic curves of SOS regulatory proteins after DNA damage to survey the SOS response kinetics. Simulation of LexA protein kinetics agrees with experimental data. We compare simulated LexA kinetic curves in wild-type and uνr - mutant bacteria, which is useful in investigating the way uνrABC-dependent excision repair modulates the SOS response kinetics. Possible applications of the model to investigating various aspects of the SOS induction are discussed

  3. An Extended System Frequency Response Model Considering Wind Power Participation in Frequency Regulation

    Directory of Open Access Journals (Sweden)

    Yi Tang

    2017-11-01

    Full Text Available With increasing penetration of wind power into the power system, wind power participation in frequency regulation is regarded as a beneficial strategy to improve the dynamic frequency response characteristics of power systems. The traditional power system frequency response (SFR model, which only includes synchronous generators, is no longer suitable for power systems with high penetrated wind power. An extended SFR model, based on the reduced-order model of wind turbine generator (WTG and the traditional SFR model, is presented in this paper. In the extended SFR model, the reduced-order model of WTG with combined frequency control is deduced by employing small signal analysis theory. Afterwards, the stability analysis of a closed-loop control system for the extended SFR model is carried out. Time-domain simulations using a test system are performed to validate the effectiveness of the extended SFR model; this model can provide a simpler, clearer and faster way to analyze the dynamic frequency response characteristic for a high-wind integrated power systems. The impact of additional frequency control parameters and wind speed disturbances on the system dynamic frequency response characteristics are investigated.

  4. Integrative modeling of transcriptional regulation in response to antirheumatic therapy

    Directory of Open Access Journals (Sweden)

    Thiesen Hans-Juergen

    2009-08-01

    Full Text Available Abstract Background The investigation of gene regulatory networks is an important issue in molecular systems biology and significant progress has been made by combining different types of biological data. The purpose of this study was to characterize the transcriptional program induced by etanercept therapy in patients with rheumatoid arthritis (RA. Etanercept is known to reduce disease symptoms and progression in RA, but the underlying molecular mechanisms have not been fully elucidated. Results Using a DNA microarray dataset providing genome-wide expression profiles of 19 RA patients within the first week of therapy we identified significant transcriptional changes in 83 genes. Most of these genes are known to control the human body's immune response. A novel algorithm called TILAR was then applied to construct a linear network model of the genes' regulatory interactions. The inference method derives a model from the data based on the Least Angle Regression while incorporating DNA-binding site information. As a result we obtained a scale-free network that exhibits a self-regulating and highly parallel architecture, and reflects the pleiotropic immunological role of the therapeutic target TNF-alpha. Moreover, we could show that our integrative modeling strategy performs much better than algorithms using gene expression data alone. Conclusion We present TILAR, a method to deduce gene regulatory interactions from gene expression data by integrating information on transcription factor binding sites. The inferred network uncovers gene regulatory effects in response to etanercept and thus provides useful hypotheses about the drug's mechanisms of action.

  5. Providing frequency regulation reserve services using demand response scheduling

    International Nuclear Information System (INIS)

    Motalleb, Mahdi; Thornton, Matsu; Reihani, Ehsan; Ghorbani, Reza

    2016-01-01

    Highlights: • Proposing a market model for contingency reserve services using demand response. • Considering transient limitations of grid frequency for inverter-based generations. • Price-sensitive scheduling of residential batteries and water heaters using dynamic programming. • Calculating the profits of both generation companies and demand response aggregators. - Abstract: During power grid contingencies, frequency regulation is a primary concern. Historically, frequency regulation during contingency events has been the sole responsibility of the power utility. We present a practical method of using distributed demand response scheduling to provide frequency regulation during contingency events. This paper discusses the implementation of a control system model for the use of distributed energy storage systems such as battery banks and electric water heaters as a source of ancillary services. We present an algorithm which handles the optimization of demand response scheduling for normal operation and during contingency events. We use dynamic programming as an optimization tool. A price signal is developed using optimal power flow calculations to determine the locational marginal price of electricity, while sensor data for water usage is also collected. Using these inputs to dynamic programming, the optimal control signals are given as output. We assume a market model in which distributed demand response resources are sold as a commodity on the open market and profits from demand response aggregators as brokers of distributed demand response resources can be calculated. In considering control decisions for regulation of transient changes in frequency, we focus on IEEE standard 1547 in order to prevent the safety shut-off of inverter-based generation and further exacerbation of frequency droop. This method is applied to IEEE case 118 as a demonstration of the method in practice.

  6. A dynamic model for firm-response to non-credible incentive regulation regimes

    International Nuclear Information System (INIS)

    Agrell, Per J.; Grifell-Tatjé, Emili

    2016-01-01

    Economic network regulation increasingly use quantitative performance models (from econometrics and engineering) to set revenues. In theory, high-powered incentive regulation, such as revenue-caps, induces firms to cost-efficient behavior independent of underlying model. However, anecdotal evidence shows regulated firms occasionally maintaining cost-inefficiency under incentive regulation even under slumping profitability. We present a model for firm-level efficiency under a regime with a probability of failure explaining this phenomenon. The model is based on the hypothesis that the regulatory choice of method can be associated with intrinsic flaws leading to judicial repeal and replacement of it by a low-powered regime. The results show that the cost efficiency policy is proportional to the type of firm (cost of effort), value of time (discount factor) and the credibility of the method (risk of failure). A panel data set for 2000–2006 for 128 electricity distributors in Sweden is used to validate the model predictions (radical productivity slowdown, failing profitability and efficiency) at the launch and demise of a non-credible regulation method. The work highlights the fallacy of viewing incentive regulation as a method-independent instrument, a result applicable in any infrastructure regulation. - Highlights: • Incentive regulation relies on fixed revenue for operators. • In existing theory the efficiency-inducing effect is model-independent. • A dynamic game exposes the firm to a regulation that may fail. • One optimal policy is to pad cost and wait for the failure. • The Swedish DSOs show this policy 2003–2006, when the regime failed.

  7. SCF(KMD) controls cytokinin signaling by regulating the degradation of type-B response regulators.

    Science.gov (United States)

    Kim, Hyo Jung; Chiang, Yi-Hsuan; Kieber, Joseph J; Schaller, G Eric

    2013-06-11

    Cytokinins are plant hormones that play critical roles in growth and development. In Arabidopsis, the transcriptional response to cytokinin is regulated by action of type-B Arabidopsis response regulators (ARRs). Although central elements in the cytokinin signal transduction pathway have been identified, mechanisms controlling output remain to be elucidated. Here we demonstrate that a family of F-box proteins, called the kiss me deadly (KMD) family, targets type-B ARR proteins for degradation. KMD proteins form an S-phase kinase-associated PROTEIN1 (SKP1)/Cullin/F-box protein (SCF) E3 ubiquitin ligase complex and directly interact with type-B ARR proteins. Loss-of-function KMD mutants stabilize type-B ARRs and exhibit an enhanced cytokinin response. In contrast, plants with elevated KMD expression destabilize type-B ARR proteins leading to cytokinin insensitivity. Our results support a model in which an SCF(KMD) complex negatively regulates cytokinin responses by controlling levels of a key family of transcription factors.

  8. The significance of translation regulation in the stress response

    Science.gov (United States)

    2013-01-01

    Background The stress response in bacteria involves the multistage control of gene expression but is not entirely understood. To identify the translational response of bacteria in stress conditions and assess its contribution to the regulation of gene expression, the translational states of all mRNAs were compared under optimal growth condition and during nutrient (isoleucine) starvation. Results A genome-scale study of the translational response to nutritional limitation was performed in the model bacterium Lactococcus lactis. Two measures were used to assess the translational status of each individual mRNA: the fraction engaged in translation (ribosome occupancy) and ribosome density (number of ribosomes per 100 nucleotides). Under isoleucine starvation, half of the mRNAs considered were translationally down-regulated mainly due to decreased ribosome density. This pattern concerned genes involved in growth-related functions such as translation, transcription, and the metabolism of fatty acids, phospholipids and bases, contributing to the slowdown of growth. Only 4% of the mRNAs were translationally up-regulated, mostly related to prophagic expression in response to stress. The remaining genes exhibited antagonistic regulations of the two markers of translation. Ribosome occupancy increased significantly for all the genes involved in the biosynthesis of isoleucine, although their ribosome density had decreased. The results revealed complex translational regulation of this pathway, essential to cope with isoleucine starvation. To elucidate the regulation of global gene expression more generally, translational regulation was compared to transcriptional regulation under isoleucine starvation and to other post-transcriptional regulations related to mRNA degradation and mRNA dilution by growth. Translational regulation appeared to accentuate the effects of transcriptional changes for down-regulated growth-related functions under isoleucine starvation although m

  9. Cognitive emotion regulation enhances aversive prediction error activity while reducing emotional responses.

    Science.gov (United States)

    Mulej Bratec, Satja; Xie, Xiyao; Schmid, Gabriele; Doll, Anselm; Schilbach, Leonhard; Zimmer, Claus; Wohlschläger, Afra; Riedl, Valentin; Sorg, Christian

    2015-12-01

    Cognitive emotion regulation is a powerful way of modulating emotional responses. However, despite the vital role of emotions in learning, it is unknown whether the effect of cognitive emotion regulation also extends to the modulation of learning. Computational models indicate prediction error activity, typically observed in the striatum and ventral tegmental area, as a critical neural mechanism involved in associative learning. We used model-based fMRI during aversive conditioning with and without cognitive emotion regulation to test the hypothesis that emotion regulation would affect prediction error-related neural activity in the striatum and ventral tegmental area, reflecting an emotion regulation-related modulation of learning. Our results show that cognitive emotion regulation reduced emotion-related brain activity, but increased prediction error-related activity in a network involving ventral tegmental area, hippocampus, insula and ventral striatum. While the reduction of response activity was related to behavioral measures of emotion regulation success, the enhancement of prediction error-related neural activity was related to learning performance. Furthermore, functional connectivity between the ventral tegmental area and ventrolateral prefrontal cortex, an area involved in regulation, was specifically increased during emotion regulation and likewise related to learning performance. Our data, therefore, provide first-time evidence that beyond reducing emotional responses, cognitive emotion regulation affects learning by enhancing prediction error-related activity, potentially via tegmental dopaminergic pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Regulation-Structured Dynamic Metabolic Model Provides a Potential Mechanism for Delayed Enzyme Response in Denitrification Process

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hyun-Seob; Thomas, Dennis G.; Stegen, James C.; Li, Minjing; Liu, Chongxuan; Song, Xuehang; Chen, Xingyuan; Fredrickson, Jim K.; Zachara, John M.; Scheibe, Timothy D.

    2017-09-29

    In a recent study of denitrification dynamics in hyporheic zone sediments, we observed a significant time lag (up to several days) in enzymatic response to the changes in substrate concentration. To explore an underlying mechanism and understand the interactive dynamics between enzymes and nutrients, we developed a trait-based model that associates a community’s traits with functional enzymes, instead of typically used species guilds (or functional guilds). This enzyme-based formulation allows to collectively describe biogeochemical functions of microbial communities without directly parameterizing the dynamics of species guilds, therefore being scalable to complex communities. As a key component of modeling, we accounted for microbial regulation occurring through transcriptional and translational processes, the dynamics of which was parameterized based on the temporal profiles of enzyme concentrations measured using a new signature peptide-based method. The simulation results using the resulting model showed several days of a time lag in enzymatic responses as observed in experiments. Further, the model showed that the delayed enzymatic reactions could be primarily controlled by transcriptional responses and that the dynamics of transcripts and enzymes are closely correlated. The developed model can serve as a useful tool for predicting biogeochemical processes in natural environments, either independently or through integration with hydrologic flow simulators.

  11. Flow regulation in coronary vascular tree: a model study.

    Directory of Open Access Journals (Sweden)

    Xinzhou Xie

    Full Text Available Coronary blood flow can always be matched to the metabolic demand of the myocardium due to the regulation of vasoactive segments. Myocardial compressive forces play an important role in determining coronary blood flow but its impact on flow regulation is still unknown. The purpose of this study was to develop a coronary specified flow regulation model, which can integrate myocardial compressive forces and other identified regulation factors, to further investigate the coronary blood flow regulation behavior.A theoretical coronary flow regulation model including the myogenic, shear-dependent and metabolic responses was developed. Myocardial compressive forces were included in the modified wall tension model. Shear-dependent response was estimated by using the experimental data from coronary circulation. Capillary density and basal oxygen consumption were specified to corresponding to those in coronary circulation. Zero flow pressure was also modeled by using a simplified capillary model.Pressure-flow relations predicted by the proposed model are consistent with previous experimental data. The predicted diameter changes in small arteries are in good agreement with experiment observations in adenosine infusion and inhibition of NO synthesis conditions. Results demonstrate that the myocardial compressive forces acting on the vessel wall would extend the auto-regulatory range by decreasing the myogenic tone at the given perfusion pressure.Myocardial compressive forces had great impact on coronary auto-regulation effect. The proposed model was proved to be consistent with experiment observations and can be employed to investigate the coronary blood flow regulation effect in physiological and pathophysiological conditions.

  12. Re-sensitizing Multidrug Resistant Bacteria to Antibiotics by Targeting Bacterial Response Regulators: Characterization and Comparison of Interactions between 2-Aminoimidazoles and the Response Regulators BfmR from Acinetobacter baumannii and QseB from Francisella spp.

    Directory of Open Access Journals (Sweden)

    Morgan E. Milton

    2018-02-01

    Full Text Available 2-aminoimidazole (2-AI compounds inhibit the formation of bacterial biofilms, disperse preformed biofilms, and re-sensitize multidrug resistant bacteria to antibiotics. 2-AIs have previously been shown to interact with bacterial response regulators, but the mechanism of interaction is still unknown. Response regulators are one part of two-component systems (TCS. TCSs allow cells to respond to changes in their environment, and are used to trigger quorum sensing, virulence factors, and antibiotic resistance. Drugs that target the TCS signaling process can inhibit pathogenic behavior, making this a potent new therapeutic approach that has not yet been fully exploited. We previously laid the groundwork for the interaction of the Acinetobacter baumannii response regulator BfmR with an early 2-AI derivative. Here, we further investigate the response regulator/2-AI interaction and look at a wider library of 2-AI compounds. By combining molecular modeling with biochemical and cellular studies, we expand on a potential mechanism for interaction between response regulators and 2-AIs. We also establish that Francisella tularensis/novicida, encoding for only three known response regulators, can be a model system to study the interaction between 2-AIs and response regulators. We show that knowledge gained from studying Francisella can be applied to the more complex A. baumannii system, which contains over 50 response regulators. Understanding the impact of 2-AIs on response regulators and their mechanism of interaction will lead to the development of more potent compounds that will serve as adjuvant therapies to broad-range antibiotics.

  13. Regulation of gene expression in Streptococcus pneumoniae by response regulator 09 is strain dependent

    NARCIS (Netherlands)

    W.T. Hendriksen (Wouter); N. Silva (Nuno); H.J. Bootsma (Hester); C.E. Blue (Clare); G.K. Paterson (Gavin); A.R. Kerr (Alison); A.S. de Jong (Arjan); O.P. Kuipers (Oscar); P.W.M. Hermans (Peter); T.J. Mitchell

    2007-01-01

    textabstractRecent murine studies have demonstrated that the role of response regulator 09 (RR09) of Streptococcus pneumoniae in virulence is different in different strains. In the present study, we used a murine pneumonia model of infection to assess the virulence of a TIGR4 rr09 mutant, and we

  14. Regulation of gene expression in Streptococcus pneumoniae by response regulator 09 is strain dependent

    NARCIS (Netherlands)

    Hendriksen, Wouter T.; Silva, Nuno; Bootsma, Hester J.; Blue, Clare E.; Paterson, Gavin K.; Kerr, Alison R.; de Jong, Anne; Kuipers, Oscar P.; Hermans, Peter W. M.; Mitchell, Tim J.

    Recent murine studies have demonstrated that the role of response regulator 09 (RR09) of Streptococcus pneumoniae in virulence is different in different strains. In the present study, we used a murine pneumonia model of infection to assess the virulence of a TIGR4 rr09 mutant, and we found that

  15. Modeling baroreflex regulation of heart rate during orthostatic stress

    DEFF Research Database (Denmark)

    Olufsen, Mette; Tran, Hien T.; Ottesen, Johnny T.

    2006-01-01

    . The model uses blood pressure measured in the finger as an input to model heart rate dynamics in response to changes in baroreceptor nerve firing rate, sympathetic and parasympathetic responses, vestibulo-sympathetic reflex, and concentrations of norepinephrine and acetylcholine. We formulate an inverse...... in healthy and hypertensive elderly people the hysteresis loop shifts to higher blood pressure values and its area is diminished. Finally, for hypertensive elderly people the hysteresis loop is generally not closed indicating that during postural change from sitting to standing, the blood pressure resettles......During orthostatic stress, arterial and cardiopulmonary baroreflexes play a key role in maintaining arterial pressure by regulating heart rate. This study, presents a mathematical model that can predict the dynamics of heart rate regulation in response to postural change from sitting to standing...

  16. Regulation of mat responses by a differentiation MAPK pathway in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Sheelarani Karunanithi

    Full Text Available Fungal species exhibit diverse behaviors when presented with extracellular challenges. Pathogenic fungi can undergo cell differentiation and biofilm formation in response to fluctuating nutrient levels, and these responses are required for virulence. In the model fungal eukaryote Saccharomyces cerevisiae, nutrient limitation induces filamentous growth and biofilm/mat formation. Both responses require the same signal transduction (MAPK pathway and the same cell adhesion molecule (Flo11 but have been studied under different conditions. We found that filamentous growth and mat formation are aspects of a related response that is regulated by the MAPK pathway. Cells in yeast-form mats differentiated into pseudohyphae in response to nutrient limitation. The MAPK pathway regulated mat expansion (in the plane of the XY-axis and substrate invasion (downward in the plane of the Z-axis, which optimized the mat's response to extracellular nutrient levels. The MAPK pathway also regulated an upward growth pattern (in the plane of the Z-axis in response to nutrient limitation and changes in surface rigidity. Upward growth allowed for another level of mat responsiveness and resembled a type of colonial chemorepulsion. Together our results show that signaling pathways play critical roles in regulating social behaviors in which fungal cells participate. Signaling pathways may regulate similar processes in pathogens, whose highly nuanced responses are required for virulence.

  17. Southern states radiological emergency response laws and regulations

    International Nuclear Information System (INIS)

    1990-06-01

    The purpose of this report is to provide a summary of the emergency response laws and regulations in place in the various states within the southern region for use by legislators, emergency response planners, the general public and all persons concerned about the existing legal framework for emergency response. SSEB expects to periodically update the report as necessary. Radiation protection regulations without emergency response provisions are not included in the summary. The radiological emergency response laws and regulations of the Southern States Energy Compact member states are in some cases disparate. Several states have very specific laws on radiological emergency response while in others, the statutory law mentions only emergency response to ''natural disasters.'' Some states have adopted extensive regulations on the topic, others have none. For this reason, any general overview must necessarily discuss laws and regulations in general terms. State-by-state breakdowns are given for specific states

  18. A model of clearance rate regulation in mussels

    Science.gov (United States)

    Fréchette, Marcel

    2012-10-01

    Clearance rate regulation has been modelled as an instantaneous response to food availability, independent of the internal state of the animals. This view is incompatible with latent effects during ontogeny and phenotypic flexibility in clearance rate. Internal-state regulation of clearance rate is required to account for these patterns. Here I develop a model of internal-state based regulation of clearance rate. External factors such as suspended sediments are included in the model. To assess the relative merits of instantaneous regulation and internal-state regulation, I modelled blue mussel clearance rate and growth using a DEB model. In the usual standard feeding module, feeding is governed by a Holling's Type II response to food concentration. In the internal-state feeding module, gill ciliary activity and thus clearance rate are driven by internal reserve level. Factors such as suspended sediments were not included in the simulations. The two feeding modules were compared on the basis of their ability to capture the impact of latent effects, of environmental heterogeneity in food abundance and of physiological flexibility on clearance rate and individual growth. The Holling feeding module was unable to capture the effect of any of these sources of variability. In contrast, the internal-state feeding module did so without any modification or ad hoc calibration. Latent effects, however, appeared transient. With simple annual variability in temperature and food concentration, the relationship between clearance rate and food availability predicted by the internal-state feeding module was quite similar to that observed in Norwegian fjords. I conclude that in contrast with the usual Holling feeding module, internal-state regulation of clearance rate is consistent with well-documented growth and clearance rate patterns.

  19. Southern states radiological emergency response laws and regulations

    International Nuclear Information System (INIS)

    1989-02-01

    The radiological emergency response laws and regulations of the Southern States Energy Compact member states are in some cases disparate. Several states have very specific laws on radiological emergency response while in others, the statutory law mentions only emergency response to ''natural disasters.'' Some states have adopted extensive regulations on the topic; others have none. For this reason, any general overview must necessarily discuss laws and regulations in general terms

  20. Local and global responses in complex gene regulation networks

    Science.gov (United States)

    Tsuchiya, Masa; Selvarajoo, Kumar; Piras, Vincent; Tomita, Masaru; Giuliani, Alessandro

    2009-04-01

    An exacerbated sensitivity to apparently minor stimuli and a general resilience of the entire system stay together side-by-side in biological systems. This apparent paradox can be explained by the consideration of biological systems as very strongly interconnected network systems. Some nodes of these networks, thanks to their peculiar location in the network architecture, are responsible for the sensitivity aspects, while the large degree of interconnection is at the basis of the resilience properties of the system. One relevant feature of the high degree of connectivity of gene regulation networks is the emergence of collective ordered phenomena influencing the entire genome and not only a specific portion of transcripts. The great majority of existing gene regulation models give the impression of purely local ‘hard-wired’ mechanisms disregarding the emergence of global ordered behavior encompassing thousands of genes while the general, genome wide, aspects are less known. Here we address, on a data analysis perspective, the discrimination between local and global scale regulations, this goal was achieved by means of the examination of two biological systems: innate immune response in macrophages and oscillating growth dynamics in yeast. Our aim was to reconcile the ‘hard-wired’ local view of gene regulation with a global continuous and scalable one borrowed from statistical physics. This reconciliation is based on the network paradigm in which the local ‘hard-wired’ activities correspond to the activation of specific crucial nodes in the regulation network, while the scalable continuous responses can be equated to the collective oscillations of the network after a perturbation.

  1. Relationship between cognitive emotion regulation, social support, resilience and acute stress responses in Chinese soldiers: Exploring multiple mediation model.

    Science.gov (United States)

    Cai, Wen-Peng; Pan, Yu; Zhang, Shui-Miao; Wei, Cun; Dong, Wei; Deng, Guang-Hui

    2017-10-01

    The current study aimed to explore the association of cognitive emotion regulation, social support, resilience and acute stress responses in Chinese soldiers and to understand the multiple mediation effects of social support and resilience on the relationship between cognitive emotion regulation and acute stress responses. A total of 1477 male soldiers completed mental scales, including the cognitive emotion regulation questionnaire-Chinese version, the perceived social support scale, the Chinese version of the Connor-Davidson resilience scale, and the military acute stress scale. As hypothesized, physiological responses, psychological responses, and acute stress were associated with negative-focused cognitive emotion regulation, and negatively associated with positive-focused cognitive emotion regulation, social supports and resilience. Besides, positive-focused cognitive emotion regulation, social support, and resilience were significantly associated with one another, and negative-focused cognitive emotion regulation was negatively associated with social support. Regression analysis and bootstrap analysis showed that social support and resilience had partly mediating effects on negative strategies and acute stress, and fully mediating effects on positive strategies and acute stress. These results thus indicate that military acute stress is significantly associated with cognitive emotion regulation, social support, and resilience, and that social support and resilience have multiple mediation effects on the relationship between cognitive emotion regulation and acute stress responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Predicting the Role of IL-10 in the Regulation of the Adaptive Immune Responses in Mycobacterium avium Subsp. paratuberculosis Infections Using Mathematical Models

    Science.gov (United States)

    Magombedze, Gesham; Eda, Shigetoshi; Stabel, Judy

    2015-01-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is an intracellular bacterial pathogen that causes Johne’s disease (JD) in cattle and other animals. The hallmark of MAP infection in the early stages is a strong protective cell-mediated immune response (Th1-type), characterized by antigen-specific γ-interferon (IFN-γ). The Th1 response wanes with disease progression and is supplanted by a non-protective humoral immune response (Th2-type). Interleukin-10 (IL-10) is believed to play a critical role in the regulation of host immune responses to MAP infection and potentially orchestrate the reversal of Th1/Th2 immune dominance during disease progression. However, how its role correlates with MAP infection remains to be completely deciphered. We developed mathematical models to explain probable mechanisms for IL-10 involvement in MAP infection. We tested our models with IL-4, IL-10, IFN-γ, and MAP fecal shedding data collected from calves that were experimentally infected and followed over a period of 360 days in the study of Stabel and Robbe-Austerman (2011). Our models predicted that IL-10 can have different roles during MAP infection, (i) it can suppress the Th1 expression, (ii) can enhance Th2 (IL-4) expression, and (iii) can suppress the Th1 expression in synergy with IL-4. In these predicted roles, suppression of Th1 responses was correlated with increased number of MAP. We also predicted that Th1-mediated responses (IFN-γ) can lead to high expression of IL-10 and that infection burden regulates Th2 suppression by the Th1 response. Our models highlight areas where more experimental data is required to refine our model assumptions, and further test and investigate the role of IL-10 in MAP infection. PMID:26619346

  3. Predicting the Role of IL-10 in the Regulation of the Adaptive Immune Responses in Mycobacterium avium Subsp. paratuberculosis Infections Using Mathematical Models.

    Directory of Open Access Journals (Sweden)

    Gesham Magombedze

    Full Text Available Mycobacterium avium subsp. paratuberculosis (MAP is an intracellular bacterial pathogen that causes Johne's disease (JD in cattle and other animals. The hallmark of MAP infection in the early stages is a strong protective cell-mediated immune response (Th1-type, characterized by antigen-specific γ-interferon (IFN-γ. The Th1 response wanes with disease progression and is supplanted by a non-protective humoral immune response (Th2-type. Interleukin-10 (IL-10 is believed to play a critical role in the regulation of host immune responses to MAP infection and potentially orchestrate the reversal of Th1/Th2 immune dominance during disease progression. However, how its role correlates with MAP infection remains to be completely deciphered. We developed mathematical models to explain probable mechanisms for IL-10 involvement in MAP infection. We tested our models with IL-4, IL-10, IFN-γ, and MAP fecal shedding data collected from calves that were experimentally infected and followed over a period of 360 days in the study of Stabel and Robbe-Austerman (2011. Our models predicted that IL-10 can have different roles during MAP infection, (i it can suppress the Th1 expression, (ii can enhance Th2 (IL-4 expression, and (iii can suppress the Th1 expression in synergy with IL-4. In these predicted roles, suppression of Th1 responses was correlated with increased number of MAP. We also predicted that Th1-mediated responses (IFN-γ can lead to high expression of IL-10 and that infection burden regulates Th2 suppression by the Th1 response. Our models highlight areas where more experimental data is required to refine our model assumptions, and further test and investigate the role of IL-10 in MAP infection.

  4. Hormone response element binding proteins: novel regulators of vitamin D and estrogen signaling.

    Science.gov (United States)

    Lisse, Thomas S; Hewison, Martin; Adams, John S

    2011-03-01

    Insights from vitamin D-resistant New World primates and their human homologues as models of natural and pathological insensitivity to sterol/steroid action have uncovered a family of novel intracellular vitamin D and estrogen regulatory proteins involved in hormone action. The proteins, known as "vitamin D or estrogen response element-binding proteins", behave as potent cis-acting, transdominant regulators to inhibit steroid receptor binding to DNA response elements and is responsible for vitamin D and estrogen resistances. This set of interactors belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family of previously known pre-mRNA-interacting proteins. This review provides new insights into the mechanism by which these novel regulators of signaling and metabolism can act to regulate responses to vitamin D and estrogen. In addition the review also describes other molecules that are known to influence nuclear receptor signaling through interaction with hormone response elements. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Southern states radiological emergency response laws and regulations

    International Nuclear Information System (INIS)

    1989-07-01

    The purpose of this report is to provide a summary of the emergency response laws and regulations in place in the various states within the southern region for use by legislators, emergency response planners, the general public and all persons concerned about the existing legal framework for emergency response. SSEB expects to periodically update the report as necessary. Radiation protection regulations without emergency response provisions are not included in the summary

  6. Transnational models for regulation of nanotechnology.

    Science.gov (United States)

    Marchant, Gary E; Sylvester, Douglas J

    2006-01-01

    Like all technologies, nanotechnology will inevitably present risks, whether they result from unintentional effects of otherwise beneficial applications, or from the malevolent misuse of technology. Increasingly, risks from new and emerging technologies are being regulated at the international level, although governments and private experts are only beginning to consider the appropriate international responses to nanotechnology. In this paper, we explore both the potential risks posed by nanotechnology and potential regulatory frameworks that law may impose. In so doing, we also explore the various rationales for international regulation including the potential for cross-boundary harms, sharing of regulatory expertise and resources, controlling protectionism and trade conflicts, avoiding a "race to the bottom" in which governments seek economic advantage through lax regulation, and limiting the "nano divide" between North and South. Finally, we examine some models for international regulation and offer tentative thoughts on the prospects for each.

  7. Bang-bang Model for Regulation of Local Blood Flow

    Science.gov (United States)

    Golub, Aleksander S.; Pittman, Roland N.

    2013-01-01

    The classical model of metabolic regulation of blood flow in muscle tissue implies the maintenance of basal tone in arterioles of resting muscle and their dilation in response to exercise and/or tissue hypoxia via the evoked production of vasodilator metabolites by myocytes. A century-long effort to identify specific metabolites responsible for explaining active and reactive hyperemia has not been successful. Furthermore, the metabolic theory is not compatible with new knowledge on the role of physiological radicals (e.g., nitric oxide, NO, and superoxide anion, O2−) in the regulation of microvascular tone. We propose a model of regulation in which muscle contraction and active hyperemia are considered the physiologically normal state. We employ the “bang-bang” or “on/off” regulatory model which makes use of a threshold and hysteresis; a float valve to control the water level in a tank is a common example of this type of regulation. Active bang-bang regulation comes into effect when the supply of oxygen and glucose exceeds the demand, leading to activation of membrane NADPH oxidase, release of O2− into the interstitial space and subsequent neutralization of the interstitial NO. Switching arterioles on/off when local blood flow crosses the threshold is realized by a local cell circuit with the properties of a bang-bang controller, determined by its threshold, hysteresis and dead-band. This model provides a clear and unambiguous interpretation of the mechanism to balance tissue demand with a sufficient supply of nutrients and oxygen. PMID:23441827

  8. Modeling TH 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma.

    Science.gov (United States)

    Foster, Paul S; Maltby, Steven; Rosenberg, Helene F; Tay, Hock L; Hogan, Simon P; Collison, Adam M; Yang, Ming; Kaiko, Gerard E; Hansbro, Philip M; Kumar, Rakesh K; Mattes, Joerg

    2017-07-01

    In this review, we highlight experiments conducted in our laboratories that have elucidated functional roles for CD4 + T-helper type-2 lymphocytes (T H 2 cells), their associated cytokines, and eosinophils in the regulation of hallmark features of allergic asthma. Notably, we consider the complexity of type-2 responses and studies that have explored integrated signaling among classical T H 2 cytokines (IL-4, IL-5, and IL-13), which together with CCL11 (eotaxin-1) regulate critical aspects of eosinophil recruitment, allergic inflammation, and airway hyper-responsiveness (AHR). Among our most important findings, we have provided evidence that the initiation of T H 2 responses is regulated by airway epithelial cell-derived factors, including TRAIL and MID1, which promote T H 2 cell development via STAT6-dependent pathways. Further, we highlight studies demonstrating that microRNAs are key regulators of allergic inflammation and potential targets for anti-inflammatory therapy. On the background of T H 2 inflammation, we have demonstrated that innate immune cells (notably, airway macrophages) play essential roles in the generation of steroid-resistant inflammation and AHR secondary to allergen- and pathogen-induced exacerbations. Our work clearly indicates that understanding the diversity and spatiotemporal role of the inflammatory response and its interactions with resident airway cells is critical to advancing knowledge on asthma pathogenesis and the development of new therapeutic approaches. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Digitalising the General Data Protection Regulation with Dynamic Condition Response Graphs

    DEFF Research Database (Denmark)

    Heuck, Emil; Hildebrandt, Thomas; Kiærulff Lerche, Rasmus

    2017-01-01

    We describe how the declarative Dynamic Condition Response (DCR) Graphs proces notation can be used to digitalise the General Data Protection Regulation (GDPR) and make a first evaluation to what extend the formalisation and associated tool for end-user modelling and simulation can be used to cla...

  10. Characterizing human skin blood flow regulation in response to different local skin temperature perturbations

    NARCIS (Netherlands)

    Wu, Y.; Nieuwenhoff, M.D.; Huygen, Frank J.P.M.; van der Helm, F. C.T.; Niehof, S.P.; Schouten, A. C.

    2017-01-01

    Small nerve fibers regulate local skin blood flow in response to local thermal perturbations. Small nerve fiber function is difficult to assess with classical neurophysiological tests. In this study, a vasomotor response model in combination with a heating protocol was developed to quantitatively

  11. Target of Rapamycin (TOR) Regulates Growth in Response to Nutritional Signals.

    Science.gov (United States)

    Weisman, Ronit

    2016-10-01

    All organisms can respond to the availability of nutrients by regulating their metabolism, growth, and cell division. Central to the regulation of growth in response to nutrient availability is the target of rapamycin (TOR) signaling that is composed of two structurally distinct complexes: TOR complex 1 (TORC1) and TOR complex 2 (TORC2). The TOR genes were first identified in yeast as target of rapamycin, a natural product of a soil bacterium, which proved beneficial as an immunosuppressive and anticancer drug and is currently being tested for a handful of other pathological conditions including diabetes, neurodegeneration, and age-related diseases. Studies of the TOR pathway unraveled a complex growth-regulating network. TOR regulates nutrient uptake, transcription, protein synthesis and degradation, as well as metabolic pathways, in a coordinated manner that ensures that cells grow or cease growth in response to nutrient availability. The identification of specific signals and mechanisms that stimulate TOR signaling is an active and exciting field of research that has already identified nitrogen and amino acids as key regulators of TORC1 activity. The signals, as well as the cellular functions of TORC2, are far less well understood. Additional open questions in the field concern the relationships between TORC1 and TORC2, as well as the links with other nutrient-responsive pathways. Here I review the main features of TORC1 and TORC2, with a particular focus on yeasts as model organisms.

  12. Adolescent RSA responses during an anger discussion task: Relations to emotion regulation and adjustment.

    Science.gov (United States)

    Cui, Lixian; Morris, Amanda Sheffield; Harrist, Amanda W; Larzelere, Robert E; Criss, Michael M; Houltberg, Benjamin J

    2015-06-01

    The current study examined associations between adolescent respiratory sinus arrhythmia (RSA) during an angry event discussion task and adolescents' emotion regulation and adjustment. Data were collected from 206 adolescents (10-18 years of age, M age = 13.37). Electrocardiogram (ECG) and respiration data were collected from adolescents, and RSA values and respiration rates were computed. Adolescents reported on their own emotion regulation, prosocial behavior, and aggressive behavior. Multilevel latent growth modeling was employed to capture RSA responses across time (i.e., linear and quadratic changes; time course approach), and adolescent emotion regulation and adjustment variables were included in the model to test their links to RSA responses. Results indicated that high RSA baseline was associated with more adolescent prosocial behavior. A pattern of initial RSA decreases (RSA suppression) in response to angry event recall and subsequent RSA increases (RSA rebound) were related to better anger and sadness regulation and more prosocial behavior. However, RSA was not significantly linked to adolescent aggressive behavior. We also compared the time course approach with the conventional linear approach and found that the time course approach provided more meaningful and rich information. The implications of adaptive RSA change patterns are discussed. (c) 2015 APA, all rights reserved).

  13. Innate scavenger receptor-A regulates adaptive T helper cell responses to pathogen infection

    Science.gov (United States)

    Xu, Zhipeng; Xu, Lei; Li, Wei; Jin, Xin; Song, Xian; Chen, Xiaojun; Zhu, Jifeng; Zhou, Sha; Li, Yong; Zhang, Weiwei; Dong, Xiaoxiao; Yang, Xiaowei; Liu, Feng; Bai, Hui; Chen, Qi; Su, Chuan

    2017-01-01

    The pattern recognition receptor (PRR) scavenger receptor class A (SR-A) has an important function in the pathogenesis of non-infectious diseases and in innate immune responses to pathogen infections. However, little is known about the role of SR-A in the host adaptive immune responses to pathogen infection. Here we show with mouse models of helminth Schistosoma japonicum infection and heat-inactivated Mycobacterium tuberculosis stimulation that SR-A is regulated by pathogens and suppresses IRF5 nuclear translocation by direct interaction. Reduced abundance of nuclear IRF5 shifts macrophage polarization from M1 towards M2, which subsequently switches T-helper responses from type 1 to type 2. Our study identifies a role for SR-A as an innate PRR in regulating adaptive immune responses. PMID:28695899

  14. Sphingosine-1-Phosphate Signaling Regulates Myogenic Responsiveness in Human Resistance Arteries.

    Directory of Open Access Journals (Sweden)

    Sonya Hui

    Full Text Available We recently identified sphingosine-1-phosphate (S1P signaling and the cystic fibrosis transmembrane conductance regulator (CFTR as prominent regulators of myogenic responsiveness in rodent resistance arteries. However, since rodent models frequently exhibit limitations with respect to human applicability, translation is necessary to validate the relevance of this signaling network for clinical application. We therefore investigated the significance of these regulatory elements in human mesenteric and skeletal muscle resistance arteries. Mesenteric and skeletal muscle resistance arteries were isolated from patient tissue specimens collected during colonic or cardiac bypass surgery. Pressure myography assessments confirmed endothelial integrity, as well as stable phenylephrine and myogenic responses. Both human mesenteric and skeletal muscle resistance arteries (i express critical S1P signaling elements, (ii constrict in response to S1P and (iii lose myogenic responsiveness following S1P receptor antagonism (JTE013. However, while human mesenteric arteries express CFTR, human skeletal muscle resistance arteries do not express detectable levels of CFTR protein. Consequently, modulating CFTR activity enhances myogenic responsiveness only in human mesenteric resistance arteries. We conclude that human mesenteric and skeletal muscle resistance arteries are a reliable and consistent model for translational studies. We demonstrate that the core elements of an S1P-dependent signaling network translate to human mesenteric resistance arteries. Clear species and vascular bed variations are evident, reinforcing the critical need for further translational study.

  15. Internal cholinergic regulation of learning and recall in a model of olfactory processing

    Directory of Open Access Journals (Sweden)

    Licurgo Benemann Almeida

    2016-11-01

    Full Text Available In the olfactory system, cholinergic modulation has been associated with contrast modulation and changes in receptive fields in the olfactory bulb, as well the learning of odor associations in olfactory cortex. Computational modeling and behavioral studies suggest that cholinergic modulation could improve sensory processing and learning while preventing pro-active interference when task demands are high. However, how sensory inputs and/or learning regulate incoming modulation has not yet been elucidated. We here use a computational model of the olfactory bulb, piriform cortex (PC and horizontal limb of the diagonal band of Broca (HDB to explore how olfactory learning could regulate cholinergic inputs to the system in a closed feedback loop. In our model, the novelty of an odor is reflected in firing rates and sparseness of cortical neurons in response to that odor and these firing rates can directly regulate learning in the system by modifying cholinergic inputs to the system. In the model, cholinergic neurons reduce their firing in response to familiar odors – reducing plasticity in the PC, but increase their firing in response to novel odor – increasing PC plasticity. Recordings from HDB neurons in awake behaving rats reflect predictions from the model by showing that a subset of neurons decrease their firing as an odor becomes familiar.

  16. Plant Responses to Abiotic Stress Regulated by Histone Deacetylases

    Directory of Open Access Journals (Sweden)

    Ming Luo

    2017-12-01

    Full Text Available In eukaryotic cells, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are modulated by histone acetyltransferases and histone deacetylases (HDACs. Recent studies indicate that HDACs play essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance regarding the plant HDACs and their functions in the regulation of abiotic stress responses. The role of HDACs in autophagy was also discussed.

  17. VLDL hydrolysis by hepatic lipase regulates PPARδ transcriptional responses.

    Directory of Open Access Journals (Sweden)

    Jonathan D Brown

    Full Text Available PPARs (α,γ,δ are a family of ligand-activated transcription factors that regulate energy balance, including lipid metabolism. Despite these critical functions, the integration between specific pathways of lipid metabolism and distinct PPAR responses remains obscure. Previous work has revealed that lipolytic pathways can activate PPARs. Whether hepatic lipase (HL, an enzyme that regulates VLDL and HDL catabolism, participates in PPAR responses is unknown.Using PPAR ligand binding domain transactivation assays, we found that HL interacted with triglyceride-rich VLDL (>HDL≫LDL, IDL to activate PPARδ preferentially over PPARα or PPARγ, an effect dependent on HL catalytic activity. In cell free ligand displacement assays, VLDL hydrolysis by HL activated PPARδ in a VLDL-concentration dependent manner. Extended further, VLDL stimulation of HL-expressing HUVECs and FAO hepatoma cells increased mRNA expression of canonical PPARδ target genes, including adipocyte differentiation related protein (ADRP, angiopoietin like protein 4 and pyruvate dehydrogenase kinase-4. HL/VLDL regulated ADRP through a PPRE in the promoter region of this gene. In vivo, adenoviral-mediated hepatic HL expression in C57BL/6 mice increased hepatic ADRP mRNA levels by 30%. In ob/ob mice, a model with higher triglycerides than C57BL/6 mice, HL overexpression increased ADRP expression by 70%, demonstrating the importance of triglyceride substrate for HL-mediated PPARδ activation. Global metabolite profiling identified HL/VLDL released fatty acids including oleic acid and palmitoleic acid that were capable of recapitulating PPARδ activation and ADRP gene regulation in vitro.These data define a novel pathway involving HL hydrolysis of VLDL that activates PPARδ through generation of specific monounsaturated fatty acids. These data also demonstrate how integrating cell biology with metabolomic approaches provides insight into specific lipid mediators and pathways of lipid

  18. Arm-in-Arm Response Regulator Dimers Promote Intermolecular Signal Transduction

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Anna W.; Satyshur, Kenneth A.; Morales, Neydis Moreno; Forest, Katrina T. (UW)

    2016-02-01

    ABSTRACT

    Bacteriophytochrome photoreceptors (BphPs) and their cognate response regulators make up two-component signal transduction systems which direct bacteria to mount phenotypic responses to changes in environmental light quality. Most of these systems utilize single-domain response regulators to transduce signals through unknown pathways and mechanisms. Here we describe the photocycle and autophosphorylation kinetics of RtBphP1, a red light-regulated histidine kinase from the desert bacteriumRamlibacter tataouinensis. RtBphP1 undergoes red to far-red photoconversion with rapid thermal reversion to the dark state. RtBphP1 is autophosphorylated in the dark; this activity is inhibited under red light. The RtBphP1 cognate response regulator, theR. tataouinensisbacteriophytochrome response regulator (RtBRR), and a homolog, AtBRR fromAgrobacterium tumefaciens, crystallize unexpectedly as arm-in-arm dimers, reliant on a conserved hydrophobic motif, hFWAhL (where h is a hydrophobic M, V, L, or I residue). RtBRR and AtBRR dimerize distinctly from four structurally characterized phytochrome response regulators found in photosynthetic organisms and from all other receiver domain homodimers in the Protein Data Bank. A unique cacodylate-zinc-histidine tag metal organic framework yielded single-wavelength anomalous diffraction phases and may be of general interest. Examination of the effect of the BRR stoichiometry on signal transduction showed that phosphorylated RtBRR is accumulated more efficiently than the engineered monomeric RtBRR (RtBRRmon) in phosphotransfer reactions. Thus, we conclude that arm-in-arm dimers are a relevant signaling intermediate in this class of two-component regulatory systems.

  19. Modeling and prioritizing demand response programs in power markets

    International Nuclear Information System (INIS)

    Aalami, H.A.; Moghaddam, M. Parsa; Yousefi, G.R.

    2010-01-01

    One of the responsibilities of power market regulator is setting rules for selecting and prioritizing demand response (DR) programs. There are many different alternatives of DR programs for improving load profile characteristics and achieving customers' satisfaction. Regulator should find the optimal solution which reflects the perspectives of each DR stakeholder. Multi Attribute Decision Making (MADM) is a proper method for handling such optimization problems. In this paper, an extended responsive load economic model is developed. The model is based on price elasticity and customer benefit function. Prioritizing of DR programs can be realized by means of Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method. Considerations of ISO/utility/customer regarding the weighting of attributes are encountered by entropy method. An Analytical Hierarchy Process (AHP) is used for selecting the most effective DR program. Numerical studies are conducted on the load curve of the Iranian power grid in 2007. (author)

  20. PKA catalytic subunit compartmentation regulates contractile and hypertrophic responses to β-adrenergic signaling

    Science.gov (United States)

    Yang, Jason H.; Polanowska-Grabowska, Renata K.; Smith, Jeffrey S.; Shields, Charles W.; Saucerman, Jeffrey J.

    2014-01-01

    β-adrenergic signaling is spatiotemporally heterogeneous in the cardiac myocyte, conferring exquisite control to sympathetic stimulation. Such heterogeneity drives the formation of protein kinase A (PKA) signaling microdomains, which regulate Ca2+ handling and contractility. Here, we test the hypothesis that the nucleus independently comprises a PKA signaling microdomain regulating myocyte hypertrophy. Spatially-targeted FRET reporters for PKA activity identified slower PKA activation and lower isoproterenol sensitivity in the nucleus (t50 = 10.60±0.68 min; EC50 = 89.00 nmol/L) than in the cytosol (t50 = 3.71±0.25 min; EC50 = 1.22 nmol/L). These differences were not explained by cAMP or AKAP-based compartmentation. A computational model of cytosolic and nuclear PKA activity was developed and predicted that differences in nuclear PKA dynamics and magnitude are regulated by slow PKA catalytic subunit diffusion, while differences in isoproterenol sensitivity are regulated by nuclear expression of protein kinase inhibitor (PKI). These were validated by FRET and immunofluorescence. The model also predicted differential phosphorylation of PKA substrates regulating cell contractility and hypertrophy. Ca2+ and cell hypertrophy measurements validated these predictions and identified higher isoproterenol sensitivity for contractile enhancements (EC50 = 1.84 nmol/L) over cell hypertrophy (EC50 = 85.88 nmol/L). Over-expression of spatially targeted PKA catalytic subunit to the cytosol or nucleus enhanced contractile and hypertrophic responses, respectively. We conclude that restricted PKA catalytic subunit diffusion is an important PKA compartmentation mechanism and the nucleus comprises a novel PKA signaling microdomain, insulating hypertrophic from contractile β-adrenergic signaling responses. PMID:24225179

  1. Auxin and plant morphogenesis - a model of regulation

    Directory of Open Access Journals (Sweden)

    Stefan Zajączkowski

    2015-01-01

    Full Text Available In the presented model cells of the plant body form a spatial medium in which three-dimensional morphogenic waves of auxin are propagated. Points in the same phase of oscillation form isophasic surfaces and the vectors of wave propagation form a three-dimensional vector field. The vectors in the case of local inhomogeneities of the medium deviate from organ polarity, providing positional information recognized by cells. Models of functioning of such a supracellular oscillatory system in regulation of tissue differentiation, tropic responses and plant form are discussed.

  2. Can Environmental Regulations Promote Corporate Environmental Responsibility? Evidence from the Moderated Mediating Effect Model and an Empirical Study in China

    Directory of Open Access Journals (Sweden)

    Benhong Peng

    2018-02-01

    Full Text Available Based on the Stakeholder theory, a moderated mediating effect model is developed to reach the study objective, revealing an important connection that suggests environmental regulations (ERs influence corporate environmental responsibility (CER (Porter Hypothesis. In building the model, the validity of the questionnaire data was analyzed with factor analysis. By employing a two-step approach, a regression analysis is utilized to discuss the mediating effect of altruistic motivation and moderating effect of green innovation, and a structural equation model is used to explore the interactive mechanism of different variables. It is found that altruistic motivation plays a medium role in the relationship between ERs and CER, and green innovation engages a positive coordination in the relationship. The empirical study identifies factors affecting enterprises’ willingness to undertake environmental responsibility, including environment policies, corporate culture, and personal characters among others. It is also revealed that altruistic motivation is conducive to forming a community interests among enterprises and enhancing their resistance to market risks, which explains and corroborates the Stakeholder theory; and the higher the level of green innovation, the more willing enterprises are to implement environmentally friendly operations.

  3. The Effects of ePortfolio-Based Learning Model on Student Self-Regulated Learning

    Science.gov (United States)

    Nguyen, Lap Trung; Ikeda, Mitsuru

    2015-01-01

    Self-regulated learners are aware of their knowledge and skills and proactive in learning. They view learning as a controllable process and accept more responsibility for the results of this process. The research described in this article proposes, implements, and evaluates an ePortfolio-based self-regulated learning model. An ePortfolio system…

  4. Regulation of Mucosal Immune Responses – The Missing Link in IBD?

    Directory of Open Access Journals (Sweden)

    Charles O Elson

    1996-01-01

    Full Text Available Although the etiology of inflammatory bowel disease (IBD remains unknown, a major working hypothesis is that it represents a dysregulated immune response to common enteric bacterial antigens. Until recently there has been a relative dearth of experimental models to study this hypothesis. However, exciting developments in experimental models of colitis, including spontaneous, transgenic and knockout mice, now allow this and other hypotheses to be tested. The regulation of mucosal immune responses is not well understood in the normal animal, much less in those with chronic intestinal inflammation. Clearly the CD4 Th1 and Th2 pathways are important in the host response to microbial pathogens, and recent data indicate that the intestinal mucosa seems to be a site of preferential Th2 responses toward exogenous antigens. Deletion of certain cytokine genes involved in maintaining this Th1/Th2 balance (interleukin [IL]-2, IL-10 resulted in colitis, although deletion of others (IL-4, interferon-gamma that are also involved did not. Whether these cytokine gene deletions cause a dysregulation of the mucosal immune response has yet to be shown. However, the importance of regulation can be demonstrated in a model in which a normal CD4+ T cell subset (CD45Rbhigh is transferred into syngeneic severe combined immunodeficiency syndrome recipients. This results in a striking colitis over the ensuing weeks with chronic diarrhea and wasting of the animals. If the reciprocal CD4+ subset (CD45Rblow is co-transferred or if whole CD4+ T cells are transferred no colitis ensues. Therefore, T cells capable of causing colitis are present in normal animals but are prevented from doing so by immunoregulatory mechanisms. The antigens that drive the colitis in several of these models (IL-2 knockout mouse, human leukocyte antigen B27/β2M transgenic rat appear to be those of the normal enteric bacterial flora because germ-free animals do not get the disease. Spontaneously

  5. Business Models and Regulation | Distributed Generation Interconnection

    Science.gov (United States)

    Collaborative | NREL Business Models and Regulation Business Models and Regulation Subscribe to new business models and approaches. The growing role of distributed resources in the electricity system is leading to a shift in business models and regulation for electric utilities. These

  6. Emotion regulation reduces loss aversion and decreases amygdala responses to losses.

    Science.gov (United States)

    Sokol-Hessner, Peter; Camerer, Colin F; Phelps, Elizabeth A

    2013-03-01

    Emotion regulation strategies can alter behavioral and physiological responses to emotional stimuli and the neural correlates of those responses in regions such as the amygdala or striatum. The current study investigates the brain systems engaged when using an emotion regulation technique during financial decisions. In decision making, regulating emotion with reappraisal-focused strategies that encourage taking a different perspective has been shown to reduce loss aversion as observed both in choices and in the relative arousal responses to actual loss and gain outcomes. In the current study, we find using fMRI that behavioral loss aversion correlates with amygdala activity in response to losses relative to gains. Success in regulating loss aversion also correlates with the reduction in amygdala responses to losses but not to gains. Furthermore, across both decisions and outcomes, we find the reappraisal strategy increases baseline activity in dorsolateral and ventromedial prefrontal cortex and the striatum. The similarity of the neural circuitry observed to that seen in emotion regulation, despite divergent tasks, serves as further evidence for a role of emotion in decision making, and for the power of reappraisal to change assessments of value and thereby choices.

  7. Ethylene response factor AtERF72 negatively regulates Arabidopsis thaliana response to iron deficiency.

    Science.gov (United States)

    Liu, Wei; Li, Qiwei; Wang, Yi; Wu, Ting; Yang, Yafei; Zhang, Xinzhong; Han, Zhenhai; Xu, Xuefeng

    2017-09-23

    Ethylene regulates the plant's response to stress caused by iron (Fe) deficiency. However, specific roles of ERF proteins in response to Fe deficiency remain poorly understood. Here, we investigated the role of ERF72 in response to iron deficiency in Arabidopsis thaliana. In this study, the levels of the ethylene response factor AtERF72 increased in leaves and roots induced under the iron deficient conditions. erf72 mutant plants showed increased growth compared to wild type (WT) when grown in iron deficient medium for 5 d. erf72 mutants had increased root H + velocity and the ferric reductase activity, and increase in the expression of the iron deficiency response genes iron-regulated transporter 1 (IRT1) and H + -ATPase (HA2) levels in iron deficient conditions. Compared to WT plants, erf72 mutants retained healthy chloroplast structure with significantly higher Fe and Mg content, and decreased chlorophyll degradation gene pheophorbide a oxygenase (PAO) and chlorophyllase (CLH1) expression when grown in iron deficient media. Yeast one-hybrid analysis showed that ERF72 could directly bind to the promoter regions of iron deficiency responses genes IRT1, HA2 and CLH1. Based on our results, we suggest that ethylene released from plants under iron deficiency stress can activate the expression of ERF72, which responds to iron deficiency in the negative regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. State regulation of nuclear sector: comparative study of Argentina and Brazil models

    International Nuclear Information System (INIS)

    Monteiro Filho, Joselio Silveira

    2004-08-01

    This research presents a comparative assessment of the regulation models of the nuclear sector in Argentina - under the responsibility of the Autoridad Regulatoria Nuclear (ARN), and Brazil - under the responsibility of Comissao Nacional de Energia Nuclear (CNEN), trying to identify which model is more adequate aiming the safe use of nuclear energy. Due to the methodology adopted, the theoretical framework resulted in criteria of analysis that corresponds to the characteristics of the Brazilian regulatory agencies created for other economic sector during the State reform staring in the middle of the nineties. Later, these criteria of analysis were used as comparison patterns between the regulation models of the nuclear sectors of Argentina and Brazil. The comparative assessment showed that the regulatory structure of the nuclear sector in Argentina seems to be more adequate, concerning the safe use of nuclear energy, than the model adopted in Brazil by CNEN, because its incorporates the criteria of functional, institutional and financial independence, competence definitions, technical excellence and transparency, indispensable to the development of its functions with autonomy, ethics, exemption and agility. (author)

  9. Effect Mechanism of Penstock on Stability and Regulation Quality of Turbine Regulating System

    Directory of Open Access Journals (Sweden)

    Wencheng Guo

    2014-01-01

    Full Text Available This paper studies the effect mechanism of water inertia and head loss of penstock on stability and regulation quality of turbine regulating system with surge tank or not and proposes the construction method of equivalent model of regulating system. Firstly, the complete linear mathematical model of regulating system is established. Then, the free oscillation equation and time response of the frequency that describe stability and regulation quality, respectively, are obtained. Finally, the effects of penstock are analysed by using stability region and response curves. The results indicate that the stability and regulation quality of system without surge tank are determined by time response of frequency which only depends on water hammer wave in penstock, while, for system with surge tank, the time response of frequency depending on water hammer wave in penstock and water-level fluctuation in surge tank jointly determines the stability and regulation quality. Water inertia of penstock mainly affects the stability and time response of frequency of system without surge tank as well as the stability and head wave of time response of frequency with surge tank. Head loss of penstock mainly affects the stability and tail wave of time response of frequency with surge tank.

  10. Cumulative Risk and Adolescent's Internalizing and Externalizing Problems: The Mediating Roles of Maternal Responsiveness and Self-Regulation

    Science.gov (United States)

    Doan, Stacey N.; Fuller-Rowell, Thomas E.; Evans, Gary W.

    2012-01-01

    The purpose of the present study was to examine longitudinal associations among maternal responsiveness, self-regulation, and behavioral adjustment in adolescents. The authors used structural equation modeling to test a model that demonstrates that the effects of early cumulative risk on behavioral problems is mediated by maternal responsiveness…

  11. What our eyes tell us about feelings: Tracking pupillary responses during emotion regulation processes.

    Science.gov (United States)

    Kinner, Valerie L; Kuchinke, Lars; Dierolf, Angelika M; Merz, Christian J; Otto, Tobias; Wolf, Oliver T

    2017-04-01

    Emotion regulation is essential for adaptive behavior and mental health. Strategies applied to alter emotions are known to differ in their impact on psychological and physiological aspects of the emotional response. However, emotion regulation outcome has primarily been assessed via self-report, and studies comparing regulation strategies with regard to their peripheral physiological mechanisms are limited in number. In the present study, we therefore aimed to investigate the effects of different emotion regulation strategies on pupil dilation, skin conductance responses, and subjective emotional responses. Thirty healthy females were presented with negative and neutral pictures and asked to maintain or up- and downregulate their upcoming emotional responses through reappraisal or distraction. Pupil dilation and skin conductance responses were significantly enhanced when viewing negative relative to neutral pictures. For the pupil, this emotional arousal effect manifested specifically late during the pupillary response. In accordance with subjective ratings, increasing negative emotions through reappraisal led to the most prominent pupil size enlargements, whereas no consistent effect for downregulation was found. In contrast, early peak dilations were enhanced in all emotion regulation conditions independent of strategy. Skin conductance responses were not further modulated by emotion regulation. These results indicate that pupil diameter is modulated by emotional arousal, but is initially related to the extent of mental effort required to regulate automatic emotional responses. Our data thus provide first evidence that the pupillary response might comprise two distinct temporal components reflecting cognitive emotion regulation effort on the one hand and emotion regulation success on the other hand. © 2017 Society for Psychophysiological Research.

  12. Mina: a Th2 response regulator meets TGFβ.

    Science.gov (United States)

    Pillai, Meenu R; Lian, Shangli; Bix, Mark

    2014-12-01

    The JmjC protein Mina is an important immune response regulator. Classical forward genetics first discovered its immune role in 2009 in connection with the development of T helper 2 (Th2) cells. This prompted investigation into Mina's role in the two best-studied contexts where Th2 responses are essential: atopic asthma and helminth expulsion. In work focused on a mouse model of atopic asthma, Mina deficiency was found to ameliorate airway hyper-resistance and pulmonary inflammation. And, in a case-control study genetic variation at the human MINA locus was found to be associated with the development of childhood atopic asthma. Although the underlying cellular and molecular mechanism of Mina's involvement in pulmonary inflammation remains unknown, our recent work on parasitic helminth expulsion suggests the possibility that, rather than T cells, epithelial cells responding to TGFβ may play the dominant role. Here we review the growing body of literature on the emerging Mina pathway in T cells and epithelial cells and attempt to set these into a broader context. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The Process Model of Group-Based Emotion: Integrating Intergroup Emotion and Emotion Regulation Perspectives.

    Science.gov (United States)

    Goldenberg, Amit; Halperin, Eran; van Zomeren, Martijn; Gross, James J

    2016-05-01

    Scholars interested in emotion regulation have documented the different goals and strategies individuals have for regulating their emotions. However, little attention has been paid to the regulation of group-based emotions, which are based on individuals' self-categorization as a group member and occur in response to situations perceived as relevant for that group. We propose a model for examining group-based emotion regulation that integrates intergroup emotions theory and the process model of emotion regulation. This synergy expands intergroup emotion theory by facilitating further investigation of different goals (i.e., hedonic or instrumental) and strategies (e.g., situation selection and modification strategies) used to regulate group-based emotions. It also expands emotion regulation research by emphasizing the role of self-categorization (e.g., as an individual or a group member) in the emotional process. Finally, we discuss the promise of this theoretical synergy and suggest several directions for future research on group-based emotion regulation. © 2015 by the Society for Personality and Social Psychology, Inc.

  14. TOWARD MORE EFFECTIVE REGULATION

    Energy Technology Data Exchange (ETDEWEB)

    J. GRAF

    2000-06-01

    This paper proposes a model relationship between the operator engaged in a hazardous activity, the regulator of that activity, and the general public. The roles and responsibilities of each entity are described in a way that allows effective communication flow. The role of the regulator is developed using the steam boiler as an example of a hazard subject to regulation; however, the model applies to any regulated activity. In this model the safety analyst has the extremely important role of communicating sometimes difficult technical information to the regulator in a way that the regulator can provide credible assurance to the general public as to the adequacy of the control of the hazardous activity. The conclusion asserts that acceptance of the model, understanding of the roles and responsibilities and definition of who communicates what information to whom will mitigate frustration on the part of each of the three entities.

  15. Linking Maternal Warmth and Responsiveness to Children's Self-Regulation

    Science.gov (United States)

    von Suchodoletz, Antje; Trommsdorff, Gisela; Heikamp, Tobias

    2011-01-01

    The present study demonstrated that a more differentiated view of positive parenting practices is necessary in the study of children's acquisition of self-regulation. Here, the unique contributions of maternal warmth and responsiveness to distress to children's self-regulation were tested in a sample of 102 German mothers and their kindergarten…

  16. On the modelling of linear-assisted DC-DC voltage regulators for photovoltaic solar energy systems

    Science.gov (United States)

    Martínez-García, Herminio; García-Vílchez, Encarna

    2017-11-01

    This paper shows the modelling of linear-assisted or hybrid (linear & switching) DC/DC voltage regulators. In this kind of regulators, an auxiliary linear regulator is used, which objective is to cancel the ripple at the output voltage and provide fast responses for load variations. On the other hand, a switching DC/DC converter, connected in parallel with the linear regulator, allows to supply almost the whole output current demanded by the load. The objective of this topology is to take advantage of the suitable regulation characteristics that series linear voltage regulators have, but almost achieving the high efficiency that switching DC/DC converters provide. Linear-assisted DC/DC regulators are feedback systems with potential instability. Therefore, their modelling is mandatory in order to obtain design guidelines and assure stability of the implemented power supply system.

  17. Matrix Metalloproteinases Are Differentially Regulated and Responsive to Compression Therapy in a Red Duroc Model of Hypertrophic Scar.

    Science.gov (United States)

    Travis, Taryn E; Ghassemi, Pejhman; Prindeze, Nicholas J; Moffatt, Lauren T; Carney, Bonnie C; Alkhalil, Abdulnaser; Ramella-Roman, Jessica C; Shupp, Jeffrey W

    2018-01-01

    Objective: Proteins of the matrix metalloproteinases family play a vital role in extracellular matrix maintenance and basic physiological processes in tissue homeostasis. The function and activities of matrix metalloproteinases in response to compression therapies have yet to be defined. Here, a swine model of hypertrophic scar was used to profile the transcription of all known 26 matrix metalloproteinases in scars treated with a precise compression dose. Methods: Full-thickness excisional wounds were created. Wounds underwent healing and scar formation. A subset of scars underwent 2 weeks of compression therapy. Biopsy specimens were preserved, and microarrays, reverse transcription-polymerase chain reaction, Western blotting, and immunohistochemistry were performed to characterize the transcription and expression of various matrix metalloproteinase family members. Results: Microarray results showed that 13 of the known 26 matrix metalloproteinases were differentially transcribed in wounds relative to the preinjury skin. The predominant upregulation of these matrix metalloproteinases during early wound-healing stages declined gradually in later stages of wound healing. The use of compression therapy reduced this decline in 10 of the 13 differentially regulated matrix metalloproteinases. Further investigation of MMP7 using reverse transcription-polymerase chain reaction confirmed the effect of compression on transcript levels. Assessment of MMP7 at the protein level using Western blotting and immunohistochemistry was concordant. Conclusions: In a swine model of hypertrophic scar, the application of compression to hypertrophic scar attenuated a trend of decreasing levels of matrix metalloproteinases during the process of hypertrophic wound healing, including MMP7, whose enzyme regulation was confirmed at the protein level.

  18. Regulation of protein translation initiation in response to ionizing radiation

    International Nuclear Information System (INIS)

    Trivigno, Donatella; Bornes, Laura; Huber, Stephan M; Rudner, Justine

    2013-01-01

    Proliferating tumor cells require continuous protein synthesis. De novo synthesis of most proteins is regulated through cap-dependent translation. Cellular stress such as ionizing radiation (IR) blocks cap-dependent translation resulting in shut-down of global protein translation which saves resources and energy needed for the stress response. At the same time, levels of proteins required for stress response are maintained or even increased. The study aimed to analyze the regulation of signaling pathways controlling protein translation in response to IR and the impact on Mcl-1, an anti-apoptotic and radioprotective protein, which levels rapidly decline upon IR. Protein levels and processing were analyzed by Western blot. The assembly of the translational pre-initiation complex was examined by Immunoprecipitation and pull-down experiments with 7-methyl GTP agarose. To analyze IR-induced cell death, dissipation of the mitochondrial membrane potential and DNA fragmentation were determined by flow cytometry. Protein levels of the different initiation factors were down-regulated using RNA interference approach. IR induced caspase-dependent cleavage of the translational initiation factors eIF4G1, eIF3A, and eIF4B resulting in disassembly of the cap-dependent initiation complex. In addition, DAP5-dependent initiation complex that regulates IRES-dependent translation was disassembled in response to IR. Moreover, IR resulted in dephosphorylation of 4EBP1, an inhibitor of cap-dependent translation upstream of caspase activation. However, knock-down of eIF4G1, eIF4B, DAP5, or 4EBP1 did not affect IR-induced decline of the anti-apoptotic protein Mcl-1. Our data shows that cap-dependent translation is regulated at several levels in response to IR. However, the experiments indicate that IR-induced Mcl-1 decline is not a consequence of translational inhibition in Jurkat cells

  19. Regulation of protein translation initiation in response to ionizing radiation

    Directory of Open Access Journals (Sweden)

    Trivigno Donatella

    2013-02-01

    Full Text Available Abstract Background Proliferating tumor cells require continuous protein synthesis. De novo synthesis of most proteins is regulated through cap-dependent translation. Cellular stress such as ionizing radiation (IR blocks cap-dependent translation resulting in shut-down of global protein translation which saves resources and energy needed for the stress response. At the same time, levels of proteins required for stress response are maintained or even increased. The study aimed to analyze the regulation of signaling pathways controlling protein translation in response to IR and the impact on Mcl-1, an anti-apoptotic and radioprotective protein, which levels rapidly decline upon IR. Methods Protein levels and processing were analyzed by Western blot. The assembly of the translational pre-initiation complex was examined by Immunoprecipitation and pull-down experiments with 7-methyl GTP agarose. To analyze IR-induced cell death, dissipation of the mitochondrial membrane potential and DNA fragmentation were determined by flow cytometry. Protein levels of the different initiation factors were down-regulated using RNA interference approach. Results IR induced caspase-dependent cleavage of the translational initiation factors eIF4G1, eIF3A, and eIF4B resulting in disassembly of the cap-dependent initiation complex. In addition, DAP5-dependent initiation complex that regulates IRES-dependent translation was disassembled in response to IR. Moreover, IR resulted in dephosphorylation of 4EBP1, an inhibitor of cap-dependent translation upstream of caspase activation. However, knock-down of eIF4G1, eIF4B, DAP5, or 4EBP1 did not affect IR-induced decline of the anti-apoptotic protein Mcl-1. Conclusion Our data shows that cap-dependent translation is regulated at several levels in response to IR. However, the experiments indicate that IR-induced Mcl-1 decline is not a consequence of translational inhibition in Jurkat cells.

  20. Comparative Study Between The IAEA Model Regulations and The Egyptian Nuclear Law

    International Nuclear Information System (INIS)

    Abaza, A.; Hosni, M.

    2015-01-01

    This study deals with the security of radioactive sources due to its great importance, in order to provide the adequate security of these sources from the threat of theft, sabotage, illegal seizure through doing a comparison between the model regulations of the International Atomic Energy Agency (IAEA) (11) and the Egyptian law (No. 7/2010) that regulates nuclear and radiation activities and its executive regulations. The Egyptian legislator has put a chapter entitled n uclear security w ith the aim of organizing the security of nuclear materials. However, there was a review to some regulatory rules issued by the IAEA on the security of these sources which include the responsibilities of the licensee towards it. This chapter also, addressed the security culture through rehabilitation and training, in addition to the obligations of the competent authorities who is responsible for the process of issuing the license when full requirements are met. It has been shown that the Egyptian law and its executive regulations contained the rule that provides the necessary protection for these radioactive sources. Furthermore, more regulations are still needed to provide adequate security and more protection for the radioactive sources and its facilities

  1. TG2 regulates the heat-shock response by the post-translational modification of HSF1.

    Science.gov (United States)

    Rossin, Federica; Villella, Valeria Rachela; D'Eletto, Manuela; Farrace, Maria Grazia; Esposito, Speranza; Ferrari, Eleonora; Monzani, Romina; Occhigrossi, Luca; Pagliarini, Vittoria; Sette, Claudio; Cozza, Giorgio; Barlev, Nikolai A; Falasca, Laura; Fimia, Gian Maria; Kroemer, Guido; Raia, Valeria; Maiuri, Luigi; Piacentini, Mauro

    2018-05-11

    Heat-shock factor 1 (HSF1) is the master transcription factor that regulates the response to proteotoxic stress by controlling the transcription of many stress-responsive genes including the heat-shock proteins. Here, we show a novel molecular mechanism controlling the activation of HSF1. We demonstrate that transglutaminase type 2 (TG2), dependent on its protein disulphide isomerase activity, triggers the trimerization and activation of HSF1 regulating adaptation to stress and proteostasis impairment. In particular, we find that TG2 loss of function correlates with a defect in the nuclear translocation of HSF1 and in its DNA-binding ability to the HSP70 promoter. We show that the inhibition of TG2 restores the unbalance in HSF1-HSP70 pathway in cystic fibrosis (CF), a human disorder characterized by deregulation of proteostasis. The absence of TG2 leads to an increase of about 40% in CFTR function in a new experimental CF mouse model lacking TG2. Altogether, these results indicate that TG2 plays a key role in the regulation of cellular proteostasis under stressful cellular conditions through the modulation of the heat-shock response. © 2018 The Authors.

  2. Responsiveness to acidity via metal ion regulators mediates virulence in the gastric pathogen Helicobacter pylori.

    Science.gov (United States)

    Bury-Moné, Stéphanie; Thiberge, Jean-Michel; Contreras, Monica; Maitournam, Aboubakar; Labigne, Agnès; De Reuse, Hilde

    2004-07-01

    The virulence of pathogenic bacteria is dependent on their adaptation to and survival in the stressful conditions encountered in their hosts. Helicobacter pylori exclusively colonizes the acid stomach of primates, making it an ideal study model. Little is known about how H. pylori responds to the moderately acidic conditions encountered at its colonization site, the gastric mucus layer. Thus, we compared gene expression profiles of H. pylori 26695 grown at neutral and acidic pH, and validated the data for a selection of genes by real-time polymerase chain reaction, dot-blots or enzymatic assays. During growth in acidic conditions, 56 genes were upregulated and 45 genes downregulated. We found that acidity is a signal modulating the expression of several virulence factors. Regulation of genes related to metal ion homeostasis suggests protective mechanisms involving diminished transport and enhanced storage. Genes encoding subunits of the F0F1 ATPase and of a newly identified Na+/H+ antiporter (NhaC-HP0946) were downregulated, revealing that this bacterium uses original mechanisms to control proton entry. Five of the upregulated genes encoded proteins controlling intracellular ammonia synthesis, including urease, amidase and formamidase, underlining the major role of this buffering compound in the protection against acidity in H. pylori. Regulatory networks and transcriptome analysis as well as enzymatic assays implicated two metal-responsive transcriptional regulators (NikR and Fur) and an essential two-component response regulator (HP0166, OmpR-like) as effectors of the H. pylori acid response. Finally, a nikR-fur mutant is attenuated in the mouse model, emphasizing the link between response to acidity, metal metabolism and virulence in this gastric pathogen.

  3. Canonical Modeling of the Multi-Scale Regulation of the Heat Stress Response in Yeast

    Directory of Open Access Journals (Sweden)

    Luis L. Fonseca

    2012-02-01

    Full Text Available Heat is one of the most fundamental and ancient environmental stresses, and response mechanisms are found in prokaryotes and shared among most eukaryotes. In the budding yeast Saccharomyces cerevisiae, the heat stress response involves coordinated changes at all biological levels, from gene expression to protein and metabolite abundances, and to temporary adjustments in physiology. Due to its integrative multi-level-multi-scale nature, heat adaptation constitutes a complex dynamic process, which has forced most experimental and modeling analyses in the past to focus on just one or a few of its aspects. Here we review the basic components of the heat stress response in yeast and outline what has been done, and what needs to be done, to merge the available information into computational structures that permit comprehensive diagnostics, interrogation, and interpretation. We illustrate the process in particular with the coordination of two metabolic responses, namely the dramatic accumulation of the protective disaccharide trehalose and the substantial change in the profile of sphingolipids, which in turn affect gene expression. The proposed methods primarily use differential equations in the canonical modeling framework of Biochemical Systems Theory (BST, which permits the relatively easy construction of coarse, initial models even in systems that are incompletely characterized.

  4. Dynamic Nature of Noncoding RNA Regulation of Adaptive Immune Response

    Directory of Open Access Journals (Sweden)

    Franca Citarella

    2013-08-01

    Full Text Available Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response.

  5. Modeling microenvironmental regulation of glioblastoma stem cells: a biomaterials perspective

    Science.gov (United States)

    Heffernan, John M.; Sirianni, Rachael W.

    2018-02-01

    Following diagnosis of a glioblastoma (GBM) brain tumor, surgical resection, chemotherapy and radiation together yield a median patient survival of only 15 months. Importantly, standard treatments fail to address the dynamic regulation of the brain tumor microenvironment that actively supports tumor progression and treatment resistance. It is becoming increasingly recognized that specialized niches within the tumor microenvironment maintain a population of highly malignant glioblastoma stem-like cells (GSCs). GSCs are resistant to traditional chemotherapy and radiation therapy, suggesting that they may be responsible for the near universal rates of tumor recurrence and associated morbidity in GBM. Thus, disrupting microenvironmental support for GSCs could be critical to developing more effective GBM therapies. Three-dimensional (3D) culture models of the tumor microenvironment are powerful tools for identifying key biochemical and biophysical inputs that impact malignant behaviors. Such systems have been used effectively to identify conditions that regulate GSC proliferation, invasion, stem-specific phenotypes, and treatment resistance. Considering the significant role that GSC microenvironments play in regulating this tumorigenic sub-population, these models may be essential for uncovering mechanisms that limit GSCs malignancy.

  6. Enhancing forest tenure reforms through more responsive regulations

    Directory of Open Access Journals (Sweden)

    Anne M Larson

    2012-01-01

    Full Text Available Forest tenure reforms have offered new opportunities for communities to obtain formal rights to forests and forest benefits, but at the same time a variety of limitations are placed on livelihood options. This article draws on several case studies of reforms in Africa, Asia and Latin America to analyse the regulations accompanying reforms. It identifies three types of regulations, namely rules that limit areas available to local communities; rules that delineate conservation areas and impose related limits on use; and bureaucratic requirements for permits and management plans, which restrict the commercial use and marketing of valuable forest products. It discusses problems with these regulations, and proposes a simple framework for identifying ways to promote regulations that work for forest conservation but are more responsive to the needs of communities and forests.

  7. Jasmonate-responsive transcription factors regulating plant secondary metabolism.

    Science.gov (United States)

    Zhou, Meiliang; Memelink, Johan

    2016-01-01

    Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Caffeine Induces the Stress Response and Up-Regulates Heat Shock Proteins in Caenorhabditis elegans.

    Science.gov (United States)

    Al-Amin, Mohammad; Kawasaki, Ichiro; Gong, Joomi; Shim, Yhong-Hee

    2016-02-01

    Caffeine has both positive and negative effects on physiological functions in a dose-dependent manner. C. elegans has been used as an animal model to investigate the effects of caffeine on development. Caffeine treatment at a high dose (30 mM) showed detrimental effects and caused early larval arrest. We performed a comparative proteomic analysis to investigate the mode of action of high-dose caffeine treatment in C. elegans and found that the stress response proteins, heat shock protein (HSP)-4 (endoplasmic reticulum [ER] chaperone), HSP-6 (mitochondrial chaperone), and HSP-16 (cytosolic chaperone), were induced and their expression was regulated at the transcriptional level. These findings suggest that high-dose caffeine intake causes a strong stress response and activates all three stress-response pathways in the worms, including the ER-, mitochondrial-, and cytosolic pathways. RNA interference of each hsp gene or in triple combination retarded growth. In addition, caffeine treatment stimulated a food-avoidance behavior (aversion phenotype), which was enhanced by RNAi depletion of the hsp-4 gene. Therefore, up-regulation of hsp genes after caffeine treatment appeared to be the major responses to alleviate stress and protect against developmental arrest.

  9. Metagenomic screening for aromatic compound-responsive transcriptional regulators.

    Directory of Open Access Journals (Sweden)

    Taku Uchiyama

    Full Text Available We applied a metagenomics approach to screen for transcriptional regulators that sense aromatic compounds. The library was constructed by cloning environmental DNA fragments into a promoter-less vector containing green fluorescence protein. Fluorescence-based screening was then performed in the presence of various aromatic compounds. A total of 12 clones were isolated that fluoresced in response to salicylate, 3-methyl catechol, 4-chlorocatechol and chlorohydroquinone. Sequence analysis revealed at least 1 putative transcriptional regulator, excluding 1 clone (CHLO8F. Deletion analysis identified compound-specific transcriptional regulators; namely, 8 LysR-types, 2 two-component-types and 1 AraC-type. Of these, 9 representative clones were selected and their reaction specificities to 18 aromatic compounds were investigated. Overall, our transcriptional regulators were functionally diverse in terms of both specificity and induction rates. LysR- and AraC- type regulators had relatively narrow specificities with high induction rates (5-50 fold, whereas two-component-types had wide specificities with low induction rates (3 fold. Numerous transcriptional regulators have been deposited in sequence databases, but their functions remain largely unknown. Thus, our results add valuable information regarding the sequence-function relationship of transcriptional regulators.

  10. Regulating Children's Television Advertising: Reassessing Parental Responsibility.

    Science.gov (United States)

    Reid, Leonard N.

    In response to public concern over the effects of television commercials on children, the Federal Trade Commission formulated regulatory proposals that would ban certain advertising from children's television and regulate advertising intended for the eight year old to the eleven year old age group. However, in the light of two recent research…

  11. Regulation of cardiac microRNAs by serum response factor

    Directory of Open Access Journals (Sweden)

    Wei Jeanne Y

    2011-02-01

    Full Text Available Abstract Serum response factor (SRF regulates certain microRNAs that play a role in cardiac and skeletal muscle development. However, the role of SRF in the regulation of microRNA expression and microRNA biogenesis in cardiac hypertrophy has not been well established. In this report, we employed two distinct transgenic mouse models to study the impact of SRF on cardiac microRNA expression and microRNA biogenesis. Cardiac-specific overexpression of SRF (SRF-Tg led to altered expression of a number of microRNAs. Interestingly, downregulation of miR-1, miR-133a and upregulation of miR-21 occurred by 7 days of age in these mice, long before the onset of cardiac hypertrophy, suggesting that SRF overexpression impacted the expression of microRNAs which contribute to cardiac hypertrophy. Reducing cardiac SRF level using the antisense-SRF transgenic approach (Anti-SRF-Tg resulted in the expression of miR-1, miR-133a and miR-21 in the opposite direction. Furthermore, we observed that SRF regulates microRNA biogenesis, specifically the transcription of pri-microRNA, thereby affecting the mature microRNA level. The mir-21 promoter sequence is conserved among mouse, rat and human; one SRF binding site was found to be in the mir-21 proximal promoter region of all three species. The mir-21 gene is regulated by SRF and its cofactors, including myocardin and p49/Strap. Our study demonstrates that the downregulation of miR-1, miR-133a, and upregulation of miR-21 can be reversed by one single upstream regulator, SRF. These results may help to develop novel therapeutic interventions targeting microRNA biogenesis.

  12. Differences in Sirtuin Regulation in Response to Calorie Restriction in Cryptococcus neoformans.

    Science.gov (United States)

    Bouklas, Tejas; Masone, Lindsey; Fries, Bettina C

    2018-02-18

    Cryptococcus neoformans successfully replicates in low glucose in infected patients. In the serotype A strain, H99, growth in this condition prolongs lifespan regulated by SIR2, and can be modulated with SIR2-specific drugs. Previous studies show that lifespan modulation of a cryptococcal population affects its sensitivity to antifungals, and survival in an infection model. Sirtuins and their role in longevity are conserved among fungi; however, the effect of glucose starvation is not confirmed even in Saccharomyces cerevisiae. Lifespan analysis of C. neoformans strains in low glucose showed that 37.5% exhibited pro-longevity, and lifespan of a serotype D strain, RC2, was shortened. Transcriptome comparison of H99 and RC2 under calorie restriction demonstrated differences, confirmed by real-time PCR showing that SIR2 , TOR1 , SCH9 , and PKA1 expression correlated with lifespan response to calorie restriction. As expected, RC2 -sir2 Δ cells exhibited a shortened lifespan, which was reconstituted. However, shortened lifespan from calorie restriction was independent of SIR2 . In contrast to H99 but consistent with altered SIR2 regulation, SIR2 -specific drugs did not affect outcome of RC2 infection. These data suggest that SIR2 regulation and response to calorie restriction varies in C. neoformans, which should be considered when Sirtuins are investigated as potential therapy targets for fungal infections.

  13. Ethylene and the Regulation of Physiological and Morphological Responses to Nutrient Deficiencies

    Science.gov (United States)

    García, María José; Romera, Francisco Javier; Lucena, Carlos; Alcántara, Esteban; Pérez-Vicente, Rafael

    2015-01-01

    To cope with nutrient deficiencies, plants develop both morphological and physiological responses. The regulation of these responses is not totally understood, but some hormones and signaling substances have been implicated. It was suggested several years ago that ethylene participates in the regulation of responses to iron and phosphorous deficiency. More recently, its role has been extended to other deficiencies, such as potassium, sulfur, and others. The role of ethylene in so many deficiencies suggests that, to confer specificity to the different responses, it should act through different transduction pathways and/or in conjunction with other signals. In this update, the data supporting a role for ethylene in the regulation of responses to different nutrient deficiencies will be reviewed. In addition, the results suggesting the action of ethylene through different transduction pathways and its interaction with other hormones and signaling substances will be discussed. PMID:26175512

  14. A Consumer Protection Model for Regulating Lawyers.

    Science.gov (United States)

    Chalfie, Deborah M.

    1992-01-01

    Describes and critiques the "discipline model" of lawyer regulation from a consumer point of view and outlines an alternative model for regulating lawyers that is grounded in consumer protection principles. (JOW)

  15. Regulation of the Immune Response to α-Gal and Vector-borne Diseases.

    Science.gov (United States)

    Cabezas-Cruz, Alejandro; Mateos-Hernández, Lourdes; Pérez-Cruz, Magdiel; Valdés, James J; Mera, Isabel G Fernández de; Villar, Margarita; de la Fuente, José

    2015-10-01

    Vector-borne diseases (VBD) challenge our understanding of emerging diseases. Recently, arthropod vectors have been involved in emerging anaphylactic diseases. In particular, the immunoglobulin E (IgE) antibody response to the carbohydrate Galα1-3Galβ1-(3)4GlcNAc-R (α-gal) following a tick bite was associated with allergies to red meat, cetuximab, and gelatin. By contrast, an anti-α-gal IgM antibody response was shown to protect against mosquito-borne malaria. Herein, we highlight the interplay between the gut microbiota, vectors, transmitted pathogens, and the regulation of the immune response as a model to understand the protective or allergic effect of α-gal. Establishing the source of α-gal in arthropod vectors and the immune response to vector bites and transmitted pathogens will be essential for diagnosing, treating, and ultimately preventing these emerging anaphylactic and other vector-borne diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The international radioactive transportation regulations: A model for national regulations

    International Nuclear Information System (INIS)

    Pope, R.B.; Rawl, R.R.

    1990-06-01

    The International Atomic Energy Agency's (IAEA) Regulations for the Safe Transport of Radioactive Material, Safety Series No. 6 (herein after denoted as the ''International Regulations'') serve as the model for the regulations for individual countries and international modal organizations controlling the packaging and transportation of radioactive materials. The purpose of this paper is to outline the background and history of the International Regulations, the general principles behind the requirements of the International Regulations, the structure and general contents of the latest edition of the International Regulations, and the roles of various international bodies in the development and implementation of the International Regulations and the current status of regulatory and supportive document development at both the international and domestic level. This review will provide a basis for users and potential users to better understand the source and application of the International Regulations. 1 tab

  17. The significance of translation regulation in the stress response

    OpenAIRE

    Picard, Flora; Loubière, Pascal; Girbal, Laurence; Bousquet, Muriel

    2013-01-01

    Background: The stress response in bacteria involves the multistage control of gene expression but is not entirely understood. To identify the translational response of bacteria in stress conditions and assess its contribution to the regulation of gene expression, the translational states of all mRNAs were compared under optimal growth condition and during nutrient (isoleucine) starvation. Results: A genome-scale study of the translational response to nutritional limitation was performed in t...

  18. Modelling the regulation of thermal adaptation in Candida albicans, a major fungal pathogen of humans.

    Directory of Open Access Journals (Sweden)

    Michelle D Leach

    Full Text Available Eukaryotic cells have evolved mechanisms to sense and adapt to dynamic environmental changes. Adaptation to thermal insults, in particular, is essential for their survival. The major fungal pathogen of humans, Candida albicans, is obligately associated with warm-blooded animals and hence occupies thermally buffered niches. Yet during its evolution in the host it has retained a bona fide heat shock response whilst other stress responses have diverged significantly. Furthermore the heat shock response is essential for the virulence of C. albicans. With a view to understanding the relevance of this response to infection we have explored the dynamic regulation of thermal adaptation using an integrative systems biology approach. Our mathematical model of thermal regulation, which has been validated experimentally in C. albicans, describes the dynamic autoregulation of the heat shock transcription factor Hsf1 and the essential chaperone protein Hsp90. We have used this model to show that the thermal adaptation system displays perfect adaptation, that it retains a transient molecular memory, and that Hsf1 is activated during thermal transitions that mimic fever. In addition to providing explanations for the evolutionary conservation of the heat shock response in this pathogen and the relevant of this response to infection, our model provides a platform for the analysis of thermal adaptation in other eukaryotic cells.

  19. Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses

    Directory of Open Access Journals (Sweden)

    Redon Emma

    2008-07-01

    Full Text Available Abstract Background The development of transcriptomic tools has allowed exhaustive description of stress responses. These responses always superimpose a general response associated to growth rate decrease and a specific one corresponding to the stress. The exclusive growth rate response can be achieved through chemostat cultivation, enabling all parameters to remain constant except the growth rate. Results We analysed metabolic and transcriptomic responses of Lactococcus lactis in continuous cultures at different growth rates ranging from 0.09 to 0.47 h-1. Growth rate was conditioned by isoleucine supply. Although carbon metabolism was constant and homolactic, a widespread transcriptomic response involving 30% of the genome was observed. The expression of genes encoding physiological functions associated with biogenesis increased with growth rate (transcription, translation, fatty acid and phospholipids metabolism. Many phages, prophages and transposon related genes were down regulated as growth rate increased. The growth rate response was compared to carbon and amino-acid starvation transcriptomic responses, revealing constant and significant involvement of growth rate regulations in these two stressful conditions (overlap 27%. Two regulators potentially involved in the growth rate regulations, llrE and yabB, have been identified. Moreover it was established that genes positively regulated by growth rate are preferentially located in the vicinity of replication origin while those negatively regulated are mainly encountered at the opposite, thus indicating the relationship between genes expression and their location on chromosome. Although stringent response mechanism is considered as the one governing growth deceleration in bacteria, the rigorous comparison of the two transcriptomic responses clearly indicated the mechanisms are distinct. Conclusion This work of integrative biology was performed at the global level using transcriptomic analysis

  20. Functional link between DNA damage responses and transcriptional regulation by ATM in response to a histone deacetylase inhibitor TSA.

    Science.gov (United States)

    Lee, Jong-Soo

    2007-09-01

    Mutations in the ATM (ataxia-telangiectasia mutated) gene, which encodes a 370 kd protein with a kinase catalytic domain, predisposes people to cancers, and these mutations are also linked to ataxia-telangiectasia (A-T). The histone acetylaion/deacetylation- dependent chromatin remodeling can activate the ATM kinase-mediated DNA damage signal pathway (in an accompanying work, Lee, 2007). This has led us to study whether this modification can impinge on the ATM-mediated DNA damage response via transcriptional modulation in order to understand the function of ATM in the regulation of gene transcription. To identify the genes whose expression is regulated by ATM in response to histone deaceylase (HDAC) inhibition, we performed an analysis of oligonucleotide microarrays with using the appropriate cell lines, isogenic A-T (ATM(-)) and control (ATM(+)) cells, following treatment with a HDAC inhibitor TSA. Treatment with TSA reprograms the differential gene expression profile in response to HDAC inhibition in ATM(-) cells and ATM(+) cells. We analyzed the genes that are regulated by TSA in the ATM-dependent manner, and we classified these genes into different functional categories, including those involved in cell cycle/DNA replication, DNA repair, apoptosis, growth/differentiation, cell- cell adhesion, signal transduction, metabolism and transcription. We found that while some genes are regulated by TSA without regard to ATM, the patterns of gene regulation are differentially regulated in an ATM-dependent manner. Taken together, these finding indicate that ATM can regulate the transcription of genes that play critical roles in the molecular response to DNA damage, and this response is modulated through an altered HDAC inhibition-mediated gene expression.

  1. Gene up-regulation in response to predator kairomones in the water flea, Daphnia pulex

    Directory of Open Access Journals (Sweden)

    Okada Yasukazu

    2010-04-01

    Full Text Available Abstract Background Numerous cases of predator-induced polyphenisms, in which alternate phenotypes are produced in response to extrinsic stimuli, have been reported in aquatic taxa to date. The genus Daphnia (Branchiopoda, Cladocera provides a model experimental system for the study of the developmental mechanisms and evolutionary processes associated with predator-induced polyphenisms. In D. pulex, juveniles form neckteeth in response to predatory kairomones released by Chaoborus larvae (Insecta, Diptera. Results Previous studies suggest that the timing of the sensitivity to kairomones in D. pulex can generally be divided into the embryonic and postembryonic developmental periods. We therefore examined which of the genes in the embryonic and first-instar juvenile stages exhibit different expression levels in the presence or absence of predator kairomones. Employing a candidate gene approach and identifying differentially-expressed genes revealed that the morphogenetic factors, Hox3, extradenticle and escargot, were up-regulated by kairomones in the postembryonic stage and may potentially be responsible for defense morph formation. In addition, the juvenile hormone pathway genes, JHAMT and Met, and the insulin signaling pathway genes, InR and IRS-1, were up-regulated in the first-instar stage. It is well known that these hormonal pathways are involved in physiological regulation following morphogenesis in many insect species. During the embryonic stage when morphotypes were determined, one of the novel genes identified by differential display was up-regulated, suggesting that this gene may be related to morphotype determination. Biological functions of the up-regulated genes are discussed in the context of defense morph formation. Conclusions It is suggested that, following the reception of kairomone signals, the identified genes are involved in a series of defensive phenotypic alterations and the production of a defensive phenotype.

  2. Regulation of bitter taste responses by tumor necrosis factor.

    Science.gov (United States)

    Feng, Pu; Jyotaki, Masafumi; Kim, Agnes; Chai, Jinghua; Simon, Nirvine; Zhou, Minliang; Bachmanov, Alexander A; Huang, Liquan; Wang, Hong

    2015-10-01

    Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Computational modelling and analysis of the molecular network regulating sporulation initiation in Bacillus subtilis.

    Science.gov (United States)

    Ihekwaba, Adaoha E C; Mura, Ivan; Barker, Gary C

    2014-10-24

    Bacterial spores are important contaminants in food, and the spore forming bacteria are often implicated in food safety and food quality considerations. Spore formation is a complex developmental process involving the expression of more than 500 genes over the course of 6 to 8 hrs. The process culminates in the formation of resting cells capable of resisting environmental extremes and remaining dormant for long periods of time, germinating when conditions promote further vegetative growth. Experimental observations of sporulation and germination are problematic and time consuming so that reliable models are an invaluable asset in terms of prediction and risk assessment. In this report we develop a model which assists in the interpretation of sporulation dynamics. This paper defines and analyses a mathematical model for the network regulating Bacillus subtilis sporulation initiation, from sensing of sporulation signals down to the activation of the early genes under control of the master regulator Spo0A. Our model summarises and extends other published modelling studies, by allowing the user to execute sporulation initiation in a scenario where Isopropyl β-D-1-thiogalactopyranoside (IPTG) is used as an artificial sporulation initiator as well as in modelling the induction of sporulation in wild-type cells. The analysis of the model results and the comparison with experimental data indicate that the model is good at predicting inducible responses to sporulation signals. However, the model is unable to reproduce experimentally observed accumulation of phosphorelay sporulation proteins in wild type B. subtilis. This model also highlights that the phosphorelay sub-component, which relays the signals detected by the sensor kinases to the master regulator Spo0A, is crucial in determining the response dynamics of the system. We show that there is a complex connectivity between the phosphorelay features and the master regulatory Spo0A. Additional we discovered that the

  4. Fuz regulates craniofacial development through tissue specific responses to signaling factors.

    Directory of Open Access Journals (Sweden)

    Zichao Zhang

    Full Text Available The planar cell polarity effector gene Fuz regulates ciliogenesis and Fuz loss of function studies reveal an array of embryonic phenotypes. However, cilia defects can affect many signaling pathways and, in humans, cilia defects underlie several craniofacial anomalies. To address this, we analyzed the craniofacial phenotype and signaling responses of the Fuz(-/- mice. We demonstrate a unique role for Fuz in regulating both Hedgehog (Hh and Wnt/β-catenin signaling during craniofacial development. Fuz expression first appears in the dorsal tissues and later in ventral tissues and craniofacial regions during embryonic development coincident with cilia development. The Fuz(-/- mice exhibit severe craniofacial deformities including anophthalmia, agenesis of the tongue and incisors, a hypoplastic mandible, cleft palate, ossification/skeletal defects and hyperplastic malformed Meckel's cartilage. Hh signaling is down-regulated in the Fuz null mice, while canonical Wnt signaling is up-regulated revealing the antagonistic relationship of these two pathways. Meckel's cartilage is expanded in the Fuz(-/- mice due to increased cell proliferation associated with the up-regulation of Wnt canonical target genes and decreased non-canonical pathway genes. Interestingly, cilia development was decreased in the mandible mesenchyme of Fuz null mice, suggesting that cilia may antagonize Wnt signaling in this tissue. Furthermore, expression of Fuz decreased expression of Wnt pathway genes as well as a Wnt-dependent reporter. Finally, chromatin IP experiments demonstrate that β-catenin/TCF-binding directly regulates Fuz expression. These data demonstrate a new model for coordination of Hh and Wnt signaling and reveal a Fuz-dependent negative feedback loop controlling Wnt/β-catenin signaling.

  5. Neutron flux response to regulating rod random vibrations

    International Nuclear Information System (INIS)

    Dach, K.; Nemec, J.; Pecinka, L.

    The relation is presented for the mean square value of the deflection of the rod for the n-th vibration shape on an arbitrary site. The relation may serve the obtaining of a variable which may be used both in a mechanical, i.e., stress analysis and in the determination of neutron flux fluctuations. It is demonstrated that the vibration frequency introduced in the reactor by the regulating rod has the same response in the neutron flux. This effect was used in the localization of an enormously vibrating regulating rod. (J.P.)

  6. DMPD: Innate immune responses: crosstalk of signaling and regulation of genetranscription. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16753195 Innate immune responses: crosstalk of signaling and regulation of genetran...l) (.csml) Show Innate immune responses: crosstalk of signaling and regulation of genetranscription. PubmedI...D 16753195 Title Innate immune responses: crosstalk of signaling and regulation o

  7. Global SUMO proteome responses guide gene regulation, mRNA biogenesis, and plant stress responses

    Directory of Open Access Journals (Sweden)

    Magdalena eMazur

    2012-09-01

    Full Text Available Small-ubiquitin-like MOdifier (SUMO is a key regulator of abiotic stress, disease resistance and development in plants. The identification of >350 plant SUMO targets has revealed many processes modulated by SUMO and potential consequences of SUMO on its targets. Importantly, highly related proteins are SUMO-modified in plants, yeast, and metazoans. Overlapping SUMO targets include heat-shock proteins, transcription regulators, histones, histone-modifying enzymes, proteins involved in DNA damage repair, but also proteins involved in mRNA biogenesis and nucleo-cytoplasmic transport. Proteomics studies indicate key roles for SUMO in gene repression by controlling histone (deacetylation activity at genomic loci. The responsible heavily sumoylated transcriptional repressor complexes are recruited by EAR (Ethylene-responsive element binding factor [ERF]-associated Amphiphilic Repression-motif containing transcription factors in plants. These transcription factors are not necessarily themselves a SUMO target. Conversely, SUMO acetylation prevents binding of downstream partners by preventing binding of SIMs (SUMO-interaction peptide motifs presents in these partners, while SUMO acetylation has emerged as mechanism to recruit specifically bromodomains; bromodomain are generally linked with gene activation. These findings strengthen the idea of a bidirectional sumo-/acetylation switch in gene regulation. Quantitative proteomics has highlighted that global sumoylation provides a dynamic response to protein damage involving SUMO chain-mediated protein degradation, but also SUMO E3 ligase-dependent transcription of HSP (Heat-shock protein genes. With these insights in SUMO function and novel technical advancements, we can now study SUMO dynamics in responses to (abiotic stress in plants.

  8. Assessing the Value of Regulation Resources Based on Their Time Response Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Yuri V.; Lu, Shuai; Ma, Jian; Nguyen, Tony B.

    2008-06-01

    Fast responsive regulation resources are potentially more valuable as a power system regulation resource (more efficient) because they allow applying controls at the exact moment and in the exact amount as needed. Faster control is desirable because it facilitates more reliable compliance with the NERC Control Performance Standards at relatively lesser regulation capacity procurements. The current California ISO practices and markets do not provide a differentiation among the regulation resources based on their speed of response (with the exception of some minimum ramping capabilities). Some demand response technologies, including some generation and energy storage resources, can provide quicker control actions. California ISO practices and markets could be updated to welcome more fast regulation resources into the California ISO service area. The project work reported in this work was pursuing the following objectives: • Develop methodology to assess the relative value of generation resources used for regulation and load following California ISO functions • This assessment should be done based on physical characteristics including the ability to quickly change their output following California ISO signals • Evaluate what power is worth on different time scales • Analyze the benefits of new regulation resources to provide effective compliance with the mandatory NERC Control Performance Standards • Evaluate impacts of the newly proposed BAAL and FRR standards on the potential value of fast regulation and distributed regulation resources • Develop a scope for the follow-up projects to pave a road for the new efficient types of balancing resources in California. The work included the following studies: • Analysis of California ISO regulating units characteristics • California ISO automatic generation system (AGC) analysis • California ISO regulation procurement and market analysis • Fast regulation efficiency analysis • Projection of the

  9. Emotional Intensity and Emotion Regulation in Response to Autobiographical Memories During Dysphoria

    DEFF Research Database (Denmark)

    del Palacio Gonzalez, Adriana; Berntsen, Dorthe; Watson, Lynn Ann

    2017-01-01

    Retrieving personal memories may provoke different emotions and a need for emotion regulation. Emotional responses have been studied scarcely in relation to autobiographical memory retrieval. We examined the emotional response to everyday involuntary (spontaneously arising) and voluntary...... (strategically retrieved) memories, and how this response may be different during dysphoria. Participants (20 dysphoric and 23 non-depressed) completed a structured diary where the intensity of basic emotions and regulation strategies employed upon retrieval of memories were rated. Brooding, memory suppression......, and emotional suppression were higher for all individuals’ involuntary memories than voluntary memories. Negative emotions and regulation strategies were greater for dysphoric individuals for both involuntary and voluntary memories after controlling for the valence of the remembered events. The results provide...

  10. Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available Biotic and abiotic stresses are major unfavorable factors that affect crop productivity worldwide. NAC proteins comprise a large family of transcription factors that play important roles in plant growth and development as well as in responses to biotic and abiotic stresses. In a virus-induced gene silencing-based screening to identify genes that are involved in defense response against Botrytis cinerea, we identified a tomato NAC gene SlSRN1 (Solanum lycopersicum Stress-related NAC1. SlSRN1 is a plasma membrane-localized protein with transactivation activity in yeast. Expression of SlSRN1 was significantly induced by infection with B. cinerea or Pseudomonas syringae pv. tomato (Pst DC3000, leading to 6-8 folds higher than that in the mock-inoculated plants. Expression of SlSRN1 was also induced by salicylic acid, jasmonic acid and 1-amino cyclopropane-1-carboxylic acid and by drought stress. Silencing of SlSRN1 resulted in increased severity of diseases caused by B. cinerea and Pst DC3000. However, silencing of SlSRN1 resulted in increased tolerance against oxidative and drought stresses. Furthermore, silencing of SlSRN1 accelerated accumulation of reactive oxygen species but attenuated expression of defense genes after infection by B. cinerea. Our results demonstrate that SlSRN1 is a positive regulator of defense response against B. cinerea and Pst DC3000 but is a negative regulator for oxidative and drought stress response in tomato.

  11. Stress, and pathogen response gene expression in modeled microgravity

    Science.gov (United States)

    Sundaresan, Alamelu; Pellis, Neal R.

    2006-01-01

    Purpose: Immune suppression in microgravity has been well documented. With the advent of human exploration and long-term space travel, the immune system of the astronaut must be optimally maintained. It is important to investigate the expression patterns of cytokine genes, because they are directly related to immune response. Heat shock proteins (HSPs), also called stress proteins, are a group of proteins that are present in the cells of every life form. These proteins are induced when a cell responds to stressors such as heat, cold and oxygen deprivation. Microgravity is another stressor that may regulate HSPs. Heat shock proteins trigger immune response through activities that occur both inside the cell (intracellular) and outside the cell (extracellular). Knowledge about these two gene groups could lead to establishment of a blueprint of the immune response and adaptation-related genes in the microgravity environment. Methods: Human peripheral blood cells were cultured in 1g (T flask) and modeled microgravity (MMG, rotating-wall vessel) for 24 and 72 hours. Cell samples were collected and subjected to gene array analysis using the Affymetrix HG_U95 array. Data was collected and subjected to a two-way analysis of variance. The genes related to immune and stress responses were analyzed. Results and Conclusions: HSP70 was up-regulated by more than two fold in microgravity culture, while HSP90 was significantly down-regulated. HSP70 is not typically expressed in all kinds of cells, but it is expressed at high levels in stress conditions. HSP70 participates in translation, protein translocation, proteolysis and protein folding, suppressing aggregation and reactivating denatured proteins. Increased serum HSP70 levels correlate with a better outcome for heat-stroke or severe trauma patients. At the same time, elevated serum levels of HSP70 have been detected in patients with peripheral or renal vascular disease. HSP90 has been identified in the cytosol, nucleus and

  12. Regulating Power from Supermarket Refrigeration

    DEFF Research Database (Denmark)

    O'Connell, Niamh; Madsen, Henrik; Pinson, Pierre

    2014-01-01

    the Danfoss refrigeration test centre. The complexities of modelling demand response are demonstrated through simulation. Simulations are conducted by placing the identified model in a direct-control demand response architecture, with power reference tracking using model predictive control. The energylimited......This paper presents an analysis of the demand response capabilities of a supermarket refrigeration system, with a particular focus on the suitability for participation in the regulating power market. An ARMAX model of a supermarket refrigeration system is identified using experimental data from...... nature of demand response from refrigeration is identified as the key consideration when considering participation in the regulating power market. It is demonstrated that by restricting the operating regions of the supermarket refrigeration system, a simple relationship can be found between the available...

  13. Introducing an integrated climate change perspective in POPs modelling, monitoring and regulation

    International Nuclear Information System (INIS)

    Lamon, L.; Dalla Valle, M.; Critto, A.; Marcomini, A.

    2009-01-01

    This paper presents a review on the implications of climate change on the monitoring, modelling and regulation of persistent organic pollutants (POPs). Current research gaps are also identified and discussed. Long-term data sets are essential to identify relationships between climate fluctuations and changes in chemical species distribution. Reconstructing the influence of climatic changes on POPs environmental behaviour is very challenging in some local studies, and some insights can be obtained by the few available dated sediment cores or by studying POPs response to inter-annual climate fluctuations. Knowledge gaps and future projections can be studied by developing and applying various modelling tools, identifying compounds susceptibility to climate change, local and global effects, orienting international policies. Long-term monitoring strategies and modelling exercises taking into account climate change should be considered when devising new regulatory plans in chemicals management. - Climate change implications on POPs are addressed here with special attention to monitoring, modelling and regulation issues.

  14. Regulation of cellulose synthesis in response to stress.

    Science.gov (United States)

    Kesten, Christopher; Menna, Alexandra; Sánchez-Rodríguez, Clara

    2017-12-01

    The cell wall is a complex polysaccharide network that provides stability and protection to the plant and is one of the first layers of biotic and abiotic stimuli perception. A controlled remodeling of the primary cell wall is essential for the plant to adapt its growth to environmental stresses. Cellulose, the main component of plant cell walls is synthesized by plasma membrane-localized cellulose synthases moving along cortical microtubule tracks. Recent advancements demonstrate a tight regulation of cellulose synthesis at the primary cell wall by phytohormone networks. Stress-induced perturbations at the cell wall that modify cellulose synthesis and microtubule arrangement activate similar phytohormone-based stress response pathways. The integration of stress perception at the primary cell wall and downstream responses are likely to be tightly regulated by phytohormone signaling pathways in the context of cellulose synthesis and microtubule arrangement. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. One-Class FMRI-Inspired EEG Model for Self-Regulation Training.

    Directory of Open Access Journals (Sweden)

    Yehudit Meir-Hasson

    Full Text Available Recent evidence suggests that learned self-regulation of localized brain activity in deep limbic areas such as the amygdala, may alleviate symptoms of affective disturbances. Thus far self-regulation of amygdala activity could be obtained only via fMRI guided neurofeedback, an expensive and immobile procedure. EEG on the other hand is relatively inexpensive and can be easily implemented in any location. However the clinical utility of EEG neurofeedback for affective disturbances remains limited due to low spatial resolution, which hampers the targeting of deep limbic areas such as the amygdala. We introduce an EEG prediction model of amygdala activity from a single electrode. The gold standard used for training is the fMRI-BOLD signal in the amygdala during simultaneous EEG/fMRI recording. The suggested model is based on a time/frequency representation of the EEG data with varying time-delay. Previous work has shown a strong inhomogeneity among subjects as is reflected by the models created to predict the amygdala BOLD response from EEG data. In that work, different models were constructed for different subjects. In this work, we carefully analyzed the inhomogeneity among subjects and were able to construct a single model for the majority of the subjects. We introduce a method for inhomogeneity assessment. This enables us to demonstrate a choice of subjects for which a single model could be derived. We further demonstrate the ability to modulate brain-activity in a neurofeedback setting using feedback generated by the model. We tested the effect of the neurofeedback training by showing that new subjects can learn to down-regulate the signal amplitude compared to a sham group, which received a feedback obtained by a different participant. This EEG based model can overcome substantial limitations of fMRI-NF. It can enable investigation of NF training using multiple sessions and large samples in various locations.

  16. Tumor Response to Radiotherapy Regulated by Endothelial Cell Apoptosis

    Science.gov (United States)

    Garcia-Barros, Monica; Paris, Francois; Cordon-Cardo, Carlos; Lyden, David; Rafii, Shahin; Haimovitz-Friedman, Adriana; Fuks, Zvi; Kolesnick, Richard

    2003-05-01

    About 50% of cancer patients receive radiation therapy. Here we investigated the hypothesis that tumor response to radiation is determined not only by tumor cell phenotype but also by microvascular sensitivity. MCA/129 fibrosarcomas and B16F1 melanomas grown in apoptosis-resistant acid sphingomyelinase (asmase)-deficient or Bax-deficient mice displayed markedly reduced baseline microvascular endothelial apoptosis and grew 200 to 400% faster than tumors on wild-type microvasculature. Thus, endothelial apoptosis is a homeostatic factor regulating angiogenesis-dependent tumor growth. Moreover, these tumors exhibited reduced endothelial apoptosis upon irradiation and, unlike tumors in wild-type mice, they were resistant to single-dose radiation up to 20 grays (Gy). These studies indicate that microvascular damage regulates tumor cell response to radiation at the clinically relevant dose range.

  17. Arabidopsis YAK1 regulates abscisic acid response and drought resistance.

    Science.gov (United States)

    Kim, Dongjin; Ntui, Valentine Otang; Xiong, Liming

    2016-07-01

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. © 2016 Federation of European Biochemical Societies.

  18. Arabidopsis YAK1 regulates abscisic acid response and drought resistance

    KAUST Repository

    Kim, Dongjin

    2016-06-06

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. © 2016 Federation of European Biochemical Societies.

  19. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    International Nuclear Information System (INIS)

    Latham, Antony M.; Odell, Adam F.; Mughal, Nadeem A.; Issitt, Theo; Ulyatt, Clare; Walker, John H.; Homer-Vanniasinkam, Shervanthi; Ponnambalam, Sreenivasan

    2012-01-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: ► Endothelial cells mount a stress response under conditions of low serum. ► Endothelial VEGFR levels are

  20. Modelling Systemic Iron Regulation during Dietary Iron Overload and Acute Inflammation: Role of Hepcidin-Independent Mechanisms.

    Science.gov (United States)

    Enculescu, Mihaela; Metzendorf, Christoph; Sparla, Richard; Hahnel, Maximilian; Bode, Johannes; Muckenthaler, Martina U; Legewie, Stefan

    2017-01-01

    Systemic iron levels must be maintained in physiological concentrations to prevent diseases associated with iron deficiency or iron overload. A key role in this process plays ferroportin, the only known mammalian transmembrane iron exporter, which releases iron from duodenal enterocytes, hepatocytes, or iron-recycling macrophages into the blood stream. Ferroportin expression is tightly controlled by transcriptional and post-transcriptional mechanisms in response to hypoxia, iron deficiency, heme iron and inflammatory cues by cell-autonomous and systemic mechanisms. At the systemic level, the iron-regulatory hormone hepcidin is released from the liver in response to these cues, binds to ferroportin and triggers its degradation. The relative importance of individual ferroportin control mechanisms and their interplay at the systemic level is incompletely understood. Here, we built a mathematical model of systemic iron regulation. It incorporates the dynamics of organ iron pools as well as regulation by the hepcidin/ferroportin system. We calibrated and validated the model with time-resolved measurements of iron responses in mice challenged with dietary iron overload and/or inflammation. The model demonstrates that inflammation mainly reduces the amount of iron in the blood stream by reducing intracellular ferroportin transcription, and not by hepcidin-dependent ferroportin protein destabilization. In contrast, ferroportin regulation by hepcidin is the predominant mechanism of iron homeostasis in response to changing iron diets for a big range of dietary iron contents. The model further reveals that additional homeostasis mechanisms must be taken into account at very high dietary iron levels, including the saturation of intestinal uptake of nutritional iron and the uptake of circulating, non-transferrin-bound iron, into liver. Taken together, our model quantitatively describes systemic iron metabolism and generated experimentally testable predictions for additional

  1. Model Regulations for Decommissioning of Facilities

    International Nuclear Information System (INIS)

    2017-07-01

    The IAEA has systematic programmes to provide Member States with the guidance, services and training necessary for establishing a legal and regulatory framework, including the planning and implementation of decommissioning. The model regulations provided in this publication cover all aspects of the planning, conduct and termination of the decommissioning of facilities and management of the associated waste, in accordance with the relevant requirements of the IAEA safety standards. They provide a framework for establishing regulatory requirements and conditions of authorization to be incorporated into individual authorizations for the decommissioning of specific facilities. The model regulations also establish criteria to be used for assessing compliance with regulatory requirements. The publication will be of assistance to Member States in appraising the adequacy of their existing regulations and regulatory guides, and serves as a reference for those Member States developing regulations for the first time.

  2. Regulation of T Cell Homeostasis and Responses by Pten

    Directory of Open Access Journals (Sweden)

    Ryan H. Newton

    2012-06-01

    Full Text Available The generation of lipid products catalyzed by PI3K is critical for normal T cell homeostasis and a productive immune response. PI3K can be activated in response to antigen receptor, costimulatory, cytokine and chemokine signals. Moreover, dysregulation of this pathway frequently occurs in T cell lymphomas and is implicated in lymphoproliferative autoimmune disease. Akt acts as a central mediator of PI3K signals, downstream of which is the mTOR pathway, controlling cell growth and metabolism. Members of the Foxo family of transcription factors are also regulated by Akt, thus linking control over homing and migration of T cells, as well cell cycle entry, apoptosis, and DNA damage and oxidative stress responses, to PI3K signaling. PTEN, first identified as a tumor suppressor gene, encodes a lipid phosphatase that, by catalyzing the reverse of the PI3K reaction, directly opposes PI3K signaling. However, PTEN may have other functions as well, and recent reports have suggested roles for PTEN as a tumor suppressor independent of its effects on PI3K signaling. Through the use of models in which Pten is deleted specifically in T cells, it is becoming increasingly clear that control over autoimmunity and lymphomagenesis by PTEN involves multi-faceted functions of this molecule at multiple stages of T cell development.

  3. Counterbalancing Regulation in Response Memory of a Positively Autoregulated Two-Component System.

    Science.gov (United States)

    Gao, Rong; Godfrey, Katherine A; Sufian, Mahir A; Stock, Ann M

    2017-09-15

    Fluctuations in nutrient availability often result in recurrent exposures to the same stimulus conditions. The ability to memorize the past event and use the "memory" to make adjustments to current behaviors can lead to a more efficient adaptation to the recurring stimulus. A short-term phenotypic memory can be conferred via carryover of the response proteins to facilitate the recurrent response, but the additional accumulation of response proteins can lead to a deviation from response homeostasis. We used the Escherichia coli PhoB/PhoR two-component system (TCS) as a model system to study how cells cope with the recurrence of environmental phosphate (Pi) starvation conditions. We discovered that "memory" of prior Pi starvation can exert distinct effects through two regulatory pathways, the TCS signaling pathway and the stress response pathway. Although carryover of TCS proteins can lead to higher initial levels of transcription factor PhoB and a faster initial response in prestarved cells than in cells not starved, the response enhancement can be overcome by an earlier and greater repression of promoter activity in prestarved cells due to the memory of the stress response. The repression counterbalances the carryover of the response proteins, leading to a homeostatic response whether or not cells are prestimulated. A computational model based on sigma factor competition was developed to understand the memory of stress response and to predict the homeostasis of other PhoB-regulated response proteins. Our insight into the history-dependent PhoBR response may provide a general understanding of how TCSs respond to recurring stimuli and adapt to fluctuating environmental conditions. IMPORTANCE Bacterial cells in their natural environments experience scenarios that are far more complex than are typically replicated in laboratory experiments. The architectures of signaling systems and the integration of multiple adaptive pathways have evolved to deal with such complexity

  4. Counterbalancing Regulation in Response Memory of a Positively Autoregulated Two-Component System

    Science.gov (United States)

    Gao, Rong; Godfrey, Katherine A.; Sufian, Mahir A.

    2017-01-01

    ABSTRACT Fluctuations in nutrient availability often result in recurrent exposures to the same stimulus conditions. The ability to memorize the past event and use the “memory” to make adjustments to current behaviors can lead to a more efficient adaptation to the recurring stimulus. A short-term phenotypic memory can be conferred via carryover of the response proteins to facilitate the recurrent response, but the additional accumulation of response proteins can lead to a deviation from response homeostasis. We used the Escherichia coli PhoB/PhoR two-component system (TCS) as a model system to study how cells cope with the recurrence of environmental phosphate (Pi) starvation conditions. We discovered that “memory” of prior Pi starvation can exert distinct effects through two regulatory pathways, the TCS signaling pathway and the stress response pathway. Although carryover of TCS proteins can lead to higher initial levels of transcription factor PhoB and a faster initial response in prestarved cells than in cells not starved, the response enhancement can be overcome by an earlier and greater repression of promoter activity in prestarved cells due to the memory of the stress response. The repression counterbalances the carryover of the response proteins, leading to a homeostatic response whether or not cells are prestimulated. A computational model based on sigma factor competition was developed to understand the memory of stress response and to predict the homeostasis of other PhoB-regulated response proteins. Our insight into the history-dependent PhoBR response may provide a general understanding of how TCSs respond to recurring stimuli and adapt to fluctuating environmental conditions. IMPORTANCE Bacterial cells in their natural environments experience scenarios that are far more complex than are typically replicated in laboratory experiments. The architectures of signaling systems and the integration of multiple adaptive pathways have evolved to deal

  5. Differential RNA-seq, Multi-Network Analysis and Metabolic Regulation Analysis of Kluyveromyces marxianus Reveals a Compartmentalised Response to Xylose.

    Directory of Open Access Journals (Sweden)

    Du Toit W P Schabort

    Full Text Available We investigated the transcriptomic response of a new strain of the yeast Kluyveromyces marxianus, in glucose and xylose media using RNA-seq. The data were explored in a number of innovative ways using a variety of networks types, pathway maps, enrichment statistics, reporter metabolites and a flux simulation model, revealing different aspects of the genome-scale response in an integrative systems biology manner. The importance of the subcellular localisation in the transcriptomic response is emphasised here, revealing new insights. As was previously reported by others using a rich medium, we show that peroxisomal fatty acid catabolism was dramatically up-regulated in a defined xylose mineral medium without fatty acids, along with mechanisms to activate fatty acids and transfer products of β-oxidation to the mitochondria. Notably, we observed a strong up-regulation of the 2-methylcitrate pathway, supporting capacity for odd-chain fatty acid catabolism. Next we asked which pathways would respond to the additional requirement for NADPH for xylose utilisation, and rationalised the unexpected results using simulations with Flux Balance Analysis. On a fundamental level, we investigated the contribution of the hierarchical and metabolic regulation levels to the regulation of metabolic fluxes. Metabolic regulation analysis suggested that genetic level regulation plays a major role in regulating metabolic fluxes in adaptation to xylose, even for the high capacity reactions, which is unexpected. In addition, isozyme switching may play an important role in re-routing of metabolic fluxes in subcellular compartments in K. marxianus.

  6. Electric Water Heater Modeling and Control Strategies for Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.; Mayhorn, Ebony T.; Zhang, Yu; Samaan, Nader A.

    2012-07-22

    Abstract— Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency support following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms— Centralized control, decentralized control, demand response, electrical water heater, smart grid

  7. A Quick-responsive DNA Nanotechnology Device for Bio-molecular Homeostasis Regulation.

    Science.gov (United States)

    Wu, Songlin; Wang, Pei; Xiao, Chen; Li, Zheng; Yang, Bing; Fu, Jieyang; Chen, Jing; Wan, Neng; Ma, Cong; Li, Maoteng; Yang, Xiangliang; Zhan, Yi

    2016-08-10

    Physiological processes such as metabolism, cell apoptosis and immune responses, must be strictly regulated to maintain their homeostasis and achieve their normal physiological functions. The speed with which bio-molecular homeostatic regulation occurs directly determines the ability of an organism to adapt to conditional changes. To produce a quick-responsive regulatory system that can be easily utilized for various types of homeostasis, a device called nano-fingers that facilitates the regulation of physiological processes was constructed using DNA origami nanotechnology. This nano-fingers device functioned in linked open and closed phases using two types of DNA tweezers, which were covalently coupled with aptamers that captured specific molecules when the tweezer arms were sufficiently close. Via this specific interaction mechanism, certain physiological processes could be simultaneously regulated from two directions by capturing one biofactor and releasing the other to enhance the regulatory capacity of the device. To validate the universal application of this device, regulation of the homeostasis of the blood coagulant thrombin was attempted using the nano-fingers device. It was successfully demonstrated that this nano-fingers device achieved coagulation buffering upon the input of fuel DNA. This nano-device could also be utilized to regulate the homeostasis of other types of bio-molecules.

  8. A global bioheat model with self-tuning optimal regulation of body temperature using Hebbian feedback covariance learning.

    Science.gov (United States)

    Ong, M L; Ng, E Y K

    2005-12-01

    In the lower brain, body temperature is continually being regulated almost flawlessly despite huge fluctuations in ambient and physiological conditions that constantly threaten the well-being of the body. The underlying control problem defining thermal homeostasis is one of great enormity: Many systems and sub-systems are involved in temperature regulation and physiological processes are intrinsically complex and intertwined. Thus the defining control system has to take into account the complications of nonlinearities, system uncertainties, delayed feedback loops as well as internal and external disturbances. In this paper, we propose a self-tuning adaptive thermal controller based upon Hebbian feedback covariance learning where the system is to be regulated continually to best suit its environment. This hypothesis is supported in part by postulations of the presence of adaptive optimization behavior in biological systems of certain organisms which face limited resources vital for survival. We demonstrate the use of Hebbian feedback covariance learning as a possible self-adaptive controller in body temperature regulation. The model postulates an important role of Hebbian covariance adaptation as a means of reinforcement learning in the thermal controller. The passive system is based on a simplified 2-node core and shell representation of the body, where global responses are captured. Model predictions are consistent with observed thermoregulatory responses to conditions of exercise and rest, and heat and cold stress. An important implication of the model is that optimal physiological behaviors arising from self-tuning adaptive regulation in the thermal controller may be responsible for the departure from homeostasis in abnormal states, e.g., fever. This was previously unexplained using the conventional "set-point" control theory.

  9. Who regulates food? Australians' perceptions of responsibility for food safety.

    Science.gov (United States)

    Henderson, Julie; Coveney, John; Ward, Paul

    2010-01-01

    Food scares have diminished trust in public institutions to guarantee food safety. Food governance after the food scare era is concerned with institutional independence and transparency leading to a hybrid of public and private sector management and to mechanisms for consumer involvement in food governance. This paper explores Australian consumers' perceptions of who is, and should be responsible for food safety. Forty-seven participants were interviewed as part of a larger study on trust in the food system. Participants associate food governance with government, industry, and the individual. While few participants can name the national food regulator, there is a strong belief that the government is responsible for regulating the quality and safety of food. Participants are wary of the role of the food industry in food safety, believing that profit motives will undermine effective food regulation. Personal responsibility for food safety practices was also identified. While there are fewer mechanisms for consumer involvement and transparency built into the food governance system, Australian consumers display considerable trust in government to protect food safety. There is little evidence of the politicisation of food, reflecting a level of trust in the Australian food governance system that may arise from a lack of exposure to major food scares.

  10. SOS response and its regulation on the fluoroquinolone resistance.

    Science.gov (United States)

    Qin, Ting-Ting; Kang, Hai-Quan; Ma, Ping; Li, Peng-Peng; Huang, Lin-Yan; Gu, Bing

    2015-12-01

    Bacteria can survive fluoroquinolone antibiotics (FQs) treatment by becoming resistant through a genetic change-mutation or gene acquisition. The SOS response is widespread among bacteria and exhibits considerable variation in its composition and regulation, which is repressed by LexA protein and derepressed by RecA protein. Here, we take a comprehensive review of the SOS gene network and its regulation on the fluoroquinolone resistance. As a unique survival mechanism, SOS may be an important factor influencing the outcome of antibiotic therapy in vivo.

  11. Biogeochemical Responses and Feedbacks to Climate Change: Synthetic Meta-Analyses Relevant to Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    van Gestel, Natasja; Jan van Groenigen, Kees; Osenberg, Craig; Dukes, Jeffrey; Dijkstra, Paul

    2018-03-20

    This project examined the sensitivity of carbon in land ecosystems to environmental change, focusing on carbon contained in soil, and the role of carbon-nitrogen interactions in regulating ecosystem carbon storage. The project used a combination of empirical measurements, mathematical models, and statistics to partition effects of climate change on soil into processes enhancing soil carbon and processes through which it decomposes. By synthesizing results from experiments around the world, the work provided novel insight on ecological controls and responses across broad spatial and temporal scales. The project developed new approaches in meta-analysis using principles of element mass balance and large datasets to derive metrics of ecosystem responses to environmental change. The project used meta-analysis to test how nutrients regulate responses of ecosystems to elevated CO2 and warming, in particular responses of nitrogen fixation, critical for regulating long-term C balance.

  12. Induced ER-chaperones regulate a novel receptor-like kinase to mediate a viral innate immune response

    Science.gov (United States)

    Caplan, Jeffrey L.; Zhu, Xiaohong; Mamillapalli, Padmavathi; Marathe, Rajendra; Anandalakshmi, Radhamani; Dinesh-Kumar, S. P.

    2009-01-01

    Summary The plant innate immune response requires a rapid, global reprogramming of cellular processes. Here we employed two complementary proteomic methods, two-dimensional differential in-gel electrophoresis (2D-DIGE) and iTRAQ, to identify differentially regulated proteins early during a defense response. Besides defense-related proteins, the constituents of the largest category of up-regulated proteins were cytoplasmic- and endoplasmic reticulum (ER)-residing molecular chaperones. Silencing of ER-resident protein disulfide isomerases, NbERp57 and NbP5, and the calreticulins, NbCRT2 and NbCRT3, lead to a partial loss of N immune receptor-mediated defense against Tobacco mosaic virus (TMV). Furthermore, NbCRT2 and NbCRT3 are required for the expression of a novel induced receptor-like kinase (IRK). IRK is a plasma membrane-localized protein required for the N-mediated hypersensitive response programmed cell death (HR-PCD) and resistance to TMV. These data support a model in which ER-resident chaperones are required for the accumulation of membrane bound or secreted proteins that are necessary for innate immunity. PMID:19917500

  13. Humanizing π-class glutathione S-transferase regulation in a mouse model alters liver toxicity in response to acetaminophen overdose.

    Directory of Open Access Journals (Sweden)

    Matthew P Vaughn

    Full Text Available Glutathione S-transferases (GSTs metabolize drugs and xenobiotics. Yet despite high protein sequence homology, expression of π-class GSTs, the most abundant of the enzymes, varies significantly between species. In mouse liver, hepatocytes exhibit high mGstp expression, while in human liver, hepatocytes contain little or no hGSTP1 mRNA or hGSTP1 protein. π-class GSTs are known to be critical determinants of liver responses to drugs and toxins: when treated with high doses of acetaminophen, mGstp1/2+/+ mice suffer marked liver damage, while mGstp1/2-/- mice escape liver injury.To more faithfully model the contribution of π-class GSTs to human liver toxicology, we introduced hGSTP1, with its exons, introns, and flanking sequences, into the germline of mice carrying disrupted mGstp genes. In the resultant hGSTP1+mGstp1/2-/- strain, π-class GSTs were regulated differently than in wild-type mice. In the liver, enzyme expression was restricted to bile duct cells, Kupffer cells, macrophages, and endothelial cells, reminiscent of human liver, while in the prostate, enzyme production was limited to basal epithelial cells, reminiscent of human prostate. The human patterns of hGSTP1 transgene regulation were accompanied by human patterns of DNA methylation, with bisulfite genomic sequencing revealing establishment of an unmethylated CpG island sequence encompassing the gene promoter. Unlike wild-type or mGstp1/2-/- mice, when hGSTP1+mGstp1/2-/- mice were overdosed with acetaminophen, liver tissues showed limited centrilobular necrosis, suggesting that π-class GSTs may be critical determinants of toxin-induced hepatocyte injury even when not expressed by hepatocytes.By recapitulating human π-class GST expression, hGSTP1+mGstp1/2-/- mice may better model human drug and xenobiotic toxicology.

  14. MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability.

    Science.gov (United States)

    Zhao, Chunzhao; Wang, Pengcheng; Si, Tong; Hsu, Chuan-Chih; Wang, Lu; Zayed, Omar; Yu, Zheping; Zhu, Yingfang; Dong, Juan; Tao, W Andy; Zhu, Jian-Kang

    2017-12-04

    Mitogen-activated protein kinase cascades are important signaling modules that convert environmental stimuli into cellular responses. We show that MPK3, MPK4, and MPK6 are rapidly activated after cold treatment. The mpk3 and mpk6 mutants display increased expression of CBF genes and enhanced freezing tolerance, whereas constitutive activation of the MKK4/5-MPK3/6 cascade in plants causes reduced expression of CBF genes and hypersensitivity to freezing, suggesting that the MKK4/5-MPK3/6 cascade negatively regulates the cold response. MPK3 and MPK6 can phosphorylate ICE1, a basic-helix-loop-helix transcription factor that regulates the expression of CBF genes, and the phosphorylation promotes the degradation of ICE1. Interestingly, the MEKK1-MKK2-MPK4 pathway constitutively suppresses MPK3 and MPK6 activities and has a positive role in the cold response. Furthermore, the MAPKKK YDA and two calcium/calmodulin-regulated receptor-like kinases, CRLK1 and CRLK2, negatively modulate the cold activation of MPK3/6. Our results uncover important roles of MAPK cascades in the regulation of plant cold response. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Regulation of water, salinity, and cold stress responses by salicylic acid

    Directory of Open Access Journals (Sweden)

    Kenji eMiura

    2014-01-01

    Full Text Available Salicylic acid (SA is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant-pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation. Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this chapter, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed.

  16. A novel mode of regulation of the Staphylococcus aureus Vancomycin-resistance-associated response regulator VraR mediated by Stk1 protein phosphorylation.

    Science.gov (United States)

    Canova, Marc J; Baronian, Grégory; Brelle, Solène; Cohen-Gonsaud, Martin; Bischoff, Markus; Molle, Virginie

    2014-04-25

    The Staphylococcus aureus Vancomycin-resistance-associated response regulator VraR is known as an important response regulator, member of the VraTSR three-component signal transduction system that modulates the expression of the cell wall stress stimulon in response to a number of different cell wall active antibiotics. Given its crucial role in regulating gene expression in response to antibiotic challenges, VraR must be tightly regulated. We report here for the first time in S. aureus convergence of two major signal transduction systems, serine/threonine protein kinase and two (three)-component systems. We demonstrate that VraR can be phosphorylated by the staphylococcal Ser/Thr protein kinase Stk1 and that phosphorylation negatively affects its DNA-binding properties. Mass spectrometric analyses and site-directed mutagenesis identified Thr106, Thr119, Thr175 and Thr178 as phosphoacceptors. A S. aureus ΔvraR mutant expressing a VraR derivative that mimics constitutive phosphorylation, VraR_Asp, still exhibited markedly decreased antibiotic resistance against different cell wall active antibiotics, when compared to the wild-type, suggesting that VraR phosphorylation may represent a novel and presumably more general mechanism of regulation of the two (three)-component systems in staphylococci. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. An advanced dissymmetric rolling model for online regulation

    Science.gov (United States)

    Cao, Trong-Son

    2017-10-01

    Roll-bite model is employed to predict the rolling force, torque as well as to estimate the forward slip for preset or online regulation at industrial rolling mills. The rolling process is often dissymmetric in terms of work-rolls rotation speeds and diameters as well as the friction conditions at upper and lower contact surfaces between work-rolls and the strip. The roll-bite model thus must be able to account for these dissymmetries and in the same time has to be accurate and fast enough for online applications. In the present study, a new method, namely Adapted Discretization Slab Method (ADSM) is proposed to obtain a robust roll-bite model, which can take into account the aforementioned dissymmetries and has a very short response time, lower than one millisecond. This model is based on the slab method, with an adaptive discretization and a global Newton-Raphson procedure to improve the convergence speed. The model was validated by comparing with other dissymmetric models proposed in the literature, as well as Finite Element simulations and industrial pilot trials. Furthermore, back-calculation tool was also constructed for friction management for both offline and online applications. With very short CPU time, the ADSM-based model is thus attractive for all online applications, both for cold and hot rolling.

  18. Characterization of a type-A response regulator differentially expressed during adventitious caulogenesis in Pinus pinaster.

    Science.gov (United States)

    Alvarez, José M; Cortizo, Millán; Ordás, Ricardo J

    2012-12-15

    The molecular cloning and characterization of PipsRR1, a type-A response regulator in Pinus pinaster, is reported here. Type-A response regulators mediate downstream responses to cytokinin and act as negative feedback regulators of the signal transduction pathway. Some type-A response regulators in Arabidopsis have been related to de novo meristem formation. However, little information exists in Pinus spp. The PipsRR1 gene contains 5 exons, as do all type-A response regulators in Arabidopsis, and the deduced protein contains a receiver domain with the conserved DDK residues and a short C terminal extension. Expression analysis showed that the PipsRR1 gene is differentially expressed during the first phases of adventitious caulogenesis induced by benzyladenine in P. pinaster cotyledons, suggesting that PipsRR1 plays a role in caulogenesis in conifers. Additionally, a binary vector carrying the PipsRR1 promoter driving GFP:GUS expression was constructed to analyze the promoter activity in P. pinaster somatic embryos. The results of genetic transformation showed GUS activity during somatic embryo mass proliferation and embryo maturation. Copyright © 2012 Elsevier GmbH. All rights reserved.

  19. Hidden Markov Item Response Theory Models for Responses and Response Times.

    Science.gov (United States)

    Molenaar, Dylan; Oberski, Daniel; Vermunt, Jeroen; De Boeck, Paul

    2016-01-01

    Current approaches to model responses and response times to psychometric tests solely focus on between-subject differences in speed and ability. Within subjects, speed and ability are assumed to be constants. Violations of this assumption are generally absorbed in the residual of the model. As a result, within-subject departures from the between-subject speed and ability level remain undetected. These departures may be of interest to the researcher as they reflect differences in the response processes adopted on the items of a test. In this article, we propose a dynamic approach for responses and response times based on hidden Markov modeling to account for within-subject differences in responses and response times. A simulation study is conducted to demonstrate acceptable parameter recovery and acceptable performance of various fit indices in distinguishing between different models. In addition, both a confirmatory and an exploratory application are presented to demonstrate the practical value of the modeling approach.

  20. The Self-Regulated Learning Model and Music Education

    OpenAIRE

    Maja Marijan

    2017-01-01

    Self-regulation and self-regulated learning (SRL) are important features in music education. In this research self-regulated learning model is presented as a complex, multidimensional structure. SRL starts with the self-regulation. Self-regulation is formed through interaction with the environment, thus self-learning, self-analysis, self-judgment, self-instruction, and self-monitoring are the main functions in self-regulatory structure. Co-regulation is needed, and helps self-regulation to be...

  1. Understanding variation in ecosystem pulse responses to wetting: Benefits of data-model coupling

    Science.gov (United States)

    Jenerette, D.

    2011-12-01

    Metabolic pulses of activity are a common ecological response to intermittently available resources and in water-limited ecosystems these pulses often occur in response to wetting. Net ecosystem CO2 exchange (NEE) in response to episodic wetting events is hypothesized to have a complex trajectory reflecting the distinct responses, or "pulses", of respiration and photosynthesis. To help direct research activities a physiological-based model of whole ecosystem metabolic activity up- and down-regulation was developed to investigate ecosystem energy balance and gas exchange pulse responses following precipitation events. This model was to investigate pulse dynamics from a local network of sites in southern Arizona, a global network of eddy-covariance ecosystem monitoring sites, laboratory incubation studies, and field manipulations. Pulse responses were found to be ubiquitous across ecosystem types. These pulses had a highly variable influence on NEE following wetting, ranging from large net sinks to sources of CO2 to the atmosphere. Much of the variability in pulse responses of NEE could be described through a coupled up- and down-regulation pulse response model. Respiration pulses were hypothesized to occur through a reduction in whole ecosystem activation energy; this model was both useful and corroborated through laboratory incubation studies of soil respiration. Using the Fluxnet eddy-covariance measurement database event specific responses were combined with the pulse model into an event specific twenty-five day net flux calculation. Across all events observed a general net accumulation of CO2 following a precipitation event, with the largest net uptake within deciduous broadleaf forests and smallest within grasslands. NEE pulses favored greater uptake when pre-event ecosystem respiration rates and total precipitation were higher. While the latter was expected, the former adds to previous theory by suggesting a larger net uptake of CO2 when pre-event metabolic

  2. DMPD: The Lps locus: genetic regulation of host responses to bacteriallipopolysaccharide. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10669111 The Lps locus: genetic regulation of host responses to bacteriallipopolysaccharide. Qur...e The Lps locus: genetic regulation of host responses to bacteriallipopolysaccharide. Authors Qur

  3. Modeling and simulation of CANDU reactor and its regulating system

    Science.gov (United States)

    Javidnia, Hooman

    phenomena related to the transfer of the energy from the core. The main function of the reactor regulating system is to control the power of the reactor. This is achieved by using a set of detectors. reactivity devices. and digital control algorithms. Three main reactivity devices that are activated during short-term or intermediate-term transients are modeled in this thesis. The main elements of the digital control system are implemented in accordance to the program specifications for the actual control system in CANDU reactors. The simulation results are validated against requirements of the reactor regulating system. actual plant data. and pre-validated data from other computer codes. The validation process shows that the simulation results can be trusted in making engineering decisions regarding the reactor regulating system and prediction of the system performance in response to upset conditions or disturbances. KEYWORDS: CANDU reactors. reactor regulating system. nodal model. spatial kinetics. reactivity devices. simulation.

  4. Homeodomain-Interacting Protein Kinase (HPK-1) regulates stress responses and ageing in C. elegans.

    Science.gov (United States)

    Berber, Slavica; Wood, Mallory; Llamosas, Estelle; Thaivalappil, Priya; Lee, Karen; Liao, Bing Mana; Chew, Yee Lian; Rhodes, Aaron; Yucel, Duygu; Crossley, Merlin; Nicholas, Hannah R

    2016-01-21

    Proteins of the Homeodomain-Interacting Protein Kinase (HIPK) family regulate an array of processes in mammalian systems, such as the DNA damage response, cellular proliferation and apoptosis. The nematode Caenorhabditis elegans has a single HIPK homologue called HPK-1. Previous studies have implicated HPK-1 in longevity control and suggested that this protein may be regulated in a stress-dependent manner. Here we set out to expand these observations by investigating the role of HPK-1 in longevity and in the response to heat and oxidative stress. We find that levels of HPK-1 are regulated by heat stress, and that HPK-1 contributes to survival following heat or oxidative stress. Additionally, we show that HPK-1 is required for normal longevity, with loss of HPK-1 function leading to a faster decline of physiological processes that reflect premature ageing. Through microarray analysis, we have found that HPK-1-regulated genes include those encoding proteins that serve important functions in stress responses such as Phase I and Phase II detoxification enzymes. Consistent with a role in longevity assurance, HPK-1 also regulates the expression of age-regulated genes. Lastly, we show that HPK-1 functions in the same pathway as DAF-16 to regulate longevity and reveal a new role for HPK-1 in development.

  5. Yeast aquaporin regulation by 4-hydroxynonenal is implicated in oxidative stress response.

    Science.gov (United States)

    Rodrigues, Claudia; Tartaro Bujak, Ivana; Mihaljević, Branka; Soveral, Graça; Cipak Gasparovic, Ana

    2017-05-01

    Reactive oxygen species, especially hydrogen peroxide (H 2 O 2 ), contribute to functional molecular impairment and cellular damage, but also are necessary in normal cellular metabolism, and in low doses play stimulatory role in cell proliferation and stress resistance. In parallel, reactive aldehydes such as 4-hydroxynonenal (HNE), are lipid peroxidation breakdown products which also contribute to regulation of numerous cellular processes. Recently, channeling of H 2 O 2 by some mammalian aquaporin isoforms has been reported and suggested to contribute to aquaporin involvement in cancer malignancies, although the mechanism by which these membrane water channels are implicated in oxidative stress is not clear. In this study, two yeast models with increased levels of membrane polyunsaturated fatty acids (PUFAs) and aquaporin AQY1 overexpression, respectively, were used to evaluate their interplay in cell's oxidative status. In particular, the aim of the study was to investigate if HNE accumulation could affect aquaporin function with an outcome in oxidative stress response. The data showed that induction of aquaporin expression by PUFAs results in increased water permeability in yeast membranes and that AQY1 activity is impaired by HNE. Moreover, AQY1 expression increases cellular sensitivity to oxidative stress by facilitating H 2 O 2 influx. On the other hand, AQY1 expression has no influence on the cellular antioxidant GSH levels and catalase activity. These results strongly suggest that aquaporins are important players in oxidative stress response and could contribute to regulation of cellular processes by regulation of H 2 O 2 influx. © 2017 IUBMB Life, 69(5):355-362, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  6. Toward an integrated model of capsule regulation in Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Brian C Haynes

    2011-12-01

    Full Text Available Cryptococcus neoformans is an opportunistic fungal pathogen that causes serious human disease in immunocompromised populations. Its polysaccharide capsule is a key virulence factor which is regulated in response to growth conditions, becoming enlarged in the context of infection. We used microarray analysis of cells stimulated to form capsule over a range of growth conditions to identify a transcriptional signature associated with capsule enlargement. The signature contains 880 genes, is enriched for genes encoding known capsule regulators, and includes many uncharacterized sequences. One uncharacterized sequence encodes a novel regulator of capsule and of fungal virulence. This factor is a homolog of the yeast protein Ada2, a member of the Spt-Ada-Gcn5 Acetyltransferase (SAGA complex that regulates transcription of stress response genes via histone acetylation. Consistent with this homology, the C. neoformans null mutant exhibits reduced histone H3 lysine 9 acetylation. It is also defective in response to a variety of stress conditions, demonstrating phenotypes that overlap with, but are not identical to, those of other fungi with altered SAGA complexes. The mutant also exhibits significant defects in sexual development and virulence. To establish the role of Ada2 in the broader network of capsule regulation we performed RNA-Seq on strains lacking either Ada2 or one of two other capsule regulators: Cir1 and Nrg1. Analysis of the results suggested that Ada2 functions downstream of both Cir1 and Nrg1 via components of the high osmolarity glycerol (HOG pathway. To identify direct targets of Ada2, we performed ChIP-Seq analysis of histone acetylation in the Ada2 null mutant. These studies supported the role of Ada2 in the direct regulation of capsule and mating responses and suggested that it may also play a direct role in regulating capsule-independent antiphagocytic virulence factors. These results validate our experimental approach to dissecting

  7. Response moderation models for conditional dependence between response time and response accuracy.

    Science.gov (United States)

    Bolsinova, Maria; Tijmstra, Jesper; Molenaar, Dylan

    2017-05-01

    It is becoming more feasible and common to register response times in the application of psychometric tests. Researchers thus have the opportunity to jointly model response accuracy and response time, which provides users with more relevant information. The most common choice is to use the hierarchical model (van der Linden, 2007, Psychometrika, 72, 287), which assumes conditional independence between response time and accuracy, given a person's speed and ability. However, this assumption may be violated in practice if, for example, persons vary their speed or differ in their response strategies, leading to conditional dependence between response time and accuracy and confounding measurement. We propose six nested hierarchical models for response time and accuracy that allow for conditional dependence, and discuss their relationship to existing models. Unlike existing approaches, the proposed hierarchical models allow for various forms of conditional dependence in the model and allow the effect of continuous residual response time on response accuracy to be item-specific, person-specific, or both. Estimation procedures for the models are proposed, as well as two information criteria that can be used for model selection. Parameter recovery and usefulness of the information criteria are investigated using simulation, indicating that the procedure works well and is likely to select the appropriate model. Two empirical applications are discussed to illustrate the different types of conditional dependence that may occur in practice and how these can be captured using the proposed hierarchical models. © 2016 The British Psychological Society.

  8. Proposing a Model of Co-Regulated Learning for Graduate Medical Education.

    Science.gov (United States)

    Rich, Jessica V

    2017-08-01

    Primarily grounded in Zimmerman's social cognitive model of self-regulation, graduate medical education is guided by principles that self-regulated learning takes place within social context and influence, and that the social context and physical environment reciprocally influence persons and their cognition, behavior, and development. However, contemporary perspectives on self-regulation are moving beyond Zimmerman's triadic reciprocal orientation to models that consider social transactions as the central core of regulated learning. Such co-regulated learning models emphasize shared control of learning and the role more advanced others play in scaffolding novices' metacognitive engagement.Models of co-regulated learning describe social transactions as periods of distributed regulation among individuals, which instrumentally promote or inhibit the capacity for individuals to independently self-regulate. Social transactions with other regulators, including attending physicians, more experienced residents, and allied health care professionals, are known to mediate residents' learning and to support or hamper the development of their self-regulated learning competence. Given that social transactions are at the heart of learning-oriented assessment and entrustment decisions, an appreciation for co-regulated learning is likely important for advancing medical education research and practice-especially given the momentum of new innovations such as entrustable professional activities.In this article, the author explains why graduate medical educators should consider adopting a model of co-regulated learning to complement and extend Zimmerman's models of self-regulated learning. In doing so, the author suggests a model of co-regulated learning and provides practical examples of how the model is relevant to graduate medical education research and practice.

  9. NLRC5: a key regulator of MHC class I-dependent immune responses.

    Science.gov (United States)

    Kobayashi, Koichi S; van den Elsen, Peter J

    2012-12-01

    The expression of MHC class I molecules is crucial for the initiation and regulation of adaptive immune responses against pathogens. NOD-, LRR- and CARD-containing 5 (NLRC5) was recently identified as a specific transactivator of MHC class I genes (CITA). NLRC5 and the master regulator for MHC class II genes, class II transactivator (CIITA), interact with similar MHC promoter-bound factors. Here, we provide a broad overview of the molecular mechanisms behind MHC class I transcription and the role of the class I transactivator NLRC5 in MHC class I-dependent immune responses.

  10. Interaction of a plant pseudo-response regulator with a calmodulin-like protein

    International Nuclear Information System (INIS)

    Perochon, Alexandre; Dieterle, Stefan; Pouzet, Cecile; Aldon, Didier; Galaud, Jean-Philippe; Ranty, Benoit

    2010-01-01

    Research highlights: → The pseudo-response regulator PRR2 specifically binds CML9, a calmodulin-like protein → The interaction is confirmed in plant cell nuclei → The interaction requires an intact PRR2 protein. -- Abstract: Calmodulin (CaM) plays a crucial role in the regulation of diverse cellular processes by modulating the activities of numerous target proteins. Plants possess an extended CaM family including numerous CaM-like proteins (CMLs), most of which appear to be unique to plants. We previously demonstrated a role for CML9 in abiotic stress tolerance and seed germination in Arabidopsis thaliana. We report here the isolation of PRR2, a pseudo-response regulator as a CML9 interacting protein by screening an expression library prepared from Arabidopsis seedlings with CML9 as bait in a yeast two-hybrid system. PRR2 is similar to the response regulators of the two-component system, but lacks the invariant residue required for phosphorylation by which response regulators switch their output response, suggesting the existence of alternative regulatory mechanisms. PRR2 was found to bind CML9 and closely related CMLs but not a canonical CaM. Mapping analyses indicate that an almost complete form of PRR2 is required for interaction with CML9, suggesting a recognition mode different from the classical CaM-target peptide complex. PRR2 contains several features that are typical of transcription factors, including a GARP DNA recognition domain, a Pro-rich region and a Golden C-terminal box. PRR2 and CML9 as fusion proteins with fluorescent tags co-localized in the nucleus of plant cells, and their interaction in the nuclear compartment was validated in planta by using a fluorophore-tagged protein interaction assay. These findings suggest that binding of PRR2 to CML9 may be an important mechanism to modulate the physiological role of this transcription factor in plants.

  11. Interaction of a plant pseudo-response regulator with a calmodulin-like protein

    Energy Technology Data Exchange (ETDEWEB)

    Perochon, Alexandre; Dieterle, Stefan; Pouzet, Cecile; Aldon, Didier; Galaud, Jean-Philippe [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France); Ranty, Benoit, E-mail: ranty@scsv.ups-tlse.fr [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France)

    2010-08-06

    Research highlights: {yields} The pseudo-response regulator PRR2 specifically binds CML9, a calmodulin-like protein {yields} The interaction is confirmed in plant cell nuclei {yields} The interaction requires an intact PRR2 protein. -- Abstract: Calmodulin (CaM) plays a crucial role in the regulation of diverse cellular processes by modulating the activities of numerous target proteins. Plants possess an extended CaM family including numerous CaM-like proteins (CMLs), most of which appear to be unique to plants. We previously demonstrated a role for CML9 in abiotic stress tolerance and seed germination in Arabidopsis thaliana. We report here the isolation of PRR2, a pseudo-response regulator as a CML9 interacting protein by screening an expression library prepared from Arabidopsis seedlings with CML9 as bait in a yeast two-hybrid system. PRR2 is similar to the response regulators of the two-component system, but lacks the invariant residue required for phosphorylation by which response regulators switch their output response, suggesting the existence of alternative regulatory mechanisms. PRR2 was found to bind CML9 and closely related CMLs but not a canonical CaM. Mapping analyses indicate that an almost complete form of PRR2 is required for interaction with CML9, suggesting a recognition mode different from the classical CaM-target peptide complex. PRR2 contains several features that are typical of transcription factors, including a GARP DNA recognition domain, a Pro-rich region and a Golden C-terminal box. PRR2 and CML9 as fusion proteins with fluorescent tags co-localized in the nucleus of plant cells, and their interaction in the nuclear compartment was validated in planta by using a fluorophore-tagged protein interaction assay. These findings suggest that binding of PRR2 to CML9 may be an important mechanism to modulate the physiological role of this transcription factor in plants.

  12. Understanding the Posttranscriptional Regulation of Plant Responses to Abiotic Stress

    KAUST Repository

    Alshareef, Sahar

    2017-01-01

    Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and biotic and abiotic stresses

  13. Modeling T cell antigen discrimination based on feedback control of digital ERK responses.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available T-lymphocyte activation displays a remarkable combination of speed, sensitivity, and discrimination in response to peptide-major histocompatibility complex (pMHC ligand engagement of clonally distributed antigen receptors (T cell receptors or TCRs. Even a few foreign pMHCs on the surface of an antigen-presenting cell trigger effective signaling within seconds, whereas 1 x 10(5-1 x 10(6 self-pMHC ligands that may differ from the foreign stimulus by only a single amino acid fail to elicit this response. No existing model accounts for this nearly absolute distinction between closely related TCR ligands while also preserving the other canonical features of T-cell responses. Here we document the unexpected highly amplified and digital nature of extracellular signal-regulated kinase (ERK activation in T cells. Based on this observation and evidence that competing positive- and negative-feedback loops contribute to TCR ligand discrimination, we constructed a new mathematical model of proximal TCR-dependent signaling. The model made clear that competition between a digital positive feedback based on ERK activity and an analog negative feedback involving SH2 domain-containing tyrosine phosphatase (SHP-1 was critical for defining a sharp ligand-discrimination threshold while preserving a rapid and sensitive response. Several nontrivial predictions of this model, including the notion that this threshold is highly sensitive to small changes in SHP-1 expression levels during cellular differentiation, were confirmed by experiment. These results combining computation and experiment reveal that ligand discrimination by T cells is controlled by the dynamics of competing feedback loops that regulate a high-gain digital amplifier, which is itself modulated during differentiation by alterations in the intracellular concentrations of key enzymes. The organization of the signaling network that we model here may be a prototypic solution to the problem of achieving

  14. Anoxia-responsive regulation of the FoxO transcription factors in freshwater turtles, Trachemys scripta elegans.

    Science.gov (United States)

    Krivoruchko, Anastasia; Storey, Kenneth B

    2013-11-01

    The forkhead class O (FoxO) transcription factors are important regulators of multiple aspects of cellular metabolism. We hypothesized that activation of these transcription factors could play crucial roles in low oxygen survival in the anoxia-tolerant turtle, Trachemys scripta elegans. Two FoxOs, FoxO1 and FoxO3, were examined in turtle tissues in response to 5 and 20h of anoxic submergence using techniques of RT-PCR, western immunoblotting and DNA-binding assays to assess activation. Transcript levels of FoxO-responsive genes were also quantified using RT-PCR. FoxO1 was anoxia-responsive in the liver, with increases in transcript levels, protein levels, nuclear levels and DNA-binding of 1.7-4.8fold in response to anoxia. Levels of phosphorylated FoxO1 also decreased to 57% of control values in response to 5h of anoxia, indicating activation. FoxO3 was activated in the heart, kidney and liver in response to anoxia, with nuclear levels increasing by 1.5-3.7fold and DNA-binding activity increasing by 1.3-2.9fold. Transcript levels of two FoxO-target genes, p27kip1 and catalase, also rose by 2.4-2.5fold in the turtle liver under anoxia. The results suggest that the FoxO transcription factors are activated in response to anoxia in T. scripta elegans, potentially contributing to the regulation of stress resistance and metabolic depression. This study provides the first demonstration of activation of FoxOs in a natural model for vertebrate anoxia tolerance, further improving understanding of how tissues can survive without oxygen. © 2013.

  15. Regulation of urea synthesis during the acute phase response in rats

    DEFF Research Database (Denmark)

    Thomsen, Karen Louise; Jessen, Niels; Buch Møller, Andreas

    2013-01-01

    The acute-phase response is a catabolic event involving increased waste of amino-nitrogen (N) via hepatic urea synthesis, despite an increased need for amino-N incorporation into acute-phase proteins. This study aimed to clarify the regulation of N elimination via urea during different phases...... of the tumor necrosis factor-α (TNF-α)-induced acute-phase response in rats. We used four methods to study the regulation of urea synthesis: We examined urea cycle enzyme mRNA levels in liver tissue, the hepatocyte urea cycle enzyme proteins, the in vivo capacity of urea-N synthesis (CUNS), and known humoral...... regulators of CUNS at 1, 3, 24, and 72 h after TNF-α injection (25 μg/kg iv rrTNF-α) in rats. Serum acute-phase proteins and their liver mRNA levels were also measured. The urea cycle enzyme mRNA levels acutely decreased and then gradually normalized, whereas the urea cycle enzyme proteins remained...

  16. Nonrigid, Linear Plasma Response Model Based on Perturbed Equilibria for Axisymmetric Tokamak Control Design

    International Nuclear Information System (INIS)

    Welander, A.S.; Deranian, R.D.; Humphreys, D.A.; Leuer, J.A.; Walker, M.L.

    2005-01-01

    Tokamak control design relies on an accurate linear model of the plasma response, which can often dominate the local field variations in regions under active feedback control. For example, when fluxes at selected points on the plasma boundary are regulated in DIII-D, the plasma response to a change in a coil current gives rise to a flux change which can be larger than and opposite to the flux change caused by the coil alone.In the past, rigid plasma models have been used for linear stability and shape control design. In a rigid model, the plasma current profile is considered fixed and moves rigidly in response to control coils to maintain radial and vertical force balance. In a nonrigid model, however, changes in the plasma shape and current profile are taken into account. Such models are expected to be important for future advanced tokamak control design. The present work describes development of a nonrigid plasma response model for high-accuracy multivariable control design and provides comparisons of model predictions against DIII-D experimental data. The linear perturbed plasma response model is calculated rapidly from an existing equilibrium solution

  17. A rate equation model of stomatal responses to vapour pressure deficit and drought

    Directory of Open Access Journals (Sweden)

    Shanahan ST

    2002-08-01

    Full Text Available Abstract Background Stomata respond to vapour pressure deficit (D – when D increases, stomata begin to close. Closure is the result of a decline in guard cell turgor, but the link between D and turgor is poorly understood. We describe a model for stomatal responses to increasing D based upon cellular water relations. The model also incorporates impacts of increasing levels of water stress upon stomatal responses to increasing D. Results The model successfully mimics the three phases of stomatal responses to D and also reproduces the impact of increasing plant water deficit upon stomatal responses to increasing D. As water stress developed, stomata regulated transpiration at ever decreasing values of D. Thus, stomatal sensitivity to D increased with increasing water stress. Predictions from the model concerning the impact of changes in cuticular transpiration upon stomatal responses to increasing D are shown to conform to experimental data. Sensitivity analyses of stomatal responses to various parameters of the model show that leaf thickness, the fraction of leaf volume that is air-space, and the fraction of mesophyll cell wall in contact with air have little impact upon behaviour of the model. In contrast, changes in cuticular conductance and membrane hydraulic conductivity have significant impacts upon model behaviour. Conclusion Cuticular transpiration is an important feature of stomatal responses to D and is the cause of the 3 phase response to D. Feed-forward behaviour of stomata does not explain stomatal responses to D as feedback, involving water loss from guard cells, can explain these responses.

  18. MicroRNA-mediated networks underlie immune response regulation in papillary thyroid carcinoma

    Science.gov (United States)

    Huang, Chen-Tsung; Oyang, Yen-Jen; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2014-09-01

    Papillary thyroid carcinoma (PTC) is a common endocrine malignancy with low death rate but increased incidence and recurrence in recent years. MicroRNAs (miRNAs) are small non-coding RNAs with diverse regulatory capacities in eukaryotes and have been frequently implied in human cancer. Despite current progress, however, a panoramic overview concerning miRNA regulatory networks in PTC is still lacking. Here, we analyzed the expression datasets of PTC from The Cancer Genome Atlas (TCGA) Data Portal and demonstrate for the first time that immune responses are significantly enriched and under specific regulation in the direct miRNA-target network among distinctive PTC variants to different extents. Additionally, considering the unconventional properties of miRNAs, we explore the protein-coding competing endogenous RNA (ceRNA) and the modulatory networks in PTC and unexpectedly disclose concerted regulation of immune responses from these networks. Interestingly, miRNAs from these conventional and unconventional networks share general similarities and differences but tend to be disparate as regulatory activities increase, coordinately tuning the immune responses that in part account for PTC tumor biology. Together, our systematic results uncover the intensive regulation of immune responses underlain by miRNA-mediated networks in PTC, opening up new avenues in the management of thyroid cancer.

  19. Antioxidant response elements: Discovery, classes, regulation and potential applications

    Directory of Open Access Journals (Sweden)

    Azhwar Raghunath

    2018-07-01

    Full Text Available Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs, which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress. Keywords: Antioxidant response elements, Antioxidant genes, ARE-reporter constructs, ARE SNPs, Keap1/Nrf2/ARE pathway, Oxidative stress

  20. A multi-scale model of hepcidin promoter regulation reveals factors controlling systemic iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Guillem Casanovas

    2014-01-01

    Full Text Available Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease.

  1. Providers perspectives on self-regulation impact their use of responsive feeding practices in child care.

    Science.gov (United States)

    Dev, Dipti A; Speirs, Katherine E; Williams, Natalie A; Ramsay, Samantha; McBride, Brent A; Hatton-Bowers, Holly

    2017-11-01

    Supporting children's self-regulation in eating through caregivers' practice of responsive feeding is paramount to obesity prevention, and while much attention has been given to supporting children's self-regulation in eating through parents' responsive feeding practices in the home setting, little attention has been given to this issue in childcare settings. This qualitative study examines childcare providers' perspectives on using responsive feeding practices with young children (2-5years). Individual semi-structured interviews were conducted with providers until saturation was reached. Data was analyzed using thematic analysis. The final sample included 18 providers who were employed full-time in Head Start or state-licensed center-based childcare programs, cared for children (2-5y), and were directly responsible for serving meals and snacks. Providers were primarily (67%) employed in childcare programs that served children from low-income families and received reimbursement for meals and snacks from the US Department of Agriculture's Child and Adult Care Food Program. Three factors emerged that shaped childcare providers' experiences using responsive feeding practices: the providers' perspectives about whether or not young children can self-regulate food intake, their understanding of Child and Adult Care Food Program (CACFP) portion size regulations, and the availability of food at the center where they worked. Future research should examine how childcare providers' understanding of children's ability to self-regulate their food intake, the appropriate use of the CACFP regulations in relationship to serving sizes, and having food available to offer seconds promotes providers' use of responsive feeding practices in center-based childcare programs and children's dietary behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. An Organismal Model for Gene Regulatory Networks in the Gut-Associated Immune Response

    Directory of Open Access Journals (Sweden)

    Katherine M. Buckley

    2017-10-01

    Full Text Available The gut epithelium is an ancient site of complex communication between the animal immune system and the microbial world. While elements of self-non-self receptors and effector mechanisms differ greatly among animal phyla, some aspects of recognition, regulation, and response are broadly conserved. A gene regulatory network (GRN approach provides a means to investigate the nature of this conservation and divergence even as more peripheral functional details remain incompletely understood. The sea urchin embryo is an unparalleled experimental model for detangling the GRNs that govern embryonic development. By applying this theoretical framework to the free swimming, feeding larval stage of the purple sea urchin, it is possible to delineate the conserved regulatory circuitry that regulates the gut-associated immune response. This model provides a morphologically simple system in which to efficiently unravel regulatory connections that are phylogenetically relevant to immunity in vertebrates. Here, we review the organism-wide cellular and transcriptional immune response of the sea urchin larva. A large set of transcription factors and signal systems, including epithelial expression of interleukin 17 (IL17, are important mediators in the activation of the early gut-associated response. Many of these have homologs that are active in vertebrate immunity, while others are ancient in animals but absent in vertebrates or specific to echinoderms. This larval model provides a means to experimentally characterize immune function encoded in the sea urchin genome and the regulatory interconnections that control immune response and resolution across the tissues of the organism.

  3. DEPTOR regulates vascular endothelial cell activation and proinflammatory and angiogenic responses.

    Science.gov (United States)

    Bruneau, Sarah; Nakayama, Hironao; Woda, Craig B; Flynn, Evelyn A; Briscoe, David M

    2013-09-05

    The maintenance of normal tissue homeostasis and the prevention of chronic inflammatory disease are dependent on the active process of inflammation resolution. In endothelial cells (ECs), proinflammation results from the activation of intracellular signaling responses and/or the inhibition of endogenous regulatory/pro-resolution signaling networks that, to date, are poorly defined. In this study, we find that DEP domain containing mTOR interacting protein (DEPTOR) is expressed in different microvascular ECs in vitro and in vivo, and using a small interfering RNA (siRNA) knockdown approach, we find that it regulates mammalian target of rapamycin complex 1 (mTORC1), extracellular signal-regulated kinase 1/2, and signal transducer and activator of transcription 1 activation in part through independent mechanisms. Moreover, using limited gene arrays, we observed that DEPTOR regulates EC activation including mRNA expression of the T-cell chemoattractant chemokines CXCL9, CXCL10, CXCL11, CX3CL1, CCL5, and CCL20 and the adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (P < .05). DEPTOR siRNA-transfected ECs also bound increased numbers of peripheral blood mononuclear cells (P < .005) and CD3+ T cells (P < .005) in adhesion assays in vitro and had increased migration and angiogenic responses in spheroid sprouting (P < .01) and wound healing (P < .01) assays. Collectively, these findings define DEPTOR as a critical upstream regulator of EC activation responses and suggest that it plays an important role in endogenous mechanisms of anti-inflammation and pro-resolution.

  4. Molecular conservation of estrogen-response associated with cell cycle regulation, hormonal carcinogenesis and cancer in zebrafish and human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Govindarajan Kunde R

    2011-05-01

    Full Text Available Abstract Background The zebrafish is recognized as a versatile cancer and drug screening model. However, it is not known whether the estrogen-responsive genes and signaling pathways that are involved in estrogen-dependent carcinogenesis and human cancer are operating in zebrafish. In order to determine the potential of zebrafish model for estrogen-related cancer research, we investigated the molecular conservation of estrogen responses operating in both zebrafish and human cancer cell lines. Methods Microarray experiment was performed on zebrafish exposed to estrogen (17β-estradiol; a classified carcinogen and an anti-estrogen (ICI 182,780. Zebrafish estrogen-responsive genes sensitive to both estrogen and anti-estrogen were identified and validated using real-time PCR. Human homolog mapping and knowledge-based data mining were performed on zebrafish estrogen responsive genes followed by estrogen receptor binding site analysis and comparative transcriptome analysis with estrogen-responsive human cancer cell lines (MCF7, T47D and Ishikawa. Results Our transcriptome analysis captured multiple estrogen-responsive genes and signaling pathways that increased cell proliferation, promoted DNA damage and genome instability, and decreased tumor suppressing effects, suggesting a common mechanism for estrogen-induced carcinogenesis. Comparative analysis revealed a core set of conserved estrogen-responsive genes that demonstrate enrichment of estrogen receptor binding sites and cell cycle signaling pathways. Knowledge-based and network analysis led us to propose that the mechanism involving estrogen-activated estrogen receptor mediated down-regulation of human homolog HES1 followed by up-regulation cell cycle-related genes (human homologs E2F4, CDK2, CCNA, CCNB, CCNE, is highly conserved, and this mechanism may involve novel crosstalk with basal AHR. We also identified mitotic roles of polo-like kinase as a conserved signaling pathway with multiple entry

  5. Dynamical Analysis of bantam-Regulated Drosophila Circadian Rhythm Model

    Science.gov (United States)

    Li, Ying; Liu, Zengrong

    MicroRNAs (miRNAs) interact with 3‧untranslated region (UTR) elements of target genes to regulate mRNA stability or translation, and play a crucial role in regulating many different biological processes. bantam, a conserved miRNA, is involved in several functions, such as regulating Drosophila growth and circadian rhythm. Recently, it has been discovered that bantam plays a crucial role in the core circadian pacemaker. In this paper, based on experimental observations, a detailed dynamical model of bantam-regulated circadian clock system is developed to show the post-transcriptional behaviors in the modulation of Drosophila circadian rhythm, in which the regulation of bantam is incorporated into a classical model. The dynamical behaviors of the model are consistent with the experimental observations, which shows that bantam is an important regulator of Drosophila circadian rhythm. The sensitivity analysis of parameters demonstrates that with the regulation of bantam the system is more sensitive to perturbations, indicating that bantam regulation makes it easier for the organism to modulate its period against the environmental perturbations. The effectiveness in rescuing locomotor activity rhythms of mutated flies shows that bantam is necessary for strong and sustained rhythms. In addition, the biological mechanisms of bantam regulation are analyzed, which may help us more clearly understand Drosophila circadian rhythm regulated by other miRNAs.

  6. Delicate regulation of the cGAS-MITA-mediated innate immune response.

    Science.gov (United States)

    Luo, Wei-Wei; Shu, Hong-Bing

    2018-02-19

    Although it has long been demonstrated that cytosolic DNA is a potent immune stimulant, it is only in recent years that the molecular mechanisms of DNA-stimulated innate immune responses have emerged. Studies have established critical roles for the DNA sensor cyclic GMP-AMP synthase (cGAS) and the adapter protein MITA/STING in the innate immune response to cytosolic DNA or DNA viruses. Although the regulation of cGAS-MITA/STING-mediated signaling remains to be fully investigated, understanding the processes involved may help to explain the mechanisms of innate immune signaling events and perhaps autoinflammatory diseases and to provide potential therapeutic targets for drug intervention. In this review, we summarize recent progress on the regulation of the cGAS-MITA/STING-mediated innate immune response to DNA viruses at the organelle-trafficking, post-translational and transcriptional levels.Cellular & Molecular Immunology advance online publication, 19 February 2018; doi:10.1038/cmi.2016.51.

  7. Regulation and Turnover of Nitric Oxide by Phytoglobins in Plant Cell Responses

    DEFF Research Database (Denmark)

    Igamberdiev, Abir U; Hebelstrup, Kim; Stasolla, Claudio

    2016-01-01

    The involvement of phytoglobins in the metabolism of nitric oxide (NO) and reactive nitrogen species (RNS) produced during stress, plant growth, and development is discussed. The action of phytoglobin expression upon NO leads to the maintenance of redox status, minimization of the damage from...... to the mobility of both NO and phytohormones, plants developed strategies to regulate specific cell hormonal actions to permit differentiation during development and to respond to stress. Phytoglobins are the agents responsible for differential cellular responses to hormones that use NO as a signal transduction...... reactive oxygen and nitrogen species in the cytoplasm of the cell, and regulation of hormonal and stress responses. NO scavenging is achieved via phytoglobins, and it can also involve S-nitrosoglutathione reductase and a direct interaction of NO with superoxide anion followed by detoxification of formed...

  8. Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response

    Science.gov (United States)

    Lee, Hong-Jen; Lan, Li; Peng, Guang; Chang, Wei-Chao; Hsu, Ming-Chuan; Wang, Ying-Nai; Cheng, Chien-Chia; Wei, Leizhen; Nakajima, Satoshi; Chang, Shih-Shin; Liao, Hsin-Wei; Chen, Chung-Hsuan; Lavin, Martin; Ang, K Kian; Lin, Shiaw-Yih; Hung, Mien-Chie

    2015-01-01

    Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks. Depletion of endogenous EGFR impairs ATM-mediated foci formation, homologous recombination, and DNA repair. Moreover, pretreatment with an EGFR kinase inhibitor, gefitinib, blocks EGFR and ATM association, hinders CHK2 activation and subsequent foci formation, and increases radiosensitivity. Thus, we reveal a critical mechanism by which EGFR directly regulates ATM activation in DNA damage response, and our results suggest that the status of ATM Y370 phosphorylation has the potential to serve as a biomarker to stratify patients for either radiotherapy alone or in combination with EGFR inhibition. PMID:25601159

  9. Capturing the response of Clostridium acetobutylicum to chemical stressors using a regulated genome-scale metabolic model

    International Nuclear Information System (INIS)

    Dash, Satyakam; Mueller, Thomas J.; Venkataramanan, Keerthi P.; Papoutsakis, Eleftherios T.; Maranas, Costas D.

    2014-01-01

    Clostridia are anaerobic Gram-positive Firmicutes containing broad and flexible systems for substrate utilization, which have been used successfully to produce a range of industrial compounds. Clostridium acetobutylicum has been used to produce butanol on an industrial scale through acetone-butanol-ethanol (ABE) fermentation. A genome-scale metabolic (GSM) model is a powerful tool for understanding the metabolic capacities of an organism and developing metabolic engineering strategies for strain development. The integration of stress related specific transcriptomics information with the GSM model provides opportunities for elucidating the focal points of regulation

  10. Structure of the Francisella response regulator QseB receiver domain, and characterization of QseB inhibition by antibiofilm 2-aminoimidazole-based compounds: Inhibition of response regulator QseB by antibiofilm compounds

    Energy Technology Data Exchange (ETDEWEB)

    Milton, Morgan E.; Allen, C. Leigh; Feldmann, Erik A.; Bobay, Benjamin G.; Jung, David K.; Stephens, Matthew D.; Melander, Roberta J.; Theisen, Kelly E.; Zeng, Daina; Thompson, Richele J.; Melander, Christian; Cavanagh, John (NCSU)

    2017-08-16

    With antibiotic resistance increasing at alarming rates, targets for new antimicrobial therapies must be identified. A particularly promising target is the bacterial two-component system. Two-component systems allow bacteria to detect, evaluate and protect themselves against changes in the environment, such as exposure to antibiotics and also to trigger production of virulence factors. Drugs that target the response regulator portion of two-component systems represent a potent new approach so far unexploited. Here, we focus efforts on the highly virulent bacterium Francisella tularensis tularensis. Francisella contains only three response regulators, making it an ideal system to study. In this study, we initially present the structure of the N-terminal domain of QseB, the response regulator responsible for biofilm formation. Subsequently, using binding assays, computational docking and cellular studies, we show that QseB interacts with2-aminoimidazole based compounds that impede its function. This information will assist in tailoring compounds to act as adjuvants that will enhance the effect of antibiotics.

  11. Mechanisms of dietary response in mice and primates: a role for EGR1 in regulating the reaction to human-specific nutritional content.

    Directory of Open Access Journals (Sweden)

    Kai Weng

    Full Text Available Humans have a widely different diet from other primate species, and are dependent on its high nutritional content. The molecular mechanisms responsible for adaptation to the human diet are currently unknown. Here, we addressed this question by investigating whether the gene expression response observed in mice fed human and chimpanzee diets involves the same regulatory mechanisms as expression differences between humans and chimpanzees.Using mouse and primate transcriptomic data, we identified the transcription factor EGR1 (early growth response 1 as a putative regulator of diet-related differential gene expression between human and chimpanzee livers. Specifically, we predict that EGR1 regulates the response to the high caloric content of human diets. However, we also show that close to 90% of the dietary response to the primate diet found in mice, is not observed in primates. This might be explained by changes in tissue-specific gene expression between taxa.Our results suggest that the gene expression response to the nutritionally rich human diet is partially mediated by the transcription factor EGR1. While this EGR1-driven response is conserved between mice and primates, the bulk of the mouse response to human and chimpanzee dietary differences is not observed in primates. This result highlights the rapid evolution of diet-related expression regulation and underscores potential limitations of mouse models in dietary studies.

  12. Extended Producer Responsibility and corporate performance: Effects of environmental regulation and environmental strategy.

    Science.gov (United States)

    Peng, Benhong; Tu, Yu; Elahi, Ehsan; Wei, Guo

    2018-07-15

    While contemporary manufacturing technologies stimulate the industrial revolution and promote the rapidly changing global economy, it has caused enormous environmental negative externalities and managing the industrial waste remains a primary challenge, especially for fast developing countries such as China. Though existing studies explored the influence of Extended Producer Responsibility (EPR) legislations on environmental externalities, only fewer researches aimed at policy issues. Particularly, the relationship among environmental regulations, environmental strategies and corporate performance in the EPR system has not been deeply investigated. To fill this gap, this research will focus to assess the economic aspect and environmental performance associated with the environmental regulations and strategies. For this purpose, 208 cross-sectional questionnaires were administered with three major high-pollution industries, electrical and electronic, automobile and lead-acid storage battery industries. To accomplish this study objective, we employ a two-step approach: firstly, validity tests for environmental regulation and environmental strategy along with the corporate performance are performed by the factor analysis method, and secondly, the structural equation model is utilized to test the study hypotheses. Results reveal that command and control (CAC) and market-based incentive (MBI) environmental regulations are significantly impacting on the reactive environmental strategy (RES); however, the proactive environmental strategy (PES) only has a significant relationship with MBI regulation. On the other hand, RES only has a significant relationship with the enterprises economics performance, while PES has a statistically significant relationship with both economic and environmental performance of enterprises. Therefore, the central government and its local offices are strongly urged to coordinate the industries by making, implementing and monitoring necessary and

  13. Regulating the ethylene response of a plant by modulation of F-box proteins

    Science.gov (United States)

    Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA

    2014-01-07

    The relationship between F-box proteins and proteins invovled in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylne-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant haing an althered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described. Also described are methods of identifying compounds that modulate the ethylene response in plants by modulating the level of F-box protein expression or activity.

  14. The Structural Model in Parenting Style, Attachment Style, Self-regulation and Self-esteem for Smartphone Addiction

    Directory of Open Access Journals (Sweden)

    Kwan Hoi Ching

    2017-08-01

    Full Text Available Excessive smartphone usage has become a highly controversial and substantial worldwide issue. This paper explores the complexities and challenges of smartphone addiction with a particular focus on parenting styles, attachment, and self-regulation. Convenience sampling was used to gather data from 211 university students in Hong Kong (138 females/74 males through their responses to four questionnaires. One structural equation model was formed successfully which indicated that parenting style (authoritative or permissive could be a reasonable predictor of attachment style (secure or dismissive and self-regulation (impulse control or goal setting for smartphone addictions (positive anticipation, withdrawal, cyberspace relationship or overuse. Parenting style was a positive correlate to predict attachment, while the attachment positive correlated to predict self-regulation. Self-regulation was a negative correlate to smartphone addiction. It was revealed that a positive parenting style and positive attachment style could form a significant model with self-regulation and smartphone addiction. Furthermore, secure attachment had higher mediation effect, while impulse control and goal setting behavior had a fair mediation power over influencing addiction tendency. This model helped explore the relationships between smartphone addiction and other constructs in educational psychology. Based on findings, educators can gain insights into how parenting and self-regulation can influence the tendency towards excessive smartphone usage. More educational programs which aim at promoting adequate parenting skills, motivating children through self-regulation and goal setting, is proposed through this study.

  15. Computational modeling predicts the ionic mechanism of late-onset responses in Unipolar Brush Cells

    Directory of Open Access Journals (Sweden)

    Sathyaa eSubramaniyam

    2014-08-01

    Full Text Available Unipolar Brush Cells (UBCs have been suggested to have a strong impact on cerebellar granular layer functioning, yet the corresponding cellular mechanisms remain poorly understood. UBCs have recently been reported to generate, in addition to early-onset glutamatergic synaptic responses, a late-onset response (LOR composed of a slow depolarizing ramp followed by a spike burst (Locatelli et al., 2013. The LOR activates as a consequence of synaptic activity and involves an intracellular cascade modulating H- and TRP-current gating. In order to assess the LOR mechanisms, we have developed a UBC multi-compartmental model (including soma, dendrite, initial segment and axon incorporating biologically realistic representations of ionic currents and a generic coupling mechanism regulating TRP and H channel gating. The model finely reproduced UBC responses to current injection, including a low-threshold spike sustained by CaLVA currents, a persistent discharge sustained by CaHVA currents, and a rebound burst following hyperpolarization sustained by H- and CaLVA-currents. Moreover, the model predicted that H- and TRP-current regulation was necessary and sufficient to generate the LOR and its dependence on the intensity and duration of mossy fiber activity. Therefore, the model showed that, using a basic set of ionic channels, UBCs generate a rich repertoire of delayed bursts, which could take part to the formation of tunable delay-lines in the local microcircuit.

  16. Computational modeling predicts the ionic mechanism of late-onset responses in unipolar brush cells.

    Science.gov (United States)

    Subramaniyam, Sathyaa; Solinas, Sergio; Perin, Paola; Locatelli, Francesca; Masetto, Sergio; D'Angelo, Egidio

    2014-01-01

    Unipolar Brush Cells (UBCs) have been suggested to play a critical role in cerebellar functioning, yet the corresponding cellular mechanisms remain poorly understood. UBCs have recently been reported to generate, in addition to early-onset glutamate receptor-dependent synaptic responses, a late-onset response (LOR) composed of a slow depolarizing ramp followed by a spike burst (Locatelli et al., 2013). The LOR activates as a consequence of synaptic activity and involves an intracellular cascade modulating H- and TRP-current gating. In order to assess the LOR mechanisms, we have developed a UBC multi-compartmental model (including soma, dendrite, initial segment, and axon) incorporating biologically realistic representations of ionic currents and a cytoplasmic coupling mechanism regulating TRP and H channel gating. The model finely reproduced UBC responses to current injection, including a burst triggered by a low-threshold spike (LTS) sustained by CaLVA currents, a persistent discharge sustained by CaHVA currents, and a rebound burst following hyperpolarization sustained by H- and CaLVA-currents. Moreover, the model predicted that H- and TRP-current regulation was necessary and sufficient to generate the LOR and its dependence on the intensity and duration of mossy fiber activity. Therefore, the model showed that, using a basic set of ionic channels, UBCs generate a rich repertoire of bursts, which could effectively implement tunable delay-lines in the local microcircuit.

  17. DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis.

    Science.gov (United States)

    Le, Tuan-Ngoc; Schumann, Ulrike; Smith, Neil A; Tiwari, Sameer; Au, Phil Chi Khang; Zhu, Qian-Hao; Taylor, Jennifer M; Kazan, Kemal; Llewellyn, Danny J; Zhang, Ren; Dennis, Elizabeth S; Wang, Ming-Bo

    2014-09-17

    DNA demethylases regulate DNA methylation levels in eukaryotes. Arabidopsis encodes four DNA demethylases, DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), DEMETER-LIKE 2 (DML2), and DML3. While DME is involved in maternal specific gene expression during seed development, the biological function of the remaining DNA demethylases remains unclear. We show that ROS1, DML2, and DML3 play a role in fungal disease resistance in Arabidopsis. A triple DNA demethylase mutant, rdd (ros1 dml2 dml3), shows increased susceptibility to the fungal pathogen Fusarium oxysporum. We identify 348 genes differentially expressed in rdd relative to wild type, and a significant proportion of these genes are downregulated in rdd and have functions in stress response, suggesting that DNA demethylases maintain or positively regulate the expression of stress response genes required for F. oxysporum resistance. The rdd-downregulated stress response genes are enriched for short transposable element sequences in their promoters. Many of these transposable elements and their surrounding sequences show localized DNA methylation changes in rdd, and a general reduction in CHH methylation, suggesting that RNA-directed DNA methylation (RdDM), responsible for CHH methylation, may participate in DNA demethylase-mediated regulation of stress response genes. Many of the rdd-downregulated stress response genes are downregulated in the RdDM mutants nrpd1 and nrpe1, and the RdDM mutants nrpe1 and ago4 show enhanced susceptibility to F. oxysporum infection. Our results suggest that a primary function of DNA demethylases in plants is to regulate the expression of stress response genes by targeting promoter transposable element sequences.

  18. Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide

    Science.gov (United States)

    Fomenko, Dmitri E.; Koc, Ahmet; Agisheva, Natalia; Jacobsen, Michael; Kaya, Alaattin; Malinouski, Mikalai; Rutherford, Julian C.; Siu, Kam-Leung; Jin, Dong-Yan; Winge, Dennis R.; Gladyshev, Vadim N.

    2011-01-01

    Hydrogen peroxide is thought to regulate cellular processes by direct oxidation of numerous cellular proteins, whereas antioxidants, most notably thiol peroxidases, are thought to reduce peroxides and inhibit H2O2 response. However, thiol peroxidases have also been implicated in activation of transcription factors and signaling. It remains unclear if these enzymes stimulate or inhibit redox regulation and whether this regulation is widespread or limited to a few cellular components. Herein, we found that Saccharomyces cerevisiae cells lacking all eight thiol peroxidases were viable and withstood redox stresses. They transcriptionally responded to various redox treatments, but were unable to activate and repress gene expression in response to H2O2. Further studies involving redox transcription factors suggested that thiol peroxidases are major regulators of global gene expression in response to H2O2. The data suggest that thiol peroxidases sense and transfer oxidative signals to the signaling proteins and regulate transcription, whereas a direct interaction between H2O2 and other cellular proteins plays a secondary role. PMID:21282621

  19. Unfolded Protein Response-regulated Drosophila Fic (dFic) Protein Reversibly AMPylates BiP Chaperone during Endoplasmic Reticulum Homeostasis*

    Science.gov (United States)

    Ham, Hyeilin; Woolery, Andrew R.; Tracy, Charles; Stenesen, Drew; Krämer, Helmut; Orth, Kim

    2014-01-01

    Drosophila Fic (dFic) mediates AMPylation, a covalent attachment of adenosine monophosphate (AMP) from ATP to hydroxyl side chains of protein substrates. Here, we identified the endoplasmic reticulum (ER) chaperone BiP as a substrate for dFic and mapped the modification site to Thr-366 within the ATPase domain. The level of AMPylated BiP in Drosophila S2 cells is high during homeostasis, whereas the level of AMPylated BiP decreases upon the accumulation of misfolded proteins in the ER. Both dFic and BiP are transcriptionally activated upon ER stress, supporting the role of dFic in the unfolded protein response pathway. The inactive conformation of BiP is the preferred substrate for dFic, thus endorsing a model whereby AMPylation regulates the function of BiP as a chaperone, allowing acute activation of BiP by deAMPylation during an ER stress response. These findings not only present the first substrate of eukaryotic AMPylator but also provide a target for regulating the unfolded protein response, an emerging avenue for cancer therapy. PMID:25395623

  20. Stress responses during ageing: molecular pathways regulating protein homeostasis.

    Science.gov (United States)

    Kyriakakis, Emmanouil; Princz, Andrea; Tavernarakis, Nektarios

    2015-01-01

    The ageing process is characterized by deterioration of physiological function accompanied by frailty and ageing-associated diseases. The most broadly and well-studied pathways influencing ageing are the insulin/insulin-like growth factor 1 signaling pathway and the dietary restriction pathway. Recent studies in diverse organisms have also delineated emerging pathways, which collectively or independently contribute to ageing. Among them the proteostatic-stress-response networks, inextricably affect normal ageing by maintaining or restoring protein homeostasis to preserve proper cellular and organismal function. In this chapter, we survey the involvement of heat stress and endoplasmic reticulum stress responses in the regulation of longevity, placing emphasis on the cross talk between different response mechanisms and their systemic effects. We further discuss novel insights relevant to the molecular pathways mediating these stress responses that may facilitate the development of innovative interventions targeting age-related pathologies such as diabetes, cancer, cardiovascular and neurodegenerative diseases.

  1. Nrf2, the Master Regulator of Anti-Oxidative Responses

    Directory of Open Access Journals (Sweden)

    Sandra Vomund

    2017-12-01

    Full Text Available Tight regulation of inflammation is very important to guarantee a balanced immune response without developing chronic inflammation. One of the major mediators of the resolution of inflammation is the transcription factor: the nuclear factor erythroid 2-like 2 (Nrf2. Stabilized following oxidative stress, Nrf2 induces the expression of antioxidants as well as cytoprotective genes, which provoke an anti-inflammatory expression profile, and is crucial for the initiation of healing. In view of this fundamental modulatory role, it is clear that both hyper- or hypoactivation of Nrf2 contribute to the onset of chronic diseases. Understanding the tight regulation of Nrf2 expression/activation and its interaction with signaling pathways, known to affect inflammatory processes, will facilitate development of therapeutic approaches to prevent Nrf2 dysregulation and ameliorate chronic inflammatory diseases. We discuss in this review the principle mechanisms of Nrf2 regulation with a focus on inflammation and autophagy, extending the role of dysregulated Nrf2 to chronic diseases and tumor development.

  2. microRNA regulation of the embryonic hypoxic response in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Kagias, Konstantinos; Pocock, Roger

    2015-01-01

    Layered strategies to combat hypoxia provide flexibility in dynamic oxygen environments. Here we show that multiple miRNAs are required for hypoxic survival responses during C. elegans embryogenesis. Certain miRNAs promote while others antagonize the hypoxic survival response. We found...... of the full mRNA target repertoire of these miRNAs will reveal the miRNA-regulated network of hypoxic survival mechanisms in C. elegans....

  3. The EMO-Model: An Agent-Based Model of Primate Social Behavior Regulated by Two Emotional Dimensions, Anxiety-FEAR and Satisfaction-LIKE

    Science.gov (United States)

    Evers, Ellen; de Vries, Han; Spruijt, Berry M.; Sterck, Elisabeth H. M.

    2014-01-01

    Agent-based models provide a promising tool to investigate the relationship between individuals’ behavior and emerging group-level patterns. An individual’s behavior may be regulated by its emotional state and its interaction history with specific individuals. Emotional bookkeeping is a candidate mechanism to keep track of received benefits from specific individuals without requiring high cognitive abilities. However, how this mechanism may work is difficult to study in real animals, due to the complexity of primate social life. To explore this theoretically, we introduce an agent-based model, dubbed EMO-model, in which we implemented emotional bookkeeping. In this model the social behaviors of primate-like individuals are regulated by emotional processes along two dimensions. An individual’s emotional state is described by an aversive and a pleasant dimension (anxiety and satisfaction) and by its activating quality (arousal). Social behaviors affect the individuals’ emotional state. To implement emotional bookkeeping, the receiver of grooming assigns an accumulated affiliative attitude (LIKE) to the groomer. Fixed partner-specific agonistic attitudes (FEAR) reflect the stable dominance relations between group members. While the emotional state affects an individual’s general probability of executing certain behaviors, LIKE and FEAR affect the individual’s partner-specific behavioral probabilities. In this way, emotional processes regulate both spontaneous behaviors and appropriate responses to received behaviors, while emotional bookkeeping via LIKE attitudes regulates the development and maintenance of affiliative relations. Using an array of empirical data, the model processes were substantiated and the emerging model patterns were partially validated. The EMO-model offers a framework to investigate the emotional bookkeeping hypothesis theoretically and pinpoints gaps that need to be investigated empirically. PMID:24504194

  4. Listeria monocytogenes Induces a Virulence-Dependent microRNA Signature That Regulates the Immune Response in Galleria mellonella

    Directory of Open Access Journals (Sweden)

    Gopala K. Mannala

    2017-12-01

    Full Text Available microRNAs (miRNAs coordinate several physiological and pathological processes by regulating the fate of mRNAs. Studies conducted in vitro indicate a role of microRNAs in the control of host-microbe interactions. However, there is limited understanding of miRNA functions in in vivo models of bacterial infections. In this study, we systematically explored changes in miRNA expression levels of Galleria mellonella larvae (greater-wax moth, a model system that recapitulates the vertebrate innate immunity, following infection with L. monocytogenes. Using an insect-specific miRNA microarray with more than 2000 probes, we found differential expression of 90 miRNAs (39 upregulated and 51 downregulated in response to infection with L. monocytogenes. We validated the expression of a subset of miRNAs which have mammalian homologs of known or predicted function. In contrast, non-pathogenic L. innocua failed to induce these miRNAs, indicating a virulence-dependent miRNA deregulation. To predict miRNA targets using established algorithms, we generated a publically available G. mellonella transcriptome database. We identified miRNA targets involved in innate immunity, signal transduction and autophagy, including spätzle, MAP kinase, and optineurin, respectively, which exhibited a virulence-specific differential expression. Finally, in silico estimation of minimum free energy of miRNA-mRNA duplexes of validated microRNAs and target transcripts revealed a regulatory network of the host immune response to L. monocytogenes. In conclusion, this study provides evidence for a role of miRNAs in the regulation of the innate immune response following bacterial infection in a simple, rapid and scalable in vivo model that may predict host-microbe interactions in higher vertebrates.

  5. Simulation of dynamic response of nuclear power plant based on user-defined model in PSASP

    International Nuclear Information System (INIS)

    Zhao Jie; Liu Dichen; Xiong Li; Chen Qi; Du Zhi; Lei Qingsheng

    2010-01-01

    Based on the energy transformation regularity in physical process of pressurized water reactors (PWR), PWR NPP models are established in PSASP (Power System Analysis Software Package), which are applicable for calculating the dynamic process of PWR NPP and power system transient stabilization. The power dynamic characteristics of PWR NPP is simulated and analyzed, including the PWR self-stability, self-regulation and power step responses under power regulation system. The results indicate that the PWR NPP can afford certain exterior disturbances and 10%P n step under temperature negative feedbacks. The regulate speed of PWR power can reach 5%P n /min under the power regulation system, which meets the requirement of peak regulation in Power Grid. (authors)

  6. THE EUROPEAN MODEL OF STATE REGULATION OF TOURISM ACTIVITIES

    Directory of Open Access Journals (Sweden)

    О. Davydova

    2013-11-01

    Full Text Available In the article the existing model of state regulation of the development of tourism. Expediency of the European model of state regulation of tourism development in Ukraine. It is noted that the European model of state regulation of tourism activities based on the coordination of marketing activities and the development of cooperation between the public and private sectors. The basic forms of public-private partnerships and the advantages of using cluster model of development of tourism, namely, contracts, production sharing agreement, lease, joint venture. Promising areas of application of the PPP identified the transport sector, housing and utilities, energy and tourism sector. The features of cluster formations in the country and the prospects for tourism clusters.

  7. Importins and Exportins Regulating Allergic Immune Responses

    Directory of Open Access Journals (Sweden)

    Ankita Aggarwal

    2014-01-01

    Full Text Available Nucleocytoplasmic shuttling of macromolecules is a well-controlled process involving importins and exportins. These karyopherins recognize and bind to receptor-mediated intracellular signals through specific signal sequences that are present on cargo proteins and transport into and out of the nucleus through nuclear pore complexes. Nuclear localization signals (NLS present on cargo molecules to be imported while nuclear export signals (NES on the molecules to be exported are recognized by importins and exportins, respectively. The classical NLS are found on many transcription factors and molecules that are involved in the pathogenesis of allergic diseases. In addition, several immune modulators, including corticosteroids and vitamin D, elicit their cellular responses by regulating the expression and activity of importin molecules. In this review article, we provide a comprehensive list of importin and exportin molecules and their specific cargo that shuttled between cytoplasm and the nucleus. We also critically review the role and regulation of specific importin and exportin involved in the transport of activated transcription factors in allergic diseases, the underlying molecular mechanisms, and the potential target sites for developing better therapeutic approaches.

  8. Multiple Signaling Pathways Coordinately Regulate Forgetting of Olfactory Adaptation through Control of Sensory Responses in Caenorhabditis elegans.

    Science.gov (United States)

    Kitazono, Tomohiro; Hara-Kuge, Sayuri; Matsuda, Osamu; Inoue, Akitoshi; Fujiwara, Manabi; Ishihara, Takeshi

    2017-10-18

    Forgetting memories is important for animals to properly respond to continuously changing environments. To elucidate the mechanisms of forgetting, we used one of the behavioral plasticities of Caenorhabditis elegans hermaphrodite, olfactory adaptation to an attractive odorant, diacetyl, as a simple model of learning. In C. elegans, the TIR-1/JNK-1 pathway accelerates forgetting of olfactory adaptation by facilitating neural secretion from AWC sensory neurons. In this study, to identify the downstream effectors of the TIR-1/JNK-1 pathway, we conducted a genetic screen for suppressors of the gain-of-function mutant of tir-1 ( ok1052 ), which shows excessive forgetting. Our screening showed that three proteins-a membrane protein, MACO-1; a receptor tyrosine kinase, SCD-2; and its putative ligand, HEN-1-regulated forgetting downstream of the TIR-1/JNK-1 pathway. We further demonstrated that MACO-1 and SCD-2/HEN-1 functioned in parallel genetic pathways, and only MACO-1 regulated forgetting of olfactory adaptation to isoamyl alcohol, which is an attractive odorant sensed by different types of sensory neurons. In olfactory adaptation, odor-evoked Ca 2+ responses in olfactory neurons are attenuated by conditioning and recovered thereafter. A Ca 2+ imaging study revealed that this attenuation is sustained longer in maco-1 and scd-2 mutant animals than in wild-type animals like the TIR-1/JNK-1 pathway mutants. Furthermore, temporal silencing by histamine-gated chloride channels revealed that the neuronal activity of AWC neurons after conditioning is important for proper forgetting. We propose that distinct signaling pathways, each of which has a specific function, may coordinately and temporally regulate forgetting by controlling sensory responses. SIGNIFICANCE STATEMENT Active forgetting is an important process to understand the whole mechanisms of memories. Recent papers have reported that the noncell autonomous regulations are required for proper forgetting in

  9. Mechanical response and buckling of a polymer simulation model of the cell nucleus

    Science.gov (United States)

    Banigan, Edward; Stephens, Andrew; Marko, John

    The cell nucleus must robustly resist extra- and intracellular forces to maintain genome architecture. Micromanipulation experiments measuring nuclear mechanical response reveal that the nucleus has two force response regimes: a linear short-extension response due to the chromatin interior and a stiffer long-extension response from lamin A, comprising the intermediate filament protein shell. To explain these results, we developed a quantitative simulation model with realistic parameters for chromatin and the lamina. Our model predicts that crosslinking between chromatin and the lamina is essential for responding to small strains and that changes to the interior topological organization can alter the mechanical response of the whole nucleus. Thus, chromatin polymer elasticity, not osmotic pressure, is the dominant regulator of this force response. Our model reveals a novel buckling transition for polymer shells: as force increases, the shell buckles transverse to the applied force. This transition, which arises from topological constrains in the lamina, can be mitigated by tuning the properties of the chromatin interior. Thus, we find that the genome is a resistive mechanical element that can be tuned by its organization and connectivity to the lamina.

  10. Reducing Conservatism in Aircraft Engine Response Using Conditionally Active Min-Max Limit Regulators

    Science.gov (United States)

    May, Ryan D.; Garg, Sanjay

    2012-01-01

    Current aircraft engine control logic uses a Min-Max control selection structure to prevent the engine from exceeding any safety or operational limits during transients due to throttle commands. This structure is inherently conservative and produces transient responses that are slower than necessary. In order to utilize the existing safety margins more effectively, a modification to this architecture is proposed, referred to as a Conditionally Active (CA) limit regulator. This concept uses the existing Min-Max architecture with the modification that limit regulators are active only when the operating point is close to a particular limit. This paper explores the use of CA limit regulators using a publicly available commercial aircraft engine simulation. The improvement in thrust response while maintaining all necessary safety limits is demonstrated in a number of cases.

  11. Specific microRNAs Regulate Heat Stress Responses in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Nehammer, Camilla; Podolska, Agnieszka; Mackowiak, Sebastian D

    2015-01-01

    have identified additional functions for already known players (mir-71 and mir-239) as well as identifying mir-80 and the mir-229 mir-64-66 cluster as important regulators of the heat stress response in C. elegans. These findings uncover an additional layer of complexity to the regulation of stress...... to heat stress in Caenorhabditis elegans and show that a discrete subset of miRNAs is thermoregulated. Using in-depth phenotypic analyses of miRNA deletion mutant strains we reveal multiple developmental and post-developmental survival and behavioral functions for specific miRNAs during heat stress. We...

  12. Modelling and Analysis of a New Piezoelectric Dynamic Balance Regulator

    Directory of Open Access Journals (Sweden)

    Mu-Xun Xu

    2012-11-01

    Full Text Available In this paper, a new piezoelectric dynamic balance regulator, which can be used in motorised spindle systems, is presented. The dynamic balancing adjustment mechanism is driven by an in-plane bending vibration from an annular piezoelectric stator excited by a high-frequency sinusoidal input voltage. This device has different construction, characteristics and operating principles than a conventional balance regulator. In this work, a dynamic model of the regulator is first developed using a detailed analytical method. Thereafter, MATLAB is employed to numerically simulate the relations between the dominant parameters and the characteristics of the regulator based on thedynamic model. Finally, experimental measurements are used to certify the validity of the dynamic model. Consequently, the mathematical model presented and analysed in this paper can be used as a tool for optimising the design of a piezoelectric dynamic balance regulator during steady state operation.

  13. Energy regulation in China: Objective selection, potential assessment and responsibility sharing by partial frontier analysis

    International Nuclear Information System (INIS)

    Xia, X.H.; Chen, Y.B.; Li, J.S.; Tasawar, H.; Alsaedi, A.; Chen, G.Q.

    2014-01-01

    To cope with the excessive growth of energy consumption, the Chinese government has been trying to strengthen the energy regulation system by introducing new initiatives that aim at controlling the total amount of energy consumption. A partial frontier analysis is performed in this paper to make a comparative assessment of the combinations of possible energy conservation objectives, new constraints and regulation strategies. According to the characteristics of the coordination of existing regulation structure and the optimality of regulation strategy, four scenarios are constructed and regional responsibilities are reasonably divided by fully considering the production technology in the economy. The relative importance of output objectives and the total amount controlling is compared and the impacts on the regional economy caused by the changes of regulation strategy are also evaluated for updating regulation policy. - Highlights: • New initiatives to control the total amount of energy consumption are evaluated. • Twenty-four regulation strategies and four scenarios are designed and compared. • Crucial regions for each sector and regional potential are identified. • The national goals of energy abatement are decomposed into regional responsibilities. • The changes of regulation strategy are evaluated for updating regulation policy

  14. Stochastic modeling for the expression of a gene regulated by competing transcription factors.

    Directory of Open Access Journals (Sweden)

    Hsih-Te Yang

    Full Text Available It is widely accepted that gene expression regulation is a stochastic event. The common approach for its computer simulation requires detailed information on the interactions of individual molecules, which is often not available for the analyses of biological experiments. As an alternative approach, we employed a more intuitive model to simulate the experimental result, the Markov-chain model, in which a gene is regulated by activators and repressors, which bind the same site in a mutually exclusive manner. Our stochastic simulation in the presence of both activators and repressors predicted a Hill-coefficient of the dose-response curve closer to the experimentally observed value than the calculated value based on the simple additive effects of activators alone and repressors alone. The simulation also reproduced the heterogeneity of gene expression levels among individual cells observed by Fluorescence Activated Cell Sorting analysis. Therefore, our approach may help to apply stochastic simulations to broader experimental data.

  15. Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1.

    Science.gov (United States)

    Gutiérrez, Rodrigo A; Stokes, Trevor L; Thum, Karen; Xu, Xiaodong; Obertello, Mariana; Katari, Manpreet S; Tanurdzic, Milos; Dean, Alexis; Nero, Damion C; McClung, C Robertson; Coruzzi, Gloria M

    2008-03-25

    Understanding how nutrients affect gene expression will help us to understand the mechanisms controlling plant growth and development as a function of nutrient availability. Nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis. There is also evidence, on a gene-by-gene basis, that downstream products of nitrogen (N) assimilation such as glutamate (Glu) or glutamine (Gln) might serve as signals of organic N status that in turn regulate gene expression. To identify genome-wide responses to such organic N signals, Arabidopsis seedlings were transiently treated with ammonium nitrate in the presence or absence of MSX, an inhibitor of glutamine synthetase, resulting in a block of Glu/Gln synthesis. Genes that responded to organic N were identified as those whose response to ammonium nitrate treatment was blocked in the presence of MSX. We showed that some genes previously identified to be regulated by nitrate are under the control of an organic N-metabolite. Using an integrated network model of molecular interactions, we uncovered a subnetwork regulated by organic N that included CCA1 and target genes involved in N-assimilation. We validated some of the predicted interactions and showed that regulation of the master clock control gene CCA1 by Glu or a Glu-derived metabolite in turn regulates the expression of key N-assimilatory genes. Phase response curve analysis shows that distinct N-metabolites can advance or delay the CCA1 phase. Regulation of CCA1 by organic N signals may represent a novel input mechanism for N-nutrients to affect plant circadian clock function.

  16. A comprehensive compartmental model of blood glucose regulation for healthy and type 2 diabetic subjects.

    Science.gov (United States)

    Vahidi, O; Kwok, K E; Gopaluni, R B; Knop, F K

    2016-09-01

    We have expanded a former compartmental model of blood glucose regulation for healthy and type 2 diabetic subjects. The former model was a detailed physiological model which considered the interactions of three substances, glucose, insulin and glucagon on regulating the blood sugar. The main drawback of the former model was its restriction on the route of glucose entrance to the body which was limited to the intravenous glucose injection. To handle the oral glucose intake, we have added a model of glucose absorption in the gastrointestinal tract to the former model to address the resultant variations of blood glucose concentrations following an oral glucose intake. Another model representing the incretins production in the gastrointestinal tract along with their hormonal effects on boosting pancreatic insulin production is also added to the former model. We have used two sets of clinical data obtained during oral glucose tolerance test and isoglycemic intravenous glucose infusion test from both type 2 diabetic and healthy subjects to estimate the model parameters and to validate the model results. The estimation of model parameters is accomplished through solving a nonlinear optimization problem. The results show acceptable precision of the estimated model parameters and demonstrate the capability of the model in accurate prediction of the body response during the clinical studies.

  17. 49 CFR 40.11 - What are the general responsibilities of employers under this regulation?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What are the general responsibilities of employers... PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Employer Responsibilities § 40.11 What are the general responsibilities of employers under this regulation? (a) As an employer, you are...

  18. Stress responsiveness of the hypothalamic-pituitary-adrenal axis: age-related features of the vasopressinergic regulation

    Directory of Open Access Journals (Sweden)

    Nadezhda Dmitrievna Goncharova

    2013-03-01

    Full Text Available The hypothalamic-pituitary-adrenal (HPA axis plays a key role in adaptation to environmental stresses. Parvicellular neurons of the hypothalamic paraventricular nucleus secrete corticotrophin releasing hormone (CRH and arginine vasopressin (AVP into pituitary portal system; CRH and AVP stimulate ACTH release through specific G protein-coupled membrane receptors on pituitary corticotrophs, CRH1 for CRH and V1b for AVP; the adrenal gland cortex secretes glucocorticoids in response ACTH. The glucocorticoids activate specific receptors in brain and peripheral tissues thereby triggering the necessary metabolic, immune, neuromodulatory and behavioral changes to resist stress. While importance of CRH, as a key hypothalamic factor of HPA axis regulation in basal and stress conditions in most species, is generally recognized, role of AVP remains to be clarified. This review focuses on the role of AVP in the regulation of stress responsiveness of the HPA axis with emphasis on the effects of aging on vasopressinergic regulation of HPA axis stress responsiveness. Under most of the known stressors, AVP is necessary for acute ACTH secretion but in a context-specific manner. The current data on the AVP role in regulation of HPA responsiveness to chronic stress in adulthood are rather contradictory. The importance of the vasopressinergic regulation of the HPA stress responsiveness is greatest during fetal development, in neonatal period, and in the lactating adult. Aging associated with increased variability in several parameters of HPA function including basal state, responsiveness to stressors, and special testing. Reports on the possible role of the AVP/V1b receptor system in the increase of HPA axis hyperactivity with aging are contradictory and requires further research. Many contradictory results may be due to age and species differences in the HPA function of rodents and primates.

  19. Survey of Models on Demand, Customer Base-Line and Demand Response and Their Relationships in the Power Market

    OpenAIRE

    Heshmati, Almas

    2012-01-01

    The increasing use of demand-side management as a tool to reliably meet electricity demand at peak time has stimulated interest among researchers, consumers and producer organizations, managers, regulators and policymakers, This research reviews the growing literature on models used to study demand, consumer baseline (CBL) and demand response in the electricity market. After characterizing the general demand models, it reviews consumer baseline based on which further study the demand response...

  20. Virulence regulation in Staphylococcus aureus: the need for in vivo analysis of virulence factor regulation.

    Science.gov (United States)

    Pragman, Alexa A; Schlievert, Patrick M

    2004-10-01

    Staphylococcus aureus is a pathogenic microorganism that is responsible for a wide variety of clinical infections. These infections can be relatively mild, but serious, life-threatening infections may result from the expression of staphylococcal virulence factors that are coordinated by virulence regulators. Much work has been done to characterize the actions of staphylococcal virulence regulators in broth culture. Recently, several laboratories showed that transcriptional analyses of virulence regulators in in vivo animal models or in human infection did not correlate with transcriptional analyses accomplished in vitro. In describing the differences between in vitro and in vivo transcription of staphylococcal virulence regulators, we hope to encourage investigators to study virulence regulators using infection models whenever possible.

  1. Exploring car manufacturers' responses to technology-forcing regulation : The case of California's ZEV mandate

    NARCIS (Netherlands)

    Wesseling, Joeri; Farla, J. C M; Hekkert, M. P.

    2015-01-01

    The ability of firms to influence environmental regulation has largely been overlooked in transition studies. We study how car manufacturers combine and change their innovation and political influence strategies in response to a technology-forcing regulation. We apply a conceptual framework on

  2. Modelling sequentially scored item responses

    NARCIS (Netherlands)

    Akkermans, W.

    2000-01-01

    The sequential model can be used to describe the variable resulting from a sequential scoring process. In this paper two more item response models are investigated with respect to their suitability for sequential scoring: the partial credit model and the graded response model. The investigation is

  3. Model of Efficiency Assessment of Regulation In The Banking Seсtor

    Directory of Open Access Journals (Sweden)

    Irina V. Larionova

    2014-01-01

    Full Text Available In this article, the modern system of regulation of the national banking sector is viewed, which, according to the author, needs theoretical judgment, structuring, disclosure of the maintenance of efficiency of functioning is considered. The system of regulation reveals on a system basis, it is offered to consider it as set of elements and the mechanism of their interaction which are formed taking into account target reference points of regulation. Thus it is emphasized that for regulation the contradiction is concluded: achievement of financial stability of functioning of the banking sector, as a rule, contains economic growth. The need for development of theoretical ideas of efficiency of regulation of the banking sector gains special relevance taking into account the latest events connected with revocation of licenses of commercial banks on implementation of bank activity, the high cost of credit resources for managing subjects, an insignificant contribution of the banking sector to ensuring rates of economic growth. The author offered criteria of efficiency of regulation of the banking sector to which are referred: functional, operational, social, and economic efficiency. Functional efficiency opens ability of each subsystem of regulation to carry out the functions ordered by the law. Operational efficiency describes correctness suffered by the regulator and commercial banks of the expenses connected with regulating influence. At last, social and economic efficiency is connected with degree of compliance of a field of activity of the banking sector to requirements of national economy, and responsibility of banking business before society. For each criterion of efficiency of regulation of the banking sector the set of the quantitative and quality indicators, allowing to give the corresponding assessment of the working model of crediting is offered. The aggregated expert assessment of the Russian system of regulation of the banking sector

  4. Melanopsin Regulates Both Sleep-Promoting and Arousal-Promoting Responses to Light.

    Directory of Open Access Journals (Sweden)

    Violetta Pilorz

    2016-06-01

    Full Text Available Light plays a critical role in the regulation of numerous aspects of physiology and behaviour, including the entrainment of circadian rhythms and the regulation of sleep. These responses involve melanopsin (OPN4-expressing photosensitive retinal ganglion cells (pRGCs in addition to rods and cones. Nocturnal light exposure in rodents has been shown to result in rapid sleep induction, in which melanopsin plays a key role. However, studies have also shown that light exposure can result in elevated corticosterone, a response that is not compatible with sleep. To investigate these contradictory findings and to dissect the relative contribution of pRGCs and rods/cones, we assessed the effects of light of different wavelengths on behaviourally defined sleep. Here, we show that blue light (470 nm causes behavioural arousal, elevating corticosterone and delaying sleep onset. By contrast, green light (530 nm produces rapid sleep induction. Compared to wildtype mice, these responses are altered in melanopsin-deficient mice (Opn4-/-, resulting in enhanced sleep in response to blue light but delayed sleep induction in response to green or white light. We go on to show that blue light evokes higher Fos induction in the SCN compared to the sleep-promoting ventrolateral preoptic area (VLPO, whereas green light produced greater responses in the VLPO. Collectively, our data demonstrates that nocturnal light exposure can have either an arousal- or sleep-promoting effect, and that these responses are melanopsin-mediated via different neural pathways with different spectral sensitivities. These findings raise important questions relating to how artificial light may alter behaviour in both the work and domestic setting.

  5. Regulation of Neurotransmitter Responses in the Central Nervous System.

    Science.gov (United States)

    1987-05-01

    and identify by block number) FIELD GROUP SUB-GROUP J’-aminobutyric acid; yclic AM’P; neuromodulation ; brain 1ABTAT(Continue on reverse if necessary and...crucial enzyme for regulating neuromodulation in brain. Given the ultimate goal of developing novel pharmacological agents for N! manipulating...central nervous system function, the discovery of a biochemical response to a neuromodulator can be considered a major step in that direction. Thus, up to

  6. Parental influences on children's self-regulation of energy intake: Insights from developmental literature on emotion regulation

    Science.gov (United States)

    This article examines the role of parents in the development of children's self-regulation of energy intake. Various paths of parental influence are offered based on the literature on parental influences on children's emotion self-regulation. The parental paths include modeling, responses to childre...

  7. Extracellular matrix composition and rigidity regulate invasive behavior and response to PDT in 3D pancreatic tumor models

    Science.gov (United States)

    Cramer, Gwendolyn; El-Hamidi, Hamid; Jafari, Seyedehrojin; Jones, Dustin P.; Celli, Jonathan P.

    2016-03-01

    The composition and mechanical compliance of the extracellular matrix (ECM) have been shown to serve as regulators of tumor growth and invasive behavior. These effects may be particularly relevant in tumors of the pancreas, noted for a profound desmoplastic reaction and an abundance of stroma rich in ECM. In view of recent progress in the clinical implementation of photodynamic therapy (PDT) for pancreatic tumors, in this report we examine how ECM composition and rheological properties impact upon invasive behavior and response to PDT in 3D multicellular pancreatic tumor spheroids in ECM environments with characterized rheological properties. Tumor spheroids were cultured initially in attachment-free conditions to form millimeter-sized spheroids that were transplanted into reconstituted ECM microenvironments (Matrigel and Type I Collagen) that were characterized using bulk oscillatory shear rheology. Analysis of growth behavior shows that the soft collagen ECM promoted growth and extensive invasion and this microenvironment was used in subsequent assessment of PDT and chemotherapy response. Evaluation of treatment response revealed that primary tumor nodule growth is inhibited more effectively with PDT, while verteporfin PDT response is significantly enhanced in the ECM-infiltrating populations that are non-responsive to oxaliplatin chemotherapy. This finding is potentially significant, suggesting the potential for PDT to target these clinically problematic invasive populations that are associated with aggressive metastatic progression and chemoresistance. Experiments to further validate and identify the mechanistic basis of this observation are ongoing.

  8. The ethylene response factor AtERF4 negatively regulates the iron deficiency response in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available Iron (Fe deficiency is one of many conditions that can seriously damage crops. Low levels of photosynthesis can lead to the degradation of chlorophyll content and impaired respiration in affected plants, which together cause poor growth and reduce quality. Although ethylene plays an important role in responses to Fe deficiency, a limited number of studies have been carried out on ethylene response factor (ERFs as components of plant regulation mechanisms. Thus, this study aimed to investigate the role of AtERF4 in plant responses to Fe deficiency. Results collected when Arabidopsis thaliana was grown under Fe deficient conditions as well as in the presence of 1-aminocyclopropane-1-carboxylic acid (ACC revealed that leaf chlorosis did not occur over short timescales and that chloroplast structural integrity was retained. At the same time, expression of the chlorophyll degradation-related genes AtPAO and AtCLH1 was inhibited and net H+ root flux was amplified. Our results show that chlorophyll content was enhanced in the mutant erf4, while expression of the chlorophyll degradation gene AtCLH1 was reduced. Ferric reductase activity in roots was also significantly higher in the mutant than in wild type plants, while erf4 caused high levels of expression of the genes AtIRT1 and AtHA2 under Fe deficient conditions. We also utilized yeast one-hybrid technology in this study to determine that AtERF4 binds directly to the AtCLH1 and AtITR1 promoter. Observations show that transient over-expression of AtERF4 resulted in rapid chlorophyll degradation in the leaves of Nicotiana tabacum and the up-regulation of gene AtCLH1 expression. In summary, AtERF4 plays an important role as a negative regulator of Fe deficiency responses, we hypothesize that AtERF4 may exert a balancing effect on plants subject to nutrition stress.

  9. Neutrophils that infiltrate the central nervous system regulate T cell responses

    DEFF Research Database (Denmark)

    Zehntner, Simone P; Brickman, Cristina; Bourbonnière, Lyne

    2005-01-01

    Regulation of inflammatory responses is critical to progression of organ-specific autoimmune disease. Although many candidate cell types have been identified, immunoregulatory activity has rarely been directly assayed and never from the CNS. We have analyzed the regulatory capability of Gr-1high ...

  10. Regulation of electricity distribution: Issues for implementing a norm model

    International Nuclear Information System (INIS)

    Bjoerndal, Endre; Bjoerndal, Mette; Bjoernenak, Trond; Johnsen, Thore

    2005-01-01

    The Norwegian regulation of transmission and distribution of electricity is currently under revision, and several proposals, including price caps, various norm models and adjustments to the present revenue cap model, have been considered by the Norwegian regulator, NVE. Our starting point is that a successful and sustainable income-regulation-model for electricity distribution should be in accordance with the way of thinking, and the managerial tools of modern businesses. In the regulation it is assumed that decisions regarding operations and investments are made by independent, business oriented entities. The ambition of a dynamically efficient industry therefore requires that the regulatory model and its implementation support best practice business performance. This will influence how the cost base is determined and the way investments are dealt with. We will investigate a possible implementation of a regulatory model based on cost norms. In this we will distinguish between on the one hand, customer driven costs, and on the other hand, costs related to the network itself. The network related costs, which account for approximately 80% of the total cost of electricity distribution, include the costs of operating and maintaining the network, as well as capital costs. These are the ''difficult'' costs, as their levels depend on structural and climatic factors, as well as the number of customers and the load that is served. Additionally, the costs are not separable, since for instance maintenance and investments can be substitutable activities. The work concentrates on verifying the cost model, and evaluating implications for the use of the present efficiency model (DEA) in the regulation. Moreover, we consider how network related costs can be managed in a norm model. Finally, it is highlighted that an important part of a regulatory model based on cost norms is to devise quality measures and how to use them in the economic regulation. (Author)

  11. Stat1-independent regulation of gene expression in response to IFN-γ

    Science.gov (United States)

    Ramana, Chilakamarti V.; Gil, M. Pilar; Han, Yulong; Ransohoff, Richard M.; Schreiber, Robert D.; Stark, George R.

    2001-01-01

    Although Stat1 is essential for cells to respond fully to IFN-γ, there is substantial evidence that, in the absence of Stat1, IFN-γ can still regulate the expression of some genes, induce an antiviral state and affect cell growth. We have now identified many genes that are regulated by IFN-γ in serum-starved Stat1-null mouse fibroblasts. The proteins induced by IFN-γ in Stat1-null cells can account for the substantial biological responses that remain. Some genes are induced in both wild-type and Stat1-null cells and thus are truly Stat1-independent. Others are subject to more complex regulation in response to IFN-γ, repressed by Stat1 in wild-type cells and activated in Stat1-null cells. Many genes induced by IFN-γ in Stat1-null fibroblasts also are induced by platelet-derived growth factor in wild-type cells and thus are likely to be involved in cell proliferation. In mouse cells expressing the docking site mutant Y440F of human IFN-γ receptor subunit 1, the mouse Stat1 is not phosphorylated in response to human IFN-γ, but c-myc and c-jun are still induced, showing that the Stat1 docking site is not required for Stat1-independent signaling. PMID:11390994

  12. Membrane-localized ubiquitin ligase ATL15 functions in sugar-responsive growth regulation in Arabidopsis.

    Science.gov (United States)

    Aoyama, Shoki; Terada, Saki; Sanagi, Miho; Hasegawa, Yoko; Lu, Yu; Morita, Yoshie; Chiba, Yukako; Sato, Takeo; Yamaguchi, Junji

    2017-09-09

    Ubiquitin ligases play important roles in regulating various cellular processes by modulating the protein function of specific ubiquitination targets. The Arabidopsis Tóxicos en Levadura (ATL) family is a group of plant-specific RING-type ubiquitin ligases that localize to membranes via their N-terminal transmembrane-like domains. To date, 91 ATL isoforms have been identified in the Arabidopsis genome, with several ATLs reported to be involved in regulating plant responses to environmental stresses. However, the functions of most ATLs remain unknown. This study, involving transcriptome database analysis, identifies ATL15 as a sugar responsive ATL gene in Arabidopsis. ATL15 expression was rapidly down-regulated in the presence of sugar. The ATL15 protein showed ubiquitin ligase activity in vitro and localized to plasma membrane and endomembrane compartments. Further genetic analyses demonstrated that the atl15 knockout mutants are insensitive to high glucose concentrations, whereas ATL15 overexpression depresses plant growth. In addition, endogenous glucose and starch amounts were reciprocally affected in the atl15 knockout mutants and the ATL15 overexpressors. These results suggest that ATL15 protein plays a significant role as a membrane-localized ubiquitin ligase that regulates sugar-responsive plant growth in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Study on the effectiveness of Responsive Aggression Regulation Therapy (Re-ART)

    NARCIS (Netherlands)

    Hoogsteder, L.M.; Kuijpers, N.; Stams, G.J.J.M.; van Horn, J.E.; Hendriks, J.; Wissink, I.B.

    2014-01-01

    This article describes a pre-test/post-test quasi-experimental study of the effectiveness of Responsive Aggression Regulation Therapy (Re-ART), a Dutch intervention for 16- to 21-year-old juveniles. Re-ART aims to decrease severe aggressive behavior using a cognitive behavioral approach combined

  14. Study on the Effectiveness of Responsive Aggression Regulation Therapy (Re-ART)

    NARCIS (Netherlands)

    Hoogsteder, L.; Kuijpers, N N; Stams, G.J.J.M.; van Horn, J.; Hendriks, J.; Wissink, I.B.

    2014-01-01

    This article describes a pre-test/post-test quasi-experimental study of the effectiveness of Responsive Aggression Regulation Therapy (Re-ART), a Dutch intervention for 16- to 21-year-old juveniles. Re-ART aims to decrease severe aggressive behavior using a cognitive behavioral approach combined

  15. Power management and frequency regulation for microgrid and smart grid: A real-time demand response approach

    Science.gov (United States)

    Pourmousavi Kani, Seyyed Ali

    Future power systems (known as smart grid) will experience a high penetration level of variable distributed energy resources to bring abundant, affordable, clean, efficient, and reliable electric power to all consumers. However, it might suffer from the uncertain and variable nature of these generations in terms of reliability and especially providing required balancing reserves. In the current power system structure, balancing reserves (provided by spinning and non-spinning power generation units) usually are provided by conventional fossil-fueled power plants. However, such power plants are not the favorite option for the smart grid because of their low efficiency, high amount of emissions, and expensive capital investments on transmission and distribution facilities, to name a few. Providing regulation services in the presence of variable distributed energy resources would be even more difficult for islanded microgrids. The impact and effectiveness of demand response are still not clear at the distribution and transmission levels. In other words, there is no solid research reported in the literature on the evaluation of the impact of DR on power system dynamic performance. In order to address these issues, a real-time demand response approach along with real-time power management (specifically for microgrids) is proposed in this research. The real-time demand response solution is utilized at the transmission (through load-frequency control model) and distribution level (both in the islanded and grid-tied modes) to provide effective and fast regulation services for the stable operation of the power system. Then, multiple real-time power management algorithms for grid-tied and islanded microgrids are proposed to economically and effectively operate microgrids. Extensive dynamic modeling of generation, storage, and load as well as different controller design are considered and developed throughout this research to provide appropriate models and simulation

  16. [The Effects of Neurofeedback Training on Physical, Psychoemotional Stress Response and Self-Regulation for Late Adolescence: A Non-Randomized Trial].

    Science.gov (United States)

    Choi, Moon Ji; Park, Wan Ju

    2018-04-01

    The aim of this study was to analyze the effects of neurofeedback training for reducing stress and enhancing self-regulation in late adolescence to identify the possibility of use for nursing intervention. A nonequivalent control group pre-post quasi-experimental design was used. Participants were 78 late adolescents assigned to the experimental group (n=39) that received the neurofeedback training and the control group (n=39). Data were collected on heart rate variability (HRV) and skin conductance level (SCL) to assess stress-biomarker response. The questionnaire contained 164 items from: Positive and Negative Affect Schedule (PANAS), Symptom Checklist-90-Revised (SCL-90-R) and Self-regulatory Ability scale. The neurofeedback training was based on the general adaptation syndrome and body-mind medicine. The intervention was conducted in a total of 10 sessions for 30 minutes per session with high-beta, theta and sensory motor rhythm training on scalp at central zero. There were significant difference in standard deviation of normal to normal interval (p=.036) in HRV and SCL (p=.029) of stress-biomarker response between the two groups. Negative affect (p=.036) in PANAS and obsessive compulsive (p=.023) and depression (p<.001) in SCL-90-R were statistically significant. Self-regulation mode (p=.004) in self-regulation ability scale showed a significant difference between the two groups. The results indicated that the neurofeedback training is effective in stress-biomarkers, psychoemotional stress response and self-regulation. Therefore, neurofeedback training using neuroscientific approach based on brain-mind-body model can be used as an effective nursing intervention for late adolescents in clinics and communities for effective stress responses. © 2018 Korean Society of Nursing Science.

  17. Corporate Social Responsibility or Government Regulation? Evidence on Oil Spill Prevention

    Directory of Open Access Journals (Sweden)

    Jedrzej G. Frynas

    2012-12-01

    Full Text Available Major oil spills normally occur from oil pipelines and oil tankers that are under operational control of companies, namely, oil companies and tanker owners. There are two generic responses for changing the behavior of companies with regard to oil spill prevention: mandatory government regulation or voluntary initiatives often pursued under the banner of Corporate Social Responsibility (CSR. Here we investigate to what extent voluntary CSR initiatives can be effective in oil spill prevention. A global perspective on voluntary mechanisms is taken by looking at the progress of 20 oil and gas firms from around the world toward oil spill prevention, using the companies' 2010 sustainability reports for self-reported oil spill information. The analysis includes ten oil companies from OECD countries (including Exxon and Shell, among others and 10 oil companies from non-OECD countries (including Brazil's Petrobras and Indian Oil, among others. The study finds that oil spill prevention has generally improved over recent decades. Government regulation played a significant part in these improvements whereas it is less clear to what extent CSR played a significant part in these improvements. Some of CSR's key limitations are highlighted. It is not suggested that CSR should be abandoned; however, new hybrid forms of regulation that combine voluntary and mandatory elements are advocated.

  18. Response Mixture Modeling: Accounting for Heterogeneity in Item Characteristics across Response Times.

    Science.gov (United States)

    Molenaar, Dylan; de Boeck, Paul

    2018-06-01

    In item response theory modeling of responses and response times, it is commonly assumed that the item responses have the same characteristics across the response times. However, heterogeneity might arise in the data if subjects resort to different response processes when solving the test items. These differences may be within-subject effects, that is, a subject might use a certain process on some of the items and a different process with different item characteristics on the other items. If the probability of using one process over the other process depends on the subject's response time, within-subject heterogeneity of the item characteristics across the response times arises. In this paper, the method of response mixture modeling is presented to account for such heterogeneity. Contrary to traditional mixture modeling where the full response vectors are classified, response mixture modeling involves classification of the individual elements in the response vector. In a simulation study, the response mixture model is shown to be viable in terms of parameter recovery. In addition, the response mixture model is applied to a real dataset to illustrate its use in investigating within-subject heterogeneity in the item characteristics across response times.

  19. Temporal Regulation of Natural Killer T Cell Interferon Gamma Responses by β-Catenin-Dependent and -Independent Wnt Signaling

    Directory of Open Access Journals (Sweden)

    Jessica C. Kling

    2018-03-01

    Full Text Available Natural killer T (NKT cells are prominent innate-like lymphocytes in the liver with critical roles in immune responses during infection, cancer, and autoimmunity. Interferon gamma (IFN-γ and IL-4 are key cytokines rapidly produced by NKT cells upon recognition of glycolipid antigens presented by antigen-presenting cells (APCs. It has previously been reported that the transcriptional coactivator β-catenin regulates NKT cell differentiation and functionally biases NKT cell responses toward IL-4, at the expense of IFN-γ production. β-Catenin is not only a central effector of Wnt signaling but also contributes to other signaling networks. It is currently unknown whether Wnt ligands regulate NKT cell functions. We thus investigated how Wnt ligands and β-catenin activity shape liver NKT cell functions in vivo in response to the glycolipid antigen, α-galactosylceramide (α-GalCer using a mouse model. Pharmacologic targeting of β-catenin activity with ICG001, as well as myeloid-specific genetic ablation of Wntless (Wls, to specifically target Wnt protein release by APCs, enhanced early IFN-γ responses. By contrast, within several hours of α-GalCer challenge, myeloid-specific Wls deficiency, as well as pharmacologic targeting of Wnt release using the small molecule inhibitor IWP-2 impaired α-GalCer-induced IFN-γ responses, independent of β-catenin activity. These data suggest that myeloid cell-derived Wnt ligands drive early Wnt/β-catenin signaling that curbs IFN-γ responses, but that, subsequently, Wnt ligands sustain IFN-γ expression independent of β-catenin activity. Our analyses in ICG001-treated mice confirmed a role for β-catenin activity in driving early IL-4 responses by liver NKT cells. However, neither pharmacologic nor genetic perturbation of Wnt production affected the IL-4 response, suggesting that IL-4 production by NKT cells in response to α-GalCer is not driven by released Wnt ligands. Collectively, these data reveal

  20. Temporal Regulation of Natural Killer T Cell Interferon Gamma Responses by β-Catenin-Dependent and -Independent Wnt Signaling.

    Science.gov (United States)

    Kling, Jessica C; Jordan, Margaret A; Pitt, Lauren A; Meiners, Jana; Thanh-Tran, Thao; Tran, Le Son; Nguyen, Tam T K; Mittal, Deepak; Villani, Rehan; Steptoe, Raymond J; Khosrotehrani, Kiarash; Berzins, Stuart P; Baxter, Alan G; Godfrey, Dale I; Blumenthal, Antje

    2018-01-01

    Natural killer T (NKT) cells are prominent innate-like lymphocytes in the liver with critical roles in immune responses during infection, cancer, and autoimmunity. Interferon gamma (IFN-γ) and IL-4 are key cytokines rapidly produced by NKT cells upon recognition of glycolipid antigens presented by antigen-presenting cells (APCs). It has previously been reported that the transcriptional coactivator β-catenin regulates NKT cell differentiation and functionally biases NKT cell responses toward IL-4, at the expense of IFN-γ production. β-Catenin is not only a central effector of Wnt signaling but also contributes to other signaling networks. It is currently unknown whether Wnt ligands regulate NKT cell functions. We thus investigated how Wnt ligands and β-catenin activity shape liver NKT cell functions in vivo in response to the glycolipid antigen, α-galactosylceramide (α-GalCer) using a mouse model. Pharmacologic targeting of β-catenin activity with ICG001, as well as myeloid-specific genetic ablation of Wntless (Wls) , to specifically target Wnt protein release by APCs, enhanced early IFN-γ responses. By contrast, within several hours of α-GalCer challenge, myeloid-specific Wls deficiency, as well as pharmacologic targeting of Wnt release using the small molecule inhibitor IWP-2 impaired α-GalCer-induced IFN-γ responses, independent of β-catenin activity. These data suggest that myeloid cell-derived Wnt ligands drive early Wnt/β-catenin signaling that curbs IFN-γ responses, but that, subsequently, Wnt ligands sustain IFN-γ expression independent of β-catenin activity. Our analyses in ICG001-treated mice confirmed a role for β-catenin activity in driving early IL-4 responses by liver NKT cells. However, neither pharmacologic nor genetic perturbation of Wnt production affected the IL-4 response, suggesting that IL-4 production by NKT cells in response to α-GalCer is not driven by released Wnt ligands. Collectively, these data reveal complex temporal

  1. Chemokine receptors CXCR2 and CX3CR1 differentially regulate functional responses of bone-marrow endothelial progenitors during atherosclerotic plaque regression

    Science.gov (United States)

    Herlea-Pana, Oana; Yao, Longbiao; Heuser-Baker, Janet; Wang, Qiongxin; Wang, Qilong; Georgescu, Constantin; Zou, Ming-Hui; Barlic-Dicen, Jana

    2015-01-01

    Aims Atherosclerosis manifests itself as arterial plaques, which lead to heart attacks or stroke. Treatments supporting plaque regression are therefore aggressively pursued. Studies conducted in models in which hypercholesterolaemia is reversible, such as the Reversa mouse model we have employed in the current studies, will be instrumental for the development of such interventions. Using this model, we have shown that advanced atherosclerosis regression occurs when lipid lowering is used in combination with bone-marrow endothelial progenitor cell (EPC) treatment. However, it remains unclear how EPCs home to regressing plaques and how they augment atherosclerosis reversal. Here we identify molecules that support functional responses of EPCs during plaque resolution. Methods and results Chemokines CXCL1 and CX3CL1 were detected in the vascular wall of atheroregressing Reversa mice, and their cognate receptors CXCR2 and CX3CR1 were observed on adoptively transferred EPCs in circulation. We tested whether CXCL1–CXCR2 and CX3CL1–CX3CR1 axes regulate functional responses of EPCs during plaque reversal. We show that pharmacological inhibition of CXCR2 or CX3CR1, or genetic inactivation of these two chemokine receptors interfered with EPC-mediated advanced atherosclerosis regression. We also demonstrate that CXCR2 directs EPCs to regressing plaques while CX3CR1 controls a paracrine function(s) of these cells. Conclusion CXCR2 and CX3CR1 differentially regulate EPC functional responses during atheroregression. Our study improves understanding of how chemokines and chemokine receptors regulate plaque resolution, which could determine the effectiveness of interventions reducing complications of atherosclerosis. PMID:25765938

  2. Mathematical modelling of steam generator and design of temperature regulator

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanovic, S.S. [EE Institute Nikola Tesla, Belgrade (Yugoslavia)

    1999-07-01

    The paper considers mathematical modelling of once-through power station boiler and numerical algorithm for simulation of the model. Fast and numerically stable algorithm based on the linearisation of model equations and on the simultaneous solving of differential and algebraic equations is proposed. The paper also presents the design of steam temperature regulator by using the method of projective controls. Dynamic behaviour of the system closed with optimal linear quadratic regulator is taken as the reference system. The desired proprieties of the reference system are retained and solutions for superheated steam temperature regulator are determined. (author)

  3. The modulatory role of alpha-melanocyte stimulating hormone administered spinally in the regulation of blood glucose level in d-glucose-fed and restraint stress mouse models.

    Science.gov (United States)

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-08-01

    Alpha-melanocyte stimulating hormone (α-MSH) is known as a regulator of the blood glucose homeostasis and food intake. In the present study, the possible roles of α-MSH located in the spinal cord in the regulation of the blood glucose level were investigated in d-glucose-fed and immobilization stress (IMO) mouse models. We found in the present study that intrathecal (i.t.) injection with α-MSH alone did not affect the blood glucose level. However, i.t. administration with α-MSH reduced the blood glucose level in d-glucose-fed model. The plasma insulin level was increased in d-glucose-fed model and was further increased by α-MSH, whereas α-MSH did not affect plasma corticosterone level in d-glucose-fed model. In addition, i.t. administration with glucagon alone enhanced blood glucose level and, i.t. injection with glucagon also increased the blood glucose level in d-glucose-fed model. In contrasted to results observed in d-glucose-fed model, i.t. treatment with α-MSH caused enhancement of the blood glucose level in IMO model. The plasma insulin level was increased in IMO model. The increased plasma insulin level by IMO was reduced by i.t. treatment with α-MSH, whereas i.t. pretreatment with α-MSH did not affect plasma corticosterone level in IMO model. Taken together, although spinally located α-MSH itself does not alter the blood glucose level, our results suggest that the activation of α-MSH system located in the spinal cord play important modulatory roles for the reduction of the blood glucose level in d-glucose fed model whereas α-MSH is responsible for the up-regulation of the blood glucose level in IMO model. The enhancement of insulin release may be responsible for modulatory action of α-MSH in down-regulation of the blood glucose in d-glucose fed model whereas reduction of insulin release may be responsible for modulatory action of α-MSH in up-regulation of the blood glucose in IMO model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Regulating corporate social and human rights responsibilities at the UN plane

    DEFF Research Database (Denmark)

    Buhmann, Karin

    2009-01-01

    Globalisation's unprecedented growth and transborder activities of business coupled with increasing awareness of the impact of business on societies and human rights has resulted in demands for the international society to regulate corporate social and human rights responsibilities. This not only...... challenges traditional notions of duty bearers under international law, but also calls for novel approaches for the United Nations (UN) to implement central parts of the Charter's human rights aims and to address corporate behaviour in a state-centred international law-making order that lacks the willingness...... businesses' impact on human rights. The pattern of using these forms suggests an institutionalisation of reflexive regulation as a regulatory process drawing on public-private regulation, and of an emerging UN based 'Global Administrative Law' in order to meet regulatory challenges in living up to the human...

  5. Focal exposure of limited lung volumes to high-dose irradiation down-regulated organ development-related functions and up-regulated the immune response in mouse pulmonary tissues.

    Science.gov (United States)

    Kim, Bu-Yeo; Jin, Hee; Lee, Yoon-Jin; Kang, Ga-Young; Cho, Jaeho; Lee, Yun-Sil

    2016-01-27

    Despite the emergence of stereotactic body radiotherapy (SBRT) for treatment of medically inoperable early-stage non-small-cell lung cancer patients, the molecular effects of focal exposure of limited lung volumes to high-dose radiation have not been fully characterized. This study was designed to identify molecular changes induced by focal high-dose irradiation using a mouse model of SBRT. Central areas of the mouse left lung were focally-irradiated (3 mm in diameter) with a single high-dose of radiation (90 Gy). Temporal changes in gene expression in the irradiated and non-irradiated neighboring lung regions were analyzed by microarray. For comparison, the long-term effect (12 months) of 20 Gy radiation on a diffuse region of lung was also measured. The majority of genes were down-regulated in the focally-irradiated lung areas at 2 to 3 weeks after irradiation. This pattern of gene expression was clearly different than gene expression in the diffuse region of lungs exposed to low-dose radiation. Ontological and pathway analyses indicated these down-regulated genes were mainly associated with organ development. Although the number was small, genes that were up-regulated after focal irradiation were associated with immune-related functions. The temporal patterns of gene expression and the associated biological functions were also similar in non-irradiated neighboring lung regions, although statistical significance was greatly reduced when compared with those from focally-irradiated areas of the lung. From network analysis of temporally regulated genes, we identified inter-related modules associated with diverse functions, including organ development and the immune response, in both the focally-irradiated regions and non-irradiated neighboring lung regions. Focal exposure of lung tissue to high-dose radiation induced expression of genes associated with organ development and the immune response. This pattern of gene expression was also observed in non

  6. Sexual self-regulation and cognitive absorption as factors of sexual response toward virtual characters.

    Science.gov (United States)

    Renaud, Patrice; Trottier, Dominique; Nolet, Kevin; Rouleau, Joanne L; Goyette, Mathieu; Bouchard, Stéphane

    2014-04-01

    The eye movements and penile responses of 20 male participants were recorded while they were immersed with virtual sexual stimuli. These participants were divided into two groups according to their capacity to focus their attention in immersion (high and low focus). In order to understand sexual self-regulation better, we subjected participants to three experimental conditions: (a) immersion with a preferred sexual stimulus, without sexual inhibition; (b) immersion with a preferred sexual stimulus, with sexual inhibition; and (c) immersion with a neutral stimulus. A significant difference was observed between the effects of each condition on erectile response and scanpath. The groups differed on self-regulation of their erectile responses and on their scanpath patterns. High focus participants had more difficulties than low focus participants with inhibiting their sexual responses and displayed less scattered eye movement trajectories over the critical areas of the virtual sexual stimuli. Results are interpreted in terms of sexual self-regulation and cognitive absorption in virtual immersion. In addition, the use of validated virtual sexual stimuli is presented as a methodological improvement over static and moving pictures, since it paves the way for the study of the role of social interaction in an ecologically valid and well-controlled way.

  7. History-Based Response Threshold Model for Division of Labor in Multi-Agent Systems

    Science.gov (United States)

    Lee, Wonki; Kim, DaeEun

    2017-01-01

    Dynamic task allocation is a necessity in a group of robots. Each member should decide its own task such that it is most commensurate with its current state in the overall system. In this work, the response threshold model is applied to a dynamic foraging task. Each robot employs a task switching function based on the local task demand obtained from the surrounding environment, and no communication occurs between the robots. Each individual member has a constant-sized task demand history that reflects the global demand. In addition, it has response threshold values for all of the tasks and manages the task switching process depending on the stimuli of the task demands. The robot then determines the task to be executed to regulate the overall division of labor. This task selection induces a specialized tendency for performing a specific task and regulates the division of labor. In particular, maintaining a history of the task demands is very effective for the dynamic foraging task. Various experiments are performed using a simulation with multiple robots, and the results show that the proposed algorithm is more effective as compared to the conventional model. PMID:28555031

  8. The small ethylene response factor ERF96 is involved in the regulation of the abscisic acid response in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Xiaoping eWang

    2015-11-01

    Full Text Available Ethylene regulates many aspects of plant growth and development including seed germination, leaf senescence, and fruit ripening, and of plant responses to environmental stimuli including both biotic and abiotic stresses. Ethylene Response Factors (ERFs are plant-specific transcription factors and are a subfamily of the AP2 (APETALA2/ERF transcription factor family. The function of many members in this large gene family remains largely unknown. ERF96, a member of the Group IX ERF family transcription factors, has recently been shown to be a transcriptional activator that is involved in plant defense response in Arabidopsis. Here we provide evidence that ERF96 is a positive regulator of abscisic acid (ABA responses. Bioinformatics analysis indicated that there are a total four small ERFs in Arabidopsis including ERF95, ERF96, ERF97 and ERF98, and that ERF96 forms a cluster with ERF95 and ERF97. By using quantitative RT-PCR, we found that ERF96 is expressed in all tissues and organs examined except roots, with relatively high expression in flowers and seeds. Results from the protoplast transfection assay results indicated that the EDLL motif-containing C-terminal domain is responsible for ERF96’s transcriptional activity. Although loss-of-function mutant of ERF96 was morphologically similar to wild type plants, transgenic plants overexpressing ERF96 had smaller rosette size and were delayed in flowering time. In ABA sensitivity assays, we found that ERF96 overexpression plants were hypersensitive to ABA in terms of ABA inhibition of seed germination, early seedling development and root elongation. Consistent with these observations, elevated transcript levels of some ABA-responsive genes including RD29A, ABI5, ABF3, ABF4, P5CS and COR15A were observed in the transgenic plants in the presence of ABA. However, in the absence of ABA treatment, the transcript levels of these ABA-responsive genes remained largely unchanged. Our experiments also showed

  9. The Arabidopsis mediator complex subunits MED16, MED14, and MED2 regulate mediator and RNA polymerase II recruitment to CBF-responsive cold-regulated genes.

    Science.gov (United States)

    Hemsley, Piers A; Hurst, Charlotte H; Kaliyadasa, Ewon; Lamb, Rebecca; Knight, Marc R; De Cothi, Elizabeth A; Steele, John F; Knight, Heather

    2014-01-01

    The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation-induced freezing tolerance. In addition, these three subunits are required for low temperature-induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced.

  10. MicroRNA regulated defense responses in Triticum aestivum L. during Puccinia graminis f.sp. tritici infection.

    Science.gov (United States)

    Gupta, Om Prakash; Permar, Vipin; Koundal, Vikas; Singh, Uday Dhari; Praveen, Shelly

    2012-02-01

    Plants have evolved diverse mechanism to recognize pathogen attack and triggers defense responses. These defense responses alter host cellular function regulated by endogenous, small, non-coding miRNAs. To understand the mechanism of miRNAs regulated cellular functions during stem rust infection in wheat, we investigated eight different miRNAs viz. miR159, miR164, miR167, miR171, miR444, miR408, miR1129 and miR1138, involved in three different independent cellular defense response to infection. The investigation reveals that at the initiation of disease, accumulation of miRNAs might be playing a key role in hypersensitive response (HR) from host, which diminishes at the maturation stage. This suggests a possible host-fungal synergistic relation leading to susceptibility. Differential expression of these miRNAs in presence and absence of R gene provides a probable explanation of miRNA regulated R gene mediated independent pathways.

  11. Statistical modelling of transcript profiles of differentially regulated genes

    Directory of Open Access Journals (Sweden)

    Sergeant Martin J

    2008-07-01

    Full Text Available Abstract Background The vast quantities of gene expression profiling data produced in microarray studies, and the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of variance (ANOVA and the clustering of genes based on simple models fitted to their expression profiles over time. We report the novel application of statistical non-linear regression modelling techniques to describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E. coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models provides a more precise description of expression profiles, reducing the "noise" of the raw data to produce a clear "signal" given by the fitted curve, and describing each profile with a small number of biologically interpretable parameters. This approach then allows the direct comparison and clustering of the shapes of response patterns between genes and potentially enables a greater exploration and interpretation of the biological processes driving gene expression. Results Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Split-line" or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification of genes into those with primary and secondary responses. Five-day profiles were modelled using the biologically-oriented, critical exponential curve, y(t = A + (B + CtRt + ε. This non-linear regression approach allowed the expression patterns for different genes to be compared in terms of curve shape, time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory patterns were identified for the five genes studied. Applying the regression modelling approach to microarray-derived time course data

  12. AMPK regulates metabolism and survival in response to ionizing radiation

    International Nuclear Information System (INIS)

    Zannella, Vanessa E.; Cojocari, Dan; Hilgendorf, Susan; Vellanki, Ravi N.; Chung, Stephen; Wouters, Bradly G.; Koritzinsky, Marianne

    2011-01-01

    Background and purpose: AMPK is a metabolic sensor and an upstream inhibitor of mTOR activity. AMPK is phosphorylated by ionizing radiation (IR) in an ATM dependent manner, but the cellular consequences of this phosphorylation event have remained unclear. The objective of this study was to assess whether AMPK plays a functional role in regulating cellular responses to IR. Methods: The importance of AMPK expression for radiation responses was investigated using both MEFs (mouse embryo fibroblasts) double knockout for AMPK α1/α2 subunits and human colorectal carcinoma cells (HCT 116) with AMPK α1/α2 shRNA mediated knockdown. Results: We demonstrate here that IR results in phosphorylation of both AMPK and its substrate, ACC. IR moderately stimulated mTOR activity, and this was substantially exacerbated in the absence of AMPK. AMPK was required for IR induced expression of the mTOR inhibitor REDD1, indicating that AMPK restrains mTOR activity through multiple mechanisms. Likewise, cellular metabolism was deregulated following irradiation in the absence of AMPK, as evidenced by a substantial increase in oxygen consumption rates and lactate production. AMPK deficient cells showed impairment of the G1/S cell cycle checkpoint, and were unable to support long-term proliferation during starvation following radiation. Lastly, we show that AMPK proficiency is important for clonogenic survival after radiation during starvation. Conclusions: These data reveal novel functional roles for AMPK in regulating mTOR signaling, cell cycle, survival and metabolic responses to IR.

  13. Conservation of the response regulator gene gacA in Pseudomonas species

    NARCIS (Netherlands)

    Souza, J.T.; Mazzola, M.; Raaijmakers, J.M.

    2003-01-01

    The response regulator gene gacA influences the production of several secondary metabolites in both pathogenic and beneficial Pseudomonas spp. In this study, we developed primers and a probe for the gacA gene of Pseudomonas species and sequenced a 425 bp fragment of gacA from ten Pseudomonas strains

  14. On regulation of environmental responsibility in the final stage of the nuclear fuel cycle. - Parallel regulation within the framework of Euratom and the Lisbon-treaty

    International Nuclear Information System (INIS)

    Erhag, Thomas

    2010-09-01

    In Sweden, the responsibility for the disposal of spent nuclear fuel is regulated in various laws and regulations. This means that there is an overlap between laws providing a sometimes vague and weak legal situation. Although attempts have been made to coordinate environmental and nuclear law these attempts have not succeeded. Recently, several Swedish reports have again described the fact that we have a parallel system of legal rules for the handling of spent nuclear fuel and the consequences of this. Foremost attention has been drawn to the fact that the licensing of a repository must be made both under the Nuclear Safety Act and the Environmental Code. The regulation referred to above is Swedish, and both the parallel regulation of nuclear safety-, radiation protection- and environmental- responsibility, and the relationship between such legislation, has its own Swedish history. However, Swedish legislation in all these areas is also under the influence of international regulations. This article describes the parallel regulation of nuclear safety and radiation protection issues on a European level. It shows that the division and logic found in the relationship between the Swedish laws is only partially reflected at European level. First treated is the relationship between the EC-treaty and Euratom. The article then turns to examples of regulatory responsibility for waste management and communication of information relating to license applications (environmental impact assessments) for the final disposal of spent nuclear fuel within the framework of Euratom and the EC-treaty. Finally, it discusses the implications of this type of parallel regulation for the Swedish licensing procedure

  15. On regulation of environmental responsibility in the final stage of the nuclear fuel cycle. - Parallel regulation within the framework of Euratom and the Lisbon-treaty

    Energy Technology Data Exchange (ETDEWEB)

    Erhag, Thomas (Dept. of Law, Univ. of Goeteborg, Goeteborg (Sweden)), e-mail: thomas.erhag@law.gu.se

    2010-09-15

    In Sweden, the responsibility for the disposal of spent nuclear fuel is regulated in various laws and regulations. This means that there is an overlap between laws providing a sometimes vague and weak legal situation. Although attempts have been made to coordinate environmental and nuclear law these attempts have not succeeded. Recently, several Swedish reports have again described the fact that we have a parallel system of legal rules for the handling of spent nuclear fuel and the consequences of this. Foremost attention has been drawn to the fact that the licensing of a repository must be made both under the Nuclear Safety Act and the Environmental Code. The regulation referred to above is Swedish, and both the parallel regulation of nuclear safety-, radiation protection- and environmental- responsibility, and the relationship between such legislation, has its own Swedish history. However, Swedish legislation in all these areas is also under the influence of international regulations. This article describes the parallel regulation of nuclear safety and radiation protection issues on a European level. It shows that the division and logic found in the relationship between the Swedish laws is only partially reflected at European level. First treated is the relationship between the EC-treaty and Euratom. The article then turns to examples of regulatory responsibility for waste management and communication of information relating to license applications (environmental impact assessments) for the final disposal of spent nuclear fuel within the framework of Euratom and the EC-treaty. Finally, it discusses the implications of this type of parallel regulation for the Swedish licensing procedure

  16. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents

    International Nuclear Information System (INIS)

    Chang, Y.H.J.; Mosleh, A.

    2007-01-01

    This is the third in a series of five papers describing the IDAC (Information, Decision, and Action in Crew context) model for human reliability analysis. An example application of this modeling technique is also discussed in this series. The model is developed to probabilistically predict the responses of the nuclear power plant control room operating crew in accident conditions. The operator response spectrum includes cognitive, emotional, and physical activities during the course of an accident. This paper discusses the modeling components and their process rules. An operator's problem-solving process is divided into three types: information pre-processing (I), diagnosis and decision-making (D), and action execution (A). Explicit and context-dependent behavior rules for each type of operator are developed in the form of tables, and logical or mathematical relations. These regulate the process and activities of each of the three types of response. The behavior rules are developed for three generic types of operator: Decision Maker, Action Taker, and Consultant. This paper also provides a simple approach to calculating normalized probabilities of alternative behaviors given a context

  17. A quantitative model of regulator's preference factor (RPF) in electricity-environment coordinated regulation system

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yulong; Fu, Shijun [Economy and Business Administration School of Chongqing University, Chongqing 400030 (China)

    2010-12-15

    This paper explores quantification of regulator's preference factor (RPF) in electricity-environment coordinated regulation system. Based on social welfare economics, we articulately depict RPF's qualitative concept and its economic meaning. Then, applying abstract functions (i.e., abstract social welfare function, abstract utility function, and abstract production function), we deduce the partial-social-welfare elasticity, and build the mathematics model of maximizing social welfare. We nest this elasticity into the model's Kuhn-Tucker conditions, and obtain RPF's definition formula. By solving the Kuhn-Tucker conditions, we get RPF's quantitative formula, which solves the problem of hard to quantify regulator's preference in electricity-environment coordinated regulation system. The result shows that RPF only has relationship to subsystems' production function, and is independent of social welfare function and subsystems' utility function. Finally, we provide an empirical research based on the western region of China from year 1995 to 2004. It reveals that regulator has relative stability preference to mitigating pollutants. And validity test confirms that the empirical result is fit well to the practice. The RPF is truly a more general and valid instrument to measure regulator's preference in its regulated field. (author)

  18. Short term responses in feed intake and yield during concentrate regulation in dairy cows

    DEFF Research Database (Denmark)

    Schmidt Henriksen, Julie Cherono; Munksgaard, Lene; Weisbjerg, Martin Riis

    at the onset of the experiment. The 83 cows (42 Jersey, 41 Holstein) were balanced between treatments according to breed, parity and lactation stage. The mixed ration was fed ad libitum. The change in response during regulation was analyzed as a linear regression and reported as daily change (slope......,β). The concentrate intake increased during the week of up regulation in daily concentrate offer, and decreased during down regulation (β=0.3 kg/day, β=-0.3 kg/day; Pchange in concentrate offer affected the mixed ration intake with a decrease during up...... regulation, and an increase during down regulation (β=-0.3 kg DM/day, β0.06 kg DM/day; Pration decrease during up regulation of concentrate and increase during down regulation W=-1.1 min/day; P=0.06; β= 1.3 min/day; P

  19. A Capacitor-Free, Fast Transient Response Linear Voltage Regulator In a 180nm CMOS

    DEFF Research Database (Denmark)

    Deleuran, Alexander N.; Lindbjerg, Nicklas; Pedersen, Martin K.

    2015-01-01

    A 1.8 V capacitor-free linear regulator with fast transient response based on a new topology with a fast and slow regulation loop is presented. The design has been laid out and simulated in a 0.18 µm CMOS process. The design has a low component count and is tailored for system-on-chip integration...

  20. The amoebal MAP kinase response to Legionella pneumophila is regulated by DupA.

    Science.gov (United States)

    Li, Zhiru; Dugan, Aisling S; Bloomfield, Gareth; Skelton, Jason; Ivens, Alasdair; Losick, Vicki; Isberg, Ralph R

    2009-09-17

    The amoeba Dictyostelium discoideum can support replication of Legionella pneumophila. Here we identify the dupA gene, encoding a putative tyrosine kinase/dual-specificity phosphatase, in a screen for D. discoideum mutants altered in allowing L. pneumophila intracellular replication. Inactivation of dupA resulted in depressed L. pneumophila growth and sustained hyperphosphorylation of the amoebal MAP kinase ERK1, consistent with loss of a phosphatase activity. Bacterial challenge of wild-type amoebae induced dupA expression and resulted in transiently increased ERK1 phosphorylation, suggesting that dupA and ERK1 are part of a response to bacteria. Indeed, over 500 of the genes misregulated in the dupA(-) mutant were regulated in response to L. pneumophila infection, including some thought to have immune-like functions. MAP kinase phosphatases are known to be highly upregulated in macrophages challenged with L. pneumophila. Thus, DupA may regulate a MAP kinase response to bacteria that is conserved from amoebae to mammals.

  1. cDREM: inferring dynamic combinatorial gene regulation.

    Science.gov (United States)

    Wise, Aaron; Bar-Joseph, Ziv

    2015-04-01

    Genes are often combinatorially regulated by multiple transcription factors (TFs). Such combinatorial regulation plays an important role in development and facilitates the ability of cells to respond to different stresses. While a number of approaches have utilized sequence and ChIP-based datasets to study combinational regulation, these have often ignored the combinational logic and the dynamics associated with such regulation. Here we present cDREM, a new method for reconstructing dynamic models of combinatorial regulation. cDREM integrates time series gene expression data with (static) protein interaction data. The method is based on a hidden Markov model and utilizes the sparse group Lasso to identify small subsets of combinatorially active TFs, their time of activation, and the logical function they implement. We tested cDREM on yeast and human data sets. Using yeast we show that the predicted combinatorial sets agree with other high throughput genomic datasets and improve upon prior methods developed to infer combinatorial regulation. Applying cDREM to study human response to flu, we were able to identify several combinatorial TF sets, some of which were known to regulate immune response while others represent novel combinations of important TFs.

  2. Chk2 regulates transcription-independent p53-mediated apoptosis in response to DNA damage

    International Nuclear Information System (INIS)

    Chen Chen; Shimizu, Shigeomi; Tsujimoto, Yoshihide; Motoyama, Noboru

    2005-01-01

    The tumor suppressor protein p53 plays a central role in the induction of apoptosis in response to genotoxic stress. The protein kinase Chk2 is an important regulator of p53 function in mammalian cells exposed to ionizing radiation (IR). Cells derived from Chk2-deficient mice are resistant to the induction of apoptosis by IR, and this resistance has been thought to be a result of the defective transcriptional activation of p53 target genes. It was recently shown, however, that p53 itself and histone H1.2 translocate to mitochondria and thereby induces apoptosis in a transcription-independent manner in response to IR. We have now examined whether Chk2 also regulates the transcription-independent induction of apoptosis by p53 and histone H1.2. The reduced ability of IR to induce p53 stabilization in Chk2-deficient thymocytes was associated with a marked impairment of p53 and histone H1 translocation to mitochondria. These results suggest that Chk2 regulates the transcription-independent mechanism of p53-mediated apoptosis by inducing stabilization of p53 in response to IR

  3. Three Pairs of Protease-Serpin Complexes Cooperatively Regulate the Insect Innate Immune Responses*

    OpenAIRE

    Jiang, Rui; Kim, Eun-Hye; Gong, Ji-Hee; Kwon, Hyun-Mi; Kim, Chan-Hee; Ryu, Kyoung-Hwa; Park, Ji-Won; Kurokawa, Kenji; Zhang, Jinghai; Gubb, David; Lee, Bok-Luel

    2009-01-01

    Serpins are known to be necessary for the regulation of several serine protease cascades. However, the mechanisms of how serpins regulate the innate immune responses of invertebrates are not well understood due to the uncertainty of the identity of the serine proteases targeted by the serpins. We recently reported the molecular activation mechanisms of three serine protease-mediated Toll and melanin synthesis cascades in a large beetle, Tenebrio molitor. Here, we purified three novel serpins ...

  4. Neuroticism and responsiveness to error feedback: adaptive self-regulation versus affective reactivity.

    Science.gov (United States)

    Robinson, Michael D; Moeller, Sara K; Fetterman, Adam K

    2010-10-01

    Responsiveness to negative feedback has been seen as functional by those who emphasize the value of reflecting on such feedback in self-regulating problematic behaviors. On the other hand, the very same responsiveness has been viewed as dysfunctional by its link to punishment sensitivity and reactivity. The present 4 studies, involving 203 undergraduate participants, sought to reconcile such discrepant views in the context of the trait of neuroticism. In cognitive tasks, individuals were given error feedback when they made mistakes. It was found that greater tendencies to slow down following error feedback were associated with higher levels of accuracy at low levels of neuroticism but lower levels of accuracy at high levels of neuroticism. Individual differences in neuroticism thus appear crucial in understanding whether behavioral alterations following negative feedback reflect proactive versus reactive mechanisms and processes. Implications for understanding the processing basis of neuroticism and adaptive self-regulation are discussed.

  5. FIN5 positively regulates far-red light responses in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Cho, D.S.; Hong, S.H.; Nam, H.G.; Soh, M.S.

    2003-01-01

    We report the characterization of a semi-dominant mutation fin5-1 (far-red insensitive 5-1) of Arabidopsis, which was isolated from genetic screening of phytochrome A (phyA) signaling components. Plants with the fin5-1 mutation exhibited a long hypocotyl phenotype when grown under far-red (FR) light, but not under red light. Physiological analyses implied that FIN5 might be differentially involved in diverse responses that are regulated by phyA under continuous FR light. Anthocyanin accumulation, gravitropic response of hypocotyl growth, and FR light-preconditioned blocking of greening were also impaired in the fin5-1 mutant, whereas photoperiodic floral induction was not, if at all, significantly affected. Moreover, light-regulated expression of the CHS, PORA and PsbS genes was attenuated in fin5-1 mutant plants, while the light-induced expression of CAB was normal. The mutation exhibited semi-dominance regarding control of hypocotyl growth in FR light. We suggest that FIN5 defines a novel branch in the network of phyA signaling in Arabidopsis. (author)

  6. Modelling of hydro and wind power in the regulation market

    International Nuclear Information System (INIS)

    Kiviluoma, J.; Holttinen, H.; Meibom, P.

    2006-01-01

    The amount of required regulation capacity in the power system is affected by the wind power prediction errors. A model has been developed which can evaluate the monetary effects of prediction errors. The model can be used to evaluate (1) the regulation costs of wind power, (2) regulation market prices including effects related to the participation of power producers in the regulating power market, (3) value of accurate wind forecasts and (4) the effect of decreasing the length of the spot market clearance. This article discusses the problems related to developing a realistic model of the regulating power market including the interaction between the spot market and the regulating power market. There are several issues that make things complicated. (1) How to calculate the minimum amount of needed secondary (minute) reserves. Traditionally the Nordic TSOs have used an N-1 criteria in each country to determine the required amounts of positive secondary reserve, but as installed wind power capacity grows, it will become relevant to include the wind power prediction errors in the estimation of secondary reserves. (2) Consumption forecast errors and plant outages also contribute to activation of regulating power and should have stochastic input series besides wind power. (3) Risk premiums and transaction costs in the regulating power market are difficult to estimate as well as the effects of the possible use of market power. This is especially true in the Nordic system with the high share of hydro power, since the water value and hydrological limitations make things more complex than in a thermal system. (4) The available regulation capacity is not necessarily equal to the truly available capacity. All producers don't participate in the regulation market although in principle they could. (orig.)

  7. Regulation of phosphate starvation responses in higher plants.

    Science.gov (United States)

    Yang, Xiao Juan; Finnegan, Patrick M

    2010-04-01

    Phosphorus (P) is often a limiting mineral nutrient for plant growth. Many soils worldwide are deficient in soluble inorganic phosphate (P(i)), the form of P most readily absorbed and utilized by plants. A network of elaborate developmental and biochemical adaptations has evolved in plants to enhance P(i) acquisition and avoid starvation. Controlling the deployment of adaptations used by plants to avoid P(i) starvation requires a sophisticated sensing and regulatory system that can integrate external and internal information regarding P(i) availability. In this review, the current knowledge of the regulatory mechanisms that control P(i) starvation responses and the local and long-distance signals that may trigger P(i) starvation responses are discussed. Uncharacterized mutants that have P(i)-related phenotypes and their potential to give us additional insights into regulatory pathways and P(i) starvation-induced signalling are also highlighted and assessed. An impressive list of factors that regulate P(i) starvation responses is now available, as is a good deal of knowledge regarding the local and long-distance signals that allow a plant to sense and respond to P(i) availability. However, we are only beginning to understand how these factors and signals are integrated with one another in a regulatory web able to control the range of responses demonstrated by plants grown in low P(i) environments. Much more knowledge is needed in this agronomically important area before real gains can be made in improving P(i) acquisition in crop plants.

  8. Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis.

    Science.gov (United States)

    Suzuki, Masashi; Yamazaki, Chiaki; Mitsui, Marie; Kakei, Yusuke; Mitani, Yuka; Nakamura, Ayako; Ishii, Takahiro; Soeno, Kazuo; Shimada, Yukihisa

    2015-08-01

    The IPyA pathway, the major auxin biosynthesis pathway, is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels. The phytohormone auxin plays an important role in plant growth and development, and levels of active free auxin are determined by biosynthesis, conjugation, and polar transport. Unlike conjugation and polar transport, little is known regarding the regulatory mechanism of auxin biosynthesis. We discovered that expression of genes encoding indole-3-pyruvic acid (IPyA) pathway enzymes is regulated by elevated or reduced active auxin levels. Expression levels of TAR2, YUC1, YUC2, YUC4, and YUC6 were downregulated in response to synthetic auxins [1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D)] exogenously applied to Arabidopsis thaliana L. seedlings. Concomitantly, reduced levels of endogenous indole-3-acetic acid (IAA) were observed. Alternatively, expression of these YUCCA genes was upregulated by the auxin biosynthetic inhibitor kynurenine in Arabidopsis seedlings, accompanied by reduced IAA levels. These results indicate that expression of YUCCA genes is regulated by active auxin levels. Similar results were also observed in auxin-overproduction and auxin-deficient mutants. Exogenous application of IPyA to Arabidopsis seedlings preincubated with kynurenine increased endogenous IAA levels, while preincubation with 2,4-D reduced endogenous IAA levels compared to seedlings exposed only to IPyA. These results suggest that in vivo conversion of IPyA to IAA was enhanced under reduced auxin levels, while IPyA to IAA conversion was depressed in the presence of excess auxin. Based on these results, we propose that the IPyA pathway is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels.

  9. Regulation of Serum Response Factor and Adiponectin by PPARγ Agonist Docosahexaenoic Acid

    Directory of Open Access Journals (Sweden)

    Clayton Johnson

    2011-01-01

    Full Text Available Recent studies indicate that significant health benefits involving the regulation of signaling proteins result from the consumption of omega-3 polyunsaturated fatty acids (ω-3 PUFAs. Serum response factor (SRF is involved in transcriptional regulation of muscle growth and differentiation. SRF levels are increased in the aging heart muscle. It has not been examined whether SRF is made by adipocytes and whether SRF secretion by adipocytes is modulated by PPARγ agonist DHA. Adiponectin is made exclusively by adipocytes. We and others have previously reported that PUFAs such as DHA increase adiponectin levels and secretion in adipocytes. Here we show that DHA downregulates SRF with a simultaneous upregulation of adiponectin and that both these responses are reversible by PPARγ antagonist. Furthermore, there appears to be a direct relationship between DHA exposure and increased levels of membrane-associated high-density adiponectin, as well as lower levels of membrane-associated SRF. Thus, we find that the levels of SRF and adiponectin are inversely related in response to treatment with PPARγ agonist DHA. Decreased levels of SRF along with increase in membrane-associated adiponectin could in part mediate the health benefits of DHA.

  10. Rho GTPases: Novel Players in the Regulation of the DNA Damage Response?

    Directory of Open Access Journals (Sweden)

    Gerhard Fritz

    2015-09-01

    Full Text Available The Ras-related C3 botulinum toxin substrate 1 (Rac1 belongs to the family of Ras-homologous small GTPases. It is well characterized as a membrane-bound signal transducing molecule that is involved in the regulation of cell motility and adhesion as well as cell cycle progression, mitosis, cell death and gene expression. Rac1 also adjusts cellular responses to genotoxic stress by regulating the activity of stress kinases, including c-Jun-N-terminal kinase/stress-activated protein kinase (JNK/SAPK and p38 kinases as well as related transcription factors. Apart from being found on the inner side of the outer cell membrane and in the cytosol, Rac1 has also been detected inside the nucleus. Different lines of evidence indicate that genotoxin-induced DNA damage is able to activate nuclear Rac1. The exact mechanisms involved and the biological consequences, however, are unclear. The data available so far indicate that Rac1 might integrate DNA damage independent and DNA damage dependent cellular stress responses following genotoxin treatment, thereby coordinating mechanisms of the DNA damage response (DDR that are related to DNA repair, survival and cell death.

  11. Primed T cell responses to chemokines are regulated by the immunoglobulin-like molecule CD31.

    Directory of Open Access Journals (Sweden)

    Madhav Kishore

    Full Text Available CD31, an immunoglobulin-like molecule expressed by leukocytes and endothelial cells, is thought to contribute to the physiological regulation T cell homeostasis due to the presence of two immunotyrosine-based inhibitory motifs in its cytoplasmic tail. Indeed, loss of CD31 expression leads to uncontrolled T cell-mediated inflammation in a variety of experimental models of disease and certain CD31 polymorphisms correlate with increased disease severity in human graft-versus-host disease and atherosclerosis. The molecular mechanisms underlying CD31-mediated regulation of T cell responses have not yet been clarified. We here show that CD31-mediated signals attenuate T cell chemokinesis both in vitro and in vivo. This effect selectively affects activated/memory T lymphocytes, in which CD31 is clustered on the cell membrane where it segregates to the leading edge. We provide evidence that this molecular segregation, which does not occur in naïve T lymphocytes, might lead to cis-CD31 engagement on the same membrane and subsequent interference with the chemokine-induced PI3K/Akt signalling pathway. We propose that CD31-mediated modulation of memory T cell chemokinesis is a key mechanism by which this molecule contributes to the homeostatic regulation of effector T cell immunity.

  12. A data-driven, mathematical model of mammalian cell cycle regulation.

    Directory of Open Access Journals (Sweden)

    Michael C Weis

    Full Text Available Few of >150 published cell cycle modeling efforts use significant levels of data for tuning and validation. This reflects the difficultly to generate correlated quantitative data, and it points out a critical uncertainty in modeling efforts. To develop a data-driven model of cell cycle regulation, we used contiguous, dynamic measurements over two time scales (minutes and hours calculated from static multiparametric cytometry data. The approach provided expression profiles of cyclin A2, cyclin B1, and phospho-S10-histone H3. The model was built by integrating and modifying two previously published models such that the model outputs for cyclins A and B fit cyclin expression measurements and the activation of B cyclin/Cdk1 coincided with phosphorylation of histone H3. The model depends on Cdh1-regulated cyclin degradation during G1, regulation of B cyclin/Cdk1 activity by cyclin A/Cdk via Wee1, and transcriptional control of the mitotic cyclins that reflects some of the current literature. We introduced autocatalytic transcription of E2F, E2F regulated transcription of cyclin B, Cdc20/Cdh1 mediated E2F degradation, enhanced transcription of mitotic cyclins during late S/early G2 phase, and the sustained synthesis of cyclin B during mitosis. These features produced a model with good correlation between state variable output and real measurements. Since the method of data generation is extensible, this model can be continually modified based on new correlated, quantitative data.

  13. Cyclic di-GMP regulation of the bvg-repressed genes and the orphan response regulator RisA in Bordetella pertussis

    Science.gov (United States)

    Expression of Bordetella pertussis virulence factors is activated by the BvgAS two-component system. Under modulating growth conditions BvgAS indirectly represses another set of genes through the action of BvgR, a bvg-activated protein. BvgR blocks activation of the response regulator RisA which is ...

  14. Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide

    OpenAIRE

    Fomenko, Dmitri E.; Koc, Ahmet; Agisheva, Natalia; Jacobsen, Michael; Kaya, Alaattin; Malinouski, Mikalai; Rutherford, Julian C.; Siu, Kam-Leung; Jin, Dong-Yan; Winge, Dennis R.; Gladyshev, Vadim N.

    2011-01-01

    Hydrogen peroxide is thought to regulate cellular processes by direct oxidation of numerous cellular proteins, whereas antioxidants, most notably thiol peroxidases, are thought to reduce peroxides and inhibit H2O2 response. However, thiol peroxidases have also been implicated in activation of transcription factors and signaling. It remains unclear if these enzymes stimulate or inhibit redox regulation and whether this regulation is widespread or limited to a few cellular components. Herein, w...

  15. Antioxidant response elements: Discovery, classes, regulation and potential applications.

    Science.gov (United States)

    Raghunath, Azhwar; Sundarraj, Kiruthika; Nagarajan, Raju; Arfuso, Frank; Bian, Jinsong; Kumar, Alan P; Sethi, Gautam; Perumal, Ekambaram

    2018-07-01

    Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs), which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. An Ultrasensitive Mechanism Regulates Influenza Virus-Induced Inflammation.

    Directory of Open Access Journals (Sweden)

    Jason E Shoemaker

    2015-06-01

    Full Text Available Influenza viruses present major challenges to public health, evident by the 2009 influenza pandemic. Highly pathogenic influenza virus infections generally coincide with early, high levels of inflammatory cytokines that some studies have suggested may be regulated in a strain-dependent manner. However, a comprehensive characterization of the complex dynamics of the inflammatory response induced by virulent influenza strains is lacking. Here, we applied gene co-expression and nonlinear regression analysis to time-course, microarray data developed from influenza-infected mouse lung to create mathematical models of the host inflammatory response. We found that the dynamics of inflammation-associated gene expression are regulated by an ultrasensitive-like mechanism in which low levels of virus induce minimal gene expression but expression is strongly induced once a threshold virus titer is exceeded. Cytokine assays confirmed that the production of several key inflammatory cytokines, such as interleukin 6 and monocyte chemotactic protein 1, exhibit ultrasensitive behavior. A systematic exploration of the pathways regulating the inflammatory-associated gene response suggests that the molecular origins of this ultrasensitive response mechanism lie within the branch of the Toll-like receptor pathway that regulates STAT1 phosphorylation. This study provides the first evidence of an ultrasensitive mechanism regulating influenza virus-induced inflammation in whole lungs and provides insight into how different virus strains can induce distinct temporal inflammation response profiles. The approach developed here should facilitate the construction of gene regulatory models of other infectious diseases.

  17. The Structural Model in Parenting Style, Attachment Style, Self-regulation and Self-esteem for Smartphone Addiction

    OpenAIRE

    Kwan Hoi Ching; Leung Man Tak

    2017-01-01

    Excessive smartphone usage has become a highly controversial and substantial worldwide issue. This paper explores the complexities and challenges of smartphone addiction with a particular focus on parenting styles, attachment, and self-regulation. Convenience sampling was used to gather data from 211 university students in Hong Kong (138 females/74 males) through their responses to four questionnaires. One structural equation model was formed successfully which indicated that parenting style ...

  18. Transcription factor RBP-J-mediated signalling regulates basophil immunoregulatory function in mouse asthma model.

    Science.gov (United States)

    Qu, Shuo-Yao; He, Ya-Long; Zhang, Jian; Wu, Chang-Gui

    2017-09-01

    Basophils (BA) play an important role in the promotion of aberrant T helper type 2 (Th2) immune responses in asthma. It is not only the effective cell, but also modulates the initiation of Th2 immune responses. We earlier demonstrated that Notch signalling regulates the biological function of BAin vitro. However, whether this pathway plays the same role in vivo is not clear. The purpose of the present study was to investigate the effect of Notch signalling on BA function in the regulation of allergic airway inflammation in a murine model of asthma. Bone marrow BA were prepared by bone marrow cell culture in the presence of recombinant interleukin-3 (rIL-3; 300 pg/ml) for 7 days, followed by isolation of the CD49b + microbeads. The recombination signal binding protein J (RBP-J -/- ) BA were co-cultured with T cells, and the supernatant and the T-cell subtypes were examined. The results indicated disruption of the capacity of BA for antigen presentation alongside an up-regulation of the immunoregulatory function. This was possibly due to the low expression of OX40L in the RBP-J -/- BA. Basophils were adoptively transferred to ovalbumin-sensitized recipient mice, to establish an asthma model. Lung pathology, cytokine profiles of brobchoalveolar fluid, airway hyperactivity and the absolute number of Th1/Th2 cells in lungs were determined. Overall, our results indicate that the RBP-J-mediated Notch signalling is critical for BA-dependent immunoregulation. Deficiency of RBP-J influences the immunoregulatory functions of BA, which include activation of T cells and their differentiation into T helper cell subtypes. The Notch signalling pathway is a potential therapeutic target for BA-based immunotherapy against asthma. © 2017 John Wiley & Sons Ltd.

  19. c-Myb Regulates the T-Bet-Dependent Differentiation Program in B Cells to Coordinate Antibody Responses

    Directory of Open Access Journals (Sweden)

    Dana Piovesan

    2017-04-01

    Full Text Available Summary: Humoral immune responses are tailored to the invading pathogen through regulation of key transcription factors and their networks. This is critical to establishing effective antibody-mediated responses, yet it is unknown how B cells integrate pathogen-induced signals to drive or suppress transcriptional programs specialized for each class of pathogen. Here, we detail the key role of the transcription factor c-Myb in regulating the T-bet-mediated anti-viral program. Deletion of c-Myb in mature B cells significantly increased serum IgG2c and CXCR3 expression by upregulating T-bet, normally suppressed during Th2-cell-mediated responses. Enhanced expression of T-bet resulted in aberrant plasma cell differentiation within the germinal center, mediated by CXCR3 expression. These findings identify a dual role for c-Myb in limiting inappropriate effector responses while coordinating plasma cell differentiation with germinal center egress. Identifying such intrinsic regulators of specialized antibody responses can assist in vaccine design and therapeutic intervention in B-cell-mediated immune disorders. : Piovesan et al. examine how B cells establish transcriptional programs that result in tailored responses to invading pathogens. The authors find that the transcription factor c-Myb represses the T-bet-mediated anti-viral program in B cells. c-Myb limits inappropriate effector responses while coordinating plasma cell differentiation with germinal center egress. Keywords: B cells, c-Myb, T-bet, immunoglobulin, CXCR3, plasma cell, germinal center

  20. CLE peptides regulate lateral root development in response to nitrogen nutritional status of plants.

    Science.gov (United States)

    Araya, Takao; von Wirén, Nicolaus; Takahashi, Hideki

    2014-01-01

    CLE (CLAVATA3/embryo surrounding region (ESR)) peptides control meristem functions in plants. Our recent study highlights the critical role of a peptide-receptor signaling module composed of nitrogen (N)-responsive CLE peptides and the CLAVATA1 (CLV1) leucine-rich repeat receptor-like kinase in controlling lateral root development in Arabidopsis thaliana. CLE1, -3, -4 and -7 are expressed in root pericycle cells in Arabidopsis roots under N-limited growth conditions. Overexpression of these CLE genes inhibits lateral root emergence from the primary root. The inhibitory action of N-responsive CLE peptides on lateral root development requires the function of CLV1 expressed in phloem companion cells in roots, suggesting that downstream signals are transferred through phloem for systemic regulation of root system architecture. An additional mechanism downstream of CLV1 feedback-regulates transcript levels of N-responsive CLE genes in roots for fine-tuning the signal amplitude.

  1. Possible Immune Regulation of Natural Killer T Cells in a Murine Model of Metal Ion-Induced Allergic Contact Dermatitis

    Directory of Open Access Journals (Sweden)

    Kenichi Kumagai

    2016-01-01

    Full Text Available Metal often causes delayed-type hypersensitivity reactions, which are possibly mediated by accumulating T cells in the inflamed skin, called irritant or allergic contact dermatitis. However, accumulating T cells during development of a metal allergy are poorly characterized because a suitable animal model is unavailable. We have previously established novel murine models of metal allergy and found accumulation of both metal-specific T cells and natural killer (NK T cells in the inflamed skin. In our novel models of metal allergy, skin hypersensitivity responses were induced through repeated sensitizations by administration of metal chloride and lipopolysaccharide into the mouse groin followed by metal chloride challenge in the footpad. These models enabled us to investigate the precise mechanisms of the immune responses of metal allergy in the inflamed skin. In this review, we summarize the immune responses in several murine models of metal allergy and describe which antigen-specific responses occur in the inflamed skin during allergic contact dermatitis in terms of the T cell receptor. In addition, we consider the immune regulation of accumulated NK T cells in metal ion–induced allergic contact dermatitis.

  2. The Response Regulator ResD Plays a Role in Metabolism of Listeria monocytogenes

    DEFF Research Database (Denmark)

    Larsen, Marianne Halberg; Sørensen, Martine; Ingmer, Hanne

    to be transmitted to food processing plants from where it can establish and survive for extended periods of time contaminating processed food products. Recently we have identified the response regulator ResD of L. monocytogenes and showed that it is important for growth in laboratory media and for sugar uptake...... in the upstream regulatory region of several genes of L. monocytogenes and the binding of the ResD protein to some of these regulatory regions upstream putative target genes is analysed by electrophoretic mobility shift assays (EMSAs). In conclusion, the response regulator ResD act is important for metabolisme...

  3. Structural Basis for DNA Recognition by the Two-Component Response Regulator RcsB.

    Science.gov (United States)

    Filippova, Ekaterina V; Zemaitaitis, Bozena; Aung, Theint; Wolfe, Alan J; Anderson, Wayne F

    2018-02-27

    RcsB is a highly conserved transcription regulator of the Rcs phosphorelay system, a complex two-component signal transduction system (N. Majdalani and S. Gottesman, Annu Rev Microbiol 59:379-405, 2005; A. J. Wolfe, Curr Opin Microbiol 13:204-209, 2010, https://doi.org/10.1016/j.mib.2010.01.002; D. J. Clarke, Future Microbiol 5:1173-1184, 2010, https://doi.org/10.2217/fmb.10.83). RcsB plays an important role in virulence and pathogenicity in human hosts by regulating biofilm formation. RcsB can regulate transcription alone or together with its auxiliary transcription regulators by forming heterodimers. This complexity allows RcsB to regulate transcription of more than 600 bacterial genes in response to different stresses (D. Wang et al., Mol Plant Microbe Interact 25:6-17, 2012, https://doi.org/10.1094/MPMI-08-11-0207). Despite increasing knowledge of RcsB importance, molecular mechanisms that drive the ability of RcsB to control transcription of a large number of genes remain unclear. Here, we present crystal structures of unphosphorylated RcsB in complex with the consensus DNA-binding sequence of 22-mer (DNA22) and 18-mer (DNA18) of the flhDC operon from Escherichia coli determined at 3.15- and 3.37-Å resolution, respectively. The results of our structural analysis combined with the results of in vitro binding assays provide valuable insights to the protein regulatory mechanism, demonstrate how RcsB recognizes target DNA sequences, and reveal a unique oligomeric state that allows RcsB to form homo- and heterodimers. This information will help us understand the complex mechanisms of transcriptional regulation by RcsB in bacteria. IMPORTANCE RcsB is a well-studied two-component response regulator of the Rcs phosphorelay system, conserved within the family Enterobacteriaceae , which includes many pathogens. It is a global regulator, controlling more than 5% of bacterial genes associated with capsule biosynthesis, flagellar biogenesis, cell wall biosynthesis

  4. TCR Down-Regulation Controls Virus-Specific CD8+ T Cell Responses

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menné; Haks, Mariëlle; Nielsen, Bodil

    2008-01-01

    The CD3gamma di-leucine-based motif plays a central role in TCR down-regulation. However, little is understood about the role of the CD3gamma di-leucine-based motif in physiological T cell responses. In this study, we show that the expansion in numbers of virus-specific CD8(+) T cells is impaired...... in mice with a mutated CD3gamma di-leucine-based motif. The CD3gamma mutation did not impair early TCR signaling, nor did it compromise recruitment or proliferation of virus-specific T cells, but it increased the apoptosis rate of the activated T cells by increasing down-regulation of the antiapoptotic...... molecule Bcl-2. This resulted in a 2-fold reduction in the clonal expansion of virus-specific CD8(+) T cells during the acute phase of vesicular stomatitis virus and lymphocytic choriomeningitis virus infections. These results identify an important role of CD3gamma-mediated TCR down-regulation in virus...

  5. Experimental data and dose-response models

    International Nuclear Information System (INIS)

    Ullrich, R.L.

    1985-01-01

    Dose-response relationships for radiation carcinogenesis have been of interest to biologists, modelers, and statisticians for many years. Despite his interest there are few instances in which there are sufficient experimental data to allow the fitting of various dose-response models. In those experimental systems for which data are available the dose-response curves for tumor induction for the various systems cannot be described by a single model. Dose-response models which have been observed following acute exposures to gamma rays include threshold, quadratic, and linear models. Data on sex, age, and environmental influences of dose suggest a strong role of host factors on the dose response. With decreasing dose rate the effectiveness of gamma ray irradiation tends to decrease in essentially every instance. In those cases in which the high dose rate dose response could be described by a quadratic model, the effect of dose rate is consistent with predictions based on radiation effects on the induction of initial events. Whether the underlying reasons for the observed dose-rate effect is a result of effects on the induction of initial events or is due to effects on the subsequent steps in the carcinogenic process is unknown. Information on the dose response for tumor induction for high LET (linear energy transfer) radiations such as neutrons is even more limited. The observed dose and dose rate data for tumor induction following neutron exposure are complex and do not appear to be consistent with predictions based on models for the induction of initial events

  6. The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei

    Directory of Open Access Journals (Sweden)

    Tisch Doris

    2011-12-01

    Full Text Available Abstract Background In the biotechnological workhorse Trichoderma reesei (Hypocrea jecorina transcription of cellulase genes as well as efficiency of the secreted cellulase mixture are modulated by light. Components of the heterotrimeric G-protein pathway interact with light-dependent signals, rendering this pathway a key regulator of cellulase gene expression. Results As regulators of heterotrimeric G-protein signaling, class I phosducin-like proteins, are assumed to act as co-chaperones for G-protein beta-gamma folding and exert their function in response to light in higher eukaryotes. Our results revealed light responsive transcription of the T. reesei class I phosducin-like protein gene phlp1 and indicate a light dependent function of PhLP1 also in fungi. We showed the functions of PhLP1, GNB1 and GNG1 in the same pathway, with one major output being the regulation of transcription of glycoside hydrolase genes including cellulase genes in T. reesei. We found no direct correlation between the growth rate and global regulation of glycoside hydrolases, which suggests that regulation of growth does not occur only at the level of substrate degradation efficiency. Additionally, PhLP1, GNB1 and GNG1 are all important for proper regulation of light responsiveness during long term exposure. In their absence, the amount of light regulated genes increased from 2.7% in wild type to 14% in Δphlp1. Besides from the regulation of degradative enzymes, PhLP1 was also found to impact on the transcription of genes involved in sexual development, which was in accordance with decreased efficiency of fruiting body formation in Δphlp1. The lack of GNB1 drastically diminished ascospore discharge in T. reesei. Conclusions The heterotrimeric G-protein pathway is crucial for the interconnection of nutrient signaling and light response of T. reesei, with the class I phosducin-like protein PhLP1, GNB1 and GNG1 acting as important nodes, which influence light

  7. Model Regulations for Borehole Disposal Facilities for Radioactive Waste

    International Nuclear Information System (INIS)

    2017-10-01

    This publication is designed to assist in the development of an appropriate set of regulations for the predisposal management and disposal of disused sealed radioactive sources and small volumes of associated radioactive waste using the IAEA borehole disposal concept. It allows States to appraise the adequacy of their existing regulations and regulatory guides, and can be used as a reference by those States developing regulations for the first time. The model regulations set out in this publication will need to be adapted to take account of the existing national legal and regulatory framework and other local conditions in the State.

  8. A Unique Fungal Two-Component System Regulates Stress Responses, Drug Sensitivity, Sexual Development, and Virulence of Cryptococcus neoformans

    Science.gov (United States)

    Bahn, Yong-Sun; Kojima, Kaihei; Cox, Gary M.

    2006-01-01

    The stress-activated mitogen-activated protein kinase (MAPK) pathway is widely used by eukaryotic organisms as a central conduit via which cellular responses to the environment effect growth and differentiation. The basidiomycetous human fungal pathogen Cryptococcus neoformans uniquely uses the stress-activated Pbs2-Hog1 MAPK system to govern a plethora of cellular events, including stress responses, drug sensitivity, sexual reproduction, and virulence. Here, we characterized a fungal “two-component” system that controls these fundamental cellular functions via the Pbs2-Hog1 MAPK cascade. A typical response regulator, Ssk1, modulated all Hog1-dependent phenotypes by controlling Hog1 phosphorylation, indicating that Ssk1 is the major upstream signaling component of the Pbs2-Hog1 pathway. A second response regulator, Skn7, governs sensitivity to Na+ ions and the antifungal agent fludioxonil, negatively controls melanin production, and functions independently of Hog1 regulation. To control these response regulators, C. neoformans uses multiple sensor kinases, including two-component–like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. Our findings highlight unique adaptations of this global two-component MAPK signaling cascade in a ubiquitous human fungal pathogen. PMID:16672377

  9. [Light response characteristics of photosynthesis and model comparison of Distylium chinense in different flooding durations].

    Science.gov (United States)

    Liu, Ze-bin; Cheng, Rui-mei; Xiao, Wen-fa; Guo, Quan-shui; Wang, Na

    2015-04-01

    The light responses of photosynthesis of two-year-old Distytum chinense seedlings subjected to a simulated reservoir flooding environment in autumn and winter seasons were measured by using a Li-6400 XT portable photosynthesis system, and the light response curves were fitted and analyzed by three models of the rectangular hyperbola, non-rectangular hyperbola and modified rectangular hyperbola to investigate the applicability of different light response models for the D. chinense in different flooding durations and the adaption regulation of light response parameters to flooding stress. The results showed that the fitting effect of the non-rectangular hyperbola model for light response process of D. chinense under normal growth condition and under short-term flooding (15 days of flooding) was better than that of the other two models, while the fitting effect of the modified rectangular hyperbola model for light response process of D. chinense under longer-term flooding (30, 45 and 60 days of flooding) was better than that of the other two models. The modified rectangular hyperbola model gave the best fitted results of light compensation point (LCP) , maximum net photosynthetic rate (P(n max)) and light saturation point (LSP), and the non-rectangular hyperbola model gave the best fitted result of dark respiration rate (R(d)). The apparent quantum yield (Φ), P(n max) and LSP of D. chinense gradually decreased, and the LCP and R(d) of D. chinense gradually increased in early flooding (30 days), but D. chinense gradually produced adaptability for flooding as the flooding duration continued to increase, and various physiological indexes were gradually stabilized. Thus, this species has adaptability to some degree to the flooding environment.

  10. HSF1 and HSF3 cooperatively regulate the heat shock response in lizards.

    Science.gov (United States)

    Takii, Ryosuke; Fujimoto, Mitsuaki; Matsuura, Yuki; Wu, Fangxu; Oshibe, Namiko; Takaki, Eiichi; Katiyar, Arpit; Akashi, Hiroshi; Makino, Takashi; Kawata, Masakado; Nakai, Akira

    2017-01-01

    Cells cope with temperature elevations, which cause protein misfolding, by expressing heat shock proteins (HSPs). This adaptive response is called the heat shock response (HSR), and it is regulated mainly by heat shock transcription factor (HSF). Among the four HSF family members in vertebrates, HSF1 is a master regulator of HSP expression during proteotoxic stress including heat shock in mammals, whereas HSF3 is required for the HSR in birds. To examine whether only one of the HSF family members possesses the potential to induce the HSR in vertebrate animals, we isolated cDNA clones encoding lizard and frog HSF genes. The reconstructed phylogenetic tree of vertebrate HSFs demonstrated that HSF3 in one species is unrelated with that in other species. We found that the DNA-binding activity of both HSF1 and HSF3 in lizard and frog cells was induced in response to heat shock. Unexpectedly, overexpression of lizard and frog HSF3 as well as HSF1 induced HSP70 expression in mouse cells during heat shock, indicating that the two factors have the potential to induce the HSR. Furthermore, knockdown of either HSF3 or HSF1 markedly reduced HSP70 induction in lizard cells and resistance to heat shock. These results demonstrated that HSF1 and HSF3 cooperatively regulate the HSR at least in lizards, and suggest complex mechanisms of the HSR in lizards as well as frogs.

  11. Role of Coronary Myogenic Response in Pressure-Flow Autoregulation in Swine: A Meta-Analysis With Coronary Flow Modeling

    Science.gov (United States)

    Dick, Gregory M.; Namani, Ravi; Patel, Bhavesh; Kassab, Ghassan S.

    2018-01-01

    Myogenic responses (pressure-dependent contractions) of coronary arterioles play a role in autoregulation (relatively constant flow vs. pressure). Publications on myogenic reactivity in swine coronaries vary in caliber, analysis, and degree of responsiveness. Further, data on myogenic responses and autoregulation in swine have not been completely compiled, compared, and modeled. Thus, it has been difficult to understand these physiological phenomena. Our purpose was to: (a) analyze myogenic data with standard criteria; (b) assign results to diameter categories defined by morphometry; and (c) use our novel multiscale flow model to determine the extent to which ex vivo myogenic reactivity can explain autoregulation in vivo. When myogenic responses from the literature are an input for our model, the predicted coronary autoregulation approaches in vivo observations. More complete and appropriate data are now available to investigate the regulation of coronary blood flow in swine, a highly relevant model for human physiology and disease. PMID:29875686

  12. Role of Coronary Myogenic Response in Pressure-Flow Autoregulation in Swine: A Meta-Analysis With Coronary Flow Modeling

    Directory of Open Access Journals (Sweden)

    Gregory M. Dick

    2018-05-01

    Full Text Available Myogenic responses (pressure-dependent contractions of coronary arterioles play a role in autoregulation (relatively constant flow vs. pressure. Publications on myogenic reactivity in swine coronaries vary in caliber, analysis, and degree of responsiveness. Further, data on myogenic responses and autoregulation in swine have not been completely compiled, compared, and modeled. Thus, it has been difficult to understand these physiological phenomena. Our purpose was to: (a analyze myogenic data with standard criteria; (b assign results to diameter categories defined by morphometry; and (c use our novel multiscale flow model to determine the extent to which ex vivo myogenic reactivity can explain autoregulation in vivo. When myogenic responses from the literature are an input for our model, the predicted coronary autoregulation approaches in vivo observations. More complete and appropriate data are now available to investigate the regulation of coronary blood flow in swine, a highly relevant model for human physiology and disease.

  13. Dexmedetomidine attenuates pancreatic injury and inflammatory response in mice with pancreatitis by possible reduction of NLRP3 activation and up-regulation of NET expression.

    Science.gov (United States)

    Li, Yong; Pan, Yiyuan; Gao, Lin; Lu, Guotao; Zhang, Jingzhu; Xie, Xiaochun; Tong, Zhihui; Li, Baiqiang; Li, Gang; Li, Weiqin

    2018-01-22

    Previous studies have shown that acute inflammation is associated with increased sympathetic activity, which in turn increases the inflammatory response and leads to organ damage. The present study aimed to investigate whether dexmedetomidine administration during acute pancreatitis (AP) lessens pancreatic pathological and functional injury and the inflammatory response, and to explore the underlying mechanisms. Mild pancreatitis was induced in mice with caerulein, and severe pancreatitis was induced with caerulein plus lipopolysaccharide (LPS). After pancreatitis induction, dexmedetomidine at 10 or 20 μg/kg was injected via the tail vein. Pancreatic pathological and functional injury was assessed by histology and serum levels of amylase and lipase, respectively. The inflammatory response was evaluated by determining serum levels of inflammatory factors. The expression of myeloperoxidase (MPO) was examined by immunohistochemistry. The expression of norepinephrine transporter (NET), NLRP3, pro-IL-1β, and interleukin (IL)-1β in pancreatic tissue was detected by Western blot and real-time PCR. Dexmedetomidine at 20 μg/kg significantly attenuated pancreatic pathological injury, reduced serum levels of amylase, lipase, IL-1β, IL-6, and tumor necrosis factor (TNF)-α, and decreased the expression of MPO in pancreatic tissue in both mouse models of pancreatitis. In addition, dexmedetomidine at 20 μg/kg significantly down-regulated the expression of NLRP3, pro-IL-1β, and IL-1β in pancreatic tissue, but up-regulated the expression of NET in both mouse models. Dexmedetomidine attenuates pancreatic injury and inflammatory response in mice with pancreatitis possibly by reducing NLRP3 activation and up-regulating NET expression. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. RUNX Family Participates in the Regulation of p53-Dependent DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Toshinori Ozaki

    2013-01-01

    Full Text Available A proper DNA damage response (DDR, which monitors and maintains the genomic integrity, has been considered to be a critical barrier against genetic alterations to prevent tumor initiation and progression. The representative tumor suppressor p53 plays an important role in the regulation of DNA damage response. When cells receive DNA damage, p53 is quickly activated and induces cell cycle arrest and/or apoptotic cell death through transactivating its target genes implicated in the promotion of cell cycle arrest and/or apoptotic cell death such as p21WAF1, BAX, and PUMA. Accumulating evidence strongly suggests that DNA damage-mediated activation as well as induction of p53 is regulated by posttranslational modifications and also by protein-protein interaction. Loss of p53 activity confers growth advantage and ensures survival in cancer cells by inhibiting apoptotic response required for tumor suppression. RUNX family, which is composed of RUNX1, RUNX2, and RUNX3, is a sequence-specific transcription factor and is closely involved in a variety of cellular processes including development, differentiation, and/or tumorigenesis. In this review, we describe a background of p53 and a functional collaboration between p53 and RUNX family in response to DNA damage.

  15. A Canonical DREB2-Type Transcription Factor in Lily Is Post-translationally Regulated and Mediates Heat Stress Response

    Directory of Open Access Journals (Sweden)

    Ze Wu

    2018-03-01

    Full Text Available Based on studies of monocot crops and eudicot model plants, the DREB2 class of AP2-type transcription factor has been shown to play crucial roles in various abiotic stresses, especially in the upstream of the heat stress response; however, research on DREB2s has not been reported in non-gramineous monocot plants. Here, we identified a novel DREB2 (LlDREB2B from lily (Lilium longiflorum, which was homologous to AtDREB2A of Arabidopsis, OsDREB2B of rice, and ZmDREB2A of maize. LlDREB2B was induced by heat, cold, salt, and mannitol stress, and its protein had transcriptional activity, was located in the nucleus, was able to bind to the dehydration-responsive element (DRE, and participated in the heat-responsive pathway of HsfA3. Overexpression of LlDREB2B in Arabidopsis activated expression of downstream genes and improved thermotolerance. LlDREB2B was not regulated by alternative splicing; functional transcripts accumulated under either normal or heat-stress conditions. A potential PEST sequence was predicted in LlDREB2B, but the stability of the LlDREB2B protein was not positively affected when the predicated PEST sequence was deleted. Further analysis revealed that the predicated PEST sequence lacked a SBC or SBC-like motif allowing interaction with BPMs and required for negative regulation. Nevertheless, LlDREB2B was still regulated at the post-translational level by interaction with AtDRIP1 and AtDRIP2 of Arabidopsis. In addition, LlDREB2B also interacted with AtRCD1 and LlRCD1 via a potential RIM motif located at amino acids 215–245. Taken together, our results show that LlDREB2B participated in the establishment of thermotolerance, and its regulation was different from that of the orthologs of gramineous and eudicot plants.

  16. A Canonical DREB2-Type Transcription Factor in Lily Is Post-translationally Regulated and Mediates Heat Stress Response.

    Science.gov (United States)

    Wu, Ze; Liang, Jiahui; Zhang, Shuai; Zhang, Bing; Zhao, Qingcui; Li, Guoqing; Yang, Xi; Wang, Chengpeng; He, Junna; Yi, Mingfang

    2018-01-01

    Based on studies of monocot crops and eudicot model plants, the DREB2 class of AP2-type transcription factor has been shown to play crucial roles in various abiotic stresses, especially in the upstream of the heat stress response; however, research on DREB2s has not been reported in non-gramineous monocot plants. Here, we identified a novel DREB2 (LlDREB2B) from lily ( Lilium longiflorum ), which was homologous to AtDREB2A of Arabidopsis, OsDREB2B of rice, and ZmDREB2A of maize. LlDREB2B was induced by heat, cold, salt, and mannitol stress, and its protein had transcriptional activity, was located in the nucleus, was able to bind to the dehydration-responsive element (DRE), and participated in the heat-responsive pathway of HsfA3. Overexpression of LlDREB2B in Arabidopsis activated expression of downstream genes and improved thermotolerance. LlDREB2B was not regulated by alternative splicing; functional transcripts accumulated under either normal or heat-stress conditions. A potential PEST sequence was predicted in LlDREB2B, but the stability of the LlDREB2B protein was not positively affected when the predicated PEST sequence was deleted. Further analysis revealed that the predicated PEST sequence lacked a SBC or SBC-like motif allowing interaction with BPMs and required for negative regulation. Nevertheless, LlDREB2B was still regulated at the post-translational level by interaction with AtDRIP1 and AtDRIP2 of Arabidopsis. In addition, LlDREB2B also interacted with AtRCD1 and LlRCD1 via a potential RIM motif located at amino acids 215-245. Taken together, our results show that LlDREB2B participated in the establishment of thermotolerance, and its regulation was different from that of the orthologs of gramineous and eudicot plants.

  17. [Regulation of heat shock gene expression in response to stress].

    Science.gov (United States)

    Garbuz, D G

    2017-01-01

    Heat shock (HS) genes, or stress genes, code for a number of proteins that collectively form the most ancient and universal stress defense system. The system determines the cell capability of adaptation to various adverse factors and performs a variety of auxiliary functions in normal physiological conditions. Common stress factors, such as higher temperatures, hypoxia, heavy metals, and others, suppress transcription and translation for the majority of genes, while HS genes are upregulated. Transcription of HS genes is controlled by transcription factors of the HS factor (HSF) family. Certain HSFs are activated on exposure to higher temperatures or other adverse factors to ensure stress-induced HS gene expression, while other HSFs are specifically activated at particular developmental stages. The regulation of the main mammalian stress-inducible factor HSF1 and Drosophila melanogaster HSF includes many components, such as a variety of early warning signals indicative of abnormal cell activity (e.g., increases in intracellular ceramide, cytosolic calcium ions, or partly denatured proteins); protein kinases, which phosphorylate HSFs at various Ser residues; acetyltransferases; and regulatory proteins, such as SUMO and HSBP1. Transcription factors other than HSFs are also involved in activating HS gene transcription; the set includes D. melanogaster GAF, mammalian Sp1 and NF-Y, and other factors. Transcription of several stress genes coding for molecular chaperones of the glucose-regulated protein (GRP) family is predominantly regulated by another stress-detecting system, which is known as the unfolded protein response (UPR) system and is activated in response to massive protein misfolding in the endoplasmic reticulum and mitochondrial matrix. A translational fine tuning of HS protein expression occurs via changing the phosphorylation status of several proteins involved in translation initiation. In addition, specific signal sequences in the 5'-UTRs of some HS

  18. Modeling Rabbit Responses to Single and Multiple Aerosol ...

    Science.gov (United States)

    Journal Article Survival models are developed here to predict response and time-to-response for mortality in rabbits following exposures to single or multiple aerosol doses of Bacillus anthracis spores. Hazard function models were developed for a multiple dose dataset to predict the probability of death through specifying dose-response functions and the time between exposure and the time-to-death (TTD). Among the models developed, the best-fitting survival model (baseline model) has an exponential dose-response model with a Weibull TTD distribution. Alternative models assessed employ different underlying dose-response functions and use the assumption that, in a multiple dose scenario, earlier doses affect the hazard functions of each subsequent dose. In addition, published mechanistic models are analyzed and compared with models developed in this paper. None of the alternative models that were assessed provided a statistically significant improvement in fit over the baseline model. The general approach utilizes simple empirical data analysis to develop parsimonious models with limited reliance on mechanistic assumptions. The baseline model predicts TTDs consistent with reported results from three independent high-dose rabbit datasets. More accurate survival models depend upon future development of dose-response datasets specifically designed to assess potential multiple dose effects on response and time-to-response. The process used in this paper to dev

  19. Co-chaperone p23 regulates C. elegans Lifespan in Response to Temperature.

    Directory of Open Access Journals (Sweden)

    Makoto Horikawa

    2015-04-01

    Full Text Available Temperature potently modulates various physiologic processes including organismal motility, growth rate, reproduction, and ageing. In ectotherms, longevity varies inversely with temperature, with animals living shorter at higher temperatures. Thermal effects on lifespan and other processes are ascribed to passive changes in metabolic rate, but recent evidence also suggests a regulated process. Here, we demonstrate that in response to temperature, daf-41/ZC395.10, the C. elegans homolog of p23 co-chaperone/prostaglandin E synthase-3, governs entry into the long-lived dauer diapause and regulates adult lifespan. daf-41 deletion triggers constitutive entry into the dauer diapause at elevated temperature dependent on neurosensory machinery (daf-10/IFT122, insulin/IGF-1 signaling (daf-16/FOXO, and steroidal signaling (daf-12/FXR. Surprisingly, daf-41 mutation alters the longevity response to temperature, living longer than wild-type at 25°C but shorter than wild-type at 15°C. Longevity phenotypes at 25°C work through daf-16/FOXO and heat shock factor hsf-1, while short lived phenotypes converge on daf-16/FOXO and depend on the daf-12/FXR steroid receptor. Correlatively daf-41 affected expression of DAF-16 and HSF-1 target genes at high temperature, and nuclear extracts from daf-41 animals showed increased occupancy of the heat shock response element. Our studies suggest that daf-41/p23 modulates key transcriptional changes in longevity pathways in response to temperature.

  20. Modeling the role of negative cooperativity in metabolic regulation and homeostasis.

    Directory of Open Access Journals (Sweden)

    Eliot C Bush

    Full Text Available A significant proportion of enzymes display cooperativity in binding ligand molecules, and such effects have an important impact on metabolic regulation. This is easiest to understand in the case of positive cooperativity. Sharp responses to changes in metabolite concentrations can allow organisms to better respond to environmental changes and maintain metabolic homeostasis. However, despite the fact that negative cooperativity is almost as common as positive, it has been harder to imagine what advantages it provides. Here we use computational models to explore the utility of negative cooperativity in one particular context: that of an inhibitor binding to an enzyme. We identify several factors which may contribute, and show that acting together they can make negative cooperativity advantageous.

  1. Financial Regulation in an Agent Based Macroeconomic Model

    OpenAIRE

    Riccetti, Luca; Russo, Alberto; Mauro, Gallegati

    2013-01-01

    Starting from the agent-based decentralized matching macroeconomic model proposed in Riccetti et al. (2012), we explore the effects of banking regulation on macroeconomic dynamics. In particular, we study the overall credit exposure and the lending concentration towards a single counterparty, finding that the portfolio composition seems to be more relevant than the overall exposure for banking stability, even if both features are very important. We show that a too tight regulation is dangerou...

  2. Peak regulation right

    International Nuclear Information System (INIS)

    Gao, Z. |; Ren, Z.; Li, Z.; Zhu, R.

    2005-01-01

    A peak regulation right concept and corresponding transaction mechanism for an electricity market was presented. The market was based on a power pool and independent system operator (ISO) model. Peak regulation right (PRR) was defined as a downward regulation capacity purchase option which allowed PRR owners to buy certain quantities of peak regulation capacity (PRC) at a specific price during a specified period from suppliers. The PRR owner also had the right to decide whether or not they would buy PRC from suppliers. It was the power pool's responsibility to provide competitive and fair peak regulation trading markets to participants. The introduction of PRR allowed for unit capacity regulation. The PRR and PRC were rated by the supplier, and transactions proceeded through a bidding process. PRR suppliers obtained profits by selling PRR and PRC, and obtained downward regulation fees regardless of whether purchases are made. It was concluded that the peak regulation mechanism reduced the total cost of the generating system and increased the social surplus. 6 refs., 1 tab., 3 figs

  3. Bmp indicator mice reveal dynamic regulation of transcriptional response.

    Directory of Open Access Journals (Sweden)

    Anna L Javier

    Full Text Available Cellular responses to Bmp ligands are regulated at multiple levels, both extracellularly and intracellularly. Therefore, the presence of these growth factors is not an accurate indicator of Bmp signaling activity. While a common approach to detect Bmp signaling activity is to determine the presence of phosphorylated forms of Smad1, 5 and 8 by immunostaining, this approach is time consuming and not quantitative. In order to provide a simpler readout system to examine the presence of Bmp signaling in developing animals, we developed BRE-gal mouse embryonic stem cells and a transgenic mouse line that specifically respond to Bmp ligand stimulation. Our reporter identifies specific transcriptional responses that are mediated by Smad1 and Smad4 with the Schnurri transcription factor complex binding to a conserved Bmp-Responsive Element (BRE, originally identified among Drosophila, Xenopus and human Bmp targets. Our BRE-gal mES cells specifically respond to Bmp ligands at concentrations as low as 5 ng/ml; and BRE-gal reporter mice, derived from the BRE-gal mES cells, show dynamic activity in many cellular sites, including extraembryonic structures and mammary glands, thereby making this a useful scientific tool.

  4. Leptin regulates dopamine responses to sustained stress in humans.

    Science.gov (United States)

    Burghardt, Paul R; Love, Tiffany M; Stohler, Christian S; Hodgkinson, Colin; Shen, Pei-Hong; Enoch, Mary-Anne; Goldman, David; Zubieta, Jon-Kar

    2012-10-31

    Neural systems that identify and respond to salient stimuli are critical for survival in a complex and changing environment. In addition, interindividual differences, including genetic variation and hormonal and metabolic status likely influence the behavioral strategies and neuronal responses to environmental challenges. Here, we examined the relationship between leptin allelic variation and plasma leptin levels with DAD2/3R availability in vivo as measured with [(11)C]raclopride PET at baseline and during a standardized pain stress challenge. Allelic variation in the leptin gene was associated with varying levels of dopamine release in response to the pain stressor, but not with baseline D2/3 receptor availability. Circulating leptin was also positively associated with stress-induced dopamine release. These results show that leptin serves as a regulator of neuronal function in humans and provides an etiological mechanism for differences in dopamine neurotransmission in response to salient stimuli as related to metabolic function. The capacity for leptin to influence stress-induced dopaminergic function is of importance for pathological states where dopamine is thought to play an integral role, such as mood, substance-use disorders, eating disorders, and obesity.

  5. WATER LAW AND MODEL OF RESPONSIBLE WATER USAGE

    Directory of Open Access Journals (Sweden)

    Dmitri Olegovitch Sivakov

    2017-03-01

    Full Text Available As it is known, the water law regulates dynamic social relationships concerning study, usage and protection of water objects, as well as their transformation. The water law explicitly regulates water economic activities. The regulatory method of the water law has a mixed nature and thus is not distinctive. It predetermines in some cases equality and independence of subjects of relationships (water usage agreement and in other – power and submission (permissive nature of water usage. The aim of the publication is to promote scientific ideas about the fate of the water law in order to make a further polygonal and productive discussion in which the reader is invited to participate. Scientific novelty. In 2016 the monograph of D.O. Sivakov “Water law: dynamics, problems, perspectives: monograph” (second edition, reviewed and updated. Moscow: Stolitsa, 2016. 540 p. was published. In 2017 the author reconsidered some conclusions of his monograph and applied scientific achievements of theory of state and law in water sphere. In accordance with this, it is important to mention research of Petrov D.E. related to issues of differentiation and integration of structural formations of Russian legal system. The scientific novelty of the article includes the synthesis of ideas of the monograph and some achievements of theory of state and law. Methods of research. The author of the article relies on some collective and individual monographic studies in the sphere of theory of state and law, natural resource law, arctic law, financial law. Basic results of research. The author promotes the model of responsible water usage. This model shall be based not on the unstable balance of economic and environmental interests (which shall practically lead to the domination of economic interests, but on the obligatory combination of economic activities with technologies, ensuring maximal preservation of water resources. Responsible water usage shall mean a system of

  6. History of river regulation of the Noce River (NE Italy) and related bio-morphodynamic responses

    Science.gov (United States)

    Serlet, Alyssa; Scorpio, Vittoria; Mastronunzio, Marco; Proto, Matteo; Zen, Simone; Zolezzi, Guido; Bertoldi, Walter; Comiti, Francesco; Prà, Elena Dai; Surian, Nicola; Gurnell, Angela

    2016-04-01

    The Noce River is a hydropower-regulated Alpine stream in Northern-East Italy and a major tributary of the Adige River, the second longest Italian river. The objective of the research is to investigate the response of the lower course of the Noce to two main stages of hydromorphological regulation; channelization/ diversion and, one century later, hydropower regulation. This research uses a historical reconstruction to link the geomorphic response with natural and human-induced factors by identifying morphological and vegetation features from historical maps and airborne photogrammetry and implementing a quantitative analysis of the river response to channelization and flow / sediment supply regulation related to hydropower development. A descriptive overview is presented. The concept of evolutionary trajectory is integrated with predictions from morphodynamic theories for river bars that allow increased insight to investigate the river response to a complex sequence of regulatory events such as development of bars, islands and riparian vegetation. Until the mid-19th century the river had a multi-thread channel pattern. Thereafter (1852) the river was straightened and diverted. Upstream of Mezzolombardo village the river was constrained between embankments of approximately 100 m width while downstream they are of approximately 50 m width. Since channelization some interesting geomorphic changes have appeared in the river e.g. the appearance of alternate bars in the channel. In 1926 there was a breach in the right bank of the downstream part that resulted in a multi-thread river reach which can be viewed as a recovery to the earlier multi-thread pattern. After the 1950's the flow and sediment supply became strongly regulated by hydropower development. The analysis of aerial images reveals that the multi-thread reach became progressively stabilized by vegetation development over the bars, though signs of some dynamics can still be recognizable today, despite the

  7. Modeling wetland plant community response to assess water-level regulation scenarios in the Lake Ontario-St. Lawrence River basin

    Science.gov (United States)

    Hudon, Christiane; Wilcox, Douglas; Ingram, Joel

    2006-01-01

    The International Joint Commission has recently completed a five-year study (2000-2005) to review the operation of structures controlling the flows and levels of the Lake Ontario - St. Lawrence River system. In addition to addressing the multitude of stakeholder interests, the regulation plan review also considers environmental sustainability and integrity of wetlands and various ecosystem components. The present paper outlines the general approach, scientific methodology and applied management considerations of studies quantifying the relationships between hydrology and wetland plant assemblages (% occurrence, surface area) in Lake Ontario and the Upper and Lower St. Lawrence River. Although similar study designs were used across the study region, different methodologies were required that were specifically adapted to suit the important regional differences between the lake and river systems, range in water-level variations, and confounding factors (geomorphic types, exposure, sediment characteristics, downstream gradient of water quality, origin of water masses in the Lower River). Performance indicators (metrics), such as total area of wetland in meadow marsh vegetation type, that link wetland response to water levels will be used to assess the effects of different regulation plans under current and future (climate change) water-supply scenarios.

  8. 33 CFR 165.838 - Regulated Navigation Area; New Orleans Area of Responsibility, New Orleans, LA.

    Science.gov (United States)

    2010-07-01

    ... Orleans Area of Responsibility, New Orleans, LA. 165.838 Section 165.838 Navigation and Navigable Waters... Guard District § 165.838 Regulated Navigation Area; New Orleans Area of Responsibility, New Orleans, LA... Ponchartrain and to the Mississippi River in New Orleans, LA; (2) The Harvey Canal, between the Lapalco...

  9. H3K36 Methylation Regulates Nutrient Stress Response in Saccharomyces cerevisiae by Enforcing Transcriptional Fidelity

    Directory of Open Access Journals (Sweden)

    Stephen L. McDaniel

    2017-06-01

    Full Text Available Set2-mediated histone methylation at H3K36 regulates diverse activities, including DNA repair, mRNA splicing, and suppression of inappropriate (cryptic transcription. Although failure of Set2 to suppress cryptic transcription has been linked to decreased lifespan, the extent to which cryptic transcription influences other cellular functions is poorly understood. Here, we uncover a role for H3K36 methylation in the regulation of the nutrient stress response pathway. We found that the transcriptional response to nutrient stress was dysregulated in SET2-deleted (set2Δ cells and was correlated with genome-wide bi-directional cryptic transcription that originated from within gene bodies. Antisense transcripts arising from these cryptic events extended into the promoters of the genes from which they arose and were associated with decreased sense transcription under nutrient stress conditions. These results suggest that Set2-enforced transcriptional fidelity is critical to the proper regulation of inducible and highly regulated transcription programs.

  10. MicroRNA-761 regulates mitochondrial biogenesis in mouse skeletal muscle in response to exercise

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yanli [Affiliated Hospital of Hebei Engineering University, Handan, 056002, Hebei (China); Zhao, Chaoxian; Sun, Xuewen [Medical College of Hebei Engineering University, Handan, 056002, Hebei (China); Liu, Zhijun, E-mail: liuzhij1207@163.com [Affiliated Hospital of Hebei Engineering University, Handan, 056002, Hebei (China); Zhang, Jianzhong, E-mail: zhangjianzhong@icdc.cn [National Institute for Communicable Disease Control and Prevention (ICDC), Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206 (China)

    2015-11-06

    MicroRNAs (miRNAs) have been suggested to play critical roles in skeletal muscle in response to exercise. Previous study has shown that miR-761 was involved in a novel model regulating the mitochondrial network. However, its role in mitochondrial biogenesis remains poorly understood. Therefore, the current study was aimed to examine the effect of miR-761 on mitochondrial biogenesis in skeletal muscle. Real-time quantitative PCR analysis demonstrated that aberrantly expressed miR-761 is involved in exercise activity and miR-761 is decreased by exercise training compared with the sedentary control mice. miR-761 suppresses mitochondrial biogenesis of C{sub 2}C{sub 12} myocytes by targeting the 3′-UTR of peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1α). Overexpression of miR-761 was capable of inhibiting the protein expression levels of PGC-1α. Moreover, miR-761 overexpression suppressed the p38 MAPK signaling pathway and down-regulated the expression of phosphorylated MAPK-activated protein kinase-2 (P-MK2), a downstream kinase of p38 MAPK. The phosphorylation of activating transcription factors 2 (ATF2) that plays a functional role in linking the activation of the p38 MAPK pathway to enhanced transcription of the PGC-1α was also inhibited by the overexpression of miR-761. These findings revealed a novel regulation mechanism for miR-761 in skeletal myocytes, and contributed to a better understanding of the modulation of skeletal muscle in response to exercise. - Highlights: • Endurance exercise decreases miR-761 expression in skeletal muscle. • MiR-761 suppresses mitochondrial biogenesis in C{sub 2}C{sub 12} myocytes. • MiR-761 directly targeted PGC-1α expression. • MiR-761 suppresses p38 MAPK signaling pathways in C{sub 2}C{sub 12} myocytes. • A novel mechanism for miR-761 in skeletal myocytes is demonstrated.

  11. Parental Influences on Children's Self-Regulation of Energy Intake: Insights from Developmental Literature on Emotion Regulation

    Directory of Open Access Journals (Sweden)

    Leslie A. Frankel

    2012-01-01

    Full Text Available The following article examines the role of parents in the development of children's self-regulation of energy intake. Various paths of parental influence are offered based on the literature on parental influences on children's emotion self-regulation. The parental paths include modeling, responses to children's behavior, assistance in helping children self-regulate, and motivating children through rewards and punishments. Additionally, sources of variation in parental influences on regulation are examined, including parenting style, child temperament, and child-parent attachment security. Parallels in the nature of parents' role in socializing children's regulation of emotions and energy intake are examined. Implications for future research are discussed.

  12. Emotion regulation strategies: procedure modeling of J. Gross and cultural activity approach

    Directory of Open Access Journals (Sweden)

    Elena I. Pervichko

    2015-03-01

    Full Text Available The first part of this paper argued the desirability of structural-dynamic model of emotion regulation in the theoretical and methodological framework of cultural activity paradigm with the construction of a psychologically-based typology of emotion regulation strategies in norm and pathology, and also psychological mechanisms enabling the regulation of emotions. This conclusion was based on the analysis of the basic concepts and paradigms in which the issue of emotion regulation is studied: cognitive and psychoanalytic approaches, concept and emotional development of emotional intelligence, cultural activity approach. The paper considers the procedure model of emotion regulation by J. Gross, identifies emotion regulation strategies and evaluates their effectiveness. The possibilities and limitations of the model. Based on the review of the today research the conclusion is arrived at that the existing labels on a wide range of regulatory strategies remain an open issue.The author’s definition of emotion regulation is drawn. Emotion regulation is deemed as a set of mental processes, psychological mechanisms and regulatory strategies that people use to preserve the capacity for productive activities in a situation of emotional stress; to ensure optimal impulse control and emotions; to maintain the excitement at the optimum level. The second part of this paper provides the general description of emotion regulation strategies, the approach to their typology, the psychological mechanisms of emotion regulation that lie in the basis of this typology, i.e. the main elements of the structural-dynamic model of emotion regulation. The work shows theoretical and methodological efficacy of empirical significance of signs and symbols and also personal reflection. The diagnostic system to allow empirically identify a wide range of emotion regulation strategies is suggested. The psychological mechanisms used by the subject to solve the problem of emotional

  13. Leptin regulates the pro-inflammatory response in human epidermal keratinocytes.

    Science.gov (United States)

    Lee, Moonyoung; Lee, Eunyoung; Jin, Sun Hee; Ahn, Sungjin; Kim, Sae On; Kim, Jungmin; Choi, Dalwoong; Lim, Kyung-Min; Lee, Seung-Taek; Noh, Minsoo

    2018-05-01

    The role of leptin in cutaneous wound healing process has been suggested in genetically obese mouse studies. However, the molecular and cellular effects of leptin on human epidermal keratinocytes are still unclear. In this study, the whole-genome-scale microarray analysis was performed to elucidate the effect of leptin on epidermal keratinocyte functions. In the leptin-treated normal human keratinocytes (NHKs), we identified the 151 upregulated and 53 downregulated differentially expressed genes (DEGs). The gene ontology (GO) enrichment analysis with the leptin-induced DEGs suggests that leptin regulates NHKs to promote pro-inflammatory responses, extracellular matrix organization, and angiogenesis. Among the DEGs, the protein expression of IL-8, MMP-1, fibronectin, and S100A7, which play roles in which is important in the regulation of cutaneous inflammation, was confirmed in the leptin-treated NHKs. The upregulation of the leptin-induced proteins is mainly regulated by the STAT3 signaling pathway in NHKs. Among the downregulated DEGs, the protein expression of nucleosome assembly-associated centromere protein A (CENPA) and CENPM was confirmed in the leptin-treated NHKs. However, the expression of CENPA and CENPM was not coupled with those of other chromosome passenger complex like Aurora A kinase, INCENP, and survivin. In cell growth kinetics analysis, leptin had no significant effect on the cell growth curves of NHKs in the normal growth factor-enriched condition. Therefore, leptin-dependent downregulation of CENPA and CENPM in NHKs may not be directly associated with mitotic regulation during inflammation.

  14. The effect of mandatory regulation on corporate social responsibility reporting quality: evidence from China

    OpenAIRE

    Wang, Jianling; Tian, Gaoliang; Fan, Weiguo; Luo, Dan

    2017-01-01

    Corporate Social Responsibility (CSR) disclosure has attracted attention from regulatory bodies and academics over the past few decades. Due to the unreliability resulted from CSR voluntary disclosure, an increasing number of researchers are calling for more government regulation on CSR disclosure. Based on 1830 standalone CSR reports disclosed by the Chinese-listed firms during 2009-2012, we examine the effect of mandatory regulation on CSR\\ud reporting quality. We further hypothesize and te...

  15. Dynamic regulation of six histone H3 lysine (K) methyltransferases in response to prolonged anoxia exposure in a freshwater turtle.

    Science.gov (United States)

    Wijenayake, Sanoji; Hawkins, Liam J; Storey, Kenneth B

    2018-04-05

    The importance of histone lysine methylation is well established in health, disease, early development, aging, and cancer. However, the potential role of histone H3 methylation in regulating gene expression in response to extended periods of oxygen deprivation (anoxia) in a natural, anoxia-tolerant model system is underexplored. Red-eared sliders (Trachemys scripta elegans) can tolerate and survive three months of absolute anoxia and recover without incurring detrimental cellular damage, mainly by reducing the overall metabolic rate by 90% when compared to normoxia. Stringent regulation of gene expression is a vital aspect of metabolic rate depression in red-eared sliders, and as such we examined the anoxia-responsive regulation of histone lysine methylation in the liver during 5 h and 20 h anoxia exposure. Interestingly, this is the first study to illustrate the existence of histone lysine methyltransferases (HKMTs) and corresponding histone H3 lysine methylation levels in the liver of anoxia-tolerant red-eared sliders. In brief, H3K4me1, a histone mark associated with active transcription, and two corresponding histone lysine methyltransferases that modify H3K4me1 site, significantly increased in response to anoxia. On the contrary, H3K27me1, another transcriptionally active histone mark, significantly decreased during 20 h anoxia, and a transcriptionally repressive histone mark, H3K9me3, and the corresponding KMTs, similarly increased during 20 h anoxia. Overall, the results suggest a dynamic regulation of histone H3 lysine methylation in the liver of red-eared sliders that could theoretically aid in the selective upregulation of genes that are necessary for anoxia survival, while globally suppressing others to conserve energy. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Regulation of phytoplankton carbon to chlorophyll ratio by light, nutrients and temperature in the Equatorial Pacific Ocean: a basin-scale model

    Directory of Open Access Journals (Sweden)

    X. J. Wang

    2009-03-01

    Full Text Available The complex effects of light, nutrients and temperature lead to a variable carbon to chlorophyll (C:Chl ratio in phytoplankton cells. Using field data collected in the Equatorial Pacific, we derived a new dynamic model with a non-steady C:Chl ratio as a function of irradiance, nitrate, iron, and temperature. The dynamic model is implemented into a basin-scale ocean circulation-biogeochemistry model and tested in the Equatorial Pacific Ocean. The model reproduces well the general features of phytoplankton dynamics in this region. For instance, the simulated deep chlorophyll maximum (DCM is much deeper in the western warm pool (~100 m than in the Eastern Equatorial Pacific (~50 m. The model also shows the ability to reproduce chlorophyll, including not only the zonal, meridional and vertical variations, but also the interannual variability. This modeling study demonstrates that combination of nitrate and iron regulates the spatial and temporal variations in the phytoplankton C:Chl ratio in the Equatorial Pacific. Sensitivity simulations suggest that nitrate is mainly responsible for the high C:Chl ratio in the western warm pool while iron is responsible for the frontal features in the C:Chl ratio between the warm pool and the upwelling region. In addition, iron plays a dominant role in regulating the spatial and temporal variations of the C:Chl ratio in the Central and Eastern Equatorial Pacific. While temperature has a relatively small effect on the C:Chl ratio, light is primarily responsible for the vertical decrease of phytoplankton C:Chl ratio in the euphotic zone.

  17. Actin retrograde flow controls natural killer cell response by regulating the conformation state of SHP-1.

    Science.gov (United States)

    Matalon, Omri; Ben-Shmuel, Aviad; Kivelevitz, Jessica; Sabag, Batel; Fried, Sophia; Joseph, Noah; Noy, Elad; Biber, Guy; Barda-Saad, Mira

    2018-03-01

    Natural killer (NK) cells are a powerful weapon against viral infections and tumor growth. Although the actin-myosin (actomyosin) cytoskeleton is crucial for a variety of cellular processes, the role of mechanotransduction, the conversion of actomyosin mechanical forces into signaling cascades, was never explored in NK cells. Here, we demonstrate that actomyosin retrograde flow (ARF) controls the immune response of primary human NK cells through a novel interaction between β-actin and the SH2-domain-containing protein tyrosine phosphatase-1 (SHP-1), converting its conformation state, and thereby regulating NK cell cytotoxicity. Our results identify ARF as a master regulator of the NK cell immune response. Since actin dynamics occur in multiple cellular processes, this mechanism might also regulate the activity of SHP-1 in additional cellular systems. © 2018 The Authors.

  18. The Self-Regulated Learning Model and Music Education

    Directory of Open Access Journals (Sweden)

    Maja Marijan

    2017-02-01

    Full Text Available Self-regulation and self-regulated learning (SRL are important features in music education. In this research self-regulated learning model is presented as a complex, multidimensional structure. SRL starts with the self-regulation. Self-regulation is formed through interaction with the environment, thus self-learning, self-analysis, self-judgment, self-instruction, and self-monitoring are the main functions in self-regulatory structure. Co-regulation is needed, and helps self-regulation to be activated and monitored. In music education, co-regulation refers to the instructions that teacher introduces in the lessons. These instructions have to enhance learning and develop regulation over emotions, cognitive, auditor, and motor skills in students. Learning techniques and learning strategies are core components in music education. Adapting those, students become aware of their learning processes, actions, thoughts, feelings and behaviors that are involved in learning. It is suggested that every teaching methodology has to develop learning techniques, as well as metamemory and metacognition in students, in order to gain expertise. The author has emphasized her attention to every aspect that is believed to belong to SRL. There are not many articles on the SRL in music education, written by musicians, in compare with those written by psychologists and neurologists,. Therefore, the author has suggested that this paper would encourage music teachers and performers to take an advantage in the research of SRL. These researches would help music educational systems and teachers to develop and promote learning techniques and strategies. The results would show improvement in student’s learning and self-regulation.

  19. Regulation models for district heating. Background report; Denmark; Reguleringsmodeller for fjernvarmen. Baggrundsrapport

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-15

    The background report describes in detail the elements of the analysis: the present regulation, experiences from other countries and sectors, the aim of regulation, and detailed analysis of four regulation models. (LN)

  20. The Arabidopsis Mediator Complex Subunits MED16, MED14, and MED2 Regulate Mediator and RNA Polymerase II Recruitment to CBF-Responsive Cold-Regulated Genes[C][W][OPEN

    Science.gov (United States)

    Hemsley, Piers A.; Hurst, Charlotte H.; Kaliyadasa, Ewon; Lamb, Rebecca; Knight, Marc R.; De Cothi, Elizabeth A.; Steele, John F.; Knight, Heather

    2014-01-01

    The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation–induced freezing tolerance. In addition, these three subunits are required for low temperature–induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced. PMID:24415770

  1. Inflammation, Self-Regulation, and Health: An Immunologic Model of Self-Regulatory Failure.

    Science.gov (United States)

    Shields, Grant S; Moons, Wesley G; Slavich, George M

    2017-07-01

    Self-regulation is a fundamental human process that refers to multiple complex methods by which individuals pursue goals in the face of distractions. Whereas superior self-regulation predicts better academic achievement, relationship quality, financial and career success, and lifespan health, poor self-regulation increases a person's risk for negative outcomes in each of these domains and can ultimately presage early mortality. Given its centrality to understanding the human condition, a large body of research has examined cognitive, emotional, and behavioral aspects of self-regulation. In contrast, relatively little attention has been paid to specific biologic processes that may underlie self-regulation. We address this latter issue in the present review by examining the growing body of research showing that components of the immune system involved in inflammation can alter neural, cognitive, and motivational processes that lead to impaired self-regulation and poor health. Based on these findings, we propose an integrated, multilevel model that describes how inflammation may cause widespread biobehavioral alterations that promote self-regulatory failure. This immunologic model of self-regulatory failure has implications for understanding how biological and behavioral factors interact to influence self-regulation. The model also suggests new ways of reducing disease risk and enhancing human potential by targeting inflammatory processes that affect self-regulation.

  2. Spatio-temporal dependence of the signaling response in immune-receptor trafficking networks regulated by cell density: a theoretical model.

    Directory of Open Access Journals (Sweden)

    Pilar García-Peñarrubia

    Full Text Available Cell signaling processes involve receptor trafficking through highly connected networks of interacting components. The binding of surface receptors to their specific ligands is a key factor for the control and triggering of signaling pathways. In most experimental systems, ligand concentration and cell density vary within a wide range of values. Dependence of the signal response on cell density is related with the extracellular volume available per cell. This dependence has previously been studied using non-spatial models which assume that signaling components are well mixed and uniformly distributed in a single compartment. In this paper, a mathematical model that shows the influence exerted by cell density on the spatio-temporal evolution of ligands, cell surface receptors, and intracellular signaling molecules is developed. To this end, partial differential equations were used to model ligand and receptor trafficking dynamics through the different domains of the whole system. This enabled us to analyze several interesting features involved with these systems, namely: a how the perturbation caused by the signaling response propagates through the system; b receptor internalization dynamics and how cell density affects the robustness of dose-response curves upon variation of the binding affinity; and c that enhanced correlations between ligand input and system response are obtained under conditions that result in larger perturbations of the equilibrium ligand + surface receptor [Please see text] ligand - receptor complex. Finally, the results are compared with those obtained by considering that the above components are well mixed in a single compartment.

  3. Homeodomain Transcription Factor Msx-2 Regulates Uterine Progenitor Cell Response to Diethylstilbestrol.

    Science.gov (United States)

    Yin, Yan; Lin, Congxing; Zhang, Ivy; Fisher, Alexander V; Dhandha, Maulik; Ma, Liang

    The fate of mouse uterine epithelial progenitor cells is determined between postnatal days 5 to 7. Around this critical time window, exposure to an endocrine disruptor, diethylstilbestrol (DES), can profoundly alter uterine cytodifferentiation. We have shown previously that a homeo domain transcription factor MSX-2 plays an important role in DES-responsiveness in the female reproductive tract (FRT). Mutant FRTs exhibited a much more severe phenotype when treated with DES, accompanied by gene expression changes that are dependent on Msx2 . To better understand the role that MSX-2 plays in uterine response to DES, we performed global gene expression profiling experiment in mice lacking Msx2 By comparing this result to our previously published microarray data performed on wild-type mice, we extracted common and differentially regulated genes in the two genotypes. In so doing, we identified potential downstream targets of MSX-2, as well as genes whose regulation by DES is modulated through MSX-2. Discovery of these genes will lead to a better understanding of how DES, and possibly other endocrine disruptors, affects reproductive organ development.

  4. V-set and Ig domain-containing 4 (VSIG4)-expressing hepatic F4/80+ cells regulate oral antigen-specific responses in mouse.

    Science.gov (United States)

    Shin, Wonhwa; Jeon, Youkyoung; Choi, Inhak; Kim, Yeon-Jeong

    2018-04-01

    Oral tolerance can prevent unnecessary immune responses against dietary antigens. Members of the B7 protein family play critical roles in the positive and/or negative regulation of T cell responses to interactions between APCs and T cells. V-set and Ig domain-containing 4 (VSIG4), a B7-related co-signaling molecule, has been known to act as a co-inhibitory ligand and may be critical in establishing immune tolerance. Therefore, we investigated the regulation of VSIG4 signaling in a food allergy and experimental oral tolerance murine models. We analyzed the contributions of the two main sites involved in oral tolerance, the mesenteric lymph node (MLN) and the liver, in VSIG4-mediated oral tolerance induction. Through the comparative analysis of major APCs, dendritic cells (DCs) and macrophages, we found that Kupffer cells play a critical role in inducing regulatory T cells (Tregs) and establishing immune tolerance against oral antigens via VSIG4 signaling. Taken together, these results suggest the possibility of VSIG4 signaling-based regulation of orally administered antigens. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The Social Regulation of Emotion: An Integrative, Cross-Disciplinary Model.

    Science.gov (United States)

    Reeck, Crystal; Ames, Daniel R; Ochsner, Kevin N

    2016-01-01

    Research in emotion regulation has largely focused on how people manage their own emotions, but there is a growing recognition that the ways in which we regulate the emotions of others also are important. Drawing on work from diverse disciplines, we propose an integrative model of the psychological and neural processes supporting the social regulation of emotion. This organizing framework, the 'social regulatory cycle', specifies at multiple levels of description the act of regulating another person's emotions as well as the experience of being a target of regulation. The cycle describes the processing stages that lead regulators to attempt to change the emotions of a target person, the impact of regulation on the processes that generate emotions in the target, and the underlying neural systems. Copyright © 2015. Published by Elsevier Ltd.

  6. A whole-body model for glycogen regulation reveals a critical role for substrate cycling in maintaining blood glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Ke Xu

    2011-12-01

    Full Text Available Timely, and sometimes rapid, metabolic adaptation to changes in food supply is critical for survival as an organism moves from the fasted to the fed state, and vice versa. These transitions necessitate major metabolic changes to maintain energy homeostasis as the source of blood glucose moves away from ingested carbohydrates, through hepatic glycogen stores, towards gluconeogenesis. The integration of hepatic glycogen regulation with extra-hepatic energetics is a key aspect of these adaptive mechanisms. Here we use computational modeling to explore hepatic glycogen regulation under fed and fasting conditions in the context of a whole-body model. The model was validated against previous experimental results concerning glycogen phosphorylase a (active and glycogen synthase a dynamics. The model qualitatively reproduced physiological changes that occur during transition from the fed to the fasted state. Analysis of the model reveals a critical role for the inhibition of glycogen synthase phosphatase by glycogen phosphorylase a. This negative regulation leads to high levels of glycogen synthase activity during fasting conditions, which in turn increases substrate (futile cycling, priming the system for a rapid response once an external source of glucose is restored. This work demonstrates that a mechanistic understanding of the design principles used by metabolic control circuits to maintain homeostasis can benefit from the incorporation of mathematical descriptions of these networks into "whole-body" contextual models that mimic in vivo conditions.

  7. Nitric Oxide- and Hydrogen Peroxide-Responsive Gene Regulation during Cell Death Induction in Tobacco1[W

    Science.gov (United States)

    Zago, Elisa; Morsa, Stijn; Dat, James F.; Alard, Philippe; Ferrarini, Alberto; Inzé, Dirk; Delledonne, Massimo; Van Breusegem, Frank

    2006-01-01

    Nitric oxide (NO) and hydrogen peroxide (H2O2) are regulatory molecules in various developmental processes and stress responses. Tobacco (Nicotiana tabacum) leaves exposed to moderate high light dramatically potentiated NO-mediated cell death in catalase-deficient (CAT1AS) but not in wild-type plants, providing genetic evidence for a partnership between NO and H2O2 during the induction of programmed cell death. With this experimental model system, the specific impact on gene expression was characterized by either NO or H2O2 alone or both molecules combined. By means of genome-wide cDNA-amplified fragment length polymorphism analysis, transcriptional changes were compared in high light-treated CAT1AS and wild-type leaves treated with or without the NO donor sodium nitroprusside. Differential gene expression was detected for 214 of the approximately 8,000 transcript fragments examined. For 108 fragments, sequence analysis revealed homology to genes with a role in signal transduction, defense response, hormone interplay, proteolysis, transport, and metabolism. Surprisingly, only 16 genes were specifically induced by the combined action of NO and H2O2, whereas the majority were regulated by either of them alone. At least seven transcription factors were mutually up-regulated, indicating significant overlap between NO and H2O2 signaling pathways. These results consolidate significant cross-talk between NO and H2O2, provide new insight into the early transcriptional response of plants to increased NO and H2O2 levels, and identify target genes of the combined action of NO and H2O2 during the induction of plant cell death. PMID:16603664

  8. The MAP kinase substrate MKS1 is a regulator of plant defense responses

    DEFF Research Database (Denmark)

    Andreasson, E.; Jenkins, T.; Brodersen, P.

    2005-01-01

    Arabidopsis MAP kinase 4 (MPK4) functions as a regulator of pathogen defense responses, because it is required for both repression of salicylic acid (SA)-dependent resistance and for activation of jasmonate (JA)-dependent defense gene expression. To understand MPK4 signaling mechanisms, we used...

  9. Abiotic stress responses in plants: roles of calmodulin-regulated proteins

    Science.gov (United States)

    Virdi, Amardeep S.; Singh, Supreet; Singh, Prabhjeet

    2015-01-01

    Intracellular changes in calcium ions (Ca2+) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca2+-sensing proteins and has been shown to be involved in transduction of Ca2+ signals. After interacting with Ca2+, CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants. PMID:26528296

  10. Induced pluripotent stem cells-derived myeloid-derived suppressor cells regulate the CD8+ T cell response

    Directory of Open Access Journals (Sweden)

    Daniel Joyce

    2018-05-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs are markedly increased in cancer patients and tumor-bearing mice and promote tumor growth and survival by inhibiting host innate and adaptive immunity. In this study, we generated and characterized MDSCs from murine-induced pluripotent stem cells (iPSCs. The iPSCs were co-cultured with OP9 cells, stimulated with GM-CSF, and became morphologically heterologous under co-culturing with hepatic stellate cells. Allogeneic and OVA-specific antigen stimulation demonstrated that iPS-MDSCs have a T-cell regulatory function. Furthermore, a popliteal lymph node assay and autoimmune hepatitis model showed that iPS-MDSCs also regulate immune responsiveness in vivo and have a therapeutic effect against hepatitis. Taken together, our results demonstrated a method of generating functional MDSCs from iPSCs and highlighted the potential of iPS-MDSCs as a key cell therapy resource for transplantation and autoimmune diseases. Keywords: Myeloid-derived suppressor cells, Induced pluripotent stem cells, T cell response

  11. Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes

    Directory of Open Access Journals (Sweden)

    Eloi R. Verrier

    2016-10-01

    Full Text Available Chronic hepatitis B, C, and D virus (HBV, HCV, and HDV infections are the leading causes of liver disease and cancer worldwide. Recently, the solute carrier and sodium taurocholate co-transporter NTCP has been identified as a receptor for HBV and HDV. Here, we uncover NTCP as a host factor regulating HCV infection. Using gain- and loss-of-function studies, we show that NTCP mediates HCV infection of hepatocytes and is relevant for cell-to-cell transmission. NTCP regulates HCV infection by augmenting the bile-acid-mediated repression of interferon-stimulated genes (ISGs, including IFITM3. In conclusion, our results uncover NTCP as a mediator of innate antiviral immune responses in the liver, and they establish a role for NTCP in the infection process of multiple viruses via distinct mechanisms. Collectively, our findings suggest a role for solute carriers in the regulation of innate antiviral responses, and they have potential implications for virus-host interactions and antiviral therapies.

  12. Exercise improves mitochondrial and redox-regulated stress responses in the elderly: better late than never!

    Science.gov (United States)

    Cobley, James N; Moult, Peter R; Burniston, Jatin G; Morton, James P; Close, Graeme L

    2015-04-01

    Ageing is associated with several physiological declines to both the cardiovascular (e.g. reduced aerobic capacity) and musculoskeletal system (muscle function and mass). Ageing may also impair the adaptive response of skeletal muscle mitochondria and redox-regulated stress responses to an acute exercise bout, at least in mice and rodents. This is a functionally important phenomenon, since (1) aberrant mitochondrial and redox homeostasis are implicated in the pathophysiology of musculoskeletal ageing and (2) the response to repeated exercise bouts promotes exercise adaptations and some of these adaptations (e.g. improved aerobic capacity and exercise-induced mitochondrial remodelling) offset age-related physiological decline. Exercise-induced mitochondrial remodelling is mediated by upstream signalling events that converge on downstream transcriptional co-factors and factors that orchestrate a co-ordinated nuclear and mitochondrial transcriptional response associated with mitochondrial remodelling. Recent translational human investigations have demonstrated similar exercise-induced mitochondrial signalling responses in older compared with younger skeletal muscle, regardless of training status. This is consistent with data indicating normative mitochondrial remodelling responses to long-term exercise training in the elderly. Thus, human ageing is not accompanied by diminished mitochondrial plasticity to acute and chronic exercise stimuli, at least for the signalling pathways measured to date. Exercise-induced increases in reactive oxygen and nitrogen species promote an acute redox-regulated stress response that manifests as increased heat shock protein and antioxidant enzyme content. In accordance with previous reports in rodents and mice, it appears that sedentary ageing is associated with a severely attenuated exercise-induced redox stress response that might be related to an absent redox signal. In this regard, regular exercise training affords some protection

  13. Regulation of abiotic and biotic stress responses by plant hormones

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2016-01-01

    Plant hormones (phytohormones) are signal molecules produced within the plant, and occur in very low concentrations. In the present chapter, the current knowledge on the regulation of biotic and biotic stress responses by plant hormones is summarized with special focus on the novel insights...... into the complex hormonal crosstalk of classical growth stimulating plant hormones within the naturally occurring biotic and abiotic multistress environment of higher plants. The MAPK- and phytohormone-cascades which comprise a multitude of single molecules on different signalling levels, as well as interactions...

  14. Histone Deacetylase HDA-2 Regulates Trichoderma atroviride Growth, Conidiation, Blue Light Perception, and Oxidative Stress Responses.

    Science.gov (United States)

    Osorio-Concepción, Macario; Cristóbal-Mondragón, Gema Rosa; Gutiérrez-Medina, Braulio; Casas-Flores, Sergio

    2017-02-01

    Fungal blue-light photoreceptors have been proposed as integrators of light and oxidative stress. However, additional elements participating in the integrative pathway remain to be identified. In Trichoderma atroviride, the blue-light regulator (BLR) proteins BLR-1 and -2 are known to regulate gene transcription, mycelial growth, and asexual development upon illumination, and recent global transcriptional analysis revealed that the histone deacetylase-encoding gene hda-2 is induced by light. Here, by assessing responses to stimuli in wild-type and Δhda-2 backgrounds, we evaluate the role of HDA-2 in the regulation of genes responsive to light and oxidative stress. Δhda-2 strains present reduced growth, misregulation of the con-1 gene, and absence of conidia in response to light and mechanical injury. We found that the expression of hda-2 is BLR-1 dependent and HDA-2 in turn is essential for the transcription of early and late light-responsive genes that include blr-1, indicating a regulatory feedback loop. When subjected to reactive oxygen species (ROS), Δhda-2 mutants display high sensitivity whereas Δblr strains exhibit the opposite phenotype. Consistently, in the presence of ROS, ROS-related genes show high transcription levels in wild-type and Δblr strains but misregulation in Δhda-2 mutants. Finally, chromatin immunoprecipitations of histone H3 acetylated at Lys9/Lys14 on cat-3 and gst-1 promoters display low accumulation of H3K9K14ac in Δblr and Δhda-2 strains, suggesting indirect regulation of ROS-related genes by HDA-2. Our results point to a mutual dependence between HDA-2 and BLR proteins and reveal the role of these proteins in an intricate gene regulation landscape in response to blue light and ROS. Trichoderma atroviride is a free-living fungus commonly found in soil or colonizing plant roots and is widely used as an agent in biocontrol as it parasitizes other fungi, stimulates plant growth, and induces the plant defense system. To survive in

  15. OXYGEN PRESSURE REGULATOR DESIGN AND ANALYSIS THROUGH FINITE ELEMENT MODELING

    Directory of Open Access Journals (Sweden)

    Asterios KOSMARAS

    2017-05-01

    Full Text Available Oxygen production centers produce oxygen in high pressure that needs to be defused. A regulator is designed and analyzed in the current paper for medical use in oxygen production centers. This study aims to design a new oxygen pressure regulator and perform an analysis using Finite Element Modeling in order to evaluate its working principle. In the design procedure,the main elements and the operating principles of a pressure regulator are taking into account. The regulator is designed and simulations take place in order to assessthe proposed design. Stress analysis results are presented for the main body of the regulator, as well as, flow analysis to determine some important flow characteristics in the inlet and outlet of the regulator.

  16. Regulation models for district heating. Main report; Denmark; Reguleringsmodeller for fjernvarmen. Hovedrapport

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-15

    With regard to choice of model for the regulation of district heating prices the report points out that a detailed analysis of a cost+ model could be considered. Such an analysis could provide further definition of the extended right to recoup the investment for heating companies, the shaping of the possibility of recognition of opportunity costs and the fixed cost allocation, and the clarified definition of necessary costs. The report also suggests that a price cap regulation or a completely free pricing in the entire sector is hardly appropriate forms of regulation. The report's analysis clearly shows that the choice of price regulation in the heat sector has impact on the incentives in terms of investment, green conversion, etc. It also appears that the different regulatory models have very different advantages and disadvantages, and lessons learned from other sectors and abroad show that changing price regulation rules can be a difficult and lengthy process with unintended consequences along the way. (LN)

  17. Modeling the legal field of formation of socially responsible conduct among pharmacy specialists

    Directory of Open Access Journals (Sweden)

    N. O. Tkachenko

    2018-03-01

    Full Text Available Observation of legal and legislative standards of the company activities is the fundamental principle of social responsibility (SR. The results of the literature analysis show the lack of fundamental research of regulatory and legal support of formation of socially responsible conduct of pharmacists (SRCPh. AIM: modeling the legal framework and determining the completeness and content of the current regulatory and legal framework on formation of a system of SRCPh throughout the professional lifespan development. Materials and methods. The materials of the study were national and international regulatory legal acts, regulating SR, the activities of pharmaceutical organizations (PhO and getting a pharmaceutical education. During the work, such methods as searching information, systematization, content analysis, comparison and generalization were used. During the investigation, we summarized the legal framework that in various aspects forms the socially responsible conduct of the pharmacists throughout the lifespan professional development; and a model of the legal field of this process was formed. A content analysis of this regulatory framework in aspect of responsibility of the PhO and pharmacists with a description of the problem legal questions in the context of SR was carried out. In this article, attention is paid to the basic level of the legal field, within which general principles of social relations are formed in all spheres of the economy. Conclusions. We have formed a model of the legal field formation of a SRCPh system throughout the professional lifespan development. The model is a complex, multilevel system. The regulatory framework in the model is distributed according to two criteria (hierarchical and regulating relations in the system of socially responsible conduct of the pharmacists and includes 27 basic normative legal acts. We have identified problems in the legal field of the basic level of SRCPh formation: the indistinctness

  18. Food and Natural Materials Target Mechanisms to Effectively Regulate Allergic Responses.

    Science.gov (United States)

    Shin, Hee Soon; Shon, Dong-Hwa

    2015-01-01

    An immune hypersensitivity disorder called allergy is caused by diverse allergens entering the body via skin contact, injection, ingestion, and/or inhalation. These allergic responses may develop into allergic disorders, including inflammations such as atopic dermatitis, asthma, anaphylaxis, food allergies, and allergic rhinitis. Several drugs have been developed to treat these allergic disorders; however, long-term intake of these drugs could have adverse effects. As an alternative to these medicines, food and natural materials that ameliorate allergic disorder symptoms without producing any side effects can be consumed. Food and natural materials can effectively regulate successive allergic responses in an allergic chain-reaction mechanism in the following ways: [1] Inhibition of allergen permeation via paracellular diffusion into epithelial cells, [2] suppression of type 2 T-helper (Th) cell-related cytokine production by regulating Th1/Th2 balance, [3] inhibition of pathogenic effector CD4(+) T cell differentiation by inducing regulatory T cells (Treg), and [4] inhibition of degranulation in mast cells. The immunomodulatory effects of food and natural materials on each target mechanism were scientifically verified and shown to alleviate allergic disorder symptoms. Furthermore, consumption of certain food and natural materials such as fenugreek, skullcap, chitin/chitosan, and cheonggukjang as anti-allergics have merits such as safety (no adverse side effects), multiple suppressive effects (as a mixture would contain various components that are active against allergic responses), and ease of consumption when required. These merits and anti-allergic properties of food and natural materials help control various allergic disorders.

  19. Dynamic Model of Kaplan Turbine Regulating System Suitable for Power System Analysis

    OpenAIRE

    Zhao, Jie; Wang, Li; Liu, Dichen; Wang, Jun; Zhao, Yu; Liu, Tian; Wang, Haoyu

    2015-01-01

    Accurate modeling of Kaplan turbine regulating system is of great significance for grid security and stability analysis. In this paper, Kaplan turbine regulating system model is divided into the governor system model, the blade control system model, and the turbine and water diversion system model. The Kaplan turbine has its particularity, and the on-cam relationship between the wicket gate opening and the runner blade angle under a certain water head on the whole range was obtained by high-o...

  20. Selenium antagonizes cadmium-induced apoptosis in chicken spleen but not involving Nrf2-regulated antioxidant response.

    Science.gov (United States)

    Chen, Menghao; Li, Xiaojing; Fan, Ruifeng; Cao, Changyu; Yao, Haidong; Xu, Shiwen

    2017-11-01

    The nuclear transcription factor NF-E2-related factor 2 (Nrf2) binds to antioxidant response elements (AREs) and is involved in the regulation of genes participated in defending cells against oxidative damage, which have been confirmed in animal models. Selenium (Se), known as an important element in the regulation of antioxidant activity, can antagonize Cadmium (Cd) toxicity in birds. However, the role of Nrf2 in selenium-cadmium interaction has not been reported in birds. To further explore the mechanism of selenium attenuating spleen toxicity induced by cadmium in chickens, cadmium chloride (CdCl 2 , 150mg/kg) and sodium selenite (Na 2 SeO 3 , 2mg/kg) were co-administrated or individually administered in the diet of chickens for 90 days. The results showed that Cd exposure increased the level of hydrogen peroxide (H 2 O 2 ) and malondialdehyde (MDA) and decreased the antioxidant enzyme activities, including superoxide dismutase (SOD), glutathione peroxidase (Gpx), total antioxidative capacity (T-AOC), catalase (CAT). Cd exposure increased obviously nuclear accumulation of Nrf2, and the expression of Nrf2 downstream heme oxygenase-1 (HO-1) and NAD(P)H: quinine oxidoreductase 1 (NQO1), reduced the expression of Kelch-like ECH-associated protein (keap1), Gpx-1 and thioredoxin reductase-1 (TrxR1). In addition, Cd induced the increase of bak, caspase9, p53, Cyt c mRNA levels, increased bax/bcl-2 ratio, increased caspase3 mRNA and protein levels. Selenium treatment reduced the accumulation of Cd in the spleen, attenuates Cd-induced Nrf2 nuclear accumulation, enhanced antioxidant enzyme activities, ameliorated Cd-induced oxidative stress and apoptosis in the spleen. In summary, our results demonstrate that Se ameliorated spleen toxicity induced by cadmium by modulating the antioxidant system, independently of Nrf2-regulated antioxidant response pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Regulation of BAZ1A and nucleosome positioning in the nucleus accumbens in response to cocaine.

    Science.gov (United States)

    Sun, HaoSheng; Damez-Werno, Diane M; Scobie, Kimberly N; Shao, Ning-Yi; Dias, Caroline; Rabkin, Jacqui; Wright, Katherine N; Mouzon, Ezekiell; Kabbaj, Mohamed; Neve, Rachael; Turecki, Gustavo; Shen, Li; Nestler, Eric J

    2017-06-14

    Chromatin regulation, in particular ATP-dependent chromatin remodelers, have previously been shown to be important in the regulation of reward-related behaviors in animal models of mental illnesses. Here we demonstrate that BAZ1A, an accessory subunit of the ISWI family of chromatin remodeling complexes, is downregulated in the nucleus accumbens (NAc) of mice exposed repeatedly to cocaine and of cocaine-addicted humans. Viral-mediated overexpression of BAZ1A in mouse NAc reduces cocaine reward as assessed by conditioned place preference (CPP), but increases cocaine-induced locomotor activation. Furthermore, we investigate nucleosome repositioning genome-wide by conducting chromatin immunoprecipitation (ChIP)-sequencing for total H3 in NAc of control mice and after repeated cocaine administration, and find extensive nucleosome occupancy and shift changes across the genome in response to cocaine exposure. These findings implicate BAZ1A in molecular and behavioral plasticity to cocaine and offer new insight into the pathophysiology of cocaine addiction. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Estimating confidence intervals in predicted responses for oscillatory biological models.

    Science.gov (United States)

    St John, Peter C; Doyle, Francis J

    2013-07-29

    The dynamics of gene regulation play a crucial role in a cellular control: allowing the cell to express the right proteins to meet changing needs. Some needs, such as correctly anticipating the day-night cycle, require complicated oscillatory features. In the analysis of gene regulatory networks, mathematical models are frequently used to understand how a network's structure enables it to respond appropriately to external inputs. These models typically consist of a set of ordinary differential equations, describing a network of biochemical reactions, and unknown kinetic parameters, chosen such that the model best captures experimental data. However, since a model's parameter values are uncertain, and since dynamic responses to inputs are highly parameter-dependent, it is difficult to assess the confidence associated with these in silico predictions. In particular, models with complex dynamics - such as oscillations - must be fit with computationally expensive global optimization routines, and cannot take advantage of existing measures of identifiability. Despite their difficulty to model mathematically, limit cycle oscillations play a key role in many biological processes, including cell cycling, metabolism, neuron firing, and circadian rhythms. In this study, we employ an efficient parameter estimation technique to enable a bootstrap uncertainty analysis for limit cycle models. Since the primary role of systems biology models is the insight they provide on responses to rate perturbations, we extend our uncertainty analysis to include first order sensitivity coefficients. Using a literature model of circadian rhythms, we show how predictive precision is degraded with decreasing sample points and increasing relative error. Additionally, we show how this method can be used for model discrimination by comparing the output identifiability of two candidate model structures to published literature data. Our method permits modellers of oscillatory systems to confidently

  3. With great control comes great responsibility: the relationship between perceived academic control, student responsibility, and self-regulation.

    Science.gov (United States)

    Fishman, Evan J

    2014-12-01

    Students' perceived control over academic outcomes has been linked to their use of self-regulated strategies. However, students' sense of responsibility, or internal commitment to produce such outcomes, has not often been considered in this relationship. The purpose of this study was to examine the relationships between perceived academic control (PAC), student responsibility (SR), and knowledge building (KB). Participants were 152 undergraduate students enrolled in an educational technology course. An exploratory factor analysis was conducted to demonstrate the distinction between the PAC and SR constructs. A series of regression analyses were conducted to address the research hypotheses, and a bootstrap test was used to assess the mediating role of SR in the relationship between the PAC variables and KB. Initial evidence regarding the uniqueness of the PAC and SR constructs was provided. PAC (both primary control and secondary control [SC]) were positively and significantly related to SR. KB was positively and significantly related to SR, as was SC. Additionally, SR partially mediated the relationship between the PAC variables and KB. The findings showed that those who perceived the capability to achieve academic outcomes were more likely to feel internally obligated to produce such outcomes. The same was true for students who perceived the capability to psychologically adjust to academic situations. The results also demonstrated that students' sense of responsibility for academic outcomes played a partially mediating role in the relationship between their perceptions of control and reported use of self-regulated behaviour. © 2014 The British Psychological Society.

  4. TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy.

    Science.gov (United States)

    Vlahakis, Ariadne; Graef, Martin; Nunnari, Jodi; Powers, Ted

    2014-07-22

    The highly conserved Target of Rapamycin (TOR) kinase is a central regulator of cell growth and metabolism in response to nutrient availability. TOR functions in two structurally and functionally distinct complexes, TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2). Through TORC1, TOR negatively regulates autophagy, a conserved process that functions in quality control and cellular homeostasis and, in this capacity, is part of an adaptive nutrient deprivation response. Here we demonstrate that during amino acid starvation TOR also operates independently as a positive regulator of autophagy through the conserved TORC2 and its downstream target protein kinase, Ypk1. Under these conditions, TORC2-Ypk1 signaling negatively regulates the Ca(2+)/calmodulin-dependent phosphatase, calcineurin, to enable the activation of the amino acid-sensing eIF2α kinase, Gcn2, and to promote autophagy. Our work reveals that the TORC2 pathway regulates autophagy in an opposing manner to TORC1 to provide a tunable response to cellular metabolic status.

  5. A response regulator from a soil metagenome enhances resistance to the β-lactam antibiotic carbenicillin in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Heather K Allen

    Full Text Available Functional metagenomic analysis of soil metagenomes is a method for uncovering as-yet unidentified mechanisms for antibiotic resistance. Here we report an unconventional mode by which a response regulator derived from a soil metagenome confers resistance to the β-lactam antibiotic carbenicillin in Escherichia coli. A recombinant clone (βlr16 harboring a 5,169 bp DNA insert was selected from a metagenomic library previously constructed from a remote Alaskan soil. The βlr16 clone conferred specific resistance to carbenicillin, with limited increases in resistance to other tested antibiotics, including other β-lactams (penicillins and cephalosporins, rifampin, ciprofloxacin, erythromycin, chloramphenicol, nalidixic acid, fusidic acid, and gentamicin. Resistance was more pronounced at 24°C than at 37°C. Zone-of-inhibition assays suggested that the mechanism of carbenicillin resistance was not due to antibiotic inactivation. The DNA insert did not encode any genes known to confer antibiotic resistance, but did have two putative open reading frames (ORFs that were annotated as a metallopeptidase and a two-component response regulator. Transposon mutagenesis and subcloning of the two ORFs followed by phenotypic assays showed that the response regulator gene was necessary and sufficient to confer the resistance phenotype. Quantitative reverse transcriptase PCR showed that the response regulator suppressed expression of the ompF porin gene, independently of the small RNA regulator micF, and enhanced expression of the acrD, mdtA, and mdtB efflux pump genes. This work demonstrates that antibiotic resistance can be achieved by the modulation of gene regulation by heterologous DNA. Functional analyses such as these can be important for making discoveries in antibiotic resistance gene biology and ecology.

  6. Sulfate transporters in the plant’s response to drought and salinity: regulation and possible functions

    Directory of Open Access Journals (Sweden)

    Karine eGallardo

    2014-10-01

    Full Text Available Drought and salinity are two frequently combined abiotic stresses that affect plant growth, development, and crop productivity. Sulfate, and molecules derived from this anion such as glutathione, play important roles in the intrinsic responses of plants to such abiotic stresses. Therefore, understanding how plants facing environmental constraints re-equilibrate the flux of sulfate between and within different tissues might uncover perspectives for improving tolerance against abiotic stresses. In this review, we took advantage of genomics and post-genomics resources available in Arabidopsis thaliana and in the model legume species Medicago truncatula to highlight and compare the regulation of sulfate transporter genes under drought and salt stress. We also discuss their possible function in the plant’s response and adaptation to abiotic stresses and present prospects about the potential benefits of mycorrhizal associations, which by facilitating sulfate uptake may assist plants to cope with abiotic stresses. Several transporters are highlighted in this review that appear promising targets for improving sulfate transport capacities of crops under fluctuating environmental conditions.

  7. Oral Administration of N-Acetyl-D Glucosamine Polymer Particles Down-Regulates Airway Allergic Responses

    National Research Council Canada - National Science Library

    Shibata, Yoshimi

    2006-01-01

    ... (IL-12, IL-18 and TNFo) that down-regulate allergic immune responses. We also found that administration of chitin particles resulted in less likely induce the production of IL-10 and prostaglandin E2 (PGE2...

  8. CBL-interacting protein kinase 6 negatively regulates immune response to Pseudomonas syringae in Arabidopsis.

    Science.gov (United States)

    Sardar, Atish; Nandi, Ashis Kumar; Chattopadhyay, Debasis

    2017-06-15

    Cytosolic calcium ion (Ca2+) is an essential mediator of the plant innate immune response. Here, we report that a calcium-regulated protein kinase Calcineurin B-like protein (CBL)-interacting protein kinase 6 (CIPK6) functions as a negative regulator of immunity against the bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana. Arabidopsis lines with compromised expression of CIPK6 exhibited enhanced disease resistance to the bacterial pathogen and to P. syringae harboring certain but not all avirulent effectors, while restoration of CIPK6 expression resulted in abolition of resistance. Plants overexpressing CIPK6 were more susceptible to P. syringae. Enhanced resistance in the absence of CIPK6 was accompanied by increased accumulation of salicylic acid and elevated expression of defense marker genes. Salicylic acid accumulation was essential for improved immunity in the absence of CIPK6. CIPK6 negatively regulated the oxidative burst associated with perception of pathogen-associated microbial patterns (PAMPs) and bacterial effectors. Accelerated and enhanced activation of the mitogen-activated protein kinase cascade in response to bacterial and fungal elicitors was observed in the absence of CIPK6. The results of this study suggested that CIPK6 negatively regulates effector-triggered and PAMP-triggered immunity in Arabidopsis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Macrophage pro-inflammatory response to Francisella novicida infection is regulated by SHIP.

    Directory of Open Access Journals (Sweden)

    Kishore V L Parsa

    2006-07-01

    Full Text Available Francisella tularensis, a Gram-negative facultative intracellular pathogen infecting principally macrophages and monocytes, is the etiological agent of tularemia. Macrophage responses to F. tularensis infection include the production of pro-inflammatory cytokines such as interleukin (IL-12, which is critical for immunity against infection. Molecular mechanisms regulating production of these inflammatory mediators are poorly understood. Herein we report that the SH2 domain-containing inositol phosphatase (SHIP is phosphorylated upon infection of primary murine macrophages with the genetically related F. novicida, and negatively regulates F. novicida-induced cytokine production. Analyses of the molecular details revealed that in addition to activating the MAP kinases, F. novicida infection also activated the phosphatidylinositol 3-kinase (PI3K/Akt pathway in these cells. Interestingly, SHIP-deficient macrophages displayed enhanced Akt activation upon F. novicida infection, suggesting elevated PI3K-dependent activation pathways in absence of SHIP. Inhibition of PI3K/Akt resulted in suppression of F. novicida-induced cytokine production through the inhibition of NFkappaB. Consistently, macrophages lacking SHIP displayed enhanced NFkappaB-driven gene transcription, whereas overexpression of SHIP led to decreased NFkappaB activation. Thus, we propose that SHIP negatively regulates F. novicida-induced inflammatory cytokine response by antagonizing the PI3K/Akt pathway and suppressing NFkappaB-mediated gene transcription. A detailed analysis of phosphoinositide signaling may provide valuable clues for better understanding the pathogenesis of tularemia.

  10. Understanding the Posttranscriptional Regulation of Plant Responses to Abiotic Stress

    KAUST Repository

    AlShareef, Sahar A.

    2017-06-01

    Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and biotic and abiotic stresses. Recent work showed that AS is pervasive across plant species, with more than 60% of intron-containing genes producing different isoforms. Mammalian cell-based assays have discovered various AS small-molecule inhibitors that perturb splicing and thereby provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Here, I show that the macrolide Pladienolide B (PB) and herboxidiene (GEX1A) inhibits both constitutive and alternative splicing, mimics an abiotic stress signal, and activates the abscisic acid (ABA) pathway in plants. Moreover, PB and GEX1A activate genome-wide transcriptional patterns involved in abiotic stress responses in plants. PB and GEX1A treatment triggered the ABA signaling pathway, activated ABA-inducible promoters, and led to stomatal closure. Interestingly, PB and GEX1A elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. This work establishes PB and GEX1A as potent splicing inhibitors in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  11. Modelling and Assessment of the Capabilities of a Supermarket Refrigeration System for the Provision of Regulating Power

    DEFF Research Database (Denmark)

    O'Connell, Niamh; Madsen, Henrik; Pinson, Pierre

    is found to have time constants at 10 and 0.12 hours, indicating the potential for the system to provide exibility in both the long- and short-term. Direct- and indirect-control architectures are employed to simulate the demand response attainable from the refrigeration system. A number of complexities......This report presents an analysis of the demand response capabilities of a supermarket refrigeration system, with a particular focus on the suitability of this resource for participation in the regulating power market. An ARMAX model of the system is identified from experimental data, and the model...... are revealed that would complicate the task of devising bids on a conventional power market. These complexities are incurred due to the physical characteristics and constraints of the system as well as the particular characteristics of the control frameworks employed. Simulations considering the provision...

  12. Modeling of a New Structure of Precision Air Conditioning System Using Secondary Condenser for Rh Regulation

    Directory of Open Access Journals (Sweden)

    Aries Subiantoro

    2012-05-01

    Full Text Available A dynamic mathematical model for a new structure of precision air conditioning (PAC has been developed. The proposed PAC uses an additional secondary condenser for relative humidity regulation compared to a basic refrigeration system. The work mechanism for this system and a vapour-compression cycle process of the system are illustrated using psychrometric chart and pressure-enthalpy diagram. A non-linear system model is derived based on the conservation of mass and energy balance principles and then linearized at steady state operating point for developing a 8th-order state space model suited for multivariable controller design. The quality of linearized model is analyzed in terms of transient response, controllability, observability, and interaction between input-output variables. The developed model is verified through simulation showing its ability for imitating the nonlinear behavior and the interaction of input-output variables.

  13. Environmental regulations and plant exit: A logit analysis based on established panel data

    Energy Technology Data Exchange (ETDEWEB)

    Bioern, E; Golombek, R; Raknerud, A

    1995-12-01

    This publication uses a model to study the relationship between environmental regulations and plant exit. It has the main characteristics of a multinomial qualitative response model of the logit type, but also has elements of a Markov chain model. The model uses Norwegian panel data for establishments in three manufacturing sectors with high shares of units which have been under strict environmental regulations. In two of the sectors, the exit probability of non-regulated establishments is about three times higher than for regulated ones. It is also found that the probability of changing regulation status from non-regulated to regulated depends significantly on economic factors. In particular, establishments with weak profitability are the most likely to become subject to environmental regulation. 12 refs., 2 figs., 6 tabs.

  14. Single toxin dose-response models revisited

    Energy Technology Data Exchange (ETDEWEB)

    Demidenko, Eugene, E-mail: eugened@dartmouth.edu [Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH03756 (United States); Glaholt, SP, E-mail: sglaholt@indiana.edu [Indiana University, School of Public & Environmental Affairs, Bloomington, IN47405 (United States); Department of Biological Sciences, Dartmouth College, Hanover, NH03755 (United States); Kyker-Snowman, E, E-mail: ek2002@wildcats.unh.edu [Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH03824 (United States); Shaw, JR, E-mail: joeshaw@indiana.edu [Indiana University, School of Public & Environmental Affairs, Bloomington, IN47405 (United States); Chen, CY, E-mail: Celia.Y.Chen@dartmouth.edu [Department of Biological Sciences, Dartmouth College, Hanover, NH03755 (United States)

    2017-01-01

    The goal of this paper is to offer a rigorous analysis of the sigmoid shape single toxin dose-response relationship. The toxin efficacy function is introduced and four special points, including maximum toxin efficacy and inflection points, on the dose-response curve are defined. The special points define three phases of the toxin effect on mortality: (1) toxin concentrations smaller than the first inflection point or (2) larger then the second inflection point imply low mortality rate, and (3) concentrations between the first and the second inflection points imply high mortality rate. Probabilistic interpretation and mathematical analysis for each of the four models, Hill, logit, probit, and Weibull is provided. Two general model extensions are introduced: (1) the multi-target hit model that accounts for the existence of several vital receptors affected by the toxin, and (2) model with a nonzero mortality at zero concentration to account for natural mortality. Special attention is given to statistical estimation in the framework of the generalized linear model with the binomial dependent variable as the mortality count in each experiment, contrary to the widespread nonlinear regression treating the mortality rate as continuous variable. The models are illustrated using standard EPA Daphnia acute (48 h) toxicity tests with mortality as a function of NiCl or CuSO{sub 4} toxin. - Highlights: • The paper offers a rigorous study of a sigmoid dose-response relationship. • The concentration with highest mortality rate is rigorously defined. • A table with four special points for five morality curves is presented. • Two new sigmoid dose-response models have been introduced. • The generalized linear model is advocated for estimation of sigmoid dose-response relationship.

  15. Social buffering of stress responses in nonhuman primates: Maternal regulation of the development of emotional regulatory brain circuits.

    Science.gov (United States)

    Sanchez, Mar M; McCormack, Kai M; Howell, Brittany R

    2015-01-01

    Social buffering, the phenomenon by which the presence of a familiar individual reduces or even eliminates stress- and fear-induced responses, exists in different animal species and has been examined in the context of the mother-infant relationship, in addition to adults. Although it is a well-known effect, the biological mechanisms that underlie it as well as its developmental impact are not well understood. Here, we provide a review of evidence of social and maternal buffering of stress reactivity in nonhuman primates, and some data from our group suggesting that when the mother-infant relationship is disrupted, maternal buffering is impaired. This evidence underscores the critical role that maternal care plays for proper regulation and development of emotional and stress responses of primate infants. Disruptions of the parent-infant bond constitute early adverse experiences associated with increased risk for psychopathology. We will focus on infant maltreatment, a devastating experience not only for humans, but for nonhuman primates as well. Taking advantage of this naturalistic animal model of adverse maternal caregiving, we have shown that competent maternal care is critical for the development of healthy attachment, social behavior, and emotional and stress regulation, as well as of the neural circuits underlying these functions.

  16. Social Buffering of Stress Responses in Nonhuman Primates: Maternal Regulation of the Development of Emotional Regulatory Brain Circuits

    Science.gov (United States)

    McCormack, Kai M.; Howell, Brittany R.

    2015-01-01

    Social buffering, the phenomenon by which the presence of a familiar individual reduces or even eliminates stress- and fear-induced responses exists in different animal species, and has been examined in the context of the mother-infant relationship in addition to adults. Although it is a well-known effect, the biological mechanisms, which underlie it, as well as its developmental impact are not well understood. Here we provide a review of evidence of social and maternal buffering of stress reactivity in nonhuman primates, and some data from our group suggesting that when the mother-infant relationship is disrupted maternal buffering is impaired. This evidence underscores the critical role that maternal care plays for proper regulation and development of emotional and stress responses of primate infants. Disruptions of the parent-infant bond constitute early adverse experiences associated with increased risk for psychopathology. We will focus on infant maltreatment, a devastating experience not only for humans, but for nonhuman primates as well. Taking advantage of this naturalistic animal model of adverse maternal caregiving we have shown that competent maternal care is critical for the development of healthy attachment, social behavior and emotional and stress regulation, as well as of neural circuits underlying these functions. PMID:26324227

  17. CXCR1 regulates pulmonary anti-Pseudomonas host defense

    Science.gov (United States)

    Carevic, M.; Öz, H.; Fuchs, K.; Laval, J.; Schroth, C.; Frey, N.; Hector, A.; Bilich, T.; Haug, M.; Schmidt, A.; Autenrieth, S. E.; Bucher, K.; Beer-Hammer, S.; Gaggar, A.; Kneilling, M.; Benarafa, C.; Gao, J.; Murphy, P.; Schwarz, S.; Moepps, B.; Hartl, D.

    2016-01-01

    Pseudomonas aeruginosa is a key opportunistic pathogen causing disease in cystic fibrosis (CF) and other lung diseases such as chronic obstructive pulmonary disease (COPD). However, the pulmonary host defense mechanisms regulating anti-Pseudomonas aeruginosa immunity remain incompletely understood. Here we demonstrate, by studying an airway Pseudomonas aeruginosa infection model, in vivo bioluminescence imaging, neutrophil effector responses and human airway samples, that the chemokine receptor CXCR1 regulates pulmonary host defense against Pseudomonas aeruginosa. Mechanistically, CXCR1 regulated anti-Pseudomonas neutrophil responses through modulation of reactive oxygen species and interference with toll-like receptor 5 expression. These studies define CXCR1 as a novel non-canonical chemokine receptor that regulates pulmonary anti-Pseudomonas host defense with broad implications for CF, COPD and other infectious lung diseases. PMID:26950764

  18. Development of a model to assess orthostatic responses

    Science.gov (United States)

    Rubin, Marilyn

    1993-01-01

    A major change for crewmembers during weightlessness in microgravity is the redistribution of body fluids from the legs into the abdomen, thorax, and head. The fluids continue to be sequestered in these areas throughout the flight. Upon reentry into gravity on landing, these same body fluids are displaced again to their normal locations, however, not without hazardous incidence to the crewmembers. The problem remains that upon landing, crewmembers are subject to orthostasis, that is, the blood flowing into the legs reduces the blood supply to the brain and may result in the crewmember fainting. The purpose of this study was to develop a model of testing orthostatic responses of blood pressure regulating mechanisms of the cardiovascular system, when challenged, to maintain blood pressure to the brain. To accomplish this, subjects' responses were assessed as they proceeded from the supine position of progressive head-up tilt positions of 30 deg, 60 deg, and 90 deg angles. A convenience sample consisted of 21 subjects, females (N=11) and males (N=10), selected from a list of potential subjects available through the NASA subject screening office. The methodology included all non-invasive measurements of blood pressure, heart rate, echocardiograms, cardiac output, cardiac stroke volume, fluid shifts in the thorax, ventricular ejection and velocity times, and skin blood perfusion. The Fischer statistical analysis was done of all data with the significance level at .05. Significant differences were demonstrated in many instances of changes of posture for all variables. Based on the significance of the findings of this study, this model for assessing orthostatic responses does provide an adequate challenge to the blood pressure regulatory systems. While individuals may use different adaptations to incremental changes in gravity, the subjects, in aggregate, demonstrated significant adaptive cardiovascular changes to orthostatic challenges which were presented to them.

  19. A Box-Cox normal model for response times.

    Science.gov (United States)

    Klein Entink, R H; van der Linden, W J; Fox, J-P

    2009-11-01

    The log-transform has been a convenient choice in response time modelling on test items. However, motivated by a dataset of the Medical College Admission Test where the lognormal model violated the normality assumption, the possibilities of the broader class of Box-Cox transformations for response time modelling are investigated. After an introduction and an outline of a broader framework for analysing responses and response times simultaneously, the performance of a Box-Cox normal model for describing response times is investigated using simulation studies and a real data example. A transformation-invariant implementation of the deviance information criterium (DIC) is developed that allows for comparing model fit between models with different transformation parameters. Showing an enhanced description of the shape of the response time distributions, its application in an educational measurement context is discussed at length.

  20. Glutamate Ligation in the Ni(II)- and Co(II)-Responsive Escherichia coli Transcriptional Regulator, RcnR

    Energy Technology Data Exchange (ETDEWEB)

    Carr, Carolyn E. [Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States; Musiani, Francesco [Laboratory; Huang, Hsin-Ting [Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States; Chivers, Peter T. [Departments of Biosciences and Chemistry, Durham University, Durham DH1 3LE, United Kingdom; Ciurli, Stefano [Laboratory; Maroney, Michael J. [Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States

    2017-05-18

    Escherichia coli RcnR (resistance to cobalt and nickel regulator, EcRcnR) is a metal-responsive repressor of the genes encoding the Ni(II) and Co(II) exporter proteins RcnAB by binding to PRcnAB. The DNA binding affinity is weakened when the cognate ions Ni(II) and Co(II) bind to EcRcnR in a six-coordinate site that features a (N/O)5S ligand donor-atom set in distinct sites: while both metal ions are bound by the N terminus, Cys35, and His64, Co(II) is additionally bound by His3. On the other hand, the noncognate Zn(II) and Cu(I) ions feature a lower coordination number, have a solvent-accessible binding site, and coordinate protein ligands that do not include the N-terminal amine. A molecular model of apo-EcRcnR suggested potential roles for Glu34 and Glu63 in binding Ni(II) and Co(II) to EcRcnR. The roles of Glu34 and Glu63 in metal binding, metal selectivity, and function were therefore investigated using a structure/function approach. X-ray absorption spectroscopy was used to assess the structural changes in the Ni(II), Co(II), and Zn(II) binding sites of Glu → Ala and Glu → Cys variants at both positions. The effect of these structural alterations on the regulation of PrcnA by EcRcnR in response to metal binding was explored using LacZ reporter assays. These combined studies indicate that while Glu63 is a ligand for both metal ions, Glu34 is a ligand for Co(II) but possibly not for Ni(II). The Glu34 variants affect the structure of the cognate metal sites, but they have no effect on the transcriptional response. In contrast, the Glu63 variants affect both the structure and transcriptional response, although they do not completely abolish the function of EcRcnR. The structure of the Zn(II) site is not significantly perturbed by any of the glutamic acid variations. The spectroscopic and functional data obtained on the mutants were used to calculate models of the metal-site structures of EcRcnR bound to Ni(II), Co(II), and Zn(II). The results are interpreted

  1. Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA.

    Directory of Open Access Journals (Sweden)

    Andrea D McCue

    2012-02-01

    Full Text Available The epigenetic activity of transposable elements (TEs can influence the regulation of genes; though, this regulation is confined to the genes, promoters, and enhancers that neighbor the TE. This local cis regulation of genes therefore limits the influence of the TE's epigenetic regulation on the genome. TE activity is suppressed by small RNAs, which also inhibit viruses and regulate the expression of genes. The production of TE heterochromatin-associated endogenous small interfering RNAs (siRNAs in the reference plant Arabidopsis thaliana is mechanistically distinct from gene-regulating small RNAs, such as microRNAs or trans-acting siRNAs (tasiRNAs. Previous research identified a TE small RNA that potentially regulates the UBP1b mRNA, which encodes an RNA-binding protein involved in stress granule formation. We demonstrate that this siRNA, siRNA854, is under the same trans-generational epigenetic control as the Athila family LTR retrotransposons from which it is produced. The epigenetic activation of Athila elements results in a shift in small RNA processing pathways, and new 21-22 nucleotide versions of Athila siRNAs are produced by protein components normally not responsible for processing TE siRNAs. This processing results in siRNA854's incorporation into ARGONAUTE1 protein complexes in a similar fashion to gene-regulating tasiRNAs. We have used reporter transgenes to demonstrate that the UPB1b 3' untranslated region directly responds to the epigenetic status of Athila TEs and the accumulation of siRNA854. The regulation of the UPB1b 3' untranslated region occurs both on the post-transcriptional and translational levels when Athila TEs are epigenetically activated, and this regulation results in the phenocopy of the ubp1b mutant stress-sensitive phenotype. This demonstrates that a TE's epigenetic activity can modulate the host organism's stress response. In addition, the ability of this TE siRNA to regulate a gene's expression in trans blurs

  2. Conserved ABC Transport System Regulated by the General Stress Response Pathways of Alpha- and Gammaproteobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Herrou, Julien; Willett, Jonathan W.; Czy; #380; , Daniel M.; Babnigg, Gyorgy; Kim, Youngchang; Crosson, Sean (UC)

    2016-12-19

    ABSTRACT

    Brucella abortusσE1is an EcfG family sigma factor that regulates the transcription of dozens of genes in response to diverse stress conditions and is required for maintenance of chronic infection in a mouse model. A putative ATP-binding cassette transporter operon,bab1_0223-bab1_0226, is among the most highly activated gene sets in the σE1regulon. The proteins encoded by the operon resemble quaternary ammonium-compatible solute importers but are most similar in sequence to the broadly conserved YehZYXW system, which remains largely uncharacterized. Transcription ofyehZYXWis activated by the general stress sigma factor σSinEnterobacteriaceae, which suggests a functional role for this transport system in bacterial stress response across the classesAlphaproteobacteriaandGammaproteobacteria. We present evidence thatB. abortusYehZYXW does not function as an importer of known compatible solutes under physiological conditions and does not contribute to the virulence defect of a σE1-null strain. The solein vitrophenotype associated with genetic disruption of this putative transport system is reduced growth in the presence of high Li+ion concentrations. A crystal structure ofB. abortusYehZ revealed a class II periplasmic binding protein fold with significant structural homology toArchaeoglobus fulgidusProX, which binds glycine betaine. However, the structure

  3. Autonomy promotion, responsiveness, and emotion regulation promote effective social support in times of stress.

    Science.gov (United States)

    Cutrona, Carolyn E; Russell, Daniel W

    2017-02-01

    Adult attachment theory provides guidance for providing optimal social support in intimate relationships. According to attachment theory, facilitating autonomy (secure base support) sometimes is more important than providing nurturance (safe haven support). In addition, it is important that couples celebrate one another's triumphs and successes (another form of secure base support). A key construct that explains the development of attachment is responsiveness to the individual's needs. Support that is delivered in a responsive manner (i.e., that leads the individual to feel understood, validated, and cared for) is more likely to enhance the relationship and less likely to damage self-esteem than assistance that is not responsive. A responsive exchange is more likely if emotion dysregulation can be prevented. Attachment theory offers explanations for why people vary in their effectiveness at emotion regulation. Appropriate emotion regulation is more likely if disclosures of current difficulties can be made in a way that is not defensive or accusatory, an ability that varies as a function of attachment orientation. Attachment theory also offers guidance regarding the optimal forms of social support for specific individuals. All these insights from adult attachment theory can be integrated into interventions to help couples become more effective support providers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A Bivariate Generalized Linear Item Response Theory Modeling Framework to the Analysis of Responses and Response Times.

    Science.gov (United States)

    Molenaar, Dylan; Tuerlinckx, Francis; van der Maas, Han L J

    2015-01-01

    A generalized linear modeling framework to the analysis of responses and response times is outlined. In this framework, referred to as bivariate generalized linear item response theory (B-GLIRT), separate generalized linear measurement models are specified for the responses and the response times that are subsequently linked by cross-relations. The cross-relations can take various forms. Here, we focus on cross-relations with a linear or interaction term for ability tests, and cross-relations with a curvilinear term for personality tests. In addition, we discuss how popular existing models from the psychometric literature are special cases in the B-GLIRT framework depending on restrictions in the cross-relation. This allows us to compare existing models conceptually and empirically. We discuss various extensions of the traditional models motivated by practical problems. We also illustrate the applicability of our approach using various real data examples, including data on personality and cognitive ability.

  5. Experimentally observed responses to humour are related to individual differences in emotion perception and regulation in everyday life.

    OpenAIRE

    Papousek I.; Schulter G.; Lackner H. K.; Samson A. C.; Freudenthaler H. H.

    2014-01-01

    This study aimed to investigate the relevance of an individual's typical emotion perception and emotion regulation behavior to his or her responsiveness to humor. This was studied behaviorally by examining responses to different types of humorous stimuli in an experimental paradigm, in a sample of n = 54 participants aged between 18 to 41 years (29 women, 25 men). Individual differences in emotion perception and regulation were assessed by relevant subscales of an established self-report inst...

  6. Response Styles in the Partial Credit Model

    OpenAIRE

    Tutz, Gerhard; Schauberger, Gunther; Berger, Moritz

    2016-01-01

    In the modelling of ordinal responses in psychological measurement and survey- based research, response styles that represent specific answering patterns of respondents are typically ignored. One consequence is that estimates of item parameters can be poor and considerably biased. The focus here is on the modelling of a tendency to extreme or middle categories. An extension of the Partial Credit Model is proposed that explicitly accounts for this specific response style. In contrast to exi...

  7. Identification of BC005512 as a DNA damage responsive murine endogenous retrovirus of GLN family involved in cell growth regulation.

    Directory of Open Access Journals (Sweden)

    Yuanfeng Wu

    Full Text Available Genotoxicity assessment is of great significance in drug safety evaluation, and microarray is a useful tool widely used to identify genotoxic stress responsive genes. In the present work, by using oligonucleotide microarray in an in vivo model, we identified an unknown gene BC005512 (abbreviated as BC, official full name: cDNA sequence BC005512, whose expression in mouse liver was specifically induced by seven well-known genotoxins (GTXs, but not by non-genotoxins (NGTXs. Bioinformatics revealed that BC was a member of the GLN family of murine endogenous retrovirus (ERV. However, the relationship to genotoxicity and the cellular function of GLN are largely unknown. Using NIH/3T3 cells as an in vitro model system and quantitative real-time PCR, BC expression was specifically induced by another seven GTXs, covering diverse genotoxicity mechanisms. Additionally, dose-response and linear regression analysis showed that expression level of BC in NIH/3T3 cells strongly correlated with DNA damage, measured using the alkaline comet assay,. While in p53 deficient L5178Y cells, GTXs could not induce BC expression. Further functional studies using RNA interference revealed that down-regulation of BC expression induced G1/S phase arrest, inhibited cell proliferation and thus suppressed cell growth in NIH/3T3 cells. Together, our results provide the first evidence that BC005512, a member from GLN family of murine ERV, was responsive to DNA damage and involved in cell growth regulation. These findings could be of great value in genotoxicity predictions and contribute to a deeper understanding of GLN biological functions.

  8. The cell wall and endoplasmic reticulum stress responses are coordinately regulated in Saccharomyces cerevisiae

    OpenAIRE

    Krysan, Damian J

    2009-01-01

    The unfolded protein response (UPR) is an intracellular signaling pathway that regulates the cellular response to the accumulation of misfolded proteins in eukaryotes. Our group has demonstrated that cell wall stress activates UPR in yeast through signals transmitted by the cell wall integrity (CWI) mitogen-activated protein (MAP) kinase cascade. The UPR is required to maintain cell wall integrity; mutants lacking a functional UPR have defects in cell wall biosynthesis and are hypersensitive ...

  9. Computer simulation studies in fluid and calcium regulation and orthostatic intolerance

    Science.gov (United States)

    1985-01-01

    The systems analysis approach to physiological research uses mathematical models and computer simulation. Major areas of concern during prolonged space flight discussed include fluid and blood volume regulation; cardiovascular response during shuttle reentry; countermeasures for orthostatic intolerance; and calcium regulation and bone atrophy. Potential contributions of physiologic math models to future flight experiments are examined.

  10. Two-stage gene regulation of the superoxide stress response soxRS system in Escherichia coli.

    Science.gov (United States)

    Nunoshiba, T

    1996-01-01

    All organisms have adapted to environmental changes by acquiring various functions controlled by gene regulation. In bacteria, a number of specific responses have been found to confer cell survival in various nutrient-limited conditions, and under physiological stresses such as high or low temperature, extreme pH, radiation, and oxidation (for review, see Neidhardt et al., 1987). In this article, I introduce an Escherichia coli (E. coli) global response induced by superoxide stress, the soxRS regulon. The functions controlled by this system consist of a wide variety of enzymes such as manganese-containing SOD (Mn-SOD); glucose 6-phosphate dehydrogenase (G6PD), the DNA repair enzyme endonuclease IV, fumarase C, NADPH:ferredoxin oxidoreductase, and aconitase. This response is positively regulated by a two-stage control system in which SoxR iron-sulfur protein senses exposure to superoxide and nitric oxide, and then activates transcription of the soxS gene, whose product stimulates the expression of the regulon genes. Our recent finding indicates that soxS transcription is initiated in a manner dependent on the rpoS gene encoding RNA polymerase sigma factor, theta s, in response to entering the stationary phase of growth. With this information, mechanisms for prokaryotic coordinating gene expression in response to superoxide stress and in stationary phase are discussed.

  11. Kallikrein–Kinin System Suppresses Type I Interferon Responses: A Novel Pathway of Interferon Regulation

    Directory of Open Access Journals (Sweden)

    Alecia Seliga

    2018-02-01

    Full Text Available The Kallikrein–Kinin System (KKS, comprised of kallikreins (klks, bradykinins (BKs angiotensin-converting enzyme (ACE, and many other molecules, regulates a number of physiological processes, including inflammation, coagulation, angiogenesis, and control of blood pressure. In this report, we show that KKS regulates Type I IFN responses, thought to be important in lupus pathogenesis. We used CpG (TLR9 ligand, R848 (TLR7 ligand, or recombinant IFN-α to induce interferon-stimulated genes (ISGs and proteins, and observed that this response was markedly diminished by BKs, klk1 (tissue kallikrein, or captopril (an ACE inhibitor. BKs significantly decreased the ISGs induced by TLRs in vitro and in vivo (in normal and lupus-prone mice, and in human PBMCs, especially the induction of Irf7 gene (p < 0.05, the master regulator of Type I IFNs. ISGs induced by IFN-α were also suppressed by the KKS. MHC Class I upregulation, a classic response to Type I IFNs, was reduced by BKs in murine dendritic cells (DCs. BKs decreased phosphorylation of STAT2 molecules that mediate IFN signaling. Among the secreted pro-inflammatory cytokines/chemokines analyzed (IL-6, IL12p70, and CXCL10, the strongest suppressive effect was on CXCL10, a highly Type I IFN-dependent cytokine, upon CpG stimulation, both in normal and lupus-prone DCs. klks that break down into BKs, also suppressed CpG-induced ISGs in murine DCs. Captopril, a drug that inhibits ACE and increases BK, suppressed ISGs, both in mouse DCs and human PBMCs. The effects of BK were reversed with indomethacin (compound that inhibits production of PGE2, suggesting that BK suppression of IFN responses may be mediated via prostaglandins. These results highlight a novel regulatory mechanism in which members of the KKS control the Type I IFN response and suggest a role for modulators of IFNs in the pathogenesis of lupus and interferonopathies.

  12. Complex and extensive post-transcriptional regulation revealed by integrative proteomic and transcriptomic analysis of metabolite stress response in Clostridium acetobutylicum.

    Science.gov (United States)

    Venkataramanan, Keerthi P; Min, Lie; Hou, Shuyu; Jones, Shawn W; Ralston, Matthew T; Lee, Kelvin H; Papoutsakis, E Terry

    2015-01-01

    Clostridium acetobutylicum is a model organism for both clostridial biology and solvent production. The organism is exposed to its own toxic metabolites butyrate and butanol, which trigger an adaptive stress response. Integrative analysis of proteomic and RNAseq data may provide novel insights into post-transcriptional regulation. The identified iTRAQ-based quantitative stress proteome is made up of 616 proteins with a 15 % genome coverage. The differentially expressed proteome correlated poorly with the corresponding differential RNAseq transcriptome. Up to 31 % of the differentially expressed proteins under stress displayed patterns opposite to those of the transcriptome, thus suggesting significant post-transcriptional regulation. The differential proteome of the translation machinery suggests that cells employ a different subset of ribosomal proteins under stress. Several highly upregulated proteins but with low mRNA levels possessed mRNAs with long 5'UTRs and strong RBS scores, thus supporting the argument that regulatory elements on the long 5'UTRs control their translation. For example, the oxidative stress response rubrerythrin was upregulated only at the protein level up to 40-fold without significant mRNA changes. We also identified many leaderless transcripts, several displaying different transcriptional start sites, thus suggesting mRNA-trimming mechanisms under stress. Downregulation of Rho and partner proteins pointed to changes in transcriptional elongation and termination under stress. The integrative proteomic-transcriptomic analysis demonstrated complex expression patterns of a large fraction of the proteome. Such patterns could not have been detected with one or the other omic analyses. Our analysis proposes the involvement of specific molecular mechanisms of post-transcriptional regulation to explain the observed complex stress response.

  13. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Dong-bei Xu

    Full Text Available Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2 was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1, were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44, were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade.

  14. Regulation of immune responses and tolerance: the microRNA perspective

    Science.gov (United States)

    Chen, Chang-Zheng; Schaffert, Steven; Fragoso, Rita; Loh, Christina

    2013-01-01

    Summary Much has been learned about the molecular and cellular components critical for the control of immune responses and tolerance. It remains a challenge, however, to control the immune response and tolerance at the system level without causing significant toxicity to normal tissues. Recent studies suggest that microRNA (miRNA) genes, an abundant class of non-coding RNA genes that produce characteristic approximately 22 nucleotides small RNAs, play important roles in immune cells. In this article, we discuss emerging knowledge regarding the functions of miRNA genes in the immune system. We delve into the roles of miRNAs in regulating signaling strength and threshold, homeostasis, and the dynamics of the immune response and tolerance during normal and pathogenic immunological conditions. We also present observations based on analyzes of miR-181 family genes that indicate the potential functions of primary and/ or precursor miRNAs in target recognition and explore the impact of these findings on target identification. Finally, we illustrate that despite the subtle effects of miRNAs on gene expression, miRNAs have the potential to influence the outcomes of normal and pathogenic immune responses by controlling the quantitative and dynamic aspects of immune responses. Tuning miRNA functions in immune cells, through gain- and loss-of-function approaches in mice, may reveal novel approach to restore immune equilibrium from pathogenic conditions, such as autoimmune disease and leukemia, without significant toxicity. PMID:23550642

  15. Regulation of immune responses and tolerance: the microRNA perspective.

    Science.gov (United States)

    Chen, Chang-Zheng; Schaffert, Steven; Fragoso, Rita; Loh, Christina

    2013-05-01

    Much has been learned about the molecular and cellular components critical for the control of immune responses and tolerance. It remains a challenge, however, to control the immune response and tolerance at the system level without causing significant toxicity to normal tissues. Recent studies suggest that microRNA (miRNA) genes, an abundant class of non-coding RNA genes that produce characteristic approximately 22 nucleotides small RNAs, play important roles in immune cells. In this article, we discuss emerging knowledge regarding the functions of miRNA genes in the immune system. We delve into the roles of miRNAs in regulating signaling strength and threshold, homeostasis, and the dynamics of the immune response and tolerance during normal and pathogenic immunological conditions. We also present observations based on analyzes of miR-181 family genes that indicate the potential functions of primary and/or precursor miRNAs in target recognition and explore the impact of these findings on target identification. Finally, we illustrate that despite the subtle effects of miRNAs on gene expression, miRNAs have the potential to influence the outcomes of normal and pathogenic immune responses by controlling the quantitative and dynamic aspects of immune responses. Tuning miRNA functions in immune cells, through gain- and loss-of-function approaches in mice, may reveal novel approach to restore immune equilibrium from pathogenic conditions, such as autoimmune disease and leukemia, without significant toxicity. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  16. Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses

    International Nuclear Information System (INIS)

    Fukuyama, Yoshiko; Tokuhara, Daisuke; Sekine, Shinichi; Kataoka, Kosuke; Markham, Jonathan D.; Irwin, Allyson R.; Moon, Grace H.; Tokuhara, Yuka; Fujihashi, Keiko; Davydova, Julia; Yamamoto, Masato; Gilbert, Rebekah S.; Fujihashi, Kohtaro

    2012-01-01

    Highlights: ► Nasal Ad-FL effectively up-regulates APC function by CD11c + DCs in mucosal tissues. ► Nasal Ad-FL induces Notch ligand (L)-expressing CD11c + DCs. ► Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c + dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c + DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c + DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c + DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4 + T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-γ, IL-2 and IL-4 producing CD4 + T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch–Notch-L pathway. These results show that Ad-FL induces CD11c + DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.

  17. Somatic insulin signaling regulates a germline starvation response in Drosophila egg chambers

    Science.gov (United States)

    Burn, K. Mahala; Shimada, Yuko; Ayers, Kathleen; Lu, Feiyue; Hudson, Andrew M.; Cooley, Lynn

    2014-01-01

    Egg chambers from starved Drosophila females contain large aggregates of processing (P) bodies and cortically enriched microtubules. As this response to starvation is rapidly reversed upon re-feeding females or culturing egg chambers with exogenous bovine insulin, we examined the role of endogenous insulin signaling in mediating the starvation response. We found that systemic Drosophila insulin-like peptides (dILPs) activate the insulin pathway in follicle cells, which then regulate both microtubule and P body organization in the underlying germline cells. This organization is modulated by the motor proteins Dynein and Kinesin. Dynein activity is required for microtubule and P body organization during starvation, while Kinesin activity is required during nutrient-rich conditions. Blocking the ability of egg chambers to form P body aggregates in response to starvation correlated with reduced progeny survival. These data suggest a potential mechanism to maximize fecundity even during periods of poor nutrient availability, by mounting a protective response in immature egg chambers. PMID:25481758

  18. Design of protein-responsive micro-sized hydrogels for self-regulating microfluidic systems

    Science.gov (United States)

    Hirayama, Mayu; Tsuruta, Kazuhiro; Kawamura, Akifumi; Ohara, Masayuki; Shoji, Kan; Kawano, Ryuji; Miyata, Takashi

    2018-03-01

    Diagnosis sensors using micro-total analysis systems (µ-TAS) have been developed for detecting target biomolecules such as proteins and saccharides because they are signal biomolecules for monitoring body conditions and diseases. In this study, biomolecularly stimuli-responsive micro-sized hydrogels that exhibited quick shrinkage in response to lectin concanavalinA (ConA) were prepared in a microchannel by photopolymerization using a fluorescence microscope. In preparing the micro-size hydrogels, glycosyloxyethyl methacrylate (GEMA) as a ligand monomer was copolymerized with a crosslinker in the presence of template ConA in molecular imprinting. The ConA-imprinted micro-hydrogel showed greater shrinkage in response to target ConA than nonimprinted micro-hydrogel. When a buffer solution was switched to an aqueous ConA solution in the Y-shaped microchannel, the flow rates changed quickly because of the responsive shrinkage of the micro-hydrogel prepared in the microchannel. These results suggest that the ConA-imprinted micro-hydrogel acted as a self-regulated microvalve in microfluidic systems.

  19. Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes.

    Science.gov (United States)

    Verrier, Eloi R; Colpitts, Che C; Bach, Charlotte; Heydmann, Laura; Zona, Laetitia; Xiao, Fei; Thumann, Christine; Crouchet, Emilie; Gaudin, Raphaël; Sureau, Camille; Cosset, François-Loïc; McKeating, Jane A; Pessaux, Patrick; Hoshida, Yujin; Schuster, Catherine; Zeisel, Mirjam B; Baumert, Thomas F

    2016-10-25

    Chronic hepatitis B, C, and D virus (HBV, HCV, and HDV) infections are the leading causes of liver disease and cancer worldwide. Recently, the solute carrier and sodium taurocholate co-transporter NTCP has been identified as a receptor for HBV and HDV. Here, we uncover NTCP as a host factor regulating HCV infection. Using gain- and loss-of-function studies, we show that NTCP mediates HCV infection of hepatocytes and is relevant for cell-to-cell transmission. NTCP regulates HCV infection by augmenting the bile-acid-mediated repression of interferon-stimulated genes (ISGs), including IFITM3. In conclusion, our results uncover NTCP as a mediator of innate antiviral immune responses in the liver, and they establish a role for NTCP in the infection process of multiple viruses via distinct mechanisms. Collectively, our findings suggest a role for solute carriers in the regulation of innate antiviral responses, and they have potential implications for virus-host interactions and antiviral therapies. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Modelling non-ignorable missing data mechanisms with item response theory models

    NARCIS (Netherlands)

    Holman, Rebecca; Glas, Cornelis A.W.

    2005-01-01

    A model-based procedure for assessing the extent to which missing data can be ignored and handling non-ignorable missing data is presented. The procedure is based on item response theory modelling. As an example, the approach is worked out in detail in conjunction with item response data modelled

  1. Modelling non-ignorable missing-data mechanisms with item response theory models

    NARCIS (Netherlands)

    Holman, Rebecca; Glas, Cees A. W.

    2005-01-01

    A model-based procedure for assessing the extent to which missing data can be ignored and handling non-ignorable missing data is presented. The procedure is based on item response theory modelling. As an example, the approach is worked out in detail in conjunction with item response data modelled

  2. Generation of a double binary transgenic zebrafish model to study myeloid gene regulation in response to oncogene activation in melanocytes.

    Science.gov (United States)

    Kenyon, Amy; Gavriouchkina, Daria; Zorman, Jernej; Chong-Morrison, Vanessa; Napolitani, Giorgio; Cerundolo, Vincenzo; Sauka-Spengler, Tatjana

    2018-04-06

    A complex network of inflammatory genes is closely linked to somatic cell transformation and malignant disease. Immune cells and their associated molecules are responsible for detecting and eliminating cancer cells as they establish themselves as the precursors of a tumour. By the time a patient has a detectable solid tumour, cancer cells have escaped the initial immune response mechanisms. Here, we describe the development of a double binary zebrafish model that enables regulatory programming of the myeloid cells as they respond to oncogene-activated melanocytes to be explored, focussing on the initial phase when cells become the precursors of cancer. A hormone-inducible binary system allows for temporal control of expression of different Ras oncogenes ( NRas Q61K , HRas G12V and KRas G12V ) in melanocytes, leading to proliferation and changes in morphology of the melanocytes. This model was coupled to binary cell-specific biotagging models allowing in vivo biotinylation and subsequent isolation of macrophage or neutrophil nuclei for regulatory profiling of their active transcriptomes. Nuclear transcriptional profiling of neutrophils, performed as they respond to the earliest precursors of melanoma in vivo , revealed an intricate landscape of regulatory factors that may promote progression to melanoma, including Serpinb1l4, Fgf1, Fgf6, Cathepsin H, Galectin 1 and Galectin 3. The model presented here provides a powerful platform to study the myeloid response to the earliest precursors of melanoma. © 2018. Published by The Company of Biologists Ltd.

  3. Cognitive Emotional Regulation Model in Human-Robot Interaction

    OpenAIRE

    Liu, Xin; Xie, Lun; Liu, Anqi; Li, Dan

    2015-01-01

    This paper integrated Gross cognitive process into the HMM (hidden Markov model) emotional regulation method and implemented human-robot emotional interaction with facial expressions and behaviors. Here, energy was the psychological driving force of emotional transition in the cognitive emotional model. The input facial expression was translated into external energy by expression-emotion mapping. Robot’s next emotional state was determined by the cognitive energy (the stimulus after cognition...

  4. Modeling the cost and benefit of proteome regulation in a growing bacterial cell

    Science.gov (United States)

    Sharma, Pooja; Pratim Pandey, Parth; Jain, Sanjay

    2018-07-01

    Escherichia coli cells differentially regulate the production of metabolic and ribosomal proteins in order to stay close to an optimal growth rate in different environments, and exhibit the bacterial growth laws as a consequence. We present a simple mathematical model of a growing-dividing cell in which an internal dynamical mechanism regulates the allocation of proteomic resources between different protein sectors. The model allows an endogenous determination of the growth rate of the cell as a function of cellular and environmental parameters, and reproduces the bacterial growth laws. We use the model and its variants to study the balance between the cost and benefit of regulation. A cost is incurred because cellular resources are diverted to produce the regulatory apparatus. We show that there is a window of environments or a ‘niche’ in which the unregulated cell has a higher fitness than the regulated cell. Outside this niche there is a large space of constant and time varying environments in which regulation is an advantage. A knowledge of the ‘niche boundaries’ allows one to gain an intuitive understanding of the class of environments in which regulation is an advantage for the organism and which would therefore favour the evolution of regulation. The model allows us to determine the ‘niche boundaries’ as a function of cellular parameters such as the size of the burden of the regulatory apparatus. This class of models may be useful in elucidating various tradeoffs in cells and in making in-silico predictions relevant for synthetic biology.

  5. A response-modeling alternative to surrogate models for support in computational analyses

    International Nuclear Information System (INIS)

    Rutherford, Brian

    2006-01-01

    Often, the objectives in a computational analysis involve characterization of system performance based on some function of the computed response. In general, this characterization includes (at least) an estimate or prediction for some performance measure and an estimate of the associated uncertainty. Surrogate models can be used to approximate the response in regions where simulations were not performed. For most surrogate modeling approaches, however (1) estimates are based on smoothing of available data and (2) uncertainty in the response is specified in a point-wise (in the input space) fashion. These aspects of the surrogate model construction might limit their capabilities. One alternative is to construct a probability measure, G(r), for the computer response, r, based on available data. This 'response-modeling' approach will permit probability estimation for an arbitrary event, E(r), based on the computer response. In this general setting, event probabilities can be computed: prob(E)=∫ r I(E(r))dG(r) where I is the indicator function. Furthermore, one can use G(r) to calculate an induced distribution on a performance measure, pm. For prediction problems where the performance measure is a scalar, its distribution F pm is determined by: F pm (z)=∫ r I(pm(r)≤z)dG(r). We introduce response models for scalar computer output and then generalize the approach to more complicated responses that utilize multiple response models

  6. Sleep regulation: physiological models and hypotheses.

    Science.gov (United States)

    Borbély, A A

    1995-06-01

    The elucidation of sleep regulation is not an easy task. On one side, there is a multitude of solid yet disparate data, on the other side, the topic is tempting for engaging in wild speculation, particularly with respect to the functions of sleep. Models may exert a moderating influence by mediating between the two extremes. However, also they navigate between the risk of banality in reformulating the obvious, and the peril of fancy in losing touch with empirical reality.

  7. Randomized Item Response Theory Models

    NARCIS (Netherlands)

    Fox, Gerardus J.A.

    2005-01-01

    The randomized response (RR) technique is often used to obtain answers on sensitive questions. A new method is developed to measure latent variables using the RR technique because direct questioning leads to biased results. Within the RR technique is the probability of the true response modeled by

  8. The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity.

    Science.gov (United States)

    Raivio, Tracy L; Leblanc, Shannon K D; Price, Nancy L

    2013-06-01

    The Cpx envelope stress response mediates adaptation to stresses that cause envelope protein misfolding. Adaptation is partly conferred through increased expression of protein folding and degradation factors. The Cpx response also plays a conserved role in the regulation of virulence determinant expression and impacts antibiotic resistance. We sought to identify adaptive mechanisms that may be involved in these important functions by characterizing changes in the transcriptome of two different Escherichia coli strains when the Cpx response is induced. We show that, while there is considerable strain- and condition-specific variability in the Cpx response, the regulon is enriched for proteins and functions that are inner membrane associated under all conditions. Genes that were changed by Cpx pathway induction under all conditions were involved in a number of cellular functions and included several intergenic regions, suggesting that posttranscriptional regulation is important during Cpx-mediated adaptation. Some Cpx-regulated genes are centrally involved in energetics and play a role in antibiotic resistance. We show that a number of small, uncharacterized envelope proteins are Cpx regulated and at least two of these affect phenotypes associated with membrane integrity. Altogether, our work suggests new mechanisms of Cpx-mediated envelope stress adaptation and antibiotic resistance.

  9. Model for Managing Corporate Social Responsibility

    Directory of Open Access Journals (Sweden)

    Tamara Vlastelica Bakić

    2015-05-01

    Full Text Available As a crossfuncional process in the organization, effective management of corporate social responsibility requires a definition of strategies, programs and an action plan that structures this process from its initiation to the measurement of end effects. Academic literature on the topic of corporate social responsibility is mainly focused on the exploration of the business case for the concept, i.e., the determination of effects of social responsibility on individual aspects of the business. Scientific research so far has shown not to have been committed to formalizing management concept in this domain to a satisfactory extent; it is for this reason that this paper attempts to present one model for managing corporate social responsibility. The model represents a contribution to the theory and business practice of corporate social responsibility, as it offers a strategic framework for systematic planning, implementation and evaluation of socially responsible activities and programs.

  10. Activated leucocyte cell adhesion molecule (ALCAM/CD166) regulates T cell responses in a murine model of food allergy.

    Science.gov (United States)

    Kim, Y S; Kim, M N; Lee, K E; Hong, J Y; Oh, M S; Kim, S Y; Kim, K W; Sohn, M H

    2018-05-01

    Food allergy is a major public health problem. Studies have shown that long-term interactions between activated leucocyte cell adhesion molecule (ALCAM/CD166) on the surface of antigen-presenting cells, and CD6, a co-stimulatory molecule, influence immune responses. However, there are currently no studies on the functions of ALCAM in food allergy. Therefore, we aimed to identify the functions of ALCAM in ovalbumin (OVA)-induced food allergy using ALCAM-deficient mice. Wild-type (WT) and ALCAM-deficient (ALCAM -/- ) mice were sensitized intraperitoneally and with orally fed OVA. The mice were killed, and parameters related to food allergy and T helper type 2 (Th2) immune responses were analysed. ALCAM serum levels increased and mRNA expression decreased in OVA-challenged WT mice. Serum immunoglobulin (Ig)E levels, Th2 cytokine mRNA and histological injuries were higher in OVA-challenged WT mice than in control mice, and these were attenuated in ALCAM -/- mice. T cell proliferation of total cells, CD3 + CD4 + T cells and activated T cells in immune tissues were diminished in OVA-challenged ALCAM -/- mice. Proliferation of co-cultured T cells and dendritic cells (DCs) was decreased by the anti-CD6 antibody. In addition, WT mice sensitized by adoptive transfer of OVA-pulsed ALCAM -/- BM-derived DCs showed reduced immune responses. Lastly, serum ALCAM levels were higher in children with food allergy than in control subjects. In this study, serum levels of ALCAM were elevated in food allergy-induced WT mice and children with food allergy. Moreover, immune responses and T cell activation were attenuated in OVA-challenged ALCAM -/- mice. These results indicate that ALCAM regulates food allergy by affecting T cell activation. © 2018 British Society for Immunology.

  11. A Gata2-Dependent Transcription Network Regulates Uterine Progesterone Responsiveness and Endometrial Function

    Directory of Open Access Journals (Sweden)

    Cory A. Rubel

    2016-10-01

    Full Text Available Altered progesterone responsiveness leads to female infertility and cancer, but underlying mechanisms remain unclear. Mice with uterine-specific ablation of GATA binding protein 2 (Gata2 are infertile, showing failures in embryo implantation, endometrial decidualization, and uninhibited estrogen signaling. Gata2 deficiency results in reduced progesterone receptor (PGR expression and attenuated progesterone signaling, as evidenced by genome-wide expression profiling and chromatin immunoprecipitation. GATA2 not only occupies at and promotes expression of the Pgr gene but also regulates downstream progesterone responsive genes in conjunction with the PGR. Additionally, Gata2 knockout uteri exhibit abnormal luminal epithelia with ectopic TRP63 expressing squamous cells and a cancer-related molecular profile in a progesterone-independent manner. Lastly, we found a conserved GATA2-PGR regulatory network in both human and mice based on gene signature and path analyses using gene expression profiles of human endometrial tissues. In conclusion, uterine Gata2 regulates a key regulatory network of gene expression for progesterone signaling at the early pregnancy stage.

  12. Global Metabolic Regulation of the Snow Alga Chlamydomonas nivalis in Response to Nitrate or Phosphate Deprivation by a Metabolome Profile Analysis.

    Science.gov (United States)

    Lu, Na; Chen, Jun-Hui; Wei, Dong; Chen, Feng; Chen, Gu

    2016-05-10

    In the present work, Chlamydomonas nivalis, a model species of snow algae, was used to illustrate the metabolic regulation mechanism of microalgae under nutrient deprivation stress. The seed culture was inoculated into the medium without nitrate or phosphate to reveal the cell responses by a metabolome profile analysis using gas chromatography time-of-flight mass spectrometry (GC/TOF-MS). One hundred and seventy-one of the identified metabolites clustered into five groups by the orthogonal partial least squares discriminant analysis (OPLS-DA) model. Among them, thirty of the metabolites in the nitrate-deprived group and thirty-nine of the metabolites in the phosphate-deprived group were selected and identified as "responding biomarkers" by this metabolomic approach. A significant change in the abundance of biomarkers indicated that the enhanced biosynthesis of carbohydrates and fatty acids coupled with the decreased biosynthesis of amino acids, N-compounds and organic acids in all the stress groups. The up- or down-regulation of these biomarkers in the metabolic network provides new insights into the global metabolic regulation and internal relationships within amino acid and fatty acid synthesis, glycolysis, the tricarboxylic acid cycle (TCA) and the Calvin cycle in the snow alga under nitrate or phosphate deprivation stress.

  13. Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: a comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP).

    Science.gov (United States)

    Pan, Yude; Melillo, Jerry M; McGuire, A David; Kicklighter, David W; Pitelka, Louis F; Hibbard, Kathy; Pierce, Lars L; Running, Steven W; Ojima, Dennis S; Parton, William J; Schimel, David S

    1998-04-01

    Although there is a great deal of information concerning responses to increases in atmospheric CO 2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO 2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO 2 . In this study, we analyze the responses of net primary production (NPP) to doubled CO 2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO 2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO 2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO 2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO 2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO 2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO 2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which

  14. Limited information estimation of the diffusion-based item response theory model for responses and response times.

    Science.gov (United States)

    Ranger, Jochen; Kuhn, Jörg-Tobias; Szardenings, Carsten

    2016-05-01

    Psychological tests are usually analysed with item response models. Recently, some alternative measurement models have been proposed that were derived from cognitive process models developed in experimental psychology. These models consider the responses but also the response times of the test takers. Two such models are the Q-diffusion model and the D-diffusion model. Both models can be calibrated with the diffIRT package of the R statistical environment via marginal maximum likelihood (MML) estimation. In this manuscript, an alternative approach to model calibration is proposed. The approach is based on weighted least squares estimation and parallels the standard estimation approach in structural equation modelling. Estimates are determined by minimizing the discrepancy between the observed and the implied covariance matrix. The estimator is simple to implement, consistent, and asymptotically normally distributed. Least squares estimation also provides a test of model fit by comparing the observed and implied covariance matrix. The estimator and the test of model fit are evaluated in a simulation study. Although parameter recovery is good, the estimator is less efficient than the MML estimator. © 2016 The British Psychological Society.

  15. Defense of single-factor models of population regulation

    International Nuclear Information System (INIS)

    Tamarin, R.H.

    1978-01-01

    I reject a multifactorial approach to the study of the regulation of animal populations for two reasons. First, a mechanism suggested by Chitty, that has natural selection at its base, has not been adequately tested. Second, the multifactorial model suggested by Lidicker is untestable because of its vagueness. As a middle ground, I suggest a model that has natural selection as its mechanism, but is multifacturial because it allows many parameters to be the selective agents. I particularly emphasize prediction and selective dispersal. Methods to test this model are suggested

  16. Agent-based Modeling Simulation Analysis on the Regulation of Institutional Investor's Encroachment Behavior in Stock Market

    Directory of Open Access Journals (Sweden)

    Yang Li

    2014-05-01

    Full Text Available Purpose: This study explores the effective regulation of institutional investor's encroachment behavior in stock market. Given the theoretical and practical importance, the present study examines the effect of the self-adaptive regulation strategy (adjusting the regulation factors such as punishment and the probability of investigating successfully in time for the sake of the small & medium-sized investor protection.Design/methodology/approach: This study was carried out through game theory and agent-based modeling simulation. Firstly, a dynamic game model was built to search the core factors of regulation and the equilibrium paths. Secondly, an agent-based modeling simulation model was built in Swarm to extend the game model. Finally, a simulation experiment (using virtual parameter values was performed to examine the effect of regulation strategy obtained form game model.Findings: The results of this study showed that the core factors of avoiding the institutional investor's encroachment behavior are the punishment and the probability of investigating successfully of the regulator. The core factors embody as the self-adaptability and the capability of regulator. If the regulator can adjust the regulation factors in time, the illegal behaviors will be avoided effectively.Research limitations/implications: The simulation experiment in this paper was performed with virtual parameter values. Although the results of experiment showed the effect of self-adaptive regulation, there are still some differences between simulation experiment and real market situation.Originality/value: The purpose of this study is to investigate an effective regulation strategy of institutional investor's encroachment behavior in stock market in order to maintain market order and protect the benefits of investors. Base on the game model and simulation model, a simulation experiment was preformed and the result showed that the self-adaptive regulation would be effective

  17. Somatostatin Negatively Regulates Parasite Burden and Granulomatous Responses in Cysticercosis

    Directory of Open Access Journals (Sweden)

    Mitra Khumbatta

    2014-01-01

    Full Text Available Cysticercosis is an infection of tissues with the larval cysts of the cestode, Taenia  solium. While live parasites elicit little or no inflammation, dying parasites initiate a granulomatous reaction presenting as painful muscle nodules or seizures when cysts are located in the brain. We previously showed in the T. crassiceps murine model of cysticercosis that substance P (SP, a neuropeptide, was detected in early granulomas and was responsible for promoting granuloma formation, while somatostatin (SOM, another neuropeptide and immunomodulatory hormone, was detected in late granulomas; SOM’s contribution to granuloma formation was not examined. In the current studies, we used somatostatin knockout (SOM−/− mice to examine the hypothesis that SOM downmodulates granulomatous inflammation in cysticercosis, thereby promoting parasite growth. Our results demonstrated that parasite burden was reduced 5.9-fold in SOM−/− mice compared to WT mice (P<0.05. This reduction in parasite burden in SOM−/− mice was accompanied by a 95% increase in size of their granulomas (P<0.05, which contained a 1.5-fold increase in levels of IFN-γ and a 26-fold decrease in levels of IL-1β (P<0.05 for both compared to granulomas from WT mice. Thus, SOM regulates both parasite burden and granulomatous inflammation perhaps through modulating granuloma production of IFN-γ and IL-1β.

  18. A complex regulatory network controls aerobic ethanol oxidation in Pseudomonas aeruginosa: indication of four levels of sensor kinases and response regulators.

    Science.gov (United States)

    Mern, Demissew S; Ha, Seung-Wook; Khodaverdi, Viola; Gliese, Nicole; Görisch, Helmut

    2010-05-01

    In addition to the known response regulator ErbR (former AgmR) and the two-component regulatory system EraSR (former ExaDE), three additional regulatory proteins have been identified as being involved in controlling transcription of the aerobic ethanol oxidation system in Pseudomonas aeruginosa. Two putative sensor kinases, ErcS and ErcS', and a response regulator, ErdR, were found, all of which show significant similarity to the two-component flhSR system that controls methanol and formaldehyde metabolism in Paracoccus denitrificans. All three identified response regulators, EraR (formerly ExaE), ErbR (formerly AgmR) and ErdR, are members of the luxR family. The three sensor kinases EraS (formerly ExaD), ErcS and ErcS' do not contain a membrane domain. Apparently, they are localized in the cytoplasm and recognize cytoplasmic signals. Inactivation of gene ercS caused an extended lag phase on ethanol. Inactivation of both genes, ercS and ercS', resulted in no growth at all on ethanol, as did inactivation of erdR. Of the three sensor kinases and three response regulators identified thus far, only the EraSR (formerly ExaDE) system forms a corresponding kinase/regulator pair. Using reporter gene constructs of all identified regulatory genes in different mutants allowed the hierarchy of a hypothetical complex regulatory network to be established. Probably, two additional sensor kinases and two additional response regulators, which are hidden among the numerous regulatory genes annotated in the genome of P. aeruginosa, remain to be identified.

  19. Nitric Oxide Regulates Seedling Growth and Mitochondrial Responses in Aged Oat Seeds

    Directory of Open Access Journals (Sweden)

    Chunli Mao

    2018-04-01

    Full Text Available Mitochondria are the source of reactive oxygen species (ROS in plant cells and play a central role in the mitochondrial electron transport chain (ETC and tricarboxylic acid cycle (TCA cycles; however, ROS production and regulation for seed germination, seedling growth, as well as mitochondrial responses to abiotic stress, are not clear. This study was conducted to obtain basic information on seed germination, embryo mitochondrial antioxidant responses, and protein profile changes in artificial aging in oat seeds (Avena sativa L. exposed to exogenous nitric oxide (NO treatment. The results showed that the accumulation of H2O2 in mitochondria increased significantly in aged seeds. Artificial aging can lead to a loss of seed vigor, which was shown by a decline in seed germination and the extension of mean germination time (MGT. Seedling growth was also inhibited. Some enzymes, including catalase (CAT, glutathione reductase (GR, dehydroascorbate reductase (DHAR, and monodehydroascorbate reductase (MDHAR, maintained a lower level in the ascorbate-glutathione (AsA-GSH scavenging system. Proteomic analysis revealed that the expression of some proteins related to the TCA cycle were down-regulated and several enzymes related to mitochondrial ETC were up-regulated. With the application of 0.05 mM NO in aged oat seeds, a protective effect was observed, demonstrated by an improvement in seed vigor and increased H2O2 scavenging ability in mitochondria. There were also higher activities of CAT, GR, MDHAR, and DHAR in the AsA-GSH scavenging system, enhanced TCA cycle-related enzymes (malate dehydrogenase, succinate-CoA ligase, fumarate hydratase, and activated alternative pathways, as the cytochrome pathway was inhibited. Therefore, our results indicated that seedling growth and seed germinability could retain a certain level in aged oat seeds, predominantly depending on the lower NO regulation of the TCA cycle and AsA-GSH. Thus, it could be concluded that the

  20. Rational design of small molecules that modulate the transcriptional function of the response regulator PhoP.

    Science.gov (United States)

    Qing, Xiaoyu; De Weerdt, Ami; De Maeyer, Marc; Steenackers, Hans; Voet, Arnout

    2018-01-01

    The response regulator PhoP, which is part of the PhoP/PhoQ two-component system, regulates the expression of multiple genes involved in controlling virulence in Salmonella enterica serovar Typhimurium and other species of Gram-negative bacteria. Modulating the phosphorylation-mediated dimerization in the receiver domain may interfere with the transcriptional function of PhoP. In this study, we analyzed the therapeutic potential of the PhoP receiver domain by exploring it as a potential target for drug design. The structural information was then applied to identify the first hit compounds from commercial chemical libraries by combining pharmacophore modelling and docking methods with a GFP (Green Fluorescent Protein)-based promoter-fusion bioassay. In total, one hundred and forty compounds were selected, purchased, and tested for biological activity. Several novel scaffolds showed acceptable potency to modulate the transcriptional function of PhoP, either by enhancing or inhibiting the expression of PhoP-dependent genes. These compounds may be used as the starting point for developing modulators that target the protein-protein interface of the PhoP protein as an alternative strategy against antibiotic resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Francisella tularensis subsp. tularensis induces a unique pulmonary inflammatory response: role of bacterial gene expression in temporal regulation of host defense responses.

    Directory of Open Access Journals (Sweden)

    Kathie-Anne Walters

    Full Text Available Pulmonary exposure to Francisella tularensis is associated with severe lung pathology and a high mortality rate. The lack of induction of classical inflammatory mediators, including IL1-β and TNF-α, during early infection has led to the suggestion that F. tularensis evades detection by host innate immune surveillance and/or actively suppresses inflammation. To gain more insight into the host response to Francisella infection during the acute stage, transcriptomic analysis was performed on lung tissue from mice exposed to virulent (Francisella tularensis ssp tularensis SchuS4. Despite an extensive transcriptional response in the lungs of animals as early as 4 hrs post-exposure, Francisella tularensis was associated with an almost complete lack of induction of immune-related genes during the initial 24 hrs post-exposure. This broad subversion of innate immune responses was particularly evident when compared to the pulmonary inflammatory response induced by other lethal (Yersinia pestis and non-lethal (Legionella pneumophila, Pseudomonas aeruginosa pulmonary infections. However, the unique induction of a subset of inflammation-related genes suggests a role for dysregulation of lymphocyte function and anti-inflammatory pathways in the extreme virulence of Francisella. Subsequent activation of a classical inflammatory response 48 hrs post-exposure was associated with altered abundance of Francisella-specific transcripts, including those associated with bacterial surface components. In summary, virulent Francisella induces a unique pulmonary inflammatory response characterized by temporal regulation of innate immune pathways correlating with altered bacterial gene expression patterns. This study represents the first simultaneous measurement of both host and Francisella transcriptome changes that occur during in vivo infection and identifies potential bacterial virulence factors responsible for regulation of host inflammatory pathways.

  2. Radiogenomics and radiotherapy response modeling

    Science.gov (United States)

    El Naqa, Issam; Kerns, Sarah L.; Coates, James; Luo, Yi; Speers, Corey; West, Catharine M. L.; Rosenstein, Barry S.; Ten Haken, Randall K.

    2017-08-01

    Advances in patient-specific information and biotechnology have contributed to a new era of computational medicine. Radiogenomics has emerged as a new field that investigates the role of genetics in treatment response to radiation therapy. Radiation oncology is currently attempting to embrace these recent advances and add to its rich history by maintaining its prominent role as a quantitative leader in oncologic response modeling. Here, we provide an overview of radiogenomics starting with genotyping, data aggregation, and application of different modeling approaches based on modifying traditional radiobiological methods or application of advanced machine learning techniques. We highlight the current status and potential for this new field to reshape the landscape of outcome modeling in radiotherapy and drive future advances in computational oncology.

  3. Systematic dissection of roles for chromatin regulators in a yeast stress response.

    Directory of Open Access Journals (Sweden)

    Assaf Weiner

    Full Text Available Packaging of eukaryotic genomes into chromatin has wide-ranging effects on gene transcription. Curiously, it is commonly observed that deletion of a global chromatin regulator affects expression of only a limited subset of genes bound to or modified by the regulator in question. However, in many single-gene studies it has become clear that chromatin regulators often do not affect steady-state transcription, but instead are required for normal transcriptional reprogramming by environmental cues. We therefore have systematically investigated the effects of 83 histone mutants, and 119 gene deletion mutants, on induction/repression dynamics of 170 transcripts in response to diamide stress in yeast. Importantly, we find that chromatin regulators play far more pronounced roles during gene induction/repression than they do in steady-state expression. Furthermore, by jointly analyzing the substrates (histone mutants and enzymes (chromatin modifier deletions we identify specific interactions between histone modifications and their regulators. Combining these functional results with genome-wide mapping of several histone marks in the same time course, we systematically investigated the correspondence between histone modification occurrence and function. We followed up on one pathway, finding that Set1-dependent H3K4 methylation primarily acts as a gene repressor during multiple stresses, specifically at genes involved in ribosome biosynthesis. Set1-dependent repression of ribosomal genes occurs via distinct pathways for ribosomal protein genes and ribosomal biogenesis genes, which can be separated based on genetic requirements for repression and based on chromatin changes during gene repression. Together, our dynamic studies provide a rich resource for investigating chromatin regulation, and identify a significant role for the "activating" mark H3K4me3 in gene repression.

  4. Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Yoshiko; Tokuhara, Daisuke [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States); Division of Mucosal Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639 (Japan); Sekine, Shinichi [Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Osaka 565-0871 (Japan); Kataoka, Kosuke [Department of Preventive Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Markham, Jonathan D.; Irwin, Allyson R.; Moon, Grace H.; Tokuhara, Yuka; Fujihashi, Keiko [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States); Davydova, Julia; Yamamoto, Masato [Department of Surgery, University of Minnesota, Minneapolis, MN 55455 (United States); Gilbert, Rebekah S. [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States); Fujihashi, Kohtaro, E-mail: kohtarof@uab.edu [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Nasal Ad-FL effectively up-regulates APC function by CD11c{sup +} DCs in mucosal tissues. Black-Right-Pointing-Pointer Nasal Ad-FL induces Notch ligand (L)-expressing CD11c{sup +} DCs. Black-Right-Pointing-Pointer Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c{sup +} dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c{sup +} DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c{sup +} DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c{sup +} DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4{sup +} T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-{gamma}, IL-2 and IL-4 producing CD4{sup +} T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c{sup +} DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.

  5. Economic demand response model in liberalised electricity markets with respect to flexibility of consumers

    DEFF Research Database (Denmark)

    Sharifi, Reza; Anvari-Moghaddam, Amjad; Fathi, S. Hamid

    2017-01-01

    Before restructuring in the electricity industry, the primary decision-makers of the electricity market were deemed to be power generation and transmission companies, market regulation boards, and power industry regulators. In this traditional structure, consumers were interested in receiving...... electricity at flat rates while paying no attention to the problems of this industry. This attitude was the source of many problems, sometimes leading to collapse of power systems and widespread blackouts. Restructuring of the electricity industry however provided a multitude of solutions to these problems....... The most important solution can be demand response (DR) programs. This paper proposes an economic DR model for residential consumers in liberalized electricity markets to change their consumption pattern from times of high energy prices to other times to maximize their utility functions. This economic...

  6. Myeloid Heme Oxygenase-1 Regulates the Acute Inflammatory Response to Zymosan in the Mouse Air Pouch

    Directory of Open Access Journals (Sweden)

    Rita Brines

    2018-01-01

    Full Text Available Heme oxygenase-1 (HO-1 is induced by many stimuli to modulate the activation and function of different cell types during innate immune responses. Although HO-1 has shown anti-inflammatory effects in different systems, there are few data on the contribution of myeloid HO-1 and its role in inflammatory processes is not well understood. To address this point, we have used HO-1M-KO mice with myeloid-restricted deletion of HO-1 to specifically investigate its influence on the acute inflammatory response to zymosan in vivo. In the mouse air pouch model, we have shown an exacerbated inflammation in HO-1M-KO mice with increased neutrophil infiltration accompanied by high levels of inflammatory mediators such as interleukin-1β, tumor necrosis factor-α, and prostaglandin E2. The expression of the degradative enzyme matrix metalloproteinase-3 (MMP-3 was also enhanced. In addition, we observed higher levels of serum MMP-3 in HO-1M-KO mice compared with control mice, suggesting the presence of systemic inflammation. Altogether, these findings demonstrate that myeloid HO-1 plays an anti-inflammatory role in the acute response to zymosan in vivo and suggest the interest of this target to regulate inflammatory processes.

  7. TRIM30α Is a Negative-Feedback Regulator of the Intracellular DNA and DNA Virus-Triggered Response by Targeting STING.

    Directory of Open Access Journals (Sweden)

    Yanming Wang

    2015-06-01

    Full Text Available Uncontrolled immune responses to intracellular DNA have been shown to induce autoimmune diseases. Homeostasis regulation of immune responses to cytosolic DNA is critical for limiting the risk of autoimmunity and survival of the host. Here, we report that the E3 ubiquitin ligase tripartite motif protein 30α (TRIM30α was induced by herpes simplex virus type 1 (HSV-1 infection in dendritic cells (DCs. Knockdown or genetic ablation of TRIM30α augmented the type I IFNs and interleukin-6 response to intracellular DNA and DNA viruses. Trim30α-deficient mice were more resistant to infection by DNA viruses. Biochemical analyses showed that TRIM30α interacted with the stimulator of interferon genes (STING, which is a critical regulator of the DNA-sensing response. Overexpression of TRIM30α promoted the degradation of STING via K48-linked ubiquitination at Lys275 through a proteasome-dependent pathway. These findings indicate that E3 ligase TRIM30α is an important negative-feedback regulator of innate immune responses to DNA viruses by targeting STING.

  8. A note on monotonicity of item response functions for ordered polytomous item response theory models.

    Science.gov (United States)

    Kang, Hyeon-Ah; Su, Ya-Hui; Chang, Hua-Hua

    2018-03-08

    A monotone relationship between a true score (τ) and a latent trait level (θ) has been a key assumption for many psychometric applications. The monotonicity property in dichotomous response models is evident as a result of a transformation via a test characteristic curve. Monotonicity in polytomous models, in contrast, is not immediately obvious because item response functions are determined by a set of response category curves, which are conceivably non-monotonic in θ. The purpose of the present note is to demonstrate strict monotonicity in ordered polytomous item response models. Five models that are widely used in operational assessments are considered for proof: the generalized partial credit model (Muraki, 1992, Applied Psychological Measurement, 16, 159), the nominal model (Bock, 1972, Psychometrika, 37, 29), the partial credit model (Masters, 1982, Psychometrika, 47, 147), the rating scale model (Andrich, 1978, Psychometrika, 43, 561), and the graded response model (Samejima, 1972, A general model for free-response data (Psychometric Monograph no. 18). Psychometric Society, Richmond). The study asserts that the item response functions in these models strictly increase in θ and thus there exists strict monotonicity between τ and θ under certain specified conditions. This conclusion validates the practice of customarily using τ in place of θ in applied settings and provides theoretical grounds for one-to-one transformations between the two scales. © 2018 The British Psychological Society.

  9. STRESS RESPONSE STUDIES USING ANIMAL MODELS

    Science.gov (United States)

    This presentation will provide the evidence that ozone exposure in animal models induce neuroendocrine stress response and this stress response modulates lung injury and inflammation through adrenergic and glucocorticoid receptors.

  10. Zebrafish as a Model System for Investigating the Compensatory Regulation of Ionic Balance during Metabolic Acidosis

    Directory of Open Access Journals (Sweden)

    Lletta Lewis

    2018-04-01

    Full Text Available Zebrafish (Danio rerio have become an important model for integrative physiological research. Zebrafish inhabit a hypo-osmotic environment; to maintain ionic and acid-base homeostasis, they must actively take up ions and secrete acid to the water. The gills in the adult and the skin at larval stage are the primary sites of ionic regulation in zebrafish. The uptake of ions in zebrafish is mediated by specific ion transporting cells termed ionocytes. Similarly, in mammals, ion reabsorption and acid excretion occur in specific cell types in the terminal region of the renal tubules (distal convoluted tubule and collecting duct. Previous studies have suggested that functional regulation of several ion transporters/channels in the zebrafish ionocytes resembles that in the mammalian renal cells. Additionally, several mechanisms involved in regulating the epithelial ion transport during metabolic acidosis are found to be similar between zebrafish and mammals. In this article, we systemically review the similarities and differences in ionic regulation between zebrafish and mammals during metabolic acidosis. We summarize the available information on the regulation of epithelial ion transporters during acidosis, with a focus on epithelial Na+, Cl− and Ca2+ transporters in zebrafish ionocytes and mammalian renal cells. We also discuss the neuroendocrine responses to acid exposure, and their potential role in ionic compensation. Finally, we identify several knowledge gaps that would benefit from further study.

  11. Salivary cytokine response in the aftermath of stress: An emotion regulation perspective.

    Science.gov (United States)

    Newton, Tamara L; Fernandez-Botran, Rafael; Lyle, Keith B; Szabo, Yvette Z; Miller, James J; Warnecke, Ashlee J

    2017-09-01

    Elevated inflammation in the context of stress has been implicated in mental and physical health. Approaching this from an emotion regulation perspective, we tested whether the salivary cytokine response to stress is dampened by using distraction to minimize opportunity for poststressor rumination. Healthy young adults were randomized to an acute stressor: modified Trier Social Stress Test (TSST, Study 1) or angry memory retrieval (Study 2). Within each study, participants were randomized to poststressor condition-rest or distraction-at a 3:1 ratio. Saliva, collected before and 40 min after the end of each stressor, was assayed for proinflammatory cytokines (PICs): interleukin-1β (IL-1β), TNF-α, and IL-6. Both stressors increased all PICs, and both provoked negative emotion. At 40 min post-TSST, salivary PIC increases did not differ between distraction and rest, but correlated positively with emotional reactivity to stress. At 40 min after memory retrieval, IL-1β increases and intrusive rumination were lower during distraction than rest, but did not correlate with emotional reactivity. Trait rumination and interference control mechanisms, also measured, played little role in PIC increases. Overall, after some stressors, some salivary cytokine responses are lower during distraction than rest. The roles of specific emotions, emotional intensity, and poststressor timing of saliva collection in this finding require clarification. Furthermore, the possibility of two affective paths to inflammation in the context of stress-one sensitive to opportunities for early occurring emotion regulation (as reflected in emotional reactivity), and one sensitive to late-occurring emotion regulation (as reflected in distraction after stress)-deserves attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Regulation of Wnt signaling by nociceptive input in animal models

    Directory of Open Access Journals (Sweden)

    Shi Yuqiang

    2012-06-01

    Full Text Available Abstract Background Central sensitization-associated synaptic plasticity in the spinal cord dorsal horn (SCDH critically contributes to the development of chronic pain, but understanding of the underlying molecular pathways is still incomplete. Emerging evidence suggests that Wnt signaling plays a crucial role in regulation of synaptic plasticity. Little is known about the potential function of the Wnt signaling cascades in chronic pain development. Results Fluorescent immunostaining results indicate that β-catenin, an essential protein in the canonical Wnt signaling pathway, is expressed in the superficial layers of the mouse SCDH with enrichment at synapses in lamina II. In addition, Wnt3a, a prototypic Wnt ligand that activates the canonical pathway, is also enriched in the superficial layers. Immunoblotting analysis indicates that both Wnt3a a β-catenin are up-regulated in the SCDH of various mouse pain models created by hind-paw injection of capsaicin, intrathecal (i.t. injection of HIV-gp120 protein or spinal nerve ligation (SNL. Furthermore, Wnt5a, a prototypic Wnt ligand for non-canonical pathways, and its receptor Ror2 are also up-regulated in the SCDH of these models. Conclusion Our results suggest that Wnt signaling pathways are regulated by nociceptive input. The activation of Wnt signaling may regulate the expression of spinal central sensitization during the development of acute and chronic pain.

  13. Child-care chaos and teachers' responsiveness: The indirect associations through teachers' emotion regulation and coping.

    Science.gov (United States)

    Jeon, Lieny; Hur, Eunhye; Buettner, Cynthia K

    2016-12-01

    Teachers in early child-care settings are key contributors to children's development. However, the role of teachers' emotional abilities (i.e., emotion regulation and coping skills) and the role of teacher-perceived environmental chaos in relation to their responsiveness to children are understudied. The current study explored the direct and indirect associations between teachers' perceptions of child-care chaos and their self-reported contingent reactions towards children's negative emotions and challenging social interactions via teachers' emotional regulation and coping strategies. The sample consisted of 1129 preschool-aged classroom teachers in day care and public pre-K programs across the US. We first found that child-care chaos was directly associated with teachers' non-supportive reactions after controlling for multiple program and teacher characteristics. In addition, teachers in more chaotic child-care settings had less reappraisal and coping skills, which in turn, was associated with lower levels of positive responsiveness to children. Teachers reporting a higher degree of chaos used more suppression strategies, which in turn, was associated with teachers' non-supportive reactions and fewer expressive encouragement reactions to children's emotions. Results of this exploratory study suggest that it is important to prepare teachers to handle chaotic environments with clear guidelines and rules. In order to encourage teachers' supportive responses to children, intervention programs are needed to address teachers' coping and emotion regulation strategies in early childhood education. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  14. Distribution of Endogenous NO Regulates Early Gravitropic Response and PIN2 Localization in Arabidopsis Roots

    Directory of Open Access Journals (Sweden)

    Ramiro París

    2018-04-01

    Full Text Available High-resolution and automated image analysis of individual roots demonstrated that endogenous nitric oxide (NO contribute significantly to gravitropism of Arabidopsis roots. Lowering of endogenous NO concentrations strongly reduced and even reversed gravitropism, resulting in upward bending, without affecting root growth rate. Notably, the asymmetric accumulation of NO along the upper and lower sides of roots correlated with a positive gravitropic response. Detection of NO by the specific DAF-FM DA fluorescent probe revealed that NO was higher at the lower side of horizontally-oriented roots returning to initial values 2 h after the onset of gravistimulation. We demonstrate that NO promotes plasma membrane re-localization of PIN2 in epidermal cells, which is required during the early root gravitropic response. The dynamic and asymmetric localization of both auxin and NO is critical to regulate auxin polar transport during gravitropism. Our results collectively suggest that, although auxin and NO crosstalk occurs at different levels of regulation, they converge in the regulation of PIN2 membrane trafficking in gravistimulated roots, supporting the notion that a temporally and spatially coordinated network of signal molecules could participate in the early phases of auxin polar transport during gravitropism.

  15. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses.

    Science.gov (United States)

    Bonnavion, Patricia; Jackson, Alexander C; Carter, Matthew E; de Lecea, Luis

    2015-02-19

    The hypothalamic-pituitary-adrenal (HPA) axis functions to coordinate behavioural and physiological responses to stress in a manner that depends on the behavioural state of the organism. However, the mechanisms through which arousal and metabolic states influence the HPA axis are poorly understood. Here using optogenetic approaches in mice, we show that neurons that produce hypocretin (Hcrt)/orexin in the lateral hypothalamic area (LHA) regulate corticosterone release and a variety of behaviours and physiological hallmarks of the stress response. Interestingly, we found that Hcrt neuronal activity and Hcrt-mediated stress responses were inhibited by the satiety hormone leptin, which acts, in part, through a network of leptin-sensitive neurons in the LHA. These data demonstrate how peripheral metabolic signals interact with hypothalamic neurons to coordinate stress and arousal and suggest one mechanism through which hyperarousal or altered metabolic states may be linked with abnormal stress responses.

  16. State regulation of nuclear sector: comparative study of Argentina and Brazil models; Regulacao estatal do setor nuclear: estudo comparativo dos modelos da Argentina e do Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro Filho, Joselio Silveira

    2004-08-01

    This research presents a comparative assessment of the regulation models of the nuclear sector in Argentina - under the responsibility of the Autoridad Regulatoria Nuclear (ARN), and Brazil - under the responsibility of Comissao Nacional de Energia Nuclear (CNEN), trying to identify which model is more adequate aiming the safe use of nuclear energy. Due to the methodology adopted, the theoretical framework resulted in criteria of analysis that corresponds to the characteristics of the Brazilian regulatory agencies created for other economic sector during the State reform staring in the middle of the nineties. Later, these criteria of analysis were used as comparison patterns between the regulation models of the nuclear sectors of Argentina and Brazil. The comparative assessment showed that the regulatory structure of the nuclear sector in Argentina seems to be more adequate, concerning the safe use of nuclear energy, than the model adopted in Brazil by CNEN, because its incorporates the criteria of functional, institutional and financial independence, competence definitions, technical excellence and transparency, indispensable to the development of its functions with autonomy, ethics, exemption and agility. (author)

  17. The Ruggie Framework: Polycentric regulation and the implications for corporate social responsibility

    Directory of Open Access Journals (Sweden)

    Mark B. Taylor

    2011-05-01

    Full Text Available The United Nations ‘Protect, Respect and Remedy’ Framework,developed by the U.N. Special Representative JohnRuggie, brings together social expectations and law into anemerging policy framework of direct relevance to corporatesocial responsibility, CSR. The principle source of theFramework’s significance for the policy and practice of CSRis its definition of the theory of business responsibility forhuman rights as arising from business activities and relationships,and its deployment of due diligence for humanrights risk as the core operational concept of this theory ofresponsibility. The article considers the responsibility torespect human rights in light of theories about polycentricregulatory regimes and draws the conclusion that the RuggieFramework creates a regulator dynamic in which bothvoluntarism and law have relevant and reinforcing roles toplay in governing business behavior. In the wake of theadaptation of the Framework by the UN, the challenge forthe field of CSR will be to adapt to an emerging reality inwhich business responsibility for ‘the social’ is increasinglya question of compliance and beyond.

  18. MicroRNA regulation of TLRs in a post-influenza animal model

    DEFF Research Database (Denmark)

    Brogaard, Louise; Heegaard, Peter M. H.; Larsen, Lars Erik

    in the post-IAV infected individual. Using the pig as an animal model, we have identified microRNAs (miRNAs) that are differentially expressed in lung tissue two weeks after challenge compared to uninfected controls, i.e. well after the infection has cleared. The role for differential expression of mi......RNA at this late time point remains unclear. We therefore seek to examine the potential involvement of miRNAs in the translational regulation of TLRs and associated proteins, thus contributing to the lowered responsiveness to bacterial TLR ligands at this late time point, making the individual vulnerable...... to secondary infections. Methods and outcome Pigs were experimentally challenged with a Danish reassortant IAV strain (A/sw/Denmark/12687/03(H1N2)). Lung tissue was harvested 14 days after challenge, as well as from uninfected control animals. Using RNAseq and high-throughput RT-qPCR, we quantified...

  19. Design and Simulation of PID parameters self-tuning based on DC speed regulating system

    Directory of Open Access Journals (Sweden)

    Feng Wei Jie

    2016-01-01

    Full Text Available The DC speed regulating system has many difficult issues such as system parameters and PID control parameters are difficult to determine. On the basis of model for a single closed-loop DC speed regulating system, this paper puts forward a method of PID parameters self-tuning based on the step response detection and reduced order equivalent. First, detect system step response and get response parameters. Then equal it to a second order system model, and achieve optimal PID control parameters based on optimal second order system to realize of PID parameters self-tuning. The PID parameters self-tuning process of DC speed regulating system is simulated with the help of MATLAB/Simulink. The simulation results show that the method is simple and effective. The system can obtain good dynamic and static performance when the PID parameters are applied to DC speed regulating system.

  20. Effect of modeled microgravity on radiation-induced adaptive response of root growth in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Deng, Chenguang; Wang, Ting; Wu, Jingjing; Xu, Wei; Li, Huasheng; Liu, Min

    2017-01-01

    Highlights: • The radio-adaptive response (RAR) of A. thaliana root growth is modulated in microgravity. • The DNA damage repairs in RAR are regulated by microgravity. • The phytohormone auxin plays a regulatory role in the modulation of microgravity on RAR of root growth. - Abstract: Space particles have an inevitable impact on organisms during space missions; radio-adaptive response (RAR) is a critical radiation effect due to both low-dose background and sudden high-dose radiation exposure during solar storms. Although it is relevant to consider RAR within the context of microgravity, another major space environmental factor, there is no existing evidence as to its effects on RAR. In the present study, we established an experimental method for detecting the effects of gamma-irradiation on the primary root growth of Arabidopsis thaliana, in which RAR of root growth was significantly induced by several dose combinations. Microgravity was simulated using a two-dimensional rotation clinostat. It was shown that RAR of root growth was significantly inhibited under the modeled microgravity condition, and was absent in pgm-1 plants that had impaired gravity sensing in root tips. These results suggest that RAR could be modulated in microgravity. Time course analysis showed that microgravity affected either the development of radio-resistance induced by priming irradiation, or the responses of plants to challenging irradiation. After treatment with the modeled microgravity, attenuation in priming irradiation-induced expressions of DNA repair genes (AtKu70 and AtRAD54), and reduced DNA repair efficiency in response to challenging irradiation were observed. In plant roots, the polar transportation of the phytohormone auxin is regulated by gravity, and treatment with an exogenous auxin (indole-3-acetic acid) prevented the induction of RAR of root growth, suggesting that auxin might play a regulatory role in the interaction between microgravity and RAR of root growth.

  1. Effect of modeled microgravity on radiation-induced adaptive response of root growth in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Chenguang [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China); Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province (China); Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Wang, Ting [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China); Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province (China); Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); Wu, Jingjing [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China); Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province (China); Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Xu, Wei [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China); Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province (China); Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); Li, Huasheng; Liu, Min [China Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086 (China); and others

    2017-02-15

    Highlights: • The radio-adaptive response (RAR) of A. thaliana root growth is modulated in microgravity. • The DNA damage repairs in RAR are regulated by microgravity. • The phytohormone auxin plays a regulatory role in the modulation of microgravity on RAR of root growth. - Abstract: Space particles have an inevitable impact on organisms during space missions; radio-adaptive response (RAR) is a critical radiation effect due to both low-dose background and sudden high-dose radiation exposure during solar storms. Although it is relevant to consider RAR within the context of microgravity, another major space environmental factor, there is no existing evidence as to its effects on RAR. In the present study, we established an experimental method for detecting the effects of gamma-irradiation on the primary root growth of Arabidopsis thaliana, in which RAR of root growth was significantly induced by several dose combinations. Microgravity was simulated using a two-dimensional rotation clinostat. It was shown that RAR of root growth was significantly inhibited under the modeled microgravity condition, and was absent in pgm-1 plants that had impaired gravity sensing in root tips. These results suggest that RAR could be modulated in microgravity. Time course analysis showed that microgravity affected either the development of radio-resistance induced by priming irradiation, or the responses of plants to challenging irradiation. After treatment with the modeled microgravity, attenuation in priming irradiation-induced expressions of DNA repair genes (AtKu70 and AtRAD54), and reduced DNA repair efficiency in response to challenging irradiation were observed. In plant roots, the polar transportation of the phytohormone auxin is regulated by gravity, and treatment with an exogenous auxin (indole-3-acetic acid) prevented the induction of RAR of root growth, suggesting that auxin might play a regulatory role in the interaction between microgravity and RAR of root growth.

  2. Response regulator heterodimer formation controls a key stage in Streptomyces development.

    Directory of Open Access Journals (Sweden)

    Mahmoud M Al-Bassam

    2014-08-01

    Full Text Available The orphan, atypical response regulators BldM and WhiI each play critical roles in Streptomyces differentiation. BldM is required for the formation of aerial hyphae, and WhiI is required for the differentiation of these reproductive structures into mature spores. To gain insight into BldM function, we defined the genome-wide BldM regulon using ChIP-Seq and transcriptional profiling. BldM target genes clustered into two groups based on their whi gene dependency. Expression of Group I genes depended on bldM but was independent of all the whi genes, and biochemical experiments showed that Group I promoters were controlled by a BldM homodimer. In contrast, Group II genes were expressed later than Group I genes and their expression depended not only on bldM but also on whiI and whiG (encoding the sigma factor that activates whiI. Additional ChIP-Seq analysis showed that BldM Group II genes were also direct targets of WhiI and that in vivo binding of WhiI to these promoters depended on BldM and vice versa. We go on to demonstrate that BldM and WhiI form a functional heterodimer that controls Group II promoters, serving to integrate signals from two distinct developmental pathways. The BldM-WhiI system thus exemplifies the potential of response regulator heterodimer formation as a mechanism to expand the signaling capabilities of bacterial cells.

  3. Microarray analysis of androgen-regulated gene expression in testis: the use of the androgen-binding protein (ABP-transgenic mouse as a model

    Directory of Open Access Journals (Sweden)

    Grossman Gail

    2005-12-01

    Full Text Available Abstract Background Spermatogenesis is an androgen-dependent process, yet the molecular mechanisms of androgens' actions in testis are poorly understood. Transgenic mice overexpressing rat androgen-binding protein (ABP in their testes have reduced levels of intratesticular androgens and, as a result, show a progressive impairment of spermatogenesis. We used this model to characterize changes in global gene expression in testis in response to reduced bioavailability of androgens. Methods Total RNA was extracted from testes of 30-day old transgenic and wild-type control mice, converted to cRNA, labeled with biotin, and hybridized to oligonucleotide microarrays. Microarray results were confirmed by real-time reverse transcription polymerase chain reaction. Results Three-hundred-eighty-one genes (3.05% of all transcripts represented on the chips were up-regulated and 198 genes (1.59% were down-regulated by at least a factor of 2 in the androgen-deficient animals compared to controls. Genes encoding membrane proteins, intracellular signaling molecules, enzymes, proteins participating in the immune response, and those involved in cytoskeleton organization were significantly overrepresented in the up-regulated group. Among the down-regulated transcripts, those coding for extracellular proteins were overrepresented most dramatically, followed by those related to proteolysis, cell adhesion, immune response, and growth factor, cytokine, and ion channel activities. Transcripts with the greatest potential impact on cellular activities included several transcription factors, intracellular signal transducers, secreted signaling molecules and enzymes, and various cell surface molecules. Major nodes in the up-regulated network were IL-6, AGT, MYC, and A2M, those in the down-regulated network were IL-2, -4, and -10, MAPK8, SOCS1, and CREB1. Conclusion Microarray analysis followed by gene ontology profiling and connectivity analysis identified several functional

  4. Identification of estrogen responsive genes using esophageal squamous cell carcinoma (ESCC) as a model

    KAUST Repository

    Essack, Magbubah

    2012-10-26

    Background: Estrogen therapy has positively impact the treatment of several cancers, such as prostate, lung and breast cancers. Moreover, several groups have reported the importance of estrogen induced gene regulation in esophageal cancer (EC). This suggests that there could be a potential for estrogen therapy for EC. The efficient design of estrogen therapies requires as complete as possible list of genes responsive to estrogen. Our study develops a systems biology methodology using esophageal squamous cell carcinoma (ESCC) as a model to identify estrogen responsive genes. These genes, on the other hand, could be affected by estrogen therapy in ESCC.Results: Based on different sources of information we identified 418 genes implicated in ESCC. Putative estrogen responsive elements (EREs) mapped to the promoter region of the ESCC genes were used to initially identify candidate estrogen responsive genes. EREs mapped to the promoter sequence of 30.62% (128/418) of ESCC genes of which 43.75% (56/128) are known to be estrogen responsive, while 56.25% (72/128) are new candidate estrogen responsive genes. EREs did not map to 290 ESCC genes. Of these 290 genes, 50.34% (146/290) are known to be estrogen responsive. By analyzing transcription factor binding sites (TFBSs) in the promoters of the 202 (56+146) known estrogen responsive ESCC genes under study, we found that their regulatory potential may be characterized by 44 significantly over-represented co-localized TFBSs (cTFBSs). We were able to map these cTFBSs to promoters of 32 of the 72 new candidate estrogen responsive ESCC genes, thereby increasing confidence that these 32 ESCC genes are responsive to estrogen since their promoters contain both: a/mapped EREs, and b/at least four cTFBSs characteristic of ESCC genes that are responsive to estrogen. Recent publications confirm that 47% (15/32) of these 32 predicted genes are indeed responsive to estrogen.Conclusion: To the best of our knowledge our study is the first

  5. Identification of estrogen responsive genes using esophageal squamous cell carcinoma (ESCC) as a model

    KAUST Repository

    Essack, Magbubah; MacPherson, Cameron Ross; Schmeier, Sebastian; Bajic, Vladimir B.

    2012-01-01

    Background: Estrogen therapy has positively impact the treatment of several cancers, such as prostate, lung and breast cancers. Moreover, several groups have reported the importance of estrogen induced gene regulation in esophageal cancer (EC). This suggests that there could be a potential for estrogen therapy for EC. The efficient design of estrogen therapies requires as complete as possible list of genes responsive to estrogen. Our study develops a systems biology methodology using esophageal squamous cell carcinoma (ESCC) as a model to identify estrogen responsive genes. These genes, on the other hand, could be affected by estrogen therapy in ESCC.Results: Based on different sources of information we identified 418 genes implicated in ESCC. Putative estrogen responsive elements (EREs) mapped to the promoter region of the ESCC genes were used to initially identify candidate estrogen responsive genes. EREs mapped to the promoter sequence of 30.62% (128/418) of ESCC genes of which 43.75% (56/128) are known to be estrogen responsive, while 56.25% (72/128) are new candidate estrogen responsive genes. EREs did not map to 290 ESCC genes. Of these 290 genes, 50.34% (146/290) are known to be estrogen responsive. By analyzing transcription factor binding sites (TFBSs) in the promoters of the 202 (56+146) known estrogen responsive ESCC genes under study, we found that their regulatory potential may be characterized by 44 significantly over-represented co-localized TFBSs (cTFBSs). We were able to map these cTFBSs to promoters of 32 of the 72 new candidate estrogen responsive ESCC genes, thereby increasing confidence that these 32 ESCC genes are responsive to estrogen since their promoters contain both: a/mapped EREs, and b/at least four cTFBSs characteristic of ESCC genes that are responsive to estrogen. Recent publications confirm that 47% (15/32) of these 32 predicted genes are indeed responsive to estrogen.Conclusion: To the best of our knowledge our study is the first

  6. Modeling post-transcriptional regulation activity of small non-coding RNAs in Escherichia coli.

    Science.gov (United States)

    Wang, Rui-Sheng; Jin, Guangxu; Zhang, Xiang-Sun; Chen, Luonan

    2009-04-29

    Transcriptional regulation is a fundamental process in biological systems, where transcription factors (TFs) have been revealed to play crucial roles. In recent years, in addition to TFs, an increasing number of non-coding RNAs (ncRNAs) have been shown to mediate post-transcriptional processes and regulate many critical pathways in both prokaryotes and eukaryotes. On the other hand, with more and more high-throughput biological data becoming available, it is possible and imperative to quantitatively study gene regulation in a systematic and detailed manner. Most existing studies for inferring transcriptional regulatory interactions and the activity of TFs ignore the possible post-transcriptional effects of ncRNAs. In this work, we propose a novel framework to infer the activity of regulators including both TFs and ncRNAs by exploring the expression profiles of target genes and (post)transcriptional regulatory relationships. We model the integrated regulatory system by a set of biochemical reactions which lead to a log-bilinear problem. The inference process is achieved by an iterative algorithm, in which two linear programming models are efficiently solved. In contrast to available related studies, the effects of ncRNAs on transcription process are considered in this work, and thus more reasonable and accurate reconstruction can be expected. In addition, the approach is suitable for large-scale problems from the viewpoint of computation. Experiments on two synthesized data sets and a model system of Escherichia coli (E. coli) carbon source transition from glucose to acetate illustrate the effectiveness of our model and algorithm. Our results show that incorporating the post-transcriptional regulation of ncRNAs into system model can mine the hidden effects from the regulation activity of TFs in transcription processes and thus can uncover the biological mechanisms in gene regulation in a more accurate manner. The software for the algorithm in this paper is available

  7. Incorporating Response Times in Item Response Theory Models of Reading Comprehension Fluency

    Science.gov (United States)

    Su, Shiyang

    2017-01-01

    With the online assessment becoming mainstream and the recording of response times becoming straightforward, the importance of response times as a measure of psychological constructs has been recognized and the literature of modeling times has been growing during the last few decades. Previous studies have tried to formulate models and theories to…

  8. BRI1 and BAK1 interact with G proteins and regulate sugar-responsive growth and development in Arabidopsis.

    Science.gov (United States)

    Peng, Yuancheng; Chen, Liangliang; Li, Shengjun; Zhang, Yueying; Xu, Ran; Liu, Zupei; Liu, Wuxia; Kong, Jingjing; Huang, Xiahe; Wang, Yingchun; Cheng, Beijiu; Zheng, Leiying; Li, Yunhai

    2018-04-18

    Sugars function as signal molecules to regulate growth, development, and gene expression in plants, yeasts, and animals. A coordination of sugar availability with phytohormone signals is crucial for plant growth and development. The molecular link between sugar availability and hormone-dependent plant growth are largely unknown. Here we report that BRI1 and BAK1 are involved in sugar-responsive growth and development. Glucose influences the physical interactions and phosphorylations of BRI1 and BAK1 in a concentration-dependent manner. BRI1 and BAK1 physically interact with G proteins that are essential for mediating sugar signaling. Biochemical data show that BRI1 can phosphorylate G protein β subunit and γ subunits, and BAK1 can phosphorylate G protein γ subunits. Genetic analyses suggest that BRI1 and BAK1 function in a common pathway with G-protein subunits to regulate sugar responses. Thus, our findings reveal an important genetic and molecular mechanism by which BR receptors associate with G proteins to regulate sugar-responsive growth and development.

  9. Modeling regulated water utility investment incentives

    Science.gov (United States)

    Padula, S.; Harou, J. J.

    2014-12-01

    This work attempts to model the infrastructure investment choices of privatized water utilities subject to rate of return and price cap regulation. The goal is to understand how regulation influences water companies' investment decisions such as their desire to engage in transfers with neighbouring companies. We formulate a profit maximization capacity expansion model that finds the schedule of new supply, demand management and transfer schemes that maintain the annual supply-demand balance and maximize a companies' profit under the 2010-15 price control process in England. Regulatory incentives for costs savings are also represented in the model. These include: the CIS scheme for the capital expenditure (capex) and incentive allowance schemes for the operating expenditure (opex) . The profit-maximizing investment program (what to build, when and what size) is compared with the least cost program (social optimum). We apply this formulation to several water companies in South East England to model performance and sensitivity to water network particulars. Results show that if companies' are able to outperform the regulatory assumption on the cost of capital, a capital bias can be generated, due to the fact that the capital expenditure, contrarily to opex, can be remunerated through the companies' regulatory capital value (RCV). The occurrence of the 'capital bias' or its entity depends on the extent to which a company can finance its investments at a rate below the allowed cost of capital. The bias can be reduced by the regulatory penalties for underperformances on the capital expenditure (CIS scheme); Sensitivity analysis can be applied by varying the CIS penalty to see how and to which extent this impacts the capital bias effect. We show how regulatory changes could potentially be devised to partially remove the 'capital bias' effect. Solutions potentially include allowing for incentives on total expenditure rather than separately for capex and opex and allowing

  10. Functionality of the baroreceptor nerves in heart rate regulation

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.; Olufsen, Mette

    2011-01-01

    are a consequence of the memory encapsulated by the models, and the nonlinearity gives rise to sigmoidal response curves. The nonlinear afferent baroreceptor models are coupled with an effector model, and the coupled model has been used to predict baroreceptor feedback regulation of heart rate during postural...... change from sitting to standing and during head-up tilt. The efferent model couples the afferent nerve paths to the sympathetic and parasympathetic outflow, and subsequently predicts the build up of an action potential at the sinus knot of the heart. In this paper, we analyze the nonlinear afferent model...... and show that the coupled model is able to predict heart rate regulation using blood pressure data as an input...

  11. Fitting Diffusion Item Response Theory Models for Responses and Response Times Using the R Package diffIRT

    Directory of Open Access Journals (Sweden)

    Dylan Molenaar

    2015-08-01

    Full Text Available In the psychometric literature, item response theory models have been proposed that explicitly take the decision process underlying the responses of subjects to psychometric test items into account. Application of these models is however hampered by the absence of general and flexible software to fit these models. In this paper, we present diffIRT, an R package that can be used to fit item response theory models that are based on a diffusion process. We discuss parameter estimation and model fit assessment, show the viability of the package in a simulation study, and illustrate the use of the package with two datasets pertaining to extraversion and mental rotation. In addition, we illustrate how the package can be used to fit the traditional diffusion model (as it has been originally developed in experimental psychology to data.

  12. Mechanisms Regulating the Cardiac Output Response to Cyanide Infusion, a Model of Hypoxia

    Science.gov (United States)

    Liang, Chang-seng; Huckabee, William E.

    1973-01-01

    When tissue metabolic changes like those of hypoxia were induced by intra-aortic infusion of cyanide in dogs, cardiac output began to increase after 3 to 5 min, reached a peak (220% of the control value) at 15 min, and returned to control in 40 min. This pattern of cardiac output rise was not altered by vagotomy with or without atropine pretreatment. However, this cardiac output response could be differentiated into three phases by pretreating the animals with agents that block specific activities of the sympatho-adrenal system. First, ganglionic blockade produced by mecamylamine or sympathetic nerve blockade by bretylium abolished the middle phase of the cardiac output seen in the untreated animal, but early and late phases still could be discerned. Second, beta-adrenergic receptor blockade produced by propranolol shortened the total duration of the cardiac output rise by abolishing the late phase. Third, when given together, propranolol and mecamylamine (or bretylium) prevented most of the cardiac output rise that follows the early phase. When cyanide was given to splenectomized dogs, the duration of the cardiac output response was not shortened, but the response became biphasic, resembling that seen after chemical sympathectomy. A similar biphasic response of the cardiac output also resulted from splenic denervation; sham operation or nephrectomy had no effect on the monophasic pattern of the normal response. Splenic venous blood obtained from cyanide-treated dogs, when infused intraportally, caused an increase in cardiac output in recipient dogs; similar infusion of arterial blood had no effects. These results suggest that the cardiac output response to cyanide infusion consists of three components: an early phase, related neither to the autonomic nervous system nor to circulating catecholamines; a middle phase, caused by a nonadrenergic humoral substance released from the spleen by sympathetic stimulation; and a late phase, dependent upon adrenergic receptors

  13. Response of pine hypocotyl sections to growth regulators and related substances

    Directory of Open Access Journals (Sweden)

    J. Zakrzewski

    2015-01-01

    Full Text Available Growth response of Pinus silvestris hypocotyl sections to some synthetic growth regulators and related substances was studied. Elongation of hypocotyl sections was stimulated by naphtaleneacetic acid, indole-3-acetic acid, in-dole-3-propionic acid, indole-3-butyric acid, 2,4-dichlorophenoxyacetic acid, indoleaoetic amide, indoleacetic nitrile and coumarin. Indole-3-acetic acid and naphtaleneacetic acid extended period of growth up to 16 and 24 hours, respectively. Growth was inhibited by kinetin, trans-cinnamic acid and 2,3,5-tri-iodobenzoic acid. No effect of gibberellic acid, tryptophan and biotin was observed.

  14. A heteroscedastic generalized linear model with a non-normal speed factor for responses and response times.

    Science.gov (United States)

    Molenaar, Dylan; Bolsinova, Maria

    2017-05-01

    In generalized linear modelling of responses and response times, the observed response time variables are commonly transformed to make their distribution approximately normal. A normal distribution for the transformed response times is desirable as it justifies the linearity and homoscedasticity assumptions in the underlying linear model. Past research has, however, shown that the transformed response times are not always normal. Models have been developed to accommodate this violation. In the present study, we propose a modelling approach for responses and response times to test and model non-normality in the transformed response times. Most importantly, we distinguish between non-normality due to heteroscedastic residual variances, and non-normality due to a skewed speed factor. In a simulation study, we establish parameter recovery and the power to separate both effects. In addition, we apply the model to a real data set. © 2017 The Authors. British Journal of Mathematical and Statistical Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.

  15. DC microgrids with energy storage systems and demand response for providing support to frequency regulation of electrical power systems

    DEFF Research Database (Denmark)

    Basic, Hrvoje; Dragicevic, Tomislav; Pandzic, Hrvoje

    2017-01-01

    Frequency regulation of electric power systems efficiency depends on response time and on power reserves for frequency regulation. As integration of non-dispatchable renewable generation in the power system results with increased need for power reserves from fast responding power units, the idea ...

  16. Regulation of disease-responsive genes mediated by epigenetic factors: interaction of Arabidopsis-Pseudomonas.

    Science.gov (United States)

    De-La-Peña, Clelia; Rangel-Cano, Alicia; Alvarez-Venegas, Raúl

    2012-05-01

    Genes in eukaryotic organisms function within the context of chromatin, and the mechanisms that modulate the structure of chromatin are defined as epigenetic. In Arabidopsis, pathogen infection induces the expression of at least one histone deacetylase, suggesting that histone acetylation/deacetylation has an important role in the pathogenic response in plants. How/whether histone methylation affects gene response to pathogen infection is unknown. To gain a better understanding of the epigenetic mechanisms regulating the interaction between Pseudomonas syringae and Arabidopsis thaliana, we analysed three different Arabidopsis ash1-related (absent, small or homeotic discs 1) mutants. We found that the loss of function of ASHH2 and ASHR1 resulted in faster hypersensitive responses (HRs) to both mutant (hrpA) and pathogenic (DC3000) strains of P. syringae, whereas control (Col-0) and ashr3 mutants appeared to be more resistant to the infection after 2 days. Furthermore, we showed that, in the ashr3 background, the PR1 gene (PATHOGENESIS-RELATED GENE 1) displayed the highest expression levels on infection with DC3000, correlating with increased resistance against this pathogen. Our results show that, in both the ashr1 and ashh2 backgrounds, the histone H3 lysine 4 dimethylation (H3K4me2) levels decreased at the promoter region of PR1 on infection with the DC3000 strain, suggesting that an epigenetically regulated PR1 expression is involved in the plant defence. Our results suggest that histone methylation in response to pathogen infection may be a critical component in the signalling and defence processes occurring between plants and microbes. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.

  17. Hypothalamic–pituitary–adrenal and hypothalamic–pituitary–gonadal axes: sex differences in regulation of stress responsivity

    Science.gov (United States)

    Oyola, Mario G.; Handa, Robert J.

    2018-01-01

    Gonadal hormones play a key role in the establishment, activation, and regulation of the hypothalamic–pituitary–adrenal (HPA) axis. By influencing the response and sensitivity to releasing factors, neurotransmitters, and hormones, gonadal steroids help orchestrate the gain of the HPA axis to fine-tune the levels of stress hormones in the general circulation. From early life to adulthood, gonadal steroids can differentially affect the HPA axis, resulting in sex differences in the responsivity of this axis. The HPA axis influences many physiological functions making an organism’s response to changes in the environment appropriate for its reproductive status. Although the acute HPA response to stressors is a beneficial response, constant activation of this circuitry by chronic or traumatic stressful episodes may lead to a dysregulation of the HPA axis and cause pathology. Compared to males, female mice and rats show a more robust HPA axis response, as a result of circulating estradiol levels which elevate stress hormone levels during non-threatening situations, and during and after stressors. Fluctuating levels of gonadal steroids in females across the estrous cycle are a major factor contributing to sex differences in the robustness of HPA activity in females compared to males. Moreover, gonadal steroids may also contribute to epigenetic and organizational influences on the HPA axis even before puberty. Correspondingly, crosstalk between the hypothalamic–pituitary–gonadal (HPG) and HPA axes could lead to abnormalities of stress responses. In humans, a dysregulated stress response is one of the most common symptoms seen across many neuropsychiatric disorders, and as a result, such interactions may exacerbate peripheral pathologies. In this review, we discuss the HPA and HPG axes and review how gonadal steroids interact with the HPA axis to regulate the stress circuitry during all stages in life. PMID:28859530

  18. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity.

    Science.gov (United States)

    Oyola, Mario G; Handa, Robert J

    2017-09-01

    Gonadal hormones play a key role in the establishment, activation, and regulation of the hypothalamic-pituitary-adrenal (HPA) axis. By influencing the response and sensitivity to releasing factors, neurotransmitters, and hormones, gonadal steroids help orchestrate the gain of the HPA axis to fine-tune the levels of stress hormones in the general circulation. From early life to adulthood, gonadal steroids can differentially affect the HPA axis, resulting in sex differences in the responsivity of this axis. The HPA axis influences many physiological functions making an organism's response to changes in the environment appropriate for its reproductive status. Although the acute HPA response to stressors is a beneficial response, constant activation of this circuitry by chronic or traumatic stressful episodes may lead to a dysregulation of the HPA axis and cause pathology. Compared to males, female mice and rats show a more robust HPA axis response, as a result of circulating estradiol levels which elevate stress hormone levels during non-threatening situations, and during and after stressors. Fluctuating levels of gonadal steroids in females across the estrous cycle are a major factor contributing to sex differences in the robustness of HPA activity in females compared to males. Moreover, gonadal steroids may also contribute to epigenetic and organizational influences on the HPA axis even before puberty. Correspondingly, crosstalk between the hypothalamic-pituitary-gonadal (HPG) and HPA axes could lead to abnormalities of stress responses. In humans, a dysregulated stress response is one of the most common symptoms seen across many neuropsychiatric disorders, and as a result, such interactions may exacerbate peripheral pathologies. In this review, we discuss the HPA and HPG axes and review how gonadal steroids interact with the HPA axis to regulate the stress circuitry during all stages in life.

  19. MicroRNA-146a Regulates Perfusion Recovery in Response to Arterial Occlusion via Arteriogenesis

    Directory of Open Access Journals (Sweden)

    Joshua L. Heuslein

    2018-01-01

    Full Text Available The growth of endogenous collateral arteries that bypass arterial occlusion(s, or arteriogenesis, is a fundamental shear stress-induced adaptation with implications for treating peripheral arterial disease. MicroRNAs (miRs are key regulators of gene expression in response to injury and have strong therapeutic potential. In a previous study, we identified miR-146a as a candidate regulator of vascular remodeling. Here, we tested whether miR-146a regulates in vitro angiogenic endothelial cell (EC behaviors, as well as perfusion recovery, arteriogenesis, and angiogenesis in response to femoral arterial ligation (FAL in vivo. We found miR-146a inhibition impaired EC tube formation and migration in vitro. Following FAL, Balb/c mice were treated with a single, intramuscular injection of anti-miR-146a or scramble locked nucleic acid (LNA oligonucleotides directly into the non-ischemic gracilis muscles. Serial laser Doppler imaging demonstrated that anti-miR-146a treated mice exhibited significantly greater perfusion recovery (a 16% increase compared mice treated with scramble LNA. Moreover, anti-miR-146a treated mice exhibited a 22% increase in collateral artery diameter compared to controls, while there was no significant effect on in vivo angiogenesis or muscle regeneration. Despite exerting no beneficial effects on angiogenesis, the inhibition of mechanosensitive miR-146a enhances perfusion recovery after FAL via enhanced arteriogenesis.

  20. Bayes factor covariance testing in item response models

    NARCIS (Netherlands)

    Fox, J.P.; Mulder, J.; Sinharay, Sandip

    2017-01-01

    Two marginal one-parameter item response theory models are introduced, by integrating out the latent variable or random item parameter. It is shown that both marginal response models are multivariate (probit) models with a compound symmetry covariance structure. Several common hypotheses concerning

  1. Bayes Factor Covariance Testing in Item Response Models

    NARCIS (Netherlands)

    Fox, Jean-Paul; Mulder, Joris; Sinharay, Sandip

    2017-01-01

    Two marginal one-parameter item response theory models are introduced, by integrating out the latent variable or random item parameter. It is shown that both marginal response models are multivariate (probit) models with a compound symmetry covariance structure. Several common hypotheses concerning

  2. Systemic responses to inhaled ozone in mice: cachexia and down-regulation of liver xenobiotic metabolizing genes

    Energy Technology Data Exchange (ETDEWEB)

    Last, Jerold A [Pulmonary and Critical Care Medicine, School of Medicine, Toxic Substances Program, 1131 Surge I, University of California, Davis, CA 95616-8723 (United States); Gohil, Kishorchandra [Pulmonary and Critical Care Medicine, School of Medicine, Toxic Substances Program, 1131 Surge I, University of California, Davis, CA 95616-8723 (United States); Mathrani, Vivek C [Pulmonary and Critical Care Medicine, School of Medicine, Toxic Substances Program, 1131 Surge I, University of California, Davis, CA 95616-8723 (United States); Kenyon, Nicholas J [Pulmonary and Critical Care Medicine, School of Medicine, Toxic Substances Program, 1131 Surge I, University of California, Davis, CA 95616-8723 (United States)

    2005-10-15

    Rats or mice acutely exposed to high concentrations of ozone show an immediate and significant weight loss, even when allowed free access to food and water. The mechanisms underlying this systemic response to ozone have not been previously elucidated. We have applied the technique of global gene expression analysis to the livers of C57BL mice acutely exposed to ozone. Mice lost up to 14% of their original body weight, with a 42% decrease in total food consumption. We previously had found significant up-regulation of genes encoding proliferative enzymes, proteins related to acute phase reactions and cytoskeletal functions, and other biomarkers of a cachexia-like inflammatory state in lungs of mice exposed to ozone. These results are consistent with a general up-regulation of different gene families responsive to NF-{kappa}B in the lungs of the exposed mice. In the present study, we observed significant down-regulation of different families of mRNAs in the livers of the exposed mice, including genes related to lipid and fatty acid metabolism, and to carbohydrate metabolism in this tissue, consistent with a systemic cachexic response. Several interferon-dependent genes were down-regulated in the liver, suggesting a possible role for interferon as a signaling molecule between lung and liver. In addition, transcription of several mRNAs encoding enzymes of xenobiotic metabolism in the livers of mice exposed to ozone was decreased, suggesting cytokine-mediated suppression of cytochrome P450 expression. This finding may explain a previously controversial report from other investigators more than 20 years ago of prolongation of pentobarbital sleeping time in mice exposed to ozone.

  3. Systemic responses to inhaled ozone in mice: cachexia and down-regulation of liver xenobiotic metabolizing genes

    International Nuclear Information System (INIS)

    Last, Jerold A.; Gohil, Kishorchandra; Mathrani, Vivek C.; Kenyon, Nicholas J.

    2005-01-01

    Rats or mice acutely exposed to high concentrations of ozone show an immediate and significant weight loss, even when allowed free access to food and water. The mechanisms underlying this systemic response to ozone have not been previously elucidated. We have applied the technique of global gene expression analysis to the livers of C57BL mice acutely exposed to ozone. Mice lost up to 14% of their original body weight, with a 42% decrease in total food consumption. We previously had found significant up-regulation of genes encoding proliferative enzymes, proteins related to acute phase reactions and cytoskeletal functions, and other biomarkers of a cachexia-like inflammatory state in lungs of mice exposed to ozone. These results are consistent with a general up-regulation of different gene families responsive to NF-κB in the lungs of the exposed mice. In the present study, we observed significant down-regulation of different families of mRNAs in the livers of the exposed mice, including genes related to lipid and fatty acid metabolism, and to carbohydrate metabolism in this tissue, consistent with a systemic cachexic response. Several interferon-dependent genes were down-regulated in the liver, suggesting a possible role for interferon as a signaling molecule between lung and liver. In addition, transcription of several mRNAs encoding enzymes of xenobiotic metabolism in the livers of mice exposed to ozone was decreased, suggesting cytokine-mediated suppression of cytochrome P450 expression. This finding may explain a previously controversial report from other investigators more than 20 years ago of prolongation of pentobarbital sleeping time in mice exposed to ozone

  4. A Generalized QMRA Beta-Poisson Dose-Response Model.

    Science.gov (United States)

    Xie, Gang; Roiko, Anne; Stratton, Helen; Lemckert, Charles; Dunn, Peter K; Mengersen, Kerrie

    2016-10-01

    Quantitative microbial risk assessment (QMRA) is widely accepted for characterizing the microbial risks associated with food, water, and wastewater. Single-hit dose-response models are the most commonly used dose-response models in QMRA. Denoting PI(d) as the probability of infection at a given mean dose d, a three-parameter generalized QMRA beta-Poisson dose-response model, PI(d|α,β,r*), is proposed in which the minimum number of organisms required for causing infection, K min , is not fixed, but a random variable following a geometric distribution with parameter 0Poisson model, PI(d|α,β), is a special case of the generalized model with K min = 1 (which implies r*=1). The generalized beta-Poisson model is based on a conceptual model with greater detail in the dose-response mechanism. Since a maximum likelihood solution is not easily available, a likelihood-free approximate Bayesian computation (ABC) algorithm is employed for parameter estimation. By fitting the generalized model to four experimental data sets from the literature, this study reveals that the posterior median r* estimates produced fall short of meeting the required condition of r* = 1 for single-hit assumption. However, three out of four data sets fitted by the generalized models could not achieve an improvement in goodness of fit. These combined results imply that, at least in some cases, a single-hit assumption for characterizing the dose-response process may not be appropriate, but that the more complex models may be difficult to support especially if the sample size is small. The three-parameter generalized model provides a possibility to investigate the mechanism of a dose-response process in greater detail than is possible under a single-hit model. © 2016 Society for Risk Analysis.

  5. Interactome Screening Identifies the ER Luminal Chaperone Hsp47 as a Regulator of the Unfolded Protein Response Transducer IRE1α.

    Science.gov (United States)

    Sepulveda, Denisse; Rojas-Rivera, Diego; Rodríguez, Diego A; Groenendyk, Jody; Köhler, Andres; Lebeaupin, Cynthia; Ito, Shinya; Urra, Hery; Carreras-Sureda, Amado; Hazari, Younis; Vasseur-Cognet, Mireille; Ali, Maruf M U; Chevet, Eric; Campos, Gisela; Godoy, Patricio; Vaisar, Tomas; Bailly-Maitre, Béatrice; Nagata, Kazuhiro; Michalak, Marek; Sierralta, Jimena; Hetz, Claudio

    2018-01-18

    Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). IRE1α is a major UPR transducer, determining cell fate under ER stress. We used an interactome screening to unveil several regulators of the UPR, highlighting the ER chaperone Hsp47 as the major hit. Cellular and biochemical analysis indicated that Hsp47 instigates IRE1α signaling through a physical interaction. Hsp47 directly binds to the ER luminal domain of IRE1α with high affinity, displacing the negative regulator BiP from the complex to facilitate IRE1α oligomerization. The regulation of IRE1α signaling by Hsp47 is evolutionarily conserved as validated using fly and mouse models of ER stress. Hsp47 deficiency sensitized cells and animals to experimental ER stress, revealing the significance of Hsp47 to global proteostasis maintenance. We conclude that Hsp47 adjusts IRE1α signaling by fine-tuning the threshold to engage an adaptive UPR. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Post-transcriptional regulation of macrophage ABCA1, an early response gene to IFN-γ

    International Nuclear Information System (INIS)

    Alfaro Leon, Martha Leticia; Evans, Glenn F.; Farmen, Mark W.; Zuckerman, Steven H.

    2005-01-01

    Interferon-γ (IFN-γ) down-regulates receptors associated with reverse cholesterol transport including ABCA1. In the present study, the kinetics and mechanism of ABCA1 down-regulation were determined in mouse peritoneal macrophages. IFN-γ decreased ABCA1 mRNA 1 h following IFN-γ addition and was maximally reduced by 3 h. Down-regulation was protein synthesis dependent and involved post-transcriptional processes. ABCA1 message had a T 1/2 of 115 min in actinomycin treated cells that was reduced to a T 1/2 of 37 min by IFN-γ. The decrease in message stability was also associated with a rapid loss of ABCA1 protein, significant 3 h following IFN-γ addition. The kinetics of ABCA1 message and protein decrease was consistent with the early IFN-γ-induced changes in Stat1 phosphorylation and nuclear translocation observed in these cells. Therefore, ABCA1 can be considered as an early response gene to macrophage activation by IFN-γ with down-regulation occurring by message destabilization

  7. A framework for modelling gene regulation which accommodates non-equilibrium mechanisms.

    Science.gov (United States)

    Ahsendorf, Tobias; Wong, Felix; Eils, Roland; Gunawardena, Jeremy

    2014-12-05

    Gene regulation has, for the most part, been quantitatively analysed by assuming that regulatory mechanisms operate at thermodynamic equilibrium. This formalism was originally developed to analyse the binding and unbinding of transcription factors from naked DNA in eubacteria. Although widely used, it has made it difficult to understand the role of energy-dissipating, epigenetic mechanisms, such as DNA methylation, nucleosome remodelling and post-translational modification of histones and co-regulators, which act together with transcription factors to regulate gene expression in eukaryotes. Here, we introduce a graph-based framework that can accommodate non-equilibrium mechanisms. A gene-regulatory system is described as a graph, which specifies the DNA microstates (vertices), the transitions between microstates (edges) and the transition rates (edge labels). The graph yields a stochastic master equation for how microstate probabilities change over time. We show that this framework has broad scope by providing new insights into three very different ad hoc models, of steroid-hormone responsive genes, of inherently bounded chromatin domains and of the yeast PHO5 gene. We find, moreover, surprising complexity in the regulation of PHO5, which has not yet been experimentally explored, and we show that this complexity is an inherent feature of being away from equilibrium. At equilibrium, microstate probabilities do not depend on how a microstate is reached but, away from equilibrium, each path to a microstate can contribute to its steady-state probability. Systems that are far from equilibrium thereby become dependent on history and the resulting complexity is a fundamental challenge. To begin addressing this, we introduce a graph-based concept of independence, which can be applied to sub-systems that are far from equilibrium, and prove that history-dependent complexity can be circumvented when sub-systems operate independently. As epigenomic data become increasingly

  8. Jasmonic acid carboxyl methyltransferase regulates development and herbivory-induced defense response in rice.

    Science.gov (United States)

    Qi, Jinfeng; Li, Jiancai; Han, Xiu; Li, Ran; Wu, Jianqiang; Yu, Haixin; Hu, Lingfei; Xiao, Yutao; Lu, Jing; Lou, Yonggen

    2016-06-01

    Jasmonic acid (JA) and related metabolites play a key role in plant defense and growth. JA carboxyl methyltransferase (JMT) may be involved in plant defense and development by methylating JA to methyl jasmonate (MeJA) and thus influencing the concentrations of JA and related metabolites. However, no JMT gene has been well characterized in monocotyledon defense and development at the molecular level. After we cloned a rice JMT gene, OsJMT1, whose encoding protein was localized in the cytosol, we found that the recombinant OsJMT1 protein catalyzed JA to MeJA. OsJMT1 is up-regulated in response to infestation with the brown planthopper (BPH; Nilaparvata lugens). Plants in which OsJMT1 had been overexpressed (oe-JMT plants) showed reduced height and yield. These oe-JMT plants also exhibited increased MeJA levels but reduced levels of herbivore-induced JA and jasmonoyl-isoleucine (JA-Ile). The oe-JMT plants were more attractive to BPH female adults but showed increased resistance to BPH nymphs, probably owing to the different responses of BPH female adults and nymphs to the changes in levels of H2 O2 and MeJA in oe-JMT plants. These results indicate that OsJMT1, by altering levels of JA and related metabolites, plays a role in regulating plant development and herbivore-induced defense responses in rice. © 2015 Institute of Botany, Chinese Academy of Sciences.

  9. Response Modelling of Bitumen, Bituminous Mastic and Mortar

    NARCIS (Netherlands)

    Woldekidan, M.F.

    2011-01-01

    This research focuses on testing and modelling the viscoelastic response of bituminous binders. The main goal is to find an appropriate response model for bituminous binders. The desired model should allow implementation into numerical environments such as ABAQUS. On the basis of such numerical

  10. The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models.

    Science.gov (United States)

    Palsson, Sirus; Hickling, Timothy P; Bradshaw-Pierce, Erica L; Zager, Michael; Jooss, Karin; O'Brien, Peter J; Spilker, Mary E; Palsson, Bernhard O; Vicini, Paolo

    2013-09-28

    The complexity and multiscale nature of the mammalian immune response provides an excellent test bed for the potential of mathematical modeling and simulation to facilitate mechanistic understanding. Historically, mathematical models of the immune response focused on subsets of the immune system and/or specific aspects of the response. Mathematical models have been developed for the humoral side of the immune response, or for the cellular side, or for cytokine kinetics, but rarely have they been proposed to encompass the overall system complexity. We propose here a framework for integration of subset models, based on a system biology approach. A dynamic simulator, the Fully-integrated Immune Response Model (FIRM), was built in a stepwise fashion by integrating published subset models and adding novel features. The approach used to build the model includes the formulation of the network of interacting species and the subsequent introduction of rate laws to describe each biological process. The resulting model represents a multi-organ structure, comprised of the target organ where the immune response takes place, circulating blood, lymphoid T, and lymphoid B tissue. The cell types accounted for include macrophages, a few T-cell lineages (cytotoxic, regulatory, helper 1, and helper 2), and B-cell activation to plasma cells. Four different cytokines were accounted for: IFN-γ, IL-4, IL-10 and IL-12. In addition, generic inflammatory signals are used to represent the kinetics of IL-1, IL-2, and TGF-β. Cell recruitment, differentiation, replication, apoptosis and migration are described as appropriate for the different cell types. The model is a hybrid structure containing information from several mammalian species. The structure of the network was built to be physiologically and biochemically consistent. Rate laws for all the cellular fate processes, growth factor production rates and half-lives, together with antibody production rates and half-lives, are provided. The

  11. Role of Shp2 in forebrain neurons in regulating metabolic and cardiovascular functions and responses to leptin.

    Science.gov (United States)

    do Carmo, J M; da Silva, A A; Sessums, P O; Ebaady, S H; Pace, B R; Rushing, J S; Davis, M T; Hall, J E

    2014-06-01

    We examined whether deficiency of Src homology 2 containing phosphatase (Shp2) signaling in forebrain neurons alters metabolic and cardiovascular regulation under various conditions and if it attenuates the anorexic and cardiovascular effects of leptin. We also tested whether forebrain Shp2 deficiency alters blood pressure (BP) and heart rate (HR) responses to acute stress. Forebrain Shp2(-/-) mice were generated by crossing Shp2(flox/flox) mice with CamKIIα-cre mice. At 22-24 weeks of age, the mice were instrumented for telemetry for measurement of BP, HR and body temperature (BT). Oxygen consumption (VO2), energy expenditure and motor activity were monitored by indirect calorimetry. Shp2/CamKIIα-cre mice were heavier (46±3 vs 32±1 g), hyperglycemic, hyperleptinemic, hyperinsulinemic and hyperphagic compared to Shp2(flox/flox) control mice. Shp2/CamKIIα-cre mice exhibited reduced food intake responses to fasting/refeeding and impaired regulation of BT when exposed to 15 and 30 °C ambient temperatures. Despite being obese and having many features of metabolic syndrome, Shp2/CamKIIα-cre mice had similar daily average BP and HR compared to Shp2(flox/flox) mice (112±2 vs 113±1 mm Hg and 595±34 vs 650±40 b.p.m.), but exhibited increased BP and HR responses to cold exposure and acute air-jet stress test. Leptin's ability to reduce food intake and to raise BP were markedly attenuated in Shp2/CamKIIα-cre mice. These results suggest that forebrain Shp2 signaling regulates food intake, appetite responses to caloric deprivation and thermogenic control of body temperature during variations in ambient temperature. Deficiency of Shp2 signaling in the forebrain is associated with augmented cardiovascular responses to cold and acute stress but attenuated BP responses to leptin.

  12. Bayesian Analysis of Multidimensional Item Response Theory Models: A Discussion and Illustration of Three Response Style Models

    Science.gov (United States)

    Leventhal, Brian C.; Stone, Clement A.

    2018-01-01

    Interest in Bayesian analysis of item response theory (IRT) models has grown tremendously due to the appeal of the paradigm among psychometricians, advantages of these methods when analyzing complex models, and availability of general-purpose software. Possible models include models which reflect multidimensionality due to designed test structure,…

  13. Multiscale modeling of mucosal immune responses

    Science.gov (United States)

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut

  14. Multiscale modeling of mucosal immune responses.

    Science.gov (United States)

    Mei, Yongguo; Abedi, Vida; Carbo, Adria; Zhang, Xiaoying; Lu, Pinyi; Philipson, Casandra; Hontecillas, Raquel; Hoops, Stefan; Liles, Nathan; Bassaganya-Riera, Josep

    2015-01-01

    Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T

  15. DC microgrids providing frequency regulation in electrical power system - imperfect communication issues

    DEFF Research Database (Denmark)

    Bašić, Hrvoje; Dragicevic, Tomislav; Pandžić, Hrvoje

    2017-01-01

    This paper presents a model of multiple DC microgrids with battery energy storage systems and demand response capability, taking part in primary frequency regulation of electrical power system. Although DC microgrids can contribute to stability and efficiency of frequency regulation, these complex...... systems may cause serious stability issues due to the imperfect communication. This work presents possible scenarios of unstable primary frequency regulation in a simplified model of electrical power system with DC microgrids, which are controlled through communication network....

  16. Reference models and incentive regulation of electricity distribution networks: An evaluation of Sweden's Network Performance Assessment Model (NPAM)

    International Nuclear Information System (INIS)

    Jamasb, Tooraj; Pollitt, Michael

    2008-01-01

    Electricity sector reforms across the world have led to a search for innovative approaches to regulation that promote efficiency in the natural monopoly distribution networks and reduce their service charges. To this aim, a number of countries have adopted incentive regulation models based on efficiency benchmarking. While most regulators have used parametric and non-parametric frontier-based methods of benchmarking some have adopted engineering-designed 'reference firm' or 'norm' models. This paper examines the incentive properties and related aspects of the reference firm model-NPAM-as used in Sweden and compares this with frontier-based benchmarking methods. We identify a number of important differences between the two approaches that are not readily apparent and discuss their ramifications for the regulatory objectives and process. We conclude that, on balance, the reference models are less appropriate as benchmarks than real firms. Also, the implementation framework based on annual ex-post reviews exacerbates the regulatory problems mainly by increasing uncertainty and reducing the incentive for innovation

  17. Nogo-B Facilitates LPS-Mediated Immune Responses by Up-Regulation of TLR4-Signaling in Macrophage RAW264.7

    Directory of Open Access Journals (Sweden)

    Ying Zhu

    2017-01-01

    Full Text Available Background/Aims: Nogo-B, a member of the reticulon family of proteins, is mainly located in the endoplasmic reticulum (ER. Here, we investigate the function and mechanism of Nogo-B in the regulation of TLR4-associated immune responses in the macrophage cell line of RAW264.7. Methods: Nogo-B was up- and down-regulated through the use of appropriate adenoviral vectors or siRNA, and the effects of Nogo-B on macrophages under liposaccharide (LPS stimulation were evaluated via western blotting, immunofluorescence, enzyme-linked immunosorbent assay (ELISA, flow cytometric analysis, and transwell assay. Results: Our data indicates that the protein of Nogo-B was down-regulated in a time- and dose-dependent manner following LPS administration in the macrophage. Nogo-B overexpression increased the production of inflammatory cytokines (MCP-1, TNF-α, IL-1β, and TGF-β, enhanced macrophage migration activities, activated major histocompatibility complex II (MHC II, and elevated the expression of macrophage scavenger receptor 1(MSR1, all of which suggest that Nogo-B is necessary for immune responses and plays an important role in regulating macrophage recruitment. Mechanistically, Nogo-B may enhance TLR4 expression in macrophage surfaces, activate mitogen-activated protein kinase (MAPK pathways, and initiate inflammatory responses. Conclusion: These findings illustrate the key regulatory functions of Nogo-B in facilitating LPS-mediated immune responses through promoting the phosphorylation of MAP kinase.

  18. Exercise Activates p53 and Negatively Regulates IGF-1 Pathway in Epidermis within a Skin Cancer Model.

    Science.gov (United States)

    Yu, Miao; King, Brenee; Ewert, Emily; Su, Xiaoyu; Mardiyati, Nur; Zhao, Zhihui; Wang, Weiqun

    2016-01-01

    Exercise has been previously reported to lower cancer risk through reducing circulating IGF-1 and IGF-1-dependent signaling in a mouse skin cancer model. This study aims to investigate the underlying mechanisms by which exercise may down-regulate the IGF-1 pathway via p53 and p53-related regulators in the skin epidermis. Female SENCAR mice were pair-fed an AIN-93 diet with or without 10-week treadmill exercise at 20 m/min, 60 min/day and 5 days/week. Animals were topically treated with TPA 2 hours before sacrifice and the target proteins in the epidermis were analyzed by both immunohistochemistry and Western blot. Under TPA or vehicle treatment, MDM2 expression was significantly reduced in exercised mice when compared with sedentary control. Meanwhile, p53 was significantly elevated. In addition, p53-transcriptioned proteins, i.e., p21, IGFBP-3, and PTEN, increased in response to exercise. There was a synergy effect between exercise and TPA on the decreased MDM2 and increased p53, but not p53-transcripted proteins. Taken together, exercise appeared to activate p53, resulting in enhanced expression of p21, IGFBP-3, and PTEN that might induce a negative regulation of IGF-1 pathway and thus contribute to the observed cancer prevention by exercise in this skin cancer model.

  19. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis.

    Science.gov (United States)

    Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang

    2016-05-01

    Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights

  20. Demand Forecasting for Heavy-Duty Diesel Engines Considering Emission Regulations

    Directory of Open Access Journals (Sweden)

    Yoon Seong Kim

    2017-01-01

    Full Text Available Makers of heavy-duty diesel engines (HDDEs need to reduce their inventory of old-generation products in preparation for the demand for next-generation products that satisfy new emission regulations. In this paper, a new demand forecasting model is proposed to reflect special conditions raised by the technological generational shift owing to new emission regulation enforcement. In addition, sensitivity analyses are conducted to better accommodate uncertainty involved at the time of prediction. Our proposed model can help support manufacturers’ production and sales management for a series of products in response to new emission regulations.

  1. Neuroendocrine modulation of the inflammatory response in common carp: adrenaline regulates leukocyte profile and activity

    NARCIS (Netherlands)

    Kepka, M.; Verburg-van Kemenade, B.M.L.; Chadzinska, M.K.

    2013-01-01

    Inflammatory responses have to be carefully controlled, as high concentrations and/or prolonged action of inflammation-related molecules (e.g. reactive oxygen species, nitric oxide and pro-inflammatory cytokines) can be detrimental to host tissue and organs. One of the potential regulators of the

  2. Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection.

    Science.gov (United States)

    Huh, Sung Un; Choi, La Mee; Lee, Gil-Je; Kim, Young Jin; Paek, Kyung-Hee

    2012-12-01

    WRKY transcription factors regulate biotic, abiotic, and developmental processes. In terms of plant defense, WRKY factors have important roles as positive and negative regulators via transcriptional regulation or protein-protein interaction. Here, we report the characterization of the gene encoding Capsicum annuum WRKY transcription factor d (CaWRKYd) isolated from microarray analysis in the Tobacco mosaic virus (TMV)-P(0)-inoculated hot pepper plants. CaWRKYd belongs to the WRKY IIa group, a very small clade in the WRKY subfamily, and WRKY IIa group has positive/negative regulatory roles in Arabidopsis and rice. CaWRKYd transcripts were induced by various plant defense-related hormone treatments and TMV-P(0) inoculation. Silencing of CaWRKYd affected TMV-P(0)-mediated hypersensitive response (HR) cell death and accumulation of TMV-P(0) coat protein in local and systemic leaves. Furthermore, expression of some pathogenesis-related (PR) genes and HR-related genes was reduced in the CaWRKYd-silenced plants compared with TRV2 vector control plants upon TMV-P(0) inoculation. CaWRKYd was confirmed to bind to the W-box. Thus CaWRKYd is a newly identified Capsicum annuum WRKY transcription factor that appears to be involved in TMV-P(0)-mediated HR cell death by regulating downstream gene expression. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Mycobacterium smegmatis PafBC is involved in regulation of DNA damage response.

    Science.gov (United States)

    Fudrini Olivencia, Begonia; Müller, Andreas U; Roschitzki, Bernd; Burger, Sibylle; Weber-Ban, Eilika; Imkamp, Frank

    2017-10-25

    Two genes, pafB and pafC, are organized in an operon with the Pup-ligase gene pafA, which is part of the Pup-proteasome system (PPS) present in mycobacteria and other actinobacteria. The PPS is crucial for Mycobacterium tuberculosis resistance towards reactive nitrogen intermediates (RNI). However, pafB and pafC apparently play only a minor role in RNI resistance. To characterize their function, we generated a pafBC deletion in Mycobacterium smegmatis (Msm). Proteome analysis of the mutant strain revealed decreased cellular levels of various proteins involved in DNA damage repair, including recombinase A (RecA). In agreement with this finding, Msm ΔpafBC displayed increased sensitivity to DNA damaging agents. In mycobacteria two pathways regulate DNA repair genes: the LexA/RecA-dependent SOS response and a predominant pathway that controls gene expression via a LexA/RecA-independent promoter, termed P1. PafB and PafC feature winged helix-turn-helix DNA binding motifs and we demonstrate that together they form a stable heterodimer in vitro, implying a function as a heterodimeric transcriptional regulator. Indeed, P1-driven transcription of recA was decreased in Msm ΔpafBC under standard conditions and induction of recA expression upon DNA damage was strongly impaired. Taken together, our data indicate an important regulatory function of PafBC in the mycobacterial DNA damage response.

  4. T-Cell Mediated Immune Responses Induced in ret Transgenic Mouse Model of Malignant Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Abschuetz, Oliver [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany); Osen, Wolfram [Division of Translational Immunology, German Cancer Center, Heidelberg 69120 (Germany); Frank, Kathrin [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany); Kato, Masashi [Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi 487-8501 (Japan); Schadendorf, Dirk [Department of Dermatology, University Hospital Essen, Essen 45122 (Germany); Umansky, Viktor, E-mail: v.umansky@dkfz.de [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany)

    2012-04-26

    Poor response of human malignant melanoma to currently available treatments requires a development of innovative therapeutic strategies. Their evaluation should be based on animal models that resemble human melanoma with respect to genetics, histopathology and clinical features. Here we used a transgenic mouse model of spontaneous skin melanoma, in which the ret transgene is expressed in melanocytes under the control of metallothionein-I promoter. After a short latency, around 25% mice develop macroscopic skin melanoma metastasizing to lymph nodes, bone marrow, lungs and brain, whereas other transgenic mice showed only metastatic lesions without visible skin tumors. We found that tumor lesions expressed melanoma associated antigens (MAA) tyrosinase, tyrosinase related protein (TRP)-1, TRP-2 and gp100, which could be applied as targets for the immunotherapy. Upon peptide vaccination, ret transgenic mice without macroscopic melanomas were able to generate T cell responses not only against a strong model antigen ovalbumin but also against typical MAA TRP-2. Although mice bearing macroscopic primary tumors could also display an antigen-specific T cell reactivity, it was significantly down-regulated as compared to tumor-free transgenic mice or non-transgenic littermates. We suggest that ret transgenic mice could be used as a pre-clinical model for the evaluation of novel strategies of melanoma immunotherapy.

  5. Adaptive Immune Responses Regulate the Pathophysiology of Lymphedema

    Science.gov (United States)

    2012-09-01

    A, Hennig B (2000) Effect of complex decongestive physiotherapy on gene expression for the inflammatory response in peripheral lymphedema. Lymphology...pharmacologic antagonism of lysophosphatidic acid receptor 1 in a mouse model of scleroderma. Arthritis Rheum 63: 1405-1415. 51. Romani L, Mencacci A, Grohmann...severe disease in collagen-induced arthritis . Arthritis Rheum 48: 1452-1460. 29. Nakamura K, Radhakrishnan K, Wong YM, Rockson SG (2009) Anti

  6. A dynamic-biased dual-loop-feedback CMOS LDO regulator with fast transient response

    International Nuclear Information System (INIS)

    Wang Han; Sun Maomao

    2014-01-01

    This paper presents a low-dropout regulator (LDO) for portable applications with dual-loop feedback and a dynamic bias circuit. The dual-loop feedback structure is adopted to reduce the output voltage spike and the response time of the LDO. The dynamic bias circuit enhances the slew rate at the gate of the power transistor. In addition, an adaptive miller compensation technique is employed, from which a single pole system is realized and over a 59° phase margin is achieved under the full range of the load current. The proposed LDO has been implemented in a 0.6-μm CMOS process. From the experimental results, the regulator can operate with a minimum dropout voltage of 200 mV at a maximum 300 mA load and I Q of 113 μA. The line regulation and load regulation are improved to 0.1 mV/V and 3.4 μV/mA due to the sufficient loop gain provided by the dual feedback loops. Under a full range load current step, the voltage spikes and the recovery time of the proposed LDO is reduced to 97 mV and 0.142 μs respectively. (semiconductor integrated circuits)

  7. The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress

    Science.gov (United States)

    Shor, Erika; Fox, Catherine A.; Broach, James R.

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. PMID:23935537

  8. WRKY proteins: signaling and regulation of expression during abiotic stress responses.

    Science.gov (United States)

    Banerjee, Aditya; Roychoudhury, Aryadeep

    2015-01-01

    WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of the WRKY genes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research.

  9. Calculations of risk: regulation and responsibility for asbestos in social housing.

    Science.gov (United States)

    Waldman, Linda; Williams, Heather

    2013-01-01

    This paper examines questions of risk, regulation, and responsibility in relation to asbestos lodged in UK social housing. Despite extensive health and safety legislation protecting against industrial exposure, very little regulatory attention is given to asbestos present in domestic homes. The paper argues that this lack of regulatory oversight, combined with the informal, contractual, and small-scale work undertaken in domestic homes weakens the basic premise of occupational health and safety, namely that rational decision-making, technical measures, and individual safety behavior lead concerned parties (workers, employers, and others) to minimize risk and exposure. The paper focuses on UK council or social housing, examining how local housing authorities - as landlords - have a duty to provide housing, to protect and to care for residents, but points out that these obligations do not extend to health and safety legislation in relation to DIY undertaken by residents. At the same time, only conventional occupational health and safety, based on rationality, identification, containment, and protective measures, cover itinerant workmen entering these homes. Focusing on asbestos and the way things work in reality, this paper thus explores the degree to which official health and safety regulation can safeguard maintenance and other workers in council homes. It simultaneously examines how councils advise and protect tenants as they occupy and shape their homes. In so doing, this paper challenges the notion of risk as an objective, scientific, and effective measure. In contrast, it demonstrates the ways in which occupational risk - and the choice of appropriate response - is more likely situational and determined by wide-ranging and often contradictory factors.

  10. Unfolded protein response and activated degradative pathways regulation in GNE myopathy.

    Directory of Open Access Journals (Sweden)

    Honghao Li

    Full Text Available Although intracellular beta amyloid (Aβ accumulation is known as an early upstream event in the degenerative course of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE myopathy, the process by which Aβdeposits initiate various degradative pathways, and their relationship have not been fully clarified. We studied the possible secondary responses after amyloid beta precursor protein (AβPP deposition including unfolded protein response (UPR, ubiquitin proteasome system (UPS activation and its correlation with autophagy system. Eight GNE myopathy patients and five individuals with normal muscle morphology were included in this study. We performed immunofluorescence and immunoblotting to investigate the expression of AβPP, phosphorylated tau (p-tau and endoplasmic reticulum molecular chaperones. Proteasome activities were measured by cleavage of fluorogenic substrates. The expression of proteasome subunits and linkers between proteasomal and autophagy systems were also evaluated by immunoblotting and relative quantitative real-time RT-PCR. Four molecular chaperones, glucose-regulated protein 94 (GRP94, glucose-regulated protein 78 (GRP78, calreticulin and calnexin and valosin containing protein (VCP were highly expressed in GNE myopathy. 20S proteasome subunits, three main proteasome proteolytic activities, and the factors linking UPS and autophagy system were also increased. Our study suggests that AβPP deposition results in endoplasmic reticulum stress (ERS and highly expressed VCP deliver unfolded proteins from endoplasmic reticulum to proteosomal system which is activated in endoplasmic reticulum associated degradation (ERAD in GNE myopathy. Excessive ubiquitinated unfolded proteins are exported by proteins that connect UPS and autophagy to autophagy system, which is activated as an alternative pathway for degradation.

  11. Mothers' responses to children's negative emotions and child emotion regulation: the moderating role of vagal suppression.

    Science.gov (United States)

    Perry, Nicole B; Calkins, Susan D; Nelson, Jackie A; Leerkes, Esther M; Marcovitch, Stuart

    2012-07-01

    The current study examined the moderating effect of children's cardiac vagal suppression on the association between maternal socialization of negative emotions (supportive and nonsupportive responses) and children's emotion regulation behaviors. One hundred and ninety-seven 4-year-olds and their mothers participated. Mothers reported on their reactions to children's negative emotions and children's regulatory behaviors. Observed distraction, an adaptive self-regulatory strategy, and vagal suppression were assessed during a laboratory task designed to elicit frustration. Results indicated that children's vagal suppression moderated the association between mothers' nonsupportive emotion socialization and children's emotion regulation behaviors such that nonsupportive reactions to negative emotions predicted lower observed distraction and lower reported emotion regulation behaviors when children displayed lower levels of vagal suppression. No interaction was found between supportive maternal emotion socialization and vagal suppression for children's emotion regulation behaviors. Results suggest physiological regulation may serve as a buffer against nonsupportive emotion socialization. Copyright © 2011 Wiley Periodicals, Inc.

  12. THE SYNTHESIS AND ANALYSIS INFORMATION TECHNOLOGY OF INTERACTIVE REGULATIONS FUNCTIONAL MODELS

    Directory of Open Access Journals (Sweden)

    Владимир Александрович ТИМОФЕЕВ

    2016-02-01

    Full Text Available A person has no ability to capture entirely and to estimate correctly the logical coherence and consistency of Regulations in the Text Form. It leads to mistakes in a work of an Enterprise Staff and to the impossibility of mastering of the Regulations with considerable volume. Presented Information Technology allows the Regulations Executor to receive on-line proper information of the Optimum Actions in any possible Situation, which can arise in the course of the work. Leading Experts of any Enterprise may create the full-fledged Expert System by themselves with the help of Specialized Software. Such a System will contain the knowledge in the Functional Model of Regulations (the Optimum Business Process. Stages of realization of the represented Information Technology and the peculiarities of on-line data displaying for the Regulations Executor are illustrated by the Pharmacy Customer Service Regulations.

  13. The Campylobacter jejuni MarR-like transcriptional regulators RrpA and RrpB both influence bacterial responses to oxidative and aerobic stresses

    Directory of Open Access Journals (Sweden)

    Ozan eGundogdu

    2015-07-01

    Full Text Available The ability of the human intestinal pathogen Campylobacter jejuni to respond to oxidative stress is central to bacterial survival both in vivo during infection and in the environment. Re-annotation of the C. jejuni NCTC11168 genome revealed the presence of two MarR-type transcriptional regulators Cj1546 and Cj1556, originally annotated as hypothetical proteins, which we have designated RrpA and RrpB (regulator of response to peroxide respectively. Previously we demonstrated a role for RrpB in both oxidative and aerobic (O2 stress and that RrpB was a DNA binding protein with auto-regulatory activity, typical of MarR-type transcriptional regulators. In this study, we show that RrpA is also a DNA binding protein and that a rrpA mutant in strain 11168H exhibits increased sensitivity to hydrogen peroxide oxidative stress. Mutation of either rrpA or rrpB reduces catalase (KatA expression. However a rrpAB double mutant exhibits higher levels of resistance to hydrogen peroxide oxidative stress, with levels of KatA expression similar to the wild-type strain. Neither the rrpA nor rrpB mutant exhibits any significant difference in sensitivity to either cumene hydroperoxide or menadione oxidative stresses, but both mutants exhibit a reduced ability to survive aerobic (O2 stress, enhanced biofilm formation and reduced virulence in the Galleria mellonella infection model. The rrpAB double mutant exhibits wild-type levels of biofilm formation and wild-type levels of virulence in the Galleria mellonella infection model. Together these data indicate a role for both RrpA and RrpB in the C. jejuni peroxide oxidative and aerobic (O2 stress responses, enhancing bacterial survival in vivo and in the environment.

  14. Price regulation and international resource supply

    Energy Technology Data Exchange (ETDEWEB)

    Siebert, H

    1982-03-01

    Price regulation is an instrument between two diverging aims: The demand for low resource prices motivated by the principle of equal distribution in our day, and the desire for economical management of resources as a responsibility we have to future generations. The present publication investigates how price regulation influences intertemporal supply of resources. For the assumed cases constant resource price, constant admissible increase in resource price, expected release of resource price and deregulation of a price held constant for a period of time mathematical models are developmed.

  15. Pavement Aging Model by Response Surface Modeling

    Directory of Open Access Journals (Sweden)

    Manzano-Ramírez A.

    2011-10-01

    Full Text Available In this work, surface course aging was modeled by Response Surface Methodology (RSM. The Marshall specimens were placed in a conventional oven for time and temperature conditions established on the basis of the environment factors of the region where the surface course is constructed by AC-20 from the Ing. Antonio M. Amor refinery. Volatilized material (VM, load resistance increment (ΔL and flow resistance increment (ΔF models were developed by the RSM. Cylindrical specimens with real aging were extracted from the surface course pilot to evaluate the error of the models. The VM model was adequate, in contrast (ΔL and (ΔF models were almost adequate with an error of 20 %, that was associated with the other environmental factors, which were not considered at the beginning of the research.

  16. Comparative analysis of LytS/LytTR-type histidine kinase/response regulator systems in γ-proteobacteria.

    Directory of Open Access Journals (Sweden)

    Stefan Behr

    Full Text Available Bacterial histidine kinase/response regulator systems operate at the interface between environmental cues and physiological states. Escherichia coli contains two LytS/LytTR-type histidine kinase/response regulator systems, BtsS/BtsR (formerly YehU/YehT and YpdA/YpdB, which have been identified as pyruvate-responsive two-component systems. Since they exhibit remarkable similarity, we analyzed their phylogenetic distribution within the γ-proteobacteria, and experimentally characterized them in a set of representative species. We found that BtsS/BtsR is the predominant LytS/LytTR-type two-component system among γ-proteobacteria, whereas YpdA/YpdB primarily appears in a supplementary role. Based on our observations in E. coli, we used the highly conserved DNA-binding motifs to test the in vivo functionality of both systems in various genera, including Salmonella, Enterobacter, Citrobacter, Xenorhabdus, Yersinia, Aeromonas and Vibrio. The results suggest that, in all cases tested, BtsS/BtsR and YpdA/YpdB respond to different levels of pyruvate in the environment.

  17. Capability to model reactor regulating system in RFSP

    Energy Technology Data Exchange (ETDEWEB)

    Chow, H C; Rouben, B; Younis, M H; Jenkins, D A [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Baudouin, A [Hydro-Quebec, Montreal, PQ (Canada); Thompson, P D [New Brunswick Electric Power Commission, Point Lepreau, NB (Canada). Point Lepreau Generating Station

    1996-12-31

    The Reactor Regulating System package extracted from SMOKIN-G2 was linked within RFSP to the spatial kinetics calculation. The objective is to use this new capability in safety analysis to model the actions of RRS in hypothetical events such as in-core LOCA or moderator drain scenarios. This paper describes the RRS modelling in RFSP and its coupling to the neutronics calculations, verification of the RRS control routine functions, sample applications and comparisons to SMOKIN-G2 results for the same transient simulations. (author). 7 refs., 6 figs.

  18. The Theoretical Foundations of Formation of the System of Regulating the Social-Labor Relations on the Principles of Responsibility

    Directory of Open Access Journals (Sweden)

    Fomina Olena O.

    2017-03-01

    Full Text Available The article is aimed at analyzing the fundamental economic theories of regulating the social-labor relations, in particular, Marxism, post-capitalism, social action – considering responsibility in the inter-subjective relations, as well as in the assessment of adequacy of implementation of the above indicated theories into economic activities. On the basis of an analysis, it has been found that Marxism considers responsibility as freedom for the economic entities and in the aspect of regulation of social-labor relations allows conflict, which is the engine of the human progress. The post-capitalism represents the conception, which provides for adaptation of public relations towards the technological changes, arbitrary behavior of business entities and formation of organizations of the new formation, aimed at cooperation. The social action theory allows to take into account the objective circumstances impacting the parties of the social-labor relations, and to settle conflicts through the provision of individual responsibility of each party for the situation present. In the light of the foregoing, we believe that regulation of the social-labor relations should be based on use of these theories. Prospects for further research in this direction will be considering the evolution of contemporary theories of responsibility as well as formation of a conceptual schema to ensure the responsible behavior of subjects in the social-labor relations.

  19. Deciphering the regulation of P2X4 receptor channel gating by ivermectin using Markov models.

    Directory of Open Access Journals (Sweden)

    Laurent Mackay

    2017-07-01

    Full Text Available The P2X4 receptor (P2X4R is a member of a family of purinergic channels activated by extracellular ATP through three orthosteric binding sites and allosterically regulated by ivermectin (IVM, a broad-spectrum antiparasitic agent. Treatment with IVM increases the efficacy of ATP to activate P2X4R, slows both receptor desensitization during sustained ATP application and receptor deactivation after ATP washout, and makes the receptor pore permeable to NMDG+, a large organic cation. Previously, we developed a Markov model based on the presence of one IVM binding site, which described some effects of IVM on rat P2X4R. Here we present two novel models, both with three IVM binding sites. The simpler one-layer model can reproduce many of the observed time series of evoked currents, but does not capture well the short time scales of activation, desensitization, and deactivation. A more complex two-layer model can reproduce the transient changes in desensitization observed upon IVM application, the significant increase in ATP-induced current amplitudes at low IVM concentrations, and the modest increase in the unitary conductance. In addition, the two-layer model suggests that this receptor can exist in a deeply inactivated state, not responsive to ATP, and that its desensitization rate can be altered by each of the three IVM binding sites. In summary, this study provides a detailed analysis of P2X4R kinetics and elucidates the orthosteric and allosteric mechanisms regulating its channel gating.

  20. CD8(+)NKT-like cells regulate the immune response by killing antigen-bearing DCs.

    Science.gov (United States)

    Wang, Chao; Liu, Xi; Li, Zhengyuan; Chai, Yijie; Jiang, Yunfeng; Wang, Qian; Ji, Yewei; Zhu, Zhongli; Wan, Ying; Yuan, Zhenglong; Chang, Zhijie; Zhang, Minghui

    2015-09-15

    CD1d-dependent NKT cells have been extensively studied; however, the function of CD8(+)NKT-like cells, which are CD1d-independent T cells with NK markers, remains unknown. Here, we report that CD1d-independent CD8(+)NKT-like cells, which express both T cell markers (TCRβ and CD3) and NK cell receptors (NK1.1, CD49b and NKG2D), are activated and significantly expanded in mice immunized with GFP-expressing dendritic cells. Distinct from CD1d-dependent NKT cells, CD8(+)NKT-like cells possess a diverse repertoire of TCRs and secrete high levels of IFN-gamma but not IL-4. CD8(+)NKT-like cell development is normal in CD1d(-/-) mice, which suggests that CD8(+)NKT-like cells undergo a unique development pathway that differs from iNKT cells. Further functional analyses show that CD8(+)NKT-like cells suppress T-cell responses through elimination of dendritic cells in an antigen-specific manner. Adoptive transfer of antigen-specific CD8(+)NKT-like cells into RIP-OVA mice prevented subsequent development of diabetes in the animals induced by activated OT-I CD8 T cells. Our study suggests that CD8(+)NKT-like cells can function as antigen-specific suppressive cells to regulate the immune response through killing antigen-bearing DCs. Antigen-specific down regulation may provide an active and precise method for constraining an excessive immune response and avoiding bypass suppression of necessary immune responses to other antigens.

  1. CD8+NKT-like cells regulate the immune response by killing antigen-bearing DCs

    Science.gov (United States)

    Wang, Chao; Liu, Xi; Li, Zhengyuan; Chai, Yijie; Jiang, Yunfeng; Wang, Qian; Ji, Yewei; Zhu, Zhongli; Wan, Ying; Yuan, Zhenglong; Chang, Zhijie; Zhang, Minghui

    2015-01-01

    CD1d-dependent NKT cells have been extensively studied; however, the function of CD8+NKT-like cells, which are CD1d-independent T cells with NK markers, remains unknown. Here, we report that CD1d-independent CD8+NKT-like cells, which express both T cell markers (TCRβ and CD3) and NK cell receptors (NK1.1, CD49b and NKG2D), are activated and significantly expanded in mice immunized with GFP-expressing dendritic cells. Distinct from CD1d-dependent NKT cells, CD8+NKT-like cells possess a diverse repertoire of TCRs and secrete high levels of IFN-gamma but not IL-4. CD8+NKT-like cell development is normal in CD1d−/− mice, which suggests that CD8+NKT-like cells undergo a unique development pathway that differs from iNKT cells. Further functional analyses show that CD8+NKT-like cells suppress T-cell responses through elimination of dendritic cells in an antigen-specific manner. Adoptive transfer of antigen-specific CD8+NKT-like cells into RIP-OVA mice prevented subsequent development of diabetes in the animals induced by activated OT-I CD8 T cells. Our study suggests that CD8+NKT-like cells can function as antigen-specific suppressive cells to regulate the immune response through killing antigen-bearing DCs. Antigen-specific down regulation may provide an active and precise method for constraining an excessive immune response and avoiding bypass suppression of necessary immune responses to other antigens. PMID:26369936

  2. Conserved host response to highly pathogenic avian influenza virus infection in human cell culture, mouse and macaque model systems

    Directory of Open Access Journals (Sweden)

    McDermott Jason E

    2011-11-01

    Full Text Available Abstract Background Understanding host response to influenza virus infection will facilitate development of better diagnoses and therapeutic interventions. Several different experimental models have been used as a proxy for human infection, including cell cultures derived from human cells, mice, and non-human primates. Each of these systems has been studied extensively in isolation, but little effort has been directed toward systematically characterizing the conservation of host response on a global level beyond known immune signaling cascades. Results In the present study, we employed a multivariate modeling approach to characterize and compare the transcriptional regulatory networks between these three model systems after infection with a highly pathogenic avian influenza virus of the H5N1 subtype. Using this approach we identified functions and pathways that display similar behavior and/or regulation including the well-studied impact on the interferon response and the inflammasome. Our results also suggest a primary response role for airway epithelial cells in initiating hypercytokinemia, which is thought to contribute to the pathogenesis of H5N1 viruses. We further demonstrate that we can use a transcriptional regulatory model from the human cell culture data to make highly accurate predictions about the behavior of important components of the innate immune system in tissues from whole organisms. Conclusions This is the first demonstration of a global regulatory network modeling conserved host response between in vitro and in vivo models.

  3. Modeling cutinase enzyme regulation in polyethylene terepthalate plastic biodegradation

    International Nuclear Information System (INIS)

    Apri, M.; Silmi, M.; Heryanto, T. E.; Moeis, M. R.

    2016-01-01

    PET (Polyethylene terephthalate) is a plastic material that is commonly used in our daily life. The high production of PET and others plastics that can be up to three hundred million tons per year, is not matched by its degradation rate and hence leads to environmental pollution. To overcome this problem, we develop a biodegradation system. This system utilizes LC Cutinase enzyme produced by engineered escherichia coli bacteria to degrade PET. To make the system works efficaciously, it is important to understand the mechanism underlying its enzyme regulation. Therefore, we construct a mathematical model to describe the regulation of LC Cutinase production. The stability of the model is analyzed. We show that the designated biodegradation system can give an oscillatory behavior that is very important to control the amount of inclusion body (the miss-folded proteins that reduce the efficiency of the biodegradation system).

  4. Modeling cutinase enzyme regulation in polyethylene terepthalate plastic biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Apri, M., E-mail: m.apri@math.itb.ac.id; Silmi, M. [Department of Mathematics, Institut Teknologi Bandung, Jalan Ganeca 10 Bandung, 40132 (Indonesia); Heryanto, T. E.; Moeis, M. R. [School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganeca 10 Bandung, 40132 (Indonesia)

    2016-04-06

    PET (Polyethylene terephthalate) is a plastic material that is commonly used in our daily life. The high production of PET and others plastics that can be up to three hundred million tons per year, is not matched by its degradation rate and hence leads to environmental pollution. To overcome this problem, we develop a biodegradation system. This system utilizes LC Cutinase enzyme produced by engineered escherichia coli bacteria to degrade PET. To make the system works efficaciously, it is important to understand the mechanism underlying its enzyme regulation. Therefore, we construct a mathematical model to describe the regulation of LC Cutinase production. The stability of the model is analyzed. We show that the designated biodegradation system can give an oscillatory behavior that is very important to control the amount of inclusion body (the miss-folded proteins that reduce the efficiency of the biodegradation system).

  5. Modeling cutinase enzyme regulation in polyethylene terepthalate plastic biodegradation

    Science.gov (United States)

    Apri, M.; Silmi, M.; Heryanto, T. E.; Moeis, M. R.

    2016-04-01

    PET (Polyethylene terephthalate) is a plastic material that is commonly used in our daily life. The high production of PET and others plastics that can be up to three hundred million tons per year, is not matched by its degradation rate and hence leads to environmental pollution. To overcome this problem, we develop a biodegradation system. This system utilizes LC Cutinase enzyme produced by engineered escherichia coli bacteria to degrade PET. To make the system works efficaciously, it is important to understand the mechanism underlying its enzyme regulation. Therefore, we construct a mathematical model to describe the regulation of LC Cutinase production. The stability of the model is analyzed. We show that the designated biodegradation system can give an oscillatory behavior that is very important to control the amount of inclusion body (the miss-folded proteins that reduce the efficiency of the biodegradation system).

  6. Modeling adaptive and non-adaptive responses to environmental change

    DEFF Research Database (Denmark)

    Coulson, Tim; Kendall, Bruce E; Barthold, Julia A.

    2017-01-01

    , with plastic responses being either adaptive or non-adaptive. We develop an approach that links quantitative genetic theory with data-driven structured models to allow prediction of population responses to environmental change via plasticity and adaptive evolution. After introducing general new theory, we...... construct a number of example models to demonstrate that evolutionary responses to environmental change over the short-term will be considerably slower than plastic responses, and that the rate of adaptive evolution to a new environment depends upon whether plastic responses are adaptive or non-adaptive....... Parameterization of the models we develop requires information on genetic and phenotypic variation and demography that will not always be available, meaning that simpler models will often be required to predict responses to environmental change. We consequently develop a method to examine whether the full...

  7. Spatial Structures and Regulation in Biological Systems

    DEFF Research Database (Denmark)

    Yde, Pernille

    , and the other is the spatial regulation of biological systems, here related to different aspects of the inflammatory response. All systems are studied using computational modelling and mathematical analysis. The first part of the thesis explores different protein aggregation scenarios. In Chapter 1, we consider...... a previously studied and very general aggregation model describing frangible linear filaments. This model is especially relevant for the growth of amyloid fibres, that have been related to a number of serious human diseases, and which are known to grow in an accelerated self-enhanced manner.We derive...... model of the tissue and show how coupled cells are able to function as an excitable medium and propagate waves of high cytokine concentration through the tissue. If the internal regulation in the cells is over-productive, the model predicts a continuous amplification of cytokines, which spans the entire...

  8. SNT-2 interacts with ERK2 and negatively regulates ERK2 signaling in response to EGF stimulation

    International Nuclear Information System (INIS)

    Huang Lin; Gotoh, Noriko; Zhang Shengliang; Shibuya, Masabumi; Yamamoto, Tadashi; Tsuchida, Nobuo

    2004-01-01

    The control of cellular responses with fibroblast growth factors and neurotrophins is mediated through membrane-linked docking proteins, SNT (suc1-binding neurotrophic target)-1/FRS2α and SNT-2/FRS2β. ERK1/2 are members of the mitogen-activated protein kinase family that regulate diverse cellular activities in response to various stimuli. Here, we demonstrate that SNT-2 does not become tyrosine phosphorylated significantly in response to EGF but forms a complex with ERK2 via the region of 186-252 amino acid residues, and the complex formation is enhanced upon EGF stimulation. SNT-2 downregulates ERK2 phosphorylation, suppresses and delays ERK2 nuclear accumulation which occurs following EGF stimulation. In contrast, the mutant SNT-2 which carries deletion of 186-252 amino acids and lacks ERK2 binding does not have these effects. These observations suggest that SNT-2 negatively regulates ERK2 signaling activated via EGF stimulation through direct binding to ERK2

  9. Benchmarking nuclear models for Gamow–Teller response

    International Nuclear Information System (INIS)

    Litvinova, E.; Brown, B.A.; Fang, D.-L.; Marketin, T.; Zegers, R.G.T.

    2014-01-01

    A comparative study of the nuclear Gamow–Teller response (GTR) within conceptually different state-of-the-art approaches is presented. Three nuclear microscopic models are considered: (i) the recently developed charge-exchange relativistic time blocking approximation (RTBA) based on the covariant density functional theory, (ii) the shell model (SM) with an extended “jj77” model space and (iii) the non-relativistic quasiparticle random-phase approximation (QRPA) with a Brueckner G-matrix effective interaction. We study the physics cases where two or all three of these models can be applied. The Gamow–Teller response functions are calculated for 208 Pb, 132 Sn and 78 Ni within both RTBA and QRPA. The strengths obtained for 208 Pb are compared to data that enable a firm model benchmarking. For the nucleus 132 Sn, also SM calculations are performed within the model space truncated at the level of a particle–hole (ph) coupled to vibration configurations. This allows a consistent comparison to the RTBA where ph⊗phonon coupling is responsible for the spreading width and considerable quenching of the GTR. Differences between the models and perspectives of their future developments are discussed.

  10. Benchmarking nuclear models for Gamow–Teller response

    Energy Technology Data Exchange (ETDEWEB)

    Litvinova, E., E-mail: elena.litvinova@wmich.edu [Department of Physics, Western Michigan University, Kalamazoo, MI 49008-5252 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Brown, B.A. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Fang, D.-L. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824-1321 (United States); Marketin, T. [Physics Department, Faculty of Science, University of Zagreb (Croatia); Zegers, R.G.T. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824-1321 (United States)

    2014-03-07

    A comparative study of the nuclear Gamow–Teller response (GTR) within conceptually different state-of-the-art approaches is presented. Three nuclear microscopic models are considered: (i) the recently developed charge-exchange relativistic time blocking approximation (RTBA) based on the covariant density functional theory, (ii) the shell model (SM) with an extended “jj77” model space and (iii) the non-relativistic quasiparticle random-phase approximation (QRPA) with a Brueckner G-matrix effective interaction. We study the physics cases where two or all three of these models can be applied. The Gamow–Teller response functions are calculated for {sup 208}Pb, {sup 132}Sn and {sup 78}Ni within both RTBA and QRPA. The strengths obtained for {sup 208}Pb are compared to data that enable a firm model benchmarking. For the nucleus {sup 132}Sn, also SM calculations are performed within the model space truncated at the level of a particle–hole (ph) coupled to vibration configurations. This allows a consistent comparison to the RTBA where ph⊗phonon coupling is responsible for the spreading width and considerable quenching of the GTR. Differences between the models and perspectives of their future developments are discussed.

  11. Global parameter estimation for thermodynamic models of transcriptional regulation.

    Science.gov (United States)

    Suleimenov, Yerzhan; Ay, Ahmet; Samee, Md Abul Hassan; Dresch, Jacqueline M; Sinha, Saurabh; Arnosti, David N

    2013-07-15

    Deciphering the mechanisms involved in gene regulation holds the key to understanding the control of central biological processes, including human disease, population variation, and the evolution of morphological innovations. New experimental techniques including whole genome sequencing and transcriptome analysis have enabled comprehensive modeling approaches to study gene regulation. In many cases, it is useful to be able to assign biological significance to the inferred model parameters, but such interpretation should take into account features that affect these parameters, including model construction and sensitivity, the type of fitness calculation, and the effectiveness of parameter estimation. This last point is often neglected, as estimation methods are often selected for historical reasons or for computational ease. Here, we compare the performance of two parameter estimation techniques broadly representative of local and global approaches, namely, a quasi-Newton/Nelder-Mead simplex (QN/NMS) method and a covariance matrix adaptation-evolutionary strategy (CMA-ES) method. The estimation methods were applied to a set of thermodynamic models of gene transcription applied to regulatory elements active in the Drosophila embryo. Measuring overall fit, the global CMA-ES method performed significantly better than the local QN/NMS method on high quality data sets, but this difference was negligible on lower quality data sets with increased noise or on data sets simplified by stringent thresholding. Our results suggest that the choice of parameter estimation technique for evaluation of gene expression models depends both on quality of data, the nature of the models [again, remains to be established] and the aims of the modeling effort. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Aggregation Potentials for Buildings - Business Models of Demand Response and Virtual Power Plants

    DEFF Research Database (Denmark)

    Ma, Zheng; Billanes, Joy Dalmacio; Jørgensen, Bo Nørregaard

    2017-01-01

    programs, national regulations and energy market structures strongly influence buildings’ participation in the aggregation market. Under the current Nordic market regulation, business model one is the most feasible one, and business model two faces more challenges due to regulation barriers and limited...... aggregation market with unclear incentives is still a challenge for buildings to participate in the aggregation market. However, few studies have investigated business models for building participation in the aggregation market. Therefore, this paper develops four business models for buildings to participate...

  13. Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations.

    Science.gov (United States)

    Yıldırım, Kubilay; Yağcı, Adem; Sucu, Seda; Tunç, Sümeyye

    2018-06-01

    Roots are the major interface between the plant and various stress factors in the soil environment. Alteration of root system architecture (RSA) (root length, spread, number and length of lateral roots) in response to environmental changes is known to be an important strategy for plant adaptation and productivity. In light of ongoing climate changes and global warming predictions, the breeding of drought-tolerant grapevine cultivars is becoming a crucial factor for developing a sustainable viticulture. Root-trait modeling of grapevine rootstock for drought stress scenarios, together with high-throughput phenotyping and genotyping techniques, may provide a valuable background for breeding studies in viticulture. Here, tree grafted grapevine rootstocks (110R, 5BB and 41B) having differential RSA regulations and drought tolerance were investigated to define their drought dependent root characteristics. Root area, root length, ramification and number of root tips reduced less in 110R grafted grapevines compared to 5BB and 41B grafted ones during drought treatment. Root relative water content as well as total carbohydrate and nitrogen content were found to be much higher in the roots of 110R than it was in the roots of other rootstocks under drought. Microarray-based root transcriptome profiling was also conducted on the roots of these rootstocks to identify their gene regulation network behind drought-dependent RSA alterations. Transcriptome analysis revealed totally 2795, 1196 and 1612 differentially expressed transcripts at the severe drought for the roots of 110R, 5BB and 41B, respectively. According to this transcriptomic data, effective root elongation and enlargement performance of 110R were suggested to depend on three transcriptomic regulations. First one is the drought-dependent induction in sugar and protein transporters genes (SWEET and NRT1/PTR) in the roots of 110R to facilitate carbohydrate and nitrogen accumulation. In the roots of the same rootstock

  14. Thermodynamics-based models of transcriptional regulation with gene sequence.

    Science.gov (United States)

    Wang, Shuqiang; Shen, Yanyan; Hu, Jinxing

    2015-12-01

    Quantitative models of gene regulatory activity have the potential to improve our mechanistic understanding of transcriptional regulation. However, the few models available today have been based on simplistic assumptions about the sequences being modeled or heuristic approximations of the underlying regulatory mechanisms. In this work, we have developed a thermodynamics-based model to predict gene expression driven by any DNA sequence. The proposed model relies on a continuous time, differential equation description of transcriptional dynamics. The sequence features of the promoter are exploited to derive the binding affinity which is derived based on statistical molecular thermodynamics. Experimental results show that the proposed model can effectively identify the activity levels of transcription factors and the regulatory parameters. Comparing with the previous models, the proposed model can reveal more biological sense.

  15. EIN2 mediates direct regulation of histone acetylation in the ethylene response.

    Science.gov (United States)

    Zhang, Fan; Wang, Likai; Qi, Bin; Zhao, Bo; Ko, Eun Esther; Riggan, Nathaniel D; Chin, Kevin; Qiao, Hong

    2017-09-19

    Ethylene gas is essential for developmental processes and stress responses in plants. Although the membrane-bound protein EIN2 is critical for ethylene signaling, the mechanism by which the ethylene signal is transduced remains largely unknown. Here we show the levels of H3K14Ac and H3K23Ac are correlated with the levels of EIN2 protein and demonstrate EIN2 C terminus (EIN2-C) is sufficient to rescue the levels of H3K14/23Ac of ein2 -5 at the target loci, using CRISPR/dCas9-EIN2-C. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) and ChIP-reChIP-seq analyses revealed that EIN2-C associates with histone partially through an interaction with EIN2 nuclear-associated protein1 (ENAP1), which preferentially binds to the genome regions that are associated with actively expressed genes both with and without ethylene treatments. Specifically, in the presence of ethylene, ENAP1-binding regions are more accessible upon the interaction with EIN2, and more EIN3 proteins bind to the loci where ENAP1 is enriched for a quick response. Together, these results reveal EIN2-C is the key factor regulating H3K14Ac and H3K23Ac in response to ethylene and uncover a unique mechanism by which ENAP1 interacts with chromatin, potentially preserving the open chromatin regions in the absence of ethylene; in the presence of ethylene, EIN2 interacts with ENAP1, elevating the levels of H3K14Ac and H3K23Ac, promoting more EIN3 binding to the targets shared with ENAP1 and resulting in a rapid transcriptional regulation.

  16. Analysis co-regulation model of safety of fishery products in Morocco through the example of “histamine”, “parasites” and “sulphites” dangers

    Directory of Open Access Journals (Sweden)

    S. Dahani

    2018-01-01

    Full Text Available Co-regulation in food safety represents the shared responsibility between food business operators and the competent authority (CA to ensure food safety and to comply with the health requirements of importing countries. The evolution of food regulation on one hand and the quality assurance of the veterinary services of the ONSSA according to the ISO 17020 standard on the other hand, need studying the regulation model adopted at national level. The objective of this work is to analyze the main health risks associated with fishery products from a co-regulatory perspective. The hazards targeted by this study are histamine, parasites and sulfites. The approach is based on structured interviews with fishery products professionals and veterinary inspectors responsible for control and certification. The main hazards are controlled by adopting health control plans (PMS by the professionals within the establishments as well as the official control carried out by the inspecting veterinarians. The PMS implementation can produce conflicting injunctions for the veterinary inspectors of the competent authority.

  17. Should the model for risk-informed regulation be game theory rather than decision theory?

    Science.gov (United States)

    Bier, Vicki M; Lin, Shi-Woei

    2013-02-01

    Risk analysts frequently view the regulation of risks as being largely a matter of decision theory. According to this view, risk analysis methods provide information on the likelihood and severity of various possible outcomes; this information should then be assessed using a decision-theoretic approach (such as cost/benefit analysis) to determine whether the risks are acceptable, and whether additional regulation is warranted. However, this view ignores the fact that in many industries (particularly industries that are technologically sophisticated and employ specialized risk and safety experts), risk analyses may be done by regulated firms, not by the regulator. Moreover, those firms may have more knowledge about the levels of safety at their own facilities than the regulator does. This creates a situation in which the regulated firm has both the opportunity-and often also the motive-to provide inaccurate (in particular, favorably biased) risk information to the regulator, and hence the regulator has reason to doubt the accuracy of the risk information provided by regulated parties. Researchers have argued that decision theory is capable of dealing with many such strategic interactions as well as game theory can. This is especially true in two-player, two-stage games in which the follower has a unique best strategy in response to the leader's strategy, as appears to be the case in the situation analyzed in this article. However, even in such cases, we agree with Cox that game-theoretic methods and concepts can still be useful. In particular, the tools of mechanism design, and especially the revelation principle, can simplify the analysis of such games because the revelation principle provides rigorous assurance that it is sufficient to analyze only games in which licensees truthfully report their risk levels, making the problem more manageable. Without that, it would generally be necessary to consider much more complicated forms of strategic behavior (including

  18. Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability

    Science.gov (United States)

    Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos

    2016-01-01

    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.

  19. Performance-based regulation: enterprise responsibility for reducing death, injury, and disease caused by consumer products.

    Science.gov (United States)

    Sugarman, Stephen D

    2009-12-01

    This article offers a bold new idea for confronting the staggering level of death, injury, and disease caused by five consumer products: cigarettes, alcohol, guns, junk food, and motor vehicles. Business leaders try to frame these negative outcomes as "collateral damage" that is someone else's problem. That framing not only is morally objectionable but also overlooks the possibility that, with proper prodding, industry could substantially lessen these public health disasters. I seek to reframe the public perception of who is responsible and propose to deploy a promising approach called "performance-based regulation" to combat the problem. Performance-based regulation would impose on manufacturers a legal obligation to reduce the negative social costs of their products. Rather than involving them in litigation or forcing them to operate differently (as "command-and-control" regimes do), performance-based regulation allows the firms to determine how best to decrease bad public health consequences. Like other public health strategies, performance-based regulation focuses on those who are far more likely than individual consumers to achieve real gains. Analogous to a tax on causing harm that exceeds a threshold level, performance-based regulation seeks to harness private initiative in pursuit of the public good.

  20. Phosphorylation of Rac1 T108 by Extracellular Signal-Regulated Kinase in Response to Epidermal Growth Factor: a Novel Mechanism To Regulate Rac1 Function

    Science.gov (United States)

    Tong, Junfeng; Li, Laiji; Ballermann, Barbara

    2013-01-01

    Accumulating evidence has implicated Rho GTPases, including Rac1, in many aspects of cancer development. Recent findings suggest that phosphorylation might further contribute to the tight regulation of Rho GTPases. Interestingly, sequence analysis of Rac1 shows that Rac1 T108 within the 106PNTP109 motif is likely an extracellular signal-regulated kinase (ERK) phosphorylation site and that Rac1 also has an ERK docking site, 183KKRKRKCLLL192 (D site), at the C terminus. Indeed, we show here that both transfected and endogenous Rac1 interacts with ERK and that this interaction is mediated by its D site. Green fluorescent protein (GFP)-Rac1 is threonine (T) phosphorylated in response to epidermal growth factor (EGF), and EGF-induced Rac1 threonine phosphorylation is dependent on the activation of ERK. Moreover, mutant Rac1 with the mutation of T108 to alanine (A) is not threonine phosphorylated in response to EGF. In vitro ERK kinase assay further shows that pure active ERK phosphorylates purified Rac1 but not mutant Rac1 T108A. We also show that Rac1 T108 phosphorylation decreases Rac1 activity, partially due to inhibiting its interaction with phospholipase C-γ1 (PLC-γ1). T108 phosphorylation targets Rac1 to the nucleus, which isolates Rac1 from other guanine nucleotide exchange factors (GEFs) and hinders Rac1's role in cell migration. We conclude that Rac1 T108 is phosphorylated by ERK in response to EGF, which plays an important role in regulating Rac1. PMID:24043306

  1. EGR-1 and DUSP-1 are important negative regulators of pro-allergic responses in airway epithelium

    NARCIS (Netherlands)

    Golebski, Korneliusz; van Egmond, Danielle; de Groot, Esther J.; Roschmann, Kristina I. L.; Fokkens, Wytske J.; van Drunen, Cornelis M.

    2015-01-01

    Background: Primary nasal epithelium of house dust mite allergic individuals is in a permanently activated inflammatory transcriptional state. Objective: To investigate whether a deregulated expression of EGR-1 and/or DUSP-1, two potential negative regulators of pro-inflammatory responses, could

  2. IL17 factors are early regulators in the gut epithelium during inflammatory response to Vibrio in the sea urchin larva

    Science.gov (United States)

    Buckley, Katherine M; Ho, Eric Chun Hei; Hibino, Taku; Schrankel, Catherine S; Schuh, Nicholas W; Wang, Guizhi; Rast, Jonathan P

    2017-01-01

    IL17 cytokines are central mediators of mammalian immunity. In vertebrates, these factors derive from diverse cellular sources. Sea urchins share a molecular heritage with chordates that includes the IL17 system. Here, we characterize the role of epithelial expression of IL17 in the larval gut-associated immune response. The purple sea urchin genome encodes 10 IL17 subfamilies (35 genes) and 2 IL17 receptors. Most of these subfamilies are conserved throughout echinoderms. Two IL17 subfamilies are sequentially strongly upregulated and attenuated in the gut epithelium in response to bacterial disturbance. IL17R1 signal perturbation results in reduced expression of several response genes including an IL17 subtype, indicating a potential feedback. A third IL17 subfamily is activated in adult immune cells indicating that expression in immune cells and epithelia is divided among families. The larva provides a tractable model to investigate the regulation and consequences of gut epithelial IL17 expression across the organism. DOI: http://dx.doi.org/10.7554/eLife.23481.001 PMID:28447937

  3. Serum and glucocorticoid-regulated kinase 1 regulates neutrophil clearance during inflammation resolution.

    Science.gov (United States)

    Burgon, Joseph; Robertson, Anne L; Sadiku, Pranvera; Wang, Xingang; Hooper-Greenhill, Edward; Prince, Lynne R; Walker, Paul; Hoggett, Emily E; Ward, Jonathan R; Farrow, Stuart N; Zuercher, William J; Jeffrey, Philip; Savage, Caroline O; Ingham, Philip W; Hurlstone, Adam F; Whyte, Moira K B; Renshaw, Stephen A

    2014-02-15

    The inflammatory response is integral to maintaining health by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralize invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein serum and glucocorticoid-regulated kinase 1 (SGK1). We have characterized the expression patterns and regulation of SGK family members in human neutrophils and shown that inhibition of SGK activity completely abrogates the antiapoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signaling and thus may prove a valuable therapeutic target for the treatment of inflammatory disease.

  4. Modeling of pulsatile flow-dependent nitric oxide regulation in a realistic microvascular network.

    Science.gov (United States)

    Wang, Ruofan; Pan, Qing; Kuebler, Wolfgang M; Li, John K-J; Pries, Axel R; Ning, Gangmin

    2017-09-01

    Hemodynamic pulsatility has been reported to regulate microcirculatory function. To quantitatively assess the impact of flow pulsatility on the microvasculature, a mathematical model was first developed to simulate the regulation of NO production by pulsatile flow in the microcirculation. Shear stress and pressure pulsatility were selected as regulators of endothelial NO production and NO-dependent vessel dilation as feedback to control microvascular hemodynamics. The model was then applied to a real microvascular network of the rat mesentery consisting of 546 microvessels. As compared to steady flow conditions, pulsatile flow increased the average NO concentration in arterioles from 256.8±93.1nM to 274.8±101.1nM (Pflow as compared to steady flow conditions. Network perfusion and flow heterogeneity were improved under pulsatile flow conditions, and vasodilation within the network was more sensitive to heart rate changes than pulse pressure amplitude. The proposed model simulates the role of flow pulsatility in the regulation of a complex microvascular network in terms of NO concentration and hemodynamics under varied physiological conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Monoacylglycerol Lipase Regulates Fever Response.

    Directory of Open Access Journals (Sweden)

    Manuel Sanchez-Alavez

    Full Text Available Cyclooxygenase inhibitors such as ibuprofen have been used for decades to control fever through reducing the levels of the pyrogenic lipid transmitter prostaglandin E2 (PGE2. Historically, phospholipases have been considered to be the primary generator of the arachidonic acid (AA precursor pool for generating PGE2 and other eicosanoids. However, recent studies have demonstrated that monoacyglycerol lipase (MAGL, through hydrolysis of the endocannabinoid 2-arachidonoylglycerol, provides a major source of AA for PGE2 synthesis in the mammalian brain under basal and neuroinflammatory states. We show here that either genetic or pharmacological ablation of MAGL leads to significantly reduced fever responses in both centrally or peripherally-administered lipopolysaccharide or interleukin-1β-induced fever models in mice. We also show that a cannabinoid CB1 receptor antagonist does not attenuate these anti-pyrogenic effects of MAGL inhibitors. Thus, much like traditional nonsteroidal anti-inflammatory drugs, MAGL inhibitors can control fever, but appear to do so through restricted control over prostaglandin production in the nervous system.

  6. Hindered disulfide bonds to regulate release rate of model drug from mesoporous silica.

    Science.gov (United States)

    Nadrah, Peter; Maver, Uroš; Jemec, Anita; Tišler, Tatjana; Bele, Marjan; Dražić, Goran; Benčina, Mojca; Pintar, Albin; Planinšek, Odon; Gaberšček, Miran

    2013-05-01

    With the advancement of drug delivery systems based on mesoporous silica nanoparticles (MSNs), a simple and efficient method regulating the drug release kinetics is needed. We developed redox-responsive release systems with three levels of hindrance around the disulfide bond. A model drug (rhodamine B dye) was loaded into MSNs' mesoporous voids. The pore opening was capped with β-cyclodextrin in order to prevent leakage of drug. Indeed, in absence of a reducing agent the systems exhibited little leakage, while the addition of dithiothreitol cleaved the disulfide bonds and enabled the release of cargo. The release rate and the amount of released dye were tuned by the level of hindrance around disulfide bonds, with the increased hindrance causing a decrease in the release rate as well as in the amount of released drug. Thus, we demonstrated the ability of the present mesoporous systems to intrinsically control the release rate and the amount of the released cargo by only minor structural variations. Furthermore, an in vivo experiment on zebrafish confirmed that the present model delivery system is nonteratogenic.

  7. Federal Aviation Regulations - National Aviation Regulations of Russia

    Science.gov (United States)

    Chernykh, O.; Bakiiev, M.

    2018-03-01

    Chinese Aerospace Engineering is currently developing cooperation with Russia on a wide-body airplane project that has directed the work towards better understanding of Russian airworthiness management system. The paper introduces national Aviation regulations of Russia, presents a comparison of them with worldwide recognized regulations, and highlights typical differences. They have been found to be: two general types of regulations used in Russia (Aviation Regulations and Federal Aviation Regulations), non-unified structure of regulations on Aircraft Operation management, various separate agencies responsible for regulation issuance instead of one national aviation authority, typical confusions in references. The paper also gives a list of effective Russian Regulations of both types.

  8. Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress.

    Science.gov (United States)

    Servant, Géraldine; Pinson, Benoit; Tchalikian-Cosson, Aurélie; Coulpier, Fanny; Lemoine, Sophie; Pennetier, Carole; Bridier-Nahmias, Antoine; Todeschini, Anne Laure; Fayol, Hélène; Daignan-Fornier, Bertrand; Lesage, Pascale

    2012-07-01

    Transposable elements play a fundamental role in genome evolution. It is proposed that their mobility, activated under stress, induces mutations that could confer advantages to the host organism. Transcription of the Ty1 LTR-retrotransposon of Saccharomyces cerevisiae is activated in response to a severe deficiency in adenylic nucleotides. Here, we show that Ty2 and Ty3 are also stimulated under these stress conditions, revealing the simultaneous activation of three active Ty retrotransposon families. We demonstrate that Ty1 activation in response to adenylic nucleotide depletion requires the DNA-binding transcription factor Tye7. Ty1 is transcribed in both sense and antisense directions. We identify three Tye7 potential binding sites in the region of Ty1 DNA sequence where antisense transcription starts. We show that Tye7 binds to Ty1 DNA and regulates Ty1 antisense transcription. Altogether, our data suggest that, in response to adenylic nucleotide reduction, TYE7 is induced and activates Ty1 mRNA transcription, possibly by controlling Ty1 antisense transcription. We also provide the first evidence that Ty1 antisense transcription can be regulated by environmental stress conditions, pointing to a new level of control of Ty1 activity by stress, as Ty1 antisense RNAs play an important role in regulating Ty1 mobility at both the transcriptional and post-transcriptional stages.

  9. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity.

    Directory of Open Access Journals (Sweden)

    Andrew J Love

    Full Text Available Cauliflower mosaic virus (CaMV encodes a multifunctional protein P6 that is required for translation of the 35S RNA and also acts as a suppressor of RNA silencing. Here we demonstrate that P6 additionally acts as a pathogenicity effector of an unique and novel type, modifying NPR1 (a key regulator of salicylic acid (SA- and jasmonic acid (JA-dependent signaling and inhibiting SA-dependent defence responses We find that that transgene-mediated expression of P6 in Arabidopsis and transient expression in Nicotiana benthamiana has profound effects on defence signaling, suppressing expression of representative SA-responsive genes and increasing expression of representative JA-responsive genes. Relative to wild-type Arabidopsis P6-expressing transgenics had greatly reduced expression of PR-1 following SA-treatment, infection by CaMV or inoculation with an avirulent bacterial pathogen Pseudomonas syringae pv tomato (Pst. Similarly transient expression in Nicotiana benthamiana of P6 (including a mutant form defective in translational transactivation activity suppressed PR-1a transcript accumulation in response to Agrobacterium infiltration and following SA-treatment. As well as suppressing the expression of representative SA-regulated genes, P6-transgenic Arabidopsis showed greatly enhanced susceptibility to both virulent and avirulent Pst (titres elevated 10 to 30-fold compared to non-transgenic controls but reduced susceptibility to the necrotrophic fungus Botrytis cinerea. Necrosis following SA-treatment or inoculation with avirulent Pst was reduced and delayed in P6-transgenics. NPR1 an important regulator of SA/JA crosstalk, was more highly expressed in the presence of P6 and introduction of the P6 transgene into a transgenic line expressing an NPR1:GFP fusion resulted in greatly increased fluorescence in nuclei even in the absence of SA. Thus in the presence of P6 an inactive form of NPR1 is mislocalized in the nucleus even in uninduced plants

  10. Recommendations on the transport of dangerous goods. Model regulations. 11. revised ed.

    International Nuclear Information System (INIS)

    1999-01-01

    The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with the regulation of the transport of dangerous goods. They have been prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, and they were first published in 1956 (ST/ECA/43-E/CN.2/170). Pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions, they have been regularly amended and updated at succeeding sessions of the Committee of Experts. At its eighteenth session (28 November-7 December 1994), the Committee of Experts considered that reformatting the Recommendations on the Transport of Dangerous Goods into Model Regulations that could be directly integrated into all modal national and international regulations would enhance harmonization, facilitate regular up-dating of all legal instruments concerned, and result in overall considerable resource savings for the Governments of the Member States, the United Nations, the specialized agencies and other international organizations. At its nineteenth session (2-10 December 1996), the Committee adopted a first version of the Model Regulations on the Transport of Dangerous Goods, which was annexed to the tenth revised edition of the Recommendations on the Transport of Dangerous Goods. At its twentieth session (7-16 December 1998), the Committee adopted various amendments to the Model Regulations and new provisions including, in particular, packing instructions for individual substances and articles and additional provisions for the transport of radioactive material. The additional provisions concerning the transport of radioactive material were developed in close cooperation with the International Atomic Energy Agency (IAEA) and are based on the 1996 Edition of the IAEA Regulations for the Safe Transport of Radioactive Material which have been reformatted so as to be

  11. Dynamic Model of Kaplan Turbine Regulating System Suitable for Power System Analysis

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    2015-01-01

    Full Text Available Accurate modeling of Kaplan turbine regulating system is of great significance for grid security and stability analysis. In this paper, Kaplan turbine regulating system model is divided into the governor system model, the blade control system model, and the turbine and water diversion system model. The Kaplan turbine has its particularity, and the on-cam relationship between the wicket gate opening and the runner blade angle under a certain water head on the whole range was obtained by high-order curve fitting method. Progressively the linearized Kaplan turbine model, improved ideal Kaplan turbine model, and nonlinear Kaplan turbine model were developed. The nonlinear Kaplan turbine model considered the correction function of the blade angle on the turbine power, thereby improving the model simulation accuracy. The model parameters were calculated or obtained by the improved particle swarm optimization (IPSO algorithm. For the blade control system model, the default blade servomotor time constant given by value of one simplified the modeling and experimental work. Further studies combined with measured test data verified the established model accuracy and laid a foundation for further research into the influence of Kaplan turbine connecting to the grid.

  12. The MAP kinase-activated protein kinase Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen Candida albicans.

    Science.gov (United States)

    Li, Xichuan; Du, Wei; Zhao, Jingwen; Zhang, Lilin; Zhu, Zhiyan; Jiang, Linghuo

    2010-06-01

    Rck2p is the Hog1p-MAP kinase-activated protein kinase required for the attenuation of protein synthesis in response to an osmotic challenge in Saccharomyces cerevisiae. Rck2p also regulates rapamycin sensitivity in both S. cerevisiae and Candida albicans. In this study, we demonstrate that the deletion of CaRCK2 renders C. albicans cells sensitive to, and CaRck2p translocates from the cytosol to the nucleus in response to, cell wall stresses caused by Congo red, Calcoflor White, elevated heat and zymolyase. However, the kinase activity of CaRck2p is not required for the cellular response to these cell wall stresses. Furthermore, transcripts of cell wall protein-encoding genes CaBGL2, CaHWP1 and CaXOG1 are reduced in C. albicans cells lacking CaRCK2. The deletion of CaRCK2 also reduces the in vitro filamentation of C. albicans and its virulence in a mouse model of systemic candidasis. The kinase activity of CaRck2p is required for the virulence, but not for the in vitro filamentation, in C. albicans. Therefore, Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen C. albicans.

  13. CD36 Differently Regulates Macrophage Responses to Smooth and Rough Lipopolysaccharide.

    Directory of Open Access Journals (Sweden)

    Rafał Biedroń

    Full Text Available Lipopolysaccharide (LPS is the major pathogen-associated molecular pattern of Gram-negative bacterial infections, and includes smooth (S-LPS and rough (R-LPS chemotypes. Upon activation by LPS through CD14, TLR4/MD-2 heterodimers sequentially induce two waves of intracellular signaling for macrophage activation: the MyD88-dependent pathway from the plasma membrane and, following internalization, the TRIF-dependent pathway from endosomes. We sought to better define the role of scavenger receptors CD36 and CD204/SR-A as accessory LPS receptors that can contribute to pro-inflammatory and microbicidal activation of macrophages. We have found that CD36 differently regulates activation of mouse macrophages by S-LPS versus R-LPS. The ability of CD36 to substitute for CD14 in loading R-LPS, but not S-LPS onto TLR4/MD-2 allows CD14-independent macrophage responses to R-LPS. Conversely, S-LPS, but not R-LPS effectively stimulates CD14 binding to CD36, which favors S-LPS transfer from CD14 onto TLR4/MD-2 under conditions of low CD14 occupancy with S-LPS in serum-free medium. In contrast, in the presence of serum, CD36 reduces S-LPS binding to TLR4/MD-2 and the subsequent MyD88-dependent signaling, by mediating internalization of S-LPS/CD14 complexes. Additionally, CD36 positively regulates activation of TRIF-dependent signaling by both S-LPS and R-LPS, by promoting TLR4/MD-2 endocytosis. In contrast, we have found that SR-A does not function as a S-LPS receptor. Thus, by co-operating with CD14 in both R- and S-LPS loading onto TLR4/MD-2, CD36 can enhance the sensitivity of tissue-resident macrophages in detecting infections by Gram-negative bacteria. However, in later phases, following influx of serum to the infection site, the CD36-mediated negative regulation of MyD88-dependent branch of S-LPS-induced TLR4 signaling might constitute a mechanism to prevent an excessive inflammatory response, while preserving the adjuvant effect of S-LPS for adaptive

  14. A Drosophila systems model of pentylenetetrazole induced locomotor plasticity responsive to antiepileptic drugs

    Directory of Open Access Journals (Sweden)

    Singh Priyanka

    2009-01-01

    Full Text Available Abstract Background Rodent kindling induced by PTZ is a widely used model of epileptogenesis and AED testing. Overlapping pathophysiological mechanisms may underlie epileptogenesis and other neuropsychiatric conditions. Besides epilepsy, AEDs are widely used in treating various neuropsychiatric disorders. Mechanisms of AEDs' long term action in these disorders are poorly understood. We describe here a Drosophila systems model of PTZ induced locomotor plasticity that is responsive to AEDs. Results We empirically determined a regime in which seven days of PTZ treatment and seven days of subsequent PTZ discontinuation respectively cause a decrease and an increase in climbing speed of Drosophila adults. Concomitant treatment with NaVP and LEV, not ETH, GBP and VGB, suppressed the development of locomotor deficit at the end of chronic PTZ phase. Concomitant LEV also ameliorated locomotor alteration that develops after PTZ withdrawal. Time series of microarray expression profiles of heads of flies treated with PTZ for 12 hrs (beginning phase, two days (latent phase and seven days (behaviorally expressive phase showed only down-, not up-, regulation of genes; expression of 23, 2439 and 265 genes were downregulated, in that order. GO biological process enrichment analysis showed downregulation of transcription, neuron morphogenesis during differentiation, synaptic transmission, regulation of neurotransmitter levels, neurogenesis, axonogenesis, protein modification, axon guidance, actin filament organization etc. in the latent phase and of glutamate metabolism, cell communication etc. in the expressive phase. Proteomic interactome based analysis provided further directionality to these events. Pathway overrepresentation analysis showed enrichment of Wnt signaling and other associated pathways in genes downregulated by PTZ. Mining of available transcriptomic and proteomic data pertaining to established rodent models of epilepsy and human epileptic

  15. INTERNATIONAL ASPECTS OF STATE REGULATION OF SOCIO-ECONOMIC RESPONSIBILITY OF ENTREPRENEURSHIP: EXPERIENCE FOR UKRAINE

    Directory of Open Access Journals (Sweden)

    Ludmila Batchenko

    2017-12-01

    Full Text Available The subject of the study is the socio-economic aspects of the social responsibility of business (CSR in 4 countries. The purpose of the article is to study the experience in regulating the socio-economic responsibility of entrepreneurship in the United States, Sweden, India, and China to determine the direction of formation of the state mechanism of socio-economic responsibility of entrepreneurship (SERE in Ukraine. The methodology of the article became theoretical researches of foreign scientists, their synthesis, systematization, and analysis for the development of the application of experience in Ukrainian realities. The analysis showed how different states of CSR policy differ in each of these countries and made it possible to draw conclusions about the application in Ukraine. So, the experience of Sweden is useful in reviewing the social reporting obligation, as well as the experience of China. In the case of the USA, the role of the state in regulating CSRs in enterprises should be noted but, at the same time, the significant social consciousness of American entrepreneurs as recognized philanthropists, who are actively introducing ethical codes and key stewards from the implementation of CSR, are seen by society and aimed at improving the well-being of society. In China, the government plays an important role in the implementation of CSR for state-owned enterprises. In addition, laws are adopted to improve the rights of employees, to equalize gender differences, to increase the level of production, quality of products, which leads to an improvement in the quality of life of the country’s population. All this becomes relevant for Ukraine and can be used in our country as well. Indian experience draws attention through the adoption of a unique decision on the indifference of charity activities by Indian companies with a certain level of profit and the adoption of them by the rules of corporate social responsibility. In entrepreneurship

  16. Simulated hypogravity impairs the angiogenic response of endothelium by up-regulating apoptotic signals

    International Nuclear Information System (INIS)

    Morbidelli, Lucia; Monici, Monica; Marziliano, Nicola; Cogoli, Augusto; Fusi, Franco; Waltenberger, Johannes; Ziche, Marina

    2005-01-01

    Health hazards in astronauts are represented by cardiovascular problems and impaired bone healing. These disturbances are characterized by a common event, the loss of function by vascular endothelium, leading to impaired angiogenesis. We investigated whether the exposure of cultured endothelial cells to hypogravity condition could affect their behaviour in terms of functional activity, biochemical responses, morphology, and gene expression. Simulated hypogravity conditions for 72 h produced a reduction of cell number. Genomic analysis of endothelial cells exposed to hypogravity revealed that proapoptotic signals increased, while antiapoptotic and proliferation/survival genes were down-regulated by modelled low gravity. Activation of apoptosis was accompanied by morphological changes with mitochondrial disassembly and organelles/cytoplasmic NAD(P)H redistribution, as evidenced by autofluorescence analysis. In this condition cells were not able to respond to angiogenic stimuli in terms of migration and proliferation. Our study documents functional, morphological, and transcription alterations in vascular endothelium exposed to simulated low gravity conditions, thus providing insights on the occurrence of vascular tissue dysregulation in crewmen during prolonged space flights. Moreover, the alteration of vascular endothelium can intervene as a concause in other systemic effects, like bone remodelling, observed in weightlessness

  17. Caspase-1 inhibitor regulates humoral responses in experimental autoimmune myasthenia gravis via IL-6- dependent inhibiton of STAT3.

    Science.gov (United States)

    Wang, Cong-Cong; Zhang, Min; Li, Heng; Li, Xiao-Li; Yue, Long-Tao; Zhang, Peng; Liu, Ru-Tao; Chen, Hui; Li, Yan-Bin; Duan, Rui-Sheng

    2017-08-24

    We have previously demonstrated that Cysteinyl aspartate-specific proteinase-1 (caspase-1) inhibitor ameliorates experimental autoimmune myasthenia gravis (EAMG) by inhibited cellular immune response, via suppressing DC IL-1 β, CD4 + T and γdT cells IL-17 pathways. In this study, we investigated the effect of caspase-1 inhibitor on humoral immune response of EAMG and further explore the underlying mechanisms. An animal model of MG was induced by region 97-116 of the rat AChR α subunit (R97-116 peptide) in Lewis rats. Rats were treated with caspase-1 inhibitor Ac-YVAD-cmk intraperitoneally (i.p.) every second day from day 13 after the first immunization. Flow cytometry, western blot, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the neuroprotective effect of caspase-1 inhibitor on humoral immune response of EAMG. The results showed that caspase-1 inhibitor reduced the relative affinity of anti-R97-116 IgG, suppressed germinal center response, decreased follicular helper T cells, and increased follicular regulatory T cells and regulatory B cells. In addition, we found that caspase-1 inhibitor inhibited humoral immunity response in EAMG rats via suppressing IL-6-STAT3-Bcl-6 pathways. These results suggest that caspase-1 inhibitor ameliorates EAMG by regulating humoral immune response, thus providing new insights into the development of myasthenia gravis and other autoimmune diseases therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. When love is not blind: rumination impairs implicit affect regulation in response to romantic relationship threat

    NARCIS (Netherlands)

    Jostmann, N.B.; Karremans, J.; Finkenauer, C.

    2011-01-01

    The present research examined how rumination influences implicit affect regulation in response to romantic relationship threat. In three studies, the disposition to ruminate impaired the ability to maintain positive feelings about the romantic partner in the face of explicit or implicit reminders of

  19. Regulation of immune responsiveness in vivo by disrupting an early T-cell signaling event using a cell-permeable peptide.

    Directory of Open Access Journals (Sweden)

    David M Guimond

    Full Text Available The inducible T cell kinase (ITK regulates type 2 (Th2 cytokines that provide defense against certain parasitic and bacterial infections and are involved in the pathogenesis of lung inflammation such as allergic asthma. Activation of ITK requires the interaction of its SH3 domain with the poly-proline region of its signaling partner, the SH2 domain containing leukocyte phosphoprotein of 76 kilodaltons (SLP-76. The specific disruption of the ITK-SH3/SLP-76 poly-proline interaction in vitro by a cell-permeable competitive inhibitor peptide (R9-QQP interferes with the activation of ITK and the transduction of its cellular functions in T lymphocytes. In the present investigation, we assessed the effects of R9-QQP treatment on the induction of an in vivo immune response as represented by lung inflammation in a murine model of allergic asthma. We found that mice treated with R9-QQP and sensitized and challenged with the surrogate allergen ovalbumin (OVA display significant inhibition of lung inflammation in a peptide-specific manner. Thus, parameters of the allergic response, such as airway hyper-responsiveness, suppression of inflammatory cell infiltration, reduction of bronchial mucus accumulation, and production of relevant cytokines from draining lymph nodes were significantly suppressed. These findings represent the first demonstration of the biological significance of the interaction between ITK and SLP-76 in the induction of an immune response in a whole animal model and specifically underscore the significance of the ITK-SH3 domain interaction with the poly-proline region of SLP-76 in the development of an inflammatory response. Furthermore, the experimental approach of intracellular peptide-mediated inhibition might be applicable to the study of other important intracellular interactions thus providing a paradigm for dissecting signal transduction pathways.

  20. Hypothalamic food intake regulation in a cancer-cachectic mouse model

    OpenAIRE

    Dwarkasing, Jvalini T.; van Dijk, Miriam; Dijk, Francina J.; Boekschoten, Mark V.; Faber, Joyce; Argilès, Josep M.; Laviano, Alessandro; Müller, Michael; Witkamp, Renger F.; van Norren, Klaske

    2013-01-01

    Background Appetite is frequently affected in cancer patients leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer-cachectic mouse model with increased food intake. In this model, mice bearing C26 tumour have an increased food intake subsequently to the loss of body weight. We hypothesise that in this model, appetite-regulating systems in the hypothalamus, which apparently fail in anorexia, are still able t...

  1. IAPs Regulate Distinct Innate Immune Pathways to Co-ordinate the Response to Bacterial Peptidoglycans.

    Science.gov (United States)

    Stafford, Che A; Lawlor, Kate E; Heim, Valentin J; Bankovacki, Aleksandra; Bernardini, Jonathan P; Silke, John; Nachbur, Ueli

    2018-02-06

    Inhibitors of apoptosis (IAPs) proteins are critical regulators of innate immune signaling pathways and therefore have potential as drug targets. X-linked IAP (XIAP) and cellular IAP1 and IAP2 (cIAP1 and cIAP2) are E3 ligases that have been shown to be required for signaling downstream of NOD2, an intracellular receptor for bacterial peptidoglycan. We used genetic and biochemical approaches to compare the responses of IAP-deficient mice and cells to NOD2 stimulation. In all cell types tested, XIAP is the only IAP required for signaling immediately downstream of NOD2, while cIAP1 and cIAP2 are dispensable for NOD2-induced nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) activation. However, mice lacking cIAP1 or TNFR1 have a blunted cytokine response to NOD2 stimulation. We conclude that cIAPs regulate NOD2-dependent autocrine TNF signaling in vivo and highlight the importance of physiological context in the interplay of innate immune signaling pathways. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Cyclic AMP Regulates Bacterial Persistence through Repression of the Oxidative Stress Response and SOS-Dependent DNA Repair in Uropathogenic Escherichia coli.

    Science.gov (United States)

    Molina-Quiroz, Roberto C; Silva-Valenzuela, Cecilia; Brewster, Jennifer; Castro-Nallar, Eduardo; Levy, Stuart B; Camilli, Andrew

    2018-01-09

    Bacterial persistence is a transient, nonheritable physiological state that provides tolerance to bactericidal antibiotics. The stringent response, toxin-antitoxin modules, and stochastic processes, among other mechanisms, play roles in this phenomenon. How persistence is regulated is relatively ill defined. Here we show that cyclic AMP, a global regulator of carbon catabolism and other core processes, is a negative regulator of bacterial persistence in uropathogenic Escherichia coli , as measured by survival after exposure to a β-lactam antibiotic. This phenotype is regulated by a set of genes leading to an oxidative stress response and SOS-dependent DNA repair. Thus, persister cells tolerant to cell wall-acting antibiotics must cope with oxidative stress and DNA damage and these processes are regulated by cyclic AMP in uropathogenic E. coli IMPORTANCE Bacterial persister cells are important in relapsing infections in patients treated with antibiotics and also in the emergence of antibiotic resistance. Our results show that in uropathogenic E. coli , the second messenger cyclic AMP negatively regulates persister cell formation, since in its absence much more persister cells form that are tolerant to β-lactams antibiotics. We reveal the mechanism to be decreased levels of reactive oxygen species, specifically hydroxyl radicals, and SOS-dependent DNA repair. Our findings suggest that the oxidative stress response and DNA repair are relevant pathways to target in the design of persister-specific antibiotic compounds. Copyright © 2018 Molina-Quiroz et al.

  3. Nuclear receptor 4a3 (nr4a3 regulates murine mast cell responses and granule content.

    Directory of Open Access Journals (Sweden)

    Gianni Garcia-Faroldi

    Full Text Available Nuclear receptor 4a3 (Nr4a3 is a transcription factor implicated in various settings such as vascular biology and inflammation. We have recently shown that mast cells dramatically upregulate Nuclear receptor 4a3 upon activation, and here we investigated the functional impact of Nuclear receptor 4a3 on mast cell responses. We show that Nuclear receptor 4a3 is involved in the regulation of cytokine/chemokine secretion in mast cells following activation via the high affinity IgE receptor. Moreover, Nuclear receptor 4a3 negatively affects the transcript and protein levels of mast cell tryptase as well as the mast cell's responsiveness to allergen. Together, these findings identify Nuclear receptor 4a3 as a novel regulator of mast cell function.

  4. Behavioural and Autonomic Regulation of Response to Sensory Stimuli among Children: A Systematic Review of Relationship and Methodology.

    Science.gov (United States)

    Gomez, Ivan Neil; Lai, Cynthia Y Y; Morato-Espino, Paulin Grace; Chan, Chetwyn C H; Tsang, Hector W H

    2017-01-01

    Previous studies have explored the correlates of behavioural and autonomic regulation of response to sensory stimuli in children; however, a comprehensive review of such relationship is lacking. This systematic review was performed to critically appraise the current evidence on such relationship and describe the methods used in these studies. Online databases were systematically searched for peer-reviewed, full-text articles in the English language between 1999 and 2016, initially screened by title and abstract, and appraised and synthesized by two independent review authors. Fourteen Level III-3 cross-sectional studies were included for systematic review, among which six studies explored the relationship between behaviour and physiological regulation of responses to sensory stimuli. Three studies reported significant positive weak correlations among ASD children; however, no correlations were found in typically developing children. Methodological differences related to individual differences among participants, measures used, and varied laboratory experimental setting were noted. This review suggests inconclusive evidence supporting the relationship between behavioural and physiological regulation of responses to sensory stimuli among children. Methodological differences may likely have confounded the results of the current evidence. We present methodological recommendations to address this matter for future researches. This trial is registered with PROSPERO registration number CRD42016043887.

  5. Behavioural and Autonomic Regulation of Response to Sensory Stimuli among Children: A Systematic Review of Relationship and Methodology

    Directory of Open Access Journals (Sweden)

    Ivan Neil Gomez

    2017-01-01

    Full Text Available Background. Previous studies have explored the correlates of behavioural and autonomic regulation of response to sensory stimuli in children; however, a comprehensive review of such relationship is lacking. This systematic review was performed to critically appraise the current evidence on such relationship and describe the methods used in these studies. Methods. Online databases were systematically searched for peer-reviewed, full-text articles in the English language between 1999 and 2016, initially screened by title and abstract, and appraised and synthesized by two independent review authors. Results. Fourteen Level III-3 cross-sectional studies were included for systematic review, among which six studies explored the relationship between behaviour and physiological regulation of responses to sensory stimuli. Three studies reported significant positive weak correlations among ASD children; however, no correlations were found in typically developing children. Methodological differences related to individual differences among participants, measures used, and varied laboratory experimental setting were noted. Conclusion. This review suggests inconclusive evidence supporting the relationship between behavioural and physiological regulation of responses to sensory stimuli among children. Methodological differences may likely have confounded the results of the current evidence. We present methodological recommendations to address this matter for future researches. This trial is registered with PROSPERO registration number CRD42016043887.

  6. Modeling of non-steroidal anti-inflammatory drug effect within signaling pathways and miRNA-regulation pathways.

    Directory of Open Access Journals (Sweden)

    Jian Li

    Full Text Available To date, it is widely recognized that Non-Steroidal Anti-Inflammatory Drugs (NSAIDs can exert considerable anti-tumor effects regarding many types of cancers. The prolonged use of NSAIDs is highly associated with diverse side effects. Therefore, tailoring down the NSAID application onto individual patients has become a necessary and relevant step towards personalized medicine. This study conducts the systemsbiological approach to construct a molecular model (NSAID model containing a cyclooxygenase (COX-pathway and its related signaling pathways. Four cancer hallmarks are integrated into the model to reflect different developmental aspects of tumorigenesis. In addition, a Flux-Comparative-Analysis (FCA based on Petri net is developed to transfer the dynamic properties (including drug responsiveness of individual cellular system into the model. The gene expression profiles of different tumor-types with available drug-response information are applied to validate the predictive ability of the NSAID model. Moreover, two therapeutic developmental strategies, synthetic lethality and microRNA (miRNA biomarker discovery, are investigated based on the COX-pathway. In conclusion, the result of this study demonstrates that the NSAID model involving gene expression, gene regulation, signal transduction, protein interaction and other cellular processes, is able to predict the individual cellular responses for different therapeutic interventions (such as NS-398 and COX-2 specific siRNA inhibition. This strongly indicates that this type of model is able to reflect the physiological, developmental and pathological processes of an individual. The approach of miRNA biomarker discovery is demonstrated for identifying miRNAs with oncogenic and tumor suppressive functions for individual cell lines of breast-, colon- and lung-tumor. The achieved results are in line with different independent studies that investigated miRNA biomarker related to diagnostics of cancer

  7. β2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses.

    Science.gov (United States)

    Moriyama, Saya; Brestoff, Jonathan R; Flamar, Anne-Laure; Moeller, Jesper B; Klose, Christoph S N; Rankin, Lucille C; Yudanin, Naomi A; Monticelli, Laurel A; Putzel, Gregory Garbès; Rodewald, Hans-Reimer; Artis, David

    2018-03-02

    The type 2 inflammatory response is induced by various environmental and infectious stimuli. Although recent studies identified group 2 innate lymphoid cells (ILC2s) as potent sources of type 2 cytokines, the molecular pathways controlling ILC2 responses are incompletely defined. Here we demonstrate that murine ILC2s express the β 2 -adrenergic receptor (β 2 AR) and colocalize with adrenergic neurons in the intestine. β 2 AR deficiency resulted in exaggerated ILC2 responses and type 2 inflammation in intestinal and lung tissues. Conversely, β 2 AR agonist treatment was associated with impaired ILC2 responses and reduced inflammation in vivo. Mechanistically, we demonstrate that the β 2 AR pathway is a cell-intrinsic negative regulator of ILC2 responses through inhibition of cell proliferation and effector function. Collectively, these data provide the first evidence of a neuronal-derived regulatory circuit that limits ILC2-dependent type 2 inflammation. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Emergency Response Program Designing Based On Case Study ERP Regulations In Ilam Gas Refinery

    Directory of Open Access Journals (Sweden)

    Mehdi Tahmasbi

    2015-08-01

    Full Text Available The study of Emergency response plan designing is one of the most important prevention approaches in crisis management. This study aims to design emergency response plan based on case study ERP regulations in Ilam gas refinery. On the basis of risk assessment and identification techniques such as HAZOP and FMEA in Ilam gas refinery the risks have been prioritized and then according to this prioritization the design of possible scenarios which have the highest rate of occurrence and the highest level of damage has been separated. Possible scenarios were simulated with PHAST software. Then emergency response program has been designed for the special mode or similar cases. According to the internal emergency response plan for Ilam gas refinery and predictable conditions of the process special instructions should be considered at the time of the incident to suffer the least damage on people and environment in the shortest time possible.

  9. Modeling, Analysis, and Control of Demand Response Resources

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, Johanna L. [Univ. of California, Berkeley, CA (United States)

    2012-05-01

    While the traditional goal of an electric power system has been to control supply to fulfill demand, the demand-side can plan an active role in power systems via Demand Response (DR), defined by the Department of Energy (DOE) as “a tariff or program established to motivate changes in electric use by end-use customers in response to changes in the price of electricity over time, or to give incentive payments designed to induce lower electricity use at times of high market prices or when grid reliability is jeopardized” [29]. DR can provide a variety of benefits including reducing peak electric loads when the power system is stressed and fast timescale energy balancing. Therefore, DR can improve grid reliability and reduce wholesale energy prices and their volatility. This dissertation focuses on analyzing both recent and emerging DR paradigms. Recent DR programs have focused on peak load reduction in commercial buildings and industrial facilities (C&I facilities). We present methods for using 15-minute-interval electric load data, commonly available from C&I facilities, to help building managers understand building energy consumption and ‘ask the right questions’ to discover opportunities for DR. Additionally, we present a regression-based model of whole building electric load, i.e., a baseline model, which allows us to quantify DR performance. We use this baseline model to understand the performance of 38 C&I facilities participating in an automated dynamic pricing DR program in California. In this program, facilities are expected to exhibit the same response each DR event. We find that baseline model error makes it difficult to precisely quantify changes in electricity consumption and understand if C&I facilities exhibit event-to-event variability in their response to DR signals. Therefore, we present a method to compute baseline model error and a metric to determine how much observed DR variability results from baseline model error rather than real

  10. A Box-Cox normal model for response times

    NARCIS (Netherlands)

    Klein Entink, R.H.; Fox, J.P.; Linden, W.J. van der

    2009-01-01

    The log-transform has been a convenient choice in response time modelling on test items. However, motivated by a dataset of the Medical College Admission Test where the lognormal model violated the normality assumption, the possibilities of the broader class of Box–Cox transformations for response

  11. Apple F-box Protein MdMAX2 Regulates Plant Photomorphogenesis and Stress Response

    Directory of Open Access Journals (Sweden)

    Jian-Ping An

    2016-11-01

    Full Text Available MAX2 (MORE AXILLARY GROWTH2 is involved in diverse physiological processes, including photomorphogenesis, the abiotic stress response, as well as karrikin and strigolactone signaling-mediated shoot branching. In this study, MdMAX2, an F-box protein that is a homolog of Arabidopsis MAX2, was identified and characterized. Overexpression of MdMAX2 in apple calli enhanced the accumulation of anthocyanin. Ectopic expression of MdMAX2 in Arabidopsis exhibited photomorphogenesis phenotypes, including increased anthocyanin content and decreased hypocotyl length. Further study indicated that MdMAX2 might promote plant photomorphogenesis by affecting the auxin signaling as well as other plant hormones. Transcripts of MdMAX2 were noticeably up-regulated in response to NaCl and Mannitol treatments. Moreover, compared with the wild type, the MdMAX2-overexpressing apple calli and Arabidopsis exhibited increased tolerance to salt and drought stresses. Taken together, these results suggest that MdMAX2 plays a positive regulatory role in plant photomorphogenesis and stress response.

  12. Environmental Regulation and International Trade

    Energy Technology Data Exchange (ETDEWEB)

    Mulatu, A. [London School of Economics, London (United Kingdom); Florax, R.J.G.M.; Withagen, C.A. [Faculty of Economics and Business Administration, Vrije Universiteit, Amsterdam (Netherlands)

    2004-07-01

    We empirically investigate the responsiveness of international trade to the stringency of environmental regulation. Stringent environmental regulation may impair the export competitiveness of 'dirty' domestic industries, and as a result, 'pollution havens' emerge in countries where environmental regulation is 'over-lax.' We examine the impact of pollution abatement and control costs on net exports in order to grasp this phenomenon. Theoretically, our analysis is related to a general equilibrium model of trade and pollution nesting the pollution haven motive for trade with the factor endowment motive. We analyze data on two-digit ISIC manufacturing industries during the period 1977-1992 in Germany, the Netherlands and the US, and show that trade patterns in 'dirty' commodities are jointly determined by relative factor endowments and environmental stringency differentials.

  13. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF

    DEFF Research Database (Denmark)

    Worm, Jesper; Stenvang, Jan; Petri, Andreas

    2009-01-01

    microRNA-155 (miR-155) has been implicated as a central regulator of the immune system, but its function during acute inflammatory responses is still poorly understood. Here we show that exposure of cultured macrophages and mice to lipopolysaccharide (LPS) leads to up-regulation of miR-155......-stimulating factor (G-CSF), a central regulator of granulopoiesis during inflammatory responses. Consistent with these data, we show that silencing of miR-155 in LPS-treated mice by systemically administered LNA-antimiR results in derepression of the c/ebp Beta isoforms and down-regulation of G-CSF expression...

  14. The influence of model parameters on catchment-response

    International Nuclear Information System (INIS)

    Shah, S.M.S.; Gabriel, H.F.; Khan, A.A.

    2002-01-01

    This paper deals with the study of influence of influence of conceptual rainfall-runoff model parameters on catchment response (runoff). A conceptual modified watershed yield model is employed to study the effects of model-parameters on catchment-response, i.e. runoff. The model is calibrated, using manual parameter-fitting approach, also known as trial and error parameter-fitting. In all, there are twenty one (21) parameters that control the functioning of the model. A lumped parametric approach is used. The detailed analysis was performed on Ling River near Kahuta, having catchment area of 56 sq. miles. The model includes physical parameters like GWSM, PETS, PGWRO, etc. fitting coefficients like CINF, CGWS, etc. and initial estimates of the surface-water and groundwater storages i.e. srosp and gwsp. Sensitivity analysis offers a good way, without repetititious computations, the proper weight and consideration that must be taken when each of the influencing factor is evaluated. Sensitivity-analysis was performed to evaluate the influence of model-parameters on runoff. The sensitivity and relative contributions of model parameters influencing catchment-response are studied. (author)

  15. Developing New Modelling Tools for Environmental Flow Assessment in Regulated Salmon Rivers

    Science.gov (United States)

    Geris, Josie; Soulsby, Chris; Tetzlaff, Doerthe

    2013-04-01

    of the natural flow variability and the hydrological impacts of the regulation is unavailable, partly because pre-regulation data of existing hydropower schemes are lacking. Here we develop a novel modelling approach for characterising natural flow regimes and defining hydrological flow indices. This allows us to quantitatively assess the impacts of hydropower to better inform environmental flow requirements for the Atlantic salmon river ecosystem. Results are presented for the River Lyon (390 km2), a regulated headwater catchment of the River Tay. The HBV hydrological rainfall-runoff model is used to simulate flows, based on calibrated parameters from regulated flow data, with the current hydropower scheme active. For this, the HBV model is adapted to be able to incorporate water transfers and regulated flows. The natural hydrological indices are derived from the simulated pre-regulation data, and compared with those of the regulated data to investigate the impact of the regulation on these at different critical times for Atlantic salmon. The sensitivity of the system to change is also investigated to explore the extent to which flow variables can be modified without major degradation to the river's ecosystem, while still maintaining viable hydropower generation. The modelling approach presented will provide the basis for assessing impacts on hydrological flow indices and informing environmental flows in regions with similar heavily regulated mountain river ecosystems.

  16. Transcriptome analyses reveal the involvement of both C and N termini of cryptochrome 1 in its regulation of phytohormone-responsive gene expression in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Wenxiu eWang

    2016-03-01

    Full Text Available Cryptochromes (CRY are blue-light photoreceptors that mediate various light responses in plants and animals. It has long been demonstrated that Arabidopsis CRY (CRY1 and CRY2 C termini (CCT1 and CCT2 mediate light signaling through direct interaction with COP1. Most recently, CRY1 N terminus (CNT1 has been found to be involved in CRY1 signaling independent of CCT1, and implicated in the inhibition of gibberellin acids (GA/brassinosteroids (BR/auxin-responsive gene expression. Here, we performed RNA-Seq assay using transgenic plants expressing CCT1 fused to β-glucuronidase (GUS-CCT1, abbreviated as CCT1, which exhibit a constitutively photomorphogenic phenotype, and compared the results with those obtained previously from cry1cry2 mutant and the transgenic plants expressing CNT1 fused to nuclear localization signal sequence (NLS-tagged YFP (CNT1-NLS-YFP, abbreviated as CNT1, which display enhanced responsiveness to blue light. We found that 2,903 (67.85% of the CRY-regulated genes are regulated by CCT1 and that 1,095 of these CCT1-regulated genes are also regulated by CNT1. After annotating the gene functions, we found that CCT1 is involved in mediating CRY1 regulation of phytohormone-responsive genes, like CNT1, and that about half of the up-regulated genes by GA/BR/auxin are down-regulated by CCT1 and CNT1, consistent with the antagonistic role for CRY1 and these phytohormones in regulating hypocotyl elongation. Physiological studies showed that both CCT1 and CNT1 are likely involved in mediating CRY1 reduction of seedlings sensitivity to GA under blue light. Furthermore, protein expression studies demonstrate that the inhibition of GA promotion of HY5 degradation by CRY1 is likely mediated by CCT1, but not by CNT1. These results give genome-wide transcriptome information concerning the signaling mechanism of CRY1, unraveling possible involvement of its C and N termini in its regulation of response of GA and likely other phytohormones.

  17. Modeling Answer Change Behavior: An Application of a Generalized Item Response Tree Model

    Science.gov (United States)

    Jeon, Minjeong; De Boeck, Paul; van der Linden, Wim

    2017-01-01

    We present a novel application of a generalized item response tree model to investigate test takers' answer change behavior. The model allows us to simultaneously model the observed patterns of the initial and final responses after an answer change as a function of a set of latent traits and item parameters. The proposed application is illustrated…

  18. Hypoxia-dependent sequestration of an oxygen sensor by a widespread structural motif can shape the hypoxic response - a predictive kinetic model

    Directory of Open Access Journals (Sweden)

    Novák Béla

    2010-10-01

    Full Text Available Abstract Background The activity of the heterodimeric transcription factor hypoxia inducible factor (HIF is regulated by the post-translational, oxygen-dependent hydroxylation of its α-subunit by members of the prolyl hydroxylase domain (PHD or EGLN-family and by factor inhibiting HIF (FIH. PHD-dependent hydroxylation targets HIFα for rapid proteasomal degradation; FIH-catalysed asparaginyl-hydroxylation of the C-terminal transactivation domain (CAD of HIFα suppresses the CAD-dependent subset of the extensive transcriptional responses induced by HIF. FIH can also hydroxylate ankyrin-repeat domain (ARD proteins, a large group of proteins which are functionally unrelated but share common structural features. Competition by ARD proteins for FIH is hypothesised to affect FIH activity towards HIFα; however the extent of this competition and its effect on the HIF-dependent hypoxic response are unknown. Results To analyse if and in which way the FIH/ARD protein interaction affects HIF-activity, we created a rate equation model. Our model predicts that an oxygen-regulated sequestration of FIH by ARD proteins significantly shapes the input/output characteristics of the HIF system. The FIH/ARD protein interaction is predicted to create an oxygen threshold for HIFα CAD-hydroxylation and to significantly sharpen the signal/response curves, which not only focuses HIFα CAD-hydroxylation into a defined range of oxygen tensions, but also makes the response ultrasensitive to varying oxygen tensions. Our model further suggests that the hydroxylation status of the ARD protein pool can encode the strength and the duration of a hypoxic episode, which may allow cells to memorise these features for a certain time period after reoxygenation. Conclusions The FIH/ARD protein interaction has the potential to contribute to oxygen-range finding, can sensitise the response to changes in oxygen levels, and can provide a memory of the strength and the duration of a

  19. A photo-responsive F-box protein FOF2 regulates floral initiation by promoting FLC expression in Arabidopsis.

    Science.gov (United States)

    He, Reqing; Li, Xinmei; Zhong, Ming; Yan, Jindong; Ji, Ronghuan; Li, Xu; Wang, Qin; Wu, Dan; Sun, Mengsi; Tang, Dongying; Lin, Jianzhong; Li, Hongyu; Liu, Bin; Liu, Hongtao; Liu, Xuanming; Zhao, Xiaoying; Lin, Chentao

    2017-09-01

    Floral initiation is regulated by various genetic pathways in response to light, temperature, hormones and developmental status; however, the molecular mechanisms underlying the interactions between different genetic pathways are not fully understood. Here, we show that the photoresponsive gene FOF2 (F-box of flowering 2) negatively regulates flowering. FOF2 encodes a putative F-box protein that interacts specifically with ASK14, and its overexpression results in later flowering under both long-day and short-day photoperiods. Conversely, transgenic plants expressing the F-box domain deletion mutant of FOF2 (FOF2ΔF), or double loss of function mutant of FOF2 and FOL1 (FOF2-LIKE 1) present early flowering phenotypes. The late flowering phenotype of the FOF2 overexpression lines is suppressed by the flc-3 loss-of-function mutation. Furthermore, FOF2 mRNA expression is regulated by autonomous pathway gene FCA, and the repressive effect of FOF2 in flowering can be overcome by vernalization. Interestingly, FOF2 expression is regulated by light. The protein level of FOF2 accumulates in response to light, whereas it is degraded under dark conditions via the 26S proteasome pathway. Our findings suggest a possible mechanistic link between light conditions and the autonomous floral promotion pathway in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  20. The emotion regulation questionnaire in women with cancer: A psychometric evaluation and an item response theory analysis.

    Science.gov (United States)

    Brandão, Tânia; Schulz, Marc S; Gross, James J; Matos, Paula Mena

    2017-10-01

    Emotion regulation is thought to play an important role in adaptation to cancer. However, the emotion regulation questionnaire (ERQ), a widely used instrument to assess emotion regulation, has not yet been validated in this context. This study addresses this gap by examining the psychometric properties of the ERQ in a sample of Portuguese women with cancer. The ERQ was administered to 204 women with cancer (mean age = 48.89 years, SD = 7.55). Confirmatory factor analysis and item response theory analysis were used to examine psychometric properties of the ERQ. Confirmatory factor analysis confirmed the 2-factor solution proposed by the original authors (expressive suppression and cognitive reappraisal). This solution was invariant across age and type of cancer. Item response theory analyses showed that all items were moderately to highly discriminant and that items are better suited for identifying moderate levels of expressive suppression and cognitive reappraisal. Support was found for the internal consistency and test-retest reliability of the ERQ. The pattern of relationships with emotional control, alexithymia, emotional self-efficacy, attachment, and quality of life provided evidence of the convergent and concurrent validity for both dimensions of the ERQ. Overall, the ERQ is a psychometrically sound approach for assessing emotion regulation strategies in the oncological context. Clinical implications are discussed. Copyright © 2016 John Wiley & Sons, Ltd.