WorldWideScience

Sample records for model qualitatively simulates

  1. Qualitative simulation in formal process modelling

    International Nuclear Information System (INIS)

    Sivertsen, Elin R.

    1999-01-01

    In relation to several different research activities at the OECD Halden Reactor Project, the usefulness of formal process models has been identified. Being represented in some appropriate representation language, the purpose of these models is to model process plants and plant automatics in a unified way to allow verification and computer aided design of control strategies. The present report discusses qualitative simulation and the tool QSIM as one approach to formal process models. In particular, the report aims at investigating how recent improvements of the tool facilitate the use of the approach in areas like process system analysis, procedure verification, and control software safety analysis. An important long term goal is to provide a basis for using qualitative reasoning in combination with other techniques to facilitate the treatment of embedded programmable systems in Probabilistic Safety Analysis (PSA). This is motivated from the potential of such a combination in safety analysis based on models comprising both software, hardware, and operator. It is anticipated that the research results from this activity will benefit V and V in a wide variety of applications where formal process models can be utilized. Examples are operator procedures, intelligent decision support systems, and common model repositories (author) (ml)

  2. CONFIG - Adapting qualitative modeling and discrete event simulation for design of fault management systems

    Science.gov (United States)

    Malin, Jane T.; Basham, Bryan D.

    1989-01-01

    CONFIG is a modeling and simulation tool prototype for analyzing the normal and faulty qualitative behaviors of engineered systems. Qualitative modeling and discrete-event simulation have been adapted and integrated, to support early development, during system design, of software and procedures for management of failures, especially in diagnostic expert systems. Qualitative component models are defined in terms of normal and faulty modes and processes, which are defined by invocation statements and effect statements with time delays. System models are constructed graphically by using instances of components and relations from object-oriented hierarchical model libraries. Extension and reuse of CONFIG models and analysis capabilities in hybrid rule- and model-based expert fault-management support systems are discussed.

  3. An Integrated Qualitative and Quantitative Biochemical Model Learning Framework Using Evolutionary Strategy and Simulated Annealing.

    Science.gov (United States)

    Wu, Zujian; Pang, Wei; Coghill, George M

    2015-01-01

    Both qualitative and quantitative model learning frameworks for biochemical systems have been studied in computational systems biology. In this research, after introducing two forms of pre-defined component patterns to represent biochemical models, we propose an integrative qualitative and quantitative modelling framework for inferring biochemical systems. In the proposed framework, interactions between reactants in the candidate models for a target biochemical system are evolved and eventually identified by the application of a qualitative model learning approach with an evolution strategy. Kinetic rates of the models generated from qualitative model learning are then further optimised by employing a quantitative approach with simulated annealing. Experimental results indicate that our proposed integrative framework is feasible to learn the relationships between biochemical reactants qualitatively and to make the model replicate the behaviours of the target system by optimising the kinetic rates quantitatively. Moreover, potential reactants of a target biochemical system can be discovered by hypothesising complex reactants in the synthetic models. Based on the biochemical models learned from the proposed framework, biologists can further perform experimental study in wet laboratory. In this way, natural biochemical systems can be better understood.

  4. Discrete event simulation tool for analysis of qualitative models of continuous processing systems

    Science.gov (United States)

    Malin, Jane T. (Inventor); Basham, Bryan D. (Inventor); Harris, Richard A. (Inventor)

    1990-01-01

    An artificial intelligence design and qualitative modeling tool is disclosed for creating computer models and simulating continuous activities, functions, and/or behavior using developed discrete event techniques. Conveniently, the tool is organized in four modules: library design module, model construction module, simulation module, and experimentation and analysis. The library design module supports the building of library knowledge including component classes and elements pertinent to a particular domain of continuous activities, functions, and behavior being modeled. The continuous behavior is defined discretely with respect to invocation statements, effect statements, and time delays. The functionality of the components is defined in terms of variable cluster instances, independent processes, and modes, further defined in terms of mode transition processes and mode dependent processes. Model construction utilizes the hierarchy of libraries and connects them with appropriate relations. The simulation executes a specialized initialization routine and executes events in a manner that includes selective inherency of characteristics through a time and event schema until the event queue in the simulator is emptied. The experimentation and analysis module supports analysis through the generation of appropriate log files and graphics developments and includes the ability of log file comparisons.

  5. Multiple methods for multiple futures: Integrating qualitative scenario planning and quantitative simulation modeling for natural resource decision making

    Science.gov (United States)

    Symstad, Amy J.; Fisichelli, Nicholas A.; Miller, Brian W.; Rowland, Erika; Schuurman, Gregor W.

    2017-01-01

    Scenario planning helps managers incorporate climate change into their natural resource decision making through a structured “what-if” process of identifying key uncertainties and potential impacts and responses. Although qualitative scenarios, in which ecosystem responses to climate change are derived via expert opinion, often suffice for managers to begin addressing climate change in their planning, this approach may face limits in resolving the responses of complex systems to altered climate conditions. In addition, this approach may fall short of the scientific credibility managers often require to take actions that differ from current practice. Quantitative simulation modeling of ecosystem response to climate conditions and management actions can provide this credibility, but its utility is limited unless the modeling addresses the most impactful and management-relevant uncertainties and incorporates realistic management actions. We use a case study to compare and contrast management implications derived from qualitative scenario narratives and from scenarios supported by quantitative simulations. We then describe an analytical framework that refines the case study’s integrated approach in order to improve applicability of results to management decisions. The case study illustrates the value of an integrated approach for identifying counterintuitive system dynamics, refining understanding of complex relationships, clarifying the magnitude and timing of changes, identifying and checking the validity of assumptions about resource responses to climate, and refining management directions. Our proposed analytical framework retains qualitative scenario planning as a core element because its participatory approach builds understanding for both managers and scientists, lays the groundwork to focus quantitative simulations on key system dynamics, and clarifies the challenges that subsequent decision making must address.

  6. Qualitative, semi-quantitative, and quantitative simulation of the osmoregulation system in yeast.

    Science.gov (United States)

    Pang, Wei; Coghill, George M

    2015-05-01

    In this paper we demonstrate how Morven, a computational framework which can perform qualitative, semi-quantitative, and quantitative simulation of dynamical systems using the same model formalism, is applied to study the osmotic stress response pathway in yeast. First the Morven framework itself is briefly introduced in terms of the model formalism employed and output format. We then built a qualitative model for the biophysical process of the osmoregulation in yeast, and a global qualitative-level picture was obtained through qualitative simulation of this model. Furthermore, we constructed a Morven model based on existing quantitative model of the osmoregulation system. This model was then simulated qualitatively, semi-quantitatively, and quantitatively. The obtained simulation results are presented with an analysis. Finally the future development of the Morven framework for modelling the dynamic biological systems is discussed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  7. Qualitative, semi-quantitative, and quantitative simulation of the osmoregulation system in yeast

    Science.gov (United States)

    Pang, Wei; Coghill, George M.

    2015-01-01

    In this paper we demonstrate how Morven, a computational framework which can perform qualitative, semi-quantitative, and quantitative simulation of dynamical systems using the same model formalism, is applied to study the osmotic stress response pathway in yeast. First the Morven framework itself is briefly introduced in terms of the model formalism employed and output format. We then built a qualitative model for the biophysical process of the osmoregulation in yeast, and a global qualitative-level picture was obtained through qualitative simulation of this model. Furthermore, we constructed a Morven model based on existing quantitative model of the osmoregulation system. This model was then simulated qualitatively, semi-quantitatively, and quantitatively. The obtained simulation results are presented with an analysis. Finally the future development of the Morven framework for modelling the dynamic biological systems is discussed. PMID:25864377

  8. Qualitative simulation for supervision of a nuclear reprocessing plant

    International Nuclear Information System (INIS)

    Leyval, L.; Ledoux, A.

    1991-01-01

    This paper deals with the first application of a supervision support system to a part of a nuclear reprocessing plant. The system is called DIAPASON; its role is to help the operators to understand the behaviour of the process, and to diagnose failures if needed. This paper is only concerned with the simulation of the behaviour of the process and the associated explanations provided by DIAPASON during the normal operation periods. The modeling, simulation techniques are presented, when applied to a nuclear process. A causal graph linking the relevant variables by Qualitative Transfer Functions models the process behaviour. The simulation consists in propagating through the entire graph the significant events detected on the input variables or on measurable disturbances of the process. As a result, the evolutions of all the other variables are obtained. The explanations that can be provided at the present time are deduced from the simulation

  9. SDG and qualitative trend based model multiple scale validation

    Science.gov (United States)

    Gao, Dong; Xu, Xin; Yin, Jianjin; Zhang, Hongyu; Zhang, Beike

    2017-09-01

    Verification, Validation and Accreditation (VV&A) is key technology of simulation and modelling. For the traditional model validation methods, the completeness is weak; it is carried out in one scale; it depends on human experience. The SDG (Signed Directed Graph) and qualitative trend based multiple scale validation is proposed. First the SDG model is built and qualitative trends are added to the model. And then complete testing scenarios are produced by positive inference. The multiple scale validation is carried out by comparing the testing scenarios with outputs of simulation model in different scales. Finally, the effectiveness is proved by carrying out validation for a reactor model.

  10. Graphical means for inspecting qualitative models of system behaviour

    NARCIS (Netherlands)

    Bouwer, A.; Bredeweg, B.

    2010-01-01

    This article presents the design and evaluation of a tool for inspecting conceptual models of system behaviour. The basis for this research is the Garp framework for qualitative simulation. This framework includes modelling primitives, such as entities, quantities and causal dependencies, which are

  11. Controller Synthesis using Qualitative Models and Constraints

    OpenAIRE

    Ramamoorthy, Subramanian; Kuipers, Benjamin J

    2004-01-01

    Many engineering systems require the synthesis of global behaviors in nonlinear dynamical systems. Multiple model approaches to control design make it possible to synthesize robust and optimal versions of such global behaviors. We propose a methodology called Qualitative Heterogeneous Control that enables this type of control design. This methodology is based on a separation of concerns between qualitative correctness and quantitative optimization. Qualitative sufficient conditions are derive...

  12. EMC Simulation and Modeling

    Science.gov (United States)

    Takahashi, Takehiro; Schibuya, Noboru

    The EMC simulation is now widely used in design stage of electronic equipment to reduce electromagnetic noise. As the calculated electromagnetic behaviors of the EMC simulator depends on the inputted EMC model of the equipment, the modeling technique is important to obtain effective results. In this paper, simple outline of the EMC simulator and EMC model are described. Some modeling techniques of EMC simulation are also described with an example of the EMC model which is shield box with aperture.

  13. Qualitative models for space system engineering

    Science.gov (United States)

    Forbus, Kenneth D.

    1990-01-01

    The objectives of this project were: (1) to investigate the implications of qualitative modeling techniques for problems arising in the monitoring, diagnosis, and design of Space Station subsystems and procedures; (2) to identify the issues involved in using qualitative models to enhance and automate engineering functions. These issues include representing operational criteria, fault models, alternate ontologies, and modeling continuous signals at a functional level of description; and (3) to develop a prototype collection of qualitative models for fluid and thermal systems commonly found in Space Station subsystems. Potential applications of qualitative modeling to space-systems engineering, including the notion of intelligent computer-aided engineering are summarized. Emphasis is given to determining which systems of the proposed Space Station provide the most leverage for study, given the current state of the art. Progress on using qualitative models, including development of the molecular collection ontology for reasoning about fluids, the interaction of qualitative and quantitative knowledge in analyzing thermodynamic cycles, and an experiment on building a natural language interface to qualitative reasoning is reported. Finally, some recommendations are made for future research.

  14. A research on applications of qualitative reasoning techniques in Human Acts Simulation Program

    International Nuclear Information System (INIS)

    Far, B.H.

    1992-04-01

    Human Acts Simulation Program (HASP) is a ten-year research project of the Computing and Information Systems Center of JAERI. In HASP the goal is developing programs for an advanced intelligent robot to accomplish multiple instructions (for instance, related to surveillance, inspection and maintenance) in nuclear power plants. Some recent artificial intelligence techniques can contribute to this project. This report introduces some original contributions concerning application of Qualitative Reasoning (QR) techniques in HASP. The focus is on the knowledge-intensive tasks, including model-based reasoning, analytic learning, fault diagnosis and functional reasoning. The multi-level extended qualitative modeling for the Skill-Rule-Knowledge (S-R-K) based reasoning, that included the coordination and timing of events, Qualitative Sensitivity analysis (Q S A), Subjective Qualitative Fault Diagnosis (S Q F D) and Qualitative Function Formation (Q F F ) techniques are introduced. (author) 123 refs

  15. How can we cope with the complexity of the environment? A "Learning by modelling" approach using qualitative reasoning for developing causal models and simulations with focus on Sustainable River Catchment Management

    Science.gov (United States)

    Poppe, Michaela; Zitek, Andreas; Salles, Paulo; Bredeweg, Bert; Muhar, Susanne

    2010-05-01

    The education system needs strategies to attract future scientists and practitioners. There is an alarming decline in the number of students choosing science subjects. Reasons for this include the perceived complexity and the lack of effective cognitive tools that enable learners to acquire the expertise in a way that fits its qualitative nature. The DynaLearn project utilises a "Learning by modelling" approach to deliver an individualised and engaging cognitive tool for acquiring conceptual knowledge. The modelling approach is based on qualitative reasoning, a research area within artificial intelligence, and allows for capturing and simulating qualitative systems knowledge. Educational activities within the DynaLearn software address topics at different levels of complexity, depending on the educational goals and settings. DynaLearn uses virtual characters in the learning environment as agents for engaging and motivating the students during their modelling exercise. The DynaLearn software represents an interactive learning environment in which learners are in control of their learning activities. The software is able to coach them individually based on their current progress, their knowledge needs and learning goals. Within the project 70 expert models on different environmental issues covering seven core topics (Earth Systems and Resources, The Living World, Human population, Land and Water Use, Energy Resources and Consumption, Pollution, and Global Changes) will be delivered. In the context of the core topic "Land and Water Use" the Institute of Hydrobiology and Aquatic Ecosystem Management has developed a model on Sustainable River Catchment Management. River systems with their catchments have been tremendously altered due to human pressures with serious consequences for the ecological integrity of riverine landscapes. The operation of hydropower plants, the implementation of flood protection measures, the regulation of flow and sediment regime and intensive

  16. Learning Action Models: Qualitative Approach

    NARCIS (Netherlands)

    Bolander, T.; Gierasimczuk, N.; van der Hoek, W.; Holliday, W.H.; Wang, W.-F.

    2015-01-01

    In dynamic epistemic logic, actions are described using action models. In this paper we introduce a framework for studying learnability of action models from observations. We present first results concerning propositional action models. First we check two basic learnability criteria: finite

  17. Simulation modeling and arena

    CERN Document Server

    Rossetti, Manuel D

    2015-01-01

    Emphasizes a hands-on approach to learning statistical analysis and model building through the use of comprehensive examples, problems sets, and software applications With a unique blend of theory and applications, Simulation Modeling and Arena®, Second Edition integrates coverage of statistical analysis and model building to emphasize the importance of both topics in simulation. Featuring introductory coverage on how simulation works and why it matters, the Second Edition expands coverage on static simulation and the applications of spreadsheets to perform simulation. The new edition als

  18. Learning Actions Models: Qualitative Approach

    DEFF Research Database (Denmark)

    Bolander, Thomas; Gierasimczuk, Nina

    2015-01-01

    —they are identifiable in the limit.We then move on to a particular learning method, which proceeds via restriction of a space of events within a learning-specific action model. This way of learning closely resembles the well-known update method from dynamic epistemic logic. We introduce several different learning...... identifiability (conclusively inferring the appropriate action model in finite time) and identifiability in the limit (inconclusive convergence to the right action model). We show that deterministic actions are finitely identifiable, while non-deterministic actions require more learning power...... methods suited for finite identifiability of particular types of deterministic actions....

  19. Qualitative models of global warming amplifiers

    NARCIS (Netherlands)

    Milošević, U.; Bredeweg, B.; de Kleer, J.; Forbus, K.D.

    2010-01-01

    There is growing interest from ecological experts to create qualitative models of phenomena for which numerical information is sparse or missing. We present a number of successful models in the field of environmental science, namely, the domain of global warming. The motivation behind the effort is

  20. Simulation in Complex Modelling

    DEFF Research Database (Denmark)

    Nicholas, Paul; Ramsgaard Thomsen, Mette; Tamke, Martin

    2017-01-01

    This paper will discuss the role of simulation in extended architectural design modelling. As a framing paper, the aim is to present and discuss the role of integrated design simulation and feedback between design and simulation in a series of projects under the Complex Modelling framework. Complex...... Restraint developed for the research exhibition Complex Modelling, Meldahls Smedie Gallery, Copenhagen in 2016. Where the direct project aims and outcomes have been reported elsewhere, the aim for this paper is to discuss overarching strategies for working with design integrated simulation....

  1. A Qualitative Acceleration Model Based on Intervals

    Directory of Open Access Journals (Sweden)

    Ester MARTINEZ-MARTIN

    2013-08-01

    Full Text Available On the way to autonomous service robots, spatial reasoning plays a main role since it properly deals with problems involving uncertainty. In particular, we are interested in knowing people's pose to avoid collisions. With that aim, in this paper, we present a qualitative acceleration model for robotic applications including representation, reasoning and a practical application.

  2. Simulation in Complex Modelling

    DEFF Research Database (Denmark)

    Nicholas, Paul; Ramsgaard Thomsen, Mette; Tamke, Martin

    2017-01-01

    This paper will discuss the role of simulation in extended architectural design modelling. As a framing paper, the aim is to present and discuss the role of integrated design simulation and feedback between design and simulation in a series of projects under the Complex Modelling framework. Complex...... performance, engage with high degrees of interdependency and allow the emergence of design agency and feedback between the multiple scales of architectural construction. This paper presents examples for integrated design simulation from a series of projects including Lace Wall, A Bridge Too Far and Inflated...... Restraint developed for the research exhibition Complex Modelling, Meldahls Smedie Gallery, Copenhagen in 2016. Where the direct project aims and outcomes have been reported elsewhere, the aim for this paper is to discuss overarching strategies for working with design integrated simulation....

  3. Scientific Modeling and simulations

    CERN Document Server

    Diaz de la Rubia, Tomás

    2009-01-01

    Showcases the conceptual advantages of modeling which, coupled with the unprecedented computing power through simulations, allow scientists to tackle the formibable problems of our society, such as the search for hydrocarbons, understanding the structure of a virus, or the intersection between simulations and real data in extreme environments

  4. Computer Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pronskikh, V. S. [Fermilab

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes

  5. Automated Simulation Model Generation

    NARCIS (Netherlands)

    Huang, Y.

    2013-01-01

    One of today's challenges in the field of modeling and simulation is to model increasingly larger and more complex systems. Complex models take long to develop and incur high costs. With the advances in data collection technologies and more popular use of computer-aided systems, more data has become

  6. A new method for qualitative simulation of water resources systems: 1. Theory

    Science.gov (United States)

    Camara, A. S.; Pinheiro, M.; Antunes, M. P.; Seixas, M. J.

    1987-11-01

    A new dynamic modeling methodology, SLIN (Simulação Linguistica), allowing for the analysis of systems defined by linguistic variables, is presented. SLIN applies a set of logical rules avoiding fuzzy theoretic concepts. To make the transition from qualitative to quantitative modes, logical rules are used as well. Extensions of the methodology to simulation-optimization applications and multiexpert system modeling are also discussed.

  7. AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.

    1982-01-01

    The Geologic Simulation Model (GSM) is used by the AEGIS (Assessment of Effectiveness of Geologic Isolation Systems) program at the Pacific Northwest Laboratory to simulate the dynamic geology and hydrology of a geologic nuclear waste repository site over a million-year period following repository closure. The GSM helps to organize geologic/hydrologic data; to focus attention on active natural processes by requiring their simulation; and, through interactive simulation and calibration, to reduce subjective evaluations of the geologic system. During each computer run, the GSM produces a million-year geologic history that is possible for the region and the repository site. In addition, the GSM records in permanent history files everything that occurred during that time span. Statistical analyses of data in the history files of several hundred simulations are used to classify typical evolutionary paths, to establish the probabilities associated with deviations from the typical paths, and to determine which types of perturbations of the geologic/hydrologic system, if any, are most likely to occur. These simulations will be evaluated by geologists familiar with the repository region to determine validity of the results. Perturbed systems that are determined to be the most realistic, within whatever probability limits are established, will be used for the analyses that involve radionuclide transport and dose models. The GSM is designed to be continuously refined and updated. Simulation models are site specific, and, although the submodels may have limited general applicability, the input data equirements necessitate detailed characterization of each site before application

  8. Validation of simulation models

    DEFF Research Database (Denmark)

    Rehman, Muniza; Pedersen, Stig Andur

    2012-01-01

    In philosophy of science, the interest for computational models and simulations has increased heavily during the past decades. Different positions regarding the validity of models have emerged but the views have not succeeded in capturing the diversity of validation methods. The wide variety...

  9. Designing a Qualitative Data Collection Strategy (QDCS) for Africa - Phase 1: A Gap Analysis of Existing Models, Simulations, and Tools Relating to Africa

    Science.gov (United States)

    2012-06-01

    generalized behavioral model characterized after the fictional Seldon equations (the one elaborated upon by Isaac Asimov in the 1951 novel, The...Foundation). Asimov described the Seldon equations as essentially statistical models with historical data of a sufficient size and variability that they

  10. PSH Transient Simulation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-21

    PSH Transient Simulation Modeling presentation from the WPTO FY14 - FY16 Peer Review. Transient effects are an important consideration when designing a PSH system, yet numerical techniques for hydraulic transient analysis still need improvements for adjustable-speed (AS) reversible pump-turbine applications.

  11. Wake modeling and simulation

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Madsen Aagaard, Helge; Larsen, Torben J.

    We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, howev...... methodology has been implemented in the aeroelastic code HAWC2, and example simulations of wake situations, from the small Tjæreborg wind farm, have been performed showing satisfactory agreement between predictions and measurements...

  12. Airflow Patterns In Nuclear Workplace - Computer Simulation And Qualitative Tests

    International Nuclear Information System (INIS)

    Haim, M.; Szanto, M.; Weiss, Y.; Kravchick, T.; Levinson, S.; German, U.

    1999-01-01

    Concentration of airborne radioactive materials inside a room can vary widely from one location to another, sometimes by orders of magnitude even for locations that are relatively close. Inappropriately placed samplers can give misleading results and. therefore, the location of air samplers is important. Proper placement of samplers cannot be determined simply by observing the position of room air supply and exhaust vents. Airflow studies, such as the release of smoke aerosols, should be used. The significance of airflow pattern studies depends on the purpose of sampling - for estimating worker intakes, warning of high concentrations. defacing airborne radioactive areas, testing for confinement of sealed radioactive materials. etc. When sampling air in rooms with complex airflow patterns, it may be useful to use qualitative airflow studies with smoke tubes, smoke candles or isostatic bubbles. The U.S. Nuclear Regulatory Commission - Regulatory Guide 8.25 [1]. suggests that an airflow study should be conducted after any changes at work area including changes in the setup of work areas, ventilation system changes, etc. The present work presents an airflow patterns study conducted in a typical room using two methods: a computer simulation and a qualitative test using a smoke tube

  13. SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools.

    Science.gov (United States)

    Chaouiya, Claudine; Bérenguier, Duncan; Keating, Sarah M; Naldi, Aurélien; van Iersel, Martijn P; Rodriguez, Nicolas; Dräger, Andreas; Büchel, Finja; Cokelaer, Thomas; Kowal, Bryan; Wicks, Benjamin; Gonçalves, Emanuel; Dorier, Julien; Page, Michel; Monteiro, Pedro T; von Kamp, Axel; Xenarios, Ioannis; de Jong, Hidde; Hucka, Michael; Klamt, Steffen; Thieffry, Denis; Le Novère, Nicolas; Saez-Rodriguez, Julio; Helikar, Tomáš

    2013-12-10

    Qualitative frameworks, especially those based on the logical discrete formalism, are increasingly used to model regulatory and signalling networks. A major advantage of these frameworks is that they do not require precise quantitative data, and that they are well-suited for studies of large networks. While numerous groups have developed specific computational tools that provide original methods to analyse qualitative models, a standard format to exchange qualitative models has been missing. We present the Systems Biology Markup Language (SBML) Qualitative Models Package ("qual"), an extension of the SBML Level 3 standard designed for computer representation of qualitative models of biological networks. We demonstrate the interoperability of models via SBML qual through the analysis of a specific signalling network by three independent software tools. Furthermore, the collective effort to define the SBML qual format paved the way for the development of LogicalModel, an open-source model library, which will facilitate the adoption of the format as well as the collaborative development of algorithms to analyse qualitative models. SBML qual allows the exchange of qualitative models among a number of complementary software tools. SBML qual has the potential to promote collaborative work on the development of novel computational approaches, as well as on the specification and the analysis of comprehensive qualitative models of regulatory and signalling networks.

  14. Use of model-based qualitative icons and adaptive windows in workstations for supervisory control systems

    Science.gov (United States)

    Mitchell, Christine M.; Saisi, Donna L.

    1987-01-01

    The effectiveness of an operator interface using qualitative icons and dynamic windows designed and controlled by means of an operator function model is demonstrated, and the simulation system, the Georgia Tech-Multisatellite Operations Control Center, is described. Qualitative icons are used to integrate low-level quantitative data into high-level qualitative error detection mechanisms, and window technology is used for the simultaneous display of multiple data sources that reflect different aspects of the system state. Based on eleven experimental measures, the workstation incorporating the model-based qualitative icons and dynamic operator function window sets was found to perform better than the conventional workstation.

  15. Qualitative and quantitative simulation of androgen receptor antagonists: A case study of polybrominated diphenyl ethers.

    Science.gov (United States)

    Wu, Yang; Shi, Wei; Xia, Pu; Zhang, Xiaowei; Yu, Hongxia

    2017-12-15

    Recently, great attention has been paid to the identification and prediction of the androgen disrupting potencies of polybrominated diphenyl ethers (PBDEs). However, few existing models can discriminate active and inactive compounds, which make the quantitative prediction process including the quantitative structure-activity relationship (QSAR) technique unreliable. In this study, different grouping methods were investigated and compared for qualitative identification, including molecular docking and molecular dynamics simulations (MD). The results showed that qualitative identification based on MD, which is lab-independent, accurate and closer to the real transcriptional activation process, could separate 90.5% of active and inactive chemicals and was preferred. The 3D-QSAR models built as the quantitative simulation method showed r 2 and q 2 values of 0.513 and 0.980, respectively. Together, a novel workflow combining qualitative identification and quantitative simulations was generated with processes including activeness discrimination and activity prediction. This workflow, for analyzing the antagonism of androgen receptor (AR) of PBDEs is not only allowing researchers to reduce their intense laboratory experiments but also assisting them in inspecting and adjusting their laboratory systems and results. Copyright © 2017. Published by Elsevier B.V.

  16. Diagnostic reasoning using qualitative causal models

    International Nuclear Information System (INIS)

    Sudduth, A.L.

    1992-01-01

    The application of expert systems to reasoning problems involving real-time data from plant measurements has been a topic of much research, but few practical systems have been deployed. One obstacle to wider use of expert systems in applications involving real-time data is the lack of adequate knowledge representation methodologies for dynamic processes. Knowledge bases composed mainly of rules have disadvantages when applied to dynamic processes and real-time data. This paper describes a methodology for the development of qualitative causal models that can be used as knowledge bases for reasoning about process dynamic behavior. These models provide a systematic method for knowledge base construction, considerably reducing the engineering effort required. They also offer much better opportunities for verification and validation of the knowledge base, thus increasing the possibility of the application of expert systems to reasoning about mission critical systems. Starting with the Signed Directed Graph (SDG) method that has been successfully applied to describe the behavior of diverse dynamic processes, the paper shows how certain non-physical behaviors that result from abstraction may be eliminated by applying causal constraint to the models. The resulting Extended Signed Directed Graph (ESDG) may then be compiled to produce a model for use in process fault diagnosis. This model based reasoning methodology is used in the MOBIAS system being developed by Duke Power Company under EPRI sponsorship. 15 refs., 4 figs

  17. Simulation - modeling - experiment

    International Nuclear Information System (INIS)

    2004-01-01

    After two workshops held in 2001 on the same topics, and in order to make a status of the advances in the domain of simulation and measurements, the main goals proposed for this workshop are: the presentation of the state-of-the-art of tools, methods and experiments in the domains of interest of the Gedepeon research group, the exchange of information about the possibilities of use of computer codes and facilities, about the understanding of physical and chemical phenomena, and about development and experiment needs. This document gathers 18 presentations (slides) among the 19 given at this workshop and dealing with: the deterministic and stochastic codes in reactor physics (Rimpault G.); MURE: an evolution code coupled with MCNP (Meplan O.); neutronic calculation of future reactors at EdF (Lecarpentier D.); advance status of the MCNP/TRIO-U neutronic/thermal-hydraulics coupling (Nuttin A.); the FLICA4/TRIPOLI4 thermal-hydraulics/neutronics coupling (Aniel S.); methods of disturbances and sensitivity analysis of nuclear data in reactor physics, application to VENUS-2 experimental reactor (Bidaud A.); modeling for the reliability improvement of an ADS accelerator (Biarotte J.L.); residual gas compensation of the space charge of intense beams (Ben Ismail A.); experimental determination and numerical modeling of phase equilibrium diagrams of interest in nuclear applications (Gachon J.C.); modeling of irradiation effects (Barbu A.); elastic limit and irradiation damage in Fe-Cr alloys: simulation and experiment (Pontikis V.); experimental measurements of spallation residues, comparison with Monte-Carlo simulation codes (Fallot M.); the spallation target-reactor coupling (Rimpault G.); tools and data (Grouiller J.P.); models in high energy transport codes: status and perspective (Leray S.); other ways of investigation for spallation (Audoin L.); neutrons and light particles production at intermediate energies (20-200 MeV) with iron, lead and uranium targets (Le Colley F

  18. Qualitative model-based diagnosis using possibility theory

    Science.gov (United States)

    Joslyn, Cliff

    1994-01-01

    The potential for the use of possibility in the qualitative model-based diagnosis of spacecraft systems is described. The first sections of the paper briefly introduce the Model-Based Diagnostic (MBD) approach to spacecraft fault diagnosis; Qualitative Modeling (QM) methodologies; and the concepts of possibilistic modeling in the context of Generalized Information Theory (GIT). Then the necessary conditions for the applicability of possibilistic methods to qualitative MBD, and a number of potential directions for such an application, are described.

  19. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    leaving students. It is a probabilistic model. In the next part of this article, two more models - 'input/output model' used for production systems or economic studies and a. 'discrete event simulation model' are introduced. Aircraft Performance Model.

  20. Qualitative modeling of the dynamics of detonations with losses

    KAUST Repository

    Faria, Luiz

    2015-01-01

    We consider a simplified model for the dynamics of one-dimensional detonations with generic losses. It consists of a single partial differential equation that reproduces, at a qualitative level, the essential properties of unsteady detonation waves, including pulsating and chaotic solutions. In particular, we investigate the effects of shock curvature and friction losses on detonation dynamics. To calculate steady-state solutions, a novel approach to solving the detonation eigenvalue problem is introduced that avoids the well-known numerical difficulties associated with the presence of a sonic point. By using unsteady numerical simulations of the simplified model, we also explore the nonlinear stability of steady-state or quasi-steady solutions. © 2014 The Combustion Institute.

  1. Modeling arson - An exercise in qualitative model building

    Science.gov (United States)

    Heineke, J. M.

    1975-01-01

    A detailed example is given of the role of von Neumann and Morgenstern's 1944 'expected utility theorem' (in the theory of games and economic behavior) in qualitative model building. Specifically, an arsonist's decision as to the amount of time to allocate to arson and related activities is modeled, and the responsiveness of this time allocation to changes in various policy parameters is examined. Both the activity modeled and the method of presentation are intended to provide an introduction to the scope and power of the expected utility theorem in modeling situations of 'choice under uncertainty'. The robustness of such a model is shown to vary inversely with the number of preference restrictions used in the analysis. The fewer the restrictions, the wider is the class of agents to which the model is applicable, and accordingly more confidence is put in the derived results. A methodological discussion on modeling human behavior is included.

  2. Qualitative simulation of bathymetric changes due to reservoir sedimentation: A Japanese case study.

    Directory of Open Access Journals (Sweden)

    Ahmed Bilal

    Full Text Available Sediment-dynamics modeling is a useful tool for estimating a dam's lifespan and its cost-benefit analysis. Collecting real data for sediment-dynamics analysis from conventional field survey methods is both tedious and expensive. Therefore, for most rivers, the historical record of data is either missing or not very detailed. Available data and existing tools have much potential and may be used for qualitative prediction of future bathymetric change trend. This study shows that proxy approaches may be used to increase the spatiotemporal resolution of flow data, and hypothesize the river cross-sections and sediment data. Sediment-dynamics analysis of the reach of the Tenryu River upstream of Sakuma Dam in Japan was performed to predict its future bathymetric changes using a 1D numerical model (HEC-RAS. In this case study, only annually-averaged flow data and the river's longitudinal bed profile at 5-year intervals were available. Therefore, the other required data, including river cross-section and geometry and sediment inflow grain sizes, had to be hypothesized or assimilated indirectly. The model yielded a good qualitative agreement, with an R2 (coefficient of determination of 0.8 for the observed and simulated bed profiles. A predictive simulation demonstrated that the useful life of the dam would end after the year 2035 (±5 years, which is in conformity with initial detailed estimates. The study indicates that a sediment-dynamic analysis can be performed even with a limited amount of data. However, such studies may only assess the qualitative trends of sediment dynamics.

  3. Modelling and Simulation: An Overview

    OpenAIRE

    McAleer, Michael; Chan, Felix; Oxley, Les

    2013-01-01

    This discussion paper resulted in a publication in 'Selected Papers of the MSSANZ 19th Biennial Conference on Modelling and Simulation Mathematics and Computers in Simulation', 2013, pp. viii. The papers in this special issue of Mathematics and Computers in Simulation cover the following topics: improving judgmental adjustment of model-based forecasts, whether forecast updates are progressive, on a constrained mixture vector autoregressive model, whether all estimators are born equal: the emp...

  4. Notes on modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Antonio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-10

    These notes present a high-level overview of how modeling and simulation are carried out by practitioners. The discussion is of a general nature; no specific techniques are examined but the activities associated with all modeling and simulation approaches are briefly addressed. There is also a discussion of validation and verification and, at the end, a section on why modeling and simulation are useful.

  5. A methodology for acquiring qualitative knowledge for probabilistic graphical models

    DEFF Research Database (Denmark)

    Kjærulff, Uffe Bro; Madsen, Anders L.

    2004-01-01

    We present a practical and general methodology that simplifies the task of acquiring and formulating qualitative knowledge for constructing probabilistic graphical models (PGMs). The methodology efficiently captures and communicates expert knowledge, and has significantly eased the model developm......We present a practical and general methodology that simplifies the task of acquiring and formulating qualitative knowledge for constructing probabilistic graphical models (PGMs). The methodology efficiently captures and communicates expert knowledge, and has significantly eased the model...

  6. Qualitative modelling macroeconomics indicators for prediction of progress branch

    Directory of Open Access Journals (Sweden)

    Jiří Luňáček

    2010-01-01

    Full Text Available A qualitative modelling philosophy has been developed in an effort to produce a general and reasonably unified common sense approach to the modelling of unique, complex and unsteady state systems. Economics, Ecology, Sociology and Politics are sciences, which study such systems. An integration of sub models from those sciences into supermodels is inevitable if realistic decision making tasks are analysed. Therefore conventional formal tools (e.g. statistics cannot be correctly applied because of lack of information. Qualitative variables are quantified using three values only – positive (increasing, zero (constant and negative (decreasing. Knowledge items of qualitative nature (e.g. if productivity goes up then profit does not decrease are often the only available information. The classical quantitative tools cannot deal with such information items. However, qualitative models can absorb shallow qualitative knowledge and generate all possible scenarios i.e. qualitative solutions. The complete list of scenarios guarantees that any analysis (decision making based on it does not ignore any promising solution. The case study of oil related macro economical risks is presented in details (15 variables e.g. Inflation, Corruption, 14 qualitative relations among the variables. No a priory know­ledge of qualitative analysis is required.

  7. Simulation Model of a Transient

    DEFF Research Database (Denmark)

    Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte

    2005-01-01

    This paper describes the simulation model of a controller that enables an active-stall wind turbine to ride through transient faults. The simulated wind turbine is connected to a simple model of a power system. Certain fault scenarios are specified and the turbine shall be able to sustain operati...

  8. Cognitive models embedded in system simulation models

    International Nuclear Information System (INIS)

    Siegel, A.I.; Wolf, J.J.

    1982-01-01

    If we are to discuss and consider cognitive models, we must first come to grips with two questions: (1) What is cognition; (2) What is a model. Presumably, the answers to these questions can provide a basis for defining a cognitive model. Accordingly, this paper first places these two questions into perspective. Then, cognitive models are set within the context of computer simulation models and a number of computer simulations of cognitive processes are described. Finally, pervasive issues are discussed vis-a-vis cognitive modeling in the computer simulation context

  9. Simulation - modeling - experiment; Simulation - modelisation - experience

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    After two workshops held in 2001 on the same topics, and in order to make a status of the advances in the domain of simulation and measurements, the main goals proposed for this workshop are: the presentation of the state-of-the-art of tools, methods and experiments in the domains of interest of the Gedepeon research group, the exchange of information about the possibilities of use of computer codes and facilities, about the understanding of physical and chemical phenomena, and about development and experiment needs. This document gathers 18 presentations (slides) among the 19 given at this workshop and dealing with: the deterministic and stochastic codes in reactor physics (Rimpault G.); MURE: an evolution code coupled with MCNP (Meplan O.); neutronic calculation of future reactors at EdF (Lecarpentier D.); advance status of the MCNP/TRIO-U neutronic/thermal-hydraulics coupling (Nuttin A.); the FLICA4/TRIPOLI4 thermal-hydraulics/neutronics coupling (Aniel S.); methods of disturbances and sensitivity analysis of nuclear data in reactor physics, application to VENUS-2 experimental reactor (Bidaud A.); modeling for the reliability improvement of an ADS accelerator (Biarotte J.L.); residual gas compensation of the space charge of intense beams (Ben Ismail A.); experimental determination and numerical modeling of phase equilibrium diagrams of interest in nuclear applications (Gachon J.C.); modeling of irradiation effects (Barbu A.); elastic limit and irradiation damage in Fe-Cr alloys: simulation and experiment (Pontikis V.); experimental measurements of spallation residues, comparison with Monte-Carlo simulation codes (Fallot M.); the spallation target-reactor coupling (Rimpault G.); tools and data (Grouiller J.P.); models in high energy transport codes: status and perspective (Leray S.); other ways of investigation for spallation (Audoin L.); neutrons and light particles production at intermediate energies (20-200 MeV) with iron, lead and uranium targets (Le Colley F

  10. Qualitative analysis of the rare earth element by simulation of inductively coupled plasma emission spectra

    International Nuclear Information System (INIS)

    Hashimoto, M.S.; Tobishima, Taeko; Kamitake, Seigo; Yasuda, Kazuo.

    1985-01-01

    The emission lines for qualitative analysis of rare earth elements by a simulation technique of ICP spectra were proposed. The spectra were simulated by employing a Gaussian (or a Lorentzian at high concentrations) profile. The simulated spectra corresponded quite well with the observed ones. The emission lines were selected so that the interference was as small as possible. The present qualitative analysis is based on a pattern recognition method where observed intensity ratios of the emission lines in each element are compared with those of a single analyte element. The qualitative analysis was performed for twelve standard solutions containing a single rare earth element and for eight standard solutions containing an element other than rare earth elements. The selection of the emission lines and the algorithm of the present qualitative analysis were justified. (author)

  11. TREAT Modeling and Simulation Strategy

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, Mark David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This report summarizes a four-phase process used to describe the strategy in developing modeling and simulation software for the Transient Reactor Test Facility. The four phases of this research and development task are identified as (1) full core transient calculations with feedback, (2) experiment modeling, (3) full core plus experiment simulation and (4) quality assurance. The document describes the four phases, the relationship between these research phases, and anticipated needs within each phase.

  12. Facilitating Tough Conversations: Using an Innovative Simulation-Primed Qualitative Inquiry in Pediatric Research.

    Science.gov (United States)

    Wong, Ambrose H; Tiyyagura, Gunjan K; Dodington, James M; Hawkins, Bonnie; Hersey, Denise; Auerbach, Marc A

    Deep exploration of a complex health care issue in pediatrics might be hindered by the sensitive or infrequent nature of a particular topic in pediatrics. Health care simulation builds on constructivist theories to guide individuals through an experiential cycle of action, self-reflection, and open discussion, but has traditionally been applied to the educational domain in health sciences. Leveraging the emotional activation of a simulated experience, investigators can prime participants to engage in open dialogue for the purposes of qualitative research. The framework of simulation-primed qualitative inquiry consists of 3 main iterative steps. First, researchers determine applicability by consideration of the need for an exploratory approach and potential to enrich data through simulation priming of participants. Next, careful attention is needed to design the simulation, with consideration of medium, technology, theoretical frameworks, and quality to create simulated reality relevant to the research question. Finally, data collection planning consists of a qualitative approach and method selection, with particular attention paid to psychological safety of subjects participating in the simulation. A literature review revealed 37 articles that used this newly described method across a variety of clinical and educational research topics and used a spectrum of simulation modalities and qualitative methods. Although some potential limitations and pitfalls might exist with regard to resources, fidelity, and psychological safety under the auspices of educational research, simulation-primed qualitative inquiry can be a powerful technique to explore difficult topics when subjects might experience vulnerability or hesitation. Copyright © 2017 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  13. FASTBUS simulation models in VHDL

    International Nuclear Information System (INIS)

    Appelquist, G.

    1992-11-01

    Four hardware simulation models implementing the FASTBUS protocol are described. The models are written in the VHDL hardware description language to obtain portability, i.e. without relations to any specific simulator. They include two complete FASTBUS devices, a full-duplex segment interconnect and ancillary logic for the segment. In addition, master and slave models using a high level interface to describe FASTBUS operations, are presented. With these models different configurations of FASTBUS systems can be evaluated and the FASTBUS transactions of new devices can be verified. (au)

  14. Fault diagnosis based on continuous simulation models

    Science.gov (United States)

    Feyock, Stefan

    1987-01-01

    The results are described of an investigation of techniques for using continuous simulation models as basis for reasoning about physical systems, with emphasis on the diagnosis of system faults. It is assumed that a continuous simulation model of the properly operating system is available. Malfunctions are diagnosed by posing the question: how can we make the model behave like that. The adjustments that must be made to the model to produce the observed behavior usually provide definitive clues to the nature of the malfunction. A novel application of Dijkstra's weakest precondition predicate transformer is used to derive the preconditions for producing the required model behavior. To minimize the size of the search space, an envisionment generator based on interval mathematics was developed. In addition to its intended application, the ability to generate qualitative state spaces automatically from quantitative simulations proved to be a fruitful avenue of investigation in its own right. Implementations of the Dijkstra transform and the envisionment generator are reproduced in the Appendix.

  15. Uncertainty estimation and global forecasting with a chemistry-transport model - application to the numerical simulation of air quality; Estimation de l'incertitude et prevision d'ensemble avec un modele de chimie transport - Application a la simulation numerique de la qualite de l'air

    Energy Technology Data Exchange (ETDEWEB)

    Mallet, V.

    2005-12-15

    The aim of this work is the evaluation of the quality of a chemistry-transport model, not by a classical comparison with observations, but by the estimation of its uncertainties due to the input data, to the model formulation and to the numerical approximations. The study of these 3 sources of uncertainty is carried out with Monte Carlo simulations, with multi-model simulations and with comparisons between numerical schemes, respectively. A high uncertainty is shown for ozone concentrations. To overcome the uncertainty-related limitations, a strategy consists in using the overall forecasting. By combining several models (up to 48) on the basis of past observations, forecasts can be significantly improved. This work has been also the occasion of developing an innovative modeling system, named Polyphemus. (J.S.)

  16. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    Most systems involve parameters and variables, which are random variables due to uncertainties. Probabilistic meth- ods are powerful in modelling such systems. In this second part, we describe probabilistic models and Monte Carlo simulation along with 'classical' matrix methods and differ- ential equations as most real ...

  17. Sensitivity Analysis of Simulation Models

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2009-01-01

    This contribution presents an overview of sensitivity analysis of simulation models, including the estimation of gradients. It covers classic designs and their corresponding (meta)models; namely, resolution-III designs including fractional-factorial two-level designs for first-order polynomial

  18. Modelling and Simulation: An Overview

    NARCIS (Netherlands)

    M.J. McAleer (Michael); F. Chan (Felix); L. Oxley (Les)

    2013-01-01

    textabstractThe papers in this special issue of Mathematics and Computers in Simulation cover the following topics: improving judgmental adjustment of model-based forecasts, whether forecast updates are progressive, on a constrained mixture vector autoregressive model, whether all estimators are

  19. Vehicle dynamics modeling and simulation

    CERN Document Server

    Schramm, Dieter; Bardini, Roberto

    2014-01-01

    The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models on the basis of real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios.

  20. Modeling and Simulation: An Overview

    OpenAIRE

    Michael McAleer; Felix Chan; Les Oxley

    2013-01-01

    The papers in this special issue of Mathematics and Computers in Simulation cover the following topics. Improving judgmental adjustment of model-based forecasts, whether forecast updates are progressive, on a constrained mixture vector autoregressive model, whether all estimators are born equal. The empirical properties of some estimators of long memory, characterising trader manipulation in a limitorder driven market, measuring bias in a term-structure model of commodity prices through the c...

  1. Automated Qualitative Modeling of Dynamic Physical Systems

    Science.gov (United States)

    1993-01-01

    Resnick, Naomi Ribner, Ruth Schonfeld, Re- becca Simmons, Cindy Wible, and especially David Clemens, Nomi Harris, Michele Popper , Karen Sarachik, and...describe a part of a system by using a component name, such as "mo- tor." MM accepts both geometric and component descriptions, and allows t, e two...not a scientific discovery program along the lines of, say, BACON [201, which could also be said to be constructing models of systems. Thus the first

  2. Stochastic models: theory and simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr.

    2008-03-01

    Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.

  3. Qualitative model of a plasma photoelectric converter

    Science.gov (United States)

    Gorbunov, N. A.; Flamant, G.

    2009-01-01

    A converter of focused optical radiation into electric current is considered on the basis of the photovoltaic effect in plasmas. The converter model is based on analysis of asymmetric spatial distributions of charge particle number density and ambipolar potential in the photoplasma produced by external optical radiation focused in a heat pipe filled with a mixture of alkali vapor and a heavy inert gas. Energy balance in the plasma photoelectric converter is analyzed. The conditions in which the external radiation energy is effectively absorbed in the converter are indicated. The plasma parameters for which the energy of absorbed optical radiation is mainly spent on sustaining the ambipolar field in the plasma are determined. It is shown that the plasma photoelectric converter makes it possible to attain a high conversion efficiency for focused solar radiation.

  4. Quantitative versus qualitative modeling: a complementary approach in ecosystem study.

    Science.gov (United States)

    Bondavalli, C; Favilla, S; Bodini, A

    2009-02-01

    Natural disturbance or human perturbation act upon ecosystems by changing some dynamical parameters of one or more species. Foreseeing these modifications is necessary before embarking on an intervention: predictions may help to assess management options and define hypothesis for interventions. Models become valuable tools for studying and making predictions only when they capture types of interactions and their magnitude. Quantitative models are more precise and specific about a system, but require a large effort in model construction. Because of this very often ecological systems remain only partially specified and one possible approach to their description and analysis comes from qualitative modelling. Qualitative models yield predictions as directions of change in species abundance but in complex systems these predictions are often ambiguous, being the result of opposite actions exerted on the same species by way of multiple pathways of interactions. Again, to avoid such ambiguities one needs to know the intensity of all links in the system. One way to make link magnitude explicit in a way that can be used in qualitative analysis is described in this paper and takes advantage of another type of ecosystem representation: ecological flow networks. These flow diagrams contain the structure, the relative position and the connections between the components of a system, and the quantity of matter flowing along every connection. In this paper it is shown how these ecological flow networks can be used to produce a quantitative model similar to the qualitative counterpart. Analyzed through the apparatus of loop analysis this quantitative model yields predictions that are by no means ambiguous, solving in an elegant way the basic problem of qualitative analysis. The approach adopted in this work is still preliminary and we must be careful in its application.

  5. Model for Simulation Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    1976-01-01

    A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance...... eigenfunctions and estimates of the distributions of the corresponding expansion coefficients. The simulation method utilizes the eigenfunction expansion procedure to produce preliminary time histories of the three velocity components simultaneously. As a final step, a spectral shaping procedure is then applied....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence....

  6. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    This paper describes the modelling, simulating and optimizing including experimental verification as being carried out as part of a Ph.D. project being written resp. supervised by the authors. The work covers dynamic performance of both water-tube boilers and fire tube boilers. A detailed dynamic...... model of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic-Equation system. Being able...... to operate a boiler plant dynamically means that the boiler designs must be able to absorb any fluctuations in water level and temperature gradients resulting from the pressure change in the boiler. On the one hand a large water-/steam space may be required, i.e. to build the boiler as big as possible. Due...

  7. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    This paper describes the modelling, simulating and optimizing including experimental verification as being carried out as part of a Ph.D. project being written resp. supervised by the authors. The work covers dynamic performance of both water-tube boilers and fire tube boilers. A detailed dynamic...... to the internal pressure the consequence of the increased volume (i.e. water-/steam space) is an increased wall thickness in the pressure part of the boiler. The stresses introduced in the boiler pressure part as a result of the temperature gradients are proportional to the square of the wall thickness...... model of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic-Equation system. Being able...

  8. Modeling control in manufacturing simulation

    NARCIS (Netherlands)

    Zee, Durk-Jouke van der; Chick, S.; Sánchez, P.J.; Ferrin, D.; Morrice, D.J.

    2003-01-01

    A significant shortcoming of traditional simulation languages is the lack of attention paid to the modeling of control structures, i.e., the humans or systems responsible for manufacturing planning and control, their activities and the mutual tuning of their activities. Mostly they are hard coded

  9. A qualitative and quantitative assessment for a bone marrow harvest simulator.

    Science.gov (United States)

    Machado, Liliane S; Moraes, Ronei M

    2009-01-01

    Several approaches to perform assessment in training simulators based on virtual reality have been proposed. There are two kinds of assessment methods: offline and online. The main requirements related to online training assessment methodologies applied to virtual reality systems are the low computational complexity and the high accuracy. In the literature it can be found several approaches for general cases which can satisfy such requirements. An inconvenient about those approaches is related to an unsatisfactory solution for specific cases, as in some medical procedures, where there are quantitative and qualitative information available to perform the assessment. In this paper, we present an approach to online training assessment based on a Modified Naive Bayes which can manipulate qualitative and quantitative variables simultaneously. A special medical case was simulated in a bone marrow harvest simulator. The results obtained were satisfactory and evidenced the applicability of the method.

  10. A Modeling & Simulation Implementation Framework for Large-Scale Simulation

    Directory of Open Access Journals (Sweden)

    Song Xiao

    2012-10-01

    Full Text Available Classical High Level Architecture (HLA systems are facing development problems for lack of supporting fine-grained component integration and interoperation in large-scale complex simulation applications. To provide efficient methods of this issue, an extensible, reusable and composable simulation framework is proposed. To promote the reusability from coarse-grained federate to fine-grained components, this paper proposes a modelling & simulation framework which consists of component-based architecture, modelling methods, and simulation services to support and simplify the process of complex simulation application construction. Moreover, a standard process and simulation tools are developed to ensure the rapid and effective development of simulation application.

  11. Qualitative mechanism models and the rationalization of procedures

    Science.gov (United States)

    Farley, Arthur M.

    1989-01-01

    A qualitative, cluster-based approach to the representation of hydraulic systems is described and its potential for generating and explaining procedures is demonstrated. Many ideas are formalized and implemented as part of an interactive, computer-based system. The system allows for designing, displaying, and reasoning about hydraulic systems. The interactive system has an interface consisting of three windows: a design/control window, a cluster window, and a diagnosis/plan window. A qualitative mechanism model for the ORS (Orbital Refueling System) is presented to coordinate with ongoing research on this system being conducted at NASA Ames Research Center.

  12. Validation process of simulation model

    International Nuclear Information System (INIS)

    San Isidro, M. J.

    1998-01-01

    It is presented a methodology on empirical validation about any detailed simulation model. This king of validation it is always related with an experimental case. The empirical validation has a residual sense, because the conclusions are based on comparisons between simulated outputs and experimental measurements. This methodology will guide us to detect the fails of the simulation model. Furthermore, it can be used a guide in the design of posterior experiments. Three steps can be well differentiated: Sensitivity analysis. It can be made with a DSA, differential sensitivity analysis, and with a MCSA, Monte-Carlo sensitivity analysis. Looking the optimal domains of the input parameters. It has been developed a procedure based on the Monte-Carlo methods and Cluster techniques, to find the optimal domains of these parameters. Residual analysis. This analysis has been made on the time domain and on the frequency domain, it has been used the correlation analysis and spectral analysis. As application of this methodology, it is presented the validation carried out on a thermal simulation model on buildings, Esp., studying the behavior of building components on a Test Cell of LECE of CIEMAT. (Author) 17 refs

  13. Modeling and Simulation for Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Swinhoe, Martyn T. [Los Alamos National Laboratory

    2012-07-26

    The purpose of this talk is to give an overview of the role of modeling and simulation in Safeguards R&D and introduce you to (some of) the tools used. Some definitions are: (1) Modeling - the representation, often mathematical, of a process, concept, or operation of a system, often implemented by a computer program; (2) Simulation - the representation of the behavior or characteristics of one system through the use of another system, especially a computer program designed for the purpose; and (3) Safeguards - the timely detection of diversion of significant quantities of nuclear material. The role of modeling and simulation are: (1) Calculate amounts of material (plant modeling); (2) Calculate signatures of nuclear material etc. (source terms); and (3) Detector performance (radiation transport and detection). Plant modeling software (e.g. FACSIM) gives the flows and amount of material stored at all parts of the process. In safeguards this allow us to calculate the expected uncertainty of the mass and evaluate the expected MUF. We can determine the measurement accuracy required to achieve a certain performance.

  14. Model continuity in discrete event simulation: A framework for model-driven development of simulation models

    NARCIS (Netherlands)

    Cetinkaya, D; Verbraeck, A.; Seck, MD

    2015-01-01

    Most of the well-known modeling and simulation (M&S) methodologies state the importance of conceptual modeling in simulation studies, and they suggest the use of conceptual models during the simulation model development process. However, only a limited number of methodologies refers to how to

  15. Assessment of Molecular Modeling & Simulation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  16. From qualitative reasoning models to Bayesian-based learner modeling

    NARCIS (Netherlands)

    Milošević, U.; Bredeweg, B.; de Kleer, J.; Forbus, K.D.

    2010-01-01

    Assessing the knowledge of a student is a fundamental part of intelligent learning environments. We present a Bayesian network based approach to dealing with uncertainty when estimating a learner’s state of knowledge in the context of Qualitative Reasoning (QR). A proposal for a global architecture

  17. Simulating spin models on GPU

    Science.gov (United States)

    Weigel, Martin

    2011-09-01

    Over the last couple of years it has been realized that the vast computational power of graphics processing units (GPUs) could be harvested for purposes other than the video game industry. This power, which at least nominally exceeds that of current CPUs by large factors, results from the relative simplicity of the GPU architectures as compared to CPUs, combined with a large number of parallel processing units on a single chip. To benefit from this setup for general computing purposes, the problems at hand need to be prepared in a way to profit from the inherent parallelism and hierarchical structure of memory accesses. In this contribution I discuss the performance potential for simulating spin models, such as the Ising model, on GPU as compared to conventional simulations on CPU.

  18. Creating Simulated Microgravity Patient Models

    Science.gov (United States)

    Hurst, Victor; Doerr, Harold K.; Bacal, Kira

    2004-01-01

    The Medical Operational Support Team (MOST) has been tasked by the Space and Life Sciences Directorate (SLSD) at the NASA Johnson Space Center (JSC) to integrate medical simulation into 1) medical training for ground and flight crews and into 2) evaluations of medical procedures and equipment for the International Space Station (ISS). To do this, the MOST requires patient models that represent the physiological changes observed during spaceflight. Despite the presence of physiological data collected during spaceflight, there is no defined set of parameters that illustrate or mimic a 'space normal' patient. Methods: The MOST culled space-relevant medical literature and data from clinical studies performed in microgravity environments. The areas of focus for data collection were in the fields of cardiovascular, respiratory and renal physiology. Results: The MOST developed evidence-based patient models that mimic the physiology believed to be induced by human exposure to a microgravity environment. These models have been integrated into space-relevant scenarios using a human patient simulator and ISS medical resources. Discussion: Despite the lack of a set of physiological parameters representing 'space normal,' the MOST developed space-relevant patient models that mimic microgravity-induced changes in terrestrial physiology. These models are used in clinical scenarios that will medically train flight surgeons, biomedical flight controllers (biomedical engineers; BME) and, eventually, astronaut-crew medical officers (CMO).

  19. General introduction to simulation models

    DEFF Research Database (Denmark)

    Hisham Beshara Halasa, Tariq; Boklund, Anette

    2012-01-01

    Monte Carlo simulation can be defined as a representation of real life systems to gain insight into their functions and to investigate the effects of alternative conditions or actions on the modeled system. Models are a simplification of a system. Most often, it is best to use experiments and fie...... as support decision making. However, several other factors affect decision making such as, ethics, politics and economics. Furthermore, the insight gained when models are build leads to point out areas where knowledge is lacking....... of FMD spread that can provide useful and trustworthy advises, there are four important issues, which the model should represent: 1) The herd structure of the country in question, 2) the dynamics of animal movements and contacts between herds, 3) the biology of the disease, and 4) the regulations...

  20. A new method for qualitative simulation of water resources systems: 2. Applications

    Science.gov (United States)

    Antunes, M. P.; Seixas, M. J.; Camara, A. S.; Pinheiro, M.

    1987-11-01

    SLIN (Simulação Linguistica) is a new method for qualitative dynamic simulation. As was presented previously (Camara et al., this issue), SLIN relies upon a categorical representation of variables which are manipulated by logical rules. Two applications to water resources systems are included to illustrate SLIN's potential usefulness: the environmental impact evaluation of a hydropower plant and the assessment of oil dispersion in the sea after a tanker wreck.

  1. New method for qualitative simulations of water resources systems. 2. Applications

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, M.P.; Seixas, M.J.; Camara, A.S.; Pinheiro, M.

    1987-11-01

    SLIN (Simulacao Linguistica) is a new method for qualitative dynamic simulation. As was presented previously, SLIN relies upon a categorical representation of variables which are manipulated by logical rules. Two applications to water resources systems are included to illustrate SLIN's potential usefulness: the environmental impact evaluation of a hydropower plant and the assessment of oil dispersion in the sea after a tanker wreck.

  2. Advances in Intelligent Modelling and Simulation Simulation Tools and Applications

    CERN Document Server

    Oplatková, Zuzana; Carvalho, Marco; Kisiel-Dorohinicki, Marek

    2012-01-01

    The human capacity to abstract complex systems and phenomena into simplified models has played a critical role in the rapid evolution of our modern industrial processes and scientific research. As a science and an art, Modelling and Simulation have been one of the core enablers of this remarkable human trace, and have become a topic of great importance for researchers and practitioners. This book was created to compile some of the most recent concepts, advances, challenges and ideas associated with Intelligent Modelling and Simulation frameworks, tools and applications. The first chapter discusses the important aspects of a human interaction and the correct interpretation of results during simulations. The second chapter gets to the heart of the analysis of entrepreneurship by means of agent-based modelling and simulations. The following three chapters bring together the central theme of simulation frameworks, first describing an agent-based simulation framework, then a simulator for electrical machines, and...

  3. Verifying and Validating Simulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    This presentation is a high-level discussion of the Verification and Validation (V&V) of computational models. Definitions of V&V are given to emphasize that “validation” is never performed in a vacuum; it accounts, instead, for the current state-of-knowledge in the discipline considered. In particular comparisons between physical measurements and numerical predictions should account for their respective sources of uncertainty. The differences between error (bias), aleatoric uncertainty (randomness) and epistemic uncertainty (ignorance, lack-of- knowledge) are briefly discussed. Four types of uncertainty in physics and engineering are discussed: 1) experimental variability, 2) variability and randomness, 3) numerical uncertainty and 4) model-form uncertainty. Statistical sampling methods are available to propagate, and analyze, variability and randomness. Numerical uncertainty originates from the truncation error introduced by the discretization of partial differential equations in time and space. Model-form uncertainty is introduced by assumptions often formulated to render a complex problem more tractable and amenable to modeling and simulation. The discussion concludes with high-level guidance to assess the “credibility” of numerical simulations, which stems from the level of rigor with which these various sources of uncertainty are assessed and quantified.

  4. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    In the present work a framework for optimizing the design of boilers for dynamic operation has been developed. A cost function to be minimized during the optimization has been formulated and for the present design variables related to the Boiler Volume and the Boiler load Gradient (i.e. ring rate...... on the boiler) have been dened. Furthermore a number of constraints related to: minimum and maximum boiler load gradient, minimum boiler size, Shrinking and Swelling and Steam Space Load have been dened. For dening the constraints related to the required boiler volume a dynamic model for simulating the boiler...... performance has been developed. Outputs from the simulations are shrinking and swelling of water level in the drum during for example a start-up of the boiler, these gures combined with the requirements with respect to allowable water level uctuations in the drum denes the requirements with respect to drum...

  5. An Abstraction Theory for Qualitative Models of Biological Systems

    Directory of Open Access Journals (Sweden)

    Richard Banks

    2010-10-01

    Full Text Available Multi-valued network models are an important qualitative modelling approach used widely by the biological community. In this paper we consider developing an abstraction theory for multi-valued network models that allows the state space of a model to be reduced while preserving key properties of the model. This is important as it aids the analysis and comparison of multi-valued networks and in particular, helps address the well-known problem of state space explosion associated with such analysis. We also consider developing techniques for efficiently identifying abstractions and so provide a basis for the automation of this task. We illustrate the theory and techniques developed by investigating the identification of abstractions for two published MVN models of the lysis-lysogeny switch in the bacteriophage lambda.

  6. Simulated annealing model of acupuncture

    Science.gov (United States)

    Shang, Charles; Szu, Harold

    2015-05-01

    The growth control singularity model suggests that acupuncture points (acupoints) originate from organizers in embryogenesis. Organizers are singular points in growth control. Acupuncture can cause perturbation of a system with effects similar to simulated annealing. In clinical trial, the goal of a treatment is to relieve certain disorder which corresponds to reaching certain local optimum in simulated annealing. The self-organizing effect of the system is limited and related to the person's general health and age. Perturbation at acupoints can lead a stronger local excitation (analogous to higher annealing temperature) compared to perturbation at non-singular points (placebo control points). Such difference diminishes as the number of perturbed points increases due to the wider distribution of the limited self-organizing activity. This model explains the following facts from systematic reviews of acupuncture trials: 1. Properly chosen single acupoint treatment for certain disorder can lead to highly repeatable efficacy above placebo 2. When multiple acupoints are used, the result can be highly repeatable if the patients are relatively healthy and young but are usually mixed if the patients are old, frail and have multiple disorders at the same time as the number of local optima or comorbidities increases. 3. As number of acupoints used increases, the efficacy difference between sham and real acupuncture often diminishes. It predicted that the efficacy of acupuncture is negatively correlated to the disease chronicity, severity and patient's age. This is the first biological - physical model of acupuncture which can predict and guide clinical acupuncture research.

  7. Recruiting Transcultural Qualitative Research Participants: A Conceptual Model

    Directory of Open Access Journals (Sweden)

    Phyllis Eide

    2005-06-01

    Full Text Available Working with diverse populations poses many challenges to the qualitative researcher who is a member of the dominant culture. Traditional methods of recruitment and selection (such as flyers and advertisements are often unproductive, leading to missed contributions from potential participants who were not recruited and researcher frustration. In this article, the authors explore recruitment issues related to the concept of personal knowing based on experiences with Aboriginal Hawai'ian and Micronesian populations, wherein knowing and being known are crucial to successful recruitment of participants. They present a conceptual model that incorporates key concepts of knowing the other, cultural context, and trust to guide other qualitative transcultural researchers. They also describe challenges, implications, and concrete suggestions for recruitment of participants.

  8. Impulse pumping modelling and simulation

    International Nuclear Information System (INIS)

    Pierre, B; Gudmundsson, J S

    2010-01-01

    Impulse pumping is a new pumping method based on propagation of pressure waves. Of particular interest is the application of impulse pumping to artificial lift situations, where fluid is transported from wellbore to wellhead using pressure waves generated at wellhead. The motor driven element of an impulse pumping apparatus is therefore located at wellhead and can be separated from the flowline. Thus operation and maintenance of an impulse pump are facilitated. The paper describes the different elements of an impulse pumping apparatus, reviews the physical principles and details the modelling of the novel pumping method. Results from numerical simulations of propagation of pressure waves in water-filled pipelines are then presented for illustrating impulse pumping physical principles, and validating the described modelling with experimental data.

  9. Bridging experiments, models and simulations

    DEFF Research Database (Denmark)

    Carusi, Annamaria; Burrage, Kevin; Rodríguez, Blanca

    2012-01-01

    understanding of living organisms and also how they can reduce, replace, and refine animal experiments. A fundamental requirement to fulfill these expectations and achieve the full potential of computational physiology is a clear understanding of what models represent and how they can be validated. The present...... of biovariability; 2) testing and developing robust techniques and tools as a prerequisite to conducting physiological investigations; 3) defining and adopting standards to facilitate the interoperability of experiments, models, and simulations; 4) and understanding physiological validation as an iterative process...... that contributes to defining the specific aspects of cardiac electrophysiology the MSE system targets, rather than being only an external test, and that this is driven by advances in experimental and computational methods and the combination of both....

  10. ARCHITECTURES AND ALGORITHMS FOR COGNITIVE NETWORKS ENABLED BY QUALITATIVE MODELS

    DEFF Research Database (Denmark)

    Balamuralidhar, P.

    2013-01-01

    Complexity of communication networks is ever increasing and getting complicated by their heterogeneity and dynamism. Traditional techniques are facing challenges in network performance management. Cognitive networking is an emerging paradigm to make networks more intelligent, thereby overcoming...... of the cognitive engine that incorporates a context space based information structure to its knowledge model. I propose a set of guiding principles behind a cognitive system to be autonomic and use them with additional requirements to build a detailed architecture for the cognitive engine. I define a context space...... structure integrating various information structures that are required for the knowledge model. Use graphical models towards representing and reasoning about context space is a direction followed here. Specifically I analyze the framework of qualitative models for their suitability to represent the dynamic...

  11. Context-Dependent Help for the DynaLearn Modelling and Simulation Workbench

    NARCIS (Netherlands)

    Beek, W.; Bredeweg, B.; Latour, S.; Biswas, G.; Bull, S.; Kay, J.; Mitrovic, A.

    2011-01-01

    We implemented three kinds of context-dependent help for a qualitative modelling and simulation workbench called DynaLearn. We show that it is possible to generate and select assistance knowledge based on the current model, simulation results and workbench state.

  12. Distributed simulation a model driven engineering approach

    CERN Document Server

    Topçu, Okan; Oğuztüzün, Halit; Yilmaz, Levent

    2016-01-01

    Backed by substantive case studies, the novel approach to software engineering for distributed simulation outlined in this text demonstrates the potent synergies between model-driven techniques, simulation, intelligent agents, and computer systems development.

  13. Crowd Human Behavior for Modeling and Simulation

    Science.gov (United States)

    2009-08-06

    Crowd Human Behavior for Modeling and Simulation Elizabeth Mezzacappa, Ph.D. & Gordon Cooke, MEME Target Behavioral Response Laboratory, ARDEC...TYPE Conference Presentation 3. DATES COVERED 00-00-2008 to 00-00-2009 4. TITLE AND SUBTITLE Crowd Human Behavior for Modeling and Simulation...34understanding human behavior " and "model validation and verification" and will focus on modeling and simulation of crowds from a social scientist???s

  14. Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops

    Science.gov (United States)

    Rahman, Aminur; Jordan, Ian; Blackmore, Denis

    2018-01-01

    It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.

  15. Simulation Model for DMEK Donor Preparation.

    Science.gov (United States)

    Mittal, Vikas; Mittal, Ruchi; Singh, Swati; Narang, Purvasha; Sridhar, Priti

    2018-04-09

    To demonstrate a simulation model for donor preparation in Descemet membrane endothelial keratoplasty (DMEK). The inner transparent membrane of the onion (Allium cepa) was used as a simulation model for human Descemet membrane (DM). Surgical video (see Video, Supplemental Digital Content 1, http://links.lww.com/ICO/A663) demonstrating all the steps was recorded. This model closely simulates human DM and helps DMEK surgeons learn the nuances of DM donor preparation steps with ease. The technique is repeatable, and the model is cost-effective. The described simulation model can assist surgeons and eye bank technicians to learn steps in donor preparation in DMEK.

  16. Simulation and Modeling Methodologies, Technologies and Applications

    CERN Document Server

    Filipe, Joaquim; Kacprzyk, Janusz; Pina, Nuno

    2014-01-01

    This book includes extended and revised versions of a set of selected papers from the 2012 International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2012) which was sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC) and held in Rome, Italy. SIMULTECH 2012 was technically co-sponsored by the Society for Modeling & Simulation International (SCS), GDR I3, Lionphant Simulation, Simulation Team and IFIP and held in cooperation with AIS Special Interest Group of Modeling and Simulation (AIS SIGMAS) and the Movimento Italiano Modellazione e Simulazione (MIMOS).

  17. An introduction to enterprise modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ostic, J.K.; Cannon, C.E. [Los Alamos National Lab., NM (United States). Technology Modeling and Analysis Group

    1996-09-01

    As part of an ongoing effort to continuously improve productivity, quality, and efficiency of both industry and Department of Energy enterprises, Los Alamos National Laboratory is investigating various manufacturing and business enterprise simulation methods. A number of enterprise simulation software models are being developed to enable engineering analysis of enterprise activities. In this document the authors define the scope of enterprise modeling and simulation efforts, and review recent work in enterprise simulation at Los Alamos National Laboratory as well as at other industrial, academic, and research institutions. References of enterprise modeling and simulation methods and a glossary of enterprise-related terms are provided.

  18. Structured building model reduction toward parallel simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Justin R. [Cornell University; Hencey, Brondon M. [Cornell University

    2013-08-26

    Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.

  19. Simulation of Integrated Qualitative and Quantitative Allocation of Surafce and Underground Water Resources to Drinking Water Demand in Mashhad

    Directory of Open Access Journals (Sweden)

    Mansoureh Atashi

    2015-12-01

    Full Text Available Despite the fact that both surface and groundwater resources inside and outside the city of Mashhad have been already exploited to their maximum capacity and that the large water transfer Doosti Dam Project has been already implemented to transfer a considerable quanity of water to Mashhad, the city will be encountering a daily water shortage of about 1.7 m3/s by 2021. The problem would be even worse if the quality of the water resources are taken into account, in which case, the shortage would start even sooner in 2011 when the water deficit will be about 0.9 m3/s. As a result, it is essential to develop short- and medium-term strategies for secure adequate water supplies for the city's domestic water demand. The present study aims to carry out a qualitative and quantitative modeling of surface and groundwater resources supplying Mashhad domestic water. The qualitative model is based on the quality indices of surface and groundwater resources according to which the resources are classified in the three quality categories of resources with no limitation, those with moderate limitations, and those with high limitations for use as domestic water supplies. The pressure zones are then examined with respect to the potable water demand and supply to be simulated in the MODSIM environment. The model thus developed is verified for the 2012 data based on the measures affecting water resources in the region and various scenarios are finally evaluated for a long-term 30-year period. Results show that the peak hourdaily water shortage in 2042for the zone supplied from no limitation resources will be 38%. However, this value will drop to 28% if limitations due to resource quality are also taken into account. Finally, dilution is suggested as a solution for exploiting the maximum quantitative and qualitative potential of the resources used as domestic water supplies. In this situation, the daily peak hour water shortage will be equal to 31%.

  20. A physiological production model for cacao : results of model simulations

    NARCIS (Netherlands)

    Zuidema, P.A.; Leffelaar, P.A.

    2002-01-01

    CASE2 is a physiological model for cocoa (Theobroma cacao L.) growth and yield. This report introduces the CAcao Simulation Engine for water-limited production in a non-technical way and presents simulation results obtained with the model.

  1. Universal Free School Breakfast: A Qualitative Model for Breakfast Behaviors

    Science.gov (United States)

    Harvey-Golding, Louise; Donkin, Lynn Margaret; Blackledge, John; Defeyter, Margaret Anne

    2015-01-01

    In recent years, the provision of school breakfast has increased significantly in the UK. However, research examining the effectiveness of school breakfast is still within relative stages of infancy, and findings to date have been rather mixed. Moreover, previous evaluations of school breakfast schemes have been predominantly quantitative in their methodologies. Currently, there are few qualitative studies examining the subjective perceptions and experiences of stakeholders, and thereby an absence of knowledge regarding the sociocultural impacts of school breakfast. The purpose of this study was to investigate the beliefs, views and attitudes, and breakfast consumption behaviors, among key stakeholders, served by a council-wide universal free school breakfast initiative, within the North West of England, UK. A sample of children, parents, and school staff were recruited from three primary schools, participating in the universal free school breakfast scheme, to partake in semi-structured interviews and small focus groups. A Grounded Theory analysis of the data collected identified a theoretical model of breakfast behaviors, underpinned by the subjective perceptions and experiences of these key stakeholders. The model comprises of three domains relating to breakfast behaviors, and the internal and external factors that are perceived to influence breakfast behaviors, among children, parents, and school staff. Findings were validated using triangulation methods, member checks, and inter-rater reliability measures. In presenting this theoretically grounded model for breakfast behaviors, this paper provides a unique qualitative insight into the breakfast consumption behaviors and barriers to breakfast consumption, within a socioeconomically deprived community, participating in a universal free school breakfast intervention program. PMID:26125017

  2. Simulation modeling and analysis with Arena

    CERN Document Server

    Altiok, Tayfur

    2007-01-01

    Simulation Modeling and Analysis with Arena is a highly readable textbook which treats the essentials of the Monte Carlo discrete-event simulation methodology, and does so in the context of a popular Arena simulation environment.” It treats simulation modeling as an in-vitro laboratory that facilitates the understanding of complex systems and experimentation with what-if scenarios in order to estimate their performance metrics. The book contains chapters on the simulation modeling methodology and the underpinnings of discrete-event systems, as well as the relevant underlying probability, statistics, stochastic processes, input analysis, model validation and output analysis. All simulation-related concepts are illustrated in numerous Arena examples, encompassing production lines, manufacturing and inventory systems, transportation systems, and computer information systems in networked settings.· Introduces the concept of discrete event Monte Carlo simulation, the most commonly used methodology for modeli...

  3. A Qualitative Analysis of Student Pharmacists’ Response after an Auditory Hallucination Simulation

    Directory of Open Access Journals (Sweden)

    Genevieve L Ness

    2017-08-01

    Full Text Available Objectives: The goal of this research was to evaluate pharmacy students’ experiences and reactions when exposed to an auditory hallucination simulator. Methods: A convenient sample of 16 pharmacy students enrolled in the Advanced Psychiatry Elective at a private, faith-based university in the southeastern United States was selected. Students participated in an activity in which they listened to an auditory hallucination simulator from their personal laptop computers and completed a variety of tasks. Following the conclusion of the simulator, students composed a reflection guided by a five-question prompt. Qualitative analysis of the reflections was then completed to identify and categorize overarching themes. Results: The overarching themes identified included: 1 students mentioned strategies they used to overcome the distraction; 2 students discussed how the voices affected their ability to complete the activities; 3 students discussed the mental/physical toll they experienced; 4 students identified methods to assist patients with schizophrenia; 5 students mentioned an increase in their empathy for patients; 6 students reported their reactions to the voices; 7 students recognized how schizophrenia could affect the lives of these patients; and 8 students expressed how their initial expectations and reactions to the voices changed throughout the course of the simulation. Overall, the use of this simulator as a teaching aid was well received by students. Summary: In conclusion, pharmacy students were impacted by the hallucination simulator and expressed an increased awareness of the challenges faced by these patients on a daily basis. Conflict of Interest We declare no conflicts of interest or financial interests that the authors or members of their immediate families have in any product or service discussed in the manuscript, including grants (pending or received, employment, gifts, stock holdings or options, honoraria, consultancies, expert

  4. Modelling and simulation of a heat exchanger

    Science.gov (United States)

    Xia, Lei; Deabreu-Garcia, J. Alex; Hartley, Tom T.

    1991-01-01

    Two models for two different control systems are developed for a parallel heat exchanger. First by spatially lumping a heat exchanger model, a good approximate model which has a high system order is produced. Model reduction techniques are applied to these to obtain low order models that are suitable for dynamic analysis and control design. The simulation method is discussed to ensure a valid simulation result.

  5. Relapse Model among Iranian Drug Users: A Qualitative Study.

    Science.gov (United States)

    Jalali, Amir; Seyedfatemi, Naiemeh; Peyrovi, Hamid

    2015-01-01

    Relapse is a common problem in drug user's rehabilitation program and reported in all over the country. An in-depth study on patients' experiences can be used for exploring the relapse process among drug users. Therefore, this study suggests a model for relapse process among Iranian drug users. In this qualitative study with grounded theory approach, 22 participants with rich information about the phenomenon under the study were selected using purposive, snowball and theoretical sampling methods. After obtaining the informed consent, data were collected based on face-to-face, in-depth, semi-structured interviews. All interviews were analyzed in three stages of axial, selective and open coding methods. Nine main categories emerged, including avoiding of drugs, concerns about being accepted, family atmosphere, social conditions, mental challenge, self-management, self-deception, use and remorse and a main category, feeling of loss as the core variable. Mental challenge has two subcategories, evoking pleasure and craving. Relapse model is a dynamic and systematic process including from cycles of drug avoidance to remorse with a core variable as feeling of loss.  Relapse process is a dynamic and systematic process that needs an effective control. Determining a relapse model as a clear process could be helpful in clinical sessions. RESULTS of this research have depicted relapse process among Iranian drugs user by conceptual model.

  6. Learning about Ecological Systems by Constructing Qualitative Models with DynaLearn

    Science.gov (United States)

    Leiba, Moshe; Zuzovsky, Ruth; Mioduser, David; Benayahu, Yehuda; Nachmias, Rafi

    2012-01-01

    A qualitative model of a system is an abstraction that captures ordinal knowledge and predicts the set of qualitatively possible behaviours of the system, given a qualitative description of its structure and initial state. This paper examines an innovative approach to science education using an interactive learning environment that supports…

  7. VHDL simulation with access to transistor models

    Science.gov (United States)

    Gibson, J.

    1991-01-01

    Hardware description languages such as VHDL have evolved to aid in the design of systems with large numbers of elements and a wide range of electronic and logical abstractions. For high performance circuits, behavioral models may not be able to efficiently include enough detail to give designers confidence in a simulation's accuracy. One option is to provide a link between the VHDL environment and a transistor level simulation environment. The coupling of the Vantage Analysis Systems VHDL simulator and the NOVA simulator provides the combination of VHDL modeling and transistor modeling.

  8. Two-body wear simulation influence on some direct and indirect dental resin biocomposites - A qualitative analysis.

    Science.gov (United States)

    Caracostea, Adriana; Morar, Nadina; Florea, Adrian; Soanca, Andrada; Badea, Mindra Eugenia

    2016-01-01

    The aim of this study was to qualitatively assess the outcomes of two in vitro aging methods, thermal-cycling and twobody wear simulation accomplished with a dual-axis chewing device, on the surface characteristics of eight direct and indirect dental resin biocomposites. Eighty mesial-occlusal-distal dental cavities were restored with four direct nanohybrid composite materials and with four nano- and micro-hybrid lab-fabricated resin composite inlays. After the restored teeth were subjected to thermal-cycling and wear simulation based on mechanical loading, the surface texture features of the restorations were separately analysed for each of the methods, on epoxy resin models using a digital camera, computer-aided-design system, optical stereo-microscopy and scanning electron microscopy. All the dental restorative resin based composites used in this investigation displayed different cyclic wear patterns after undergoing mechanical loading. After thermal-cycling, the group of resin composite inlays showed a better adaptation, a smoother and more polished occlusal surface compared with direct restorative materials. Only two of direct nanohybrid resin composites performed better after two aging methods. One nanohybrid and the other two microhybrid resin inlays did not perform as expected when they were subjected to simulated wear compared to the rest of test materials. The use of the two-body wear simulation method revealed important information about the behavior of the dental resin-based composites when multiple oral factors are involved in a lab-simulated condition. Furthermore, the macro- and micro-morphological analysis showed different abrasion patterns among the materials being tested according to the filler percentage and distribution of the particles within the resin matrix.

  9. Policy advice derived from simulation models

    NARCIS (Netherlands)

    Brenner, T.; Werker, C.

    2009-01-01

    When advising policy we face the fundamental problem that economic processes are connected with uncertainty and thus policy can err. In this paper we show how the use of simulation models can reduce policy errors. We suggest that policy is best based on socalled abductive simulation models, which

  10. Model Validation for Simulations of Vehicle Systems

    Science.gov (United States)

    2012-08-01

    jackknife”, Annals of Statistics, 7:1-26, 1979. [45] B. Efron and G. Gong, “A leisurely look at the bootstrap, the jackknife, and cross-validation”, The...battery model developed in the Automotive Research Center, a US Army Center of Excellence for modeling and simulation of ground vehicle systems...Sandia National Laboratories and a battery model developed in the Automotive Research Center, a US Army Center of Excellence for modeling and simulation

  11. Transient Modeling and Simulation of Compact Photobioreactors

    OpenAIRE

    Ribeiro, Robert Luis Lara; Mariano, André Bellin; Souza, Jeferson Avila; Vargas, Jose Viriato Coelho

    2008-01-01

    In this paper, a mathematical model is developed to make possible the simulation of microalgae growth and its dependency on medium temperature and light intensity. The model is utilized to simulate a compact photobioreactor response in time with physicochemical parameters of the microalgae Phaeodactylum tricornutum. The model allows for the prediction of the transient and local evolution of the biomass concentration in the photobioreactor with low computational time. As a result, the model is...

  12. Contribution to the Development of Simulation Model of Ship Turbine

    Directory of Open Access Journals (Sweden)

    Božić Ratko

    2015-01-01

    Full Text Available Simulation modelling, performed by System Dynamics Modelling Approach and intensive use of computers, is one of the most convenient and most successful scientific methods of analysis of performance dynamics of nonlinear and very complex natural technical and organizational systems [1]. The purpose of this work is to demonstrate the successful application of system dynamics simulation modelling at analyzing performance dynamics of a complex system of ship’s propulsion system. Gas turbine is a complex non-linear system, which needs to be systematically investigated as a unit consisting of a number of subsystems and elements, which are linked by cause-effect (UPV feedback loops (KPD, both within the propulsion system and with the relevant surrounding. In this paper the authors will present an efficient application of scientific methods for the study of complex dynamic systems called qualitative and quantitative simulation System Dynamics Methodology. Gas turbine will be presented by a set of non-linear differential equations, after which mental-verbal structural models and flowcharts in System dynamics symbols will be produced, and the performance dynamics in load condition will be simulated in POWERSIM simulation language.

  13. Simulation based training in a publicly funded home birth programme in Australia: A qualitative study.

    Science.gov (United States)

    Kumar, Arunaz; Nestel, Debra; Stoyles, Sally; East, Christine; Wallace, Euan M; White, Colleen

    2016-02-01

    Birth at home is a safe and appropriate choice for healthy women with a low risk pregnancy. However there is a small risk of emergencies requiring immediate, skilled management to optimise maternal and neonatal outcomes. We developed and implemented a simulation workshop designed to run in a home based setting to assist with emergency training for midwives and paramedical staff. The workshop was evaluated by assessing participants' satisfaction and response to key learning issues. Midwifery and emergency paramedical staff attending home births participated in a simulation workshop where they were required to manage birth emergencies in real time with limited availability of resources to suit the setting. They completed a pre-test and post-test evaluation form exploring the content and utility of the workshops. Content analysis was performed on qualitative data regarding the most important learning from the simulation activity. A total of 73 participants attended the workshop (midwifery=46, and paramedical=27). There were 110 comments, made by 49 participants. The most frequently identified key learning elements were related to communication (among midwives, paramedical and hospital staff and with the woman's partner), followed by recognising the role of other health care professionals, developing an understanding of the process and the importance of planning ahead. Home birth simulation workshop was found to be a useful tool by staff that provide care to women who are having a planned home birth. Developing clear communication and teamwork were found to be the key learning principles guiding their practice. Copyright © 2015 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  14. Whole-building Hygrothermal Simulation Model

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2003-01-01

    An existing integrated simulation tool for dynamic thermal simulation of building was extended with a transient model for moisture release and uptake in building materials. Validation of the new model was begun with comparison against measurements in an outdoor test cell furnished with single...... materials. Almost quasi-steady, cyclic experiments were used to compare the indoor humidity variation and the numerical results of the integrated simulation tool with the new moisture model. Except for the case with chipboard as furnishing, the predictions of indoor humidity with the detailed model were...

  15. Simulation modeling for the health care manager.

    Science.gov (United States)

    Kennedy, Michael H

    2009-01-01

    This article addresses the use of simulation software to solve administrative problems faced by health care managers. Spreadsheet add-ins, process simulation software, and discrete event simulation software are available at a range of costs and complexity. All use the Monte Carlo method to realistically integrate probability distributions into models of the health care environment. Problems typically addressed by health care simulation modeling are facility planning, resource allocation, staffing, patient flow and wait time, routing and transportation, supply chain management, and process improvement.

  16. Modeling and simulation of blood collection systems.

    Science.gov (United States)

    Alfonso, Edgar; Xie, Xiaolan; Augusto, Vincent; Garraud, Olivier

    2012-03-01

    This paper addresses the modeling and simulation of blood collection systems in France for both fixed site and mobile blood collection with walk in whole blood donors and scheduled plasma and platelet donors. Petri net models are first proposed to precisely describe different blood collection processes, donor behaviors, their material/human resource requirements and relevant regulations. Petri net models are then enriched with quantitative modeling of donor arrivals, donor behaviors, activity times and resource capacity. Relevant performance indicators are defined. The resulting simulation models can be straightforwardly implemented with any simulation language. Numerical experiments are performed to show how the simulation models can be used to select, for different walk in donor arrival patterns, appropriate human resource planning and donor appointment strategies.

  17. Oxygen distribution in tumors: A qualitative analysis and modeling study providing a novel Monte Carlo approach

    International Nuclear Information System (INIS)

    Lagerlöf, Jakob H.; Kindblom, Jon; Bernhardt, Peter

    2014-01-01

    end, due to anoxia, but smaller tumors showed undisturbed oxygen distributions. The six different models with correlated parameters generated three classes of oxygen distributions. The first was a hypothetical, negative covariance between vessel proximity and pO 2 (VPO-C scenario); the second was a hypothetical positive covariance between vessel proximity and pO 2 (VPO+C scenario); and the third was the hypothesis of no correlation between vessel proximity and pO 2 (UP scenario). The VPO-C scenario produced a distinctly different oxygen distribution than the two other scenarios. The shape of the VPO-C scenario was similar to that of the nonvariable DOC model, and the larger the tumor, the greater the similarity between the two models. For all simulations, the mean oxygen tension decreased and the hypoxic fraction increased with tumor size. The absorbed dose required for definitive tumor control was highest for the VPO+C scenario, followed by the UP and VPO-C scenarios. Conclusions: A novel MC algorithm was presented which simulated oxygen distributions and radiation response for various biological parameter values. The analysis showed that the VPO-C scenario generated a clearly different oxygen distribution from the VPO+C scenario; the former exhibited a lower hypoxic fraction and higher radiosensitivity. In future studies, this modeling approach might be valuable for qualitative analyses of factors that affect oxygen distribution as well as analyses of specific experimental and clinical situations

  18. Modeling and Simulation of Matrix Converter

    DEFF Research Database (Denmark)

    Liu, Fu-rong; Klumpner, Christian; Blaabjerg, Frede

    2005-01-01

    This paper discusses the modeling and simulation of matrix converter. Two models of matrix converter are presented: one is based on indirect space vector modulation and the other is based on power balance equation. The basis of these two models is• given and the process on modeling is introduced...

  19. Qualitative modeling of the decision-making process using electrooculography.

    Science.gov (United States)

    Zargari Marandi, Ramtin; Sabzpoushan, S H

    2015-12-01

    A novel method based on electrooculography (EOG) has been introduced in this work to study the decision-making process. An experiment was designed and implemented wherein subjects were asked to choose between two items from the same category that were presented within a limited time. The EOG and voice signals of the subjects were recorded during the experiment. A calibration task was performed to map the EOG signals to their corresponding gaze positions on the screen by using an artificial neural network. To analyze the data, 16 parameters were extracted from the response time and EOG signals of the subjects. Evaluation and comparison of the parameters, together with subjects' choices, revealed functional information. On the basis of this information, subjects switched their eye gazes between items about three times on average. We also found, according to statistical hypothesis testing-that is, a t test, t(10) = 71.62, SE = 1.25, p < .0001-that the correspondence rate of a subjects' gaze at the moment of selection with the selected item was significant. Ultimately, on the basis of these results, we propose a qualitative choice model for the decision-making task.

  20. Physically realistic modeling of maritime training simulation

    OpenAIRE

    Cieutat , Jean-Marc

    2003-01-01

    Maritime training simulation is an important matter of maritime teaching, which requires a lot of scientific and technical skills.In this framework, where the real time constraint has to be maintained, all physical phenomena cannot be studied; the most visual physical phenomena relating to the natural elements and the ship behaviour are reproduced only. Our swell model, based on a surface wave simulation approach, permits to simulate the shape and the propagation of a regular train of waves f...

  1. Characteristics of Effective Simulation (Preclinical) Teachers as Identified by Dental Students: A Qualitative Study.

    Science.gov (United States)

    McAndrew, Maureen; Mucciolo, Thomas W; Jahangiri, Leila

    2016-11-01

    The aim of this qualitative research study was to identify and categorize criteria for simulation teacher quality preferences as reported by dental students. Second-year dental students at New York University College of Dentistry in 2015 were given a two-question, open-ended survey asking what qualities they liked most and least in a simulation or preclinical teacher. Responses were collected until data saturation was reached. Key words in the responses were identified and coded based on similar relationships and then were grouped into defined categories. A total of 168 respondents out of the target group of 363 students (46.3%) provided 1,062 written comments. Three core themes-character, competence, and communication-emerged from 16 defined categories, which were validated using references from the educational literature. The theme of character encompassed eight of the defined categories (motivation, available, caring, patience, professionalism, empathy, fairness, and happiness) and accounted for 50% of the total student responses. The theme of competence comprised five categories (expertise, knowledgeable, efficient, skillful, and effective) and represented 34% of all responses. The communication theme covered the remaining three categories (feedback, approachable, and interpersonal communication) and contained 17% of the responses. Positive and negative comments in the category of motivation accounted for 11.2% of all student responses. Expertise was the next highest category with 9.3% of the responses, followed closely by 9.1% in the category of available. Among these students, the top five attributes of simulation teachers were motivation, expertise, available, caring, and feedback. While the study did not attempt to correlate these findings with improved student performance, the results can be used in the development of assessment tools for faculty and targeted faculty development programs.

  2. Systematic modelling and simulation of refrigeration systems

    DEFF Research Database (Denmark)

    Rasmussen, Bjarne D.; Jakobsen, Arne

    1998-01-01

    The task of developing a simulation model of a refrigeration system can be very difficult and time consuming. In order for this process to be effective, a systematic method for developing the system model is required. This method should aim at guiding the developer to clarify the purpose of the s......The task of developing a simulation model of a refrigeration system can be very difficult and time consuming. In order for this process to be effective, a systematic method for developing the system model is required. This method should aim at guiding the developer to clarify the purpose...... of the simulation, to select appropriate component models and to set up the equations in a well-arranged way. In this paper the outline of such a method is proposed and examples showing the use of this method for simulation of refrigeration systems are given....

  3. Modeling and simulation of complex systems a framework for efficient agent-based modeling and simulation

    CERN Document Server

    Siegfried, Robert

    2014-01-01

    Robert Siegfried presents a framework for efficient agent-based modeling and simulation of complex systems. He compares different approaches for describing structure and dynamics of agent-based models in detail. Based on this evaluation the author introduces the "General Reference Model for Agent-based Modeling and Simulation" (GRAMS). Furthermore he presents parallel and distributed simulation approaches for execution of agent-based models -from small scale to very large scale. The author shows how agent-based models may be executed by different simulation engines that utilize underlying hard

  4. Simulation of a directed random-walk model: the effect of pseudo-random-number correlations

    OpenAIRE

    Shchur, L. N.; Heringa, J. R.; Blöte, H. W. J.

    1996-01-01

    We investigate the mechanism that leads to systematic deviations in cluster Monte Carlo simulations when correlated pseudo-random numbers are used. We present a simple model, which enables an analysis of the effects due to correlations in several types of pseudo-random-number sequences. This model provides qualitative understanding of the bias mechanism in a class of cluster Monte Carlo algorithms.

  5. Magnetosphere Modeling: From Cartoons to Simulations

    Science.gov (United States)

    Gombosi, T. I.

    2017-12-01

    Over the last half a century physics-based global computer simulations became a bridge between experiment and basic theory and now it represents the "third pillar" of geospace research. Today, many of our scientific publications utilize large-scale simulations to interpret observations, test new ideas, plan campaigns, or design new instruments. Realistic simulations of the complex Sun-Earth system have been made possible by the dramatically increased power of both computing hardware and numerical algorithms. Early magnetosphere models were based on simple E&M concepts (like the Chapman-Ferraro cavity) and hydrodynamic analogies (bow shock). At the beginning of the space age current system models were developed culminating in the sophisticated Tsyganenko-type description of the magnetic configuration. The first 3D MHD simulations of the magnetosphere were published in the early 1980s. A decade later there were several competing global models that were able to reproduce many fundamental properties of the magnetosphere. The leading models included the impact of the ionosphere by using a height-integrated electric potential description. Dynamic coupling of global and regional models started in the early 2000s by integrating a ring current and a global magnetosphere model. It has been recognized for quite some time that plasma kinetic effects play an important role. Presently, global hybrid simulations of the dynamic magnetosphere are expected to be possible on exascale supercomputers, while fully kinetic simulations with realistic mass ratios are still decades away. In the 2010s several groups started to experiment with PIC simulations embedded in large-scale 3D MHD models. Presently this integrated MHD-PIC approach is at the forefront of magnetosphere simulations and this technique is expected to lead to some important advances in our understanding of magnetosheric physics. This talk will review the evolution of magnetosphere modeling from cartoons to current systems

  6. Environmental Consequences of Wildlife Tourism: The Use of Formalised Qualitative Models

    Directory of Open Access Journals (Sweden)

    Veselý Štěpán

    2015-09-01

    Full Text Available The paper presents a simple qualitative model of environmental consequences of wildlife tourism. Qualitative models use just three values: Positive/Increasing, Zero/Constant and Negative/Decreasing. Such quantifiers of trends are the least information intensive. Qualitative models can be useful, since models of wildlife tourism include such variables as, for example, Biodiversity (BIO, Animals’ habituation to tourists (HAB or Plant composition change (PLA that are sometimes difficult or costly to quantify. Hence, a significant fraction of available information about wildlife tourism and its consequences is not of numerical nature, for example, if HAB is increasing then BIO is decreasing. Such equationless relations are studied in this paper. The model has 10 variables and 20 equationless pairwise interrelations among them. The model is solved and 15 solutions, that is, scenarios are obtained. All qualitative states, including the first and second qualitative derivatives with respect to time, of all variables are specified for each scenario.

  7. Simulation models in population breast cancer screening: A systematic review.

    Science.gov (United States)

    Koleva-Kolarova, Rositsa G; Zhan, Zhuozhao; Greuter, Marcel J W; Feenstra, Talitha L; De Bock, Geertruida H

    2015-08-01

    The aim of this review was to critically evaluate published simulation models for breast cancer screening of the general population and provide a direction for future modeling. A systematic literature search was performed to identify simulation models with more than one application. A framework for qualitative assessment which incorporated model type; input parameters; modeling approach, transparency of input data sources/assumptions, sensitivity analyses and risk of bias; validation, and outcomes was developed. Predicted mortality reduction (MR) and cost-effectiveness (CE) were compared to estimates from meta-analyses of randomized control trials (RCTs) and acceptability thresholds. Seven original simulation models were distinguished, all sharing common input parameters. The modeling approach was based on tumor progression (except one model) with internal and cross validation of the resulting models, but without any external validation. Differences in lead times for invasive or non-invasive tumors, and the option for cancers not to progress were not explicitly modeled. The models tended to overestimate the MR (11-24%) due to screening as compared to optimal RCTs 10% (95% CI - 2-21%) MR. Only recently, potential harms due to regular breast cancer screening were reported. Most scenarios resulted in acceptable cost-effectiveness estimates given current thresholds. The selected models have been repeatedly applied in various settings to inform decision making and the critical analysis revealed high risk of bias in their outcomes. Given the importance of the models, there is a need for externally validated models which use systematical evidence for input data to allow for more critical evaluation of breast cancer screening. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    A familiar example of a feedback loop is the business model in which part of the output or profit is fedback as input or additional capital - for instance, a company may choose to reinvest 10% of the profit for expansion of the business. Such simple models, like ..... would help scientists, engineers and managers towards better.

  9. Complex Simulation Model of Mobile Fading Channel

    Directory of Open Access Journals (Sweden)

    Tomas Marek

    2005-01-01

    Full Text Available In the mobile communication environment the mobile channel is the main limiting obstacle to reach the best performance of wireless system. Modeling of the radio channel consists of two basic fading mechanisms - Long-term fading and Short-term fading. The contribution deals with simulation of complex mobile radio channel, which is the channel with all fading components. Simulation model is based on Clarke-Gans theoretical model for fading channel and is developed in MATLAB environment. Simulation results have shown very good coincidence with theory. This model was developed for hybrid adaptation 3G uplink simulator (described in this issue during the research project VEGA - 1/0140/03.

  10. Simulation Model Development for Mail Screening Process

    National Research Council Canada - National Science Library

    Vargo, Trish; Marvin, Freeman; Kooistra, Scott

    2005-01-01

    STUDY OBJECTIVE: Provide decision analysis support to the Homeland Defense Business Unit, Special Projects Team, in developing a simulation model to help determine the most effective way to eliminate backlog...

  11. SEIR model simulation for Hepatitis B

    Science.gov (United States)

    Side, Syafruddin; Irwan, Mulbar, Usman; Sanusi, Wahidah

    2017-09-01

    Mathematical modelling and simulation for Hepatitis B discuss in this paper. Population devided by four variables, namely: Susceptible, Exposed, Infected and Recovered (SEIR). Several factors affect the population in this model is vaccination, immigration and emigration that occurred in the population. SEIR Model obtained Ordinary Differential Equation (ODE) non-linear System 4-D which then reduces to 3-D. SEIR model simulation undertaken to predict the number of Hepatitis B cases. The results of the simulation indicates the number of Hepatitis B cases will increase and then decrease for several months. The result of simulation using the number of case in Makassar also found the basic reproduction number less than one, that means, Makassar city is not an endemic area of Hepatitis B.

  12. Qualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach

    Science.gov (United States)

    Bregon, Anibal; Daigle, Matthew; Roychoudhury, Indranil

    2016-01-01

    Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task computationally more complex due to the large number of possible system modes and the existence of autonomous mode transitions. This paper presents a qualitative fault isolation framework for hybrid systems based on structural model decomposition. The fault isolation is performed by analyzing the qualitative information of the residual deviations. However, in hybrid systems this process becomes complex due to possible existence of observation delays, which can cause observed deviations to be inconsistent with the expected deviations for the current mode in the system. The great advantage of structural model decomposition is that (i) it allows to design residuals that respond to only a subset of the faults, and (ii) every time a mode change occurs, only a subset of the residuals will need to be reconfigured, thus reducing the complexity of the reasoning process for isolation purposes. To demonstrate and test the validity of our approach, we use an electric circuit simulation as the case study.

  13. Safer@home-Simulation and training: the study protocol of a qualitative action research design.

    Science.gov (United States)

    Wiig, Siri; Guise, Veslemøy; Anderson, Janet; Storm, Marianne; Lunde Husebø, Anne Marie; Testad, Ingelin; Søyland, Elsa; Moltu, Kirsti L

    2014-07-29

    While it is predicted that telecare and other information and communication technology (ICT)-assisted services will have an increasingly important role in future healthcare services, their implementation in practice is complex. For implementation of telecare to be successful and ensure quality of care, sufficient training for staff (healthcare professionals) and service users (patients) is fundamental. Telecare training has been found to have positive effects on attitudes to, sustained use of, and outcomes associated with telecare. However, the potential contribution of training in the adoption, quality and safety of telecare services is an under-investigated research field. The overall aim of this study is to develop and evaluate simulation-based telecare training programmes to aid the use of videophone technology in elderly home care. Research-based training programmes will be designed for healthcare professionals, service users and next of kin, and the study will explore the impact of training on adoption, quality and safety of new telecare services. The study has a qualitative action research design. The research will be undertaken in close collaboration with a multidisciplinary team consisting of researchers and managers and clinical representatives from healthcare services in two Norwegian municipalities, alongside experts in clinical education and simulation, as well as service user (patient) representatives. The qualitative methods used involve focus group interviews, semistructured interviews, observation and document analysis. To ensure trustworthiness in the data analysis, we will apply member checks and analyst triangulation; in addition to providing contextual and sample description to allow for evaluation of transferability of our results to other contexts and groups. The study is approved by the Norwegian Social Science Data Services. The study is based on voluntary participation and informed written consent. Informants can withdraw at any point in

  14. Simulation data mapping in virtual cardiac model.

    Science.gov (United States)

    Jiquan, Liu; Jingyi, Feng; Duan, Huilong; Siping, Chen

    2004-01-01

    Although 3D heart and torso model with realistic geometry are basis of simulation computation in LFX virtual cardiac model, the simulation results are mostly output in 2D format. To solve such a problem and enhance the virtual reality of LFX virtual cardiac model, the methods of voxel mapping and vertex project mapping were presented. With these methods, excitation isochrone map (EIM) was mapped from heart model with realistic geometry to real visible man heart model, and body surface potential map (BSPM) was mapped from torso model with realistic geometry to real visible man body surface. By visualizing in the 4Dview, which is a real-time 3D medical image visualization platform, the visualization results of EIM and BSPM simulation data before and after mapping were also provided. According to the visualization results, the output format of EIM and BSPM simulation data of LFX virtual cardiac model were extended from 2D to 4D (spatio-temporal) and from cardiac model with realistic geometry to real cardiac model, and more realistic and effective simulation was achieved.

  15. Fully Adaptive Radar Modeling and Simulation Development

    Science.gov (United States)

    2017-04-01

    AFRL-RY-WP-TR-2017-0074 FULLY ADAPTIVE RADAR MODELING AND SIMULATION DEVELOPMENT Kristine L. Bell and Anthony Kellems Metron, Inc...SMALL BUSINESS INNOVATION RESEARCH (SBIR) PHASE I REPORT. Approved for public release; distribution unlimited. See additional restrictions...2017 4. TITLE AND SUBTITLE FULLY ADAPTIVE RADAR MODELING AND SIMULATION DEVELOPMENT 5a. CONTRACT NUMBER FA8650-16-M-1774 5b. GRANT NUMBER 5c

  16. Theory, modeling, and simulation annual report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report briefly discusses research on the following topics: development of electronic structure methods; modeling molecular processes in clusters; modeling molecular processes in solution; modeling molecular processes in separations chemistry; modeling interfacial molecular processes; modeling molecular processes in the atmosphere; methods for periodic calculations on solids; chemistry and physics of minerals; graphical user interfaces for computational chemistry codes; visualization and analysis of molecular simulations; integrated computational chemistry environment; and benchmark computations.

  17. Modeling of magnetic particle suspensions for simulations

    CERN Document Server

    Satoh, Akira

    2017-01-01

    The main objective of the book is to highlight the modeling of magnetic particles with different shapes and magnetic properties, to provide graduate students and young researchers information on the theoretical aspects and actual techniques for the treatment of magnetic particles in particle-based simulations. In simulation, we focus on the Monte Carlo, molecular dynamics, Brownian dynamics, lattice Boltzmann and stochastic rotation dynamics (multi-particle collision dynamics) methods. The latter two simulation methods can simulate both the particle motion and the ambient flow field simultaneously. In general, specialized knowledge can only be obtained in an effective manner under the supervision of an expert. The present book is written to play such a role for readers who wish to develop the skill of modeling magnetic particles and develop a computer simulation program using their own ability. This book is therefore a self-learning book for graduate students and young researchers. Armed with this knowledge,...

  18. Challenges for Modeling and Simulation

    National Research Council Canada - National Science Library

    Johnson, James

    2002-01-01

    This document deals with modeling and stimulation. The strengths are study processes that rarely or never occur, evaluate a wide range of alternatives, generate new ideas, new concepts and innovative solutions...

  19. Modelling and Simulation of Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1985-01-01

    A simple model of the wave load on stender members of offshore structures is described . The wave elevation of the sea stateis modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...... velocity can be approximated by a Gaussian Markov process. Known approximate results for the first passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results...

  20. Modelling and Simulation of Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    velocity can be approximated by a Gaussian Markov process. Known approximate results for the first-passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results......A simple model of the wave load on slender members of offshore structures is described. The wave elevation of the sea state is modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...

  1. Modelling and Simulation of Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1985-01-01

    velocity can be approximated by a Gaussian Markov process. Known approximate results for the first passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results......A simple model of the wave load on stender members of offshore structures is described . The wave elevation of the sea stateis modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...

  2. Modeling and simulation of discrete event systems

    CERN Document Server

    Choi, Byoung Kyu

    2013-01-01

    Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on

  3. Minimum-complexity helicopter simulation math model

    Science.gov (United States)

    Heffley, Robert K.; Mnich, Marc A.

    1988-01-01

    An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features which are to be modeled, followed by a build up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinement are discussed. Math model computer programs are defined and listed.

  4. A qualitative model construction method of nuclear power plants for effective diagnostic knowledge generation

    International Nuclear Information System (INIS)

    Yoshikawa, Shinji; Endou, Akira; Kitamura, Yoshinobu; Sasajima, Munehiko; Ikeda, Mitsuru; Mizoguchi, Riichiro.

    1994-01-01

    This paper discusses a method to construct a qualitative model of a nuclear power plant, in order to generate effective diagnostic knowledge. The proposed method is to prepare deep knowledge to be provided to a knowledge compiler based upon qualitative reasoning (QR). Necessity of knowledge compilation for nuclear plant diagnosis will be explained first, and conventionally-experienced problems in qualitative reasoning and a proposed method to overcome this problem is shown next, then a sample procedure to build a qualitative nuclear plant model is demonstrated. (author)

  5. A simulation model for football championships

    OpenAIRE

    Koning, Ruud H.; Koolhaas, Michael; Renes, Gusta

    2001-01-01

    In this paper we discuss a simulation/probability model that identifies the team that is most likely to win a tournament. The model can also be used to answer other questions like ‘which team had a lucky draw?’ or ‘what is the probability that two teams meet at some moment in the tournament?’. Input to the simulation/probability model are scoring intensities, that are estimated as a weighted average of goals scored. The model has been used in practice to write articles for the popular press, ...

  6. Modeling and Simulating Asymmetrical Conductance Changes in Gramicidin Pores

    Directory of Open Access Journals (Sweden)

    Xu Shixin

    2014-01-01

    Full Text Available Gramicidin A is a small and well characterized peptide that forms an ion channel in lipid membranes. An important feature of gramicidin A (gA pore is that its conductance is affected by the electric charges near the its entrance. This property has led to the application of gramicidin A as a biochemical sensor for monitoring and quantifying a number of chemical and enzymatic reactions. Here, a mathematical model of conductance changes of gramicidin A pores in response to the presence of electrical charges near its entrance, either on membrane surface or attached to gramicidin A itself, is presented. In this numerical simulation, a two dimensional computational domain is set to mimic the structure of a gramicidin A channel in the bilayer surrounded by electrolyte. The transport of ions through the channel is modeled by the Poisson-Nernst-Planck (PNP equations that are solved by Finite Element Method (FEM. Preliminary numerical simulations of this mathematical model are in qualitative agreement with the experimental results in the literature. In addition to the model and simulations, we also present the analysis of the stability of the solution to the boundary conditions and the convergence of FEM method for the two dimensional PNP equations in our model.

  7. Video conferencing versus telephone calls for team work across hospitals: a qualitative study on simulated emergencies

    Directory of Open Access Journals (Sweden)

    Hagen Oddvar

    2009-11-01

    Full Text Available Abstract Background Teamwork is important for patient care and outcome in emergencies. In rural areas, efficient communication between rural hospitals and regional trauma centers optimise decisions and treatment of trauma patients. Little is known on potentials and effects of virtual team to team cooperation between rural and regional trauma teams. Methods We adapted a video conferencing (VC system to the work process between multidisciplinary teams responsible for trauma as well as medical emergencies between one rural and one regional (university hospital. We studied how the teams cooperated during simulated critical scenarios, and compared VC with standard telephone communication. We used qualitative observations and interviews to evaluate results. Results The team members found VC to be a useful tool during emergencies and for building "virtual emergency teams" across distant hospitals. Visual communication combined with visual patient information is superior to information gained during ordinary telephone calls, but VC may also cause interruptions in the local teamwork. Conclusion VC can improve clinical cooperation and decision processes in virtual teams during critical patient care. Such team interaction requires thoughtful organisation, training, and new rules for communication.

  8. Intensive care nursing students' perceptions of simulation for learning confirming communication skills: A descriptive qualitative study.

    Science.gov (United States)

    Karlsen, Marte-Marie Wallander; Gabrielsen, Anita Kristin; Falch, Anne Lise; Stubberud, Dag-Gunnar

    2017-10-01

    The aim of this study was to explore intensive care nursing students experiences with confirming communication skills training in a simulation-based environment. The study has a qualitative, exploratory and descriptive design. The participants were students in a post-graduate program in intensive care nursing, that had attended a one day confirming communication course. Three focus group interviews lasting between 60 and 80min were conducted with 14 participants. The interviews were transcribed verbatim. Thematic analysis was performed, using Braun & Clark's seven steps. The analysis resulted in three main themes: "awareness", "ice-breaker" and "challenging learning environment". The participants felt that it was a challenge to see themselves on the video-recordings afterwards, however receiving feedback resulted in better self-confidence in mastering complex communication. The main finding of the study is that the students reported improved communication skills after the confirming communication course. However; it is uncertain how these skills can be transferred to clinical practice improving patient outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Disaster Reintegration Model: A Qualitative Analysis on Developing Korean Disaster Mental Health Support Model

    Directory of Open Access Journals (Sweden)

    Yun-Jung Choi

    2018-02-01

    Full Text Available This study sought to describe the mental health problems experienced by Korean disaster survivors, using a qualitative research method to provide empirical resources for effective disaster mental health support in Korea. Participants were 16 adults or elderly adults who experienced one or more disasters at least 12 months ago recruited via theoretical sampling. Participants underwent in-depth individual interviews on their disaster experiences, which were recorded and transcribed for qualitative analysis, which followed Strauss and Corbin’s (1998 Grounded theory. After open coding, participants’ experiences were categorized into 130 codes, 43 sub-categories and 17 categories. The categories were further analyzed in a paradigm model, conditional model and the Disaster Reintegration Model, which proposed potentially effective mental health recovery strategies for disaster survivors, health providers and administrators. To provide effective assistance for mental health recovery of disaster survivors, both personal and public resilience should be promoted while considering both cultural and spiritual elements.

  10. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    Modelling Deterministic Systems. N K Srinivasan gradu- ated from Indian. Institute of Science and obtained his Doctorate from Columbia Univer- sity, New York. He has taught in several universities, and later did system analysis, wargaming and simula- tion for defence. His other areas of interest are reliability engineer-.

  11. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    A model for a flue gas boiler covering the flue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been defined for the furnace, the convection zone (split in 2......: a zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently Mat......Lab/Simulink has been applied for carrying out the simulations. To be able to verify the simulated results experiments has been carried out on a full scale boiler plant....

  12. First Principles Modelling of Shape Memory Alloys Molecular Dynamics Simulations

    CERN Document Server

    Kastner, Oliver

    2012-01-01

    Materials sciences relate the macroscopic properties of materials to their microscopic structure and postulate the need for holistic multiscale research. The investigation of shape memory alloys is a prime example in this regard. This particular class of materials exhibits strong coupling of temperature, strain and stress, determined by solid state phase transformations of their metallic lattices. The present book presents a collection of simulation studies of this behaviour. Employing conceptually simple but comprehensive models, the fundamental material properties of shape memory alloys are qualitatively explained from first principles. Using contemporary methods of molecular dynamics simulation experiments, it is shown how microscale dynamics may produce characteristic macroscopic material properties. The work is rooted in the materials sciences of shape memory alloys and  covers  thermodynamical, micro-mechanical  and crystallographical aspects. It addresses scientists in these research fields and thei...

  13. Model Driven Development of Simulation Models : Defining and Transforming Conceptual Models into Simulation Models by Using Metamodels and Model Transformations

    NARCIS (Netherlands)

    Küçükkeçeci Çetinkaya, D.

    2013-01-01

    Modeling and simulation (M&S) is an effective method for analyzing and designing systems and it is of interest to scientists and engineers from all disciplines. This thesis proposes the application of a model driven software development approach throughout the whole set of M&S activities and it

  14. Qualitative Behaviour of a Mathematical Model of Interacting ...

    African Journals Online (AJOL)

    The phenomenon of the interaction between two (2) populations indexed by the unit of time is as old as the famous Lotka-Volterra formalism. However, the qualitative analysis of interacting populations under the simplifying assumption of environmental perturbation is formidable mathematical problem which requires the ...

  15. Simulation and modeling of turbulent flows

    CERN Document Server

    Gatski, Thomas B; Lumley, John L

    1996-01-01

    This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.

  16. Dynamic modeling and simulation of wind turbines

    International Nuclear Information System (INIS)

    Ghafari Seadat, M.H.; Kheradmand Keysami, M.; Lari, H.R.

    2002-01-01

    Using wind energy for generating electricity in wind turbines is a good way for using renewable energies. It can also help to protect the environment. The main objective of this paper is dynamic modeling by energy method and simulation of a wind turbine aided by computer. In this paper, the equations of motion are extracted for simulating the system of wind turbine and then the behavior of the system become obvious by solving the equations. The turbine is considered with three blade rotor in wind direction, induced generator that is connected to the network and constant revolution for simulation of wind turbine. Every part of the wind turbine should be simulated for simulation of wind turbine. The main parts are blades, gearbox, shafts and generator

  17. Hybrid simulation models of production networks

    CERN Document Server

    Kouikoglou, Vassilis S

    2001-01-01

    This book is concerned with a most important area of industrial production, that of analysis and optimization of production lines and networks using discrete-event models and simulation. The book introduces a novel approach that combines analytic models and discrete-event simulation. Unlike conventional piece-by-piece simulation, this method observes a reduced number of events between which the evolution of the system is tracked analytically. Using this hybrid approach, several models are developed for the analysis of production lines and networks. The hybrid approach combines speed and accuracy for exceptional analysis of most practical situations. A number of optimization problems, involving buffer design, workforce planning, and production control, are solved through the use of hybrid models.

  18. The behaviour of adaptive boneremodeling simulation models

    NARCIS (Netherlands)

    Weinans, H.; Huiskes, R.; Grootenboer, H.J.

    1992-01-01

    The process of adaptive bone remodeling can be described mathematically and simulated in a computer model, integrated with the finite element method. In the model discussed here, cortical and trabecular bone are described as continuous materials with variable density. The remodeling rule applied to

  19. Analytical system dynamics modeling and simulation

    CERN Document Server

    Fabien, Brian C

    2008-01-01

    This book offering a modeling technique based on Lagrange's energy method includes 125 worked examples. Using this technique enables one to model and simulate systems as diverse as a six-link, closed-loop mechanism or a transistor power amplifier.

  20. Equivalent drawbead model in finite element simulations

    NARCIS (Netherlands)

    Carleer, Bart D.; Carleer, B.D.; Meinders, Vincent T.; Huetink, Han; Lee, J.K.; Kinzel, G.L.; Wagoner, R.

    1996-01-01

    In 3D simulations of the deep drawing process the drawbead geometries are seldom included. Therefore equivalent drawbeads are used. In order to investigate the drawbead behaviour a 2D plane strain finite element model was used. For verification of this model experiments were performed. The analyses

  1. A simulation model for football championships

    NARCIS (Netherlands)

    Koning, RH; Koolhaas, M; Renes, G; Ridder, G

    2003-01-01

    In this paper we discuss a simulation/probability model that identifies the team that is most likely to win a tournament. The model can also be used to answer other questions like 'which team bad a lucky draw?' or 'what is the probability that two teams meet at some moment in the tournament?' Input

  2. A simulation model for football championships

    NARCIS (Netherlands)

    Koning, Ruud H.; Koolhaas, Michael; Renes, Gusta

    2001-01-01

    In this paper we discuss a simulation/probability model that identifies the team that is most likely to win a tournament. The model can also be used to answer other questions like ‘which team had a lucky draw?’ or ‘what is the probability that two teams meet at some moment in the tournament?’. Input

  3. Regularization modeling for large-eddy simulation

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Holm, D.D.

    2003-01-01

    A new modeling approach for large-eddy simulation (LES) is obtained by combining a "regularization principle" with an explicit filter and its inversion. This regularization approach allows a systematic derivation of the implied subgrid model, which resolves the closure problem. The central role of

  4. Validity of microgravity simulation models on earth

    DEFF Research Database (Denmark)

    Regnard, J; Heer, M; Drummer, C

    2001-01-01

    Many studies have used water immersion and head-down bed rest as experimental models to simulate responses to microgravity. However, some data collected during space missions are at variance or in contrast with observations collected from experimental models. These discrepancies could reflect inc...

  5. Integrated decision-making about housing, energy and wellbeing: a qualitative system dynamics model.

    Science.gov (United States)

    Macmillan, Alexandra; Davies, Michael; Shrubsole, Clive; Luxford, Naomi; May, Neil; Chiu, Lai Fong; Trutnevyte, Evelina; Bobrova, Yekatherina; Chalabi, Zaid

    2016-03-08

    integrated approach to housing. The qualitative model has begun to improve the assessment of future policy options across a broad range of outcomes. Future work is needed to validate the model and increase its utility through computer simulation incorporating best quality data and evidence. Combining system dynamics modelling with other methods for weighing up policy options, as well as methods to support shifts in the conceptual frameworks underpinning policy, will be necessary to achieve shared housing goals across physical, mental, environmental, economic and social wellbeing.

  6. Landscape Modelling and Simulation Using Spatial Data

    Directory of Open Access Journals (Sweden)

    Amjed Naser Mohsin AL-Hameedawi

    2017-08-01

    Full Text Available In this paper a procedure was performed for engendering spatial model of landscape acclimated to reality simulation. This procedure based on combining spatial data and field measurements with computer graphics reproduced using Blender software. Thereafter that we are possible to form a 3D simulation based on VIS ALL packages. The objective was to make a model utilising GIS, including inputs to the feature attribute data. The objective of these efforts concentrated on coordinating a tolerable spatial prototype, circumscribing facilitation scheme and outlining the intended framework. Thus; the eventual result was utilized in simulation form. The performed procedure contains not only data gathering, fieldwork and paradigm providing, but extended to supply a new method necessary to provide the respective 3D simulation mapping production, which authorises the decision makers as well as investors to achieve permanent acceptance an independent navigation system for Geoscience applications.

  7. Benchmark simulation models, quo vadis?

    DEFF Research Database (Denmark)

    Jeppsson, U.; Alex, J; Batstone, D. J.

    2013-01-01

    As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together...... to provide their insights, highlighting areas where knowledge may still be deficient and where new opportunities are emerging, and to propose potential avenues for future development and application of the general benchmarking framework and its associated tools. The paper focuses on the topics of temporal...... and spatial extension, process modifications within the WWTP, the realism of models, control strategy extensions and the potential for new evaluation tools within the existing benchmark system. We find that there are major opportunities for application within all of these areas, either from existing work...

  8. A queuing model for road traffic simulation

    International Nuclear Information System (INIS)

    Guerrouahane, N.; Aissani, D.; Bouallouche-Medjkoune, L.; Farhi, N.

    2015-01-01

    We present in this article a stochastic queuing model for the raod traffic. The model is based on the M/G/c/c state dependent queuing model, and is inspired from the deterministic Godunov scheme for the road traffic simulation. We first propose a variant of M/G/c/c state dependent model that works with density-flow fundamental diagrams rather than density-speed relationships. We then extend this model in order to consider upstream traffic demand as well as downstream traffic supply. Finally, we show how to model a whole raod by concatenating raod sections as in the deterministic Godunov scheme

  9. Quantitative interface models for simulating microstructure evolution

    International Nuclear Information System (INIS)

    Zhu, J.Z.; Wang, T.; Zhou, S.H.; Liu, Z.K.; Chen, L.Q.

    2004-01-01

    To quantitatively simulate microstructural evolution in real systems, we investigated three different interface models: a sharp-interface model implemented by the software DICTRA and two diffuse-interface models which use either physical order parameters or artificial order parameters. A particular example is considered, the diffusion-controlled growth of a γ ' precipitate in a supersaturated γ matrix in Ni-Al binary alloys. All three models use the thermodynamic and kinetic parameters from the same databases. The temporal evolution profiles of composition from different models are shown to agree with each other. The focus is on examining the advantages and disadvantages of each model as applied to microstructure evolution in alloys

  10. MEGACELL: A nanocrystal model construction software for HRTEM multislice simulation

    International Nuclear Information System (INIS)

    Stroppa, Daniel G.; Righetto, Ricardo D.; Montoro, Luciano A.; Ramirez, Antonio J.

    2011-01-01

    Image simulation has an invaluable importance for the accurate analysis of High Resolution Transmission Electron Microscope (HRTEM) results, especially due to its non-linear image formation mechanism. Because the as-obtained images cannot be interpreted in a straightforward fashion, the retrieval of both qualitative and quantitative information from HRTEM micrographs requires an iterative process including the simulation of a nanocrystal model and its comparison with experimental images. However most of the available image simulation software requires atom-by-atom coordinates as input for the calculations, which can be prohibitive for large finite crystals and/or low-symmetry systems and zone axis orientations. This paper presents an open source citation-ware tool named MEGACELL, which was developed to assist on the construction of nanocrystals models. It allows the user to build nanocrystals with virtually any convex polyhedral geometry and to retrieve its atomic positions either as a plain text file or as an output compatible with EMS (Electron Microscopy Software) input protocol. In addition to the description of this tool features, some construction examples and its application for scientific studies are presented. These studies show MEGACELL as a handy tool, which allows an easier construction of complex nanocrystal models and improves the quantitative information extraction from HRTEM images. -- Highlights: → A software to support the HRTEM image simulation of nanocrystals in actual size. → MEGACELL allows the construction of complex nanocrystals models for multislice image simulation. → Some examples of improved nanocrystalline system characterization are presented, including the analysis of 3D morphology and growth behavior.

  11. Qualitative evaluation of just-in-time simulation-based learning: the learners' perspective.

    Science.gov (United States)

    Kamdar, Gunjan; Kessler, David O; Tilt, Lindsey; Srivastava, Geetanjali; Khanna, Kajal; Chang, Todd P; Balmer, Dorene; Auerbach, Marc

    2013-02-01

    Just-in-time training (JITT) is an educational strategy where training occurs in close temporal proximity to a clinical encounter. A multicenter study evaluated the impact of simulation-based JITT on interns' infant lumbar puncture (LP) success rates. Concurrent with this multicenter study, we conducted a qualitative evaluation to describe learner perceptions of this modality of skills training. Eleven interns from a single institution participated in a face-to-face semistructured interview exploring their JITT experience. Interviews were audio-recorded and transcribed. Two investigators reviewed the transcripts, assigned codes to the data, and categorized the codes. Categories were modified by 4 emergency physicians. As a means of data triangulation, we performed focus groups at a second institution. Benefits of JITT included review of anatomic landmarks, procedural rehearsal, and an opportunity to ask questions. These perceived benefits improved confidence with infant LP. Deficits of the training included lack of mannequin fidelity and unrealistic context when compared with an actual LP. An unexpected category, which emerged from our analysis, was that of barriers to JITT performance. Barriers included lack of time in a busy clinical setting and various instructor factors. The focus group findings confirmed and elaborated the benefits and deficits of JITT and the barriers to JITT performance. Just-in-time training improved procedural confidence with infant LP, but work place busyness and instructor lack of support or unawareness were barriers to JITT performance. Optimal LP JITT would occur with improved contextual fidelity. More research is needed to determine optimal training strategies that are effective for the learner and maximize clinical outcomes for the patient.

  12. Analyzing Strategic Business Rules through Simulation Modeling

    Science.gov (United States)

    Orta, Elena; Ruiz, Mercedes; Toro, Miguel

    Service Oriented Architecture (SOA) holds promise for business agility since it allows business process to change to meet new customer demands or market needs without causing a cascade effect of changes in the underlying IT systems. Business rules are the instrument chosen to help business and IT to collaborate. In this paper, we propose the utilization of simulation models to model and simulate strategic business rules that are then disaggregated at different levels of an SOA architecture. Our proposal is aimed to help find a good configuration for strategic business objectives and IT parameters. The paper includes a case study where a simulation model is built to help business decision-making in a context where finding a good configuration for different business parameters and performance is too complex to analyze by trial and error.

  13. Universal free school breakfast: a qualitative model for breakfast behaviors

    OpenAIRE

    Louise eHarvey-Golding; Lynn eDonkin; John eBlackledge; Margaret (Greta) Anne Defeyter

    2015-01-01

    In recent years, the provision of school breakfast has increased significantly in the UK. However, research examining the effectiveness of school breakfast is still within relative stages of infancy, and findings to date have been rather mixed. Moreover, previous evaluations of school breakfast schemes have been predominantly quantitative in their methodologies. Currently, there are few qualitative studies examining the subjective perceptions and experiences of stakeholders, and thereby an ab...

  14. Actual interaction effects between policy measures for energy efficiency-A qualitative matrix method and quantitative simulation results for households

    International Nuclear Information System (INIS)

    Boonekamp, Piet G.M.

    2006-01-01

    Starting from the conditions for a successful implementation of saving options, a general framework was developed to investigate possible interaction effects in sets of energy policy measures. Interaction regards the influence of one measure on the energy saving effect of another measure. The method delivers a matrix for all combinations of measures, with each cell containing qualitative information on the strength and type of interaction: overlapping, reinforcing, or independent of each other. Results are presented for the set of policy measures on household energy efficiency in the Netherlands for 1990-2003. The second part regards a quantitative analysis of the interaction effects between three major measures: a regulatory energy tax, investment subsidies and regulation of gas use for space heating. Using a detailed bottom-up model, household energy use in the period 1990-2000 was simulated with and without these measures. The results indicate that combinations of two or three policy measures yield 13-30% less effect than the sum of the effects of the separate measures

  15. Nuclear reactor core modelling in multifunctional simulators

    Energy Technology Data Exchange (ETDEWEB)

    Puska, E.K. [VTT Energy, Nuclear Energy, Espoo (Finland)

    1999-06-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  16. A Simulation Model for Intra-Urban Movements.

    Directory of Open Access Journals (Sweden)

    Nimrod Serok

    Full Text Available Human mobility patterns (HMP have become of interest to a variety of disciplines. The increasing availability of empirical data enables researchers to analyze patterns of people's movements. Recent work suggested that HMP follow a Levy-flight distribution and present regularity. Here, we present an innovative agent-based model that simulates HMP for various purposes. It is based on the combination of regular movements with spatial considerations, represented by an expanded gravitation model. The agents in this model have different attributes that affect their choice of destination and the duration they stay in each location. Thus, their movement mimics real-life situations. This is a stochastic, bottom-up model, yet it yields HMP that qualitatively fit HMP empirical data in terms of individuals, as well as the entire population. Our results also correspond to real-life phenomena in terms of urban spatial dynamics, that is, the emergence of popular locations in the city due to bottom-up behavior of people. Our model is novel in being based on the assumption that HMP are space-dependent as well as follow high regularity. To our knowledge, we are the first to succeed in simulating HMP not only at the inter-city scale but also at the intra-urban one.

  17. Validating agent oriented methodology (AOM) for netlogo modelling and simulation

    Science.gov (United States)

    WaiShiang, Cheah; Nissom, Shane; YeeWai, Sim; Sharbini, Hamizan

    2017-10-01

    AOM (Agent Oriented Modeling) is a comprehensive and unified agent methodology for agent oriented software development. AOM methodology was proposed to aid developers with the introduction of technique, terminology, notation and guideline during agent systems development. Although AOM methodology is claimed to be capable of developing a complex real world system, its potential is yet to be realized and recognized by the mainstream software community and the adoption of AOM is still at its infancy. Among the reason is that there are not much case studies or success story of AOM. This paper presents two case studies on the adoption of AOM for individual based modelling and simulation. It demonstrate how the AOM is useful for epidemiology study and ecological study. Hence, it further validate the AOM in a qualitative manner.

  18. Kanban simulation model for production process optimization

    Directory of Open Access Journals (Sweden)

    Golchev Riste

    2015-01-01

    Full Text Available A long time has passed since the KANBAN system has been established as an efficient method for coping with the excessive inventory. Still, the possibilities for its improvement through its integration with other different approaches should be investigated further. The basic research challenge of this paper is to present benefits of KANBAN implementation supported with Discrete Event Simulation (DES. In that direction, at the beginning, the basics of KANBAN system are presented with emphasis on the information and material flow, together with a methodology for implementation of KANBAN system. Certain analysis on combining the simulation with this methodology is presented. The paper is concluded with a practical example which shows that through understanding the philosophy of the implementation methodology of KANBAN system and the simulation methodology, a simulation model can be created which can serve as a basis for a variety of experiments that can be conducted within a short period of time, resulting with production process optimization.

  19. Vermont Yankee simulator BOP model upgrade

    International Nuclear Information System (INIS)

    Alejandro, R.; Udbinac, M.J.

    2006-01-01

    The Vermont Yankee simulator has undergone significant changes in the 20 years since the original order was placed. After the move from the original Unix to MS Windows environment, and upgrade to the latest version of SimPort, now called MASTER, the platform was set for an overhaul and replacement of major plant system models. Over a period of a few months, the VY simulator team, in partnership with WSC engineers, replaced outdated legacy models of the main steam, condenser, condensate, circulating water, feedwater and feedwater heaters, and main turbine and auxiliaries. The timing was ideal, as the plant was undergoing a power up-rate, so the opportunity was taken to replace the legacy models with industry-leading, true on-line object oriented graphical models. Due to the efficiency of design and ease of use of the MASTER tools, VY staff performed the majority of the modeling work themselves with great success, with only occasional assistance from WSC, in a relatively short time-period, despite having to maintain all of their 'regular' simulator maintenance responsibilities. This paper will provide a more detailed view of the VY simulator, including how it is used and how it has benefited from the enhancements and upgrades implemented during the project. (author)

  20. Avoiding and identifying errors in health technology assessment models: qualitative study and methodological review.

    Science.gov (United States)

    Chilcott, J; Tappenden, P; Rawdin, A; Johnson, M; Kaltenthaler, E; Paisley, S; Papaioannou, D; Shippam, A

    2010-05-01

    Health policy decisions must be relevant, evidence-based and transparent. Decision-analytic modelling supports this process but its role is reliant on its credibility. Errors in mathematical decision models or simulation exercises are unavoidable but little attention has been paid to processes in model development. Numerous error avoidance/identification strategies could be adopted but it is difficult to evaluate the merits of strategies for improving the credibility of models without first developing an understanding of error types and causes. The study aims to describe the current comprehension of errors in the HTA modelling community and generate a taxonomy of model errors. Four primary objectives are to: (1) describe the current understanding of errors in HTA modelling; (2) understand current processes applied by the technology assessment community for avoiding errors in development, debugging and critically appraising models for errors; (3) use HTA modellers' perceptions of model errors with the wider non-HTA literature to develop a taxonomy of model errors; and (4) explore potential methods and procedures to reduce the occurrence of errors in models. It also describes the model development process as perceived by practitioners working within the HTA community. A methodological review was undertaken using an iterative search methodology. Exploratory searches informed the scope of interviews; later searches focused on issues arising from the interviews. Searches were undertaken in February 2008 and January 2009. In-depth qualitative interviews were performed with 12 HTA modellers from academic and commercial modelling sectors. All qualitative data were analysed using the Framework approach. Descriptive and explanatory accounts were used to interrogate the data within and across themes and subthemes: organisation, roles and communication; the model development process; definition of error; types of model error; strategies for avoiding errors; strategies for

  1. TRANSFORM - TRANsient Simulation Framework of Reconfigurable Models

    Energy Technology Data Exchange (ETDEWEB)

    2017-09-01

    Existing development tools for early stage design and scoping of energy systems are often time consuming to use, proprietary, and do not contain the necessary function to model complete systems (i.e., controls, primary, and secondary systems) in a common platform. The Modelica programming language based TRANSFORM tool (1) provides a standardized, common simulation environment for early design of energy systems (i.e., power plants), (2) provides a library of baseline component modules to be assembled into full plant models using available geometry, design, and thermal-hydraulic data, (3) defines modeling conventions for interconnecting component models, and (4) establishes user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  2. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  3. A universal simulator for ecological models

    DEFF Research Database (Denmark)

    Holst, Niels

    2013-01-01

    Software design is an often neglected issue in ecological models, even though bad software design often becomes a hindrance for re-using, sharing and even grasping an ecological model. In this paper, the methodology of agile software design was applied to the domain of ecological models. Thus...... the principles for a universal design of ecological models were arrived at. To exemplify this design, the open-source software Universal Simulator was constructed using C++ and XML and is provided as a resource for inspiration....

  4. Barriers to the implementation and uptake of simulation-based training programs in general surgery: a multinational qualitative study.

    Science.gov (United States)

    Hosny, Shady G; Johnston, Maximilian J; Pucher, Philip H; Erridge, Simon; Darzi, Ara

    2017-12-01

    Despite evidence demonstrating the advantages of simulation training in general surgery, it is not widely integrated into surgical training programs worldwide. The aim of this study was to identify barriers and facilitators to the implementation and uptake of surgical simulation training programs. A multinational qualitative study was conducted using semi-structured interviews of general surgical residents and experts. Each interview was audio recorded, transcribed verbatim, and underwent emergent theme analysis. All data were anonymized and results pooled. A total of 37 individuals participated in the study. Seventeen experts (Program Directors and Surgical Attendings with an interest in surgical education) and 20 residents drawn from the United States, Canada, United Kingdom, France, and Japan were interviewed. Barriers to simulation-based training were identified based on key themes including financial cost, access, and translational benefit. Participants described cost (89%) and access (76%) as principal barriers to uptake. Common facilitators included a mandatory requirement to complete simulation training (78%) and on-going assessment of skills (78%). Participants felt that simulation training could improve patient outcomes (76%) but identified a lack of evidence to demonstrate benefit (38%). There was a consensus that simulation training has not been widely implemented (70%). There are multiple barriers to the implementation of surgical simulation training programs, however, there is agreement that these programs could potentially improve patient outcomes. Identifying these barriers enable the targeted use of facilitators to deliver simulation training programs. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Object Oriented Modelling and Dynamical Simulation

    DEFF Research Database (Denmark)

    Wagner, Falko Jens; Poulsen, Mikael Zebbelin

    1998-01-01

    This report with appendix describes the work done in master project at DTU.The goal of the project was to develop a concept for simulation of dynamical systems based on object oriented methods.The result was a library of C++-classes, for use when both building componentbased models and when...

  6. preliminary multidomain modelling and simulation study

    African Journals Online (AJOL)

    user

    PRELIMINARY MULTIDOMAIN MODELLING AND SIMULATION STUDY OF A. HORIZONTAL AXIS WIND TURBINE (HAWT) TOWER VIBRATION. I. lliyasu1, I. Iliyasu2, I. K. Tanimu3 and D. O Obada4. 1,4 DEPARTMENT OF MECHANICAL ENGINEERING, AHMADU BELLO UNIVERSITY, ZARIA, KADUNA STATE. NIGERIA.

  7. Reproducibility in Computational Neuroscience Models and Simulations

    Science.gov (United States)

    McDougal, Robert A.; Bulanova, Anna S.; Lytton, William W.

    2016-01-01

    Objective Like all scientific research, computational neuroscience research must be reproducible. Big data science, including simulation research, cannot depend exclusively on journal articles as the method to provide the sharing and transparency required for reproducibility. Methods Ensuring model reproducibility requires the use of multiple standard software practices and tools, including version control, strong commenting and documentation, and code modularity. Results Building on these standard practices, model sharing sites and tools have been developed that fit into several categories: 1. standardized neural simulators, 2. shared computational resources, 3. declarative model descriptors, ontologies and standardized annotations; 4. model sharing repositories and sharing standards. Conclusion A number of complementary innovations have been proposed to enhance sharing, transparency and reproducibility. The individual user can be encouraged to make use of version control, commenting, documentation and modularity in development of models. The community can help by requiring model sharing as a condition of publication and funding. Significance Model management will become increasingly important as multiscale models become larger, more detailed and correspondingly more difficult to manage by any single investigator or single laboratory. Additional big data management complexity will come as the models become more useful in interpreting experiments, thus increasing the need to ensure clear alignment between modeling data, both parameters and results, and experiment. PMID:27046845

  8. Thermohydraulic modeling and simulation of breeder reactors

    International Nuclear Information System (INIS)

    Agrawal, A.K.; Khatib-Rahbar, M.; Curtis, R.T.; Hetrick, D.L.; Girijashankar, P.V.

    1982-01-01

    This paper deals with the modeling and simulation of system-wide transients in LMFBRs. Unprotected events (i.e., the presumption of failure of the plant protection system) leading to core-melt are not considered in this paper. The existing computational capabilities in the area of protected transients in the US are noted. Various physical and numerical approximations that are made in these codes are discussed. Finally, the future direction in the area of model verification and improvements is discussed

  9. Twitter's tweet method modelling and simulation

    Science.gov (United States)

    Sarlis, Apostolos S.; Sakas, Damianos P.; Vlachos, D. S.

    2015-02-01

    This paper seeks to purpose the concept of Twitter marketing methods. The tools that Twitter provides are modelled and simulated using iThink in the context of a Twitter media-marketing agency. The paper has leveraged the system's dynamic paradigm to conduct Facebook marketing tools and methods modelling, using iThink™ system to implement them. It uses the design science research methodology for the proof of concept of the models and modelling processes. The following models have been developed for a twitter marketing agent/company and tested in real circumstances and with real numbers. These models were finalized through a number of revisions and iterators of the design, develop, simulate, test and evaluate. It also addresses these methods that suit most organized promotion through targeting, to the Twitter social media service. The validity and usefulness of these Twitter marketing methods models for the day-to-day decision making are authenticated by the management of the company organization. It implements system dynamics concepts of Twitter marketing methods modelling and produce models of various Twitter marketing situations. The Tweet method that Twitter provides can be adjusted, depending on the situation, in order to maximize the profit of the company/agent.

  10. Advances in NLTE modeling for integrated simulations

    Science.gov (United States)

    Scott, H. A.; Hansen, S. B.

    2010-01-01

    The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different atomic species for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly-excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with sufficient accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, Δ n = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short time steps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.

  11. Advances in NLTE Modeling for Integrated Simulations

    International Nuclear Information System (INIS)

    Scott, H.A.; Hansen, S.B.

    2009-01-01

    The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different elements for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with surprising accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, Δn = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short timesteps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.

  12. Simulation modeling of wheeled vehicle dynamics on the stand "Roller"

    Directory of Open Access Journals (Sweden)

    G. O. Kotiev

    2014-01-01

    Full Text Available The tests are an integral part of the wheeled vehicle design, manufacturing, and operation. The need for their conducting arises from the research and experimental activities to assess the qualitative and quantitative characteristics of the vehicles in general, as well as the individual components and assemblies. It is obvious that a variety of design features of wheeled vehicles request a development of methods both for experimental studies and for creating the original bench equipment for these purposes.The main positive feature of bench tests of automotive engineering is a broad capability to control the combinations of traction loads, speed rates, and external input conditions. Here, the steady state conditions can be used for a long time, allowing all the necessary measurements to be made, including those with video and photo recording experiment.It is known that the benefits of test "M" type (using a roller dynamometer include a wide range of test modes, which do not depend on the climatic conditions, as well as a capability to use a computer-aided testing programs. At the same time, it is known that the main drawback of bench tests of full-size vehicle is that the tire rolling conditions on the drum mismatch to the real road pavements, which are difficult to simulate on the drum surface. This problem can be solved owing to wheeled vehicle tests at the benches "Roller" to be, in efficiency, the most preferable research method. The article gives a detailed presentation of developed at BMSTU approach to its solving.Problem of simulation mathematical modeling has been solved for the vehicle with the wheel formula 8 × 8, and individual wheel-drive.The simulation results have led to the conclusion that the proposed principle to simulate a vehicle rolling on a smooth non-deformable support base using a bench " Roller " by simulation modeling is efficient.

  13. Student and educator experiences of maternal-child simulation-based learning: a systematic review of qualitative evidence.

    Science.gov (United States)

    MacKinnon, Karen; Marcellus, Lenora; Rivers, Julie; Gordon, Carol; Ryan, Maureen; Butcher, Diane

    2017-11-01

    Although maternal-child care is a pillar of primary health care, there is a global shortage of maternal-child health care providers. Nurse educators experience difficulties providing undergraduate students with maternal-child learning experiences for a number of reasons. Simulation has the potential to complement learning in clinical and classroom settings. Although systematic reviews of simulation are available, no systematic reviews of qualitative evidence related to maternal-child simulation-based learning (SBL) for undergraduate nursing students and/or educators have been located. The aim of this systematic review was to identify the appropriateness and meaningfulness of maternal-child simulation-based learning for undergraduate nursing students and nursing educators in educational settings to inform curriculum decision-making. The review questions are: INCLUSION CRITERIA TYPES OF PARTICIPANTS: Pre-registration or pre-licensure or undergraduate nursing or health professional students and educators. Experiences of simulation in an educational setting with a focus relevant to maternal child nursing. Qualitative research and educational evaluation using qualitative methods. North America, Europe, Australia and New Zealand. A three-step search strategy identified published studies in the English language from 2000 until April 2016. Identified studies that met the inclusion criteria were retrieved and critically appraised using the Joanna Briggs Institute Qualitative Assessment and Review Instrument (JBI-QARI) by at least two independent reviewers. Overall the methodological quality of the included studies was low. Qualitative findings were extracted by two independent reviewers using JBI-QARI data extraction tools. Findings were aggregated and categorized on the basis of similarity in meaning. Categories were subjected to a meta-synthesis to produce a single comprehensive set of synthesized findings. Twenty-two articles from 19 studies were included in the review

  14. SIMULATION MODELING OF IT PROJECTS BASED ON PETRI NETS

    Directory of Open Access Journals (Sweden)

    Александр Михайлович ВОЗНЫЙ

    2015-05-01

    Full Text Available An integrated simulation model of IT project based on a modified Petri net model that combines product and model of project tasks has been proposed. Substantive interpretation of the components of the simulation model has been presented, the process of simulation has been described. The conclusions about the integration of the product model and the model of works project were made.

  15. A parallel computational model for GATE simulations.

    Science.gov (United States)

    Rannou, F R; Vega-Acevedo, N; El Bitar, Z

    2013-12-01

    GATE/Geant4 Monte Carlo simulations are computationally demanding applications, requiring thousands of processor hours to produce realistic results. The classical strategy of distributing the simulation of individual events does not apply efficiently for Positron Emission Tomography (PET) experiments, because it requires a centralized coincidence processing and large communication overheads. We propose a parallel computational model for GATE that handles event generation and coincidence processing in a simple and efficient way by decentralizing event generation and processing but maintaining a centralized event and time coordinator. The model is implemented with the inclusion of a new set of factory classes that can run the same executable in sequential or parallel mode. A Mann-Whitney test shows that the output produced by this parallel model in terms of number of tallies is equivalent (but not equal) to its sequential counterpart. Computational performance evaluation shows that the software is scalable and well balanced. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Modeling, simulation and optimization of bipedal walking

    CERN Document Server

    Berns, Karsten

    2013-01-01

    The model-based investigation of motions of anthropomorphic systems is an important interdisciplinary research topic involving specialists from many fields such as Robotics, Biomechanics, Physiology, Orthopedics, Psychology, Neurosciences, Sports, Computer Graphics and Applied Mathematics. This book presents a study of basic locomotion forms such as walking and running is of particular interest due to the high demand on dynamic coordination, actuator efficiency and balance control. Mathematical models and numerical simulation and optimization techniques are explained, in combination with experimental data, which can help to better understand the basic underlying mechanisms of these motions and to improve them. Example topics treated in this book are Modeling techniques for anthropomorphic bipedal walking systems Optimized walking motions for different objective functions Identification of objective functions from measurements Simulation and optimization approaches for humanoid robots Biologically inspired con...

  17. Multiphase reacting flows modelling and simulation

    CERN Document Server

    Marchisio, Daniele L

    2007-01-01

    The papers in this book describe the most widely applicable modeling approaches and are organized in six groups covering from fundamentals to relevant applications. In the first part, some fundamentals of multiphase turbulent reacting flows are covered. In particular the introduction focuses on basic notions of turbulence theory in single-phase and multi-phase systems as well as on the interaction between turbulence and chemistry. In the second part, models for the physical and chemical processes involved are discussed. Among other things, particular emphasis is given to turbulence modeling strategies for multiphase flows based on the kinetic theory for granular flows. Next, the different numerical methods based on Lagrangian and/or Eulerian schemes are presented. In particular the most popular numerical approaches of computational fluid dynamics codes are described (i.e., Direct Numerical Simulation, Large Eddy Simulation, and Reynolds-Averaged Navier-Stokes approach). The book will cover particle-based meth...

  18. Numerical model simulation of atmospheric coolant plumes

    International Nuclear Information System (INIS)

    Gaillard, P.

    1980-01-01

    The effect of humid atmospheric coolants on the atmosphere is simulated by means of a three-dimensional numerical model. The atmosphere is defined by its natural vertical profiles of horizontal velocity, temperature, pressure and relative humidity. Effluent discharge is characterised by its vertical velocity and the temperature of air satured with water vapour. The subject of investigation is the area in the vicinity of the point of discharge, with due allowance for the wake effect of the tower and buildings and, where application, wind veer with altitude. The model equations express the conservation relationships for mometum, energy, total mass and water mass, for an incompressible fluid behaving in accordance with the Boussinesq assumptions. Condensation is represented by a simple thermodynamic model, and turbulent fluxes are simulated by introduction of turbulent viscosity and diffusivity data based on in-situ and experimental water model measurements. The three-dimensional problem expressed in terms of the primitive variables (u, v, w, p) is governed by an elliptic equation system which is solved numerically by application of an explicit time-marching algorithm in order to predict the steady-flow velocity distribution, temperature, water vapour concentration and the liquid-water concentration defining the visible plume. Windstill conditions are simulated by a program processing the elliptic equations in an axisymmetrical revolution coordinate system. The calculated visible plumes are compared with plumes observed on site with a view to validate the models [fr

  19. A Simulation Model for Extensor Tendon Repair

    Directory of Open Access Journals (Sweden)

    Elizabeth Aronstam

    2017-07-01

    Full Text Available Audience: This simulation model is designed for use by emergency medicine residents. Although we have instituted this at the PGY-2 level of our residency curriculum, it is appropriate for any level of emergency medicine residency training. It might also be adapted for use for a variety of other learners, such as practicing emergency physicians, orthopedic surgery residents, or hand surgery trainees. Introduction: Tendon injuries commonly present to the emergency department, so it is essential that emergency physicians be competent in evaluating such injuries. Indeed, extensor tendon repair is included as an ACGME Emergency Medicine Milestone (Milestone 13, Wound Management, Level 5 – “Performs advanced wound repairs, such as tendon repairs…”.1 However, emergency medicine residents may have limited opportunity to develop these skills due to a lack of patients, competition from other trainees, or preexisting referral patterns. Simulation may provide an alternative means to effectively teach these skills in such settings. Previously described tendon repair simulation models that were designed for surgical trainees have used rubber worms4, licorice5, feeding tubes, catheters6,7, drinking straws8, microfoam tape9, sheep forelimbs10 and cadavers.11 These models all suffer a variety of limitations, including high cost, lack of ready availability, or lack of realism. Objectives: We sought to develop an extensor tendon repair simulation model for emergency medicine residents, designed to meet ACGME Emergency Medicine Milestone 13, Level 5. We wished this model to be simple, inexpensive, and realistic. Methods: The learner responsible content/educational handout component of our innovation teaches residents about emergency department extensor tendon repair, and includes: 1 relevant anatomy 2 indications and contraindications for emergency department extensor tendon repair 3 physical exam findings 4 tendon suture techniques and 5 aftercare. During

  20. Clarifying the learning experiences of healthcare professionals with in situ and off-site simulation-based medical education: a qualitative study

    NARCIS (Netherlands)

    Sorensen, J.L.; Navne, L.E.; Martin, H.M.; Ottesen, B.; Albrecthsen, C.K.; Pedersen, B.W.; Kjaergaard, H.; Vleuten, C. van der

    2015-01-01

    OBJECTIVE: To examine how the setting in in situ simulation (ISS) and off-site simulation (OSS) in simulation-based medical education affects the perceptions and learning experience of healthcare professionals. DESIGN: Qualitative study using focus groups and content analysis. PARTICIPANTS:

  1. Modelling and simulation of thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Eborn, J.

    1998-02-01

    Mathematical modelling and simulation are important tools when dealing with engineering systems that today are becoming increasingly more complex. Integrated production and recycling of materials are trends that give rise to heterogenous systems, which are difficult to handle within one area of expertise. Model libraries are an excellent way to package engineering knowledge of systems and units to be reused by those who are not experts in modelling. Many commercial packages provide good model libraries, but they are usually domain-specific and closed. Heterogenous, multi-domain systems requires open model libraries written in general purpose modelling languages. This thesis describes a model database for thermal power plants written in the object-oriented modelling language OMOLA. The models are based on first principles. Subunits describe volumes with pressure and enthalpy dynamics and flows of heat or different media. The subunits are used to build basic units such as pumps, valves and heat exchangers which can be used to build system models. Several applications are described; a heat recovery steam generator, equipment for juice blending, steam generation in a sulphuric acid plant and a condensing steam plate heat exchanger. Model libraries for industrial use must be validated against measured data. The thesis describes how parameter estimation methods can be used for model validation. Results from a case-study on parameter optimization of a non-linear drum boiler model show how the technique can be used 32 refs, 21 figs

  2. Comparison of meaningful learning characteristics in simulated nursing practice after traditional versus computer-based simulation method: a qualitative videography study.

    Science.gov (United States)

    Poikela, Paula; Ruokamo, Heli; Teräs, Marianne

    2015-02-01

    Nursing educators must ensure that nursing students acquire the necessary competencies; finding the most purposeful teaching methods and encouraging learning through meaningful learning opportunities is necessary to meet this goal. We investigated student learning in a simulated nursing practice using videography. The purpose of this paper is to examine how two different teaching methods presented students' meaningful learning in a simulated nursing experience. The 6-hour study was divided into three parts: part I, general information; part II, training; and part III, simulated nursing practice. Part II was delivered by two different methods: a computer-based simulation and a lecture. The study was carried out in the simulated nursing practice in two universities of applied sciences, in Northern Finland. The participants in parts II and I were 40 first year nursing students; 12 student volunteers continued to part III. Qualitative analysis method was used. The data were collected using video recordings and analyzed by videography. The students who used a computer-based simulation program were more likely to report meaningful learning themes than those who were first exposed to lecture method. Educators should be encouraged to use computer-based simulation teaching in conjunction with other teaching methods to ensure that nursing students are able to receive the greatest educational benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Statistical Methods for the Qualitative Assessment of Dynamic Models with Time Delay (R Package qualV

    Directory of Open Access Journals (Sweden)

    Stefanie Jachner

    2007-06-01

    Full Text Available Results of ecological models differ, to some extent, more from measured data than from empirical knowledge. Existing techniques for validation based on quantitative assessments sometimes cause an underestimation of the performance of models due to time shifts, accelerations and delays or systematic differences between measurement and simulation. However, for the application of such models it is often more important to reproduce essential patterns instead of seemingly exact numerical values. This paper presents techniques to identify patterns and numerical methods to measure the consistency of patterns between observations and model results. An orthogonal set of deviance measures for absolute, relative and ordinal scale was compiled to provide informations about the type of difference. Furthermore, two different approaches accounting for time shifts were presented. The first one transforms the time to take time delays and speed differences into account. The second one describes known qualitative criteria dividing time series into interval units in accordance to their main features. The methods differ in their basic concepts and in the form of the resulting criteria. Both approaches and the deviance measures discussed are implemented in an R package. All methods are demonstrated by means of water quality measurements and simulation data. The proposed quality criteria allow to recognize systematic differences and time shifts between time series and to conclude about the quantitative and qualitative similarity of patterns.

  4. Modeling and simulation of economic processes

    Directory of Open Access Journals (Sweden)

    Bogdan Brumar

    2010-12-01

    Full Text Available In general, any activity requires a longer action often characterized by a degree of uncertainty, insecurity, in terms of size of the objective pursued. Because of the complexity of real economic systems, the stochastic dependencies between different variables and parameters considered, not all systems can be adequately represented by a model that can be solved by analytical methods and covering all issues for management decision analysis-economic horizon real. Often in such cases, it is considered that the simulation technique is the only alternative available. Using simulation techniques to study real-world systems often requires a laborious work. Making a simulation experiment is a process that takes place in several stages.

  5. Simulation as a surgical teaching model.

    Science.gov (United States)

    Ruiz-Gómez, José Luis; Martín-Parra, José Ignacio; González-Noriega, Mónica; Redondo-Figuero, Carlos Godofredo; Manuel-Palazuelos, José Carlos

    2018-01-01

    Teaching of surgery has been affected by many factors over the last years, such as the reduction of working hours, the optimization of the use of the operating room or patient safety. Traditional teaching methodology fails to reduce the impact of these factors on surgeońs training. Simulation as a teaching model minimizes such impact, and is more effective than traditional teaching methods for integrating knowledge and clinical-surgical skills. Simulation complements clinical assistance with training, creating a safe learning environment where patient safety is not affected, and ethical or legal conflicts are avoided. Simulation uses learning methodologies that allow teaching individualization, adapting it to the learning needs of each student. It also allows training of all kinds of technical, cognitive or behavioural skills. Copyright © 2017 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Mathematical models and numerical simulation in electromagnetism

    CERN Document Server

    Bermúdez, Alfredo; Salgado, Pilar

    2014-01-01

    The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory  based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.

  7. A qualitative analysis of bus simulator training on transit incidents : a case study in Florida. [Summary].

    Science.gov (United States)

    2013-01-01

    The simulator was once a very expensive, large-scale mechanical device for training military pilots or astronauts. Modern computers, linking sophisticated software and large-screen displays, have yielded simulators for the desktop or configured as sm...

  8. Facebook's personal page modelling and simulation

    Science.gov (United States)

    Sarlis, Apostolos S.; Sakas, Damianos P.; Vlachos, D. S.

    2015-02-01

    In this paper we will try to define the utility of Facebook's Personal Page marketing method. This tool that Facebook provides, is modelled and simulated using iThink in the context of a Facebook marketing agency. The paper has leveraged the system's dynamic paradigm to conduct Facebook marketing tools and methods modelling, using iThink™ system to implement them. It uses the design science research methodology for the proof of concept of the models and modelling processes. The following model has been developed for a social media marketing agent/company, Facebook platform oriented and tested in real circumstances. This model is finalized through a number of revisions and iterators of the design, development, simulation, testing and evaluation processes. The validity and usefulness of this Facebook marketing model for the day-to-day decision making are authenticated by the management of the company organization. Facebook's Personal Page method can be adjusted, depending on the situation, in order to maximize the total profit of the company which is to bring new customers, keep the interest of the old customers and deliver traffic to its website.

  9. Modeling and simulation of photovoltaic solar panel

    International Nuclear Information System (INIS)

    Belarbi, M.; Haddouche, K.; Midoun, A.

    2006-01-01

    In this article, we present a new approach for estimating the model parameters of a photovoltaic solar panel according to the irradiance and temperature. The parameters of the one diode model are given from the knowledge of three operating points: short-circuit, open circuit, and maximum power. In the first step, the adopted approach concerns the resolution of the system of equations constituting the three operating points to write all the model parameters according to series resistance. Secondly, we make an iterative resolution at the optimal operating point by using the Newton-Raphson method to calculate the series resistance value as well as the model parameters. Once the panel model is identified, we consider other equations for taking into account the irradiance and temperature effect. The simulation results show the convergence speed of the model parameters and the possibility of visualizing the electrical behaviour of the panel according to the irradiance and temperature. Let us note that a sensitivity of the algorithm at the optimal operating point was observed owing to the fact that a small variation of the optimal voltage value leads to a very great variation of the identified parameters values. With the identified model, we can develop algorithms of maximum power point tracking, and make simulations of a solar water pumping system.(Author)

  10. A simulation model for material accounting systems

    International Nuclear Information System (INIS)

    Coulter, C.A.; Thomas, K.E.

    1987-01-01

    A general-purpose model that was developed to simulate the operation of a chemical processing facility for nuclear materials has been extended to describe material measurement and accounting procedures as well. The model now provides descriptors for material balance areas, a large class of measurement instrument types and their associated measurement errors for various classes of materials, the measurement instruments themselves with their individual calibration schedules, and material balance closures. Delayed receipt of measurement results (as for off-line analytical chemistry assay), with interim use of a provisional measurement value, can be accurately represented. The simulation model can be used to estimate inventory difference variances for processing areas that do not operate at steady state, to evaluate the timeliness of measurement information, to determine process impacts of measurement requirements, and to evaluate the effectiveness of diversion-detection algorithms. Such information is usually difficult to obtain by other means. Use of the measurement simulation model is illustrated by applying it to estimate inventory difference variances for two material balance area structures of a fictitious nuclear material processing line

  11. Theory, modeling and simulation: Annual report 1993

    International Nuclear Information System (INIS)

    Dunning, T.H. Jr.; Garrett, B.C.

    1994-07-01

    Developing the knowledge base needed to address the environmental restoration issues of the US Department of Energy requires a fundamental understanding of molecules and their interactions in insolation and in liquids, on surfaces, and at interfaces. To meet these needs, the PNL has established the Environmental and Molecular Sciences Laboratory (EMSL) and will soon begin construction of a new, collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation program (TMS), which is one of seven research directorates in the EMSL, will play a critical role in understanding molecular processes important in restoring DOE's research, development and production sites, including understanding the migration and reactions of contaminants in soils and groundwater, the development of separation process for isolation of pollutants, the development of improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TMS program are to apply available techniques to study fundamental molecular processes involved in natural and contaminated systems; to extend current techniques to treat molecular systems of future importance and to develop techniques for addressing problems that are computationally intractable at present; to apply molecular modeling techniques to simulate molecular processes occurring in the multispecies, multiphase systems characteristic of natural and polluted environments; and to extend current molecular modeling techniques to treat complex molecular systems and to improve the reliability and accuracy of such simulations. The program contains three research activities: Molecular Theory/Modeling, Solid State Theory, and Biomolecular Modeling/Simulation. Extended abstracts are presented for 89 studies

  12. Theory, modeling and simulation: Annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, T.H. Jr.; Garrett, B.C.

    1994-07-01

    Developing the knowledge base needed to address the environmental restoration issues of the US Department of Energy requires a fundamental understanding of molecules and their interactions in insolation and in liquids, on surfaces, and at interfaces. To meet these needs, the PNL has established the Environmental and Molecular Sciences Laboratory (EMSL) and will soon begin construction of a new, collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation program (TMS), which is one of seven research directorates in the EMSL, will play a critical role in understanding molecular processes important in restoring DOE`s research, development and production sites, including understanding the migration and reactions of contaminants in soils and groundwater, the development of separation process for isolation of pollutants, the development of improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TMS program are to apply available techniques to study fundamental molecular processes involved in natural and contaminated systems; to extend current techniques to treat molecular systems of future importance and to develop techniques for addressing problems that are computationally intractable at present; to apply molecular modeling techniques to simulate molecular processes occurring in the multispecies, multiphase systems characteristic of natural and polluted environments; and to extend current molecular modeling techniques to treat complex molecular systems and to improve the reliability and accuracy of such simulations. The program contains three research activities: Molecular Theory/Modeling, Solid State Theory, and Biomolecular Modeling/Simulation. Extended abstracts are presented for 89 studies.

  13. Evaluating quantitative and qualitative models: An application for nationwide water erosion assessment in Ethiopia

    NARCIS (Netherlands)

    Sonneveld, B.G.J.S.; Keyzer, M.A.; Stroosnijder, L

    2011-01-01

    This paper tests the candidacy of one qualitative response model and two quantitative models for a nationwide water erosion hazard assessment in Ethiopia. After a descriptive comparison of model characteristics the study conducts a statistical comparison to evaluate the explanatory power of the

  14. Evaluating quantitative and qualitative models: an application for nationwide water erosion assessment in Ethiopia

    NARCIS (Netherlands)

    Sonneveld, B.G.J.S.; Keyzer, M.A.; Stroosnijder, L.

    2011-01-01

    This paper tests the candidacy of one qualitative response model and two quantitative models for a nationwide water erosion hazard assessment in Ethiopia. After a descriptive comparison of model characteristics the study conducts a statistical comparison to evaluate the explanatory power of the

  15. A Model Management Approach for Co-Simulation Model Evaluation

    NARCIS (Netherlands)

    Zhang, X.C.; Broenink, Johannes F.; Filipe, Joaquim; Kacprzyk, Janusz; Pina, Nuno

    2011-01-01

    Simulating formal models is a common means for validating the correctness of the system design and reduce the time-to-market. In most of the embedded control system design, multiple engineering disciplines and various domain-specific models are often involved, such as mechanical, control, software

  16. eShopper modeling and simulation

    Science.gov (United States)

    Petrushin, Valery A.

    2001-03-01

    The advent of e-commerce gives an opportunity to shift the paradigm of customer communication into a highly interactive mode. The new generation of commercial Web servers, such as the Blue Martini's server, combines the collection of data on a customer behavior with real-time processing and dynamic tailoring of a feedback page. The new opportunities for direct product marketing and cross selling are arriving. The key problem is what kind of information do we need to achieve these goals, or in other words, how do we model the customer? The paper is devoted to customer modeling and simulation. The focus is on modeling an individual customer. The model is based on the customer's transaction data, click stream data, and demographics. The model includes the hierarchical profile of a customer's preferences to different types of products and brands; consumption models for the different types of products; the current focus, trends, and stochastic models for time intervals between purchases; product affinity models; and some generalized features, such as purchasing power, sensitivity to advertising, price sensitivity, etc. This type of model is used for predicting the date of the next visit, overall spending, and spending for different types of products and brands. For some type of stores (for example, a supermarket) and stable customers, it is possible to forecast the shopping lists rather accurately. The forecasting techniques are discussed. The forecasting results can be used for on- line direct marketing, customer retention, and inventory management. The customer model can also be used as a generative model for simulating the customer's purchasing behavior in different situations and for estimating customer's features.

  17. An integrated qualitative and quantitative modeling framework for computer‐assisted HAZOP studies

    DEFF Research Database (Denmark)

    Wu, Jing; Zhang, Laibin; Hu, Jinqiu

    2014-01-01

    , objectives, and goals on different abstraction levels. Based on this abstraction, qualitative functional models are constructed for the process. Next MFM‐specified causal rules are extended with systems specific features to enable proper reasoning. Finally, systematic HAZOP analysis is performed to identify...... safety critical operations, its causes and consequences. The outcome is a qualitative hazard analysis of selected process deviations from normal operations and their consequences as input to a traditional HAZOP table. The list of unacceptable high risk deviations identified by the qualitative HAZOP...

  18. Simulation modelling in agriculture: General considerations. | R.I. ...

    African Journals Online (AJOL)

    The computer does all the necessary arithmetic when the hypothesis is invoked to predict the future behaviour of the simulated system under given conditions.A general ... in the advisory service. Keywords: agriculture; botany; computer simulation; modelling; simulation model; simulation modelling; south africa; techniques ...

  19. Aqueous Electrolytes: Model Parameters and Process Simulation

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    This thesis deals with aqueous electrolyte mixtures. The Extended UNIQUAC model is being used to describe the excess Gibbs energy of such solutions. Extended UNIQUAC parameters for the twelve ions Na+, K+, NH4+, H+, Cl-, NO3-, SO42-, HSO4-, OH-, CO32-, HCO3-, and S2O82- are estimated. A computer ...... program including a steady state process simulator for the design, simulation, and optimization of fractional crystallization processes is presented.......This thesis deals with aqueous electrolyte mixtures. The Extended UNIQUAC model is being used to describe the excess Gibbs energy of such solutions. Extended UNIQUAC parameters for the twelve ions Na+, K+, NH4+, H+, Cl-, NO3-, SO42-, HSO4-, OH-, CO32-, HCO3-, and S2O82- are estimated. A computer...

  20. A Placement Model for Flight Simulators.

    Science.gov (United States)

    1982-09-01

    simulator basing strategies. Captains David R. VanDenburg and Jon D. Veith developed a mathematical model to assist in the placement analysis of A-7...Institute for Defense Analysis, Arlington VA, August 1977. AD A049979. 23. Sugarman , Robert C., Steven L. Johnson, and William F. H. Ring. "B-I Systems...USAF Cost and Plan- nin& Factors. AFR 173-13. Washington: Govern- ment Printing Office, I February 1982. * 30. Van Denburg, Captain David R., USAF

  1. Qualitative mathematics for the social sciences mathematical models for research on cultural dynamics

    CERN Document Server

    Rudolph, Lee

    2012-01-01

    In this book Lee Rudolph brings together international contributors who combine psychological and mathematical perspectives to analyse how qualitative mathematics can be used to create models of social and psychological processes. Bridging the gap between the fields with an imaginative and stimulating collection of contributed chapters, the volume updates the current research on the subject, which until now has been rather limited, focussing largely on the use of statistics. Qualitative Mathematics for the Social Sciences contains a variety of useful illustrative figures, in

  2. Modelling interplanetary CMEs using magnetohydrodynamic simulations

    Directory of Open Access Journals (Sweden)

    P. J. Cargill

    Full Text Available The dynamics of Interplanetary Coronal Mass Ejections (ICMEs are discussed from the viewpoint of numerical modelling. Hydrodynamic models are shown to give a good zero-order picture of the plasma properties of ICMEs, but they cannot model the important magnetic field effects. Results from MHD simulations are shown for a number of cases of interest. It is demonstrated that the strong interaction of the ICME with the solar wind leads to the ICME and solar wind velocities being close to each other at 1 AU, despite their having very different speeds near the Sun. It is also pointed out that this interaction leads to a distortion of the ICME geometry, making cylindrical symmetry a dubious assumption for the CME field at 1 AU. In the presence of a significant solar wind magnetic field, the magnetic fields of the ICME and solar wind can reconnect with each other, leading to an ICME that has solar wind-like field lines. This effect is especially important when an ICME with the right sense of rotation propagates down the heliospheric current sheet. It is also noted that a lack of knowledge of the coronal magnetic field makes such simulations of little use in space weather forecasts that require knowledge of the ICME magnetic field strength.

    Key words. Interplanetary physics (interplanetary magnetic fields Solar physics, astrophysics, and astronomy (flares and mass ejections Space plasma physics (numerical simulation studies

  3. MODELING AND SIMULATION OF A HYDROCRACKING UNIT

    Directory of Open Access Journals (Sweden)

    HASSAN A. FARAG

    2016-06-01

    Full Text Available Hydrocracking is used in the petroleum industry to convert low quality feed stocks into high valued transportation fuels such as gasoline, diesel, and jet fuel. The aim of the present work is to develop a rigorous steady state two-dimensional mathematical model which includes conservation equations of mass and energy for simulating the operation of a hydrocracking unit. Both the catalyst bed and quench zone have been included in this integrated model. The model equations were numerically solved in both axial and radial directions using Matlab software. The presented model was tested against a real plant data in Egypt. The results indicated that a very good agreement between the model predictions and industrial values have been reported for temperature profiles, concentration profiles, and conversion in both radial and axial directions at the hydrocracking unit. Simulation of the quench zone conversion and temperature profiles in the quench zone was also included and gave a low deviation from the actual ones. In concentration profiles, the percentage deviation in the first reactor was found to be 9.28 % and 9.6% for the second reactor. The effect of several parameters such as: Pellet Heat Transfer Coefficient, Effective Radial Thermal Conductivity, Wall Heat Transfer Coefficient, Effective Radial Diffusivity, and Cooling medium (quench zone has been included in this study. The variation of Wall Heat Transfer Coefficient, Effective Radial Diffusivity for the near-wall region, gave no remarkable changes in the temperature profiles. On the other hand, even small variations of Effective Radial Thermal Conductivity, affected the simulated temperature profiles significantly, and this effect could not be compensated by the variations of the other parameters of the model.

  4. Reactive transport models and simulation with ALLIANCES

    International Nuclear Information System (INIS)

    Leterrier, N.; Deville, E.; Bary, B.; Trotignon, L.; Hedde, T.; Cochepin, B.; Stora, E.

    2009-01-01

    Many chemical processes influence the evolution of nuclear waste storage. As a result, simulations based only upon transport and hydraulic processes fail to describe adequately some industrial scenarios. We need to take into account complex chemical models (mass action laws, kinetics...) which are highly non-linear. In order to simulate the coupling of these chemical reactions with transport, we use a classical Sequential Iterative Approach (SIA), with a fixed point algorithm, within the mainframe of the ALLIANCES platform. This approach allows us to use the various transport and chemical modules available in ALLIANCES, via an operator-splitting method based upon the structure of the chemical system. We present five different applications of reactive transport simulations in the context of nuclear waste storage: 1. A 2D simulation of the lixiviation by rain water of an underground polluted zone high in uranium oxide; 2. The degradation of the steel envelope of a package in contact with clay. Corrosion of the steel creates corrosion products and the altered package becomes a porous medium. We follow the degradation front through kinetic reactions and the coupling with transport; 3. The degradation of a cement-based material by the injection of an aqueous solution of zinc and sulphate ions. In addition to the reactive transport coupling, we take into account in this case the hydraulic retroaction of the porosity variation on the Darcy velocity; 4. The decalcification of a concrete beam in an underground storage structure. In this case, in addition to the reactive transport simulation, we take into account the interaction between chemical degradation and the mechanical forces (cracks...), and the retroactive influence on the structure changes on transport; 5. The degradation of the steel envelope of a package in contact with a clay material under a temperature gradient. In this case the reactive transport simulation is entirely directed by the temperature changes and

  5. Simulation models generator. Applications in scheduling

    Directory of Open Access Journals (Sweden)

    Omar Danilo Castrillón

    2013-08-01

    Rev.Mate.Teor.Aplic. (ISSN 1409-2433 Vol. 20(2: 231–241, July 2013 generador de modelos de simulacion 233 will, in order to have an approach to reality to evaluate decisions in order to take more assertive. To test prototype was used as the modeling example of a production system with 9 machines and 5 works as a job shop configuration, testing stops processing times and stochastic machine to measure rates of use of machines and time average jobs in the system, as measures of system performance. This test shows the goodness of the prototype, to save the user the simulation model building

  6. Computer Models Simulate Fine Particle Dispersion

    Science.gov (United States)

    2010-01-01

    Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.

  7. Modeling and simulation of reactive flows

    CERN Document Server

    Bortoli, De AL; Pereira, Felipe

    2015-01-01

    Modelling and Simulation of Reactive Flows presents information on modeling and how to numerically solve reactive flows. The book offers a distinctive approach that combines diffusion flames and geochemical flow problems, providing users with a comprehensive resource that bridges the gap for scientists, engineers, and the industry. Specifically, the book looks at the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms. It considers the most common methods used in practical situations, along with equations for reactive flows, and va

  8. TMS modeling toolbox for realistic simulation.

    Science.gov (United States)

    Cho, Young Sun; Suh, Hyun Sang; Lee, Won Hee; Kim, Tae-Seong

    2010-01-01

    Transcranial magnetic stimulation (TMS) is a technique for brain stimulation using rapidly changing magnetic fields generated by coils. It has been established as an effective stimulation technique to treat patients suffering from damaged brain functions. Although TMS is known to be painless and noninvasive, it can also be harmful to the brain by incorrect focusing and excessive stimulation which might result in seizure. Therefore there is ongoing research effort to elucidate and better understand the effect and mechanism of TMS. Lately Boundary element method (BEM) and Finite element method (FEM) have been used to simulate the electromagnetic phenomenon of TMS. However, there is a lack of general tools to generate the models of TMS due to some difficulties in realistic modeling of the human head and TMS coils. In this study, we have developed a toolbox through which one can generate high-resolution FE TMS models. The toolbox allows creating FE models of the head with isotropic and anisotropic electrical conductivities in five different tissues of the head and the coils in 3D. The generated TMS model is importable to FE software packages such as ANSYS for further and efficient electromagnetic analysis. We present a set of demonstrative results of realistic simulation of TMS with our toolbox.

  9. Wedge Experiment Modeling and Simulation for Reactive Flow Model Calibration

    Science.gov (United States)

    Maestas, Joseph T.; Dorgan, Robert J.; Sutherland, Gerrit T.

    2017-06-01

    Wedge experiments are a typical method for generating pop-plot data (run-to-detonation distance versus input shock pressure), which is used to assess an explosive material's initiation behavior. Such data can be utilized to calibrate reactive flow models by running hydrocode simulations and successively tweaking model parameters until a match between experiment is achieved. Typical simulations are performed in 1D and typically use a flyer impact to achieve the prescribed shock loading pressure. In this effort, a wedge experiment performed at the Army Research Lab (ARL) was modeled using CTH (SNL hydrocode) in 1D, 2D, and 3D space in order to determine if there was any justification in using simplified models. A simulation was also performed using the BCAT code (CTH companion tool) that assumes a plate impact shock loading. Results from the simulations were compared to experimental data and show that the shock imparted into an explosive specimen is accurately captured with 2D and 3D simulations, but changes significantly in 1D space and with the BCAT tool. The difference in shock profile is shown to only affect numerical predictions for large run distances. This is attributed to incorrectly capturing the energy fluence for detonation waves versus flat shock loading. Portions of this work were funded through the Joint Insensitive Munitions Technology Program.

  10. Integrating Visualizations into Modeling NEST Simulations.

    Science.gov (United States)

    Nowke, Christian; Zielasko, Daniel; Weyers, Benjamin; Peyser, Alexander; Hentschel, Bernd; Kuhlen, Torsten W

    2015-01-01

    Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work.

  11. Integrating Visualizations into Modeling NEST Simulations

    Directory of Open Access Journals (Sweden)

    Christian eNowke

    2015-12-01

    Full Text Available Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work.

  12. Integrating Visualizations into Modeling NEST Simulations

    Science.gov (United States)

    Nowke, Christian; Zielasko, Daniel; Weyers, Benjamin; Peyser, Alexander; Hentschel, Bernd; Kuhlen, Torsten W.

    2015-01-01

    Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work. PMID:26733860

  13. Efficient Turbulence Modeling for CFD Wake Simulations

    DEFF Research Database (Denmark)

    van der Laan, Paul

    , that can accurately and efficiently simulate wind turbine wakes. The linear k-ε eddy viscosity model (EVM) is a popular turbulence model in RANS; however, it underpredicts the velocity wake deficit and cannot predict the anisotropic Reynolds-stresses in the wake. In the current work, nonlinear eddy...... viscosity models (NLEVM) are applied to wind turbine wakes. NLEVMs can model anisotropic turbulence through a nonlinear stress-strain relation, and they can improve the velocity deficit by the use of a variable eddy viscosity coefficient, that delays the wake recovery. Unfortunately, all tested NLEVMs show...... numerically unstable behavior for fine grids, which inhibits a grid dependency study for numerical verification. Therefore, a simpler EVM is proposed, labeled as the k-ε - fp EVM, that has a linear stress-strain relation, but still has a variable eddy viscosity coefficient. The k-ε - fp EVM is numerically...

  14. A simulation-based analytic model of radio galaxies

    Science.gov (United States)

    Hardcastle, M. J.

    2018-04-01

    I derive and discuss a simple semi-analytical model of the evolution of powerful radio galaxies which is not based on assumptions of self-similar growth, but rather implements some insights about the dynamics and energetics of these systems derived from numerical simulations, and can be applied to arbitrary pressure/density profiles of the host environment. The model can qualitatively and quantitatively reproduce the source dynamics and synchrotron light curves derived from numerical modelling. Approximate corrections for radiative and adiabatic losses allow it to predict the evolution of radio spectral index and of inverse-Compton emission both for active and `remnant' sources after the jet has turned off. Code to implement the model is publicly available. Using a standard model with a light relativistic (electron-positron) jet, subequipartition magnetic fields, and a range of realistic group/cluster environments, I simulate populations of sources and show that the model can reproduce the range of properties of powerful radio sources as well as observed trends in the relationship between jet power and radio luminosity, and predicts their dependence on redshift and environment. I show that the distribution of source lifetimes has a significant effect on both the source length distribution and the fraction of remnant sources expected in observations, and so can in principle be constrained by observations. The remnant fraction is expected to be low even at low redshift and low observing frequency due to the rapid luminosity evolution of remnants, and to tend rapidly to zero at high redshift due to inverse-Compton losses.

  15. Modeling and simulation of gamma camera

    International Nuclear Information System (INIS)

    Singh, B.; Kataria, S.K.; Samuel, A.M.

    2002-08-01

    Simulation techniques play a vital role in designing of sophisticated instruments and also for the training of operating and maintenance staff. Gamma camera systems have been used for functional imaging in nuclear medicine. Functional images are derived from the external counting of the gamma emitting radioactive tracer that after introduction in to the body mimics the behavior of native biochemical compound. The position sensitive detector yield the coordinates of the gamma ray interaction with the detector and are used to estimate the point of gamma ray emission within the tracer distribution space. This advanced imaging device is thus dependent on the performance of algorithm for coordinate computing, estimation of point of emission, generation of image and display of the image data. Contemporary systems also have protocols for quality control and clinical evaluation of imaging studies. Simulation of this processing leads to understanding of the basic camera design problems. This report describes a PC based package for design and simulation of gamma camera along with the options of simulating data acquisition and quality control of imaging studies. Image display and data processing the other options implemented in SIMCAM will be described in separate reports (under preparation). Gamma camera modeling and simulation in SIMCAM has preset configuration of the design parameters for various sizes of crystal detector with the option to pack the PMT on hexagon or square lattice. Different algorithm for computation of coordinates and spatial distortion removal are allowed in addition to the simulation of energy correction circuit. The user can simulate different static, dynamic, MUGA and SPECT studies. The acquired/ simulated data is processed for quality control and clinical evaluation of the imaging studies. Results show that the program can be used to assess these performances. Also the variations in performance parameters can be assessed due to the induced

  16. Desktop Modeling and Simulation: Parsimonious, yet Effective Discrete-Event Simulation Analysis

    Science.gov (United States)

    Bradley, James R.

    2012-01-01

    This paper evaluates how quickly students can be trained to construct useful discrete-event simulation models using Excel The typical supply chain used by many large national retailers is described, and an Excel-based simulation model is constructed of it The set of programming and simulation skills required for development of that model are then determined we conclude that six hours of training are required to teach the skills to MBA students . The simulation presented here contains all fundamental functionallty of a simulation model, and so our result holds for any discrete-event simulation model. We argue therefore that Industry workers with the same technical skill set as students having completed one year in an MBA program can be quickly trained to construct simulation models. This result gives credence to the efficacy of Desktop Modeling and Simulation whereby simulation analyses can be quickly developed, run, and analyzed with widely available software, namely Excel.

  17. Representing and managing uncertainty in qualitative ecological models

    NARCIS (Netherlands)

    Nuttle, T.; Bredeweg, B.; Salles, P.; Neumann, M.

    2009-01-01

    Ecologists and decision makers need ways to understand systems, test ideas, and make predictions and explanations about systems. However, uncertainty about causes and effects of processes and parameter values is pervasive in models of ecological systems. Uncertainty associated with incomplete

  18. Best Practices for Crash Modeling and Simulation

    Science.gov (United States)

    Fasanella, Edwin L.; Jackson, Karen E.

    2002-01-01

    Aviation safety can be greatly enhanced by the expeditious use of computer simulations of crash impact. Unlike automotive impact testing, which is now routine, experimental crash tests of even small aircraft are expensive and complex due to the high cost of the aircraft and the myriad of crash impact conditions that must be considered. Ultimately, the goal is to utilize full-scale crash simulations of aircraft for design evaluation and certification. The objective of this publication is to describe "best practices" for modeling aircraft impact using explicit nonlinear dynamic finite element codes such as LS-DYNA, DYNA3D, and MSC.Dytran. Although "best practices" is somewhat relative, it is hoped that the authors' experience will help others to avoid some of the common pitfalls in modeling that are not documented in one single publication. In addition, a discussion of experimental data analysis, digital filtering, and test-analysis correlation is provided. Finally, some examples of aircraft crash simulations are described in several appendices following the main report.

  19. Systematic simulations of modified gravity: chameleon models

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [Institut de Physique Theorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Davis, Anne-Christine [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Li, Baojiu [Institute for Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Winther, Hans A. [Institute of Theoretical Astrophysics, University of Oslo, 0315 Oslo (Norway); Zhao, Gong-Bo, E-mail: philippe.brax@cea.fr, E-mail: a.c.davis@damtp.cam.ac.uk, E-mail: baojiu.li@durham.ac.uk, E-mail: h.a.winther@astro.uio.no, E-mail: gong-bo.zhao@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom)

    2013-04-01

    In this work we systematically study the linear and nonlinear structure formation in chameleon theories of modified gravity, using a generic parameterisation which describes a large class of models using only 4 parameters. For this we have modified the N-body simulation code ecosmog to perform a total of 65 simulations for different models and parameter values, including the default ΛCDM. These simulations enable us to explore a significant portion of the parameter space. We have studied the effects of modified gravity on the matter power spectrum and mass function, and found a rich and interesting phenomenology where the difference with the ΛCDM paradigm cannot be reproduced by a linear analysis even on scales as large as k ∼ 0.05 hMpc{sup −1}, since the latter incorrectly assumes that the modification of gravity depends only on the background matter density. Our results show that the chameleon screening mechanism is significantly more efficient than other mechanisms such as the dilaton and symmetron, especially in high-density regions and at early times, and can serve as a guidance to determine the parts of the chameleon parameter space which are cosmologically interesting and thus merit further studies in the future.

  20. Systematic simulations of modified gravity: chameleon models

    International Nuclear Information System (INIS)

    Brax, Philippe; Davis, Anne-Christine; Li, Baojiu; Winther, Hans A.; Zhao, Gong-Bo

    2013-01-01

    In this work we systematically study the linear and nonlinear structure formation in chameleon theories of modified gravity, using a generic parameterisation which describes a large class of models using only 4 parameters. For this we have modified the N-body simulation code ecosmog to perform a total of 65 simulations for different models and parameter values, including the default ΛCDM. These simulations enable us to explore a significant portion of the parameter space. We have studied the effects of modified gravity on the matter power spectrum and mass function, and found a rich and interesting phenomenology where the difference with the ΛCDM paradigm cannot be reproduced by a linear analysis even on scales as large as k ∼ 0.05 hMpc −1 , since the latter incorrectly assumes that the modification of gravity depends only on the background matter density. Our results show that the chameleon screening mechanism is significantly more efficient than other mechanisms such as the dilaton and symmetron, especially in high-density regions and at early times, and can serve as a guidance to determine the parts of the chameleon parameter space which are cosmologically interesting and thus merit further studies in the future

  1. Closed loop models for analyzing engineering requirements for simulators

    Science.gov (United States)

    Baron, S.; Muralidharan, R.; Kleinman, D.

    1980-01-01

    A closed loop analytic model, incorporating a model for the human pilot, (namely, the optimal control model) that would allow certain simulation design tradeoffs to be evaluated quantitatively was developed. This model was applied to a realistic flight control problem. The resulting model is used to analyze both overall simulation effects and the effects of individual elements. The results show that, as compared to an ideal continuous simulation, the discrete simulation can result in significant performance and/or workload penalties.

  2. A qualitative model of the salmon life cycle in the context of river rehabilitation

    NARCIS (Netherlands)

    Noble, R.A.A.; Bredeweg, B.; Linnebank, F.; Salles, P.; Cowx, I.G.; Žabkar, J.; Bratko, I.

    2009-01-01

    A qualitative model was developed in Garp3 to capture and formalise knowledge about river rehabilitation and the management of an Atlantic salmon population. The model integrates information about the ecology of the salmon life cycle, the environmental factors that may limit the survival of key life

  3. Learning to Act: Qualitative Learning of Deterministic Action Models

    DEFF Research Database (Denmark)

    Bolander, Thomas; Gierasimczuk, Nina

    2017-01-01

    in the limit (inconclusive convergence to the right action model). We show that deterministic actions are finitely identifiable, while arbitrary (non-deterministic) actions require more learning power—they are identifiable in the limit. We then move on to a particular learning method, i.e. learning via update......, which proceeds via restriction of a space of events within a learning-specific action model. We show how this method can be adapted to learn conditional and unconditional deterministic action models. We propose update learning mechanisms for the afore mentioned classes of actions and analyse...... their computational complexity. Finally, we study a parametrized learning method which makes use of the upper bound on the number of propositions relevant for a given learning scenario. We conclude with describing related work and numerous directions of further work....

  4. The operator model as a framework of research on errors and temporal, qualitative and analogical reasoning

    International Nuclear Information System (INIS)

    Decortis, F.; Drozdowicz, B.; Masson, M.

    1990-01-01

    In this paper the needs and requirements for developing a cognitive model of a human operator are discussed and the computer architecture, currently being developed, is described. Given the approach taken, namely the division of the problem into specialised tasks within an area and using the architecture chosen, it is possible to build independently several cognitive and psychological models such as errors and stress models, as well as models of temporal, qualitative and an analogical reasoning. (author)

  5. Biomechanics trends in modeling and simulation

    CERN Document Server

    Ogden, Ray

    2017-01-01

    The book presents a state-of-the-art overview of biomechanical and mechanobiological modeling and simulation of soft biological tissues. Seven well-known scientists working in that particular field discuss topics such as biomolecules, networks and cells as well as failure, multi-scale, agent-based, bio-chemo-mechanical and finite element models appropriate for computational analysis. Applications include arteries, the heart, vascular stents and valve implants as well as adipose, brain, collagenous and engineered tissues. The mechanics of the whole cell and sub-cellular components as well as the extracellular matrix structure and mechanotransduction are described. In particular, the formation and remodeling of stress fibers, cytoskeletal contractility, cell adhesion and the mechanical regulation of fibroblast migration in healing myocardial infarcts are discussed. The essential ingredients of continuum mechanics are provided. Constitutive models of fiber-reinforced materials with an emphasis on arterial walls ...

  6. Simulations, evaluations and models. Vol. 1

    International Nuclear Information System (INIS)

    Brehmer, B.; Leplat, J.

    1992-01-01

    Papers presented at the Fourth MOHAWC (Models of Human Activities in Work Context) workshop. The general theme was simulations, evaluations and models. The emphasis was on time in relation to the modelling of human activities in modern, high tech. work. Such work often requires people to control dynamic systems, and the behaviour and misbehaviour of these systems in time is a principle focus of work in, for example, a modern process plant. The papers report on microworlds and on their innovative uses, both in the form of experiments and in the form of a new form of use, that of testing a program which performs diagnostic reasoning. They present new aspects on the problem of time in process control, showing the importance of considering the time scales of dynamic tasks, both in individual decision making and in distributed decision making, and in providing new formalisms, both for the representation of time and for reasoning involving time in diagnosis. (AB)

  7. Traffic flow dynamics data, models and simulation

    CERN Document Server

    Treiber, Martin

    2013-01-01

    This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on ...

  8. Modelling and Simulation for Major Incidents

    Directory of Open Access Journals (Sweden)

    Eleonora Pacciani

    2015-11-01

    Full Text Available In recent years, there has been a rise in Major Incidents with big impact on the citizens health and the society. Without the possibility of conducting live experiments when it comes to physical and/or toxic trauma, only an accurate in silico reconstruction allows us to identify organizational solutions with the best possible chance of success, in correlation with the limitations on available resources (e.g. medical team, first responders, treatments, transports, and hospitals availability and with the variability of the characteristic of event (e.g. type of incident, severity of the event and type of lesions. Utilizing modelling and simulation techniques, a simplified mathematical model of physiological evolution for patients involved in physical and toxic trauma incident scenarios has been developed and implemented. The model formalizes the dynamics, operating standards and practices of medical response and the main emergency service in the chain of emergency management during a Major Incident.

  9. Heinrich events modeled in transient glacial simulations

    Science.gov (United States)

    Ziemen, Florian; Kapsch, Marie; Mikolajewicz, Uwe

    2017-04-01

    Heinrich events are among the most prominent events of climate variability recorded in proxies across the northern hemisphere. They are the archetype of ice sheet — climate interactions on millennial time scales. Nevertheless, the exact mechanisms that cause Heinrich events are still under debate, and their climatic consequences are far from being fully understood. We address open questions by studying Heinrich events in a coupled ice sheet model (ISM) atmosphere-ocean-vegetation general circulation model (AOVGCM) framework, where this variability occurs as part of the model generated internal variability. The framework consists of a northern hemisphere setup of the modified Parallel Ice Sheet Model (mPISM) coupled to the global AOVGCM ECHAM5/MPIOM/LPJ. The simulations were performed fully coupled and with transient orbital and greenhouse gas forcing. They span from several millennia before the last glacial maximum into the deglaciation. To make these long simulations feasible, the atmosphere is accelerated by a factor of 10 relative to the other model components using a periodical-synchronous coupling technique. To disentangle effects of the Heinrich events and the deglaciation, we focus on the events occurring before the deglaciation. The modeled Heinrich events show a peak ice discharge of about 0.05 Sv and raise the sea level by 2.3 m on average. The resulting surface water freshening reduces the Atlantic meridional overturning circulation and ocean heat release. The reduction in ocean heat release causes a sub-surface warming and decreases the air temperature and precipitation regionally and downstream into Eurasia. The surface elevation decrease of the ice sheet enhances moisture transport onto the ice sheet and thus increases precipitation over the Hudson Bay area, thereby accelerating the recovery after an event.

  10. The spruce budworm and forest: a qualitative comparison of ODE and Boolean models

    Directory of Open Access Journals (Sweden)

    Raina Robeva

    2016-01-01

    Full Text Available Boolean and polynomial models of biological systems have emerged recently as viable companions to differential equations models. It is not immediately clear however whether such models are capable of capturing the multi-stable behaviour of certain biological systems: this behaviour is often sensitive to changes in the values of the model parameters, while Boolean and polynomial models are qualitative in nature. In the past few years, Boolean models of gene regulatory systems have been shown to capture multi-stability at the molecular level, confirming that such models can be used to obtain information about the system’s qualitative dynamics when precise information regarding its parameters may not be available. In this paper, we examine Boolean approximations of a classical ODE model of budworm outbreaks in a forest and show that these models exhibit a qualitative behaviour consistent with that derived from the ODE models. In particular, we demonstrate that these models can capture the bistable nature of insect population outbreaks, thus showing that Boolean models can be successfully utilized beyond the molecular level.

  11. Simulation Model of Mobile Detection Systems

    International Nuclear Information System (INIS)

    Edmunds, T.; Faissol, D.; Yao, Y.

    2009-01-01

    In this paper, we consider a mobile source that we attempt to detect with man-portable, vehicle-mounted or boat-mounted radiation detectors. The source is assumed to transit an area populated with these mobile detectors, and the objective is to detect the source before it reaches a perimeter. We describe a simulation model developed to estimate the probability that one of the mobile detectors will come in to close proximity of the moving source and detect it. We illustrate with a maritime simulation example. Our simulation takes place in a 10 km by 5 km rectangular bay patrolled by boats equipped with 2-inch x 4-inch x 16-inch NaI detectors. Boats to be inspected enter the bay and randomly proceed to one of seven harbors on the shore. A source-bearing boat enters the mouth of the bay and proceeds to a pier on the opposite side. We wish to determine the probability that the source is detected and its range from target when detected. Patrol boats select the nearest in-bound boat for inspection and initiate an intercept course. Once within an operational range for the detection system, a detection algorithm is started. If the patrol boat confirms the source is not present, it selects the next nearest boat for inspection. Each run of the simulation ends either when a patrol successfully detects a source or when the source reaches its target. Several statistical detection algorithms have been implemented in the simulation model. First, a simple k-sigma algorithm, which alarms with the counts in a time window exceeds the mean background plus k times the standard deviation of background, is available to the user. The time window used is optimized with respect to the signal-to-background ratio for that range and relative speed. Second, a sequential probability ratio test [Wald 1947] is available, and configured in this simulation with a target false positive probability of 0.001 and false negative probability of 0.1. This test is utilized when the mobile detector maintains

  12. Unicriterion Model: A Qualitative Decision Making Method That Promotes Ethics

    Directory of Open Access Journals (Sweden)

    Fernando Guilherme Silvano Lobo Pimentel

    2011-06-01

    Full Text Available Management decision making methods frequently adopt quantitativemodels of several criteria that bypass the question of whysome criteria are considered more important than others, whichmakes more difficult the task of delivering a transparent viewof preference structure priorities that might promote ethics andlearning and serve as a basis for future decisions. To tackle thisparticular shortcoming of usual methods, an alternative qualitativemethodology of aggregating preferences based on the rankingof criteria is proposed. Such an approach delivers a simpleand transparent model for the solution of each preference conflictfaced during the management decision making process. Themethod proceeds by breaking the decision problem into ‘two criteria– two alternatives’ scenarios, and translating the problem ofchoice between alternatives to a problem of choice between criteriawhenever appropriate. The unicriterion model method is illustratedby its application in a car purchase and a house purchasedecision problem.

  13. Simulation of arc models with the block modelling method

    NARCIS (Netherlands)

    Thomas, R.; Lahaye, D.J.P.; Vuik, C.; Van der Sluis, L.

    2015-01-01

    Simulation of current interruption is currently performed with non-ideal switching devices for large power systems. Nevertheless, for small networks, non-ideal switching devices can be substituted by arc models. However, this substitution has a negative impact on the computation time. At the same

  14. Modeling lignin polymerization. Part 1: simulation model of dehydrogenation polymers.

    NARCIS (Netherlands)

    F.R.D. van Parijs (Frederik); K. Morreel; J. Ralph; W. Boerjan; R.M.H. Merks (Roeland)

    2010-01-01

    htmlabstractLignin is a heteropolymer that is thought to form in the cell wall by combinatorial radical coupling of monolignols. Here, we present a simulation model of in vitro lignin polymerization, based on the combinatorial coupling theory, which allows us to predict the reaction conditions

  15. Hybrid Reynolds-Averaged/Large Eddy Simulation of the Flow in a Model SCRamjet Cavity Flameholder

    Science.gov (United States)

    Baurle, R. A.

    2016-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. Experimental data available for this configuration include velocity statistics obtained from particle image velocimetry. Several turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged/large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This e ort was undertaken to not only assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community, but to also begin to understand how this capability can best be used to augment standard Reynolds-averaged simulations. The numerical errors were quantified for the steady-state simulations, and at least qualitatively assessed for the scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results displayed a high degree of variability when comparing the flameholder fuel distributions obtained from each turbulence model. This prompted the consideration of applying the higher-fidelity scale-resolving simulations as a surrogate "truth" model to calibrate the Reynolds-averaged closures in a non-reacting setting prior to their use for the combusting simulations. In general, the Reynolds-averaged velocity profile predictions at the lowest fueling level matched the particle imaging measurements almost as well as was observed for the non-reacting condition. However, the velocity field predictions proved to be more sensitive to the flameholder fueling rate than was indicated in the measurements.

  16. An Agent-Based Monetary Production Simulation Model

    DEFF Research Database (Denmark)

    Bruun, Charlotte

    2006-01-01

    An Agent-Based Simulation Model Programmed in Objective Borland Pascal. Program and source code is downloadable......An Agent-Based Simulation Model Programmed in Objective Borland Pascal. Program and source code is downloadable...

  17. Software to Enable Modeling & Simulation as a Service

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a Modeling and Simulation as a Service (M&SaaS) software service infrastructure to enable most modeling and simulation (M&S) activities to be...

  18. Modelling and simulation of railway cable systems

    Energy Technology Data Exchange (ETDEWEB)

    Teichelmann, G.; Schaub, M.; Simeon, B. [Technische Univ. Muenchen, Garching (Germany). Zentrum Mathematik M2

    2005-12-15

    Mathematical models and numerical methods for the computation of both static equilibria and dynamic oscillations of railroad catenaries are derived and analyzed. These cable systems form a complex network of string and beam elements and lead to coupled partial differential equations in space and time where constraints and corresponding Lagrange multipliers express the interaction between carrier, contact wire, and pantograph head. For computing static equilibria, three different algorithms are presented and compared, while the dynamic case is treated by a finite element method in space, combined with stabilized time integration of the resulting differential algebraic system. Simulation examples based on reference data from industry illustrate the potential of such computational tools. (orig.)

  19. Petroleum reservoir data for testing simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, J.M.; Harrison, W.

    1980-09-01

    This report consists of reservoir pressure and production data for 25 petroleum reservoirs. Included are 5 data sets for single-phase (liquid) reservoirs, 1 data set for a single-phase (liquid) reservoir with pressure maintenance, 13 data sets for two-phase (liquid/gas) reservoirs and 6 for two-phase reservoirs with pressure maintenance. Also given are ancillary data for each reservoir that could be of value in the development and validation of simulation models. A bibliography is included that lists the publications from which the data were obtained.

  20. A qualitative analysis of bus simulator training on transit incidents : a case study in Florida.

    Science.gov (United States)

    2013-06-01

    The purpose of this research was to track and observe three Florida public transit agencies as they incorporated and integrated computer-based transit bus simulators into their existing bus operator training programs. In addition to the three Florida...

  1. Simulation model for port shunting yards

    Science.gov (United States)

    Rusca, A.; Popa, M.; Rosca, E.; Rosca, M.; Dragu, V.; Rusca, F.

    2016-08-01

    Sea ports are important nodes in the supply chain, joining two high capacity transport modes: rail and maritime transport. The huge cargo flows transiting port requires high capacity construction and installation such as berths, large capacity cranes, respectively shunting yards. However, the port shunting yards specificity raises several problems such as: limited access since these are terminus stations for rail network, the in-output of large transit flows of cargo relatively to the scarcity of the departure/arrival of a ship, as well as limited land availability for implementing solutions to serve these flows. It is necessary to identify technological solutions that lead to an answer to these problems. The paper proposed a simulation model developed with ARENA computer simulation software suitable for shunting yards which serve sea ports with access to the rail network. Are investigates the principal aspects of shunting yards and adequate measures to increase their transit capacity. The operation capacity for shunting yards sub-system is assessed taking in consideration the required operating standards and the measure of performance (e.g. waiting time for freight wagons, number of railway line in station, storage area, etc.) of the railway station are computed. The conclusion and results, drawn from simulation, help transports and logistics specialists to test the proposals for improving the port management.

  2. Modeling VOC transport in simulated waste drums

    International Nuclear Information System (INIS)

    Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.

    1993-06-01

    A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the VOC permeability had been measured. Permeabilities for five VOCs [methylene chloride, 1,1,2-trichloro-1,2,2-trifluoroethane (Freon-113), 1,1,1-trichloroethane, carbon tetrachloride, and trichloroethylene] were measured across a polyethylene bag. Comparison of model and experimental results of VOC concentration as a function of time indicate that model accurately accounts for significant VOC transport mechanisms in a lab-scale waste drum

  3. 3D Core Model for simulation of nuclear power plants: Simulation requirements, model features, and validation

    International Nuclear Information System (INIS)

    Zerbino, H.

    1999-01-01

    In 1994-1996, Thomson Training and Simulation (TT and S) earned out the D50 Project, which involved the design and construction of optimized replica simulators for one Dutch and three German Nuclear Power Plants. It was recognized early on that the faithful reproduction of the Siemens reactor control and protection systems would impose extremely stringent demands on the simulation models, particularly the Core physics and the RCS thermohydraulics. The quality of the models, and their thorough validation, were thus essential. The present paper describes the main features of the fully 3D Core model implemented by TT and S, and its extensive validation campaign, which was defined in extremely positive collaboration with the Customer and the Core Data suppliers. (author)

  4. Student and educator experiences of maternal-child simulation-based learning: a systematic review of qualitative evidence protocol.

    Science.gov (United States)

    MacKinnon, Karen; Marcellus, Lenora; Rivers, Julie; Gordon, Carol; Ryan, Maureen; Butcher, Diane

    2015-01-01

    , enhancing nurses' abilities to build upon previous knowledge and past experiences, and manage new or unfamiliar situations.Simulation has previously been integrated into nursing curricula in a "piecemeal" fashion that lacks an integrative pedagogy or theoretical approach. More recently a number of theoretical and pedagogical frameworks and best practice standards have been published. In April 2014 a preliminary search of literature (in CINAHL, Medline, Academic Search Complete and Web of Science) was conducted with guidance from our library specialist to test the search strategy and ensure that there would be enough qualitative findings to include in the systematic review. A preliminary scan of the abstracts from these searches demonstrated that many experiential case reports with qualitative findings were missed with the use of research limiters (including our search strategy specifically constructed to retrieve qualitative research) so the decision was made to err on the side of caution by searching more broadly and review a larger number of abstracts for inclusion in the study. However, a number of reports with qualitative findings were identified. For example, from a review of the abstracts from a CINAHL search dated April 17, qualitative research papers (including two dissertations), 12 evaluation study reports, six mixed methods studies and nine case reports with qualitative findings were identified. It is timely then to review qualitative studies to better understand the meaningfulness and appropriateness of integrating maternal-child simulation-based learning activities in undergraduate nursing education programs.A search of both the Cochrane Library of Systematic Reviews and the Joanna Briggs Institute Database of Systematic Reviews and Implementation Reports has been conducted. No systematic reviews of qualitative studies of maternal-child simulation-based learning for undergraduate or pre-registration nursing students in educational settings are evident in the

  5. Qualitatively Modeling solute fate and transport across scales in an agricultural catchment with diverse lithology

    Science.gov (United States)

    Wayman, C. R.; Russo, T. A.; Li, L.; Forsythe, B.; Hoagland, B.

    2017-12-01

    As part of the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) project, we have collected geochemical and hydrological data from several subcatchments and four monitoring sites on the main stem of Shaver's Creek, in Huntingon county, Pennsylvania. One subcatchment (0.43 km2) is under agricultural land use, and the monitoring locations on the larger Shaver's Creek (up to 163 km2) drain watersheds with 0 to 25% agricultural area. These two scales of investigation, coupled with advances made across the SSHCZO on multiple lithologies allow us to extrapolate from the subcatchment to the larger watershed. We use geochemical surface and groundwater data to estimate the solute and water transport regimes within the catchment, and to show how lithology and land use are major controls on ground and surface water quality. One area of investigation includes the transport of nutrients between interflow and regional groundwater, and how that connectivity may be reflected in local surface waters. Water and nutrient (Nitrogen) isotopes, will be used to better understand the relative contributions of local and regional groundwater and interflow fluxes into nearby streams. Following initial qualitative modeling, multiple hydrologic and nutrient transport models (e.g. SWAT and CYCLES/PIHM) will be evaluated from the subcatchment to large watershed scales. We will evaluate the ability to simulate the contributions of regional groundwater versus local groundwater, and also impacts of agricultural land management on surface water quality. Improving estimations of groundwater contributions to stream discharge will provide insight into how much agricultural development can impact stream quality and nutrient loading.

  6. Molecular models and simulations of layered materials

    International Nuclear Information System (INIS)

    Kalinichev, Andrey G.; Cygan, Randall Timothy; Heinz, Hendrik; Greathouse, Jeffery A.

    2008-01-01

    The micro- to nano-sized nature of layered materials, particularly characteristic of naturally occurring clay minerals, limits our ability to fully interrogate their atomic dispositions and crystal structures. The low symmetry, multicomponent compositions, defects, and disorder phenomena of clays and related phases necessitate the use of molecular models and modern simulation methods. Computational chemistry tools based on classical force fields and quantum-chemical methods of electronic structure calculations provide a practical approach to evaluate structure and dynamics of the materials on an atomic scale. Combined with classical energy minimization, molecular dynamics, and Monte Carlo techniques, quantum methods provide accurate models of layered materials such as clay minerals, layered double hydroxides, and clay-polymer nanocomposites

  7. VISION: Verifiable Fuel Cycle Simulation Model

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

    2009-04-01

    The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiative’s systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

  8. Modeling and visual simulation of Microalgae photobioreactor

    Science.gov (United States)

    Zhao, Ming; Hou, Dapeng; Hu, Dawei

    Microalgae is a kind of nutritious and high photosynthetic efficiency autotrophic plant, which is widely distributed in the land and the sea. It can be extensively used in medicine, food, aerospace, biotechnology, environmental protection and other fields. Photobioreactor which is important equipment is mainly used to cultivate massive and high-density microalgae. In this paper, based on the mathematical model of microalgae which grew under different light intensity, three-dimensional visualization model was built and implemented in 3ds max, Virtools and some other three dimensional software. Microalgae is photosynthetic organism, it can efficiently produce oxygen and absorb carbon dioxide. The goal of the visual simulation is to display its change and impacting on oxygen and carbon dioxide intuitively. In this paper, different temperatures and light intensities were selected to control the photobioreactor, and dynamic change of microalgal biomass, Oxygen and carbon dioxide was observed with the aim of providing visualization support for microalgal and photobioreactor research.

  9. A rainfall simulation model for agricultural development in Bangladesh

    Directory of Open Access Journals (Sweden)

    M. Sayedur Rahman

    2000-01-01

    Full Text Available A rainfall simulation model based on a first-order Markov chain has been developed to simulate the annual variation in rainfall amount that is observed in Bangladesh. The model has been tested in the Barind Tract of Bangladesh. Few significant differences were found between the actual and simulated seasonal, annual and average monthly. The distribution of number of success is asymptotic normal distribution. When actual and simulated daily rainfall data were used to drive a crop simulation model, there was no significant difference of rice yield response. The results suggest that the rainfall simulation model perform adequately for many applications.

  10. Modeling lift operations with SASmacr Simulation Studio

    Science.gov (United States)

    Kar, Leow Soo

    2016-10-01

    Lifts or elevators are an essential part of multistorey buildings which provide vertical transportation for its occupants. In large and high-rise apartment buildings, its occupants are permanent, while in buildings, like hospitals or office blocks, the occupants are temporary or users of the buildings. They come in to work or to visit, and thus, the population of such buildings are much higher than those in residential apartments. It is common these days that large office blocks or hospitals have at least 8 to 10 lifts serving its population. In order to optimize the level of service performance, different transportation schemes are devised to control the lift operations. For example, one lift may be assigned to solely service the even floors and another solely for the odd floors, etc. In this paper, a basic lift system is modelled using SAS Simulation Studio to study the effect of factors such as the number of floors, capacity of the lift car, arrival rate and exit rate of passengers at each floor, peak and off peak periods on the system performance. The simulation is applied to a real lift operation in Sunway College's North Building to validate the model.

  11. Plasma simulation studies using multilevel physics models

    International Nuclear Information System (INIS)

    Park, W.; Belova, E.V.; Fu, G.Y.

    2000-01-01

    The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of delta f particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future

  12. Plasma simulation studies using multilevel physics models

    Energy Technology Data Exchange (ETDEWEB)

    Park, W.; Belova, E.V.; Fu, G.Y. [and others

    2000-01-19

    The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of delta f particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future.

  13. Simulating carbon exchange using a regional atmospheric model coupled to an advanced land-surface model

    Directory of Open Access Journals (Sweden)

    H. W. Ter Maat

    2010-08-01

    Full Text Available This paper is a case study to investigate what the main controlling factors are that determine atmospheric carbon dioxide content for a region in the centre of The Netherlands. We use the Regional Atmospheric Modelling System (RAMS, coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C, and including also submodels for urban and marine fluxes, which in principle should include the dominant mechanisms and should be able to capture the relevant dynamics of the system. To validate the model, observations are used that were taken during an intensive observational campaign in central Netherlands in summer 2002. These include flux-tower observations and aircraft observations of vertical profiles and spatial fluxes of various variables.

    The simulations performed with the coupled regional model (RAMS-SWAPS-C are in good qualitative agreement with the observations. The station validation of the model demonstrates that the incoming shortwave radiation and surface fluxes of water and CO2 are well simulated. The comparison against aircraft data shows that the regional meteorology (i.e. wind, temperature is captured well by the model. Comparing spatially explicitly simulated fluxes with aircraft observed fluxes we conclude that in general latent heat fluxes are underestimated by the model compared to the observations but that the latter exhibit large variability within all flights. Sensitivity experiments demonstrate the relevance of the urban emissions of carbon dioxide for the carbon balance in this particular region. The same tests also show the relation between uncertainties in surface fluxes and those in atmospheric concentrations.

  14. Modeling and numerical simulations of the influenced Sznajd model

    Science.gov (United States)

    Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep

    2017-08-01

    This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.

  15. Atmospheric Model Evaluation Tool for meteorological and air quality simulations

    Science.gov (United States)

    The Atmospheric Model Evaluation Tool compares model predictions to observed data from various meteorological and air quality observation networks to help evaluate meteorological and air quality simulations.

  16. Comparison of performance of simulation models for floor heating

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Svendsen, Svend

    2005-01-01

    This paper describes the comparison of performance of simulation models for floor heating with different level of detail in the modelling process. The models are compared in an otherwise identical simulation model containing room model, walls, windows, ceiling and ventilation system. By exchanging...

  17. Qualitative Assessment of a 3D Simulation Program: Faculty, Students, and Bio-Organic Reaction Animations

    Science.gov (United States)

    Günersel, Adalet B.; Fleming, Steven A.

    2013-01-01

    Research shows that computer-based simulations and animations are especially helpful in fields such as chemistry where concepts are abstract and cannot be directly observed. Bio-Organic Reaction Animations (BioORA) is a freely available 3D visualization software program developed to help students understand the chemistry of biomolecular events.…

  18. Estimating qualitative parameters for assessment of body balance and arm function in a simulated ambulatory setting

    NARCIS (Netherlands)

    van Meulen, Fokke; Reenalda, Jasper; Veltink, Petrus H.

    2013-01-01

    Continuous daily-life monitoring of balance control and arm function of stroke survivors in an ambulatory setting, is essential for optimal guidance of rehabilitation. In a simulated ambulatory setting, balance and arm function of seven stroke subjects is evaluated using on-body measurement systems

  19. A Qualitative Study of Parental Modeling and Social Support for Physical Activity in Underserved Adolescents

    Science.gov (United States)

    Wright, Marcie S.; Wilson, Dawn K.; Griffin, Sarah; Evans, Alexandra

    2010-01-01

    This study obtained qualitative data to assess how parental role modeling and parental social support influence physical activity in underserved (minority, low-income) adolescents. Fifty-two adolescents (22 males, 30 females; ages 10-14 years, 85% African-American) participated in a focus group (6-10 per group, same gender). Focus groups were…

  20. Disease management projects and the Chronic CareModel in action: Baseline qualitative research

    NARCIS (Netherlands)

    B.J. Hipple Walters (Bethany); S.A. Adams (Samantha); A.P. Nieboer (Anna); R.A. Bal (Roland)

    2012-01-01

    textabstractBackground: Disease management programs, especially those based on the Chronic Care Model (CCM),are increasingly common in the Netherlands. While disease management programs have beenwell-researched quantitatively and economically, less qualitative research has been done. Theoverall aim

  1. Measurements of boat motion in waves at Durban harbour for qualitative validation of motion model

    CSIR Research Space (South Africa)

    Mosikare, OR

    2010-09-01

    Full Text Available in Waves at Durban Harbour for Qualitative Validation of Motion Model O.R. Mosikare1,2, N.J. Theron1, W. Van der Molen 1 University of Pretoria, South Africa, 0001 2Council for Scientific and Industrial Research, Meiring Naude Rd, Brummeria, 0001...

  2. Teaching Qualitative Research for Human Services Students: A Three-Phase Model

    Science.gov (United States)

    Goussinsky, Ruhama; Reshef, Arie; Yanay-Ventura, Galit; Yassour-Borochowitz, Dalit

    2011-01-01

    Qualitative research is an inherent part of the human services profession, since it emphasizes the great and multifaceted complexity characterizing human experience and the sociocultural context in which humans act. In the department of human services at Emek Yezreel College, Israel, we have developed a three-phase model to ensure a relatively…

  3. Simplified Qualitative Discrete Numerical Model to Determine Cracking Pattern in Brittle Materials by Means of Finite Element Method

    Directory of Open Access Journals (Sweden)

    J. Ochoa-Avendaño

    2017-01-01

    Full Text Available This paper presents the formulation, implementation, and validation of a simplified qualitative model to determine the crack path of solids considering static loads, infinitesimal strain, and plane stress condition. This model is based on finite element method with a special meshing technique, where nonlinear link elements are included between the faces of the linear triangular elements. The stiffness loss of some link elements represents the crack opening. Three experimental tests of bending beams are simulated, where the cracking pattern calculated with the proposed numerical model is similar to experimental result. The advantages of the proposed model compared to discrete crack approaches with interface elements can be the implementation simplicity, the numerical stability, and the very low computational cost. The simulation with greater values of the initial stiffness of the link elements does not affect the discontinuity path and the stability of the numerical solution. The exploded mesh procedure presented in this model avoids a complex nonlinear analysis and regenerative or adaptive meshes.

  4. Tecnomatix Plant Simulation modeling and programming by means of examples

    CERN Document Server

    Bangsow, Steffen

    2015-01-01

    This book systematically introduces the development of simulation models as well as the implementation and evaluation of simulation experiments with Tecnomatix Plant Simulation. It deals with all users of Plant Simulation, who have more complex tasks to handle. It also looks for an easy entry into the program. Particular attention has been paid to introduce the simulation flow language SimTalk and its use in various areas of the simulation. The author demonstrates with over 200 examples how to combine the blocks for simulation models and how to deal with SimTalk for complex control and analys

  5. Nonlinear distortion in wireless systems modeling and simulation with Matlab

    CERN Document Server

    Gharaibeh, Khaled M

    2011-01-01

    This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems

  6. Modeling human response errors in synthetic flight simulator domain

    Science.gov (United States)

    Ntuen, Celestine A.

    1992-01-01

    This paper presents a control theoretic approach to modeling human response errors (HRE) in the flight simulation domain. The human pilot is modeled as a supervisor of a highly automated system. The synthesis uses the theory of optimal control pilot modeling for integrating the pilot's observation error and the error due to the simulation model (experimental error). Methods for solving the HRE problem are suggested. Experimental verification of the models will be tested in a flight quality handling simulation.

  7. Multiple Time Series Ising Model for Financial Market Simulations

    International Nuclear Information System (INIS)

    Takaishi, Tetsuya

    2015-01-01

    In this paper we propose an Ising model which simulates multiple financial time series. Our model introduces the interaction which couples to spins of other systems. Simulations from our model show that time series exhibit the volatility clustering that is often observed in the real financial markets. Furthermore we also find non-zero cross correlations between the volatilities from our model. Thus our model can simulate stock markets where volatilities of stocks are mutually correlated

  8. Modeling and Simulation Techniques for Large-Scale Communications Modeling

    National Research Council Canada - National Science Library

    Webb, Steve

    1997-01-01

    .... Tests of random number generators were also developed and applied to CECOM models. It was found that synchronization of random number strings in simulations is easy to implement and can provide significant savings for making comparative studies. If synchronization is in place, then statistical experiment design can be used to provide information on the sensitivity of the output to input parameters. The report concludes with recommendations and an implementation plan.

  9. Simple models for the simulation of submarine melt for a Greenland glacial system model

    Science.gov (United States)

    Beckmann, Johanna; Perrette, Mahé; Ganopolski, Andrey

    2018-01-01

    Two hundred marine-terminating Greenland outlet glaciers deliver more than half of the annually accumulated ice into the ocean and have played an important role in the Greenland ice sheet mass loss observed since the mid-1990s. Submarine melt may play a crucial role in the mass balance and position of the grounding line of these outlet glaciers. As the ocean warms, it is expected that submarine melt will increase, potentially driving outlet glaciers retreat and contributing to sea level rise. Projections of the future contribution of outlet glaciers to sea level rise are hampered by the necessity to use models with extremely high resolution of the order of a few hundred meters. That requirement in not only demanded when modeling outlet glaciers as a stand alone model but also when coupling them with high-resolution 3-D ocean models. In addition, fjord bathymetry data are mostly missing or inaccurate (errors of several hundreds of meters), which questions the benefit of using computationally expensive 3-D models for future predictions. Here we propose an alternative approach built on the use of a computationally efficient simple model of submarine melt based on turbulent plume theory. We show that such a simple model is in reasonable agreement with several available modeling studies. We performed a suite of experiments to analyze sensitivity of these simple models to model parameters and climate characteristics. We found that the computationally cheap plume model demonstrates qualitatively similar behavior as 3-D general circulation models. To match results of the 3-D models in a quantitative manner, a scaling factor of the order of 1 is needed for the plume models. We applied this approach to model submarine melt for six representative Greenland glaciers and found that the application of a line plume can produce submarine melt compatible with observational data. Our results show that the line plume model is more appropriate than the cone plume model for simulating

  10. Modelling and Simulation of Search Engine

    Science.gov (United States)

    Nasution, Mahyuddin K. M.

    2017-01-01

    The best tool currently used to access information is a search engine. Meanwhile, the information space has its own behaviour. Systematically, an information space needs to be familiarized with mathematics so easily we identify the characteristics associated with it. This paper reveal some characteristics of search engine based on a model of document collection, which are then estimated the impact on the feasibility of information. We reveal some of characteristics of search engine on the lemma and theorem about singleton and doubleton, then computes statistically characteristic as simulating the possibility of using search engine. In this case, Google and Yahoo. There are differences in the behaviour of both search engines, although in theory based on the concept of documents collection.

  11. Monte Carlo simulation of Markov unreliability models

    International Nuclear Information System (INIS)

    Lewis, E.E.; Boehm, F.

    1984-01-01

    A Monte Carlo method is formulated for the evaluation of the unrealibility of complex systems with known component failure and repair rates. The formulation is in terms of a Markov process allowing dependences between components to be modeled and computational efficiencies to be achieved in the Monte Carlo simulation. Two variance reduction techniques, forced transition and failure biasing, are employed to increase computational efficiency of the random walk procedure. For an example problem these result in improved computational efficiency by more than three orders of magnitudes over analog Monte Carlo. The method is generalized to treat problems with distributed failure and repair rate data, and a batching technique is introduced and shown to result in substantial increases in computational efficiency for an example problem. A method for separating the variance due to the data uncertainty from that due to the finite number of random walks is presented. (orig.)

  12. Modeling and simulation technology readiness levels.

    Energy Technology Data Exchange (ETDEWEB)

    Clay, Robert L.; Shneider, Max S.; Marburger, S. J.; Trucano, Timothy Guy

    2006-01-01

    This report summarizes the results of an effort to establish a framework for assigning and communicating technology readiness levels (TRLs) for the modeling and simulation (ModSim) capabilities at Sandia National Laboratories. This effort was undertaken as a special assignment for the Weapon Simulation and Computing (WSC) program office led by Art Hale, and lasted from January to September 2006. This report summarizes the results, conclusions, and recommendations, and is intended to help guide the program office in their decisions about the future direction of this work. The work was broken out into several distinct phases, starting with establishing the scope and definition of the assignment. These are characterized in a set of key assertions provided in the body of this report. Fundamentally, the assignment involved establishing an intellectual framework for TRL assignments to Sandia's modeling and simulation capabilities, including the development and testing of a process to conduct the assignments. To that end, we proposed a methodology for both assigning and understanding the TRLs, and outlined some of the restrictions that need to be placed on this process and the expected use of the result. One of the first assumptions we overturned was the notion of a ''static'' TRL--rather we concluded that problem context was essential in any TRL assignment, and that leads to dynamic results (i.e., a ModSim tool's readiness level depends on how it is used, and by whom). While we leveraged the classic TRL results from NASA, DoD, and Sandia's NW program, we came up with a substantially revised version of the TRL definitions, maintaining consistency with the classic level definitions and the Predictive Capability Maturity Model (PCMM) approach. In fact, we substantially leveraged the foundation the PCMM team provided, and augmented that as needed. Given the modeling and simulation TRL definitions and our proposed assignment methodology, we

  13. Computational Modeling and Simulation of Developmental ...

    Science.gov (United States)

    Standard practice for assessing developmental toxicity is the observation of apical endpoints (intrauterine death, fetal growth retardation, structural malformations) in pregnant rats/rabbits following exposure during organogenesis. EPA’s computational toxicology research program (ToxCast) generated vast in vitro cellular and molecular effects data on >1858 chemicals in >600 high-throughput screening (HTS) assays. The diversity of assays has been increased for developmental toxicity with several HTS platforms, including the devTOX-quickPredict assay from Stemina Biomarker Discovery utilizing the human embryonic stem cell line (H9). Translating these HTS data into higher order-predictions of developmental toxicity is a significant challenge. Here, we address the application of computational systems models that recapitulate the kinematics of dynamical cell signaling networks (e.g., SHH, FGF, BMP, retinoids) in a CompuCell3D.org modeling environment. Examples include angiogenesis (angiodysplasia) and dysmorphogenesis. Being numerically responsive to perturbation, these models are amenable to data integration for systems Toxicology and Adverse Outcome Pathways (AOPs). The AOP simulation outputs predict potential phenotypes based on the in vitro HTS data ToxCast. A heuristic computational intelligence framework that recapitulates the kinematics of dynamical cell signaling networks in the embryo, together with the in vitro profiling data, produce quantitative predic

  14. Using Computational Simulations to Confront Students' Mental Models

    Science.gov (United States)

    Rodrigues, R.; Carvalho, P. Simeão

    2014-01-01

    In this paper we show an example of how to use a computational simulation to obtain visual feedback for students' mental models, and compare their predictions with the simulated system's behaviour. Additionally, we use the computational simulation to incrementally modify the students' mental models in order to accommodate new data,…

  15. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    Science.gov (United States)

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  16. Qualitative and quantitative analyses of the echolocation strategies of bats on the basis of mathematical modelling and laboratory experiments.

    Science.gov (United States)

    Aihara, Ikkyu; Fujioka, Emyo; Hiryu, Shizuko

    2013-01-01

    Prey pursuit by an echolocating bat was studied theoretically and experimentally. First, a mathematical model was proposed to describe the flight dynamics of a bat and a single prey. In this model, the flight angle of the bat was affected by [Formula: see text] angles related to the flight path of the single moving prey, that is, the angle from the bat to the prey and the flight angle of the prey. Numerical simulation showed that the success rate of prey capture was high, when the bat mainly used the angle to the prey to minimize the distance to the prey, and also used the flight angle of the prey to minimize the difference in flight directions of itself and the prey. Second, parameters in the model were estimated according to experimental data obtained from video recordings taken while a Japanese horseshoe bat (Rhinolphus derrumequinum nippon) pursued a moving moth (Goniocraspidum pryeri) in a flight chamber. One of the estimated parameter values, which represents the ratio in the use of the [Formula: see text] angles, was consistent with the optimal value of the numerical simulation. This agreement between the numerical simulation and parameter estimation suggests that a bat chooses an effective flight path for successful prey capture by using the [Formula: see text] angles. Finally, the mathematical model was extended to include a bat and [Formula: see text] prey. Parameter estimation of the extended model based on laboratory experiments revealed the existence of bat's dynamical attention towards [Formula: see text] prey, that is, simultaneous pursuit of [Formula: see text] prey and selective pursuit of respective prey. Thus, our mathematical model contributes not only to quantitative analysis of effective foraging, but also to qualitative evaluation of a bat's dynamical flight strategy during multiple prey pursuit.

  17. Qualitative and quantitative analyses of the echolocation strategies of bats on the basis of mathematical modelling and laboratory experiments.

    Directory of Open Access Journals (Sweden)

    Ikkyu Aihara

    Full Text Available Prey pursuit by an echolocating bat was studied theoretically and experimentally. First, a mathematical model was proposed to describe the flight dynamics of a bat and a single prey. In this model, the flight angle of the bat was affected by [Formula: see text] angles related to the flight path of the single moving prey, that is, the angle from the bat to the prey and the flight angle of the prey. Numerical simulation showed that the success rate of prey capture was high, when the bat mainly used the angle to the prey to minimize the distance to the prey, and also used the flight angle of the prey to minimize the difference in flight directions of itself and the prey. Second, parameters in the model were estimated according to experimental data obtained from video recordings taken while a Japanese horseshoe bat (Rhinolphus derrumequinum nippon pursued a moving moth (Goniocraspidum pryeri in a flight chamber. One of the estimated parameter values, which represents the ratio in the use of the [Formula: see text] angles, was consistent with the optimal value of the numerical simulation. This agreement between the numerical simulation and parameter estimation suggests that a bat chooses an effective flight path for successful prey capture by using the [Formula: see text] angles. Finally, the mathematical model was extended to include a bat and [Formula: see text] prey. Parameter estimation of the extended model based on laboratory experiments revealed the existence of bat's dynamical attention towards [Formula: see text] prey, that is, simultaneous pursuit of [Formula: see text] prey and selective pursuit of respective prey. Thus, our mathematical model contributes not only to quantitative analysis of effective foraging, but also to qualitative evaluation of a bat's dynamical flight strategy during multiple prey pursuit.

  18. Use of high-fidelity simulation to improve communication skills regarding death and dying: a qualitative study.

    Science.gov (United States)

    Hawkins, A; Tredgett, K

    2016-12-01

    The objectives of this study were to explore medical students' experiences of communicating with patients and their carers about death and dying, and to assess whether using high-fidelity simulation improved students' confidence in discussing cardiopulmonary resuscitation. This qualitative study was carried out at a hospital in the south of England. Participants were 7 final-year medical students. Tutorials were developed using high-fidelity simulation to teach communication skills regarding discussion of cardiopulmonary resuscitation with patients and carers. Scenarios involved a simulated ward environment, a high-fidelity simulation mannequin and actor playing the role of a carer. Data were collected through joint interviews carried out by one researcher which were audio recorded and transcribed verbatim. The same researcher analysed the data using framework analysis. Students reported a lack of experience observing conversations with patients and carers about death and dying. They also reported a lack of opportunities to interact with dying patients during their training. Barriers reported by students included healthcare professionals' and patients' attitudes. Students reported a lack of confidence and preparedness to have consultations with patients and carers about death, dying and cardiopulmonary resuscitation as junior doctors. They perceived role-play scenarios observed by their peers to be stressful, and this detracted from the learning experience. Students reported that the high-fidelity simulation scenarios were more realistic than low-fidelity ('role-play') scenarios. This improved the learning gained from the sessions and improved confidence among some students. This study has suggested that high-fidelity simulation may be a useful adjunct for undergraduate communication skills training in palliative medicine. Further research is required to assess whether improvements in confidence described by students in this study translate to discernible

  19. Learning health 'safety' within non-technical skills interprofessional simulation education: a qualitative study.

    Science.gov (United States)

    Gordon, Morris; Fell, Christopher W R; Box, Helen; Farrell, Michael; Stewart, Alison

    2017-01-01

    Healthcare increasingly recognises and focusses on the phenomena of 'safe practice' and 'patient safety.' Success with non-technical skills (NTS) training in other industries has led to widespread transposition to healthcare education, with communication and teamwork skills central to NTS frameworks. This study set out to identify how the context of interprofessional simulation learning influences NTS acquisition and development of 'safety' amongst learners. Participants receiving a non-technical skills (NTS) safety focussed training package were invited to take part in a focus group interview which set out to explore communication, teamwork, and the phenomenon of safety in the context of the learning experiences they had within the training programme. The analysis was aligned with a constructivist paradigm and took an interactive methodological approach. The analysis proceeded through three stages, consisting of open, axial, and selective coding, with constant comparisons taking place throughout each phase. Each stage provided categories that could be used to explore the themes of the data. Additionally, to ensure thematic saturation, transcripts of observed simulated learning encounters were then analysed. Six themes were established at the axial coding level, i.e., analytical skills, personal behaviours, communication, teamwork, context, and pedagogy. Underlying these themes, two principal concepts emerged, namely: intergroup contact anxiety - as both a result of and determinant of communication - and teamwork, both of which must be considered in relation to context. These concepts have subsequently been used to propose a framework for NTS learning. This study highlights the role of intergroup contact anxiety and teamwork as factors in NTS behaviour and its dissipation through interprofessional simulation learning. Therefore, this should be a key consideration in NTS education. Future research is needed to consider the role of the affective non

  20. Using a simulation assistant in modeling manufacturing systems

    Science.gov (United States)

    Schroer, Bernard J.; Tseng, Fan T.; Zhang, S. X.; Wolfsberger, John W.

    1988-01-01

    Numerous simulation languages exist for modeling discrete event processes, and are now ported to microcomputers. Graphic and animation capabilities were added to many of these languages to assist the users build models and evaluate the simulation results. With all these languages and added features, the user is still plagued with learning the simulation language. Futhermore, the time to construct and then to validate the simulation model is always greater than originally anticipated. One approach to minimize the time requirement is to use pre-defined macros that describe various common processes or operations in a system. The development of a simulation assistant for modeling discrete event manufacturing processes is presented. A simulation assistant is defined as an interactive intelligent software tool that assists the modeler in writing a simulation program by translating the modeler's symbolic description of the problem and then automatically generating the corresponding simulation code. The simulation assistant is discussed with emphasis on an overview of the simulation assistant, the elements of the assistant, and the five manufacturing simulation generators. A typical manufacturing system will be modeled using the simulation assistant and the advantages and disadvantages discussed.

  1. Development of a Generic Didactic Model for Simulator Training

    National Research Council Canada - National Science Library

    Emmerik, M

    1997-01-01

    .... The development of such a model is motivated by the need to control training and instruction factors in research on simulator fidelity, the need to assess the benefit of training simulators, e.g...

  2. Modeling and Simulation in Healthcare Future Directions

    Science.gov (United States)

    2010-07-13

    information all have equal “weight” in the information world Computers Internet Simulation The Future Distribute & communicate Predict, plan & train...Acquire & analyze Third Leg of the Information Age Satava 2 Feb 1999 Simulation Computers Acquire Analyze Simulation Predict, Train Internet Communicate...Serendipity Inspiration FURTHER PROOF: Current evidence is inadequate for Event horizons Cognition Genome Quantum mechanics Memes Etc New

  3. Four Models of In Situ Simulation

    DEFF Research Database (Denmark)

    Musaeus, Peter; Krogh, Kristian; Paltved, Charlotte

    2014-01-01

    Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest that there are f...... to team intervention and philosophies informing what good situated learning research is. This study generates system knowledge that might inform scenario development for in situ simulation.......Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest...... that there are four fruitful approaches to in situ simulation: (1) In situ simulation informed by reported critical incidents and adverse events from emergency departments (ED) in which team training is about to be conducted to write scenarios. (2) In situ simulation through ethnographic studies at the ED. (3) Using...

  4. Working as simulated patient has effects on real patient life – Preliminary insights from a qualitative study

    Directory of Open Access Journals (Sweden)

    Simmenroth-Nayda, Anne

    2016-05-01

    Full Text Available Background: Persons who simulate patients during medical education understand the routines and the underlying script of medical consultations better. We aimed to explore how simulated patients (SPs integrated this new understanding into their daily life, how this work affected their private life as patients, and what we can learn from these changes for concepts of empowerment.Design, setting, and participants: A qualitative interview study. All SPs of Göttingen medical school who had been working longer than three semesters (n=14 were invited and agreed to take part in an open interview about their daily experience with real doctors. Documentary method was used to identify the main issues. Several cases were chosen according to maximum contrast and analysed by in-depth analysis to provide vivid examples of how simulations may affect the real life of the SPs as patients.Results: Our analysis revealed three main changes in the behaviour of SPs as real patients. They were more attentive, had a better understanding of the circumstances under which doctors work, and acted more self-confidently. From the selected cases it became apparent that working as a SP may lead to a constant and significant decrease of fear of hospitals and medical procedures or, in other cases, may enable the SPs to develop new abilities for giving feedback, questioning procedures, and explanations for real doctors.Conclusion: working as a simulated patient seems to be well-suited to understand own progression of diseases, to increase self-responsibility and to a confident attitude as patient.

  5. A CFBPN Artificial Neural Network Model for Educational Qualitative Data Analyses: Example of Students' Attitudes Based on Kellerts' Typologies

    Science.gov (United States)

    Yorek, Nurettin; Ugulu, Ilker

    2015-01-01

    In this study, artificial neural networks are suggested as a model that can be "trained" to yield qualitative results out of a huge amount of categorical data. It can be said that this is a new approach applied in educational qualitative data analysis. In this direction, a cascade-forward back-propagation neural network (CFBPN) model was…

  6. Modelling toolkit for simulation of maglev devices

    Science.gov (United States)

    Peña-Roche, J.; Badía-Majós, A.

    2017-01-01

    A stand-alone App1 has been developed, focused on obtaining information about relevant engineering properties of magnetic levitation systems. Our modelling toolkit provides real time simulations of 2D magneto-mechanical quantities for superconductor (SC)/permanent magnet structures. The source code is open and may be customised for a variety of configurations. Ultimately, it relies on the variational statement of the critical state model for the superconducting component and has been verified against experimental data for YBaCuO/NdFeB assemblies. On a quantitative basis, the values of the arising forces, induced superconducting currents, as well as a plot of the magnetic field lines are displayed upon selection of an arbitrary trajectory of the magnet in the vicinity of the SC. The stability issues related to the cooling process, as well as the maximum attainable forces for a given material and geometry are immediately observed. Due to the complexity of the problem, a strategy based on cluster computing, database compression, and real-time post-processing on the device has been implemented.

  7. Simulation and Modeling Application in Agricultural Mechanization

    Directory of Open Access Journals (Sweden)

    R. M. Hudzari

    2012-01-01

    Full Text Available This experiment was conducted to determine the equations relating the Hue digital values of the fruits surface of the oil palm with maturity stage of the fruit in plantation. The FFB images were zoomed and captured using Nikon digital camera, and the calculation of Hue was determined using the highest frequency of the value for R, G, and B color components from histogram analysis software. New procedure in monitoring the image pixel value for oil palm fruit color surface in real-time growth maturity was developed. The estimation of day harvesting prediction was calculated based on developed model of relationships for Hue values with mesocarp oil content. The simulation model is regressed and predicts the day of harvesting or a number of days before harvest of FFB. The result from experimenting on mesocarp oil content can be used for real-time oil content determination of MPOB color meter. The graph to determine the day of harvesting the FFB was presented in this research. The oil was found to start developing in mesocarp fruit at 65 days before fruit at ripe maturity stage of 75% oil to dry mesocarp.

  8. COGNITIVE MODELING AS A METHOD OF QUALITATIVE ANALYSIS OF IT PROJECTS

    Directory of Open Access Journals (Sweden)

    Інна Ігорівна ОНИЩЕНКО

    2016-03-01

    Full Text Available The example project implementing automated CRM-system demonstrated the possibility and features of cognitive modeling in the qualitative analysis of project risks to determine their additional features. Proposed construction of cognitive models of project risks in information technology within the qualitative risk analysis, additional assessments as a method of ranking risk to characterize the relationship between them. The proposed cognitive model reflecting the relationship between the risk of IT project to assess the negative and the positive impact of certain risks for the remaining risks of project implementation of the automated CRM-system. The ability to influence the risk of a fact of other project risks can increase the priority of risk with low impact on results due to its relationship with other project risks.

  9. Biodiversity and soil quality in agroecosystems: the use of a qualitative multi-attribute model

    DEFF Research Database (Denmark)

    Cortet, J.; Bohanec, M.; Griffiths, B.

    2009-01-01

    In ecological impact assessment, special emphasis is put on soil biology and estimating soil quality from the observed biological parameters. The aim of this study is to propose a tool easy to use for scientists and decision makers for agroecosystems soil quality assessment using these biological...... parameters. This tool was developed as a collaboration between ECOGEN (www.ecogen.dk) soil experts and decision analysts. Methodologically, we have addressed this goal using model-based Decision Support Systems (DSS), taking the approach of qualitative multi-attribute modelling. The approach is based...... on developing various hierarchical multiattribute models that consist of qualitative attributes and utility (aggregation) functions, represented by decision rules. The assessment of soil quality is based on two main indicators: (1) soil diversity (assessed through microfauna, mesofauna and macrofauna richness...

  10. Simulation Models for Socioeconomic Inequalities in Health: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Niko Speybroeck

    2013-11-01

    Full Text Available Background: The emergence and evolution of socioeconomic inequalities in health involves multiple factors interacting with each other at different levels. Simulation models are suitable for studying such complex and dynamic systems and have the ability to test the impact of policy interventions in silico. Objective: To explore how simulation models were used in the field of socioeconomic inequalities in health. Methods: An electronic search of studies assessing socioeconomic inequalities in health using a simulation model was conducted. Characteristics of the simulation models were extracted and distinct simulation approaches were identified. As an illustration, a simple agent-based model of the emergence of socioeconomic differences in alcohol abuse was developed. Results: We found 61 studies published between 1989 and 2013. Ten different simulation approaches were identified. The agent-based model illustration showed that multilevel, reciprocal and indirect effects of social determinants on health can be modeled flexibly. Discussion and Conclusions: Based on the review, we discuss the utility of using simulation models for studying health inequalities, and refer to good modeling practices for developing such models. The review and the simulation model example suggest that the use of simulation models may enhance the understanding and debate about existing and new socioeconomic inequalities of health frameworks.

  11. Modelization and simulation of capillary barriers

    International Nuclear Information System (INIS)

    Lisbona Cortes, F.; Aguilar Villa, G.; Clavero Gracia, C.; Gracia Lozano, J.L.

    1998-01-01

    Among the different underground transport phenomena, that due to water flows is of great relevance. Water flows in infiltration and percolation processes are responsible of the transport of hazardous wastes towards phreatic layers. From the industrial and geological standpoints, there is a great interest in the design of natural devices to avoid the flows transporting polluting substances. This interest is increased when devices are used to isolate radioactive waste repositories, whose life is to be longer than several hundred years. The so-called natural devices are those based on the superimposition of material with different hydraulic properties. In particular, the flow retention in this kind stratified media, in unsaturated conditions, is basically due to the capillary barrier effect, resulting from placing a low conductivity material over another with a high hydraulic conductivity. Covers designed from the effect above have also to allow a drainage of the upper layer. The lower cost of these covers, with respect to other kinds of protection systems, and the stability in time of their components make them very attractive. However, a previous investigation to determine their effectivity is required. In this report we present the computer code BCSIM, useful for easy simulations of unsaturated flows in a capillary barrier configuration with drainage, and which is intended to serve as a tool for designing efficient covers. The model, the numerical algorithm and several implementation aspects are described. Results obtained in several simulations, confirming the effectivity of capillary barriers as a technique to build safety covers for hazardous waste repositories, are presented. (Author)

  12. Powertrain modeling and simulation for off-road vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ouellette, S. [McGill Univ., Montreal, PQ (Canada)

    2010-07-01

    Standard forward facing automotive powertrain modeling and simulation methodology did not perform equally for all vehicles in all applications in the 2010 winter Olympics, 2009 world alpine ski championships, summit station in Greenland, the McGill Formula Hybrid, Unicell QuickSider, and lunar mobility. This presentation provided a standard automotive powertrain modeling and simulation flow chart as well as an example. It also provided a flow chart for location based powertrain modeling and simulation and discussed location based powertrain modeling and simulation implementation. It was found that in certain applications, vehicle-environment interactions cannot be neglected in order to have good model fidelity. Powertrain modeling and simulation of off-road vehicles demands a new approach to powertrain modeling and simulation. It was concluded that the proposed location based methodology could improve the results for off-road vehicles. tabs., figs.

  13. Reusable Component Model Development Approach for Parallel and Distributed Simulation

    Science.gov (United States)

    Zhu, Feng; Yao, Yiping; Chen, Huilong; Yao, Feng

    2014-01-01

    Model reuse is a key issue to be resolved in parallel and distributed simulation at present. However, component models built by different domain experts usually have diversiform interfaces, couple tightly, and bind with simulation platforms closely. As a result, they are difficult to be reused across different simulation platforms and applications. To address the problem, this paper first proposed a reusable component model framework. Based on this framework, then our reusable model development approach is elaborated, which contains two phases: (1) domain experts create simulation computational modules observing three principles to achieve their independence; (2) model developer encapsulates these simulation computational modules with six standard service interfaces to improve their reusability. The case study of a radar model indicates that the model developed using our approach has good reusability and it is easy to be used in different simulation platforms and applications. PMID:24729751

  14. Aircraft vulnerability analysis by modeling and simulation

    Science.gov (United States)

    Willers, Cornelius J.; Willers, Maria S.; de Waal, Alta

    2014-10-01

    guidance acceleration and seeker sensitivity. For the purpose of this investigation the aircraft is equipped with conventional pyrotechnic decoy flares and the missile has no counter-countermeasure means (security restrictions on open publication). This complete simulation is used to calculate the missile miss distance, when the missile is launched from different locations around the aircraft. The miss distance data is then graphically presented showing miss distance (aircraft vulnerability) as a function of launch direction and range. The aircraft vulnerability graph accounts for aircraft and missile characteristics, but does not account for missile deployment doctrine. A Bayesian network is constructed to fuse the doctrinal rules with the aircraft vulnerability data. The Bayesian network now provides the capability to evaluate the combined risk of missile launch and aircraft vulnerability. It is shown in this paper that it is indeed possible to predict the aircraft vulnerability to missile attack in a comprehensive modelling and a holistic process. By using the appropriate real-world models, this approach is used to evaluate the effectiveness of specific countermeasure techniques against specific missile threats. The use of a Bayesian network provides the means to fuse simulated performance data with more abstract doctrinal rules to provide a realistic assessment of the aircraft vulnerability.

  15. Learning health ‘safety’ within non-technical skills interprofessional simulation education: a qualitative study

    Science.gov (United States)

    Gordon, Morris; Fell, Christopher W. R.; Box, Helen; Farrell, Michael; Stewart, Alison

    2017-01-01

    ABSTRACT Background: Healthcare increasingly recognises and focusses on the phenomena of ‘safe practice’ and ‘patient safety.’ Success with non-technical skills (NTS) training in other industries has led to widespread transposition to healthcare education, with communication and teamwork skills central to NTS frameworks. Objective: This study set out to identify how the context of interprofessional simulation learning influences NTS acquisition and development of ‘safety’ amongst learners. Methods: Participants receiving a non-technical skills (NTS) safety focussed training package were invited to take part in a focus group interview which set out to explore communication, teamwork, and the phenomenon of safety in the context of the learning experiences they had within the training programme. The analysis was aligned with a constructivist paradigm and took an interactive methodological approach. The analysis proceeded through three stages, consisting of open, axial, and selective coding, with constant comparisons taking place throughout each phase. Each stage provided categories that could be used to explore the themes of the data. Additionally, to ensure thematic saturation, transcripts of observed simulated learning encounters were then analysed. Results: Six themes were established at the axial coding level, i.e., analytical skills, personal behaviours, communication, teamwork, context, and pedagogy. Underlying these themes, two principal concepts emerged, namely: intergroup contact anxiety – as both a result of and determinant of communication – and teamwork, both of which must be considered in relation to context. These concepts have subsequently been used to propose a framework for NTS learning. Conclusions: This study highlights the role of intergroup contact anxiety and teamwork as factors in NTS behaviour and its dissipation through interprofessional simulation learning. Therefore, this should be a key consideration in NTS education. Future

  16. Model calibration for building energy efficiency simulation

    International Nuclear Information System (INIS)

    Mustafaraj, Giorgio; Marini, Dashamir; Costa, Andrea; Keane, Marcus

    2014-01-01

    Highlights: • Developing a 3D model relating to building architecture, occupancy and HVAC operation. • Two calibration stages developed, final model providing accurate results. • Using an onsite weather station for generating the weather data file in EnergyPlus. • Predicting thermal behaviour of underfloor heating, heat pump and natural ventilation. • Monthly energy saving opportunities related to heat pump of 20–27% was identified. - Abstract: This research work deals with an Environmental Research Institute (ERI) building where an underfloor heating system and natural ventilation are the main systems used to maintain comfort condition throughout 80% of the building areas. Firstly, this work involved developing a 3D model relating to building architecture, occupancy and HVAC operation. Secondly, the calibration methodology, which consists of two levels, was then applied in order to insure accuracy and reduce the likelihood of errors. To further improve the accuracy of calibration a historical weather data file related to year 2011, was created from the on-site local weather station of ERI building. After applying the second level of calibration process, the values of Mean bias Error (MBE) and Cumulative Variation of Root Mean Squared Error (CV(RMSE)) on hourly based analysis for heat pump electricity consumption varied within the following ranges: (MBE) hourly from −5.6% to 7.5% and CV(RMSE) hourly from 7.3% to 25.1%. Finally, the building was simulated with EnergyPlus to identify further possibilities of energy savings supplied by a water to water heat pump to underfloor heating system. It found that electricity consumption savings from the heat pump can vary between 20% and 27% on monthly bases

  17. Sunspot Modeling: From Simplified Models to Radiative MHD Simulations

    Directory of Open Access Journals (Sweden)

    Rolf Schlichenmaier

    2011-09-01

    Full Text Available We review our current understanding of sunspots from the scales of their fine structure to their large scale (global structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, "gaps", convective rolls, which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow. In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here overturning convection is the central element responsible for energy transport, filamentation leading to fine-structure and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.

  18. Predictive Capability Maturity Model for computational modeling and simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.

    2007-10-01

    The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.

  19. Supporting conceptual modelling of dynamic systems: A knowledge engineering perspective on qualitative reasoning

    NARCIS (Netherlands)

    Liem, J.

    2013-01-01

    Research has shown that even students educated in science at prestigious universities have misconceptions about the systems underlying climate change, sustainability and government spending. Interactive conceptual modelling and simulation tools, which are based on Artificial Intelligence techniques,

  20. Beyond Modeling: All-Atom Olfactory Receptor Model Simulations

    Directory of Open Access Journals (Sweden)

    Peter C Lai

    2012-05-01

    Full Text Available Olfactory receptors (ORs are a type of GTP-binding protein-coupled receptor (GPCR. These receptors are responsible for mediating the sense of smell through their interaction with odor ligands. OR-odorant interactions marks the first step in the process that leads to olfaction. Computational studies on model OR structures can validate experimental functional studies as well as generate focused and novel hypotheses for further bench investigation by providing a view of these interactions at the molecular level. Here we have shown the specific advantages of simulating the dynamic environment that is associated with OR-odorant interactions. We present a rigorous methodology that ranges from the creation of a computationally-derived model of an olfactory receptor to simulating the interactions between an OR and an odorant molecule. Given the ubiquitous occurrence of GPCRs in the membranes of cells, we anticipate that our OR-developed methodology will serve as a model for the computational structural biology of all GPCRs.

  1. Federated Modelling and Simulation for Critical Infrastructure Protection

    NARCIS (Netherlands)

    Rome, E.; Langeslag, P.J.H.; Usov, A.

    2014-01-01

    Modelling and simulation is an important tool for Critical Infrastructure (CI) dependency analysis, for testing methods for risk reduction, and as well for the evaluation of past failures. Moreover, interaction of such simulations with external threat models, e.g., a river flood model, or economic

  2. IDEF method-based simulation model design and development framework

    Directory of Open Access Journals (Sweden)

    Ki-Young Jeong

    2009-09-01

    Full Text Available The purpose of this study is to provide an IDEF method-based integrated framework for a business process simulation model to reduce the model development time by increasing the communication and knowledge reusability during a simulation project. In this framework, simulation requirements are collected by a function modeling method (IDEF0 and a process modeling method (IDEF3. Based on these requirements, a common data model is constructed using the IDEF1X method. From this reusable data model, multiple simulation models are automatically generated using a database-driven simulation model development approach. The framework is claimed to help both requirement collection and experimentation phases during a simulation project by improving system knowledge, model reusability, and maintainability through the systematic use of three descriptive IDEF methods and the features of the relational database technologies. A complex semiconductor fabrication case study was used as a testbed to evaluate and illustrate the concepts and the framework. Two different simulation software products were used to develop and control the semiconductor model from the same knowledge base. The case study empirically showed that this framework could help improve the simulation project processes by using IDEF-based descriptive models and the relational database technology. Authors also concluded that this framework could be easily applied to other analytical model generation by separating the logic from the data.

  3. Simulation models in population breast cancer screening : A systematic review

    NARCIS (Netherlands)

    Koleva-Kolarova, Rositsa G; Zhan, Zhuozhao; Greuter, Marcel J W; Feenstra, Talitha L; De Bock, Geertruida H

    The aim of this review was to critically evaluate published simulation models for breast cancer screening of the general population and provide a direction for future modeling. A systematic literature search was performed to identify simulation models with more than one application. A framework for

  4. Simulation Modeling of a Facility Layout in Operations Management Classes

    Science.gov (United States)

    Yazici, Hulya Julie

    2006-01-01

    Teaching quantitative courses can be challenging. Similarly, layout modeling and lean production concepts can be difficult to grasp in an introductory OM (operations management) class. This article describes a simulation model developed in PROMODEL to facilitate the learning of layout modeling and lean manufacturing. Simulation allows for the…

  5. The Random Walk Drainage Simulation Model as a Teaching Exercise

    Science.gov (United States)

    High, Colin; Richards, Paul

    1972-01-01

    Practical instructions about using the random walk drainage network simulation model as a teaching excercise are given and the results discussed. A source of directional bias in the resulting simulated drainage patterns is identified and given an interpretation in the terms of the model. Three points of educational value concerning the model are…

  6. Maneuver simulation model of an experimental hovercraft for the Antarctic

    Science.gov (United States)

    Murao, Rinichi

    Results of an investigation of a hovercraft model designed for Antarctic conditions are presented. The buoyancy characteristics, the propellant control system, and simulation model control are examined. An ACV (air cushion vehicle) model of the hovercraft is used to examine the flexibility and friction of the skirt. Simulation results are presented which show the performance of the hovercraft.

  7. Historical Development of Simulation Models of Recreation Use

    Science.gov (United States)

    Jan W. van Wagtendonk; David N. Cole

    2005-01-01

    The potential utility of modeling as a park and wilderness management tool has been recognized for decades. Romesburg (1974) explored how mathematical decision modeling could be used to improve decisions about regulation of wilderness use. Cesario (1975) described a computer simulation modeling approach that utilized GPSS (General Purpose Systems Simulator), a...

  8. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, A.; Jauch, Clemens; Soerensen, P.

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...

  9. A New Model for Simulating TSS Washoff in Urban Areas

    Directory of Open Access Journals (Sweden)

    E. Crobeddu

    2011-01-01

    Full Text Available This paper presents the formulation and validation of the conceptual Runoff Quality Simulation Model (RQSM that was developed to simulate the erosion and transport of solid particles in urban areas. The RQSM assumes that solid particle accumulation on pervious and impervious areas is infinite. The RQSM simulates soil erosion using rainfall kinetic energy and solid particle transport with linear system theory. A sensitivity analysis was conducted on the RQSM to show the influence of each parameter on the simulated load. Total suspended solid (TSS loads monitored at the outlet of the borough of Verdun in Canada and at three catchment outlets of the City of Champaign in the United States were used to validate the RQSM. TSS loads simulated by the RQSM were compared to measured loads and to loads simulated by the Rating Curve model and the Exponential model of the SWMM software. The simulation performance of the RQSM was comparable to the Exponential and Rating Curve models.

  10. Modeling the alcoholic fermentation of xylose by Pichia stipitis using a qualitative reasoning approach

    Energy Technology Data Exchange (ETDEWEB)

    Guerrin, F. (INRA (Institut National de la Recherche Agronomique), Biometrics and Artificial Intelligence Station, 31 - Castanet-Tolosan (France)); Delgenes, J.P. (INRA, Biotechnological Lab. for Food Industry Environment, 11 - Narbonne (France)); Moletta, R. (INRA, Biotechnological Lab. for Food Industry Environment, 11 - Narbonne (France))

    1994-03-01

    Qualitative Reasoning is a set of Artificial Intelligence theories, methods, and techniques that provide an answer to modeling problems in domains in which one can have a clear notion of how a system is functioning without being able to express it as classical mathematical equations, and where is posed the problem of using jointly quantitative and qualitative data, as well as processing a big amount of complex knowledge. SIMAO ('a System to Interpret Measurements And Observations') is an attempt to deal with such problems. Although primarily devised for heterogeneous data interpretation in hydroecology, it was thought possible to use SIMAO in a wider context, like biotechnological processes. Starting from specific problems posed by a batch fermentation, the D-xylose conversion into ethanol by the yeast Pichia stipitis, this paper descibes how was built and used a SIMAO model aimed at predicting the fermentation issue from initial conditions, i.e. set-points values and substrate concentration. (orig.)

  11. Business Process Simulation: Requirements for Business and Resource Models

    OpenAIRE

    Audrius Rima; Olegas Vasilecas

    2015-01-01

    The purpose of Business Process Model and Notation (BPMN) is to provide easily understandable graphical representation of business process. Thus BPMN is widely used and applied in various areas one of them being a business process simulation. This paper addresses some BPMN model based business process simulation problems. The paper formulate requirements for business process and resource models in enabling their use for business process simulation.

  12. Evaluation of Marine Corps Manpower Computer Simulation Model

    Science.gov (United States)

    2016-12-01

    overall end strength are maintained. To assist their mission, an agent-based computer simulation model was developed in the Java computer language...maintained. To assist their mission, an agent-based computer simulation model was developed in the Java computer language. This thesis investigates that...a simulation software that models business practices to assist that business in its “ability to analyze and make decisions on how to improve (their

  13. Ion thruster modeling: Particle simulations and experimental validations

    International Nuclear Information System (INIS)

    Wang, Joseph; Polk, James; Brinza, David

    2003-01-01

    This paper presents results from ion thruster modeling studies performed in support of NASA's Deep Space 1 mission and NSTAR project. Fully 3-dimensional computer particle simulation models are presented for ion optics plasma flow and ion thruster plume. Ion optics simulation results are compared with measurements obtained from ground tests of the NSTAR ion thruster. Plume simulation results are compared with in-flight measurements from the Deep Space 1 spacecraft. Both models show excellent agreement with experimental data

  14. Business Process Simulation: Requirements for Business and Resource Models

    Directory of Open Access Journals (Sweden)

    Audrius Rima

    2015-07-01

    Full Text Available The purpose of Business Process Model and Notation (BPMN is to provide easily understandable graphical representation of business process. Thus BPMN is widely used and applied in various areas one of them being a business process simulation. This paper addresses some BPMN model based business process simulation problems. The paper formulate requirements for business process and resource models in enabling their use for business process simulation.

  15. Diversity modelling for electrical power system simulation

    International Nuclear Information System (INIS)

    Sharip, R M; Abu Zarim, M A U A

    2013-01-01

    This paper considers diversity of generation and demand profiles against the different future energy scenarios and evaluates these on a technical basis. Compared to previous studies, this research applied a forecasting concept based on possible growth rates from publically electrical distribution scenarios concerning the UK. These scenarios were created by different bodies considering aspects such as environment, policy, regulation, economic and technical. In line with these scenarios, forecasting is on a long term timescale (up to every ten years from 2020 until 2050) in order to create a possible output of generation mix and demand profiles to be used as an appropriate boundary condition for the network simulation. The network considered is a segment of rural LV populated with a mixture of different housing types. The profiles for the 'future' energy and demand have been successfully modelled by applying a forecasting method. The network results under these profiles shows for the cases studied that even though the value of the power produced from each Micro-generation is often in line with the demand requirements of an individual dwelling there will be no problems arising from high penetration of Micro-generation and demand side management for each dwellings considered. The results obtained highlight the technical issues/changes for energy delivery and management to rural customers under the future energy scenarios

  16. Diversity modelling for electrical power system simulation

    Science.gov (United States)

    Sharip, R. M.; Abu Zarim, M. A. U. A.

    2013-12-01

    This paper considers diversity of generation and demand profiles against the different future energy scenarios and evaluates these on a technical basis. Compared to previous studies, this research applied a forecasting concept based on possible growth rates from publically electrical distribution scenarios concerning the UK. These scenarios were created by different bodies considering aspects such as environment, policy, regulation, economic and technical. In line with these scenarios, forecasting is on a long term timescale (up to every ten years from 2020 until 2050) in order to create a possible output of generation mix and demand profiles to be used as an appropriate boundary condition for the network simulation. The network considered is a segment of rural LV populated with a mixture of different housing types. The profiles for the 'future' energy and demand have been successfully modelled by applying a forecasting method. The network results under these profiles shows for the cases studied that even though the value of the power produced from each Micro-generation is often in line with the demand requirements of an individual dwelling there will be no problems arising from high penetration of Micro-generation and demand side management for each dwellings considered. The results obtained highlight the technical issues/changes for energy delivery and management to rural customers under the future energy scenarios.

  17. The COD Model: Simulating Workgroup Performance

    Science.gov (United States)

    Biggiero, Lucio; Sevi, Enrico

    Though the question of the determinants of workgroup performance is one of the most central in organization science, precise theoretical frameworks and formal demonstrations are still missing. In order to fill in this gap the COD agent-based simulation model is here presented and used to study the effects of task interdependence and bounded rationality on workgroup performance. The first relevant finding is an algorithmic demonstration of the ordering of interdependencies in terms of complexity, showing that the parallel mode is the most simplex, followed by the sequential and then by the reciprocal. This result is far from being new in organization science, but what is remarkable is that now it has the strength of an algorithmic demonstration instead of being based on the authoritativeness of some scholar or on some episodic empirical finding. The second important result is that the progressive introduction of realistic limits to agents' rationality dramatically reduces workgroup performance and addresses to a rather interesting result: when agents' rationality is severely bounded simple norms work better than complex norms. The third main finding is that when the complexity of interdependence is high, then the appropriate coordination mechanism is agents' direct and active collaboration, which means teamwork.

  18. Millimeter waves sensor modeling and simulation

    Science.gov (United States)

    Latger, Jean; Cathala, Thierry

    2015-10-01

    Guidance of weapon systems relies on sensors to analyze targets signature. Defense weapon systems also need to detect then identify threats also using sensors. One important class of sensors are millimeter waves radar systems that are very efficient for seeing through atmosphere and/or foliage for example. This type of high frequency radar can produce high quality images with very tricky features such as dihedral and trihedral bright points, shadows and lay over effect. Besides, image quality is very dependent on the carrier velocity and trajectory. Such sensors systems are so complex that they need simulation to be tested. This paper presents a state of the Art of millimeter waves sensor models. A short presentation of asymptotic methods shows that physical optics support is mandatory to reach realistic results. SE-Workbench-RF tool is presented and typical examples of results are shown both in the frame of Synthetic Aperture Radar sensors and Real Beam Ground Mapping radars. Several technical topics are then discussed, such as the rendering technique (ray tracing vs. rasterization), the implementation (CPU vs. GP GPU) and the tradeoff between physical accuracy and performance of computation. Examples of results using SE-Workbench-RF are showed and commented.

  19. Students' understanding of teamwork and professional roles after interprofessional simulation-a qualitative analysis.

    Science.gov (United States)

    Oxelmark, Lena; Nordahl Amorøe, Torben; Carlzon, Liisa; Rystedt, Hans

    2017-01-01

    This study explores how interprofessional simulation-based education (IPSE) can contribute to a change in students' understanding of teamwork and professional roles. A series of 1-day training sessions was arranged involving undergraduate nursing and medical students. Scenarios were designed for practicing teamwork principles and interprofessional communication skills by endorsing active participation by all team members. Four focus groups occurred 2-4 weeks after the training. Thematic analysis of the transcribed focus groups was applied, guided by questions on what changes in students' understanding of teamwork and professional roles were identified and how such changes had been achieved. The first question, aiming to identify changes in students' understanding of teamwork, resulted in three categories: realizing and embracing teamwork fundamentals, reconsidering professional roles, and achieving increased confidence. The second question, regarding how participation in IPSE could support the transformation of students' understanding of teamwork and of professional roles, embraced another three categories: feeling confident in the learning environment, embodying experiences, and obtaining an outside perspective. This study showed the potential of IPSE to transform students' understanding of others' professional roles and responsibilities. Students displayed extensive knowledge on fundamental teamwork principles and what these meant in the midst of participating in the scenarios. A critical prerequisite for the development of these new insights was to feel confident in the learning environment. The significance of how the environment was set up calls for further research on the design of IPSE in influencing role understanding and communicative skills in significant ways.

  20. Stepwise sensitivity analysis from qualitative to quantitative: Application to the terrestrial hydrological modeling of a Conjunctive Surface-Subsurface Process (CSSP) land surface model

    Science.gov (United States)

    Gan, Yanjun; Liang, Xin-Zhong; Duan, Qingyun; Choi, Hyun Il; Dai, Yongjiu; Wu, Huan

    2015-06-01

    An uncertainty quantification framework was employed to examine the sensitivities of 24 model parameters from a newly developed Conjunctive Surface-Subsurface Process (CSSP) land surface model (LSM). The sensitivity analysis (SA) was performed over 18 representative watersheds in the contiguous United States to examine the influence of model parameters in the simulation of terrestrial hydrological processes. Two normalized metrics, relative bias (RB) and Nash-Sutcliffe efficiency (NSE), were adopted to assess the fit between simulated and observed streamflow discharge (SD) and evapotranspiration (ET) for a 14 year period. SA was conducted using a multiobjective two-stage approach, in which the first stage was a qualitative SA using the Latin Hypercube-based One-At-a-Time (LH-OAT) screening, and the second stage was a quantitative SA using the Multivariate Adaptive Regression Splines (MARS)-based Sobol' sensitivity indices. This approach combines the merits of qualitative and quantitative global SA methods, and is effective and efficient for understanding and simplifying large, complex system models. Ten of the 24 parameters were identified as important across different watersheds. The contribution of each parameter to the total response variance was then quantified by Sobol' sensitivity indices. Generally, parameter interactions contribute the most to the response variance of the CSSP, and only 5 out of 24 parameters dominate model behavior. Four photosynthetic and respiratory parameters are shown to be influential to ET, whereas reference depth for saturated hydraulic conductivity is the most influential parameter for SD in most watersheds. Parameter sensitivity patterns mainly depend on hydroclimatic regime, as well as vegetation type and soil texture. This article was corrected on 26 JUN 2015. See the end of the full text for details.

  1. Particle Image Velocimetry Used to Qualitatively Validate Computational Fluid Dynamic Simulations in an Oxygenator: A Proof of Concept.

    Science.gov (United States)

    Schlanstein, Peter C; Hesselmann, Felix; Jansen, Sebastian V; Gemsa, Jeannine; Kaufmann, Tim A; Klaas, Michael; Roggenkamp, Dorothee; Schröder, Wolfgang; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Arens, Jutta

    2015-09-01

    Computational fluid dynamics (CFD) is used to simulate blood flow inside the fiber bundles of oxygenators. The results are interpreted in terms of flow distribution, e.g., stagnation and shunt areas. However, experimental measurements that provide such information on the local flow between the fibers are missing. A transparent model of an oxygenator was built to perform particle image velocimetry (PIV), to perform the experimental validation. The similitude theory was used to adjust the size of the PIV model to the minimal resolution of the PIV system used (scale factor 3.3). A standard flow of 80 mL/min was simulated with CFD for the real oxygenator and the equivalent flow of 711 mL/min, according to the similitude theory, was investigated with PIV. CFD predicts the global size of stagnation and shunt areas well, but underestimates the streamline length and changes in velocities due to the meandering flow around the real fibers in the PIV model. Symmetrical CFD simulation cannot consider asymmetries in the flow, due to manufacturing-related asymmetries in the fiber bundle. PIV could be useful for validation of CFD simulations; measurement quality however must be improved for a quantitative validation of CFD results and the investigation of flow effects such as tortuosity and anisotropic flow behavior.

  2. Modeling and Simulation Fundamentals Theoretical Underpinnings and Practical Domains

    CERN Document Server

    Sokolowski, John A

    2010-01-01

    An insightful presentation of the key concepts, paradigms, and applications of modeling and simulation. Modeling and simulation has become an integral part of research and development across many fields of study, having evolved from a tool to a discipline in less than two decades. Modeling and Simulation Fundamentals offers a comprehensive and authoritative treatment of the topic and includes definitions, paradigms, and applications to equip readers with the skills needed to work successfully as developers and users of modeling and simulation. Featuring contributions written by leading experts

  3. Global Information Enterprise (GIE) Modeling and Simulation (GIESIM)

    National Research Council Canada - National Science Library

    Bell, Paul

    2005-01-01

    ... AND S) toolkits into the Global Information Enterprise (GIE) Modeling and Simulation (GIESim) framework to create effective user analysis of candidate communications architectures and technologies...

  4. Modeling, Simulation and Position Control of 3DOF Articulated Manipulator

    Directory of Open Access Journals (Sweden)

    Hossein Sadegh Lafmejani

    2014-08-01

    Full Text Available In this paper, the modeling, simulation and control of 3 degrees of freedom articulated robotic manipulator have been studied. First, we extracted kinematics and dynamics equations of the mentioned manipulator by using the Lagrange method. In order to validate the analytical model of the manipulator we compared the model simulated in the simulation environment of Matlab with the model was simulated with the SimMechanics toolbox. A sample path has been designed for analyzing the tracking subject. The system has been linearized with feedback linearization and then a PID controller was applied to track a reference trajectory. Finally, the control results have been compared with a nonlinear PID controller.

  5. Modeling and Simulation of U-tube Steam Generator

    Science.gov (United States)

    Zhang, Mingming; Fu, Zhongguang; Li, Jinyao; Wang, Mingfei

    2018-03-01

    The U-tube natural circulation steam generator was mainly researched with modeling and simulation in this article. The research is based on simuworks system simulation software platform. By analyzing the structural characteristics and the operating principle of U-tube steam generator, there are 14 control volumes in the model, including primary side, secondary side, down channel and steam plenum, etc. The model depends completely on conservation laws, and it is applied to make some simulation tests. The results show that the model is capable of simulating properly the dynamic response of U-tube steam generator.

  6. The Development of a Qualitative Dynamic Attribute Value Model for Healthcare Institutes

    Science.gov (United States)

    Lee, Wan-I

    2010-01-01

    Background: Understanding customers has become an urgent topic for increasing competitiveness. The purpopse of the study was to develop a qualitative dynamic attribute value model which provides insight into the customers’ value for healthcare institute managers by conducting the initial open-ended questionnaire survey to select participants purposefully. Methods: A total number of 427 questionnaires was conducted in two hospitals in Taiwan (one district hospital with 635 beds and one academic hospital with 2495 beds) and 419 questionnaires were received in nine weeks. Then, apply qualitative in-depth interviews to explore customers’ perspective of values for building a model of partial differential equations. Results: This study concludes nine categories of value, including cost, equipment, physician background, physicain care, environment, timing arrangement, relationship, brand image and additional value, to construct objective network for customer value and qualitative dynamic attribute value model where the network shows the value process of loyalty development via its effect on customer satisfaction, customer relationship, customer loyalty and healthcare service. Conclusion: One set predicts the customer relationship based on comminent, including service quality, communication and empahty. As the same time, customer loyalty based on trust, involves buzz marketing, brand and image. Customer value of the current instance is useful for traversing original customer attributes and identifing customers on different service share. PMID:23113034

  7. The development of a qualitative dynamic attribute value model for healthcare institutes.

    Science.gov (United States)

    Lee, Wan-I

    2010-01-01

    Understanding customers has become an urgent topic for increasing competitiveness. The purpopse of the study was to develop a qualitative dynamic attribute value model which provides insight into the customers' value for healthcare institute managers by conducting the initial open-ended questionnaire survey to select participants purposefully. A total number of 427 questionnaires was conducted in two hospitals in Taiwan (one district hospital with 635 beds and one academic hospital with 2495 beds) and 419 questionnaires were received in nine weeks. Then, apply qualitative in-depth interviews to explore customers' perspective of values for building a model of partial differential equations. This study concludes nine categories of value, including cost, equipment, physician background, physicain care, environment, timing arrangement, relationship, brand image and additional value, to construct objective network for customer value and qualitative dynamic attribute value model where the network shows the value process of loyalty development via its effect on customer satisfaction, customer relationship, customer loyalty and healthcare service. One set predicts the customer relationship based on comminent, including service quality, communication and empahty. As the same time, customer loyalty based on trust, involves buzz marketing, brand and image. Customer value of the current instance is useful for traversing original customer attributes and identifing customers on different service share.

  8. Simulation Models in Economic Higher Education

    OpenAIRE

    Paraschiv Dorel Mihai; Belu Mihaela Gabriela; Popa Ioan

    2013-01-01

    The simulation methods are implemented to develop students' professional skills and competencies in the economic field, making the link between the academic and business environments. The paper presents these methods of simulation in areas such as trade, international business, tourism and banking, applied in the European Program POSDRU/90/2.1/S/63442 project.

  9. An evaluation of the North Sea circulation in global and regional models relevant for ecosystem simulations

    Science.gov (United States)

    Pätsch, Johannes; Burchard, Hans; Dieterich, Christian; Gräwe, Ulf; Gröger, Matthias; Mathis, Moritz; Kapitza, Hartmut; Bersch, Manfred; Moll, Andreas; Pohlmann, Thomas; Su, Jian; Ho-Hagemann, Ha T. M.; Schulz, Achim; Elizalde, Alberto; Eden, Carsten

    2017-08-01

    Simulations of the North Sea circulation by the global ocean model MPI-OM and the regional ocean models GETM, HAMSOM, NEMO, TRIM are compared against each other and with observational data for the period 1998-2009. The aim of the study is to evaluate the quality of the simulations in particular with respect to their suitability to drive biogeochemical shelf sea models. Our results demonstrate the benefit of the global model to avoid the specification of lateral open boundary conditions. Due to its stretched grid configuration, which provides a higher grid resolution at the Northwest European Shelf, the global model is able to reproduce the large-scale features, such as the water mass distribution and the thermal stratification in the central and northern North Sea, qualitatively similar to the regional models. The simulation of temperature and salinity near the coast however, shows large biases in almost all models because of the coarse meteorological forcing and too coarse vertical resolutions. The simulation of the Baltic Sea exchange and the spread of freshwater along the Norwegian coast proved difficult for all models except GETM, which reproduces impacts of the Baltic Sea outflow reasonably well.

  10. Snoopy's hybrid simulator: a tool to construct and simulate hybrid biological models.

    Science.gov (United States)

    Herajy, Mostafa; Liu, Fei; Rohr, Christian; Heiner, Monika

    2017-07-28

    Hybrid simulation of (computational) biochemical reaction networks, which combines stochastic and deterministic dynamics, is an important direction to tackle future challenges due to complex and multi-scale models. Inherently hybrid computational models of biochemical networks entail two time scales: fast and slow. Therefore, it is intricate to efficiently and accurately analyse them using only either deterministic or stochastic simulation. However, there are only a few software tools that support such an approach. These tools are often limited with respect to the number as well as the functionalities of the provided hybrid simulation algorithms. We present Snoopy's hybrid simulator, an efficient hybrid simulation software which builds on Snoopy, a tool to construct and simulate Petri nets. Snoopy's hybrid simulator provides a wide range of state-of-the-art hybrid simulation algorithms. Using this tool, a computational model of biochemical networks can be constructed using a (coloured) hybrid Petri net's graphical notations, or imported from other compatible formats (e.g. SBML), and afterwards executed via dynamic or static hybrid simulation. Snoopy's hybrid simulator is a platform-independent tool providing an accurate and efficient simulation of hybrid (biological) models. It can be downloaded free of charge as part of Snoopy from http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy .

  11. MODEL OF HEAT SIMULATOR FOR DATA CENTERS

    Directory of Open Access Journals (Sweden)

    Jan Novotný

    2016-08-01

    Full Text Available The aim of this paper is to present a design and a development of a heat simulator, which will be used for a flow research in data centers. The designed heat simulator is based on an ideological basis of four-processor 1U Supermicro server. The designed heat simulator enables to control the flow and heat output within the range of 10–100 %. The paper covers also the results of testing measurements of mass flow rates and heat flow rates in the simulator. The flow field at the outlet of the server was measured by the stereo PIV method. The heat flow rate was determined, based on measuring the temperature field at the inlet and outlet of the simulator and known mass flow rate.

  12. Simulation Tools Model Icing for Aircraft Design

    Science.gov (United States)

    2012-01-01

    the years from strictly a research tool to one used routinely by industry and other government agencies. Glenn contractor William Wright has been the architect of this development, supported by a team of researchers investigating icing physics, creating validation data, and ensuring development according to standard software engineering practices. The program provides a virtual simulation environment for determining where water droplets strike an airfoil in flight, what kind of ice would result, and what shape that ice would take. Users can enter geometries for specific, two-dimensional cross sections of an airfoil or other airframe surface and then apply a range of inputs - different droplet sizes, temperatures, airspeeds, and more - to model how ice would build up on the surface in various conditions. The program s versatility, ease of use, and speed - LEWICE can run through complex icing simulations in only a few minutes - have contributed to it becoming a popular resource in the aviation industry.

  13. Common modelling approaches for training simulators for nuclear power plants

    International Nuclear Information System (INIS)

    1990-02-01

    Training simulators for nuclear power plant operating staff have gained increasing importance over the last twenty years. One of the recommendations of the 1983 IAEA Specialists' Meeting on Nuclear Power Plant Training Simulators in Helsinki was to organize a Co-ordinated Research Programme (CRP) on some aspects of training simulators. The goal statement was: ''To establish and maintain a common approach to modelling for nuclear training simulators based on defined training requirements''. Before adapting this goal statement, the participants considered many alternatives for defining the common aspects of training simulator models, such as the programming language used, the nature of the simulator computer system, the size of the simulation computers, the scope of simulation. The participants agreed that it was the training requirements that defined the need for a simulator, the scope of models and hence the type of computer complex that was required, the criteria for fidelity and verification, and was therefore the most appropriate basis for the commonality of modelling approaches. It should be noted that the Co-ordinated Research Programme was restricted, for a variety of reasons, to consider only a few aspects of training simulators. This report reflects these limitations, and covers only the topics considered within the scope of the programme. The information in this document is intended as an aid for operating organizations to identify possible modelling approaches for training simulators for nuclear power plants. 33 refs

  14. Modelling and simulation of containment on full scope simulator for Qinshan 300 MW Nuclear Power Unit

    International Nuclear Information System (INIS)

    Zou Tingyun

    1996-01-01

    A multi-node containment thermal-hydraulic model has been developed and adapted in Full Scope Simulator for Qinshan 300 MW Nuclear Power Unit with good realtime simulation effects. Containment pressure for LBLOCA calculated by the model is well agreed with those of CONTEMPT-4/MOD3

  15. Medical simulation: Overview, and application to wound modelling and management

    Directory of Open Access Journals (Sweden)

    Dinker R Pai

    2012-01-01

    Full Text Available Simulation in medical education is progressing in leaps and bounds. The need for simulation in medical education and training is increasing because of a overall increase in the number of medical students vis-à-vis the availability of patients; b increasing awareness among patients of their rights and consequent increase in litigations and c tremendous improvement in simulation technology which makes simulation more and more realistic. Simulation in wound care can be divided into use of simulation in wound modelling (to test the effect of projectiles on the body and simulation for training in wound management. Though this science is still in its infancy, more and more researchers are now devising both low-technology and high-technology (virtual reality simulators in this field. It is believed that simulator training will eventually translate into better wound care in real patients, though this will be the subject of further research.

  16. XCAT/DRASIM: a realistic CT/human-model simulation package

    Science.gov (United States)

    Fung, George S. K.; Stierstorfer, Karl; Segars, W. Paul; Taguchi, Katsuyuki; Flohr, Thomas G.; Tsui, Benjamin M. W.

    2011-03-01

    The aim of this research is to develop a complete CT/human-model simulation package by integrating the 4D eXtended CArdiac-Torso (XCAT) phantom, a computer generated NURBS surface based phantom that provides a realistic model of human anatomy and respiratory and cardiac motions, and the DRASIM (Siemens Healthcare) CT-data simulation program. Unlike other CT simulation tools which are based on simple mathematical primitives or voxelized phantoms, this new simulation package has the advantages of utilizing a realistic model of human anatomy and physiological motions without voxelization and with accurate modeling of the characteristics of clinical Siemens CT systems. First, we incorporated the 4D XCAT anatomy and motion models into DRASIM by implementing a new library which consists of functions to read-in the NURBS surfaces of anatomical objects and their overlapping order and material properties in the XCAT phantom. Second, we incorporated an efficient ray-tracing algorithm for line integral calculation in DRASIM by computing the intersection points of the rays cast from the x-ray source to the detector elements through the NURBS surfaces of the multiple XCAT anatomical objects along the ray paths. Third, we evaluated the integrated simulation package by performing a number of sample simulations of multiple x-ray projections from different views followed by image reconstruction. The initial simulation results were found to be promising by qualitative evaluation. In conclusion, we have developed a unique CT/human-model simulation package which has great potential as a tool in the design and optimization of CT scanners, and the development of scanning protocols and image reconstruction methods for improving CT image quality and reducing radiation dose.

  17. Qualitative and quantitative guidelines for the comparison of environmental model predictions

    International Nuclear Information System (INIS)

    Scott, M.

    1995-03-01

    The question of how to assess or compare predictions from a number of models is one of concern in the validation of models, in understanding the effects of different models and model parameterizations on model output, and ultimately in assessing model reliability. Comparison of model predictions with observed data is the basic tool of model validation while comparison of predictions amongst different models provides one measure of model credibility. The guidance provided here is intended to provide qualitative and quantitative approaches (including graphical and statistical techniques) to such comparisons for use within the BIOMOVS II project. It is hoped that others may find it useful. It contains little technical information on the actual methods but several references are provided for the interested reader. The guidelines are illustrated on data from the VAMP CB scenario. Unfortunately, these data do not permit all of the possible approaches to be demonstrated since predicted uncertainties were not provided. The questions considered are concerned with a) intercomparison of model predictions and b) comparison of model predictions with the observed data. A series of examples illustrating some of the different types of data structure and some possible analyses have been constructed. A bibliography of references on model validation is provided. It is important to note that the results of the various techniques discussed here, whether qualitative or quantitative, should not be considered in isolation. Overall model performance must also include an evaluation of model structure and formulation, i.e. conceptual model uncertainties, and results for performance measures must be interpreted in this context. Consider a number of models which are used to provide predictions of a number of quantities at a number of time points. In the case of the VAMP CB scenario, the results include predictions of total deposition of Cs-137 and time dependent concentrations in various

  18. Qualitative models of magnetic field accelerated propagation in a plasma due to the Hall effect

    International Nuclear Information System (INIS)

    Kukushkin, A.B.; Cherepanov, K.V.

    2000-01-01

    Two qualitatively new models of accelerated magnetic field propagation (relative to normal diffusion) in a plasma due to the Hall effect are developed within the frames of the electron magnetic hydrodynamics. The first model is based on a simple hydrodynamic approach, which, in particular, reproduces the number of known theoretical results. The second one makes it possible to obtain exact analytical description of the basic characteristics of the magnetic field accelerated propagation in a inhomogeneous iso-thermic plasma, namely, the magnetic field front and its effective width [ru

  19. An Exploratory Qualitative Study of the Proximal Goal Setting of Two Introductory Modeling Instruction Physics Students

    Science.gov (United States)

    Sawtelle, Vashti; Brewe, Eric; Kramer, Laird

    2009-11-01

    Proximal goal setting has been strongly linked to self-efficacy and often occurs in successful problem solving. A qualitative study, using both observations and interviews, investigated the problem-solving processes and the self-efficacy of two students enrolled in an introductory physics course that implemented Modeling Instruction at Florida International University. We found that the problem solving process could be divided into two main phases: the goal setting process and the self-efficacy feedback loop. Further, from the qualitative data, the goal setting process could not be isolated from its impact on the self-efficacy of the students. This relationship between the goal setting strategies within the problem-solving process and self-efficacy may be linked to the retention of students in physics. We present results of the study and its possible link to student retention.

  20. Vehicle Modeling for Future Generation Transportation Simulation

    Science.gov (United States)

    2009-05-10

    Recent development of inter-vehicular wireless communication technologies have motivated many innovative applications aiming at significantly increasing traffic throughput and improving highway safety. Powerful traffic simulation is an indispensable ...

  1. Stochastic models to simulate paratuberculosis in dairy herds

    DEFF Research Database (Denmark)

    Nielsen, Søren Saxmose; Weber, M.F.; Kudahl, Anne Margrethe Braad

    2011-01-01

    Stochastic simulation models are widely accepted as a means of assessing the impact of changes in daily management and the control of different diseases, such as paratuberculosis, in dairy herds. This paper summarises and discusses the assumptions of four stochastic simulation models and their use...... the models are somewhat different in their underlying principles and do put slightly different values on the different strategies, their overall findings are similar. Therefore, simulation models may be useful in planning paratuberculosis strategies in dairy herds, although as with all models caution...

  2. Integrated Biosphere Simulator Model (IBIS), Version 2.5

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of...

  3. A simulation model for forecasting downhill ski participation

    Science.gov (United States)

    Daniel J. Stynes; Daniel M. Spotts

    1980-01-01

    The purpose of this paper is to describe progress in the development of a general computer simulation model to forecast future levels of outdoor recreation participation. The model is applied and tested for downhill skiing in Michigan.

  4. Integrated Biosphere Simulator Model (IBIS), Version 2.5

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of processes,...

  5. Simulation-based modeling of building complexes construction management

    Science.gov (United States)

    Shepelev, Aleksandr; Severova, Galina; Potashova, Irina

    2018-03-01

    The study reported here examines the experience in the development and implementation of business simulation games based on network planning and management of high-rise construction. Appropriate network models of different types and levels of detail have been developed; a simulation model including 51 blocks (11 stages combined in 4 units) is proposed.

  6. Analyzing Interaction Patterns to Verify a Simulation/Game Model

    Science.gov (United States)

    Myers, Rodney Dean

    2012-01-01

    In order for simulations and games to be effective for learning, instructional designers must verify that the underlying computational models being used have an appropriate degree of fidelity to the conceptual models of their real-world counterparts. A simulation/game that provides incorrect feedback is likely to promote misunderstanding and…

  7. Application of computer simulated persons in indoor environmental modeling

    DEFF Research Database (Denmark)

    Topp, C.; Nielsen, P. V.; Sørensen, Dan Nørtoft

    2002-01-01

    Computer simulated persons are often applied when the indoor environment is modeled by computational fluid dynamics. The computer simulated persons differ in size, shape, and level of geometrical complexity, ranging from simple box or cylinder shaped heat sources to more humanlike models. Little...

  8. Software Requirements Specification Verifiable Fuel Cycle Simulation (VISION) Model

    International Nuclear Information System (INIS)

    D. E. Shropshire; W. H. West

    2005-01-01

    The purpose of this Software Requirements Specification (SRS) is to define the top-level requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). This simulation model is intended to serve a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies

  9. Active site modeling in copper azurin molecular dynamics simulations

    NARCIS (Netherlands)

    Rizzuti, B; Swart, M; Sportelli, L; Guzzi, R

    Active site modeling in molecular dynamics simulations is investigated for the reduced state of copper azurin. Five simulation runs (5 ns each) were performed at room temperature to study the consequences of a mixed electrostatic/constrained modeling for the coordination between the metal and the

  10. New Simulation Models for Addressing Like X–Aircraft Responses ...

    African Journals Online (AJOL)

    New Simulation Models for Addressing Like X–Aircraft Responses. AS Mohammed, SO Abdulkareem. Abstract. The original Monte Carlo model was previously modified for use in simulating data that conform to certain resource flow constraints. Recent encounters in communication and controls render these data absolute ...

  11. Experimental Design for Sensitivity Analysis of Simulation Models

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2001-01-01

    This introductory tutorial gives a survey on the use of statistical designs for what if-or sensitivity analysis in simulation.This analysis uses regression analysis to approximate the input/output transformation that is implied by the simulation model; the resulting regression model is also known as

  12. Object Oriented Toolbox for Modelling and Simulation of Dynamic Systems

    DEFF Research Database (Denmark)

    Thomsen, Per Grove; Poulsen, Mikael Zebbelin; Wagner, Falko Jens

    1999-01-01

    Design and Implementation of a simulation toolbox based on Object Oriented modelling Techniques.Experimental implementation in C++ using the Godess ODE-solution platform.......Design and Implementation of a simulation toolbox based on Object Oriented modelling Techniques.Experimental implementation in C++ using the Godess ODE-solution platform....

  13. Exploiting Modelling and Simulation in Support of Cyber Defence

    NARCIS (Netherlands)

    Klaver, M.H.A.; Boltjes, B.; Croom-Jonson, S.; Jonat, F.; Çankaya, Y.

    2014-01-01

    The rapidly evolving environment of Cyber threats against the NATO Alliance has necessitated a renewed focus on the development of Cyber Defence policy and capabilities. The NATO Modelling and Simulation Group is looking for ways to leverage Modelling and Simulation experience in research, analysis

  14. Model simulations of rainfall over southern Africa and its eastern ...

    African Journals Online (AJOL)

    Rainfall simulations over southern and tropical Africa in the form of low-resolution Atmospheric Model Intercomparison Project (AMIP) simulations and higher resolution National Centre for Environmental Prediction (NCEP) reanalysis downscalings are presented and evaluated in this paper. The model used is the ...

  15. Bio-logic builder: a non-technical tool for building dynamical, qualitative models.

    Science.gov (United States)

    Helikar, Tomáš; Kowal, Bryan; Madrahimov, Alex; Shrestha, Manish; Pedersen, Jay; Limbu, Kahani; Thapa, Ishwor; Rowley, Thaine; Satalkar, Rahul; Kochi, Naomi; Konvalina, John; Rogers, Jim A

    2012-01-01

    Computational modeling of biological processes is a promising tool in biomedical research. While a large part of its potential lies in the ability to integrate it with laboratory research, modeling currently generally requires a high degree of training in mathematics and/or computer science. To help address this issue, we have developed a web-based tool, Bio-Logic Builder, that enables laboratory scientists to define mathematical representations (based on a discrete formalism) of biological regulatory mechanisms in a modular and non-technical fashion. As part of the user interface, generalized "bio-logic" modules have been defined to provide users with the building blocks for many biological processes. To build/modify computational models, experimentalists provide purely qualitative information about a particular regulatory mechanisms as is generally found in the laboratory. The Bio-Logic Builder subsequently converts the provided information into a mathematical representation described with Boolean expressions/rules. We used this tool to build a number of dynamical models, including a 130-protein large-scale model of signal transduction with over 800 interactions, influenza A replication cycle with 127 species and 200+ interactions, and mammalian and budding yeast cell cycles. We also show that any and all qualitative regulatory mechanisms can be built using this tool.

  16. Qualitative models to predict impacts of human interventions in a wetland ecosystem

    Directory of Open Access Journals (Sweden)

    S. Loiselle

    2002-07-01

    Full Text Available The large shallow wetlands that dominate much of the South American continent are rich in biodiversity and complexity. Many of these undamaged ecosystems are presently being examined for their potential economic utility, putting pressure on local authorities and the conservation community to find ways of correctly utilising the available natural resources without compromising the ecosystem functioning and overall integrity. Contrary to many northern hemisphere ecosystems, there have been little long term ecological studies of these systems, leading to a lack of quantitative data on which to construct ecological or resource use models. As a result, decision makers, even well meaning ones, have difficulty in determining if particular economic activities can potentially cause significant damage to the ecosystem and how one should go about monitoring the impacts of such activities. While the direct impact of many activities is often known, the secondary indirect impacts are usually less clear and can depend on local ecological conditions.

    The use of qualitative models is a helpful tool to highlight potential feedback mechanisms and secondary effects of management action on ecosystem integrity. The harvesting of a single, apparently abundant, species can have indirect secondary effects on key trophic and abiotic compartments. In this paper, loop model analysis is used to qualitatively examine secondary effects of potential economic activities in a large wetland area in northeast Argentina, the Esteros del Ibera. Based on interaction with local actors together with observed ecological information, loop models were constructed to reflect relationships between biotic and abiotic compartments. A series of analyses were made to study the effect of different economic scenarios on key ecosystem compartments. Important impacts on key biotic compartments (phytoplankton, zooplankton, ichthyofauna, aquatic macrophytes and on the abiotic environment

  17. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, A.; Jauch, Clemens; Soerensen, P.

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...... provides a description of the wind turbine modelling, both at a component level and at a system level....

  18. A heuristic simulation model of Lake Ontario circulation and mass balance transport

    Science.gov (United States)

    McKenna, J.E.; Chalupnicki, M.A.

    2011-01-01

    The redistribution of suspended organisms and materials by large-scale currents is part of natural ecological processes in large aquatic systems but can contribute to ecosystem disruption when exotic elements are introduced into the system. Toxic compounds and planktonic organisms spend various lengths of time in suspension before settling to the bottom or otherwise being removed. We constructed a simple physical simulation model, including the influence of major tributaries, to qualitatively examine circulation patterns in Lake Ontario. We used a simple mass balance approach to estimate the relative water input to and export from each of 10 depth regime-specific compartments (nearshore vs. offshore) comprising Lake Ontario. Despite its simplicity, our model produced circulation patterns similar to those reported by more complex studies in the literature. A three-gyre pattern, with the classic large counterclockwise central lake circulation, and a simpler two-gyre system were both observed. These qualitative simulations indicate little offshore transport along the south shore, except near the mouths of the Niagara River and Oswego River. Complex flow structure was evident, particularly near the Niagara River mouth and in offshore waters of the eastern basin. Average Lake Ontario residence time is 8 years, but the fastest model pathway indicated potential transport of plankton through the lake in as little as 60 days. This simulation illustrates potential invasion pathways and provides rough estimates of planktonic larval dispersal or chemical transport among nearshore and offshore areas of Lake Ontario. ?? 2011 Taylor & Francis.

  19. Deflagration to Detonation Transition (DDT) Simulations of HMX Powder Using the HERMES Model

    Science.gov (United States)

    White, Bradley; Reaugh, John; Tringe, Joseph

    2017-06-01

    We performed computer simulations of DDT experiments with Class I HMX powder using the HERMES model (High Explosive Response to MEchanical Stimulus) in ALE3D. Parameters for the model were fitted to the limited available mechanical property data of the low-density powder, and to the Shock to Detonation Transition (SDT) test results. The DDT tests were carried out in steel-capped polycarbonate tubes. This arrangement permits direct observation of the event using both flash X-ray radiography and high speed camera imaging, and provides a stringent test of the model. We found the calculated detonation transition to be qualitatively similar to experiment. Through simulation we also explored the effects of confinement strength, the HMX particle size distribution and porosity on the computed detonation transition location. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.

  20. System-level modeling and simulation of the cell culture microfluidic biochip ProCell

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2010-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory. There are two technologies for the microfluidic biochips: droplet-based and flow-based. In this paper we are interested in flow-based microfluidic biochips, where the liquid flows continuously through pre......-defined micro-channels using valves and pumps. We present an approach to the system-level modeling and simulation of a cell culture microfluidic biochip called ProCell, Programmable Cell Culture Chip. ProCell contains a cell culture chamber, which is envisioned to run 256 simultaneous experiments (viewed...... and a comprehensive fault model that captures permanent faults occurring during chip operation. Using the proposed modeling and simulation framework, we perform an architectural level evaluation of two cell culture chamber implementations. A qualitative success metric is also proposed to evaluate chip performance...

  1. Coupled Monte Carlo simulation and Copula theory for uncertainty analysis of multiphase flow simulation models.

    Science.gov (United States)

    Jiang, Xue; Na, Jin; Lu, Wenxi; Zhang, Yu

    2017-11-01

    Simulation-optimization techniques are effective in identifying an optimal remediation strategy. Simulation models with uncertainty, primarily in the form of parameter uncertainty with different degrees of correlation, influence the reliability of the optimal remediation strategy. In this study, a coupled Monte Carlo simulation and Copula theory is proposed for uncertainty analysis of a simulation model when parameters are correlated. Using the self-adaptive weight particle swarm optimization Kriging method, a surrogate model was constructed to replace the simulation model and reduce the computational burden and time consumption resulting from repeated and multiple Monte Carlo simulations. The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) were employed to identify whether the t Copula function or the Gaussian Copula is the optimal Copula function to match the relevant structure of the parameters. The results show that both the AIC and BIC values of the t Copula function are less than those of the Gaussian Copula function. This indicates that the t Copula function is the optimal function for matching the relevant structure of the parameters. The outputs of the simulation model when parameter correlation was considered and when it was ignored were compared. The results show that the amplitude of the fluctuation interval when parameter correlation was considered is less than the corresponding amplitude when parameter estimation was ignored. Moreover, it was demonstrated that considering the correlation among parameters is essential for uncertainty analysis of a simulation model, and the results of uncertainty analysis should be incorporated into the remediation strategy optimization process.

  2. Cooperatif Learning Models Simulation : From Abstract to Concrete

    Directory of Open Access Journals (Sweden)

    Agustini Ketut

    2018-01-01

    Full Text Available This study aimed to develop a simulation of cooperative learning model that used students as prospective teachers in improving the quality of learning, especially for preparedness in the classroom of the microteaching learning. A wider range of outcomes can be used more widely by teachers and lecturers in order to improve the professionalism as educators. The method used is research and development (R&D, using Dick & Carey development model. To produce as expected, there are several steps that must be done through global research, among others, do steps (a conduct in-depth theoretical study related to the simulation software that will be generated based on cooperative learning models to be developed , (b formulate figure simulation software system is based on the results of theoretical study and (c conduct a formative evaluation is done by content expert, design expert, and media expert to the validity of the simulation media, one to one student evaluation, small group evaluation and field trial evaluation. Simulation results showed that the Cooperative Learning Model can simulated three models by well. Student response through the simulation models is very positive by 60 % and 40% positive. The implication of this research result is that student of teacher candidate can apply cooperative learning model well when teaching real in training school hence student need to be given real simulation example how cooperative learning is implemented in class.

  3. MOVES (MOTOR VEHICLE EMISSION SIMULATOR) MODEL ...

    Science.gov (United States)

    A computer model, intended to eventually replace the MOBILE model and to incorporate the NONROAD model, that will provide the ability to estimate criteria and toxic air pollutant emission factors and emission inventories that are specific to the areas and time periods of interest, at scales ranging from local to national. Development of a new emission factor and inventory model for mobile source emissions. The model will be used by air pollution modelers within EPA, and at the State and local levels.

  4. Induction generator models in dynamic simulation tools

    DEFF Research Database (Denmark)

    Knudsen, Hans; Akhmatov, Vladislav

    1999-01-01

    For AC network with large amount of induction generators (windmills) the paper demonstrates a significant discrepancy in the simulated voltage recovery after fault in weak networks when comparing dynamic and transient stability descriptions and the reasons of discrepancies are explained. It is fo......For AC network with large amount of induction generators (windmills) the paper demonstrates a significant discrepancy in the simulated voltage recovery after fault in weak networks when comparing dynamic and transient stability descriptions and the reasons of discrepancies are explained...... to a tunny generator through a shaft....

  5. Optical modeling and simulation of thin-film photovoltaic devices

    CERN Document Server

    Krc, Janez

    2013-01-01

    In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices provides readers with a thorough guide to performing optical modeling and simulations of thin-film solar cells and PV modules. It offers insight on examples of existing optical models

  6. The invaluable benefits of modeling and simulation in our lives

    Energy Technology Data Exchange (ETDEWEB)

    Lorencez, C., E-mail: carlos.lorencez@opg.com [Ontario Power Generation, Nuclear Safety Div., Pickering, Ontario (Canada)

    2015-07-01

    'Full text:' In general terms, we associate the words 'modeling and simulation' with semi-ideal mathematical models reproducing complex Engineering problems. However, the use of modeling and simulation is much more extensive than that: it is applied on a daily basis in almost every front of Science, from sociology and biology to climate change, medicine, robotics, war strategies, etc. It is also being applied by our frontal lobe when we make decisions. The results of these exercises on modeling and simulation have had invaluable benefits on our well being, and we are just at the beginning. (author)

  7. The invaluable benefits of modeling and simulation in our lives

    International Nuclear Information System (INIS)

    Lorencez, C.

    2015-01-01

    'Full text:' In general terms, we associate the words 'modeling and simulation' with semi-ideal mathematical models reproducing complex Engineering problems. However, the use of modeling and simulation is much more extensive than that: it is applied on a daily basis in almost every front of Science, from sociology and biology to climate change, medicine, robotics, war strategies, etc. It is also being applied by our frontal lobe when we make decisions. The results of these exercises on modeling and simulation have had invaluable benefits on our well being, and we are just at the beginning. (author)

  8. Governance arrangements for IT project portfolio management qualitative insights and a quantitative modeling approach

    CERN Document Server

    Frey, Thorsten

    2014-01-01

    Due to the growing importance of IT-based innovations, contemporary firms face an excessive number of proposals for IT projects. As typically only a fraction of these projects can be implemented with the given capacity, IT project portfolio management as a relatively new discipline has received growing attention in research and practice in recent years.?Thorsten Frey demonstrates how companies are struggling to find the right balance between local autonomy and central overview about all projects in the organization. In this context, impacts of different contextual factors on the design of governance arrangements for IT project portfolio management are demonstrated. Moreover, consequences of the use of different organizational designs are analyzed. The author presents insights from a qualitative empirical study as well as a simulative approach.

  9. Dynamic models of staged gasification processes. Documentation of gasification simulator; Dynamiske modeller a f trinopdelte forgasningsprocesser. Dokumentation til forgasser simulator

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-15

    In connection with the ERP project 'Dynamic modelling of staged gasification processes' a gasification simulator has been constructed. The simulator consists of: a mathematical model of the gasification process developed at Technical University of Denmark, a user interface programme, IGSS, and a communication interface between the two programmes. (BA)

  10. A study for production simulation model generation system based on data model at a shipyard

    Directory of Open Access Journals (Sweden)

    Myung-Gi Back

    2016-09-01

    Full Text Available Simulation technology is a type of shipbuilding product lifecycle management solution used to support production planning or decision-making. Normally, most shipbuilding processes are consisted of job shop production, and the modeling and simulation require professional skills and experience on shipbuilding. For these reasons, many shipbuilding companies have difficulties adapting simulation systems, regardless of the necessity for the technology. In this paper, the data model for shipyard production simulation model generation was defined by analyzing the iterative simulation modeling procedure. The shipyard production simulation data model defined in this study contains the information necessary for the conventional simulation modeling procedure and can serve as a basis for simulation model generation. The efficacy of the developed system was validated by applying it to the simulation model generation of the panel block production line. By implementing the initial simulation model generation process, which was performed in the past with a simulation modeler, the proposed system substantially reduced the modeling time. In addition, by reducing the difficulties posed by different modeler-dependent generation methods, the proposed system makes the standardization of the simulation model quality possible.

  11. Application of Hidden Markov Models in Biomolecular Simulations.

    Science.gov (United States)

    Shukla, Saurabh; Shamsi, Zahra; Moffett, Alexander S; Selvam, Balaji; Shukla, Diwakar

    2017-01-01

    Hidden Markov models (HMMs) provide a framework to analyze large trajectories of biomolecular simulation datasets. HMMs decompose the conformational space of a biological molecule into finite number of states that interconvert among each other with certain rates. HMMs simplify long timescale trajectories for human comprehension, and allow comparison of simulations with experimental data. In this chapter, we provide an overview of building HMMs for analyzing bimolecular simulation datasets. We demonstrate the procedure for building a Hidden Markov model for Met-enkephalin peptide simulation dataset and compare the timescales of the process.

  12. A View on Future Building System Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  13. Simple models for the simulation of submarine melt for a Greenland glacial system model

    Directory of Open Access Journals (Sweden)

    J. Beckmann

    2018-01-01

    Full Text Available Two hundred marine-terminating Greenland outlet glaciers deliver more than half of the annually accumulated ice into the ocean and have played an important role in the Greenland ice sheet mass loss observed since the mid-1990s. Submarine melt may play a crucial role in the mass balance and position of the grounding line of these outlet glaciers. As the ocean warms, it is expected that submarine melt will increase, potentially driving outlet glaciers retreat and contributing to sea level rise. Projections of the future contribution of outlet glaciers to sea level rise are hampered by the necessity to use models with extremely high resolution of the order of a few hundred meters. That requirement in not only demanded when modeling outlet glaciers as a stand alone model but also when coupling them with high-resolution 3-D ocean models. In addition, fjord bathymetry data are mostly missing or inaccurate (errors of several hundreds of meters, which questions the benefit of using computationally expensive 3-D models for future predictions. Here we propose an alternative approach built on the use of a computationally efficient simple model of submarine melt based on turbulent plume theory. We show that such a simple model is in reasonable agreement with several available modeling studies. We performed a suite of experiments to analyze sensitivity of these simple models to model parameters and climate characteristics. We found that the computationally cheap plume model demonstrates qualitatively similar behavior as 3-D general circulation models. To match results of the 3-D models in a quantitative manner, a scaling factor of the order of 1 is needed for the plume models. We applied this approach to model submarine melt for six representative Greenland glaciers and found that the application of a line plume can produce submarine melt compatible with observational data. Our results show that the line plume model is more appropriate than the cone plume

  14. Calibration of the simulation model of the VINCY cyclotron magnet

    Directory of Open Access Journals (Sweden)

    Ćirković Saša

    2002-01-01

    Full Text Available The MERMAID program will be used to isochronise the nominal magnetic field of the VINCY Cyclotron. This program simulates the response, i. e. calculates the magnetic field, of a previously defined model of a magnet. The accuracy of 3D field calculation depends on the density of the grid points in the simulation model grid. The size of the VINCY Cyclotron and the maximum number of grid points in the XY plane limited by MERMAID define the maximumobtainable accuracy of field calculations. Comparisons of the field simulated with maximum obtainable accuracy with the magnetic field measured in the first phase of the VINCY Cyclotron magnetic field measurements campaign has shown that the difference between these two fields is not as small as required. Further decrease of the difference between these fields is obtained by the simulation model calibration, i. e. by adjusting the current through the main coils in the simulation model.

  15. Methodology of modeling and measuring computer architectures for plasma simulations

    Science.gov (United States)

    Wang, L. P. T.

    1977-01-01

    A brief introduction to plasma simulation using computers and the difficulties on currently available computers is given. Through the use of an analyzing and measuring methodology - SARA, the control flow and data flow of a particle simulation model REM2-1/2D are exemplified. After recursive refinements the total execution time may be greatly shortened and a fully parallel data flow can be obtained. From this data flow, a matched computer architecture or organization could be configured to achieve the computation bound of an application problem. A sequential type simulation model, an array/pipeline type simulation model, and a fully parallel simulation model of a code REM2-1/2D are proposed and analyzed. This methodology can be applied to other application problems which have implicitly parallel nature.

  16. Modeling and simulation of Indus-2 RF feedback control system

    International Nuclear Information System (INIS)

    Sharma, D.; Bagduwal, P.S.; Tiwari, N.; Lad, M.; Hannurkar, P.R.

    2012-01-01

    Indus-2 synchrotron radiation source has four RF stations along with their feedback control systems. For higher beam energy and current operation amplitude and phase feedback control systems of Indus-2 are being upgraded. To understand the behaviour of amplitude and phase control loop under different operating conditions, modelling and simulation of RF feedback control system is done. RF cavity baseband I/Q model has been created due to its close correspondence with actual implementation and better computational efficiency which makes the simulation faster. Correspondence between cavity baseband and RF model is confirmed by comparing their simulation results. Low Level RF (LLRF) feedback control system simulation is done using the same cavity baseband I/Q model. Error signals are intentionally generated and response of the closed loop system is observed. Simulation will help us in optimizing parameters of upgraded LLRF system for higher beam energy and current operation. (author)

  17. MODELING AND SIMULATION OF INDUSTRIAL FORMALDEHYDE ABSORBERS

    NARCIS (Netherlands)

    WINKELMAN, JGM; SIJBRING, H; BEENACKERS, AACM; DEVRIES, ET

    1992-01-01

    The industrially important process of formaldehyde absorption in water constitutes a case of multicomponent mass transfer with multiple reactions and considerable heat effects. A stable solution algorithm is developed to simulate the performance of industrial absorbers for this process using a

  18. Modelling and simulation of surface water waves

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Westhuis, J.H.

    2002-01-01

    The evolution of waves on the surface of a layer of fluid is governed by non-linear effects from surface deformations and dispersive effects from the interaction with the interior fluid motion. Several simulation tools are described in this paper and compared with real life experiments in large

  19. Model and simulation of Krause model in dynamic open network

    Science.gov (United States)

    Zhu, Meixia; Xie, Guangqiang

    2017-08-01

    The construction of the concept of evolution is an effective way to reveal the formation of group consensus. This study is based on the modeling paradigm of the HK model (Hegsekmann-Krause). This paper analyzes the evolution of multi - agent opinion in dynamic open networks with member mobility. The results of the simulation show that when the number of agents is constant, the interval distribution of the initial distribution will affect the number of the final view, The greater the distribution of opinions, the more the number of views formed eventually; The trust threshold has a decisive effect on the number of views, and there is a negative correlation between the trust threshold and the number of opinions clusters. The higher the connectivity of the initial activity group, the more easily the subjective opinion in the evolution of opinion to achieve rapid convergence. The more open the network is more conducive to the unity of view, increase and reduce the number of agents will not affect the consistency of the group effect, but not conducive to stability.

  20. MODELING OF HIGH STORAGE SHEET DEPOT WITH PLANT SIMULATION

    Directory of Open Access Journals (Sweden)

    Andrzej Jardzioch

    2013-03-01

    Full Text Available Manufacturing processes are becoming increasingly automated. Introduction of innovative solutions often necessitate processing very large number of signals from various devices. Correctness tests of the components configuration becomes a compiled operation requiring vast expenditure of time and knowledge. The models may be a mathematical reflection of the actual object. Many actions can be computer-assisted to varying degree. One example is construction of simulation models. These can also be simulation models developed in advanced software. The stages of creating a model may be purely random. This paper aims at a closer analysis of the simulation model based on the high storage sheet depot modeling using Plant Simulation software. The results of analysis can be used for optimization, but this stage is a separate issue.

  1. Modelling of thermalhydraulics and reactor physics in simulators

    International Nuclear Information System (INIS)

    Miettinen, J.

    1994-01-01

    The evolution of thermalhydraulic analysis methods for analysis and simulator purposes has brought closer the thermohydraulic models in both application areas. In large analysis codes like RELAP5, TRAC, CATHARE and ATHLET the accuracy for calculating complicated phenomena has been emphasized, but in spite of large development efforts many generic problems remain unsolved. For simulator purposes fast running codes have been developed and these include only limited assessment efforts. But these codes have more simulator friendly features than large codes, like portability and modular code structure. In this respect the simulator experiences with SMABRE code are discussed. Both large analysis codes and special simulator codes have their advances in simulator applications. The evolution of reactor physical calculation methods in simulator applications has started from simple point kinetic models. For analysis purposes accurate 1-D and 3-D codes have been developed being capable for fast and complicated transients. For simulator purposes capability for simulation of instruments has been emphasized, but the dynamic simulation capability has been less significant. The approaches for 3-dimensionality in simulators requires still quite much development, before the analysis accuracy is reached. (orig.) (8 refs., 2 figs., 2 tabs.)

  2. FISHRENT; Bio-economic simulation and optimisation model

    NARCIS (Netherlands)

    Salz, P.; Buisman, F.C.; Soma, K.; Frost, H.; Accadia, P.; Prellezo, R.

    2011-01-01

    Key findings: The FISHRENT model is a major step forward in bio-economic model-ling, combining features that have not been fully integrated in earlier models: 1- Incorporation of any number of species (or stock) and/or fleets 2- Integration of simulation and optimisation over a period of 25 years 3-

  3. Tuning hydrological models for ecological modeling - improving simulations of low flows critical to stream ecology

    DEFF Research Database (Denmark)

    Olsen, Martin; Troldborg, Lars; Boegh, Eva

    2008-01-01

    The consequences of using simulated discharge from a conventional hydrological model as input in stream physical habitat modelling was investigated using output from the Danish national hydrological model and a physical habitat model of three small streams. It was found that low flow simulation...... errors could have large impact on simulation of physical habitat conditions. If these two models are to be used to assess groundwater abstraction impact on physical habitat conditions the hydrological model should be tuned to the purpose...

  4. Tuning hydrological models for ecological modeling – improving simulations of low flows critical to stream ecology

    DEFF Research Database (Denmark)

    Olsen, Martin; Troldborg, Lars; Boegh, Eva

    2008-01-01

    The consequences of using simulated discharge from a conventional hydrological model as input in stream physical habitat modelling was investigated using output from the Danish national hydrological model and a physical habitat model of three small streams. It was found that low flow simulation...... errors could have large impact on simulation of physical habitat conditions. If these two models are to be used to assess groundwater abstraction impact on physical habitat conditions the hydrological model should be tuned to the purpose...

  5. Social deprivation and burden of influenza: Testing hypotheses and gaining insights from a simulation model for the spread of influenza

    Directory of Open Access Journals (Sweden)

    Ayaz Hyder

    2015-06-01

    Full Text Available Factors associated with the burden of influenza among vulnerable populations have mainly been identified using statistical methodologies. Complex simulation models provide mechanistic explanations, in terms of spatial heterogeneity and contact rates, while controlling other factors and may be used to better understand statistical patterns and, ultimately, design optimal population-level interventions. We extended a sophisticated simulation model, which was applied to forecast epidemics and validated for predictive ability, to identify mechanisms for the empirical relationship between social deprivation and the burden of influenza. Our modeled scenarios and associated epidemic metrics systematically assessed whether neighborhood composition and/or spatial arrangement could qualitatively replicate this empirical relationship. We further used the model to determine consequences of local-scale heterogeneities on larger scale disease spread. Our findings indicated that both neighborhood composition and spatial arrangement were critical to qualitatively match the empirical relationship of interest. Also, when social deprivation was fully included in the model, we observed lower age-based attack rates and greater delay in epidemic peak week in the most socially deprived neighborhoods. Insights from simulation models complement current understandings from statistical-based association studies. Additional insights from our study are: (1 heterogeneous spatial arrangement of neighborhoods is a necessary condition for simulating observed disparities in the burden of influenza and (2 unmeasured factors may lead to a better quantitative match between simulated and observed rate ratio in the burden of influenza between the most and least socially deprived populations.

  6. Improving hydrological simulations by incorporating GRACE data for model calibration

    Science.gov (United States)

    Bai, Peng; Liu, Xiaomang; Liu, Changming

    2018-02-01

    Hydrological model parameters are typically calibrated by observed streamflow data. This calibration strategy is questioned when the simulated hydrological variables of interest are not limited to streamflow. Well-performed streamflow simulations do not guarantee the reliable reproduction of other hydrological variables. One of the reasons is that hydrological model parameters are not reasonably identified. The Gravity Recovery and Climate Experiment (GRACE)-derived total water storage change (TWSC) data provide an opportunity to constrain hydrological model parameterizations in combination with streamflow observations. In this study, a multi-objective calibration scheme based on GRACE-derived TWSC and streamflow observations was compared with the traditional single-objective calibration scheme based on only streamflow simulations. Two hydrological models were employed on 22 catchments in China with different climatic conditions. The model evaluations were performed using observed streamflows, GRACE-derived TWSC, and actual evapotranspiration (ET) estimates from flux towers and from the water balance approach. Results showed that the multi-objective calibration scheme provided more reliable TWSC and ET simulations without significant deterioration in the accuracy of streamflow simulations than the single-objective calibration. The improvement in TWSC and ET simulations was more significant in relatively dry catchments than in relatively wet catchments. In addition, hydrological models calibrated using GRACE-derived TWSC data alone cannot obtain accurate runoff simulations in ungauged catchments. This study highlights the importance of including additional constraints in addition to streamflow observations to improve performances of hydrological models.

  7. Methodology for characterizing modeling and discretization uncertainties in computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    ALVIN,KENNETH F.; OBERKAMPF,WILLIAM L.; RUTHERFORD,BRIAN M.; DIEGERT,KATHLEEN V.

    2000-03-01

    This research effort focuses on methodology for quantifying the effects of model uncertainty and discretization error on computational modeling and simulation. The work is directed towards developing methodologies which treat model form assumptions within an overall framework for uncertainty quantification, for the purpose of developing estimates of total prediction uncertainty. The present effort consists of work in three areas: framework development for sources of uncertainty and error in the modeling and simulation process which impact model structure; model uncertainty assessment and propagation through Bayesian inference methods; and discretization error estimation within the context of non-deterministic analysis.

  8. Simulator for candu600 fuel handling system. the experimental model

    International Nuclear Information System (INIS)

    Marinescu, N.; Predescu, D.; Valeca, S.

    2013-01-01

    A main way to increase the nuclear plant safety is related to selection and continuous training of the operation staff. In this order, the computer programs for training, testing and evaluation of the knowledge get, or training simulators including the advanced analytical models of the technological systems are using. The Institute for Nuclear Research from Pitesti, Romania intend to design and build an Fuel Handling Simulator at his F/M Head Test Rig facility, that will be used for training of operating personnel. This paper presents simulated system, advantages to use the simulator, and the experimental model of simulator, that has been built to allows setting of the requirements and fabrication details, especially for the software kit that will be designed and implement on main simulator. (authors)

  9. Nonlinear mirror mode dynamics: Simulations and modeling

    Czech Academy of Sciences Publication Activity Database

    Califano, F.; Hellinger, Petr; Kuznetsov, E.; Passot, T.; Sulem, P. L.; Trávníček, Pavel

    2008-01-01

    Roč. 113, - (2008), A08219/1-A08219/20 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300420702; GA AV ČR IAA300420602 Grant - others:PECS(CZ) 98024 Institutional research plan: CEZ:AV0Z30420517 Keywords : mirror instability * nonlinear evolution * numerical simulations * magnetic holes * mirror structures * kinetic plasma instabilities Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.147, year: 2008

  10. Simulation Model of Traffic Jam at Crossroads

    OpenAIRE

    Mladen Kalajžić; Katica Miloš; Mirela Muić

    2002-01-01

    Traffic congestion is one of the major problems in most cities.It is the consequence of unavoidable motorization, butalso, in many cases, of improper solutions considering constructionof roads or organisation of traffic.This paper deals with one problematic crossroad in thetown of Zadar in which traffic jams occur due to poor organisationof traffic. Using mathematical simulation, the first partproves that traffic jams will certainly occur, and in the secondpart, crossroads signalling is consi...

  11. Phase Equilibrium Modeling for Shale Production Simulation

    DEFF Research Database (Denmark)

    Sandoval Lemus, Diego Rolando

    calculation tools for phase equilibrium in porous media with capillary pressure and adsorption effects. Analysis using these tools have shown that capillary pressure and adsorption have non-negligible effects on phase equilibrium in shale. As general tools, they can be used to calculate phase equilibrium...... in other porous media as well. The compositional simulator with added capillary pressure effects on phase equilibrium can be used for evaluating the effects in dynamic and more complex scenarios....

  12. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    : a zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently Mat...

  13. Numerical simulation of binary collisions using a modified surface tension model with particle method

    International Nuclear Information System (INIS)

    Sun Zhongguo; Xi Guang; Chen Xi

    2009-01-01

    The binary collision of liquid droplets is of both practical importance and fundamental value in computational fluid mechanics. We present a modified surface tension model within the moving particle semi-implicit (MPS) method, and carry out two-dimensional simulations to investigate the mechanisms of coalescence and separation of the droplets during binary collision. The modified surface tension model improves accuracy and convergence. A mechanism map is established for various possible deformation pathways encountered during binary collision, as the impact speed is varied; a new pathway is reported when the collision speed is critical. In addition, eccentric collisions are simulated and the effect of the rotation of coalesced particle is explored. The results qualitatively agree with experiments and the numerical protocol may find applications in studying free surface flows and interface deformation

  14. Model for transient simulation in a PWR steam circuit

    International Nuclear Information System (INIS)

    Mello, L.A. de.

    1982-11-01

    A computer code (SURF) was developed and used to simulate pressure losses along the tubes of the main steam circuit of a PWR nuclear power plant, and the steam flow through relief and safety valves when pressure reactors its thresholds values. A thermodynamic model of turbines (high and low pressure), and its associated components are simulated too. The SURF computer code was coupled to the GEVAP computer code, complementing the simulation of a PWR nuclear power plant main steam circuit. (Author) [pt

  15. Simulation of reactive geochemical transport in groundwater using a semi-analytical screening model

    Science.gov (United States)

    McNab, Walt W.

    1997-10-01

    A reactive geochemical transport model, based on a semi-analytical solution to the advective-dispersive transport equation in two dimensions, is developed as a screening tool for evaluating the impact of reactive contaminants on aquifer hydrogeochemistry. Because the model utilizes an analytical solution to the transport equation, it is less computationally intensive than models based on numerical transport schemes, is faster, and it is not subject to numerical dispersion effects. Although the assumptions used to construct the model preclude consideration of reactions between the aqueous and solid phases, thermodynamic mineral saturation indices are calculated to provide qualitative insight into such reactions. Test problems involving acid mine drainage and hydrocarbon biodegradation signatures illustrate the utility of the model in simulating essential hydrogeochemical phenomena.

  16. Development of a Simulation Model for Swimming with Diving Fins

    Directory of Open Access Journals (Sweden)

    Motomu Nakashima

    2018-02-01

    Full Text Available The simulation model to assess the performance of diving fin was developed by extending the swimming human simulation model SWUM. A diving fin was modeled as a series of five rigid plates and connected to the human model by springs and dampers. These plates were connected to each other by virtual springs and dampers, and fin’s bending property was represented by springs and dampers as well. An actual diver’s swimming motion with fins was acquired by a motion capture experiment. In order to determine the bending property of the fin, two bending tests on land were conducted. In addition, an experiment was conducted in order to determine the fluid force coefficients in the fluid force model for the fin. Finally, using all measured and identified information, a simulation, in which the experimental situation was reproduced, was carried out. It was confirmed that the diver in the simulation propelled forward in the water successfully.

  17. Systems modeling and simulation applications for critical care medicine.

    Science.gov (United States)

    Dong, Yue; Chbat, Nicolas W; Gupta, Ashish; Hadzikadic, Mirsad; Gajic, Ognjen

    2012-06-15

    Critical care delivery is a complex, expensive, error prone, medical specialty and remains the focal point of major improvement efforts in healthcare delivery. Various modeling and simulation techniques offer unique opportunities to better understand the interactions between clinical physiology and care delivery. The novel insights gained from the systems perspective can then be used to develop and test new treatment strategies and make critical care delivery more efficient and effective. However, modeling and simulation applications in critical care remain underutilized. This article provides an overview of major computer-based simulation techniques as applied to critical care medicine. We provide three application examples of different simulation techniques, including a) pathophysiological model of acute lung injury, b) process modeling of critical care delivery, and c) an agent-based model to study interaction between pathophysiology and healthcare delivery. Finally, we identify certain challenges to, and opportunities for, future research in the area.

  18. Simulation of finite size effects of the fiber bundle model

    Science.gov (United States)

    Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui

    2018-01-01

    In theory, the macroscopic fracture of materials should correspond with the thermodynamic limit of the fiber bundle model. However, the simulation of a fiber bundle model with an infinite size is unrealistic. To study the finite size effects of the fiber bundle model, fiber bundle models of various size are simulated in detail. The effects of system size on the constitutive behavior, critical stress, maximum avalanche size, avalanche size distribution, and increased step number of external load are explored. The simulation results imply that there is no feature size or cut size for macroscopic mechanical and statistical properties of the model. The constitutive curves near the macroscopic failure for various system size can collapse well with a simple scaling relationship. Simultaneously, the introduction of a simple extrapolation method facilitates the acquisition of more accurate simulation results in a large-limit system, which is better for comparison with theoretical results.

  19. Modelling and simulation of superalloys. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Rogal, Jutta; Hammerschmidt, Thomas; Drautz, Ralf (eds.)

    2014-07-01

    Superalloys are multi-component materials with complex microstructures that offer unique properties for high-temperature applications. The complexity of the superalloy materials makes it particularly challenging to obtain fundamental insight into their behaviour from the atomic structure to turbine blades. Recent advances in modelling and simulation of superalloys contribute to a better understanding and prediction of materials properties and therefore offer guidance for the development of new alloys. This workshop will give an overview of recent progress in modelling and simulation of materials for superalloys, with a focus on single crystal Ni-base and Co-base alloys. Topics will include electronic structure methods, atomistic simulations, microstructure modelling and modelling of microstructural evolution, solidification and process simulation as well as the modelling of phase stability and thermodynamics.

  20. Robust Design of Motor PWM Control using Modeling and Simulation

    Science.gov (United States)

    Zhan, Wei

    A robust design method is developed for Pulse Width Modulation (PWM) motor speed control. A first principle model for DC permanent magnetic motor is used to build a Simulink model for simulation and analysis. Based on the simulation result, the main factors that contributed to the average speed variation are identified using Design of Experiment (DOE). A robust solution is derived to reduce the aver age speed control variation using Response Surface Method (RSM). The robustness of the new design is verified using the simulation model.

  1. Simulation and Modeling Capability for Standard Modular Hydropower Technology

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pries, Jason L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burress, Timothy A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kao, Shih-Chieh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mobley, Miles H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Kyutae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curd, Shelaine L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tsakiris, Achilleas [Univ. of Tennessee, Knoxville, TN (United States); Mooneyham, Christian [Univ. of Tennessee, Knoxville, TN (United States); Papanicolaou, Thanos [Univ. of Tennessee, Knoxville, TN (United States); Ekici, Kivanc [Univ. of Tennessee, Knoxville, TN (United States); Whisenant, Matthew J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Welch, Tim [US Department of Energy, Washington, DC (United States); Rabon, Daniel [US Department of Energy, Washington, DC (United States)

    2017-08-01

    Grounded in the stakeholder-validated framework established in Oak Ridge National Laboratory’s SMH Exemplary Design Envelope Specification, this report on Simulation and Modeling Capability for Standard Modular Hydropower (SMH) Technology provides insight into the concepts, use cases, needs, gaps, and challenges associated with modeling and simulating SMH technologies. The SMH concept envisions a network of generation, passage, and foundation modules that achieve environmentally compatible, cost-optimized hydropower using standardization and modularity. The development of standardized modeling approaches and simulation techniques for SMH (as described in this report) will pave the way for reliable, cost-effective methods for technology evaluation, optimization, and verification.

  2. MODELING OF ANIMATED SIMULATIONS BY MAXIMA PROGRAM TOOLS

    Directory of Open Access Journals (Sweden)

    Nataliya O. Bugayets

    2015-06-01

    Full Text Available The article deals with the methodical features in training of computer simulation of systems and processes using animation. In the article the importance of visibility of educational material that combines sensory and thinking sides of cognition is noted. The concept of modeling and the process of building models has been revealed. Attention is paid to the development of skills that are essential for effective learning of animated simulation by visual aids. The graphical environment tools of the computer mathematics system Maxima for animated simulation are described. The examples of creation of models animated visual aids and their use for the development of research skills are presented.

  3. Impact of reactive settler models on simulated WWTP performance.

    Science.gov (United States)

    Gernaey, K V; Jeppsson, U; Batstone, D J; Ingildsen, P

    2006-01-01

    Including a reactive settler model in a wastewater treatment plant model allows representation of the biological reactions taking place in the sludge blanket in the settler, something that is neglected in many simulation studies. The idea of including a reactive settler model is investigated for an ASM1 case study. Simulations with a whole plant model including the non-reactive Takács settler model are used as a reference, and are compared to simulation results considering two reactive settler models. The first is a return sludge model block removing oxygen and a user-defined fraction of nitrate, combined with a non-reactive Takács settler. The second is a fully reactive ASM1 Takács settler model. Simulations with the ASM1 reactive settler model predicted a 15.3% and 7.4% improvement of the simulated N removal performance, for constant (steady-state) and dynamic influent conditions respectively. The oxygen/nitrate return sludge model block predicts a 10% improvement of N removal performance under dynamic conditions, and might be the better modelling option for ASM1 plants: it is computationally more efficient and it will not overrate the importance of decay processes in the settler.

  4. QSAR DataBank repository: open and linked qualitative and quantitative structure-activity relationship models.

    Science.gov (United States)

    Ruusmann, V; Sild, S; Maran, U

    2015-01-01

    Structure-activity relationship models have been used to gain insight into chemical and physical processes in biomedicine, toxicology, biotechnology, etc. for almost a century. They have been recognized as valuable tools in decision support workflows for qualitative and quantitative predictions. The main obstacle preventing broader adoption of quantitative structure-activity relationships [(Q)SARs] is that published models are still relatively difficult to discover, retrieve and redeploy in a modern computer-oriented environment. This publication describes a digital repository that makes in silico (Q)SAR-type descriptive and predictive models archivable, citable and usable in a novel way for most common research and applied science purposes. The QSAR DataBank (QsarDB) repository aims to make the processes and outcomes of in silico modelling work transparent, reproducible and accessible. Briefly, the models are represented in the QsarDB data format and stored in a content-aware repository (a.k.a. smart repository). Content awareness has two dimensions. First, models are organized into collections and then into collection hierarchies based on their metadata. Second, the repository is not only an environment for browsing and downloading models (the QDB archive) but also offers integrated services, such as model analysis and visualization and prediction making. The QsarDB repository unlocks the potential of descriptive and predictive in silico (Q)SAR-type models by allowing new and different types of collaboration between model developers and model users. The key enabling factor is the representation of (Q)SAR models in the QsarDB data format, which makes it easy to preserve and share all relevant data, information and knowledge. Model developers can become more productive by effectively reusing prior art. Model users can make more confident decisions by relying on supporting information that is larger and more diverse than before. Furthermore, the smart repository

  5. Comprehensive Simulation Lifecycle Management for High Performance Computing Modeling and Simulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There are significant logistical barriers to entry-level high performance computing (HPC) modeling and simulation (M IllinoisRocstar) sets up the infrastructure for...

  6. Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations

    KAUST Repository

    Siddiq, Amir

    2012-04-01

    We present a computational study of ultrasonic assisted manufacturing processes including sheet metal forming, upsetting, and wire drawing. A fully variational porous plasticity model is modified to include ultrasonic softening effects and then utilized to account for instantaneous softening when ultrasonic energy is applied during deformation. Material model parameters are identified via inverse modeling, i.e. by using experimental data. The versatility and predictive ability of the model are demonstrated and the effect of ultrasonic intensity on the manufacturing process at hand is investigated and compared qualitatively with experimental results reported in the literature. © 2011 Elsevier B.V. All rights reserved.

  7. Simulation-Based Internal Models for Safer Robots

    Directory of Open Access Journals (Sweden)

    Christian Blum

    2018-01-01

    Full Text Available In this paper, we explore the potential of mobile robots with simulation-based internal models for safety in highly dynamic environments. We propose a robot with a simulation of itself, other dynamic actors and its environment, inside itself. Operating in real time, this simulation-based internal model is able to look ahead and predict the consequences of both the robot’s own actions and those of the other dynamic actors in its vicinity. Hence, the robot continuously modifies its own actions in order to actively maintain its own safety while also achieving its goal. Inspired by the problem of how mobile robots could move quickly and safely through crowds of moving humans, we present experimental results which compare the performance of our internal simulation-based controller with a purely reactive approach as a proof-of-concept study for the practical use of simulation-based internal models.

  8. Modeling and simulation of Si crystal growth from melt

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lijun; Liu, Xin; Li, Zaoyang [National Engineering Research Center for Fluid Machinery and Compressors, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Miyazawa, Hiroaki; Nakano, Satoshi; Kakimoto, Koichi [Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan)

    2009-07-01

    A numerical simulator was developed with a global model of heat transfer for any crystal growth taking place at high temperature. Convective, conductive and radiative heat transfers in the furnace are solved together in a conjugated way by a finite volume method. A three-dimensional (3D) global model was especially developed for simulation of heat transfer in any crystal growth with 3D features. The model enables 3D global simulation be conducted with moderate requirement of computer resources. The application of this numerical simulator to a CZ growth and a directional solidification process for Si crystals, the two major production methods for crystalline Si for solar cells, was introduced. Some typical results were presented, showing the importance and effectiveness of numerical simulation in analyzing and improving these kinds of Si crystal growth processes from melt. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. COMPARISON OF RF CAVITY TRANSPORT MODELS FOR BBU SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ilkyoung Shin,Byung Yunn,Todd Satogata,Shahid Ahmed

    2011-03-01

    The transverse focusing effect in RF cavities plays a considerable role in beam dynamics for low-energy beamline sections and can contribute to beam breakup (BBU) instability. The purpose of this analysis is to examine RF cavity models in simulation codes which will be used for BBU experiments at Jefferson Lab and improve BBU simulation results. We review two RF cavity models in the simulation codes elegant and TDBBU (a BBU simulation code developed at Jefferson Lab). elegant can include the Rosenzweig-Serafini (R-S) model for the RF focusing effect. Whereas TDBBU uses a model from the code TRANSPORT which considers the adiabatic damping effect, but not the RF focusing effect. Quantitative comparisons are discussed for the CEBAF beamline. We also compare the R-S model with the results from numerical simulations for a CEBAF-type 5-cell superconducting cavity to validate the use of the R-S model as an improved low-energy RF cavity transport model in TDBBU. We have implemented the R-S model in TDBBU. It will improve BBU simulation results to be more matched with analytic calculations and experimental results.

  10. Comparison Of RF Cavity Transport Models For BBU Simulations

    International Nuclear Information System (INIS)

    Shin, Ilkyoung; Yunn, Byung; Satogata, Todd; Ahmed, Shahid

    2011-01-01

    The transverse focusing effect in RF cavities plays a considerable role in beam dynamics for low-energy beamline sections and can contribute to beam breakup (BBU) instability. The purpose of this analysis is to examine RF cavity models in simulation codes which will be used for BBU experiments at Jefferson Lab and improve BBU simulation results. We review two RF cavity models in the simulation codes elegant and TDBBU (a BBU simulation code developed at Jefferson Lab). elegant can include the Rosenzweig-Serafini (R-S) model for the RF focusing effect. Whereas TDBBU uses a model from the code TRANSPORT which considers the adiabatic damping effect, but not the RF focusing effect. Quantitative comparisons are discussed for the CEBAF beamline. We also compare the R-S model with the results from numerical simulations for a CEBAF-type 5-cell superconducting cavity to validate the use of the R-S model as an improved low-energy RF cavity transport model in TDBBU. We have implemented the R-S model in TDBBU. It will improve BBU simulation results to be more matched with analytic calculations and experimental results.

  11. Regularization modeling for large-eddy simulation of diffusion flames

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Wesseling, P.; Oñate, E.; Périaux, J.

    We analyze the evolution of a diffusion flame in a turbulent mixing layer using large-eddy simulation. The large-eddy simulation includes Leray regularization of the convective transport and approximate inverse filtering to represent the chemical source terms. The Leray model is compared to the more

  12. Computer Simulation (Microcultures): An Effective Model for Multicultural Education.

    Science.gov (United States)

    Nelson, Jorge O.

    This paper presents a rationale for using high-fidelity computer simulation in planning for and implementing effective multicultural education strategies. Using computer simulation, educators can begin to understand and plan for the concept of cultural sensitivity in delivering instruction. The model promises to emphasize teachers' understanding…

  13. Simulation models for food separation by adsorption process

    African Journals Online (AJOL)

    Separation of simulated industrial food products, by method of adsorption, has been studied. A thermodynamic approach has been applied to study the liquid adsorption where benzene and cyclohexane have been used to simulate edible oils in a system that employs silica gel as the adsorbent. Different models suggested ...

  14. Modelling of non-linear elastic tissues for surgical simulation

    NARCIS (Netherlands)

    Misra, Sarthak; Ramesh, K.T.; Okamura, Allison M.

    2010-01-01

    Realistic modelling of the interaction between surgical instruments and human organs has been recognised as a key requirement in the development of high-fidelity surgical simulators. Primarily due to computational considerations, most of the past real-time surgical simulation research has assumed

  15. Flood simulation model using XP-SWMM along Terengganu River ...

    African Journals Online (AJOL)

    Malaysia is one of the tropical countries in the world with heavy rainfall throughout the year and floods are the most common disaster in Malaysia. Flood simulation model was carried out along Terengganu River for dry and rainy seasons. The result of the simulation shows the water level reached its maximum level at the 1st ...

  16. Application of wildfire simulation models for risk analysis

    Science.gov (United States)

    Alan A. Ager; Mark A. Finney

    2009-01-01

    Wildfire simulation models are being widely used by fire and fuels specialists in the U.S. to support tactical and strategic decisions related to the mitigation of wildfire risk. Much of this application has resulted from the development of a minimum travel time (MTT) fire spread algorithm (M. Finney) that makes it computationally feasible to simulate thousands of...

  17. Teaching Behavioral Modeling and Simulation Techniques for Power Electronics Courses

    Science.gov (United States)

    Abramovitz, A.

    2011-01-01

    This paper suggests a pedagogical approach to teaching the subject of behavioral modeling of switch-mode power electronics systems through simulation by general-purpose electronic circuit simulators. The methodology is oriented toward electrical engineering (EE) students at the undergraduate level, enrolled in courses such as "Power…

  18. Communicating Insights from Complex Simulation Models: A Gaming Approach.

    Science.gov (United States)

    Vennix, Jac A. M.; Geurts, Jac L. A.

    1987-01-01

    Describes design principles followed in developing an interactive microcomputer-based simulation to study financial and economic aspects of the Dutch social security system. The main goals are to improve participants' insights into the formal simulation model, and to improve policy development skills. Plans for future research are also discussed.…

  19. Reliability modelling and simulation of switched linear system ...

    African Journals Online (AJOL)

    Thus, constructing a subsystem Markov model and matching its parameters with the specified safety factors provides the basis for the entire system analysis. For the system simulation, temporal databases and predictive control algorithm are designed. The simulation results are analyzed to assess the reliability of the system ...

  20. Simulation models for food separation by adsorption process | Aoyi ...

    African Journals Online (AJOL)

    Separation of simulated industrial food products, by method of adsorption, has been studied. A thermodynamic approach has been applied to study the liquid adsorption where benzene and cyclohexane have been used to simulate edible oils in a system that employs silica gel as the adsorbent. Different models suggested ...

  1. Overview of Computer Simulation Modeling Approaches and Methods

    Science.gov (United States)

    Robert E. Manning; Robert M. Itami; David N. Cole; Randy Gimblett

    2005-01-01

    The field of simulation modeling has grown greatly with recent advances in computer hardware and software. Much of this work has involved large scientific and industrial applications for which substantial financial resources are available. However, advances in object-oriented programming and simulation methodology, concurrent with dramatic increases in computer...

  2. Involving mental health service users in suicide-related research: a qualitative inquiry model.

    Science.gov (United States)

    Lees, David; Procter, Nicholas; Fassett, Denise; Handley, Christine

    2016-03-01

    To describe the research model developed and successfully deployed as part of a multi-method qualitative study investigating suicidal service-users' experiences of mental health nursing care. Quality mental health care is essential to limiting the occurrence and burden of suicide, however there is a lack of relevant research informing practice in this context. Research utilising first-person accounts of suicidality is of particular importance to expanding the existing evidence base. However, conducting ethical research to support this imperative is challenging. The model discussed here illustrates specific and more generally applicable principles for qualitative research regarding sensitive topics and involving potentially vulnerable service-users. Researching into mental health service users with first-person experience of suicidality requires stakeholder and institutional support, researcher competency, and participant recruitment, consent, confidentiality, support and protection. Research with service users into their experiences of sensitive issues such as suicidality can result in rich and valuable data, and may also provide positive experiences of collaboration and inclusivity. If challenges are not met, objectification and marginalisation of service-users may be reinforced, and limitations in the evidence base and service provision may be perpetuated.

  3. Wind model for offshore power simulation

    OpenAIRE

    Hervada Sala, Carme; Jarauta Bragulat, Eusebio; Gibergans Baguena, José; Buenestado Caballero, Pablo

    2015-01-01

    Offshore wind energy is an alternative energy source of increased interest. A large offshore wind farms have been planned or under construction, mainly in northern Europe. One of the points needed to be able to implement offshore projects is to characterize and model the wind for marine generation. Models are needed for the design of the most appropriate control strategies. Some attempts have been done to do so; recently these models are implemented under a wind turbine block set in Matlab/Si...

  4. A simulation of water pollution model parameter estimation

    Science.gov (United States)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  5. Space Station Solar Dynamic Module modelling and simulation

    Science.gov (United States)

    Tylim, A.

    1989-01-01

    Efforts to model and simulate the Solar Dynamic Power Module (SDPM) for the Space Station are discussed. The SDPM configuration is given and the SDPM subsytems are described, including the concentrator assembly, the fine pointing and tracking system, the power generation system, the heat rejection assembly, the electrical equipment, the interface structure and integration hardware, and the beta gimbal assembly. Performance requirements and design considerations are given. The development of models to simulate the SDPM is examined, noting research on models such as the Electric Power System Transient Analysis Model, the Electric Power System on Orbit Performance model, and a spatial flux distribution function.

  6. A quantum energy transport model for semiconductor device simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sho, Shohiro, E-mail: shoshohiro@gmail.com [Graduate School of Information Science and Technology, Osaka University, Osaka (Japan); Odanaka, Shinji [Computer Assisted Science Division, Cybermedia Center, Osaka University, Osaka (Japan)

    2013-02-15

    This paper describes numerical methods for a quantum energy transport (QET) model in semiconductors, which is derived by using a diffusion scaling in the quantum hydrodynamic (QHD) model. We newly drive a four-moments QET model similar with a classical ET model. Space discretization is performed by a new set of unknown variables. Numerical stability and convergence are obtained by developing numerical schemes and an iterative solution method with a relaxation method. Numerical simulations of electron transport in a scaled MOSFET device are discussed. The QET model allows simulations of quantum confinement transport, and nonlocal and hot-carrier effects in scaled MOSFETs.

  7. Simulation Model of Traffic Jam at Crossroads

    Directory of Open Access Journals (Sweden)

    Mladen Kalajžić

    2002-11-01

    Full Text Available Traffic congestion is one of the major problems in most cities.It is the consequence of unavoidable motorization, butalso, in many cases, of improper solutions considering constructionof roads or organisation of traffic.This paper deals with one problematic crossroad in thetown of Zadar in which traffic jams occur due to poor organisationof traffic. Using mathematical simulation, the first partproves that traffic jams will certainly occur, and in the secondpart, crossroads signalling is considered as a possible solutionwhich, if combined with intelligent control could significantlyimprove the organisation of traffic at this crossroads.

  8. Multiscale Modeling and Simulation of Material Processing

    Science.gov (United States)

    2006-07-01

    2 eysmtti) oesoplasficity ai Ms a te a s nm -9 Quantum I_ _ A erh ni Ins _me A _.-I 1 el’ -•-~~~i I da yea I , . . ’ ’’’ " lps I rLi I Its I l ms Is...deposition ( CVD ) of carbon dimers on a diamond (100) surface. The data generated by the simulations have been used to train and test neural networks. The...Mathanagopalan, Siva, "A Neural Network and Molecular Dynamics (MD) Approach for Event Probability Prediction during Chemical Vapor Deposition ( CVD ) of

  9. Simulation platform to model, optimize and design wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Iov, F.; Hansen, A.D.; Soerensen, P.; Blaabjerg, F.

    2004-03-01

    This report is a general overview of the results obtained in the project 'Electrical Design and Control. Simulation Platform to Model, Optimize and Design Wind Turbines'. The motivation for this research project is the ever-increasing wind energy penetration into the power network. Therefore, the project has the main goal to create a model database in different simulation tools for a system optimization of the wind turbine systems. Using this model database a simultaneous optimization of the aerodynamic, mechanical, electrical and control systems over the whole range of wind speeds and grid characteristics can be achieved. The report is structured in six chapters. First, the background of this project and the main goals as well as the structure of the simulation platform is given. The main topologies for wind turbines, which have been taken into account during the project, are briefly presented. Then, the considered simulation tools namely: HAWC, DIgSILENT, Saber and Matlab/Simulink have been used in this simulation platform are described. The focus here is on the modelling and simulation time scale aspects. The abilities of these tools are complementary and they can together cover all the modelling aspects of the wind turbines e.g. mechanical loads, power quality, switching, control and grid faults. However, other simulation packages e.g PSCAD/EMTDC can easily be added in the simulation platform. New models and new control algorithms for wind turbine systems have been developed and tested in these tools. All these models are collected in dedicated libraries in Matlab/Simulink as well as in Saber. Some simulation results from the considered tools are presented for MW wind turbines. These simulation results focuses on fixed-speed and variable speed/pitch wind turbines. A good agreement with the real behaviour of these systems is obtained for each simulation tool. These models can easily be extended to model different kinds of wind turbines or large wind

  10. Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model.

    Science.gov (United States)

    Damij, Nadja; Boškoski, Pavle; Bohanec, Marko; Mileva Boshkoska, Biljana

    2016-01-01

    The omnipresent need for optimisation requires constant improvements of companies' business processes (BPs). Minimising the risk of inappropriate BP being implemented is usually performed by simulating the newly developed BP under various initial conditions and "what-if" scenarios. An effectual business process simulations software (BPSS) is a prerequisite for accurate analysis of an BP. Characterisation of an BPSS tool is a challenging task due to the complex selection criteria that includes quality of visual aspects, simulation capabilities, statistical facilities, quality reporting etc. Under such circumstances, making an optimal decision is challenging. Therefore, various decision support models are employed aiding the BPSS tool selection. The currently established decision support models are either proprietary or comprise only a limited subset of criteria, which affects their accuracy. Addressing this issue, this paper proposes a new hierarchical decision support model for ranking of BPSS based on their technical characteristics by employing DEX and qualitative to quantitative (QQ) methodology. Consequently, the decision expert feeds the required information in a systematic and user friendly manner. There are three significant contributions of the proposed approach. Firstly, the proposed hierarchical model is easily extendible for adding new criteria in the hierarchical structure. Secondly, a fully operational decision support system (DSS) tool that implements the proposed hierarchical model is presented. Finally, the effectiveness of the proposed hierarchical model is assessed by comparing the resulting rankings of BPSS with respect to currently available results.

  11. Coarse grained model for semiquantitative lipid simulations

    NARCIS (Netherlands)

    Marrink, SJ; de Vries, AH; Mark, AE

    2004-01-01

    This paper describes the parametrization of a new coarse grained (CG) model for lipid and surfactant systems. Reduction of the number of degrees of freedom together with the use of short range potentials makes it computationally very efficient. Compared to atomistic models a gain of 3-4 orders of

  12. NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW ...

    African Journals Online (AJOL)

    2014-06-30

    Jun 30, 2014 ... It was resolved the Navier-Stokes Reynolds averaged using a single closed equation, which models the Reynolds stress (-ρ (u_i U_j) ̅) by solving the transport equation for the turbulent kinematic viscosity this model proposed by Spalart-. Allmaras. The equations of continuity and Navier-Stokes Reynolds ...

  13. Modeling, simulation and performance evaluation of parabolic ...

    African Journals Online (AJOL)

    Model of a parabolic trough power plant, taking into consideration the different losses associated with collection of the solar irradiance and thermal losses is presented. MATLAB software is employed to model the power plant at reference state points. The code is then used to find the different reference values which are ...

  14. A hybrid society model for simulating residential electricity consumption

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Minjie [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); State Power Economic Research Institute, Beijing (China); Hu, Zhaoguang [State Power Economic Research Institute, Beijing (China); Wu, Junyong; Zhou, Yuhui [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China)

    2008-12-15

    In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)

  15. A hybrid society model for simulating residential electricity consumption

    International Nuclear Information System (INIS)

    Xu, Minjie; Hu, Zhaoguang; Wu, Junyong; Zhou, Yuhui

    2008-01-01

    In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)

  16. Analysis, Modeling, and Simulation (AMS) testbed initial screening report.

    Science.gov (United States)

    2013-11-01

    Analysis Modeling and Simulation (AMS) Testbeds can make significant contributions in identifying the benefits of more effective, more active systems management, resulting from integrating transformative applications enabled by new data from wireless...

  17. Modeling and simulation of bulk gallium nitride power semiconductor devices

    Directory of Open Access Journals (Sweden)

    G. Sabui

    2016-05-01

    Full Text Available Bulk gallium nitride (GaN power semiconductor devices are gaining significant interest in recent years, creating the need for technology computer aided design (TCAD simulation to accurately model and optimize these devices. This paper comprehensively reviews and compares different GaN physical models and model parameters in the literature, and discusses the appropriate selection of these models and parameters for TCAD simulation. 2-D drift-diffusion semi-classical simulation is carried out for 2.6 kV and 3.7 kV bulk GaN vertical PN diodes. The simulated forward current-voltage and reverse breakdown characteristics are in good agreement with the measurement data even over a wide temperature range.

  18. Modeling and simulation of bulk gallium nitride power semiconductor devices

    Science.gov (United States)

    Sabui, G.; Parbrook, P. J.; Arredondo-Arechavala, M.; Shen, Z. J.

    2016-05-01

    Bulk gallium nitride (GaN) power semiconductor devices are gaining significant interest in recent years, creating the need for technology computer aided design (TCAD) simulation to accurately model and optimize these devices. This paper comprehensively reviews and compares different GaN physical models and model parameters in the literature, and discusses the appropriate selection of these models and parameters for TCAD simulation. 2-D drift-diffusion semi-classical simulation is carried out for 2.6 kV and 3.7 kV bulk GaN vertical PN diodes. The simulated forward current-voltage and reverse breakdown characteristics are in good agreement with the measurement data even over a wide temperature range.

  19. Error and Uncertainty Analysis for Ecological Modeling and Simulation

    National Research Council Canada - National Science Library

    Gertner, George

    1998-01-01

    The main objectives of this project are a) to develop a general methodology for conducting sensitivity and uncertainty analysis and building error budgets in simulation modeling over space and time; and b...

  20. Microcanonical simulation of a toy model with vacuum seizing

    International Nuclear Information System (INIS)

    Stone, M.

    1984-01-01

    Tested was a newly developed method for simulating field theories with fermionic degrees of freedom on a simple quantum mechanical model which still has enough structure to exhibit symmetry breaking and other effects due to anomalies

  1. Aviation Shipboard Operations Modeling and Simulation (ASOMS) Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:It is the mission of the Aviation Shipboard Operations Modeling and Simulation (ASOMS) Laboratory to provide a means by which to virtually duplicate products...

  2. Atomic scale simulations for improved CRUD and fuel performance modeling

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cooper, Michael William Donald [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-06

    A more mechanistic description of fuel performance codes can be achieved by deriving models and parameters from atomistic scale simulations rather than fitting models empirically to experimental data. The same argument applies to modeling deposition of corrosion products on fuel rods (CRUD). Here are some results from publications in 2016 carried out using the CASL allocation at LANL.

  3. Impact of reactive settler models on simulated WWTP performance

    DEFF Research Database (Denmark)

    Gernaey, Krist; Jeppsson, Ulf; Batstone, Damien J.

    2006-01-01

    Including a reactive settler model in a wastewater treatment plant model allows representation of the biological reactions taking place in the sludge blanket in the settler, something that is neglected in many simulation studies. The idea of including a reactive settler model is investigated for ...

  4. Simulating tidal turbines with mesh optimisation and RANS turbulence models

    NARCIS (Netherlands)

    Abolghasemi, A.; Piggott, M.D.; Spinneken, J.; Vire, A.; Cotter, C.J.

    2015-01-01

    A versatile numerical model for the simulation of flow past horizontal axis tidal turbines has been developed. Currently most large-scale marine models employed to study marine energy use the shallow water equations and therefore can fail to account for important turbulent physics. The model

  5. Dynamic Modelling and Simulation of Citric Acid Production from ...

    African Journals Online (AJOL)

    The modelling of batch production of citric acid from corn starch hydrolysate using Aspergillus niger ATCC 9142 was carried out in this work. A validated mathematical model was developed to describe the process. Four kinetic models, Monod, Haldane, logistic and hyperbolic for simulating the growth of the Aspergillus ...

  6. Sensitivity of fire behavior simulations to fuel model variations

    Science.gov (United States)

    Lucy A. Salazar

    1985-01-01

    Stylized fuel models, or numerical descriptions of fuel arrays, are used as inputs to fire behavior simulation models. These fuel models are often chosen on the basis of generalized fuel descriptions, which are related to field observations. Site-specific observations of fuels or fire behavior in the field are not readily available or necessary for most fire management...

  7. A qualitative descriptive study of spirituality guided by the Neuman systems model.

    Science.gov (United States)

    Lowry, Lois W

    2012-10-01

    The purposes of this qualitative descriptive study were to explore the meaning of spirituality as described by aging adults in various states of health, to describe the relationship between spirituality and health, and to explain client expectations for healthcare providers related to spirituality. All identified meanings and themes were compared to the characteristics of spirituality proposed by Betty Neuman in the Neuman systems model to determine the credibility of the model for assessing and guiding holistic nursing practice. Three themes were formulated: a) Spirituality is an individual, conscious, committed connection to God, requiring a human response; b) positive spirituality contributes to personal wholeness and health; and c) spirituality sustains and comforts in times of stress.

  8. Qualitative Validation of the IMM Model for ISS and STS Programs

    Science.gov (United States)

    Kerstman, E.; Walton, M.; Reyes, D.; Boley, L.; Saile, L.; Young, M.; Arellano, J.; Garcia, Y.; Myers, J. G.

    2016-01-01

    To validate and further improve the Integrated Medical Model (IMM), medical event data were obtained from 32 ISS and 122 STS person-missions. Using the crew characteristics from these observed missions, IMM v4.0 was used to forecast medical events and medical resource utilization. The IMM medical condition incidence values were compared to the actual observed medical event incidence values, and the IMM forecasted medical resource utilization was compared to actual observed medical resource utilization. Qualitative comparisons of these parameters were conducted for both the ISS and STS programs. The results of these analyses will provide validation of IMM v4.0 and reveal areas of the model requiring adjustments to improve the overall accuracy of IMM outputs. This validation effort should result in enhanced credibility of the IMM and improved confidence in the use of IMM as a decision support tool for human space flight.

  9. NASA Standard for Models and Simulations: Philosophy and Requirements Overview

    Science.gov (United States)

    Blattnig, Steve R.; Luckring, James M.; Morrison, Joseph H.; Sylvester, Andre J.; Tripathi, Ram K.; Zang, Thomas A.

    2013-01-01

    Following the Columbia Accident Investigation Board report, the NASA Administrator chartered an executive team (known as the Diaz Team) to identify those CAIB report elements with NASA-wide applicability and to develop corrective measures to address each element. One such measure was the development of a standard for the development, documentation, and operation of models and simulations. This report describes the philosophy and requirements overview of the resulting NASA Standard for Models and Simulations.

  10. The Rebound Effect: A Simulation Model of Telecommuting

    OpenAIRE

    Reitan, Fredrik Aadne

    2014-01-01

    This thesis aims to highlight the relationship between telecommuting and the rebound effect with respect to greenhouse gas emissions. This was done by gathering and analyzing the latest research from various fields that could provide information about telecommuting and the rebound effect. By surveying these fields, an informative and well-documented framework for modeling telecommuting and the rebound effect was made possible. The simulation model simulated the adoption of telecommuting in Lo...

  11. Platform for Modeling and Simulation of Photovoltaic Generation Systems

    Directory of Open Access Journals (Sweden)

    Anny A. Arroyave-Berrio

    2013-11-01

    Full Text Available A platform for modeling and simulation using Matlab is presented. The platform has four models of photovoltaic panels. It identifies the parameters of each one, for a given solar panel, based on experimental data of voltage, current and environmental conditions. Also the platform generates four blocks, for using in Matlab-Simulink and Psim simulation tools. The experimental validation of the platform was made using the PV panels of the Metropolitan Technological Institute (ITM Lab.

  12. A dynamic styrofoam-ball model for simulating molecular motion

    Science.gov (United States)

    Mak, Se-yuen; Cheung, Derek

    2001-01-01

    In this paper we introduce a simple styrofoam-ball model that can be used for simulating molecular motion in all three states. As the foam balls are driven by a vibrator that is in turn driven by a signal generator, the frequency and the amplitude of vibration can be adjusted independently. Thus, the model is appropriate for simulating molecular motion in the liquid state, which is a combination of vibration and meandering motion.

  13. Modeling and Simulation for Safeguards and Nonproliferation Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Gilligan, Kimberly V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kirk, Bernadette Lugue [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    The Modeling and Simulation for Safeguards and Nonproliferation Workshop was held December 15–18, 2014, at Oak Ridge National Laboratory. This workshop was made possible by the Next Generation Safeguards Initiative Human Capital Development (NGSI HCD) Program. The idea of the workshop was to move beyond the tried-and-true boot camp training of nonproliferation concepts to spend several days on the unique perspective of applying modeling and simulation (M&S) solutions to safeguards challenges.

  14. Use of Game Theory to model patient engagement after surgery: a qualitative analysis.

    Science.gov (United States)

    Castellanos, Stephen A; Buentello, Gerardo; Gutierrez-Meza, Diana; Forgues, Angela; Haubert, Lisa; Artinyan, Avo; Macdonald, Cameron L; Suliburk, James W

    2018-01-01

    Patient engagement is challenging to define and operationalize. Qualitative analysis allows us to explore patient perspectives on this topic and establish themes. A game theoretic signaling model also provides a framework through which to further explore engagement. Over a 6-mo period, thirty-eight interviews were conducted within 6 wk of discharge in patients undergoing thyroid, parathyroid, or colorectal surgery. Interviews were transcribed, anonymized, and analyzed using the NVivo 11 platform. A signaling model was then developed depicting the doctor-patient interaction surrounding the patient's choice to reach out to their physician with postoperative concerns based upon the patient's perspective of the doctor's availability. This was defined as "engagement". We applied the model to the qualitative data to determine possible causations for a patient's engagement or lack thereof. A private hospital's and a safety net hospital's populations were contrasted. The private patient population was more likely to engage than their safety-net counterparts. Using our model in conjunction with patient data, we determined possible etiologies for this engagement to be due to the private patient's perceived probability of dealing with an available doctor and apparent signals from the doctor indicating so. For the safety-net population, decreased access to care caused them to be less willing to engage with a doctor perceived as possibly unavailable. A physician who understands these Game Theory concepts may be able to alter their interactions with their patients, tailoring responses and demeanor to fit the patient's circumstances and possible barriers to engagement. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Validity of microgravity simulation models on earth

    DEFF Research Database (Denmark)

    Regnard, J; Heer, M; Drummer, C

    2001-01-01

    incomplete knowledge of the characteristics inherent to each model. During water immersion, the hydrostatic pressure lowers the peripheral vascular capacity and causes increased thoracic blood volume and high vascular perfusion. In turn, these changes lead to high urinary flow, low vasomotor tone, and a high...... a negative pressure around the body. The differences in renal function between space and experimental models appear to be explained by the physical forces affecting tissues and hemodynamics as well as by the changes secondary to these forces. These differences may help in selecting experimental models...

  16. LR-Spring Mass Model for Cardiac Surgical Simulation

    DEFF Research Database (Denmark)

    Mosegaard, Jesper

    2004-01-01

    The purpose of the research conducted was to develop a real-time surgical simulator for preoperative planning of surgery in congenital heart disease. The main problem simulating procedures on cardiac morphology is the need for a large degree of detail and simulation speed. In combination with a d......The purpose of the research conducted was to develop a real-time surgical simulator for preoperative planning of surgery in congenital heart disease. The main problem simulating procedures on cardiac morphology is the need for a large degree of detail and simulation speed. In combination...... with a demand for physically realistic real-time behaviour this gives us tradeoffs not easily balanced. The LR-Spring Mass model handles these constraints by the use of domain specific knowledge....

  17. Automatic Modeling and Simulation of Modular Robots

    Science.gov (United States)

    Jiang, C.; Wei, H.; Zhang, Y.

    2018-03-01

    The ability of reconfiguration makes modular robots have the ability of adaptable, low-cost, self-healing and fault-tolerant. It can also be applied to a variety of mission situations. In this manuscript, a robot platform which relied on the module library was designed, based on the screw theory and module theory. Then, the configuration design method of the modular robot was proposed. And the different configurations of modular robot system have been built, including industrial mechanical arms, the mobile platform, six-legged robot and 3D exoskeleton manipulator. Finally, the simulation and verification of one system among them have been made, using the analyses of screw kinematics and polynomial planning. The results of experiments demonstrate the feasibility and superiority of this modular system.

  18. Adaptive Modeling and Real-Time Simulation

    Science.gov (United States)

    1984-01-01

    34 Artificial Inteligence , Vol. 13, pp. 27-39 (1980). Describes circumscription which is just the assumption that everything that is known to have a particular... Artificial Intelligence Truth Maintenance Planning Resolution Modeling Wcrld Models ~ .. ~2.. ASSTR AT (Coninue n evrse sieIf necesaran Identfy by...represents a marriage of (1) the procedural-network st, planning technology developed in artificial intelligence with (2) the PERT/CPM technology developed in

  19. Comparison of Engineering Wake Models with CFD Simulations

    DEFF Research Database (Denmark)

    Andersen, Søren Juhl; Sørensen, Jens Nørkær; Ivanell, S.

    2014-01-01

    The engineering wake models by Jensen [1] and Frandsen et al. [2] are assessed for different scenarios simulated using Large Eddy Simulation and the Actuator Line method implemented in the Navier-Stokes equations. The scenarios include the far wake behind a single wind turbine, a long row...... of turbines in an atmospheric boundary layer, idealised cases of an infinitely long row of wind turbines and infinite wind farms with three different spacings. Both models include a wake expansion factor, which is calibrated to fit the simulated wake velocities. The analysis highlights physical deficiencies...

  20. Modelling, simulation and visualisation for electromagnetic non-destructive testing

    International Nuclear Information System (INIS)

    Ilham Mukriz Zainal Abidin; Abdul Razak Hamzah

    2010-01-01

    This paper reviews the state-of-the art and the recent development of modelling, simulation and visualization for eddy current Non-Destructive Testing (NDT) technique. Simulation and visualization has aid in the design and development of electromagnetic sensors and imaging techniques and systems for Electromagnetic Non-Destructive Testing (ENDT); feature extraction and inverse problems for Quantitative Non-Destructive Testing (QNDT). After reviewing the state-of-the art of electromagnetic modelling and simulation, case studies of Research and Development in eddy current NDT technique via magnetic field mapping and thermography for eddy current distribution are discussed. (author)

  1. Modeling and simulation for micro DC motor based on simulink

    Science.gov (United States)

    Shen, Hanxin; Lei, Qiao; Chen, Wenxiang

    2017-09-01

    The micro DC motor has a large market demand but there is a lack of theoretical research for it. Through detailed analysis of the commutation process of micro DC motor commutator, based on micro DC motor electromagnetic torque equation and mechanical torque equation, with the help of Simulink toolkit, a triangle connection micro DC motor simulation model is established. By using the model, a sample micro DC motor are simulated, and an experimental measurements has been carried on the sample micro DC motor. It is found that the simulation results are consistent with theoretical analysis and experimental results.

  2. PRODUCTION SYSTEM MODELING AND SIMULATION USING DEVS FORMALISM

    Directory of Open Access Journals (Sweden)

    Darío Amaya Hurtado

    Full Text Available This article presents the Discrete Event System Specification (DEVS formalism, in their atomic and coupled configurations; it is used for discrete event systems modeling and simulation. Initially this work describes the analysis of discrete event systems concepts and its applicability. Then a comprehensive description of the DEVS formalism structure is presented, in order to model and simulate an industrial process, taking into account changes in parameters such as process service time, each station storage systems structure and process tasks coupling. For the MatLab® simulation, the Simevents Toolbox was used for theoretical developments validation.

  3. Abdominal surgery process modeling framework for simulation using spreadsheets.

    Science.gov (United States)

    Boshkoska, Biljana Mileva; Damij, Talib; Jelenc, Franc; Damij, Nadja

    2015-08-01

    We provide a continuation of the existing Activity Table Modeling methodology with a modular spreadsheets simulation. The simulation model developed is comprised of 28 modeling elements for the abdominal surgery cycle process. The simulation of a two-week patient flow in an abdominal clinic with 75 beds demonstrates the applicability of the methodology. The simulation does not include macros, thus programming experience is not essential for replication or upgrading the model. Unlike the existing methods, the proposed solution employs a modular approach for modeling the activities that ensures better readability, the possibility of easily upgrading the model with other activities, and its easy extension and connectives with other similar models. We propose a first-in-first-served approach for simulation of servicing multiple patients. The uncertain time duration of the activities is modeled using the function "rand()". The patients movements from one activity to the next one is tracked with nested "if()" functions, thus allowing easy re-creation of the process without the need of complex programming. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. A satellite simulator for TRMM PR applied to climate model simulations

    Science.gov (United States)

    Spangehl, T.; Schroeder, M.; Bodas-Salcedo, A.; Hollmann, R.; Riley Dellaripa, E. M.; Schumacher, C.

    2017-12-01

    Climate model simulations have to be compared against observation based datasets in order to assess their skill in representing precipitation characteristics. Here we use a satellite simulator for TRMM PR in order to evaluate simulations performed with MPI-ESM (Earth system model of the Max Planck Institute for Meteorology in Hamburg, Germany) performed within the MiKlip project (https://www.fona-miklip.de/, funded by Federal Ministry of Education and Research in Germany). While classical evaluation methods focus on geophysical parameters such as precipitation amounts, the application of the satellite simulator enables an evaluation in the instrument's parameter space thereby reducing uncertainties on the reference side. The CFMIP Observation Simulator Package (COSP) provides a framework for the application of satellite simulators to climate model simulations. The approach requires the introduction of sub-grid cloud and precipitation variability. Radar reflectivities are obtained by applying Mie theory, with the microphysical assumptions being chosen to match the atmosphere component of MPI-ESM (ECHAM6). The results are found to be sensitive to the methods used to distribute the convective precipitation over the sub-grid boxes. Simple parameterization methods are used to introduce sub-grid variability of convective clouds and precipitation. In order to constrain uncertainties a comprehensive comparison with sub-grid scale convective precipitation variability which is deduced from TRMM PR observations is carried out.

  5. Managing health care decisions and improvement through simulation modeling.

    Science.gov (United States)

    Forsberg, Helena Hvitfeldt; Aronsson, Håkan; Keller, Christina; Lindblad, Staffan

    2011-01-01

    Simulation modeling is a way to test changes in a computerized environment to give ideas for improvements before implementation. This article reviews research literature on simulation modeling as support for health care decision making. The aim is to investigate the experience and potential value of such decision support and quality of articles retrieved. A literature search was conducted, and the selection criteria yielded 59 articles derived from diverse applications and methods. Most met the stated research-quality criteria. This review identified how simulation can facilitate decision making and that it may induce learning. Furthermore, simulation offers immediate feedback about proposed changes, allows analysis of scenarios, and promotes communication on building a shared system view and understanding of how a complex system works. However, only 14 of the 59 articles reported on implementation experiences, including how decision making was supported. On the basis of these articles, we proposed steps essential for the success of simulation projects, not just in the computer, but also in clinical reality. We also presented a novel concept combining simulation modeling with the established plan-do-study-act cycle for improvement. Future scientific inquiries concerning implementation, impact, and the value for health care management are needed to realize the full potential of simulation modeling.

  6. HumMod: A Modeling Environment for the Simulation of Integrative Human Physiology.

    Science.gov (United States)

    Hester, Robert L; Brown, Alison J; Husband, Leland; Iliescu, Radu; Pruett, Drew; Summers, Richard; Coleman, Thomas G

    2011-01-01

    Mathematical models and simulations are important tools in discovering key causal relationships governing physiological processes. Simulations guide and improve outcomes of medical interventions involving complex physiology. We developed HumMod, a Windows-based model of integrative human physiology. HumMod consists of 5000 variables describing cardiovascular, respiratory, renal, neural, endocrine, skeletal muscle, and metabolic physiology. The model is constructed from empirical data obtained from peer-reviewed physiological literature. All model details, including variables, parameters, and quantitative relationships, are described in Extensible Markup Language (XML) files. The executable (HumMod.exe) parses the XML and displays the results of the physiological simulations. The XML description of physiology in HumMod's modeling environment allows investigators to add detailed descriptions of human physiology to test new concepts. Additional or revised XML content is parsed and incorporated into the model. The model accurately predicts both qualitative and quantitative changes in clinical and experimental responses. The model is useful in understanding proposed physiological mechanisms and physiological interactions that are not evident, allowing one to observe higher level emergent properties of the complex physiological systems. HumMod has many uses, for instance, analysis of renal control of blood pressure, central role of the liver in creating and maintaining insulin resistance, and mechanisms causing orthostatic hypotension in astronauts. Users simulate different physiological and pathophysiological situations by interactively altering numerical parameters and viewing time-dependent responses. HumMod provides a modeling environment to understand the complex interactions of integrative physiology. HumMod can be downloaded at http://hummod.org.

  7. HumMod: A modeling environment for the simulation of integrative human physiology

    Directory of Open Access Journals (Sweden)

    Robert eHester

    2011-04-01

    Full Text Available Mathematical models and simulations are important tools in discovering key causal relationships governing physiological processes. Simulations guide and improve outcomes of medical interventions involving complex physiology. We developed HumMod, a Windows-based model of integrative human physiology. HumMod consists of 5000 variables describing cardiovascular, respiratory, renal, neural, endocrine, skeletal muscle and metabolic physiology. The model is constructed from empirical data obtained from peer-reviewed physiological literature. All model details, including variables, parameters and quantitative relationships, are described in Extensible Markup Language (XML files. The executable (HumMod.exe parses the XML and displays the results of the physiological simulations. The XML description of physiology in HumMod¹s modeling environment allows investigators to add detailed descriptions of human physiology to test new concepts. Additional or revised XML content is parsed and incorporated into the model. The model accurately predicts both qualitative and quantitative changes in clinical and experimental responses. The model is useful in understanding proposed physiological mechanisms and physiological interactions that are not evident, allowing one to observe higher level emergent properties of the complex physiological systems. HumMod has many uses, for instance, analysis of renal control of blood pressure, central role of the liver in creating and maintaining insulin resistance, and mechanisms causing orthostatic hypotension in astronauts. Users simulate different physiological and pathophysiological situations by interactively altering numerical parameters and viewing time-dependent responses. HumMod provides a modeling environment to understand the complex interactions of integrative physiology. HumMod can be downloaded at http://hummod.org

  8. Reduced atomic pair-interaction design (RAPID) model for simulations of proteins.

    Science.gov (United States)

    Ni, Boris; Baumketner, Andrij

    2013-02-14

    Increasingly, theoretical studies of proteins focus on large systems. This trend demands the development of computational models that are fast, to overcome the growing complexity, and accurate, to capture the physically relevant features. To address this demand, we introduce a protein model that uses all-atom architecture to ensure the highest level of chemical detail while employing effective pair potentials to represent the effect of solvent to achieve the maximum speed. The effective potentials are derived for amino acid residues based on the condition that the solvent-free model matches the relevant pair-distribution functions observed in explicit solvent simulations. As a test, the model is applied to alanine polypeptides. For the chain with 10 amino acid residues, the model is found to reproduce properly the native state and its population. Small discrepancies are observed for other folding properties and can be attributed to the approximations inherent in the model. The transferability of the generated effective potentials is investigated in simulations of a longer peptide with 25 residues. A minimal set of potentials is identified that leads to qualitatively correct results in comparison with the explicit solvent simulations. Further tests, conducted for multiple peptide chains, show that the transferable model correctly reproduces the experimentally observed tendency of polyalanines to aggregate into β-sheets more strongly with the growing length of the peptide chain. Taken together, the reported results suggest that the proposed model could be used to succesfully simulate folding and aggregation of small peptides in atomic detail. Further tests are needed to assess the strengths and limitations of the model more thoroughly.

  9. Analysis of Water Conflicts across Natural and Societal Boundaries: Integration of Quantitative Modeling and Qualitative Reasoning

    Science.gov (United States)

    Gao, Y.; Balaram, P.; Islam, S.

    2009-12-01

    , the knowledge generated from these studies cannot be easily generalized or transferred to other basins. Here, we present an approach to integrate the quantitative and qualitative methods to study water issues and capture the contextual knowledge of water management- by combining the NSSs framework and an area of artificial intelligence called qualitative reasoning. Using the Apalachicola-Chattahoochee-Flint (ACF) River Basin dispute as an example, we demonstrate how quantitative modeling and qualitative reasoning can be integrated to examine the impact of over abstraction of water from the river on the ecosystem and the role of governance in shaping the evolution of the ACF water dispute.

  10. 3D printed mitral valve models: affordable simulation for robotic mitral valve repair.

    Science.gov (United States)

    Premyodhin, Ned; Mandair, Divneet; Ferng, Alice S; Leach, Timothy S; Palsma, Ryan P; Albanna, Mohammad Z; Khalpey, Zain I

    2018-01-01

    3D printed mitral valve (MV) models that capture the suture response of real tissue may be utilized as surgical training tools. Leveraging clinical imaging modalities, 3D computerized modelling and 3D printing technology to produce affordable models complements currently available virtual simulators and paves the way for patient- and pathology-specific preoperative rehearsal. We used polyvinyl alcohol, a dissolvable thermoplastic, to 3D print moulds that were casted with liquid platinum-cure silicone yielding flexible, low-cost MV models capable of simulating valvular tissue. Silicone-moulded MV models were fabricated for 2 morphologies: the normal MV and the P2 flail. The moulded valves were plication and suture tested in a laparoscopic trainer box with a da Vinci Si robotic surgical system. One cardiothoracic surgery fellow and 1 attending surgeon qualitatively evaluated the ability of the valves to recapitulate tissue feel through surveys utilizing the 5-point Likert-type scale to grade impressions of the valves. Valves produced with the moulding and casting method maintained anatomical dimensions within 3% of directly 3D printed acrylonitrile butadiene styrene controls for both morphologies. Likert-type scale mean scores corresponded with a realistic material response to sutures (5.0/5), tensile strength that is similar to real MV tissue (5.0/5) and anatomical appearance resembling real MVs (5.0/5), indicating that evaluators 'agreed' that these aspects of the model were appropriate for training. Evaluators 'somewhat agreed' that the overall model durability was appropriate for training (4.0/5) due to the mounting design. Qualitative differences in repair quality were notable between fellow and attending surgeon. 3D computer-aided design, 3D printing and fabrication techniques can be applied to fabricate affordable, high-quality educational models for technical training that are capable of differentiating proficiency levels among users. © The Author 2017

  11. Mechatronic modeling and simulation using bond graphs

    CERN Document Server

    Das, Shuvra

    2009-01-01

    Introduction to Mechatronics and System ModelingWhat Is Mechatronics?What Is a System and Why Model Systems?Mathematical Modeling Techniques Used in PracticeSoftwareBond Graphs: What Are They?Engineering SystemsPortsGeneralized VariablesBond GraphsBasic Components in SystemsA Brief Note about Bond Graph Power DirectionsSummary of Bond Direction RulesDrawing Bond Graphs for Simple Systems: Electrical and MechanicalSimplification Rules for Junction StructureDrawing Bond Graphs for Electrical SystemsDrawing Bond Graphs for Mechanical SystemsCausalityDrawing Bond Graphs for Hydraulic and Electronic Components and SystemsSome Basic Properties and Concepts for FluidsBond Graph Model of Hydraulic SystemsElectronic SystemsDeriving System Equations from Bond GraphsSystem VariablesDeriving System EquationsTackling Differential CausalityAlgebraic LoopsSolution of Model Equations and Their InterpretationZeroth Order SystemsFirst Order SystemsSecond Order SystemTransfer Functions and Frequency ResponsesNumerical Solution ...

  12. Responsive supply chain: modeling and simulation

    Directory of Open Access Journals (Sweden)

    Amit Kumar Sinha

    2015-06-01

    Full Text Available Unexpected occurrence like natural calamity, abruptly change in customer demands, upgradation of technologies, necessity of compatible suppliers etc. is the most challenging issues even for efficient global supply chain management. Therefore, modeling of responsive supply chain is an emerging technology for sustaining any firm/industry in future competitive environment. In this paper, an attempt has been made to not only analyze the performance of efficient supply chain management but also how to improve the performance of existing supply chain with the objective of developing a modeling of responsive supply chain management. The complexity of the model is also highlighted with the help of numerical example. This paper also explores the possibility to mathematical modeling of the responsive supply chain which will be an emerging topic for researchers and practitioners. The modeling of responsive supply chain can be employed as a competitive strategy for e-commerce, green supply chain, and compatible supplier selection problem. The another salient feature of this paper is that a distinct comparative literature review of the lean, agile, efficient, and responsive supply chain management has been presented.

  13. Off-gas Adsorption Model and Simulation - OSPREY

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J Rutledge

    2013-10-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed.

  14. A spatial simulation model for the dispersal of the bluetongue vector Culicoides brevitarsis in Australia.

    Directory of Open Access Journals (Sweden)

    Joel K Kelso

    Full Text Available The spread of Bluetongue virus (BTV among ruminants is caused by movement of infected host animals or by movement of infected Culicoides midges, the vector of BTV. Biologically plausible models of Culicoides dispersal are necessary for predicting the spread of BTV and are important for planning control and eradication strategies.A spatially-explicit simulation model which captures the two underlying population mechanisms, population dynamics and movement, was developed using extensive data from a trapping program for C. brevitarsis on the east coast of Australia. A realistic midge flight sub-model was developed and the annual incursion and population establishment of C. brevitarsis was simulated. Data from the literature was used to parameterise the model.The model was shown to reproduce the spread of C. brevitarsis southwards along the east Australian coastline in spring, from an endemic population to the north. Such incursions were shown to be reliant on wind-dispersal; Culicoides midge active flight on its own was not capable of achieving known rates of southern spread, nor was re-emergence of southern populations due to overwintering larvae. Data from midge trapping programmes were used to qualitatively validate the resulting simulation model.The model described in this paper is intended to form the vector component of an extended model that will also include BTV transmission. A model of midge movement and population dynamics has been developed in sufficient detail such that the extended model may be used to evaluate the timing and extent of BTV outbreaks. This extended model could then be used as a platform for addressing the effectiveness of spatially targeted vaccination strategies or animal movement bans as BTV spread mitigation measures, or the impact of climate change on the risk and extent of outbreaks. These questions involving incursive Culicoides spread cannot be simply addressed with non-spatial models.

  15. Tutorial: Parallel Computing of Simulation Models for Risk Analysis.

    Science.gov (United States)

    Reilly, Allison C; Staid, Andrea; Gao, Michael; Guikema, Seth D

    2016-10-01

    Simulation models are widely used in risk analysis to study the effects of uncertainties on outcomes of interest in complex problems. Often, these models are computationally complex and time consuming to run. This latter point may be at odds with time-sensitive evaluations or may limit the number of parameters that are considered. In this article, we give an introductory tutorial focused on parallelizing simulation code to better leverage modern computing hardware, enabling risk analysts to better utilize simulation-based methods for quantifying uncertainty in practice. This article is aimed primarily at risk analysts who use simulation methods but do not yet utilize parallelization to decrease the computational burden of these models. The discussion is focused on conceptual aspects of embarrassingly parallel computer code and software considerations. Two complementary examples are shown using the languages MATLAB and R. A brief discussion of hardware considerations is located in the Appendix. © 2016 Society for Risk Analysis.

  16. Statistical 3D damage accumulation model for ion implant simulators

    International Nuclear Information System (INIS)

    Hernandez-Mangas, J.M.; Lazaro, J.; Enriquez, L.; Bailon, L.; Barbolla, J.; Jaraiz, M.

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided

  17. Statistical 3D damage accumulation model for ion implant simulators

    CERN Document Server

    Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  18. Distributed collaborative environments for 21st century modeling and simulation

    Science.gov (United States)

    McQuay, William K.

    2001-09-01

    Distributed collaboration is an emerging technology that will significantly change how modeling and simulation is employed in 21st century organizations. Modeling and simulation (M&S) is already an integral part of how many organizations conduct business and, in the future, will continue to spread throughout government and industry enterprises and across many domains from research and development to logistics to training to operations. This paper reviews research that is focusing on the open standards agent-based framework, product and process modeling, structural architecture, and the integration technologies - the glue to integrate the software components. A distributed collaborative environment is the underlying infrastructure that makes communication between diverse simulations and other assets possible and manages the overall flow of a simulation based experiment. The AFRL Collaborative Environment concept will foster a major cultural change in how the acquisition, training, and operational communities employ M&S.

  19. Simulation Model of Bus Rapid Transit

    Directory of Open Access Journals (Sweden)

    Gunawan Fergyanto E.

    2014-03-01

    Full Text Available Bus rapid transit system is modern solution for mass transportation system. The system, in comparison to the rail-based transportation system, is significantly cheaper and requires shorter development time, but lower performance. The BRT system performance strongly depends on variables related to station design and infrastructure. A numerical model offers an effective and efficient means to evaluate the system performance. This article offers a detailed numerical model on the basis of the discrete-event approach and demonstrates its application.

  20. Being reflexive in qualitative grounded theory: discussion and application of a model of reflexivity.

    Science.gov (United States)

    Engward, Hilary; Davis, Geraldine

    2015-07-01

    A discussion of the meaning of reflexivity in research with the presentation of examples of how a model of reflexivity was used in a grounded theory research project. Reflexivity requires the researcher to make transparent the decisions they make in the research process and is therefore important in developing quality in nursing research. The importance of being reflexive is highlighted in the literature in relation to nursing research, however, practical guidance as to how to go about doing research reflexively is not always clearly articulated. This is a discussion paper. The concept of reflexivity in research is explored using the Alvesson and Skoldberg model of reflexivity and practical examples of how a researcher developed reflexivity in a grounded theory project are presented. Nurse researchers are encouraged to explore and apply the concept of reflexivity in their research practices to develop transparency in the research process and to increase robustness in their research. The Alvesson and Skoldberg model is of value in applying reflexivity in qualitative nursing research, particularly in grounded theory research. Being reflexive requires the researcher to be completely open about decisions that are made in the research process. The Alvesson and Skolberg model of reflexivity is a useful model that can enhance reflexivity in the research process. It can be a useful practical tool to develop reflexivity in grounded theory research. © 2015 John Wiley & Sons Ltd.