Comparison of Prediction-Error-Modelling Criteria
DEFF Research Database (Denmark)
Jørgensen, John Bagterp; Jørgensen, Sten Bay
2007-01-01
Single and multi-step prediction-error-methods based on the maximum likelihood and least squares criteria are compared. The prediction-error methods studied are based on predictions using the Kalman filter and Kalman predictors for a linear discrete-time stochastic state space model, which is a r...
Predicting Error Bars for QSAR Models
International Nuclear Information System (INIS)
Schroeter, Timon; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Mueller, Klaus-Robert
2007-01-01
Unfavorable physicochemical properties often cause drug failures. It is therefore important to take lipophilicity and water solubility into account early on in lead discovery. This study presents log D 7 models built using Gaussian Process regression, Support Vector Machines, decision trees and ridge regression algorithms based on 14556 drug discovery compounds of Bayer Schering Pharma. A blind test was conducted using 7013 new measurements from the last months. We also present independent evaluations using public data. Apart from accuracy, we discuss the quality of error bars that can be computed by Gaussian Process models, and ensemble and distance based techniques for the other modelling approaches
Prediction error, ketamine and psychosis: An updated model.
Corlett, Philip R; Honey, Garry D; Fletcher, Paul C
2016-11-01
In 2007, we proposed an explanation of delusion formation as aberrant prediction error-driven associative learning. Further, we argued that the NMDA receptor antagonist ketamine provided a good model for this process. Subsequently, we validated the model in patients with psychosis, relating aberrant prediction error signals to delusion severity. During the ensuing period, we have developed these ideas, drawing on the simple principle that brains build a model of the world and refine it by minimising prediction errors, as well as using it to guide perceptual inferences. While previously we focused on the prediction error signal per se, an updated view takes into account its precision, as well as the precision of prior expectations. With this expanded perspective, we see several possible routes to psychotic symptoms - which may explain the heterogeneity of psychotic illness, as well as the fact that other drugs, with different pharmacological actions, can produce psychotomimetic effects. In this article, we review the basic principles of this model and highlight specific ways in which prediction errors can be perturbed, in particular considering the reliability and uncertainty of predictions. The expanded model explains hallucinations as perturbations of the uncertainty mediated balance between expectation and prediction error. Here, expectations dominate and create perceptions by suppressing or ignoring actual inputs. Negative symptoms may arise due to poor reliability of predictions in service of action. By mapping from biology to belief and perception, the account proffers new explanations of psychosis. However, challenges remain. We attempt to address some of these concerns and suggest future directions, incorporating other symptoms into the model, building towards better understanding of psychosis. © The Author(s) 2016.
Error analysis in predictive modelling demonstrated on mould data.
Baranyi, József; Csernus, Olívia; Beczner, Judit
2014-01-17
The purpose of this paper was to develop a predictive model for the effect of temperature and water activity on the growth rate of Aspergillus niger and to determine the sources of the error when the model is used for prediction. Parallel mould growth curves, derived from the same spore batch, were generated and fitted to determine their growth rate. The variances of replicate ln(growth-rate) estimates were used to quantify the experimental variability, inherent to the method of determining the growth rate. The environmental variability was quantified by the variance of the respective means of replicates. The idea is analogous to the "within group" and "between groups" variability concepts of ANOVA procedures. A (secondary) model, with temperature and water activity as explanatory variables, was fitted to the natural logarithm of the growth rates determined by the primary model. The model error and the experimental and environmental errors were ranked according to their contribution to the total error of prediction. Our method can readily be applied to analysing the error structure of predictive models of bacterial growth models, too. © 2013.
Mean Bias in Seasonal Forecast Model and ENSO Prediction Error.
Kim, Seon Tae; Jeong, Hye-In; Jin, Fei-Fei
2017-07-20
This study uses retrospective forecasts made using an APEC Climate Center seasonal forecast model to investigate the cause of errors in predicting the amplitude of El Niño Southern Oscillation (ENSO)-driven sea surface temperature variability. When utilizing Bjerknes coupled stability (BJ) index analysis, enhanced errors in ENSO amplitude with forecast lead times are found to be well represented by those in the growth rate estimated by the BJ index. ENSO amplitude forecast errors are most strongly associated with the errors in both the thermocline slope response and surface wind response to forcing over the tropical Pacific, leading to errors in thermocline feedback. This study concludes that upper ocean temperature bias in the equatorial Pacific, which becomes more intense with increasing lead times, is a possible cause of forecast errors in the thermocline feedback and thus in ENSO amplitude.
Error analysis of short term wind power prediction models
International Nuclear Information System (INIS)
De Giorgi, Maria Grazia; Ficarella, Antonio; Tarantino, Marco
2011-01-01
The integration of wind farms in power networks has become an important problem. This is because the electricity produced cannot be preserved because of the high cost of storage and electricity production must follow market demand. Short-long-range wind forecasting over different lengths/periods of time is becoming an important process for the management of wind farms. Time series modelling of wind speeds is based upon the valid assumption that all the causative factors are implicitly accounted for in the sequence of occurrence of the process itself. Hence time series modelling is equivalent to physical modelling. Auto Regressive Moving Average (ARMA) models, which perform a linear mapping between inputs and outputs, and Artificial Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS), which perform a non-linear mapping, provide a robust approach to wind power prediction. In this work, these models are developed in order to forecast power production of a wind farm with three wind turbines, using real load data and comparing different time prediction periods. This comparative analysis takes in the first time, various forecasting methods, time horizons and a deep performance analysis focused upon the normalised mean error and the statistical distribution hereof in order to evaluate error distribution within a narrower curve and therefore forecasting methods whereby it is more improbable to make errors in prediction. (author)
Error analysis of short term wind power prediction models
Energy Technology Data Exchange (ETDEWEB)
De Giorgi, Maria Grazia; Ficarella, Antonio; Tarantino, Marco [Dipartimento di Ingegneria dell' Innovazione, Universita del Salento, Via per Monteroni, 73100 Lecce (Italy)
2011-04-15
The integration of wind farms in power networks has become an important problem. This is because the electricity produced cannot be preserved because of the high cost of storage and electricity production must follow market demand. Short-long-range wind forecasting over different lengths/periods of time is becoming an important process for the management of wind farms. Time series modelling of wind speeds is based upon the valid assumption that all the causative factors are implicitly accounted for in the sequence of occurrence of the process itself. Hence time series modelling is equivalent to physical modelling. Auto Regressive Moving Average (ARMA) models, which perform a linear mapping between inputs and outputs, and Artificial Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS), which perform a non-linear mapping, provide a robust approach to wind power prediction. In this work, these models are developed in order to forecast power production of a wind farm with three wind turbines, using real load data and comparing different time prediction periods. This comparative analysis takes in the first time, various forecasting methods, time horizons and a deep performance analysis focused upon the normalised mean error and the statistical distribution hereof in order to evaluate error distribution within a narrower curve and therefore forecasting methods whereby it is more improbable to make errors in prediction. (author)
A predictive model for dimensional errors in fused deposition modeling
DEFF Research Database (Denmark)
Stolfi, A.
2015-01-01
This work concerns the effect of deposition angle (a) and layer thickness (L) on the dimensional performance of FDM parts using a predictive model based on the geometrical description of the FDM filament profile. An experimental validation over the whole a range from 0° to 177° at 3° steps and two...... values of L (0.254 mm, 0.330 mm) was produced by comparing predicted values with external face-to-face measurements. After removing outliers, the results show that the developed two-parameter model can serve as tool for modeling the FDM dimensional behavior in a wide range of deposition angles....
Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?
Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander
2016-01-01
Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.
Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error.
Faber, Felix A; Hutchison, Luke; Huang, Bing; Gilmer, Justin; Schoenholz, Samuel S; Dahl, George E; Vinyals, Oriol; Kearnes, Steven; Riley, Patrick F; von Lilienfeld, O Anatole
2017-11-14
evidence that ML model predictions deviate from DFT (B3LYP) less than DFT (B3LYP) deviates from experiment for all properties. Furthermore, out-of-sample prediction errors with respect to hybrid DFT reference are on par with, or close to, chemical accuracy. The results suggest that ML models could be more accurate than hybrid DFT if explicitly electron correlated quantum (or experimental) data were available.
Model-free and model-based reward prediction errors in EEG.
Sambrook, Thomas D; Hardwick, Ben; Wills, Andy J; Goslin, Jeremy
2018-05-24
Learning theorists posit two reinforcement learning systems: model-free and model-based. Model-based learning incorporates knowledge about structure and contingencies in the world to assign candidate actions with an expected value. Model-free learning is ignorant of the world's structure; instead, actions hold a value based on prior reinforcement, with this value updated by expectancy violation in the form of a reward prediction error. Because they use such different learning mechanisms, it has been previously assumed that model-based and model-free learning are computationally dissociated in the brain. However, recent fMRI evidence suggests that the brain may compute reward prediction errors to both model-free and model-based estimates of value, signalling the possibility that these systems interact. Because of its poor temporal resolution, fMRI risks confounding reward prediction errors with other feedback-related neural activity. In the present study, EEG was used to show the presence of both model-based and model-free reward prediction errors and their place in a temporal sequence of events including state prediction errors and action value updates. This demonstration of model-based prediction errors questions a long-held assumption that model-free and model-based learning are dissociated in the brain. Copyright © 2018 Elsevier Inc. All rights reserved.
Xia, Zhiye; Xu, Lisheng; Chen, Hongbin; Wang, Yongqian; Liu, Jinbao; Feng, Wenlan
2017-06-01
Extended range forecasting of 10-30 days, which lies between medium-term and climate prediction in terms of timescale, plays a significant role in decision-making processes for the prevention and mitigation of disastrous meteorological events. The sensitivity of initial error, model parameter error, and random error in a nonlinear crossprediction error (NCPE) model, and their stability in the prediction validity period in 10-30-day extended range forecasting, are analyzed quantitatively. The associated sensitivity of precipitable water, temperature, and geopotential height during cases of heavy rain and hurricane is also discussed. The results are summarized as follows. First, the initial error and random error interact. When the ratio of random error to initial error is small (10-6-10-2), minor variation in random error cannot significantly change the dynamic features of a chaotic system, and therefore random error has minimal effect on the prediction. When the ratio is in the range of 10-1-2 (i.e., random error dominates), attention should be paid to the random error instead of only the initial error. When the ratio is around 10-2-10-1, both influences must be considered. Their mutual effects may bring considerable uncertainty to extended range forecasting, and de-noising is therefore necessary. Second, in terms of model parameter error, the embedding dimension m should be determined by the factual nonlinear time series. The dynamic features of a chaotic system cannot be depicted because of the incomplete structure of the attractor when m is small. When m is large, prediction indicators can vanish because of the scarcity of phase points in phase space. A method for overcoming the cut-off effect ( m > 4) is proposed. Third, for heavy rains, precipitable water is more sensitive to the prediction validity period than temperature or geopotential height; however, for hurricanes, geopotential height is most sensitive, followed by precipitable water.
Uncertainty in predictions of forest carbon dynamics: separating driver error from model error.
Spadavecchia, L; Williams, M; Law, B E
2011-07-01
We present an analysis of the relative magnitude and contribution of parameter and driver uncertainty to the confidence intervals on estimates of net carbon fluxes. Model parameters may be difficult or impractical to measure, while driver fields are rarely complete, with data gaps due to sensor failure and sparse observational networks. Parameters are generally derived through some optimization method, while driver fields may be interpolated from available data sources. For this study, we used data from a young ponderosa pine stand at Metolius, Central Oregon, and a simple daily model of coupled carbon and water fluxes (DALEC). An ensemble of acceptable parameterizations was generated using an ensemble Kalman filter and eddy covariance measurements of net C exchange. Geostatistical simulations generated an ensemble of meteorological driving variables for the site, consistent with the spatiotemporal autocorrelations inherent in the observational data from 13 local weather stations. Simulated meteorological data were propagated through the model to derive the uncertainty on the CO2 flux resultant from driver uncertainty typical of spatially extensive modeling studies. Furthermore, the model uncertainty was partitioned between temperature and precipitation. With at least one meteorological station within 25 km of the study site, driver uncertainty was relatively small ( 10% of the total net flux), while parameterization uncertainty was larger, 50% of the total net flux. The largest source of driver uncertainty was due to temperature (8% of the total flux). The combined effect of parameter and driver uncertainty was 57% of the total net flux. However, when the nearest meteorological station was > 100 km from the study site, uncertainty in net ecosystem exchange (NEE) predictions introduced by meteorological drivers increased by 88%. Precipitation estimates were a larger source of bias in NEE estimates than were temperature estimates, although the biases partly
A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM.
Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei; Song, Houbing
2018-01-15
Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model's performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM's parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models' performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors.
Prediction-error variance in Bayesian model updating: a comparative study
Asadollahi, Parisa; Li, Jian; Huang, Yong
2017-04-01
In Bayesian model updating, the likelihood function is commonly formulated by stochastic embedding in which the maximum information entropy probability model of prediction error variances plays an important role and it is Gaussian distribution subject to the first two moments as constraints. The selection of prediction error variances can be formulated as a model class selection problem, which automatically involves a trade-off between the average data-fit of the model class and the information it extracts from the data. Therefore, it is critical for the robustness in the updating of the structural model especially in the presence of modeling errors. To date, three ways of considering prediction error variances have been seem in the literature: 1) setting constant values empirically, 2) estimating them based on the goodness-of-fit of the measured data, and 3) updating them as uncertain parameters by applying Bayes' Theorem at the model class level. In this paper, the effect of different strategies to deal with the prediction error variances on the model updating performance is investigated explicitly. A six-story shear building model with six uncertain stiffness parameters is employed as an illustrative example. Transitional Markov Chain Monte Carlo is used to draw samples of the posterior probability density function of the structure model parameters as well as the uncertain prediction variances. The different levels of modeling uncertainty and complexity are modeled through three FE models, including a true model, a model with more complexity, and a model with modeling error. Bayesian updating is performed for the three FE models considering the three aforementioned treatments of the prediction error variances. The effect of number of measurements on the model updating performance is also examined in the study. The results are compared based on model class assessment and indicate that updating the prediction error variances as uncertain parameters at the model
Whittle, Rebecca; Peat, George; Belcher, John; Collins, Gary S; Riley, Richard D
2018-05-18
Measurement error in predictor variables may threaten the validity of clinical prediction models. We sought to evaluate the possible extent of the problem. A secondary objective was to examine whether predictors are measured at the intended moment of model use. A systematic search of Medline was used to identify a sample of articles reporting the development of a clinical prediction model published in 2015. After screening according to a predefined inclusion criteria, information on predictors, strategies to control for measurement error and intended moment of model use were extracted. Susceptibility to measurement error for each predictor was classified into low and high risk. Thirty-three studies were reviewed, including 151 different predictors in the final prediction models. Fifty-one (33.7%) predictors were categorised as high risk of error, however this was not accounted for in the model development. Only 8 (24.2%) studies explicitly stated the intended moment of model use and when the predictors were measured. Reporting of measurement error and intended moment of model use is poor in prediction model studies. There is a need to identify circumstances where ignoring measurement error in prediction models is consequential and whether accounting for the error will improve the predictions. Copyright © 2018. Published by Elsevier Inc.
Glutamatergic model psychoses: prediction error, learning, and inference.
Corlett, Philip R; Honey, Garry D; Krystal, John H; Fletcher, Paul C
2011-01-01
Modulating glutamatergic neurotransmission induces alterations in conscious experience that mimic the symptoms of early psychotic illness. We review studies that use intravenous administration of ketamine, focusing on interindividual variability in the profundity of the ketamine experience. We will consider this individual variability within a hypothetical model of brain and cognitive function centered upon learning and inference. Within this model, the brains, neural systems, and even single neurons specify expectations about their inputs and responding to violations of those expectations with new learning that renders future inputs more predictable. We argue that ketamine temporarily deranges this ability by perturbing both the ways in which prior expectations are specified and the ways in which expectancy violations are signaled. We suggest that the former effect is predominantly mediated by NMDA blockade and the latter by augmented and inappropriate feedforward glutamatergic signaling. We suggest that the observed interindividual variability emerges from individual differences in neural circuits that normally underpin the learning and inference processes described. The exact source for that variability is uncertain, although it is likely to arise not only from genetic variation but also from subjects' previous experiences and prior learning. Furthermore, we argue that chronic, unlike acute, NMDA blockade alters the specification of expectancies more profoundly and permanently. Scrutinizing individual differences in the effects of acute and chronic ketamine administration in the context of the Bayesian brain model may generate new insights about the symptoms of psychosis; their underlying cognitive processes and neurocircuitry.
2014-07-01
Macmillan & Creelman , 2005). This is a quite high degree of discriminability and it means that when the decision model predicts a probability of...ROC analysis. Pattern Recognition Letters, 27(8), 861-874. Retrieved from Google Scholar. Macmillan, N. A., & Creelman , C. D. (2005). Detection
Sun, Ruochen; Yuan, Huiling; Liu, Xiaoli
2017-11-01
The heteroscedasticity treatment in residual error models directly impacts the model calibration and prediction uncertainty estimation. This study compares three methods to deal with the heteroscedasticity, including the explicit linear modeling (LM) method and nonlinear modeling (NL) method using hyperbolic tangent function, as well as the implicit Box-Cox transformation (BC). Then a combined approach (CA) combining the advantages of both LM and BC methods has been proposed. In conjunction with the first order autoregressive model and the skew exponential power (SEP) distribution, four residual error models are generated, namely LM-SEP, NL-SEP, BC-SEP and CA-SEP, and their corresponding likelihood functions are applied to the Variable Infiltration Capacity (VIC) hydrologic model over the Huaihe River basin, China. Results show that the LM-SEP yields the poorest streamflow predictions with the widest uncertainty band and unrealistic negative flows. The NL and BC methods can better deal with the heteroscedasticity and hence their corresponding predictive performances are improved, yet the negative flows cannot be avoided. The CA-SEP produces the most accurate predictions with the highest reliability and effectively avoids the negative flows, because the CA approach is capable of addressing the complicated heteroscedasticity over the study basin.
An MEG signature corresponding to an axiomatic model of reward prediction error.
Talmi, Deborah; Fuentemilla, Lluis; Litvak, Vladimir; Duzel, Emrah; Dolan, Raymond J
2012-01-02
Optimal decision-making is guided by evaluating the outcomes of previous decisions. Prediction errors are theoretical teaching signals which integrate two features of an outcome: its inherent value and prior expectation of its occurrence. To uncover the magnetic signature of prediction errors in the human brain we acquired magnetoencephalographic (MEG) data while participants performed a gambling task. Our primary objective was to use formal criteria, based upon an axiomatic model (Caplin and Dean, 2008a), to determine the presence and timing profile of MEG signals that express prediction errors. We report analyses at the sensor level, implemented in SPM8, time locked to outcome onset. We identified, for the first time, a MEG signature of prediction error, which emerged approximately 320 ms after an outcome and expressed as an interaction between outcome valence and probability. This signal followed earlier, separate signals for outcome valence and probability, which emerged approximately 200 ms after an outcome. Strikingly, the time course of the prediction error signal, as well as the early valence signal, resembled the Feedback-Related Negativity (FRN). In simultaneously acquired EEG data we obtained a robust FRN, but the win and loss signals that comprised this difference wave did not comply with the axiomatic model. Our findings motivate an explicit examination of the critical issue of timing embodied in computational models of prediction errors as seen in human electrophysiological data. Copyright © 2011 Elsevier Inc. All rights reserved.
Seismic attenuation relationship with homogeneous and heterogeneous prediction-error variance models
Mu, He-Qing; Xu, Rong-Rong; Yuen, Ka-Veng
2014-03-01
Peak ground acceleration (PGA) estimation is an important task in earthquake engineering practice. One of the most well-known models is the Boore-Joyner-Fumal formula, which estimates the PGA using the moment magnitude, the site-to-fault distance and the site foundation properties. In the present study, the complexity for this formula and the homogeneity assumption for the prediction-error variance are investigated and an efficiency-robustness balanced formula is proposed. For this purpose, a reduced-order Monte Carlo simulation algorithm for Bayesian model class selection is presented to obtain the most suitable predictive formula and prediction-error model for the seismic attenuation relationship. In this approach, each model class (a predictive formula with a prediction-error model) is evaluated according to its plausibility given the data. The one with the highest plausibility is robust since it possesses the optimal balance between the data fitting capability and the sensitivity to noise. A database of strong ground motion records in the Tangshan region of China is obtained from the China Earthquake Data Center for the analysis. The optimal predictive formula is proposed based on this database. It is shown that the proposed formula with heterogeneous prediction-error variance is much simpler than the attenuation model suggested by Boore, Joyner and Fumal (1993).
DEFF Research Database (Denmark)
Ashraf, Bilal; Janss, Luc; Jensen, Just
sample). The GBSeq data can be used directly in genomic models in the form of individual SNP allele-frequency estimates (e.g., reference reads/total reads per polymorphic site per individual), but is subject to measurement error due to the low sequencing depth per individual. Due to technical reasons....... In the current work we show how the correction for measurement error in GBSeq can also be applied in whole genome genomic variance and genomic prediction models. Bayesian whole-genome random regression models are proposed to allow implementation of large-scale SNP-based models with a per-SNP correction...... for measurement error. We show correct retrieval of genomic explained variance, and improved genomic prediction when accounting for the measurement error in GBSeq data...
Modeling Input Errors to Improve Uncertainty Estimates for Sediment Transport Model Predictions
Jung, J. Y.; Niemann, J. D.; Greimann, B. P.
2016-12-01
Bayesian methods using Markov chain Monte Carlo algorithms have recently been applied to sediment transport models to assess the uncertainty in the model predictions due to the parameter values. Unfortunately, the existing approaches can only attribute overall uncertainty to the parameters. This limitation is critical because no model can produce accurate forecasts if forced with inaccurate input data, even if the model is well founded in physical theory. In this research, an existing Bayesian method is modified to consider the potential errors in input data during the uncertainty evaluation process. The input error is modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters. The proposed approach is tested by coupling it to the Sedimentation and River Hydraulics - One Dimension (SRH-1D) model and simulating a 23-km reach of the Tachia River in Taiwan. The Wu equation in SRH-1D is used for computing the transport capacity for a bed material load of non-cohesive material. Three types of input data are considered uncertain: (1) the input flowrate at the upstream boundary, (2) the water surface elevation at the downstream boundary, and (3) the water surface elevation at a hydraulic structure in the middle of the reach. The benefits of modeling the input errors in the uncertainty analysis are evaluated by comparing the accuracy of the most likely forecast and the coverage of the observed data by the credible intervals to those of the existing method. The results indicate that the internal boundary condition has the largest uncertainty among those considered. Overall, the uncertainty estimates from the new method are notably different from those of the existing method for both the calibration and forecast periods.
DEFF Research Database (Denmark)
Christensen, Steen; Doherty, John
2008-01-01
super parameters), and that the structural errors caused by using pilot points and super parameters to parameterize the highly heterogeneous log-transmissivity field can be significant. For the test case much effort is put into studying how the calibrated model's ability to make accurate predictions...
David, McInerney; Mark, Thyer; Dmitri, Kavetski; George, Kuczera
2017-04-01
This study provides guidance to hydrological researchers which enables them to provide probabilistic predictions of daily streamflow with the best reliability and precision for different catchment types (e.g. high/low degree of ephemerality). Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. It is commonly known that hydrological model residual errors are heteroscedastic, i.e. there is a pattern of larger errors in higher streamflow predictions. Although multiple approaches exist for representing this heteroscedasticity, few studies have undertaken a comprehensive evaluation and comparison of these approaches. This study fills this research gap by evaluating 8 common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter, lambda) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and USA, and two lumped hydrological models. We find the choice of heteroscedastic error modelling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with lambda of 0.2 and 0.5, and the log scheme (lambda=0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.
McInerney, David; Thyer, Mark; Kavetski, Dmitri; Lerat, Julien; Kuczera, George
2017-03-01
Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. This study focuses on approaches for representing error heteroscedasticity with respect to simulated streamflow, i.e., the pattern of larger errors in higher streamflow predictions. We evaluate eight common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter λ) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and the United States, and two lumped hydrological models. Performance is quantified using predictive reliability, precision, and volumetric bias metrics. We find the choice of heteroscedastic error modeling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with λ of 0.2 and 0.5, and the log scheme (λ = 0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Paradoxically, calibration of λ is often counterproductive: in perennial catchments, it tends to overfit low flows at the expense of abysmal precision in high flows. The log-sinh transformation is dominated by the simpler Pareto optimal schemes listed above. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.
Quantifying the predictive consequences of model error with linear subspace analysis
White, Jeremy T.; Doherty, John E.; Hughes, Joseph D.
2014-01-01
All computer models are simplified and imperfect simulators of complex natural systems. The discrepancy arising from simplification induces bias in model predictions, which may be amplified by the process of model calibration. This paper presents a new method to identify and quantify the predictive consequences of calibrating a simplified computer model. The method is based on linear theory, and it scales efficiently to the large numbers of parameters and observations characteristic of groundwater and petroleum reservoir models. The method is applied to a range of predictions made with a synthetic integrated surface-water/groundwater model with thousands of parameters. Several different observation processing strategies and parameterization/regularization approaches are examined in detail, including use of the Karhunen-Loève parameter transformation. Predictive bias arising from model error is shown to be prediction specific and often invisible to the modeler. The amount of calibration-induced bias is influenced by several factors, including how expert knowledge is applied in the design of parameterization schemes, the number of parameters adjusted during calibration, how observations and model-generated counterparts are processed, and the level of fit with observations achieved through calibration. Failure to properly implement any of these factors in a prediction-specific manner may increase the potential for predictive bias in ways that are not visible to the calibration and uncertainty analysis process.
Modeling coherent errors in quantum error correction
Greenbaum, Daniel; Dutton, Zachary
2018-01-01
Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.
DEFF Research Database (Denmark)
Minsley, B. J.; Christensen, Nikolaj Kruse; Christensen, Steen
Model structure, or the spatial arrangement of subsurface lithological units, is fundamental to the hydrological behavior of Earth systems. Knowledge of geological model structure is critically important in order to make informed hydrological predictions and management decisions. Model structure...... is never perfectly known, however, and incorrect assumptions can be a significant source of error when making model predictions. We describe a systematic approach for quantifying model structural uncertainty that is based on the integration of sparse borehole observations and large-scale airborne...... electromagnetic (AEM) data. Our estimates of model structural uncertainty follow a Bayesian framework that accounts for both the uncertainties in geophysical parameter estimates given AEM data, and the uncertainties in the relationship between lithology and geophysical parameters. Using geostatistical sequential...
Directory of Open Access Journals (Sweden)
Wenjuan Wei
Full Text Available Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0, the diffusion coefficient (D, and the partition coefficient (K, can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C 0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C 0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C.
Tiebin, Wu; Yunlian, Liu; Xinjun, Li; Yi, Yu; Bin, Zhang
2018-06-01
Aiming at the difficulty in quality prediction of sintered ores, a hybrid prediction model is established based on mechanism models of sintering and time-weighted error compensation on the basis of the extreme learning machine (ELM). At first, mechanism models of drum index, total iron, and alkalinity are constructed according to the chemical reaction mechanism and conservation of matter in the sintering process. As the process is simplified in the mechanism models, these models are not able to describe high nonlinearity. Therefore, errors are inevitable. For this reason, the time-weighted ELM based error compensation model is established. Simulation results verify that the hybrid model has a high accuracy and can meet the requirement for industrial applications.
BANKRUPTCY PREDICTION MODEL WITH ZETAc OPTIMAL CUT-OFF SCORE TO CORRECT TYPE I ERRORS
Directory of Open Access Journals (Sweden)
Mohamad Iwan
2005-06-01
This research has successfully attained the following results: (1 type I error is in fact 59,83 times more costly compared to type II error, (2 22 ratios distinguish between bankrupt and non-bankrupt groups, (3 2 financial ratios proved to be effective in predicting bankruptcy, (4 prediction using ZETAc optimal cut-off score predicts more companies filing for bankruptcy within one year compared to prediction using Hair et al. optimum cutting score, (5 Although prediction using Hair et al. optimum cutting score is more accurate, prediction using ZETAc optimal cut-off score proved to be able to minimize cost incurred from classification errors.
Tax revenue and inflation rate predictions in Banda Aceh using Vector Error Correction Model (VECM)
Maulia, Eva; Miftahuddin; Sofyan, Hizir
2018-05-01
A country has some important parameters to achieve the welfare of the economy, such as tax revenues and inflation. One of the largest revenues of the state budget in Indonesia comes from the tax sector. Besides, the rate of inflation occurring in a country can be used as one measure, to measure economic problems that the country facing. Given the importance of tax revenue and inflation rate control in achieving economic prosperity, it is necessary to analyze the relationship and forecasting tax revenue and inflation rate. VECM (Vector Error Correction Model) was chosen as the method used in this research, because of the data used in the form of multivariate time series data. This study aims to produce a VECM model with optimal lag and to predict the tax revenue and inflation rate of the VECM model. The results show that the best model for data of tax revenue and the inflation rate in Banda Aceh City is VECM with 3rd optimal lag or VECM (3). Of the seven models formed, there is a significant model that is the acceptance model of income tax. The predicted results of tax revenue and the inflation rate in Kota Banda Aceh for the next 6, 12 and 24 periods (months) obtained using VECM (3) are considered valid, since they have a minimum error value compared to other models.
Dopamine reward prediction error coding
Schultz, Wolfram
2016-01-01
Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards?an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less...
Dopamine reward prediction error coding.
Schultz, Wolfram
2016-03-01
Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.
DEFF Research Database (Denmark)
Del Giudice, Dario; Löwe, Roland; Madsen, Henrik
2015-01-01
from different fields and have not yet been compared in environmental modeling. To compare the two approaches, we develop a unifying terminology, evaluate them theoretically, and apply them to conceptual rainfall-runoff modeling in the same drainage system. Our results show that both approaches can......In urban rainfall-runoff, commonly applied statistical techniques for uncertainty quantification mostly ignore systematic output errors originating from simplified models and erroneous inputs. Consequently, the resulting predictive uncertainty is often unreliable. Our objective is to present two...... approaches which use stochastic processes to describe systematic deviations and to discuss their advantages and drawbacks for urban drainage modeling. The two methodologies are an external bias description (EBD) and an internal noise description (IND, also known as stochastic gray-box modeling). They emerge...
Recursive prediction error methods for online estimation in nonlinear state-space models
Directory of Open Access Journals (Sweden)
Dag Ljungquist
1994-04-01
Full Text Available Several recursive algorithms for online, combined state and parameter estimation in nonlinear state-space models are discussed in this paper. Well-known algorithms such as the extended Kalman filter and alternative formulations of the recursive prediction error method are included, as well as a new method based on a line-search strategy. A comparison of the algorithms illustrates that they are very similar although the differences can be important for the online tracking capabilities and robustness. Simulation experiments on a simple nonlinear process show that the performance under certain conditions can be improved by including a line-search strategy.
Analysts’ forecast error: A robust prediction model and its short term trading profitability
Boudt, K.M.R.; de Goei, P.; Thewissen, J.; van Campenhout, G.
2015-01-01
This paper contributes to the empirical evidence on the investment horizon salient to trading based on predicting the error in analysts' earnings forecasts. An econometric framework is proposed that accommodates the stylized fact of extreme values in the forecast error series. We find that between
Analysts forecast error : A robust prediction model and its short term trading
Boudt, Kris; de Goeij, Peter; Thewissen, James; Van Campenhout, Geert
We examine the profitability of implementing a short term trading strategy based on predicting the error in analysts' earnings per share forecasts using publicly available information. Since large earnings surprises may lead to extreme values in the forecast error series that disrupt their smooth
Quantifying uncertainty for predictions with model error in non-Gaussian systems with intermittency
International Nuclear Information System (INIS)
Branicki, Michal; Majda, Andrew J
2012-01-01
This paper discusses a range of important mathematical issues arising in applications of a newly emerging stochastic-statistical framework for quantifying and mitigating uncertainties associated with prediction of partially observed and imperfectly modelled complex turbulent dynamical systems. The need for such a framework is particularly severe in climate science where the true climate system is vastly more complicated than any conceivable model; however, applications in other areas, such as neural networks and materials science, are just as important. The mathematical tools employed here rely on empirical information theory and fluctuation–dissipation theorems (FDTs) and it is shown that they seamlessly combine into a concise systematic framework for measuring and optimizing consistency and sensitivity of imperfect models. Here, we utilize a simple statistically exactly solvable ‘perfect’ system with intermittent hidden instabilities and with time-periodic features to address a number of important issues encountered in prediction of much more complex dynamical systems. These problems include the role and mitigation of model error due to coarse-graining, moment closure approximations, and the memory of initial conditions in producing short, medium and long-range predictions. Importantly, based on a suite of increasingly complex imperfect models of the perfect test system, we show that the predictive skill of the imperfect models and their sensitivity to external perturbations is improved by ensuring their consistency on the statistical attractor (i.e. the climate) with the perfect system. Furthermore, the discussed link between climate fidelity and sensitivity via the FDT opens up an enticing prospect of developing techniques for improving imperfect model sensitivity based on specific tests carried out in the training phase of the unperturbed statistical equilibrium/climate. (paper)
Improved model predictive control of resistive wall modes by error field estimator in EXTRAP T2R
Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.
2016-12-01
Many implementations of a model-based approach for toroidal plasma have shown better control performance compared to the conventional type of feedback controller. One prerequisite of model-based control is the availability of a control oriented model. This model can be obtained empirically through a systematic procedure called system identification. Such a model is used in this work to design a model predictive controller to stabilize multiple resistive wall modes in EXTRAP T2R reversed-field pinch. Model predictive control is an advanced control method that can optimize the future behaviour of a system. Furthermore, this paper will discuss an additional use of the empirical model which is to estimate the error field in EXTRAP T2R. Two potential methods are discussed that can estimate the error field. The error field estimator is then combined with the model predictive control and yields better radial magnetic field suppression.
Model parameter-related optimal perturbations and their contributions to El Niño prediction errors
Tao, Ling-Jiang; Gao, Chuan; Zhang, Rong-Hua
2018-04-01
Errors in initial conditions and model parameters (MPs) are the main sources that limit the accuracy of ENSO predictions. In addition to exploring the initial error-induced prediction errors, model errors are equally important in determining prediction performance. In this paper, the MP-related optimal errors that can cause prominent error growth in ENSO predictions are investigated using an intermediate coupled model (ICM) and a conditional nonlinear optimal perturbation (CNOP) approach. Two MPs related to the Bjerknes feedback are considered in the CNOP analysis: one involves the SST-surface wind coupling ({α _τ } ), and the other involves the thermocline effect on the SST ({α _{Te}} ). The MP-related optimal perturbations (denoted as CNOP-P) are found uniformly positive and restrained in a small region: the {α _τ } component is mainly concentrated in the central equatorial Pacific, and the {α _{Te}} component is mainly located in the eastern cold tongue region. This kind of CNOP-P enhances the strength of the Bjerknes feedback and induces an El Niño- or La Niña-like error evolution, resulting in an El Niño-like systematic bias in this model. The CNOP-P is also found to play a role in the spring predictability barrier (SPB) for ENSO predictions. Evidently, such error growth is primarily attributed to MP errors in small areas based on the localized distribution of CNOP-P. Further sensitivity experiments firmly indicate that ENSO simulations are sensitive to the representation of SST-surface wind coupling in the central Pacific and to the thermocline effect in the eastern Pacific in the ICM. These results provide guidance and theoretical support for the future improvement in numerical models to reduce the systematic bias and SPB phenomenon in ENSO predictions.
International Nuclear Information System (INIS)
Gershgorin, B.; Harlim, J.; Majda, A.J.
2010-01-01
The filtering and predictive skill for turbulent signals is often limited by the lack of information about the true dynamics of the system and by our inability to resolve the assumed dynamics with sufficiently high resolution using the current computing power. The standard approach is to use a simple yet rich family of constant parameters to account for model errors through parameterization. This approach can have significant skill by fitting the parameters to some statistical feature of the true signal; however in the context of real-time prediction, such a strategy performs poorly when intermittent transitions to instability occur. Alternatively, we need a set of dynamic parameters. One strategy for estimating parameters on the fly is a stochastic parameter estimation through partial observations of the true signal. In this paper, we extend our newly developed stochastic parameter estimation strategy, the Stochastic Parameterization Extended Kalman Filter (SPEKF), to filtering sparsely observed spatially extended turbulent systems which exhibit abrupt stability transition from time to time despite a stable average behavior. For our primary numerical example, we consider a turbulent system of externally forced barotropic Rossby waves with instability introduced through intermittent negative damping. We find high filtering skill of SPEKF applied to this toy model even in the case of very sparse observations (with only 15 out of the 105 grid points observed) and with unspecified external forcing and damping. Additive and multiplicative bias corrections are used to learn the unknown features of the true dynamics from observations. We also present a comprehensive study of predictive skill in the one-mode context including the robustness toward variation of stochastic parameters, imperfect initial conditions and finite ensemble effect. Furthermore, the proposed stochastic parameter estimation scheme applied to the same spatially extended Rossby wave system demonstrates
Error associated with model predictions of wildland fire rate of spread
Miguel G. Cruz; Martin E. Alexander
2015-01-01
How well can we expect to predict the spread rate of wildfires and prescribed fires? The degree of accuracy in model predictions of wildland fire behaviour characteristics are dependent on the model's applicability to a given situation, the validity of the model's relationships, and the reliability of the model input data (Alexander and Cruz 2013b#. We...
Reward positivity: Reward prediction error or salience prediction error?
Heydari, Sepideh; Holroyd, Clay B
2016-08-01
The reward positivity is a component of the human ERP elicited by feedback stimuli in trial-and-error learning and guessing tasks. A prominent theory holds that the reward positivity reflects a reward prediction error signal that is sensitive to outcome valence, being larger for unexpected positive events relative to unexpected negative events (Holroyd & Coles, 2002). Although the theory has found substantial empirical support, most of these studies have utilized either monetary or performance feedback to test the hypothesis. However, in apparent contradiction to the theory, a recent study found that unexpected physical punishments also elicit the reward positivity (Talmi, Atkinson, & El-Deredy, 2013). The authors of this report argued that the reward positivity reflects a salience prediction error rather than a reward prediction error. To investigate this finding further, in the present study participants navigated a virtual T maze and received feedback on each trial under two conditions. In a reward condition, the feedback indicated that they would either receive a monetary reward or not and in a punishment condition the feedback indicated that they would receive a small shock or not. We found that the feedback stimuli elicited a typical reward positivity in the reward condition and an apparently delayed reward positivity in the punishment condition. Importantly, this signal was more positive to the stimuli that predicted the omission of a possible punishment relative to stimuli that predicted a forthcoming punishment, which is inconsistent with the salience hypothesis. © 2016 Society for Psychophysiological Research.
Cullen, Kathleen E; Brooks, Jessica X
2015-02-01
During self-motion, the vestibular system makes essential contributions to postural stability and self-motion perception. To ensure accurate perception and motor control, it is critical to distinguish between vestibular sensory inputs that are the result of externally applied motion (exafference) and that are the result of our own actions (reafference). Indeed, although the vestibular sensors encode vestibular afference and reafference with equal fidelity, neurons at the first central stage of sensory processing selectively encode vestibular exafference. The mechanism underlying this reafferent suppression compares the brain's motor-based expectation of sensory feedback with the actual sensory consequences of voluntary self-motion, effectively computing the sensory prediction error (i.e., exafference). It is generally thought that sensory prediction errors are computed in the cerebellum, yet it has been challenging to explicitly demonstrate this. We have recently addressed this question and found that deep cerebellar nuclei neurons explicitly encode sensory prediction errors during self-motion. Importantly, in everyday life, sensory prediction errors occur in response to changes in the effector or world (muscle strength, load, etc.), as well as in response to externally applied sensory stimulation. Accordingly, we hypothesize that altering the relationship between motor commands and the actual movement parameters will result in the updating in the cerebellum-based computation of exafference. If our hypothesis is correct, under these conditions, neuronal responses should initially be increased--consistent with a sudden increase in the sensory prediction error. Then, over time, as the internal model is updated, response modulation should decrease in parallel with a reduction in sensory prediction error, until vestibular reafference is again suppressed. The finding that the internal model predicting the sensory consequences of motor commands adapts for new
Schoups, G.; Vrugt, J.A.
2010-01-01
Estimation of parameter and predictive uncertainty of hydrologic models has traditionally relied on several simplifying assumptions. Residual errors are often assumed to be independent and to be adequately described by a Gaussian probability distribution with a mean of zero and a constant variance.
Energy Technology Data Exchange (ETDEWEB)
Grimm, Lars J., E-mail: Lars.grimm@duke.edu; Ghate, Sujata V.; Yoon, Sora C.; Kim, Connie [Department of Radiology, Duke University Medical Center, Box 3808, Durham, North Carolina 27710 (United States); Kuzmiak, Cherie M. [Department of Radiology, University of North Carolina School of Medicine, 2006 Old Clinic, CB No. 7510, Chapel Hill, North Carolina 27599 (United States); Mazurowski, Maciej A. [Duke University Medical Center, Box 2731 Medical Center, Durham, North Carolina 27710 (United States)
2014-03-15
Purpose: The purpose of this study is to explore Breast Imaging-Reporting and Data System (BI-RADS) features as predictors of individual errors made by trainees when detecting masses in mammograms. Methods: Ten radiology trainees and three expert breast imagers reviewed 100 mammograms comprised of bilateral medial lateral oblique and craniocaudal views on a research workstation. The cases consisted of normal and biopsy proven benign and malignant masses. For cases with actionable abnormalities, the experts recorded breast (density and axillary lymph nodes) and mass (shape, margin, and density) features according to the BI-RADS lexicon, as well as the abnormality location (depth and clock face). For each trainee, a user-specific multivariate model was constructed to predict the trainee's likelihood of error based on BI-RADS features. The performance of the models was assessed using area under the receive operating characteristic curves (AUC). Results: Despite the variability in errors between different trainees, the individual models were able to predict the likelihood of error for the trainees with a mean AUC of 0.611 (range: 0.502–0.739, 95% Confidence Interval: 0.543–0.680,p < 0.002). Conclusions: Patterns in detection errors for mammographic masses made by radiology trainees can be modeled using BI-RADS features. These findings may have potential implications for the development of future educational materials that are personalized to individual trainees.
Grimm, Lars J; Ghate, Sujata V; Yoon, Sora C; Kuzmiak, Cherie M; Kim, Connie; Mazurowski, Maciej A
2014-03-01
The purpose of this study is to explore Breast Imaging-Reporting and Data System (BI-RADS) features as predictors of individual errors made by trainees when detecting masses in mammograms. Ten radiology trainees and three expert breast imagers reviewed 100 mammograms comprised of bilateral medial lateral oblique and craniocaudal views on a research workstation. The cases consisted of normal and biopsy proven benign and malignant masses. For cases with actionable abnormalities, the experts recorded breast (density and axillary lymph nodes) and mass (shape, margin, and density) features according to the BI-RADS lexicon, as well as the abnormality location (depth and clock face). For each trainee, a user-specific multivariate model was constructed to predict the trainee's likelihood of error based on BI-RADS features. The performance of the models was assessed using area under the receive operating characteristic curves (AUC). Despite the variability in errors between different trainees, the individual models were able to predict the likelihood of error for the trainees with a mean AUC of 0.611 (range: 0.502-0.739, 95% Confidence Interval: 0.543-0.680,p errors for mammographic masses made by radiology trainees can be modeled using BI-RADS features. These findings may have potential implications for the development of future educational materials that are personalized to individual trainees.
International Nuclear Information System (INIS)
Grimm, Lars J.; Ghate, Sujata V.; Yoon, Sora C.; Kim, Connie; Kuzmiak, Cherie M.; Mazurowski, Maciej A.
2014-01-01
Purpose: The purpose of this study is to explore Breast Imaging-Reporting and Data System (BI-RADS) features as predictors of individual errors made by trainees when detecting masses in mammograms. Methods: Ten radiology trainees and three expert breast imagers reviewed 100 mammograms comprised of bilateral medial lateral oblique and craniocaudal views on a research workstation. The cases consisted of normal and biopsy proven benign and malignant masses. For cases with actionable abnormalities, the experts recorded breast (density and axillary lymph nodes) and mass (shape, margin, and density) features according to the BI-RADS lexicon, as well as the abnormality location (depth and clock face). For each trainee, a user-specific multivariate model was constructed to predict the trainee's likelihood of error based on BI-RADS features. The performance of the models was assessed using area under the receive operating characteristic curves (AUC). Results: Despite the variability in errors between different trainees, the individual models were able to predict the likelihood of error for the trainees with a mean AUC of 0.611 (range: 0.502–0.739, 95% Confidence Interval: 0.543–0.680,p < 0.002). Conclusions: Patterns in detection errors for mammographic masses made by radiology trainees can be modeled using BI-RADS features. These findings may have potential implications for the development of future educational materials that are personalized to individual trainees
Directory of Open Access Journals (Sweden)
Y. Cao
2017-09-01
Full Text Available Most atmospheric models, including the Weather Research and Forecasting (WRF model, use a spherical geographic coordinate system to internally represent input data and perform computations. However, most geographic information system (GIS input data used by the models are based on a spheroid datum because it better represents the actual geometry of the earth. WRF and other atmospheric models use these GIS input layers as if they were in a spherical coordinate system without accounting for the difference in datum. When GIS layers are not properly reprojected, latitudinal errors of up to 21 km in the midlatitudes are introduced. Recent studies have suggested that for very high-resolution applications, the difference in datum in the GIS input data (e.g., terrain land use, orography should be taken into account. However, the magnitude of errors introduced by the difference in coordinate systems remains unclear. This research quantifies the effect of using a spherical vs. a spheroid datum for the input GIS layers used by WRF to study greenhouse gas transport and dispersion in northeast Pennsylvania.
Alexeeff, Stacey E; Carroll, Raymond J; Coull, Brent
2016-04-01
Spatial modeling of air pollution exposures is widespread in air pollution epidemiology research as a way to improve exposure assessment. However, there are key sources of exposure model uncertainty when air pollution is modeled, including estimation error and model misspecification. We examine the use of predicted air pollution levels in linear health effect models under a measurement error framework. For the prediction of air pollution exposures, we consider a universal Kriging framework, which may include land-use regression terms in the mean function and a spatial covariance structure for the residuals. We derive the bias induced by estimation error and by model misspecification in the exposure model, and we find that a misspecified exposure model can induce asymptotic bias in the effect estimate of air pollution on health. We propose a new spatial simulation extrapolation (SIMEX) procedure, and we demonstrate that the procedure has good performance in correcting this asymptotic bias. We illustrate spatial SIMEX in a study of air pollution and birthweight in Massachusetts. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Christiansen, Bo
2015-04-01
Linear regression methods are without doubt the most used approaches to describe and predict data in the physical sciences. They are often good first order approximations and they are in general easier to apply and interpret than more advanced methods. However, even the properties of univariate regression can lead to debate over the appropriateness of various models as witnessed by the recent discussion about climate reconstruction methods. Before linear regression is applied important choices have to be made regarding the origins of the noise terms and regarding which of the two variables under consideration that should be treated as the independent variable. These decisions are often not easy to make but they may have a considerable impact on the results. We seek to give a unified probabilistic - Bayesian with flat priors - treatment of univariate linear regression and prediction by taking, as starting point, the general errors-in-variables model (Christiansen, J. Clim., 27, 2014-2031, 2014). Other versions of linear regression can be obtained as limits of this model. We derive the likelihood of the model parameters and predictands of the general errors-in-variables model by marginalizing over the nuisance parameters. The resulting likelihood is relatively simple and easy to analyze and calculate. The well known unidentifiability of the errors-in-variables model is manifested as the absence of a well-defined maximum in the likelihood. However, this does not mean that probabilistic inference can not be made; the marginal likelihoods of model parameters and the predictands have, in general, well-defined maxima. We also include a probabilistic version of classical calibration and show how it is related to the errors-in-variables model. The results are illustrated by an example from the coupling between the lower stratosphere and the troposphere in the Northern Hemisphere winter.
A bottom-up model of spatial attention predicts human error patterns in rapid scene recognition.
Einhäuser, Wolfgang; Mundhenk, T Nathan; Baldi, Pierre; Koch, Christof; Itti, Laurent
2007-07-20
Humans demonstrate a peculiar ability to detect complex targets in rapidly presented natural scenes. Recent studies suggest that (nearly) no focal attention is required for overall performance in such tasks. Little is known, however, of how detection performance varies from trial to trial and which stages in the processing hierarchy limit performance: bottom-up visual processing (attentional selection and/or recognition) or top-down factors (e.g., decision-making, memory, or alertness fluctuations)? To investigate the relative contribution of these factors, eight human observers performed an animal detection task in natural scenes presented at 20 Hz. Trial-by-trial performance was highly consistent across observers, far exceeding the prediction of independent errors. This consistency demonstrates that performance is not primarily limited by idiosyncratic factors but by visual processing. Two statistical stimulus properties, contrast variation in the target image and the information-theoretical measure of "surprise" in adjacent images, predict performance on a trial-by-trial basis. These measures are tightly related to spatial attention, demonstrating that spatial attention and rapid target detection share common mechanisms. To isolate the causal contribution of the surprise measure, eight additional observers performed the animal detection task in sequences that were reordered versions of those all subjects had correctly recognized in the first experiment. Reordering increased surprise before and/or after the target while keeping the target and distractors themselves unchanged. Surprise enhancement impaired target detection in all observers. Consequently, and contrary to several previously published findings, our results demonstrate that attentional limitations, rather than target recognition alone, affect the detection of targets in rapidly presented visual sequences.
Bergen, Silas; Sheppard, Lianne; Sampson, Paul D; Kim, Sun-Young; Richards, Mark; Vedal, Sverre; Kaufman, Joel D; Szpiro, Adam A
2013-09-01
Studies estimating health effects of long-term air pollution exposure often use a two-stage approach: building exposure models to assign individual-level exposures, which are then used in regression analyses. This requires accurate exposure modeling and careful treatment of exposure measurement error. To illustrate the importance of accounting for exposure model characteristics in two-stage air pollution studies, we considered a case study based on data from the Multi-Ethnic Study of Atherosclerosis (MESA). We built national spatial exposure models that used partial least squares and universal kriging to estimate annual average concentrations of four PM2.5 components: elemental carbon (EC), organic carbon (OC), silicon (Si), and sulfur (S). We predicted PM2.5 component exposures for the MESA cohort and estimated cross-sectional associations with carotid intima-media thickness (CIMT), adjusting for subject-specific covariates. We corrected for measurement error using recently developed methods that account for the spatial structure of predicted exposures. Our models performed well, with cross-validated R2 values ranging from 0.62 to 0.95. Naïve analyses that did not account for measurement error indicated statistically significant associations between CIMT and exposure to OC, Si, and S. EC and OC exhibited little spatial correlation, and the corrected inference was unchanged from the naïve analysis. The Si and S exposure surfaces displayed notable spatial correlation, resulting in corrected confidence intervals (CIs) that were 50% wider than the naïve CIs, but that were still statistically significant. The impact of correcting for measurement error on health effect inference is concordant with the degree of spatial correlation in the exposure surfaces. Exposure model characteristics must be considered when performing two-stage air pollution epidemiologic analyses because naïve health effect inference may be inappropriate.
Addressing Common Cloud-Radiation Errors from 4-hour to 4-week Model Prediction
Benjamin, S.; Sun, S.; Grell, G. A.; Green, B.; Olson, J.; Kenyon, J.; James, E.; Smirnova, T. G.; Brown, J. M.
2017-12-01
Cloud-radiation representation in models for subgrid-scale clouds is a known gap from subseasonal-to-seasonal models down to storm-scale models applied for forecast duration of only a few hours. NOAA/ESRL has been applying common physical parameterizations for scale-aware deep/shallow convection and boundary-layer mixing over this wide range of time and spatial scales, with some progress to be reported in this presentation. The Grell-Freitas scheme (2014, Atmos. Chem. Phys.) and MYNN boundary-layer EDMF scheme (Olson / Benjamin et al. 2016 Mon. Wea. Rev.) have been applied and tested extensively for the NOAA hourly updated 3-km High-Resolution Rapid Refresh (HRRR) and 13-km Rapid Refresh (RAP) model/assimilation systems over the United States and North America, with targeting toward improvement to boundary-layer evolution and cloud-radiation representation in all seasons. This representation is critical for both warm-season severe convective storm forecasting and for winter-storm prediction of snow and mixed precipitation. At the same time the Grell-Freitas scheme has been applied also as an option for subseasonal forecasting toward improved US week 3-4 prediction with the FIM-HYCOM coupled model (Green et al 2017, MWR). Cloud/radiation evaluation using CERES satellite-based estimates have been applied to both 12-h RAP (13km) and also during Weeks 1-4 from 32-day FIM-HYCOM (60km) forecasts. Initial results reveal that improved cloud representation is needed for both resolutions and now is guiding further refinement for cloud representation including with the Grell-Freitas scheme and with the updated MYNN-EDMF scheme (both now also in global testing as well as with the 3km HRRR and 13km RAP models).
CLIM : A cross-level workload-aware timing error prediction model for functional units
Jiao, Xun; Rahimi, Abbas; Jiang, Yu; Wang, Jianguo; Fatemi, Hamed; De Gyvez, Jose Pineda; Gupta, Rajesh K.
2018-01-01
Timing errors that are caused by the timing violations of sensitized circuit paths, have emerged as an important threat to the reliability of synchronous digital circuits. To protect circuits from these timing errors, designers typically use a conservative timing margin, which leads to operational
The disparity mutagenesis model predicts rescue of living things from catastrophic errors
Directory of Open Access Journals (Sweden)
Mitsuru eFurusawa
2014-12-01
Full Text Available In animals including humans, mutation rates per generation will exceed a perceived threshold, which should result in an excessive genetic load. Despite this, they have survived without extinction. This is a perplexing problem for human genetics, arising at the end of the last century, and to date still does not have a fully satisfactory explanation. Shortly after we proposed the disparity theory of evolution in 1992, the disparity mutagenesis model was proposed, which forms the basis for an explanation for an acceleration of evolution and species survival. This model predicts a significant increase of the mutation threshold values if there is a high enough fidelity difference in replication between the lagging and leading strands. When applied to biological evolution, the model predicts that living things, including humans, might overcome the lethal effect of accumulated deleterious mutations and be able to survive. Artificially-prepared mutator strains of microorganisms, in which an enhanced lagging-strand-biased mutagenesis was introduced, showed unexpectedly high adaptability to severe environments. The implications of the striking behaviors shown by these disparity mutators will be discussed in relation to how living things with high mutation rates can avoid the self-defeating risk of excess mutations.
Supervised learning based model for predicting variability-induced timing errors
Jiao, X.; Rahimi, A.; Narayanaswamy, B.; Fatemi, H.; Pineda de Gyvez, J.; Gupta, R.K.
2015-01-01
Circuit designers typically combat variations in hardware and workload by increasing conservative guardbanding that leads to operational inefficiency. Reducing this excessive guardband is highly desirable, but causes timing errors in synchronous circuits. We propose a methodology for supervised
Christensen, N. K.; Minsley, B. J.; Christensen, S.
2017-02-01
We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.
Christensen, Nikolaj K; Minsley, Burke J.; Christensen, Steen
2017-01-01
We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.
Erdeniz, Burak; Rohe, Tim; Done, John; Seidler, Rachael D
2013-01-01
Conventional neuroimaging techniques provide information about condition-related changes of the BOLD (blood-oxygen-level dependent) signal, indicating only where and when the underlying cognitive processes occur. Recently, with the help of a new approach called "model-based" functional neuroimaging (fMRI), researchers are able to visualize changes in the internal variables of a time varying learning process, such as the reward prediction error or the predicted reward value of a conditional stimulus. However, despite being extremely beneficial to the imaging community in understanding the neural correlates of decision variables, a model-based approach to brain imaging data is also methodologically challenging due to the multicollinearity problem in statistical analysis. There are multiple sources of multicollinearity in functional neuroimaging including investigations of closely related variables and/or experimental designs that do not account for this. The source of multicollinearity discussed in this paper occurs due to correlation between different subjective variables that are calculated very close in time. Here, we review methodological approaches to analyzing such data by discussing the special case of separating the reward prediction error signal from reward outcomes.
Directory of Open Access Journals (Sweden)
Jianzhong Zhou
2017-12-01
Full Text Available Model simulation and control of pumped storage unit (PSU are essential to improve the dynamic quality of power station. Only under the premise of the PSU models reflecting the actual transient process, the novel control method can be properly applied in the engineering. The contributions of this paper are that (1 a real-time accurate equivalent circuit model (RAECM of PSU via error compensation is proposed to reconcile the conflict between real-time online simulation and accuracy under various operating conditions, and (2 an adaptive predicted fuzzy PID controller (APFPID based on RAECM is put forward to overcome the instability of conventional control under no-load conditions with low water head. Respectively, all hydraulic factors in pipeline system are fully considered based on equivalent lumped-circuits theorem. The pretreatment, which consists of improved Suter-transformation and BP neural network, and online simulation method featured by two iterative loops are synthetically proposed to improve the solving accuracy of the pump-turbine. Moreover, the modified formulas for compensating error are derived with variable-spatial discretization to improve the accuracy of the real-time simulation further. The implicit RadauIIA method is verified to be more suitable for PSUGS owing to wider stable domain. Then, APFPID controller is constructed based on the integration of fuzzy PID and the model predictive control. Rolling prediction by RAECM is proposed to replace rolling optimization with its computational speed guaranteed. Finally, the simulation and on-site measurements are compared to prove trustworthy of RAECM under various running conditions. Comparative experiments also indicate that APFPID controller outperforms other controllers in most cases, especially low water head conditions. Satisfying results of RAECM have been achieved in engineering and it provides a novel model reference for PSUGS.
Directory of Open Access Journals (Sweden)
Francisco Javier Bucio
2017-10-01
Full Text Available Due to its nutritional and economic value, the tomato is considered one of the main vegetables in terms of production and consumption in the world. For this reason, an important case study is the fruit maturation parametrized by its mass loss in this study. This process develops in the fruit mainly after harvest. Since that parameter affects the economic value of the crop, the scientific community has been progressively approaching the issue. However, there is no a state-of-the-art practical model allowing the prediction of the tomato fruit mass loss yet. This study proposes a prediction model for tomato mass loss in a continuous and definite time-frame using regression methods. The model is based on a combination of adjustment methods such as least squares polynomial regression leading to error estimation, and cross validation techniques. Experimental results from a 50 fruit of tomato sample studied over a 54 days period were compared to results from the model using a second-order polynomial approach found to provide optimal data fit with a resulting efficiency of ~97%. The model also allows the design of precise logistic strategies centered on post-harvest tomato mass loss prediction usable by producers, distributors, and consumers.
A General Linear Model (GLM) was used to evaluate the deviation of predicted values from expected values for a complex environmental model. For this demonstration, we used the default level interface of the Regional Mercury Cycling Model (R-MCM) to simulate epilimnetic total mer...
Clock error models for simulation and estimation
International Nuclear Information System (INIS)
Meditch, J.S.
1981-10-01
Mathematical models for the simulation and estimation of errors in precision oscillators used as time references in satellite navigation systems are developed. The results, based on all currently known oscillator error sources, are directly implementable on a digital computer. The simulation formulation is sufficiently flexible to allow for the inclusion or exclusion of individual error sources as desired. The estimation algorithms, following from Kalman filter theory, provide directly for the error analysis of clock errors in both filtering and prediction
J. McKean; D. Tonina; C. Bohn; C. W. Wright
2014-01-01
New remote sensing technologies and improved computer performance now allow numerical flow modeling over large stream domains. However, there has been limited testing of whether channel topography can be remotely mapped with accuracy necessary for such modeling. We assessed the ability of the Experimental Advanced Airborne Research Lidar, to support a multi-dimensional...
DEFF Research Database (Denmark)
Christensen, Steen; Doherty, John
2008-01-01
A significant practical problem with the pilot point method is to choose the location of the pilot points. We present a method that is intended to relieve the modeler from much of this responsibility. The basic idea is that a very large number of pilot points are distributed more or less uniformly...... over the model area. Singular value decomposition (SVD) of the (possibly weighted) sensitivity matrix of the pilot point based model produces eigenvectors of which we pick a small number corresponding to significant eigenvalues. Super parameters are defined as factors through which parameter...... combinations corresponding to the chosen eigenvectors are multiplied to obtain the pilot point values. The model can thus be transformed from having many-pilot-point parameters to having a few super parameters that can be estimated by nonlinear regression on the basis of the available observations. (This...
Ye, Min; Nagar, Swati; Korzekwa, Ken
2015-01-01
Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data was often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding, and blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for terminal elimination half-life (t1/2, 100% of drugs), peak plasma concentration (Cmax, 100%), area under the plasma concentration-time curve (AUC0–t, 95.4%), clearance (CLh, 95.4%), mean retention time (MRT, 95.4%), and steady state volume (Vss, 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. PMID:26531057
Ye, Min; Nagar, Swati; Korzekwa, Ken
2016-04-01
Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data were often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding and the blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate the model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for the terminal elimination half-life (t1/2 , 100% of drugs), peak plasma concentration (Cmax , 100%), area under the plasma concentration-time curve (AUC0-t , 95.4%), clearance (CLh , 95.4%), mean residence time (MRT, 95.4%) and steady state volume (Vss , 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
SHERPA: A systematic human error reduction and prediction approach
International Nuclear Information System (INIS)
Embrey, D.E.
1986-01-01
This paper describes a Systematic Human Error Reduction and Prediction Approach (SHERPA) which is intended to provide guidelines for human error reduction and quantification in a wide range of human-machine systems. The approach utilizes as its basic current cognitive models of human performance. The first module in SHERPA performs task and human error analyses, which identify likely error modes, together with guidelines for the reduction of these errors by training, procedures and equipment redesign. The second module uses a SARAH approach to quantify the probability of occurrence of the errors identified earlier, and provides cost benefit analyses to assist in choosing the appropriate error reduction approaches in the third module
Critical evidence for the prediction error theory in associative learning.
Terao, Kanta; Matsumoto, Yukihisa; Mizunami, Makoto
2015-03-10
In associative learning in mammals, it is widely accepted that the discrepancy, or error, between actual and predicted reward determines whether learning occurs. Complete evidence for the prediction error theory, however, has not been obtained in any learning systems: Prediction error theory stems from the finding of a blocking phenomenon, but blocking can also be accounted for by other theories, such as the attentional theory. We demonstrated blocking in classical conditioning in crickets and obtained evidence to reject the attentional theory. To obtain further evidence supporting the prediction error theory and rejecting alternative theories, we constructed a neural model to match the prediction error theory, by modifying our previous model of learning in crickets, and we tested a prediction from the model: the model predicts that pharmacological intervention of octopaminergic transmission during appetitive conditioning impairs learning but not formation of reward prediction itself, and it thus predicts no learning in subsequent training. We observed such an "auto-blocking", which could be accounted for by the prediction error theory but not by other competitive theories to account for blocking. This study unambiguously demonstrates validity of the prediction error theory in associative learning.
Directory of Open Access Journals (Sweden)
SM Mirhosseini
2015-09-01
Full Text Available Abstract Introduction: A wide ranges of variables effect on the medical errors such as job involvement and organizational commitment. Coincidental relationship between two variables on medical errors during outpatients’ visits has been investigated to design a model. Methods: A field study with 114 physicians during outpatients’ visits revealed the mean of medical errors. Azimi and Allen-meyer questionnaires were used to measure Job involvement and organizational commitment. Physicians divided into four groups according to the Job involvement and organizational commitment in two dimensions (Zone1: high job involvement and high organizational commitment, Zone2: high job involvement and low organizational commitment, Zone3: low job involvement and high organizational commitment, Zone 4: low job involvement and low organizational commitment. ANOVA and Scheffe test were conducted to analyse the medical errors in four Zones by SPSS22. A guideline was presented according to the relationship between errors and two other variables. Results: The mean of organizational commitment was 79.50±12.30 and job involvement 12.72±3.66, medical errors in first group (0.32, second group (0.51, third group (0.41 and last one (0.50. ANOVA (F test=22.20, sig=0.00 and Scheffé were significant except for the second and forth group. The validity of the model was 73.60%. Conclusion: Applying some strategies to boost the organizational commitment and job involvement can help for diminishing the medical errors during outpatients’ visits. Thus, the investigation to comprehend the factors contributing organizational commitment and job involvement can be helpful.
Ryu, Y. H.; Hodzic, A.; Barré, J.; Descombes, G.; Minnis, P.
2017-12-01
Clouds play a key role in radiation and hence O3 photochemistry by modulating photolysis rates and light-dependent emissions of biogenic volatile organic compounds (BVOCs). It is not well known, however, how much of the bias in O3 predictions is caused by inaccurate cloud predictions. This study quantifies the errors in surface O3 predictions associated with clouds in summertime over CONUS using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. Cloud fields used for photochemistry are corrected based on satellite cloud retrievals in sensitivity simulations. It is found that the WRF-Chem model is able to detect about 60% of clouds in the right locations and generally underpredicts cloud optical depths. The errors in hourly O3 due to the errors in cloud predictions can be up to 60 ppb. On average in summertime over CONUS, the errors in 8-h average O3 of 1-6 ppb are found to be attributable to those in cloud predictions under cloudy sky conditions. The contribution of changes in photolysis rates due to clouds is found to be larger ( 80 % on average) than that of light-dependent BVOC emissions. The effects of cloud corrections on O3 are about 2 times larger in VOC-limited than NOx-limited regimes, suggesting that the benefits of accurate cloud predictions would be greater in VOC-limited than NOx-limited regimes.
Notes on human error analysis and prediction
International Nuclear Information System (INIS)
Rasmussen, J.
1978-11-01
The notes comprise an introductory discussion of the role of human error analysis and prediction in industrial risk analysis. Following this introduction, different classes of human errors and role in industrial systems are mentioned. Problems related to the prediction of human behaviour in reliability and safety analysis are formulated and ''criteria for analyzability'' which must be met by industrial systems so that a systematic analysis can be performed are suggested. The appendices contain illustrative case stories and a review of human error reports for the task of equipment calibration and testing as found in the US Licensee Event Reports. (author)
Working Memory Load Strengthens Reward Prediction Errors.
Collins, Anne G E; Ciullo, Brittany; Frank, Michael J; Badre, David
2017-04-19
Reinforcement learning (RL) in simple instrumental tasks is usually modeled as a monolithic process in which reward prediction errors (RPEs) are used to update expected values of choice options. This modeling ignores the different contributions of different memory and decision-making systems thought to contribute even to simple learning. In an fMRI experiment, we investigated how working memory (WM) and incremental RL processes interact to guide human learning. WM load was manipulated by varying the number of stimuli to be learned across blocks. Behavioral results and computational modeling confirmed that learning was best explained as a mixture of two mechanisms: a fast, capacity-limited, and delay-sensitive WM process together with slower RL. Model-based analysis of fMRI data showed that striatum and lateral prefrontal cortex were sensitive to RPE, as shown previously, but, critically, these signals were reduced when the learning problem was within capacity of WM. The degree of this neural interaction related to individual differences in the use of WM to guide behavioral learning. These results indicate that the two systems do not process information independently, but rather interact during learning. SIGNIFICANCE STATEMENT Reinforcement learning (RL) theory has been remarkably productive at improving our understanding of instrumental learning as well as dopaminergic and striatal network function across many mammalian species. However, this neural network is only one contributor to human learning and other mechanisms such as prefrontal cortex working memory also play a key role. Our results also show that these other players interact with the dopaminergic RL system, interfering with its key computation of reward prediction errors. Copyright © 2017 the authors 0270-6474/17/374332-11$15.00/0.
Lock, Jacobus C.; Smit, Willie J.; Treurnicht, Johann
2016-05-01
The Solar Thermal Energy Research Group (STERG) is investigating ways to make heliostats cheaper to reduce the total cost of a concentrating solar power (CSP) plant. One avenue of research is to use unmanned aerial vehicles (UAVs) to automate and assist with the heliostat calibration process. To do this, the pose estimation error of each UAV must be determined and integrated into a calibration procedure. A computer vision (CV) system is used to measure the pose of a quadcopter UAV. However, this CV system contains considerable measurement errors. Since this is a high-dimensional problem, a sophisticated prediction model must be used to estimate the measurement error of the CV system for any given pose measurement vector. This paper attempts to train and validate such a model with the aim of using it to determine the pose error of a quadcopter in a CSP plant setting.
Berthet, Lionel; Marty, Renaud; Bourgin, François; Viatgé, Julie; Piotte, Olivier; Perrin, Charles
2017-04-01
An increasing number of operational flood forecasting centres assess the predictive uncertainty associated with their forecasts and communicate it to the end users. This information can match the end-users needs (i.e. prove to be useful for an efficient crisis management) only if it is reliable: reliability is therefore a key quality for operational flood forecasts. In 2015, the French flood forecasting national and regional services (Vigicrues network; www.vigicrues.gouv.fr) implemented a framework to compute quantitative discharge and water level forecasts and to assess the predictive uncertainty. Among the possible technical options to achieve this goal, a statistical analysis of past forecasting errors of deterministic models has been selected (QUOIQUE method, Bourgin, 2014). It is a data-based and non-parametric approach based on as few assumptions as possible about the forecasting error mathematical structure. In particular, a very simple assumption is made regarding the predictive uncertainty distributions for large events outside the range of the calibration data: the multiplicative error distribution is assumed to be constant, whatever the magnitude of the flood. Indeed, the predictive distributions may not be reliable in extrapolation. However, estimating the predictive uncertainty for these rare events is crucial when major floods are of concern. In order to improve the forecasts reliability for major floods, an attempt at combining the operational strength of the empirical statistical analysis and a simple error modelling is done. Since the heteroscedasticity of forecast errors can considerably weaken the predictive reliability for large floods, this error modelling is based on the log-sinh transformation which proved to reduce significantly the heteroscedasticity of the transformed error in a simulation context, even for flood peaks (Wang et al., 2012). Exploratory tests on some operational forecasts issued during the recent floods experienced in
DEFF Research Database (Denmark)
Troen, Ib; Bechmann, Andreas; Kelly, Mark C.
2014-01-01
Using the Wind Atlas methodology to predict the average wind speed at one location from measured climatological wind frequency distributions at another nearby location we analyse the relative prediction errors using a linearized flow model (IBZ) and a more physically correct fully non-linear 3D...... flow model (CFD) for a number of sites in very complex terrain (large terrain slopes). We first briefly describe the Wind Atlas methodology as implemented in WAsP and the specifics of the “classical” model setup and the new setup allowing the use of the CFD computation engine. We discuss some known...
Prediction-error of Prediction Error (PPE)-based Reversible Data Hiding
Wu, Han-Zhou; Wang, Hong-Xia; Shi, Yun-Qing
2016-01-01
This paper presents a novel reversible data hiding (RDH) algorithm for gray-scaled images, in which the prediction-error of prediction error (PPE) of a pixel is used to carry the secret data. In the proposed method, the pixels to be embedded are firstly predicted with their neighboring pixels to obtain the corresponding prediction errors (PEs). Then, by exploiting the PEs of the neighboring pixels, the prediction of the PEs of the pixels can be determined. And, a sorting technique based on th...
Scaling prediction errors to reward variability benefits error-driven learning in humans.
Diederen, Kelly M J; Schultz, Wolfram
2015-09-01
Effective error-driven learning requires individuals to adapt learning to environmental reward variability. The adaptive mechanism may involve decays in learning rate across subsequent trials, as shown previously, and rescaling of reward prediction errors. The present study investigated the influence of prediction error scaling and, in particular, the consequences for learning performance. Participants explicitly predicted reward magnitudes that were drawn from different probability distributions with specific standard deviations. By fitting the data with reinforcement learning models, we found scaling of prediction errors, in addition to the learning rate decay shown previously. Importantly, the prediction error scaling was closely related to learning performance, defined as accuracy in predicting the mean of reward distributions, across individual participants. In addition, participants who scaled prediction errors relative to standard deviation also presented with more similar performance for different standard deviations, indicating that increases in standard deviation did not substantially decrease "adapters'" accuracy in predicting the means of reward distributions. However, exaggerated scaling beyond the standard deviation resulted in impaired performance. Thus efficient adaptation makes learning more robust to changing variability. Copyright © 2015 the American Physiological Society.
Aberg, Kristoffer C; Müller, Julia; Schwartz, Sophie
2017-01-01
Anticipation and delivery of rewards improves memory formation, but little effort has been made to disentangle their respective contributions to memory enhancement. Moreover, it has been suggested that the effects of reward on memory are mediated by dopaminergic influences on hippocampal plasticity. Yet, evidence linking memory improvements to actual reward computations reflected in the activity of the dopaminergic system, i.e., prediction errors and expected values, is scarce and inconclusive. For example, different previous studies reported that the magnitude of prediction errors during a reinforcement learning task was a positive, negative, or non-significant predictor of successfully encoding simultaneously presented images. Individual sensitivities to reward and punishment have been found to influence the activation of the dopaminergic reward system and could therefore help explain these seemingly discrepant results. Here, we used a novel associative memory task combined with computational modeling and showed independent effects of reward-delivery and reward-anticipation on memory. Strikingly, the computational approach revealed positive influences from both reward delivery, as mediated by prediction error magnitude, and reward anticipation, as mediated by magnitude of expected value, even in the absence of behavioral effects when analyzed using standard methods, i.e., by collapsing memory performance across trials within conditions. We additionally measured trait estimates of reward and punishment sensitivity and found that individuals with increased reward (vs. punishment) sensitivity had better memory for associations encoded during positive (vs. negative) prediction errors when tested after 20 min, but a negative trend when tested after 24 h. In conclusion, modeling trial-by-trial fluctuations in the magnitude of reward, as we did here for prediction errors and expected value computations, provides a comprehensive and biologically plausible description of
Signed reward prediction errors drive declarative learning
De Loof, E.; Ergo, K.; Naert, L.; Janssens, C.; Talsma, D.; van Opstal, F.; Verguts, T.
2018-01-01
Reward prediction errors (RPEs) are thought to drive learning. This has been established in procedural learning (e.g., classical and operant conditioning). However, empirical evidence on whether RPEs drive declarative learning–a quintessentially human form of learning–remains surprisingly absent. We
Owens, P. R.; Libohova, Z.; Seybold, C. A.; Wills, S. A.; Peaslee, S.; Beaudette, D.; Lindbo, D. L.
2017-12-01
The measurement errors and spatial prediction uncertainties of soil properties in the modeling community are usually assessed against measured values when available. However, of equal importance is the assessment of errors and uncertainty impacts on cost benefit analysis and risk assessments. Soil pH was selected as one of the most commonly measured soil properties used for liming recommendations. The objective of this study was to assess the error size from different sources and their implications with respect to management decisions. Error sources include measurement methods, laboratory sources, pedotransfer functions, database transections, spatial aggregations, etc. Several databases of measured and predicted soil pH were used for this study including the United States National Cooperative Soil Survey Characterization Database (NCSS-SCDB), the US Soil Survey Geographic (SSURGO) Database. The distribution of errors among different sources from measurement methods to spatial aggregation showed a wide range of values. The greatest RMSE of 0.79 pH units was from spatial aggregation (SSURGO vs Kriging), while the measurement methods had the lowest RMSE of 0.06 pH units. Assuming the order of data acquisition based on the transaction distance i.e. from measurement method to spatial aggregation the RMSE increased from 0.06 to 0.8 pH units suggesting an "error propagation". This has major implications for practitioners and modeling community. Most soil liming rate recommendations are based on 0.1 pH unit increments, while the desired soil pH level increments are based on 0.4 to 0.5 pH units. Thus, even when the measured and desired target soil pH are the same most guidelines recommend 1 ton ha-1 lime, which translates in 111 ha-1 that the farmer has to factor in the cost-benefit analysis. However, this analysis need to be based on uncertainty predictions (0.5-1.0 pH units) rather than measurement errors (0.1 pH units) which would translate in 555-1,111 investment that
Prediction and error of baldcypress stem volume from stump diameter
Bernard R. Parresol
1998-01-01
The need to estimate the volume of removals occurs for many reasons, such as in trespass cases, severance tax reports, and post-harvest assessments. A logarithmic model is presented for prediction of baldcypress total stem cubic foot volume using stump diameter as the independent variable. Because the error of prediction is as important as the volume estimate, the...
Berthet, Pierre; Lansner, Anders
2014-01-01
Optogenetic stimulation of specific types of medium spiny neurons (MSNs) in the striatum has been shown to bias the selection of mice in a two choices task. This shift is dependent on the localisation and on the intensity of the stimulation but also on the recent reward history. We have implemented a way to simulate this increased activity produced by the optical flash in our computational model of the basal ganglia (BG). This abstract model features the direct and indirect pathways commonly described in biology, and a reward prediction pathway (RP). The framework is similar to Actor-Critic methods and to the ventral/dorsal distinction in the striatum. We thus investigated the impact on the selection caused by an added stimulation in each of the three pathways. We were able to reproduce in our model the bias in action selection observed in mice. Our results also showed that biasing the reward prediction is sufficient to create a modification in the action selection. However, we had to increase the percentage of trials with stimulation relative to that in experiments in order to impact the selection. We found that increasing only the reward prediction had a different effect if the stimulation in RP was action dependent (only for a specific action) or not. We further looked at the evolution of the change in the weights depending on the stage of learning within a block. A bias in RP impacts the plasticity differently depending on that stage but also on the outcome. It remains to experimentally test how the dopaminergic neurons are affected by specific stimulations of neurons in the striatum and to relate data to predictions of our model.
Error Resilient Video Compression Using Behavior Models
Directory of Open Access Journals (Sweden)
Jacco R. Taal
2004-03-01
Full Text Available Wireless and Internet video applications are inherently subjected to bit errors and packet errors, respectively. This is especially so if constraints on the end-to-end compression and transmission latencies are imposed. Therefore, it is necessary to develop methods to optimize the video compression parameters and the rate allocation of these applications that take into account residual channel bit errors. In this paper, we study the behavior of a predictive (interframe video encoder and model the encoders behavior using only the statistics of the original input data and of the underlying channel prone to bit errors. The resulting data-driven behavior models are then used to carry out group-of-pictures partitioning and to control the rate of the video encoder in such a way that the overall quality of the decoded video with compression and channel errors is optimized.
Liu, T.; Schmitt, R. W.; Li, L.
2017-12-01
Using 69 years of historical data from 1948-2017, we developed a method to globally search for sea surface salinity (SSS) and temperature (SST) predictors of regional terrestrial precipitation. We then applied this method to build an autumn (SON) SSS and SST-based 3-month lead predictive model of winter (DJF) precipitation in southwestern United States. We also find that SSS-only models perform better than SST-only models. We previously used an arbitrary correlation coefficient (r) threshold, |r| > 0.25, to define SSS and SST predictor polygons for best subset regression of southwestern US winter precipitation; from preliminary sensitivity tests, we find that |r| > 0.18 yields the best models. The observed below-average precipitation (0.69 mm/day) in winter 2015-2016 falls within the 95% confidence interval of the prediction model. However, the model underestimates the anomalous high precipitation (1.78 mm/day) in winter 2016-2017 by more than three-fold. Moisture transport mainly attributed to "pineapple express" atmospheric rivers (ARs) in winter 2016-2017 suggests that the model falls short on a sub-seasonal scale, in which case storms from ARs contribute a significant portion of seasonal terrestrial precipitation. Further, we identify a potential mechanism for long-range SSS and precipitation teleconnections: standing Rossby waves. The heat applied to the atmosphere from anomalous tropical rainfall can generate standing Rossby waves that propagate to higher latitudes. SSS anomalies may be indicative of anomalous tropical rainfall, and by extension, standing Rossby waves that provide the long-range teleconnections.
Error Modeling and Design Optimization of Parallel Manipulators
DEFF Research Database (Denmark)
Wu, Guanglei
/backlash, manufacturing and assembly errors and joint clearances. From the error prediction model, the distributions of the pose errors due to joint clearances are mapped within its constant-orientation workspace and the correctness of the developed model is validated experimentally. ix Additionally, using the screw......, dynamic modeling etc. Next, the rst-order dierential equation of the kinematic closure equation of planar parallel manipulator is obtained to develop its error model both in Polar and Cartesian coordinate systems. The established error model contains the error sources of actuation error...
Holmes, John B; Dodds, Ken G; Lee, Michael A
2017-03-02
An important issue in genetic evaluation is the comparability of random effects (breeding values), particularly between pairs of animals in different contemporary groups. This is usually referred to as genetic connectedness. While various measures of connectedness have been proposed in the literature, there is general agreement that the most appropriate measure is some function of the prediction error variance-covariance matrix. However, obtaining the prediction error variance-covariance matrix is computationally demanding for large-scale genetic evaluations. Many alternative statistics have been proposed that avoid the computational cost of obtaining the prediction error variance-covariance matrix, such as counts of genetic links between contemporary groups, gene flow matrices, and functions of the variance-covariance matrix of estimated contemporary group fixed effects. In this paper, we show that a correction to the variance-covariance matrix of estimated contemporary group fixed effects will produce the exact prediction error variance-covariance matrix averaged by contemporary group for univariate models in the presence of single or multiple fixed effects and one random effect. We demonstrate the correction for a series of models and show that approximations to the prediction error matrix based solely on the variance-covariance matrix of estimated contemporary group fixed effects are inappropriate in certain circumstances. Our method allows for the calculation of a connectedness measure based on the prediction error variance-covariance matrix by calculating only the variance-covariance matrix of estimated fixed effects. Since the number of fixed effects in genetic evaluation is usually orders of magnitudes smaller than the number of random effect levels, the computational requirements for our method should be reduced.
Prospective detection of large prediction errors: a hypothesis testing approach
International Nuclear Information System (INIS)
Ruan, Dan
2010-01-01
Real-time motion management is important in radiotherapy. In addition to effective monitoring schemes, prediction is required to compensate for system latency, so that treatment can be synchronized with tumor motion. However, it is difficult to predict tumor motion at all times, and it is critical to determine when large prediction errors may occur. Such information can be used to pause the treatment beam or adjust monitoring/prediction schemes. In this study, we propose a hypothesis testing approach for detecting instants corresponding to potentially large prediction errors in real time. We treat the future tumor location as a random variable, and obtain its empirical probability distribution with the kernel density estimation-based method. Under the null hypothesis, the model probability is assumed to be a concentrated Gaussian centered at the prediction output. Under the alternative hypothesis, the model distribution is assumed to be non-informative uniform, which reflects the situation that the future position cannot be inferred reliably. We derive the likelihood ratio test (LRT) for this hypothesis testing problem and show that with the method of moments for estimating the null hypothesis Gaussian parameters, the LRT reduces to a simple test on the empirical variance of the predictive random variable. This conforms to the intuition to expect a (potentially) large prediction error when the estimate is associated with high uncertainty, and to expect an accurate prediction when the uncertainty level is low. We tested the proposed method on patient-derived respiratory traces. The 'ground-truth' prediction error was evaluated by comparing the prediction values with retrospective observations, and the large prediction regions were subsequently delineated by thresholding the prediction errors. The receiver operating characteristic curve was used to describe the performance of the proposed hypothesis testing method. Clinical implication was represented by miss
Signed reward prediction errors drive declarative learning.
Directory of Open Access Journals (Sweden)
Esther De Loof
Full Text Available Reward prediction errors (RPEs are thought to drive learning. This has been established in procedural learning (e.g., classical and operant conditioning. However, empirical evidence on whether RPEs drive declarative learning-a quintessentially human form of learning-remains surprisingly absent. We therefore coupled RPEs to the acquisition of Dutch-Swahili word pairs in a declarative learning paradigm. Signed RPEs (SRPEs; "better-than-expected" signals during declarative learning improved recognition in a follow-up test, with increasingly positive RPEs leading to better recognition. In addition, classic declarative memory mechanisms such as time-on-task failed to explain recognition performance. The beneficial effect of SRPEs on recognition was subsequently affirmed in a replication study with visual stimuli.
Signed reward prediction errors drive declarative learning.
De Loof, Esther; Ergo, Kate; Naert, Lien; Janssens, Clio; Talsma, Durk; Van Opstal, Filip; Verguts, Tom
2018-01-01
Reward prediction errors (RPEs) are thought to drive learning. This has been established in procedural learning (e.g., classical and operant conditioning). However, empirical evidence on whether RPEs drive declarative learning-a quintessentially human form of learning-remains surprisingly absent. We therefore coupled RPEs to the acquisition of Dutch-Swahili word pairs in a declarative learning paradigm. Signed RPEs (SRPEs; "better-than-expected" signals) during declarative learning improved recognition in a follow-up test, with increasingly positive RPEs leading to better recognition. In addition, classic declarative memory mechanisms such as time-on-task failed to explain recognition performance. The beneficial effect of SRPEs on recognition was subsequently affirmed in a replication study with visual stimuli.
Lilly, P.; Yanai, R. D.; Buckley, H. L.; Case, B. S.; Woollons, R. C.; Holdaway, R. J.; Johnson, J.
2016-12-01
Calculations of forest biomass and elemental content require many measurements and models, each contributing uncertainty to the final estimates. While sampling error is commonly reported, based on replicate plots, error due to uncertainty in the regression used to estimate biomass from tree diameter is usually not quantified. Some published estimates of uncertainty due to the regression models have used the uncertainty in the prediction of individuals, ignoring uncertainty in the mean, while others have propagated uncertainty in the mean while ignoring individual variation. Using the simple case of the calcium concentration of sugar maple leaves, we compare the variation among individuals (the standard deviation) to the uncertainty in the mean (the standard error) and illustrate the declining importance in the prediction of individual concentrations as the number of individuals increases. For allometric models, the analogous statistics are the prediction interval (or the residual variation in the model fit) and the confidence interval (describing the uncertainty in the best fit model). The effect of propagating these two sources of error is illustrated using the mass of sugar maple foliage. The uncertainty in individual tree predictions was large for plots with few trees; for plots with 30 trees or more, the uncertainty in individuals was less important than the uncertainty in the mean. Authors of previously published analyses have reanalyzed their data to show the magnitude of these two sources of uncertainty in scales ranging from experimental plots to entire countries. The most correct analysis will take both sources of uncertainty into account, but for practical purposes, country-level reports of uncertainty in carbon stocks, as required by the IPCC, can ignore the uncertainty in individuals. Ignoring the uncertainty in the mean will lead to exaggerated estimates of confidence in estimates of forest biomass and carbon and nutrient contents.
Measurement error models with interactions
Midthune, Douglas; Carroll, Raymond J.; Freedman, Laurence S.; Kipnis, Victor
2016-01-01
An important use of measurement error models is to correct regression models for bias due to covariate measurement error. Most measurement error models assume that the observed error-prone covariate (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$W$\\end{document}) is a linear function of the unobserved true covariate (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$X$\\end{document}) plus other covariates (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$Z$\\end{document}) in the regression model. In this paper, we consider models for \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$W$\\end{document} that include interactions between \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$X$\\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$Z$\\end{document}. We derive the conditional distribution of
Barcaru, A.; Anroedh-Sampat, A.; Janssen, H.-G.; Vivó-Truyols, G.
2014-01-01
In this paper we present a model relating exptl. factors (column lengths, diams. and thickness, modulation times, pressures and temp. programs) with retention times. Unfortunately, an anal. soln. to calc. the retention in temp. programmed GC×GC is impossible, making thus necessary to perform a
National Research Council Canada - National Science Library
Rogers, W
2002-01-01
This report describes an investigation to determine the relative importance of various sources of error in the two global-scale models of wind-generated surface waves used operationally by the U.S. Navy...
Measurement Error Correction for Predicted Spatiotemporal Air Pollution Exposures.
Keller, Joshua P; Chang, Howard H; Strickland, Matthew J; Szpiro, Adam A
2017-05-01
Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a second regression model. The difference between predicted and unobserved true exposures introduces a form of measurement error in the second stage health model. Recent methods for spatial data correct for measurement error with a bootstrap and by requiring the study design ensure spatial compatibility, that is, monitor and subject locations are drawn from the same spatial distribution. These methods have not previously been applied to spatiotemporal exposure data. We analyzed the association between fine particulate matter (PM2.5) and birth weight in the US state of Georgia using records with estimated date of conception during 2002-2005 (n = 403,881). We predicted trimester-specific PM2.5 exposure using a complex spatiotemporal exposure model. To improve spatial compatibility, we restricted to mothers residing in counties with a PM2.5 monitor (n = 180,440). We accounted for additional measurement error via a nonparametric bootstrap. Third trimester PM2.5 exposure was associated with lower birth weight in the uncorrected (-2.4 g per 1 μg/m difference in exposure; 95% confidence interval [CI]: -3.9, -0.8) and bootstrap-corrected (-2.5 g, 95% CI: -4.2, -0.8) analyses. Results for the unrestricted analysis were attenuated (-0.66 g, 95% CI: -1.7, 0.35). This study presents a novel application of measurement error correction for spatiotemporal air pollution exposures. Our results demonstrate the importance of spatial compatibility between monitor and subject locations and provide evidence of the association between air pollution exposure and birth weight.
Learning from sensory and reward prediction errors during motor adaptation.
Izawa, Jun; Shadmehr, Reza
2011-03-01
Voluntary motor commands produce two kinds of consequences. Initially, a sensory consequence is observed in terms of activity in our primary sensory organs (e.g., vision, proprioception). Subsequently, the brain evaluates the sensory feedback and produces a subjective measure of utility or usefulness of the motor commands (e.g., reward). As a result, comparisons between predicted and observed consequences of motor commands produce two forms of prediction error. How do these errors contribute to changes in motor commands? Here, we considered a reach adaptation protocol and found that when high quality sensory feedback was available, adaptation of motor commands was driven almost exclusively by sensory prediction errors. This form of learning had a distinct signature: as motor commands adapted, the subjects altered their predictions regarding sensory consequences of motor commands, and generalized this learning broadly to neighboring motor commands. In contrast, as the quality of the sensory feedback degraded, adaptation of motor commands became more dependent on reward prediction errors. Reward prediction errors produced comparable changes in the motor commands, but produced no change in the predicted sensory consequences of motor commands, and generalized only locally. Because we found that there was a within subject correlation between generalization patterns and sensory remapping, it is plausible that during adaptation an individual's relative reliance on sensory vs. reward prediction errors could be inferred. We suggest that while motor commands change because of sensory and reward prediction errors, only sensory prediction errors produce a change in the neural system that predicts sensory consequences of motor commands.
Francq, Bernard G; Govaerts, Bernadette
2016-06-30
Two main methodologies for assessing equivalence in method-comparison studies are presented separately in the literature. The first one is the well-known and widely applied Bland-Altman approach with its agreement intervals, where two methods are considered interchangeable if their differences are not clinically significant. The second approach is based on errors-in-variables regression in a classical (X,Y) plot and focuses on confidence intervals, whereby two methods are considered equivalent when providing similar measures notwithstanding the random measurement errors. This paper reconciles these two methodologies and shows their similarities and differences using both real data and simulations. A new consistent correlated-errors-in-variables regression is introduced as the errors are shown to be correlated in the Bland-Altman plot. Indeed, the coverage probabilities collapse and the biases soar when this correlation is ignored. Novel tolerance intervals are compared with agreement intervals with or without replicated data, and novel predictive intervals are introduced to predict a single measure in an (X,Y) plot or in a Bland-Atman plot with excellent coverage probabilities. We conclude that the (correlated)-errors-in-variables regressions should not be avoided in method comparison studies, although the Bland-Altman approach is usually applied to avert their complexity. We argue that tolerance or predictive intervals are better alternatives than agreement intervals, and we provide guidelines for practitioners regarding method comparison studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Error modeling for surrogates of dynamical systems using machine learning
Trehan, Sumeet; Carlberg, Kevin T.; Durlofsky, Louis J.
2017-12-01
A machine-learning-based framework for modeling the error introduced by surrogate models of parameterized dynamical systems is proposed. The framework entails the use of high-dimensional regression techniques (e.g., random forests, LASSO) to map a large set of inexpensively computed `error indicators' (i.e., features) produced by the surrogate model at a given time instance to a prediction of the surrogate-model error in a quantity of interest (QoI). This eliminates the need for the user to hand-select a small number of informative features. The methodology requires a training set of parameter instances at which the time-dependent surrogate-model error is computed by simulating both the high-fidelity and surrogate models. Using these training data, the method first determines regression-model locality (via classification or clustering), and subsequently constructs a `local' regression model to predict the time-instantaneous error within each identified region of feature space. We consider two uses for the resulting error model: (1) as a correction to the surrogate-model QoI prediction at each time instance, and (2) as a way to statistically model arbitrary functions of the time-dependent surrogate-model error (e.g., time-integrated errors). We apply the proposed framework to model errors in reduced-order models of nonlinear oil--water subsurface flow simulations. The reduced-order models used in this work entail application of trajectory piecewise linearization with proper orthogonal decomposition. When the first use of the method is considered, numerical experiments demonstrate consistent improvement in accuracy in the time-instantaneous QoI prediction relative to the original surrogate model, across a large number of test cases. When the second use is considered, results show that the proposed method provides accurate statistical predictions of the time- and well-averaged errors.
Error-related anterior cingulate cortex activity and the prediction of conscious error awareness
Directory of Open Access Journals (Sweden)
Catherine eOrr
2012-06-01
Full Text Available Research examining the neural mechanisms associated with error awareness has consistently identified dorsal anterior cingulate activity (ACC as necessary but not predictive of conscious error detection. Two recent studies (Steinhauser and Yeung, 2010; Wessel et al. 2011 have found a contrary pattern of greater dorsal ACC activity (in the form of the error-related negativity during detected errors, but suggested that the greater activity may instead reflect task influences (e.g., response conflict, error probability and or individual variability (e.g., statistical power. We re-analyzed fMRI BOLD data from 56 healthy participants who had previously been administered the Error Awareness Task, a motor Go/No-go response inhibition task in which subjects make errors of commission of which they are aware (Aware errors, or unaware (Unaware errors. Consistent with previous data, the activity in a number of cortical regions was predictive of error awareness, including bilateral inferior parietal and insula cortices, however in contrast to previous studies, including our own smaller sample studies using the same task, error-related dorsal ACC activity was significantly greater during aware errors when compared to unaware errors. While the significantly faster RT for aware errors (compared to unaware was consistent with the hypothesis of higher response conflict increasing ACC activity, we could find no relationship between dorsal ACC activity and the error RT difference. The data suggests that individual variability in error awareness is associated with error-related dorsal ACC activity, and therefore this region may be important to conscious error detection, but it remains unclear what task and individual factors influence error awareness.
CREME96 and Related Error Rate Prediction Methods
Adams, James H., Jr.
2012-01-01
Predicting the rate of occurrence of single event effects (SEEs) in space requires knowledge of the radiation environment and the response of electronic devices to that environment. Several analytical models have been developed over the past 36 years to predict SEE rates. The first error rate calculations were performed by Binder, Smith and Holman. Bradford and Pickel and Blandford, in their CRIER (Cosmic-Ray-Induced-Error-Rate) analysis code introduced the basic Rectangular ParallelePiped (RPP) method for error rate calculations. For the radiation environment at the part, both made use of the Cosmic Ray LET (Linear Energy Transfer) spectra calculated by Heinrich for various absorber Depths. A more detailed model for the space radiation environment within spacecraft was developed by Adams and co-workers. This model, together with a reformulation of the RPP method published by Pickel and Blandford, was used to create the CR ME (Cosmic Ray Effects on Micro-Electronics) code. About the same time Shapiro wrote the CRUP (Cosmic Ray Upset Program) based on the RPP method published by Bradford. It was the first code to specifically take into account charge collection from outside the depletion region due to deformation of the electric field caused by the incident cosmic ray. Other early rate prediction methods and codes include the Single Event Figure of Merit, NOVICE, the Space Radiation code and the effective flux method of Binder which is the basis of the SEFA (Scott Effective Flux Approximation) model. By the early 1990s it was becoming clear that CREME and the other early models needed Revision. This revision, CREME96, was completed and released as a WWW-based tool, one of the first of its kind. The revisions in CREME96 included improved environmental models and improved models for calculating single event effects. The need for a revision of CREME also stimulated the development of the CHIME (CRRES/SPACERAD Heavy Ion Model of the Environment) and MACREE (Modeling and
McGregor, Heather R.; Pun, Henry C. H.; Buckingham, Gavin; Gribble, Paul L.
2016-01-01
The human sensorimotor system is routinely capable of making accurate predictions about an object's weight, which allows for energetically efficient lifts and prevents objects from being dropped. Often, however, poor predictions arise when the weight of an object can vary and sensory cues about object weight are sparse (e.g., picking up an opaque water bottle). The question arises, what strategies does the sensorimotor system use to make weight predictions when one is dealing with an object whose weight may vary? For example, does the sensorimotor system use a strategy that minimizes prediction error (minimal squared error) or one that selects the weight that is most likely to be correct (maximum a posteriori)? In this study we dissociated the predictions of these two strategies by having participants lift an object whose weight varied according to a skewed probability distribution. We found, using a small range of weight uncertainty, that four indexes of sensorimotor prediction (grip force rate, grip force, load force rate, and load force) were consistent with a feedforward strategy that minimizes the square of prediction errors. These findings match research in the visuomotor system, suggesting parallels in underlying processes. We interpret our findings within a Bayesian framework and discuss the potential benefits of using a minimal squared error strategy. NEW & NOTEWORTHY Using a novel experimental model of object lifting, we tested whether the sensorimotor system models the weight of objects by minimizing lifting errors or by selecting the statistically most likely weight. We found that the sensorimotor system minimizes the square of prediction errors for object lifting. This parallels the results of studies that investigated visually guided reaching, suggesting an overlap in the underlying mechanisms between tasks that involve different sensory systems. PMID:27760821
Measurement error models with uncertainty about the error variance
Oberski, D.L.; Satorra, A.
2013-01-01
It is well known that measurement error in observable variables induces bias in estimates in standard regression analysis and that structural equation models are a typical solution to this problem. Often, multiple indicator equations are subsumed as part of the structural equation model, allowing
Evolutionary modeling-based approach for model errors correction
Directory of Open Access Journals (Sweden)
S. Q. Wan
2012-08-01
Full Text Available The inverse problem of using the information of historical data to estimate model errors is one of the science frontier research topics. In this study, we investigate such a problem using the classic Lorenz (1963 equation as a prediction model and the Lorenz equation with a periodic evolutionary function as an accurate representation of reality to generate "observational data."
On the basis of the intelligent features of evolutionary modeling (EM, including self-organization, self-adaptive and self-learning, the dynamic information contained in the historical data can be identified and extracted by computer automatically. Thereby, a new approach is proposed to estimate model errors based on EM in the present paper. Numerical tests demonstrate the ability of the new approach to correct model structural errors. In fact, it can actualize the combination of the statistics and dynamics to certain extent.
Development of a prototype system for prediction of the group error at the maintenance work
International Nuclear Information System (INIS)
Yoshino, Kenji; Hirotsu, Yuuko
2001-01-01
This paper described on development and performance evaluation of a prototype system for prediction of the group error at the maintenance work. The results so far are as follows. (1) When a user inputs the existence and the grade of the feature factor of the maintenance work as a prediction object, an organization and an organization factor and a group PSF put into the system. The maintenance group error to target can be predicted through the prediction model which consists of a class of seven stages. (2) This system by utilizing the information on a prediction result database, it can be use not only for prediction of a maintenance group but for various safe Activity, such as KYT(Kiken Yochi Training) and TBM(Tool Box Meeting). (3) This system predicts a cooperation error at highest rate, and subsequently. Predicts the detection error at a high rate. and to the decision-making. Error, the transfer error and the state cognitive error, and state error, it has the characteristics predicted at almost same rate. (4) if it has full knowledge even if the feature, such as the enforcement conditions of maintenance work, and organization, even if the user has neither the knowledge about a human factor, users experience, anyone of this system is slight about the extent, generating of a maintenance group error made difficult from the former logically and systematically, it can predict with business time for about 15 minutes. (author)
Human medial frontal cortex activity predicts learning from errors.
Hester, Robert; Barre, Natalie; Murphy, Kevin; Silk, Tim J; Mattingley, Jason B
2008-08-01
Learning from errors is a critical feature of human cognition. It underlies our ability to adapt to changing environmental demands and to tune behavior for optimal performance. The posterior medial frontal cortex (pMFC) has been implicated in the evaluation of errors to control behavior, although it has not previously been shown that activity in this region predicts learning from errors. Using functional magnetic resonance imaging, we examined activity in the pMFC during an associative learning task in which participants had to recall the spatial locations of 2-digit targets and were provided with immediate feedback regarding accuracy. Activity within the pMFC was significantly greater for errors that were subsequently corrected than for errors that were repeated. Moreover, pMFC activity during recall errors predicted future responses (correct vs. incorrect), despite a sizeable interval (on average 70 s) between an error and the next presentation of the same recall probe. Activity within the hippocampus also predicted future performance and correlated with error-feedback-related pMFC activity. A relationship between performance expectations and pMFC activity, in the absence of differing reinforcement value for errors, is consistent with the idea that error-related pMFC activity reflects the extent to which an outcome is "worse than expected."
A causal link between prediction errors, dopamine neurons and learning.
Steinberg, Elizabeth E; Keiflin, Ronald; Boivin, Josiah R; Witten, Ilana B; Deisseroth, Karl; Janak, Patricia H
2013-07-01
Situations in which rewards are unexpectedly obtained or withheld represent opportunities for new learning. Often, this learning includes identifying cues that predict reward availability. Unexpected rewards strongly activate midbrain dopamine neurons. This phasic signal is proposed to support learning about antecedent cues by signaling discrepancies between actual and expected outcomes, termed a reward prediction error. However, it is unknown whether dopamine neuron prediction error signaling and cue-reward learning are causally linked. To test this hypothesis, we manipulated dopamine neuron activity in rats in two behavioral procedures, associative blocking and extinction, that illustrate the essential function of prediction errors in learning. We observed that optogenetic activation of dopamine neurons concurrent with reward delivery, mimicking a prediction error, was sufficient to cause long-lasting increases in cue-elicited reward-seeking behavior. Our findings establish a causal role for temporally precise dopamine neuron signaling in cue-reward learning, bridging a critical gap between experimental evidence and influential theoretical frameworks.
Steen Magnussen; Ronald E. McRoberts; Erkki O. Tomppo
2009-01-01
New model-based estimators of the uncertainty of pixel-level and areal k-nearest neighbour (knn) predictions of attribute Y from remotely-sensed ancillary data X are presented. Non-parametric functions predict Y from scalar 'Single Index Model' transformations of X. Variance functions generated...
Prediction Error During Functional and Non-Functional Action Sequences
DEFF Research Database (Denmark)
Nielbo, Kristoffer Laigaard; Sørensen, Jesper
2013-01-01
recurrent networks were made and the results are presented in this article. The simulations show that non-functional action sequences do indeed increase prediction error, but that context representations, such as abstract goal information, can modulate the error signal considerably. It is also shown...... that the networks are sensitive to boundaries between sequences in both functional and non-functional actions....
Dopamine reward prediction error responses reflect marginal utility.
Stauffer, William R; Lak, Armin; Schultz, Wolfram
2014-11-03
Optimal choices require an accurate neuronal representation of economic value. In economics, utility functions are mathematical representations of subjective value that can be constructed from choices under risk. Utility usually exhibits a nonlinear relationship to physical reward value that corresponds to risk attitudes and reflects the increasing or decreasing marginal utility obtained with each additional unit of reward. Accordingly, neuronal reward responses coding utility should robustly reflect this nonlinearity. In two monkeys, we measured utility as a function of physical reward value from meaningful choices under risk (that adhered to first- and second-order stochastic dominance). The resulting nonlinear utility functions predicted the certainty equivalents for new gambles, indicating that the functions' shapes were meaningful. The monkeys were risk seeking (convex utility function) for low reward and risk avoiding (concave utility function) with higher amounts. Critically, the dopamine prediction error responses at the time of reward itself reflected the nonlinear utility functions measured at the time of choices. In particular, the reward response magnitude depended on the first derivative of the utility function and thus reflected the marginal utility. Furthermore, dopamine responses recorded outside of the task reflected the marginal utility of unpredicted reward. Accordingly, these responses were sufficient to train reinforcement learning models to predict the behaviorally defined expected utility of gambles. These data suggest a neuronal manifestation of marginal utility in dopamine neurons and indicate a common neuronal basis for fundamental explanatory constructs in animal learning theory (prediction error) and economic decision theory (marginal utility). Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
The Pupillary Orienting Response Predicts Adaptive Behavioral Adjustment after Errors.
Directory of Open Access Journals (Sweden)
Peter R Murphy
Full Text Available Reaction time (RT is commonly observed to slow down after an error. This post-error slowing (PES has been thought to arise from the strategic adoption of a more cautious response mode following deployment of cognitive control. Recently, an alternative account has suggested that PES results from interference due to an error-evoked orienting response. We investigated whether error-related orienting may in fact be a pre-cursor to adaptive post-error behavioral adjustment when the orienting response resolves before subsequent trial onset. We measured pupil dilation, a prototypical measure of autonomic orienting, during performance of a choice RT task with long inter-stimulus intervals, and found that the trial-by-trial magnitude of the error-evoked pupil response positively predicted both PES magnitude and the likelihood that the following response would be correct. These combined findings suggest that the magnitude of the error-related orienting response predicts an adaptive change of response strategy following errors, and thereby promote a reconciliation of the orienting and adaptive control accounts of PES.
Pokhrel, Samir; Saha, Subodh Kumar; Dhakate, Ashish; Rahman, Hasibur; Chaudhari, Hemantkumar S.; Salunke, Kiran; Hazra, Anupam; Sujith, K.; Sikka, D. R.
2016-04-01
A detailed analysis of sensitivity to the initial condition for the simulation of the Indian summer monsoon using retrospective forecast by the latest version of the Climate Forecast System version-2 (CFSv2) is carried out. This study primarily focuses on the tropical region of Indian and Pacific Ocean basin, with special emphasis on the Indian land region. The simulated seasonal mean and the inter-annual standard deviations of rainfall, upper and lower level atmospheric circulations and Sea Surface Temperature (SST) tend to be more skillful as the lead forecast time decreases (5 month lead to 0 month lead time i.e. L5-L0). In general spatial correlation (bias) increases (decreases) as forecast lead time decreases. This is further substantiated by their averaged value over the selected study regions over the Indian and Pacific Ocean basins. The tendency of increase (decrease) of model bias with increasing (decreasing) forecast lead time also indicates the dynamical drift of the model. Large scale lower level circulation (850 hPa) shows enhancement of anomalous westerlies (easterlies) over the tropical region of the Indian Ocean (Western Pacific Ocean), which indicates the enhancement of model error with the decrease in lead time. At the upper level circulation (200 hPa) biases in both tropical easterly jet and subtropical westerlies jet tend to decrease as the lead time decreases. Despite enhancement of the prediction skill, mean SST bias seems to be insensitive to the initialization. All these biases are significant and together they make CFSv2 vulnerable to seasonal uncertainties in all the lead times. Overall the zeroth lead (L0) seems to have the best skill, however, in case of Indian summer monsoon rainfall (ISMR), the 3 month lead forecast time (L3) has the maximum ISMR prediction skill. This is valid using different independent datasets, wherein these maximum skill scores are 0.64, 0.42 and 0.57 with respect to the Global Precipitation Climatology Project
Dopamine reward prediction errors reflect hidden state inference across time
Starkweather, Clara Kwon; Babayan, Benedicte M.; Uchida, Naoshige; Gershman, Samuel J.
2017-01-01
Midbrain dopamine neurons signal reward prediction error (RPE), or actual minus expected reward. The temporal difference (TD) learning model has been a cornerstone in understanding how dopamine RPEs could drive associative learning. Classically, TD learning imparts value to features that serially track elapsed time relative to observable stimuli. In the real world, however, sensory stimuli provide ambiguous information about the hidden state of the environment, leading to the proposal that TD learning might instead compute a value signal based on an inferred distribution of hidden states (a ‘belief state’). In this work, we asked whether dopaminergic signaling supports a TD learning framework that operates over hidden states. We found that dopamine signaling exhibited a striking difference between two tasks that differed only with respect to whether reward was delivered deterministically. Our results favor an associative learning rule that combines cached values with hidden state inference. PMID:28263301
Structural Model Error and Decision Relevancy
Goldsby, M.; Lusk, G.
2017-12-01
The extent to which climate models can underwrite specific climate policies has long been a contentious issue. Skeptics frequently deny that climate models are trustworthy in an attempt to undermine climate action, whereas policy makers often desire information that exceeds the capabilities of extant models. While not skeptics, a group of mathematicians and philosophers [Frigg et al. (2014)] recently argued that even tiny differences between the structure of a complex dynamical model and its target system can lead to dramatic predictive errors, possibly resulting in disastrous consequences when policy decisions are based upon those predictions. They call this result the Hawkmoth effect (HME), and seemingly use it to rebuke rightwing proposals to forgo mitigation in favor of adaptation. However, a vigorous debate has emerged between Frigg et al. on one side and another philosopher-mathematician pair [Winsberg and Goodwin (2016)] on the other. On one hand, Frigg et al. argue that their result shifts the burden to climate scientists to demonstrate that their models do not fall prey to the HME. On the other hand, Winsberg and Goodwin suggest that arguments like those asserted by Frigg et al. can be, if taken seriously, "dangerous": they fail to consider the variety of purposes for which models can be used, and thus too hastily undermine large swaths of climate science. They put the burden back on Frigg et al. to show their result has any effect on climate science. This paper seeks to attenuate this debate by establishing an irenic middle position; we find that there is more agreement between sides than it first seems. We distinguish a `decision standard' from a `burden of proof', which helps clarify the contributions to the debate from both sides. In making this distinction, we argue that scientists bear the burden of assessing the consequences of HME, but that the standard Frigg et al. adopt for decision relevancy is too strict.
Threat and error management for anesthesiologists: a predictive risk taxonomy
Ruskin, Keith J.; Stiegler, Marjorie P.; Park, Kellie; Guffey, Patrick; Kurup, Viji; Chidester, Thomas
2015-01-01
Purpose of review Patient care in the operating room is a dynamic interaction that requires cooperation among team members and reliance upon sophisticated technology. Most human factors research in medicine has been focused on analyzing errors and implementing system-wide changes to prevent them from recurring. We describe a set of techniques that has been used successfully by the aviation industry to analyze errors and adverse events and explain how these techniques can be applied to patient care. Recent findings Threat and error management (TEM) describes adverse events in terms of risks or challenges that are present in an operational environment (threats) and the actions of specific personnel that potentiate or exacerbate those threats (errors). TEM is a technique widely used in aviation, and can be adapted for the use in a medical setting to predict high-risk situations and prevent errors in the perioperative period. A threat taxonomy is a novel way of classifying and predicting the hazards that can occur in the operating room. TEM can be used to identify error-producing situations, analyze adverse events, and design training scenarios. Summary TEM offers a multifaceted strategy for identifying hazards, reducing errors, and training physicians. A threat taxonomy may improve analysis of critical events with subsequent development of specific interventions, and may also serve as a framework for training programs in risk mitigation. PMID:24113268
A second study of the prediction of cognitive errors using the 'CREAM' technique
International Nuclear Information System (INIS)
Collier, Steve; Andresen, Gisle
2000-03-01
Some human errors, such as errors of commission and knowledge-based errors, are not adequately modelled in probabilistic safety assessments. Even qualitative methods for handling these sorts of errors are comparatively underdeveloped. The 'Cognitive Reliability and Error Analysis Method' (CREAM) was recently developed for prediction of cognitive error modes. It has not yet been comprehensively established how reliable, valid and generally useful it could be to researchers and practitioners. A previous study of CREAM at Halden was promising, showing a relationship between errors predicted in advance and those that actually occurred in simulated fault scenarios. The present study continues this work. CREAM was used to make predictions of cognitive error modes throughout two rather difficult fault scenarios. Predictions were made of the most likely cognitive error mode, were one to occur at all, at several points throughout the expected scenarios, based upon the scenario design and description. Each scenario was then run 15 times with different operators. Error modes occurring during simulations were later scored using the task description for the scenario, videotapes of operator actions, eye-track recording, operators' verbal protocols and an expert's concurrent commentary. The scoring team had no previous substantive knowledge of the experiment or the techniques used, so as to provide a more stringent test of the data and knowledge needed for scoring. The scored error modes were then compared with the CREAM predictions to assess the degree of agreement. Some cognitive error modes were predicted successfully, but the results were generally not so encouraging as the previous study. Several problems were found with both the CREAM technique and the data needed to complete the analysis. It was felt that further development was needed before this kind of analysis can be reliable and valid, either in a research setting or as a practitioner's tool in a safety assessment
Parameters and error of a theoretical model
International Nuclear Information System (INIS)
Moeller, P.; Nix, J.R.; Swiatecki, W.
1986-09-01
We propose a definition for the error of a theoretical model of the type whose parameters are determined from adjustment to experimental data. By applying a standard statistical method, the maximum-likelihoodlmethod, we derive expressions for both the parameters of the theoretical model and its error. We investigate the derived equations by solving them for simulated experimental and theoretical quantities generated by use of random number generators. 2 refs., 4 tabs
Mini-review: Prediction errors, attention and associative learning.
Holland, Peter C; Schiffino, Felipe L
2016-05-01
Most modern theories of associative learning emphasize a critical role for prediction error (PE, the difference between received and expected events). One class of theories, exemplified by the Rescorla-Wagner (1972) model, asserts that PE determines the effectiveness of the reinforcer or unconditioned stimulus (US): surprising reinforcers are more effective than expected ones. A second class, represented by the Pearce-Hall (1980) model, argues that PE determines the associability of conditioned stimuli (CSs), the rate at which they may enter into new learning: the surprising delivery or omission of a reinforcer enhances subsequent processing of the CSs that were present when PE was induced. In this mini-review we describe evidence, mostly from our laboratory, for PE-induced changes in the associability of both CSs and USs, and the brain systems involved in the coding, storage and retrieval of these altered associability values. This evidence favors a number of modifications to behavioral models of how PE influences event processing, and suggests the involvement of widespread brain systems in animals' responses to PE. Copyright © 2016 Elsevier Inc. All rights reserved.
Competition between learned reward and error outcome predictions in anterior cingulate cortex.
Alexander, William H; Brown, Joshua W
2010-02-15
The anterior cingulate cortex (ACC) is implicated in performance monitoring and cognitive control. Non-human primate studies of ACC show prominent reward signals, but these are elusive in human studies, which instead show mainly conflict and error effects. Here we demonstrate distinct appetitive and aversive activity in human ACC. The error likelihood hypothesis suggests that ACC activity increases in proportion to the likelihood of an error, and ACC is also sensitive to the consequence magnitude of the predicted error. Previous work further showed that error likelihood effects reach a ceiling as the potential consequences of an error increase, possibly due to reductions in the average reward. We explored this issue by independently manipulating reward magnitude of task responses and error likelihood while controlling for potential error consequences in an Incentive Change Signal Task. The fMRI results ruled out a modulatory effect of expected reward on error likelihood effects in favor of a competition effect between expected reward and error likelihood. Dynamic causal modeling showed that error likelihood and expected reward signals are intrinsic to the ACC rather than received from elsewhere. These findings agree with interpretations of ACC activity as signaling both perceptions of risk and predicted reward. Copyright 2009 Elsevier Inc. All rights reserved.
Prediction-error identification of LPV systems : present and beyond
Toth, R.; Heuberger, P.S.C.; Hof, Van den P.M.J.; Mohammadpour, J.; Scherer, C. W.
2012-01-01
The proposed chapter aims at presenting a unified framework of prediction-error based identification of LPV systems using freshly developed theoretical results. Recently, these methods have got a considerable attention as they have certain advantages in terms of computational complexity, optimality
Testing the prediction error difference between two predictors
van de Wiel, M.A.; Berkhof, J.; van Wieringen, W.N.
2009-01-01
We develop an inference framework for the difference in errors between 2 prediction procedures. The 2 procedures may differ in any aspect and possibly utilize different sets of covariates. We apply training and testing on the same data set, which is accommodated by sample splitting. For each split,
DEFF Research Database (Denmark)
Andersen, Anders Holst; Korsgaard, Inge Riis; Jensen, Just
2002-01-01
In this paper, we consider selection based on the best predictor of animal additive genetic values in Gaussian linear mixed models, threshold models, Poisson mixed models, and log normal frailty models for survival data (including models with time-dependent covariates with associated fixed...... or random effects). In the different models, expressions are given (when these can be found - otherwise unbiased estimates are given) for prediction error variance, accuracy of selection and expected response to selection on the additive genetic scale and on the observed scale. The expressions given for non...... Gaussian traits are generalisations of the well-known formulas for Gaussian traits - and reflect, for Poisson mixed models and frailty models for survival data, the hierarchal structure of the models. In general the ratio of the additive genetic variance to the total variance in the Gaussian part...
Differing Air Traffic Controller Responses to Similar Trajectory Prediction Errors
Mercer, Joey; Hunt-Espinosa, Sarah; Bienert, Nancy; Laraway, Sean
2016-01-01
A Human-In-The-Loop simulation was conducted in January of 2013 in the Airspace Operations Laboratory at NASA's Ames Research Center. The simulation airspace included two en route sectors feeding the northwest corner of Atlanta's Terminal Radar Approach Control. The focus of this paper is on how uncertainties in the study's trajectory predictions impacted the controllers ability to perform their duties. Of particular interest is how the controllers interacted with the delay information displayed in the meter list and data block while managing the arrival flows. Due to wind forecasts with 30-knot over-predictions and 30-knot under-predictions, delay value computations included errors of similar magnitude, albeit in opposite directions. However, when performing their duties in the presence of these errors, did the controllers issue clearances of similar magnitude, albeit in opposite directions?
Drought Persistence Errors in Global Climate Models
Moon, H.; Gudmundsson, L.; Seneviratne, S. I.
2018-04-01
The persistence of drought events largely determines the severity of socioeconomic and ecological impacts, but the capability of current global climate models (GCMs) to simulate such events is subject to large uncertainties. In this study, the representation of drought persistence in GCMs is assessed by comparing state-of-the-art GCM model simulations to observation-based data sets. For doing so, we consider dry-to-dry transition probabilities at monthly and annual scales as estimates for drought persistence, where a dry status is defined as negative precipitation anomaly. Though there is a substantial spread in the drought persistence bias, most of the simulations show systematic underestimation of drought persistence at global scale. Subsequently, we analyzed to which degree (i) inaccurate observations, (ii) differences among models, (iii) internal climate variability, and (iv) uncertainty of the employed statistical methods contribute to the spread in drought persistence errors using an analysis of variance approach. The results show that at monthly scale, model uncertainty and observational uncertainty dominate, while the contribution from internal variability is small in most cases. At annual scale, the spread of the drought persistence error is dominated by the statistical estimation error of drought persistence, indicating that the partitioning of the error is impaired by the limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current GCMs and suggest directions for further model improvement.
The Attraction Effect Modulates Reward Prediction Errors and Intertemporal Choices.
Gluth, Sebastian; Hotaling, Jared M; Rieskamp, Jörg
2017-01-11
Classical economic theory contends that the utility of a choice option should be independent of other options. This view is challenged by the attraction effect, in which the relative preference between two options is altered by the addition of a third, asymmetrically dominated option. Here, we leveraged the attraction effect in the context of intertemporal choices to test whether both decisions and reward prediction errors (RPE) in the absence of choice violate the independence of irrelevant alternatives principle. We first demonstrate that intertemporal decision making is prone to the attraction effect in humans. In an independent group of participants, we then investigated how this affects the neural and behavioral valuation of outcomes using a novel intertemporal lottery task and fMRI. Participants' behavioral responses (i.e., satisfaction ratings) were modulated systematically by the attraction effect and this modulation was correlated across participants with the respective change of the RPE signal in the nucleus accumbens. Furthermore, we show that, because exponential and hyperbolic discounting models are unable to account for the attraction effect, recently proposed sequential sampling models might be more appropriate to describe intertemporal choices. Our findings demonstrate for the first time that the attraction effect modulates subjective valuation even in the absence of choice. The findings also challenge the prospect of using neuroscientific methods to measure utility in a context-free manner and have important implications for theories of reinforcement learning and delay discounting. Many theories of value-based decision making assume that people first assess the attractiveness of each option independently of each other and then pick the option with the highest subjective value. The attraction effect, however, shows that adding a new option to a choice set can change the relative value of the existing options, which is a violation of the independence
Soft error mechanisms, modeling and mitigation
Sayil, Selahattin
2016-01-01
This book introduces readers to various radiation soft-error mechanisms such as soft delays, radiation induced clock jitter and pulses, and single event (SE) coupling induced effects. In addition to discussing various radiation hardening techniques for combinational logic, the author also describes new mitigation strategies targeting commercial designs. Coverage includes novel soft error mitigation techniques such as the Dynamic Threshold Technique and Soft Error Filtering based on Transmission gate with varied gate and body bias. The discussion also includes modeling of SE crosstalk noise, delay and speed-up effects. Various mitigation strategies to eliminate SE coupling effects are also introduced. Coverage also includes the reliability of low power energy-efficient designs and the impact of leakage power consumption optimizations on soft error robustness. The author presents an analysis of various power optimization techniques, enabling readers to make design choices that reduce static power consumption an...
Climbing fibers predict movement kinematics and performance errors.
Streng, Martha L; Popa, Laurentiu S; Ebner, Timothy J
2017-09-01
Requisite for understanding cerebellar function is a complete characterization of the signals provided by complex spike (CS) discharge of Purkinje cells, the output neurons of the cerebellar cortex. Numerous studies have provided insights into CS function, with the most predominant view being that they are evoked by error events. However, several reports suggest that CSs encode other aspects of movements and do not always respond to errors or unexpected perturbations. Here, we evaluated CS firing during a pseudo-random manual tracking task in the monkey ( Macaca mulatta ). This task provides extensive coverage of the work space and relative independence of movement parameters, delivering a robust data set to assess the signals that activate climbing fibers. Using reverse correlation, we determined feedforward and feedback CSs firing probability maps with position, velocity, and acceleration, as well as position error, a measure of tracking performance. The direction and magnitude of the CS modulation were quantified using linear regression analysis. The major findings are that CSs significantly encode all three kinematic parameters and position error, with acceleration modulation particularly common. The modulation is not related to "events," either for position error or kinematics. Instead, CSs are spatially tuned and provide a linear representation of each parameter evaluated. The CS modulation is largely predictive. Similar analyses show that the simple spike firing is modulated by the same parameters as the CSs. Therefore, CSs carry a broader array of signals than previously described and argue for climbing fiber input having a prominent role in online motor control. NEW & NOTEWORTHY This article demonstrates that complex spike (CS) discharge of cerebellar Purkinje cells encodes multiple parameters of movement, including motor errors and kinematics. The CS firing is not driven by error or kinematic events; instead it provides a linear representation of each
Hierarchical prediction errors in midbrain and septum during social learning.
Diaconescu, Andreea O; Mathys, Christoph; Weber, Lilian A E; Kasper, Lars; Mauer, Jan; Stephan, Klaas E
2017-04-01
Social learning is fundamental to human interactions, yet its computational and physiological mechanisms are not well understood. One prominent open question concerns the role of neuromodulatory transmitters. We combined fMRI, computational modelling and genetics to address this question in two separate samples (N = 35, N = 47). Participants played a game requiring inference on an adviser's intentions whose motivation to help or mislead changed over time. Our analyses suggest that hierarchically structured belief updates about current advice validity and the adviser's trustworthiness, respectively, depend on different neuromodulatory systems. Low-level prediction errors (PEs) about advice accuracy not only activated regions known to support 'theory of mind', but also the dopaminergic midbrain. Furthermore, PE responses in ventral striatum were influenced by the Met/Val polymorphism of the Catechol-O-Methyltransferase (COMT) gene. By contrast, high-level PEs ('expected uncertainty') about the adviser's fidelity activated the cholinergic septum. These findings, replicated in both samples, have important implications: They suggest that social learning rests on hierarchically related PEs encoded by midbrain and septum activity, respectively, in the same manner as other forms of learning under volatility. Furthermore, these hierarchical PEs may be broadcast by dopaminergic and cholinergic projections to induce plasticity specifically in cortical areas known to represent beliefs about others. © The Author (2017). Published by Oxford University Press.
Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.
Limongi, Roberto; Silva, Angélica M
2016-11-01
The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.
Artificial neural network implementation of a near-ideal error prediction controller
Mcvey, Eugene S.; Taylor, Lynore Denise
1992-01-01
responses be known for a particular input and modeled plant. These responses are used in the error prediction controller. An analysis was done on the general dynamic behavior that results from including a digital error predictor in a control loop and these were compared to those including the near-ideal Neural Network error predictor. This analysis was done for a second and third order system.
Predictive Modeling in Race Walking
Directory of Open Access Journals (Sweden)
Krzysztof Wiktorowicz
2015-01-01
Full Text Available This paper presents the use of linear and nonlinear multivariable models as tools to support training process of race walkers. These models are calculated using data collected from race walkers’ training events and they are used to predict the result over a 3 km race based on training loads. The material consists of 122 training plans for 21 athletes. In order to choose the best model leave-one-out cross-validation method is used. The main contribution of the paper is to propose the nonlinear modifications for linear models in order to achieve smaller prediction error. It is shown that the best model is a modified LASSO regression with quadratic terms in the nonlinear part. This model has the smallest prediction error and simplified structure by eliminating some of the predictors.
Understanding error generation in fused deposition modeling
International Nuclear Information System (INIS)
Bochmann, Lennart; Transchel, Robert; Wegener, Konrad; Bayley, Cindy; Helu, Moneer; Dornfeld, David
2015-01-01
Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08–0.30 mm) are generally greater than in the x direction (0.12–0.62 mm) and the z direction (0.21–0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology. (paper)
Understanding error generation in fused deposition modeling
Bochmann, Lennart; Bayley, Cindy; Helu, Moneer; Transchel, Robert; Wegener, Konrad; Dornfeld, David
2015-03-01
Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08-0.30 mm) are generally greater than in the x direction (0.12-0.62 mm) and the z direction (0.21-0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology.
Some Results on Mean Square Error for Factor Score Prediction
Krijnen, Wim P.
2006-01-01
For the confirmatory factor model a series of inequalities is given with respect to the mean square error (MSE) of three main factor score predictors. The eigenvalues of these MSE matrices are a monotonic function of the eigenvalues of the matrix gamma[subscript rho] = theta[superscript 1/2] lambda[subscript rho] 'psi[subscript rho] [superscript…
Uncertainties of predictions from parton distributions 1, experimental errors
Martin, A D; Stirling, William James; Thorne, R S; CERN. Geneva
2003-01-01
We determine the uncertainties on observables arising from the errors on the experimental data that are fitted in the global MRST2001 parton analysis. By diagonalizing the error matrix we produce sets of partons suitable for use within the framework of linear propagation of errors, which is the most convenient method for calculating the uncertainties. Despite the potential limitations of this approach we find that it can be made to work well in practice. This is confirmed by our alternative approach of using the more rigorous Lagrange multiplier method to determine the errors on physical quantities directly. As particular examples we determine the uncertainties on the predictions of the charged-current deep-inelastic structure functions, on the cross-sections for W production and for Higgs boson production via gluon--gluon fusion at the Tevatron and the LHC, on the ratio of W-minus to W-plus production at the LHC and on the moments of the non-singlet quark distributions. We discuss the corresponding uncertain...
Effect of GPS errors on Emission model
DEFF Research Database (Denmark)
Lehmann, Anders; Gross, Allan
n this paper we will show how Global Positioning Services (GPS) data obtained from smartphones can be used to model air quality in urban settings. The paper examines the uncertainty of smartphone location utilising GPS, and ties this location uncertainty to air quality models. The results presented...... in this paper indicates that the location error from using smartphones is within the accuracy needed to use the location data in air quality modelling. The nature of smartphone location data enables more accurate and near real time air quality modelling and monitoring. The location data is harvested from user...
Mulej Bratec, Satja; Xie, Xiyao; Schmid, Gabriele; Doll, Anselm; Schilbach, Leonhard; Zimmer, Claus; Wohlschläger, Afra; Riedl, Valentin; Sorg, Christian
2015-12-01
Cognitive emotion regulation is a powerful way of modulating emotional responses. However, despite the vital role of emotions in learning, it is unknown whether the effect of cognitive emotion regulation also extends to the modulation of learning. Computational models indicate prediction error activity, typically observed in the striatum and ventral tegmental area, as a critical neural mechanism involved in associative learning. We used model-based fMRI during aversive conditioning with and without cognitive emotion regulation to test the hypothesis that emotion regulation would affect prediction error-related neural activity in the striatum and ventral tegmental area, reflecting an emotion regulation-related modulation of learning. Our results show that cognitive emotion regulation reduced emotion-related brain activity, but increased prediction error-related activity in a network involving ventral tegmental area, hippocampus, insula and ventral striatum. While the reduction of response activity was related to behavioral measures of emotion regulation success, the enhancement of prediction error-related neural activity was related to learning performance. Furthermore, functional connectivity between the ventral tegmental area and ventrolateral prefrontal cortex, an area involved in regulation, was specifically increased during emotion regulation and likewise related to learning performance. Our data, therefore, provide first-time evidence that beyond reducing emotional responses, cognitive emotion regulation affects learning by enhancing prediction error-related activity, potentially via tegmental dopaminergic pathways. Copyright © 2015 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Trehan, Sumeet; Carlberg, Kevin T.; Durlofsky, Louis J.
2017-01-01
A machine learning–based framework for modeling the error introduced by surrogate models of parameterized dynamical systems is proposed. The framework entails the use of high-dimensional regression techniques (eg, random forests, and LASSO) to map a large set of inexpensively computed “error indicators” (ie, features) produced by the surrogate model at a given time instance to a prediction of the surrogate-model error in a quantity of interest (QoI). This eliminates the need for the user to hand-select a small number of informative features. The methodology requires a training set of parameter instances at which the time-dependent surrogate-model error is computed by simulating both the high-fidelity and surrogate models. Using these training data, the method first determines regression-model locality (via classification or clustering) and subsequently constructs a “local” regression model to predict the time-instantaneous error within each identified region of feature space. We consider 2 uses for the resulting error model: (1) as a correction to the surrogate-model QoI prediction at each time instance and (2) as a way to statistically model arbitrary functions of the time-dependent surrogate-model error (eg, time-integrated errors). We then apply the proposed framework to model errors in reduced-order models of nonlinear oil-water subsurface flow simulations, with time-varying well-control (bottom-hole pressure) parameters. The reduced-order models used in this work entail application of trajectory piecewise linearization in conjunction with proper orthogonal decomposition. Moreover, when the first use of the method is considered, numerical experiments demonstrate consistent improvement in accuracy in the time-instantaneous QoI prediction relative to the original surrogate model, across a large number of test cases. When the second use is considered, results show that the proposed method provides accurate statistical predictions of the time- and well
ERM model analysis for adaptation to hydrological model errors
Baymani-Nezhad, M.; Han, D.
2018-05-01
Hydrological conditions are changed continuously and these phenomenons generate errors on flood forecasting models and will lead to get unrealistic results. Therefore, to overcome these difficulties, a concept called model updating is proposed in hydrological studies. Real-time model updating is one of the challenging processes in hydrological sciences and has not been entirely solved due to lack of knowledge about the future state of the catchment under study. Basically, in terms of flood forecasting process, errors propagated from the rainfall-runoff model are enumerated as the main source of uncertainty in the forecasting model. Hence, to dominate the exciting errors, several methods have been proposed by researchers to update the rainfall-runoff models such as parameter updating, model state updating, and correction on input data. The current study focuses on investigations about the ability of rainfall-runoff model parameters to cope with three types of existing errors, timing, shape and volume as the common errors in hydrological modelling. The new lumped model, the ERM model, has been selected for this study to evaluate its parameters for its use in model updating to cope with the stated errors. Investigation about ten events proves that the ERM model parameters can be updated to cope with the errors without the need to recalibrate the model.
Using lexical variables to predict picture-naming errors in jargon aphasia
Directory of Open Access Journals (Sweden)
Catherine Godbold
2015-04-01
Full Text Available Introduction Individuals with jargon aphasia produce fluent output which often comprises high proportions of non-word errors (e.g., maf for dog. Research has been devoted to identifying the underlying mechanisms behind such output. Some accounts posit a reduced flow of spreading activation between levels in the lexical network (e.g., Robson et al., 2003. If activation level differences across the lexical network are a cause of non-word outputs, we would predict improved performance when target items reflect an increased flow of activation between levels (e.g. more frequently-used words are often represented by higher resting levels of activation. This research investigates the effect of lexical properties of targets (e.g., frequency, imageability on accuracy, error type (real word vs. non-word and target-error overlap of non-word errors in a picture naming task by individuals with jargon aphasia. Method Participants were 17 individuals with Wernicke’s aphasia, who produced a high proportion of non-word errors (>20% of errors on the Philadelphia Naming Test (PNT; Roach et al., 1996. The data were retrieved from the Moss Aphasic Psycholinguistic Database Project (MAPPD, Mirman et al., 2010. We used a series of mixed models to test whether lexical variables predicted accuracy, error type (real word vs. non-word and target-error overlap for the PNT data. As lexical variables tend to be highly correlated, we performed a principal components analysis to reduce the variables into five components representing variables associated with phonology (length, phonotactic probability, neighbourhood density and neighbourhood frequency, semantics (imageability and concreteness, usage (frequency and age-of-acquisition, name agreement and visual complexity. Results and Discussion Table 1 shows the components that made a significant contribution to each model. Individuals with jargon aphasia produced more correct responses and fewer non-word errors relative to
A Conceptual Framework for Predicting Error in Complex Human-Machine Environments
Freed, Michael; Remington, Roger; Null, Cynthia H. (Technical Monitor)
1998-01-01
We present a Goals, Operators, Methods, and Selection Rules-Model Human Processor (GOMS-MHP) style model-based approach to the problem of predicting human habit capture errors. Habit captures occur when the model fails to allocate limited cognitive resources to retrieve task-relevant information from memory. Lacking the unretrieved information, decision mechanisms act in accordance with implicit default assumptions, resulting in error when relied upon assumptions prove incorrect. The model helps interface designers identify situations in which such failures are especially likely.
DeGuzman, Marisa; Shott, Megan E; Yang, Tony T; Riederer, Justin; Frank, Guido K W
2017-06-01
Anorexia nervosa is a psychiatric disorder of unknown etiology. Understanding associations between behavior and neurobiology is important in treatment development. Using a novel monetary reward task during functional magnetic resonance brain imaging, the authors tested how brain reward learning in adolescent anorexia nervosa changes with weight restoration. Female adolescents with anorexia nervosa (N=21; mean age, 16.4 years [SD=1.9]) underwent functional MRI (fMRI) before and after treatment; similarly, healthy female control adolescents (N=21; mean age, 15.2 years [SD=2.4]) underwent fMRI on two occasions. Brain function was tested using the reward prediction error construct, a computational model for reward receipt and omission related to motivation and neural dopamine responsiveness. Compared with the control group, the anorexia nervosa group exhibited greater brain response 1) for prediction error regression within the caudate, ventral caudate/nucleus accumbens, and anterior and posterior insula, 2) to unexpected reward receipt in the anterior and posterior insula, and 3) to unexpected reward omission in the caudate body. Prediction error and unexpected reward omission response tended to normalize with treatment, while unexpected reward receipt response remained significantly elevated. Greater caudate prediction error response when underweight was associated with lower weight gain during treatment. Punishment sensitivity correlated positively with ventral caudate prediction error response. Reward system responsiveness is elevated in adolescent anorexia nervosa when underweight and after weight restoration. Heightened prediction error activity in brain reward regions may represent a phenotype of adolescent anorexia nervosa that does not respond well to treatment. Prediction error response could be a neurobiological marker of illness severity that can indicate individual treatment needs.
Nonclassical measurements errors in nonlinear models
DEFF Research Database (Denmark)
Madsen, Edith; Mulalic, Ismir
Discrete choice models and in particular logit type models play an important role in understanding and quantifying individual or household behavior in relation to transport demand. An example is the choice of travel mode for a given trip under the budget and time restrictions that the individuals...... estimates of the income effect it is of interest to investigate the magnitude of the estimation bias and if possible use estimation techniques that take the measurement error problem into account. We use data from the Danish National Travel Survey (NTS) and merge it with administrative register data...... that contains very detailed information about incomes. This gives a unique opportunity to learn about the magnitude and nature of the measurement error in income reported by the respondents in the Danish NTS compared to income from the administrative register (correct measure). We find that the classical...
Directory of Open Access Journals (Sweden)
Jensen Just
2002-05-01
Full Text Available Abstract In this paper, we consider selection based on the best predictor of animal additive genetic values in Gaussian linear mixed models, threshold models, Poisson mixed models, and log normal frailty models for survival data (including models with time-dependent covariates with associated fixed or random effects. In the different models, expressions are given (when these can be found – otherwise unbiased estimates are given for prediction error variance, accuracy of selection and expected response to selection on the additive genetic scale and on the observed scale. The expressions given for non Gaussian traits are generalisations of the well-known formulas for Gaussian traits – and reflect, for Poisson mixed models and frailty models for survival data, the hierarchal structure of the models. In general the ratio of the additive genetic variance to the total variance in the Gaussian part of the model (heritability on the normally distributed level of the model or a generalised version of heritability plays a central role in these formulas.
International Nuclear Information System (INIS)
Yoshino, Kenji; Hirotsu, Yuko
2000-01-01
In order to attain zero-izing of much more error rather than it can set to a nuclear power plant, Authors development and its system-izing of the error prediction causal model which predicts group error action at the time of maintenance work were performed. This prototype system has the following feature. (1) When a user inputs the existence and the grade of the existence of the 'feature factor of the maintenance work' as a prediction object, 'an organization and an organization factor', and a 'group PSF (Performance Shaping Factor) factor' into this system. The maintenance group error to target can be predicted through the prediction model which consists of a class of seven stages. (2) This system by utilizing the information on a prediction result database, it can use not only for prediction of a maintenance group error but for various safe activity, such as KYT (dangerous forecast training) and TBM (Tool Box Meeting). (3) This system predicts a cooperation error' at highest rate, and, subsequently predicts the detection error' at a high rate. And to the 'decision-making error', the transfer error' and the 'state cognitive error', it has the characteristic predicted at almost same rate. (4) If it has full knowledge even of the features, such as the enforcement conditions of maintenance work, and organization, even if the user has neither the knowledge about a human factor, nor experience, anyone of this system is slight about the existence, its extent, etc. of generating of a maintenance group error made difficult from the former logically and systematically easily, it can predict in business time for about 15 minutes. (author)
Krigolson, Olav E; Hassall, Cameron D; Handy, Todd C
2014-03-01
Our ability to make decisions is predicated upon our knowledge of the outcomes of the actions available to us. Reinforcement learning theory posits that actions followed by a reward or punishment acquire value through the computation of prediction errors-discrepancies between the predicted and the actual reward. A multitude of neuroimaging studies have demonstrated that rewards and punishments evoke neural responses that appear to reflect reinforcement learning prediction errors [e.g., Krigolson, O. E., Pierce, L. J., Holroyd, C. B., & Tanaka, J. W. Learning to become an expert: Reinforcement learning and the acquisition of perceptual expertise. Journal of Cognitive Neuroscience, 21, 1833-1840, 2009; Bayer, H. M., & Glimcher, P. W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47, 129-141, 2005; O'Doherty, J. P. Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14, 769-776, 2004; Holroyd, C. B., & Coles, M. G. H. The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679-709, 2002]. Here, we used the brain ERP technique to demonstrate that not only do rewards elicit a neural response akin to a prediction error but also that this signal rapidly diminished and propagated to the time of choice presentation with learning. Specifically, in a simple, learnable gambling task, we show that novel rewards elicited a feedback error-related negativity that rapidly decreased in amplitude with learning. Furthermore, we demonstrate the existence of a reward positivity at choice presentation, a previously unreported ERP component that has a similar timing and topography as the feedback error-related negativity that increased in amplitude with learning. The pattern of results we observed mirrored the output of a computational model that we implemented to compute reward
Modeling error distributions of growth curve models through Bayesian methods.
Zhang, Zhiyong
2016-06-01
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is proposed to flexibly model normal and non-normal data through the explicit specification of the error distributions. A simulation study shows when the distribution of the error is correctly specified, one can avoid the loss in the efficiency of standard error estimates. A real example on the analysis of mathematical ability growth data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 is used to show the application of the proposed methods. Instructions and code on how to conduct growth curve analysis with both normal and non-normal error distributions using the the MCMC procedure of SAS are provided.
Varying coefficients model with measurement error.
Li, Liang; Greene, Tom
2008-06-01
We propose a semiparametric partially varying coefficient model to study the relationship between serum creatinine concentration and the glomerular filtration rate (GFR) among kidney donors and patients with chronic kidney disease. A regression model is used to relate serum creatinine to GFR and demographic factors in which coefficient of GFR is expressed as a function of age to allow its effect to be age dependent. GFR measurements obtained from the clearance of a radioactively labeled isotope are assumed to be a surrogate for the true GFR, with the relationship between measured and true GFR expressed using an additive error model. We use locally corrected score equations to estimate parameters and coefficient functions, and propose an expected generalized cross-validation (EGCV) method to select the kernel bandwidth. The performance of the proposed methods, which avoid distributional assumptions on the true GFR and residuals, is investigated by simulation. Accounting for measurement error using the proposed model reduced apparent inconsistencies in the relationship between serum creatinine and GFR among different clinical data sets derived from kidney donor and chronic kidney disease source populations.
Error estimation for CFD aeroheating prediction under rarefied flow condition
Jiang, Yazhong; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian
2014-12-01
Both direct simulation Monte Carlo (DSMC) and Computational Fluid Dynamics (CFD) methods have become widely used for aerodynamic prediction when reentry vehicles experience different flow regimes during flight. The implementation of slip boundary conditions in the traditional CFD method under Navier-Stokes-Fourier (NSF) framework can extend the validity of this approach further into transitional regime, with the benefit that much less computational cost is demanded compared to DSMC simulation. Correspondingly, an increasing error arises in aeroheating calculation as the flow becomes more rarefied. To estimate the relative error of heat flux when applying this method for a rarefied flow in transitional regime, theoretical derivation is conducted and a dimensionless parameter ɛ is proposed by approximately analyzing the ratio of the second order term to first order term in the heat flux expression in Burnett equation. DSMC simulation for hypersonic flow over a cylinder in transitional regime is performed to test the performance of parameter ɛ, compared with two other parameters, Knρ and MaṡKnρ.
Energy Technology Data Exchange (ETDEWEB)
Voisin, Sophie [ORNL; Pinto, Frank M [ORNL; Morin-Ducote, Garnetta [University of Tennessee, Knoxville (UTK); Hudson, Kathy [University of Tennessee, Knoxville (UTK); Tourassi, Georgia [ORNL
2013-01-01
Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels. Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from 4 Radiology residents and 2 breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADs images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated. Results: Diagnostic error can be predicted reliably by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model (AUC=0.79). Personalized user modeling was far more accurate for the more experienced readers (average AUC of 0.837 0.029) than for the less experienced ones (average AUC of 0.667 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features. Conclusions: Diagnostic errors in mammography can be predicted reliably by leveraging the radiologists gaze behavior and image content.
Energy Technology Data Exchange (ETDEWEB)
Voisin, Sophie; Tourassi, Georgia D. [Biomedical Science and Engineering Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pinto, Frank [School of Engineering, Science, and Technology, Virginia State University, Petersburg, Virginia 23806 (United States); Morin-Ducote, Garnetta; Hudson, Kathleen B. [Department of Radiology, University of Tennessee Medical Center at Knoxville, Knoxville, Tennessee 37920 (United States)
2013-10-15
Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists’ gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels.Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from four Radiology residents and two breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADS images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated.Results: Machine learning can be used to predict diagnostic error by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model [area under the ROC curve (AUC) = 0.792 ± 0.030]. Personalized user modeling was far more accurate for the more experienced readers (AUC = 0.837 ± 0.029) than for the less experienced ones (AUC = 0.667 ± 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features.Conclusions: Diagnostic errors in mammography can be predicted to a good extent by leveraging the radiologists’ gaze behavior and image content.
International Nuclear Information System (INIS)
Voisin, Sophie; Tourassi, Georgia D.; Pinto, Frank; Morin-Ducote, Garnetta; Hudson, Kathleen B.
2013-01-01
Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists’ gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels.Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from four Radiology residents and two breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADS images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated.Results: Machine learning can be used to predict diagnostic error by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model [area under the ROC curve (AUC) = 0.792 ± 0.030]. Personalized user modeling was far more accurate for the more experienced readers (AUC = 0.837 ± 0.029) than for the less experienced ones (AUC = 0.667 ± 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features.Conclusions: Diagnostic errors in mammography can be predicted to a good extent by leveraging the radiologists’ gaze behavior and image content
Probabilistic error bounds for reduced order modeling
Energy Technology Data Exchange (ETDEWEB)
Abdo, M.G.; Wang, C.; Abdel-Khalik, H.S., E-mail: abdo@purdue.edu, E-mail: wang1730@purdue.edu, E-mail: abdelkhalik@purdue.edu [Purdue Univ., School of Nuclear Engineering, West Lafayette, IN (United States)
2015-07-01
Reduced order modeling has proven to be an effective tool when repeated execution of reactor analysis codes is required. ROM operates on the assumption that the intrinsic dimensionality of the associated reactor physics models is sufficiently small when compared to the nominal dimensionality of the input and output data streams. By employing a truncation technique with roots in linear algebra matrix decomposition theory, ROM effectively discards all components of the input and output data that have negligible impact on reactor attributes of interest. This manuscript introduces a mathematical approach to quantify the errors resulting from the discarded ROM components. As supported by numerical experiments, the introduced analysis proves that the contribution of the discarded components could be upper-bounded with an overwhelmingly high probability. The reverse of this statement implies that the ROM algorithm can self-adapt to determine the level of the reduction needed such that the maximum resulting reduction error is below a given tolerance limit that is set by the user. (author)
Error-related brain activity predicts cocaine use after treatment at 3-month follow-up.
Marhe, Reshmi; van de Wetering, Ben J M; Franken, Ingmar H A
2013-04-15
Relapse after treatment is one of the most important problems in drug dependency. Several studies suggest that lack of cognitive control is one of the causes of relapse. In this study, a relative new electrophysiologic index of cognitive control, the error-related negativity, is investigated to examine its suitability as a predictor of relapse. The error-related negativity was measured in 57 cocaine-dependent patients during their first week in detoxification treatment. Data from 49 participants were used to predict cocaine use at 3-month follow-up. Cocaine use at follow-up was measured by means of self-reported days of cocaine use in the last month verified by urine screening. A multiple hierarchical regression model was used to examine the predictive value of the error-related negativity while controlling for addiction severity and self-reported craving in the week before treatment. The error-related negativity was the only significant predictor in the model and added 7.4% of explained variance to the control variables, resulting in a total of 33.4% explained variance in the prediction of days of cocaine use at follow-up. A reduced error-related negativity measured during the first week of treatment was associated with more days of cocaine use at 3-month follow-up. Moreover, the error-related negativity was a stronger predictor of recent cocaine use than addiction severity and craving. These results suggest that underactive error-related brain activity might help to identify patients who are at risk of relapse as early as in the first week of detoxification treatment. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Social learning through prediction error in the brain
Joiner, Jessica; Piva, Matthew; Turrin, Courtney; Chang, Steve W. C.
2017-06-01
Learning about the world is critical to survival and success. In social animals, learning about others is a necessary component of navigating the social world, ultimately contributing to increasing evolutionary fitness. How humans and nonhuman animals represent the internal states and experiences of others has long been a subject of intense interest in the developmental psychology tradition, and, more recently, in studies of learning and decision making involving self and other. In this review, we explore how psychology conceptualizes the process of representing others, and how neuroscience has uncovered correlates of reinforcement learning signals to explore the neural mechanisms underlying social learning from the perspective of representing reward-related information about self and other. In particular, we discuss self-referenced and other-referenced types of reward prediction errors across multiple brain structures that effectively allow reinforcement learning algorithms to mediate social learning. Prediction-based computational principles in the brain may be strikingly conserved between self-referenced and other-referenced information.
Modelling and mitigation of soft-errors in CMOS processors
Rohani, A.
2014-01-01
The topic of this thesis is about soft-errors in digital systems. Different aspects of soft-errors have been addressed here, including an accurate simulation model to emulate soft-errors in a gate-level net list, a simulation framework to study the impact of soft-errors in a VHDL design and an
The Sensitivity of Evapotranspiration Models to Errors in Model ...
African Journals Online (AJOL)
Five evapotranspiration (Et) model-the penman, Blaney - Criddel, Thornthwaite, the Blaney –Morin-Nigeria, and the Jensen and Haise models – were analyzed for parameter sensitivity under Nigerian Climatic conditions. The sensitivity of each model to errors in any of its measured parameters (variables) was based on the ...
Measurement Model Specification Error in LISREL Structural Equation Models.
Baldwin, Beatrice; Lomax, Richard
This LISREL study examines the robustness of the maximum likelihood estimates under varying degrees of measurement model misspecification. A true model containing five latent variables (two endogenous and three exogenous) and two indicator variables per latent variable was used. Measurement model misspecification considered included errors of…
A machine learning approach to the accurate prediction of multi-leaf collimator positional errors
Carlson, Joel N. K.; Park, Jong Min; Park, So-Yeon; In Park, Jong; Choi, Yunseok; Ye, Sung-Joon
2016-03-01
Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD = 1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be
Error-in-variables models in calibration
Lira, I.; Grientschnig, D.
2017-12-01
In many calibration operations, the stimuli applied to the measuring system or instrument under test are derived from measurement standards whose values may be considered to be perfectly known. In that case, it is assumed that calibration uncertainty arises solely from inexact measurement of the responses, from imperfect control of the calibration process and from the possible inaccuracy of the calibration model. However, the premise that the stimuli are completely known is never strictly fulfilled and in some instances it may be grossly inadequate. Then, error-in-variables (EIV) regression models have to be employed. In metrology, these models have been approached mostly from the frequentist perspective. In contrast, not much guidance is available on their Bayesian analysis. In this paper, we first present a brief summary of the conventional statistical techniques that have been developed to deal with EIV models in calibration. We then proceed to discuss the alternative Bayesian framework under some simplifying assumptions. Through a detailed example about the calibration of an instrument for measuring flow rates, we provide advice on how the user of the calibration function should employ the latter framework for inferring the stimulus acting on the calibrated device when, in use, a certain response is measured.
McInerney, David; Thyer, Mark; Kavetski, Dmitri; Kuczera, George
2016-04-01
Appropriate representation of residual errors in hydrological modelling is essential for accurate and reliable probabilistic streamflow predictions. In particular, residual errors of hydrological predictions are often heteroscedastic, with large errors associated with high runoff events. Although multiple approaches exist for representing this heteroscedasticity, few if any studies have undertaken a comprehensive evaluation and comparison of these approaches. This study fills this research gap by evaluating a range of approaches for representing heteroscedasticity in residual errors. These approaches include the 'direct' weighted least squares approach and 'transformational' approaches, such as logarithmic, Box-Cox (with and without fitting the transformation parameter), logsinh and the inverse transformation. The study reports (1) theoretical comparison of heteroscedasticity approaches, (2) empirical evaluation of heteroscedasticity approaches using a range of multiple catchments / hydrological models / performance metrics and (3) interpretation of empirical results using theory to provide practical guidance on the selection of heteroscedasticity approaches. Importantly, for hydrological practitioners, the results will simplify the choice of approaches to represent heteroscedasticity. This will enhance their ability to provide hydrological probabilistic predictions with the best reliability and precision for different catchment types (e.g. high/low degree of ephemerality).
Dopamine prediction errors in reward learning and addiction: from theory to neural circuitry
Keiflin, Ronald; Janak, Patricia H.
2015-01-01
Summary Midbrain dopamine (DA) neurons are proposed to signal reward prediction error (RPE), a fundamental parameter in associative learning models. This RPE hypothesis provides a compelling theoretical framework for understanding DA function in reward learning and addiction. New studies support a causal role for DA-mediated RPE activity in promoting learning about natural reward; however, this question has not been explicitly tested in the context of drug addiction. In this review, we integrate theoretical models with experimental findings on the activity of DA systems, and on the causal role of specific neuronal projections and cell types, to provide a circuit-based framework for probing DA-RPE function in addiction. By examining error-encoding DA neurons in the neural network in which they are embedded, hypotheses regarding circuit-level adaptations that possibly contribute to pathological error-signaling and addiction can be formulated and tested. PMID:26494275
Dopamine Prediction Errors in Reward Learning and Addiction: From Theory to Neural Circuitry.
Keiflin, Ronald; Janak, Patricia H
2015-10-21
Midbrain dopamine (DA) neurons are proposed to signal reward prediction error (RPE), a fundamental parameter in associative learning models. This RPE hypothesis provides a compelling theoretical framework for understanding DA function in reward learning and addiction. New studies support a causal role for DA-mediated RPE activity in promoting learning about natural reward; however, this question has not been explicitly tested in the context of drug addiction. In this review, we integrate theoretical models with experimental findings on the activity of DA systems, and on the causal role of specific neuronal projections and cell types, to provide a circuit-based framework for probing DA-RPE function in addiction. By examining error-encoding DA neurons in the neural network in which they are embedded, hypotheses regarding circuit-level adaptations that possibly contribute to pathological error signaling and addiction can be formulated and tested. Copyright © 2015 Elsevier Inc. All rights reserved.
Experimental Errors in QSAR Modeling Sets: What We Can Do and What We Cannot Do.
Zhao, Linlin; Wang, Wenyi; Sedykh, Alexander; Zhu, Hao
2017-06-30
Numerous chemical data sets have become available for quantitative structure-activity relationship (QSAR) modeling studies. However, the quality of different data sources may be different based on the nature of experimental protocols. Therefore, potential experimental errors in the modeling sets may lead to the development of poor QSAR models and further affect the predictions of new compounds. In this study, we explored the relationship between the ratio of questionable data in the modeling sets, which was obtained by simulating experimental errors, and the QSAR modeling performance. To this end, we used eight data sets (four continuous endpoints and four categorical endpoints) that have been extensively curated both in-house and by our collaborators to create over 1800 various QSAR models. Each data set was duplicated to create several new modeling sets with different ratios of simulated experimental errors (i.e., randomizing the activities of part of the compounds) in the modeling process. A fivefold cross-validation process was used to evaluate the modeling performance, which deteriorates when the ratio of experimental errors increases. All of the resulting models were also used to predict external sets of new compounds, which were excluded at the beginning of the modeling process. The modeling results showed that the compounds with relatively large prediction errors in cross-validation processes are likely to be those with simulated experimental errors. However, after removing a certain number of compounds with large prediction errors in the cross-validation process, the external predictions of new compounds did not show improvement. Our conclusion is that the QSAR predictions, especially consensus predictions, can identify compounds with potential experimental errors. But removing those compounds by the cross-validation procedure is not a reasonable means to improve model predictivity due to overfitting.
Analytical modeling for thermal errors of motorized spindle unit
Liu, Teng; Gao, Weiguo; Zhang, Dawei; Zhang, Yifan; Chang, Wenfen; Liang, Cunman; Tian, Yanling
2017-01-01
Modeling method investigation about spindle thermal errors is significant for spindle thermal optimization in design phase. To accurately analyze the thermal errors of motorized spindle unit, this paper assumes approximately that 1) spindle linear thermal error on axial direction is ascribed to shaft thermal elongation for its heat transfer from bearings, and 2) spindle linear thermal errors on radial directions and angular thermal errors are attributed to thermal variations of bearing relati...
Radiation risk estimation based on measurement error models
Masiuk, Sergii; Shklyar, Sergiy; Chepurny, Mykola; Likhtarov, Illya
2017-01-01
This monograph discusses statistics and risk estimates applied to radiation damage under the presence of measurement errors. The first part covers nonlinear measurement error models, with a particular emphasis on efficiency of regression parameter estimators. In the second part, risk estimation in models with measurement errors is considered. Efficiency of the methods presented is verified using data from radio-epidemiological studies.
Predictive modeling of complications.
Osorio, Joseph A; Scheer, Justin K; Ames, Christopher P
2016-09-01
Predictive analytic algorithms are designed to identify patterns in the data that allow for accurate predictions without the need for a hypothesis. Therefore, predictive modeling can provide detailed and patient-specific information that can be readily applied when discussing the risks of surgery with a patient. There are few studies using predictive modeling techniques in the adult spine surgery literature. These types of studies represent the beginning of the use of predictive analytics in spine surgery outcomes. We will discuss the advancements in the field of spine surgery with respect to predictive analytics, the controversies surrounding the technique, and the future directions.
Model error assessment of burst capacity models for energy pipelines containing surface cracks
International Nuclear Information System (INIS)
Yan, Zijian; Zhang, Shenwei; Zhou, Wenxing
2014-01-01
This paper develops the probabilistic characteristics of the model errors associated with five well-known burst capacity models/methodologies for pipelines containing longitudinally-oriented external surface cracks, namely the Battelle and CorLAS™ models as well as the failure assessment diagram (FAD) methodologies recommended in the BS 7910 (2005), API RP579 (2007) and R6 (Rev 4, Amendment 10). A total of 112 full-scale burst test data for cracked pipes subjected internal pressure only were collected from the literature. The model error for a given burst capacity model is evaluated based on the ratios of the test to predicted burst pressures for the collected data. Analysis results suggest that the CorLAS™ model is the most accurate model among the five models considered and the Battelle, BS 7910, API RP579 and R6 models are in general conservative; furthermore, the API RP579 and R6 models are markedly more accurate than the Battelle and BS 7910 models. The results will facilitate the development of reliability-based structural integrity management of pipelines. - Highlights: • Model errors for five burst capacity models for pipelines containing surface cracks are characterized. • Basic statistics of the model errors are obtained based on test-to-predicted ratios. • Results will facilitate reliability-based design and assessment of energy pipelines
Basic considerations in predicting error probabilities in human task performance
International Nuclear Information System (INIS)
Fleishman, E.A.; Buffardi, L.C.; Allen, J.A.; Gaskins, R.C. III
1990-04-01
It is well established that human error plays a major role in the malfunctioning of complex systems. This report takes a broad look at the study of human error and addresses the conceptual, methodological, and measurement issues involved in defining and describing errors in complex systems. In addition, a review of existing sources of human reliability data and approaches to human performance data base development is presented. Alternative task taxonomies, which are promising for establishing the comparability on nuclear and non-nuclear tasks, are also identified. Based on such taxonomic schemes, various data base prototypes for generalizing human error rates across settings are proposed. 60 refs., 3 figs., 7 tabs
Influence of model errors in optimal sensor placement
Vincenzi, Loris; Simonini, Laura
2017-02-01
The paper investigates the role of model errors and parametric uncertainties in optimal or near optimal sensor placements for structural health monitoring (SHM) and modal testing. The near optimal set of measurement locations is obtained by the Information Entropy theory; the results of placement process considerably depend on the so-called covariance matrix of prediction error as well as on the definition of the correlation function. A constant and an exponential correlation function depending on the distance between sensors are firstly assumed; then a proposal depending on both distance and modal vectors is presented. With reference to a simple case-study, the effect of model uncertainties on results is described and the reliability and the robustness of the proposed correlation function in the case of model errors are tested with reference to 2D and 3D benchmark case studies. A measure of the quality of the obtained sensor configuration is considered through the use of independent assessment criteria. In conclusion, the results obtained by applying the proposed procedure on a real 5-spans steel footbridge are described. The proposed method also allows to better estimate higher modes when the number of sensors is greater than the number of modes of interest. In addition, the results show a smaller variation in the sensor position when uncertainties occur.
Zhu, Lusha; Mathewson, Kyle E; Hsu, Ming
2012-01-31
Decision-making in the presence of other competitive intelligent agents is fundamental for social and economic behavior. Such decisions require agents to behave strategically, where in addition to learning about the rewards and punishments available in the environment, they also need to anticipate and respond to actions of others competing for the same rewards. However, whereas we know much about strategic learning at both theoretical and behavioral levels, we know relatively little about the underlying neural mechanisms. Here, we show using a multi-strategy competitive learning paradigm that strategic choices can be characterized by extending the reinforcement learning (RL) framework to incorporate agents' beliefs about the actions of their opponents. Furthermore, using this characterization to generate putative internal values, we used model-based functional magnetic resonance imaging to investigate neural computations underlying strategic learning. We found that the distinct notions of prediction errors derived from our computational model are processed in a partially overlapping but distinct set of brain regions. Specifically, we found that the RL prediction error was correlated with activity in the ventral striatum. In contrast, activity in the ventral striatum, as well as the rostral anterior cingulate (rACC), was correlated with a previously uncharacterized belief-based prediction error. Furthermore, activity in rACC reflected individual differences in degree of engagement in belief learning. These results suggest a model of strategic behavior where learning arises from interaction of dissociable reinforcement and belief-based inputs.
Directory of Open Access Journals (Sweden)
Pooyan Vahidi Pashsaki
2016-06-01
Full Text Available Accuracy of a five-axis CNC machine tool is affected by a vast number of error sources. This paper investigates volumetric error modeling and its compensation to the basis for creation of new tool path for improvement of work pieces accuracy. The volumetric error model of a five-axis machine tool with the configuration RTTTR (tilting head B-axis and rotary table in work piece side A΄ was set up taking into consideration rigid body kinematics and homogeneous transformation matrix, in which 43 error components are included. Volumetric error comprises 43 error components that can separately reduce geometrical and dimensional accuracy of work pieces. The machining accuracy of work piece is guaranteed due to the position of the cutting tool center point (TCP relative to the work piece. The cutting tool is deviated from its ideal position relative to the work piece and machining error is experienced. For compensation process detection of the present tool path and analysis of the RTTTR five-axis CNC machine tools geometrical error, translating current position of component to compensated positions using the Kinematics error model, converting newly created component to new tool paths using the compensation algorithms and finally editing old G-codes using G-code generator algorithm have been employed.
Directory of Open Access Journals (Sweden)
Bruni Vanida
2010-01-01
Full Text Available Abstract Background Drug prescribing errors are frequent in the hospital setting and pharmacists play an important role in detection of these errors. The objectives of this study are (1 to describe the drug prescribing errors rate during the patient's stay, (2 to find which characteristics for a prescribing error are the most predictive of their reproduction the next day despite pharmacist's alert (i.e. override the alert. Methods We prospectively collected all medication order lines and prescribing errors during 18 days in 7 medical wards' using computerized physician order entry. We described and modelled the errors rate according to the chronology of hospital stay. We performed a classification and regression tree analysis to find which characteristics of alerts were predictive of their overriding (i.e. prescribing error repeated. Results 12 533 order lines were reviewed, 117 errors (errors rate 0.9% were observed and 51% of these errors occurred on the first day of the hospital stay. The risk of a prescribing error decreased over time. 52% of the alerts were overridden (i.e error uncorrected by prescribers on the following day. Drug omissions were the most frequently taken into account by prescribers. The classification and regression tree analysis showed that overriding pharmacist's alerts is first related to the ward of the prescriber and then to either Anatomical Therapeutic Chemical class of the drug or the type of error. Conclusions Since 51% of prescribing errors occurred on the first day of stay, pharmacist should concentrate his analysis of drug prescriptions on this day. The difference of overriding behavior between wards and according drug Anatomical Therapeutic Chemical class or type of error could also guide the validation tasks and programming of electronic alerts.
Rivière, G.; Hua, B. L.
2004-10-01
A new perturbation initialization method is used to quantify error growth due to inaccuracies of the forecast model initial conditions in a quasigeostrophic box ocean model describing a wind-driven double gyre circulation. This method is based on recent analytical results on Lagrangian alignment dynamics of the perturbation velocity vector in quasigeostrophic flows. More specifically, it consists in initializing a unique perturbation from the sole knowledge of the control flow properties at the initial time of the forecast and whose velocity vector orientation satisfies a Lagrangian equilibrium criterion. This Alignment-based Initialization method is hereafter denoted as the AI method.In terms of spatial distribution of the errors, we have compared favorably the AI error forecast with the mean error obtained with a Monte-Carlo ensemble prediction. It is shown that the AI forecast is on average as efficient as the error forecast initialized with the leading singular vector for the palenstrophy norm, and significantly more efficient than that for total energy and enstrophy norms. Furthermore, a more precise examination shows that the AI forecast is systematically relevant for all control flows whereas the palenstrophy singular vector forecast leads sometimes to very good scores and sometimes to very bad ones.A principal component analysis at the final time of the forecast shows that the AI mode spatial structure is comparable to that of the first eigenvector of the error covariance matrix for a "bred mode" ensemble. Furthermore, the kinetic energy of the AI mode grows at the same constant rate as that of the "bred modes" from the initial time to the final time of the forecast and is therefore characterized by a sustained phase of error growth. In this sense, the AI mode based on Lagrangian dynamics of the perturbation velocity orientation provides a rationale of the "bred mode" behavior.
Directory of Open Access Journals (Sweden)
Ulrich eKirk
2015-02-01
Full Text Available Reinforcement learning models have demonstrated that phasic activity of dopamine neurons during reward expectation encodes information about the predictability of rewards and cues that predict reward. Evidence indicates that mindfulness-based approaches reduce reward anticipation signal in the striatum to negative and positive incentives suggesting the hypothesis that such training influence basic reward processing. Using a passive conditioning task and fMRI in a group of experienced mindfulness meditators and age-matched controls, we tested the hypothesis that mindfulness meditation influence reward and reward prediction error signals. We found diminished positive and negative prediction error-related blood-oxygen level-dependent (BOLD responses in the putamen in meditators compared with controls. In the meditators, this decrease in striatal BOLD responses to reward prediction was paralleled by increased activity in posterior insula, a primary interoceptive region. Critically, responses in the putamen during early trials of the conditioning procedure (run 1 were elevated in both meditators and controls. These results provide evidence that experienced mindfulness meditators show attenuated reward prediction signals to valenced stimuli, which may be related to interoceptive processes encoded in the posterior insula.
Quasi-eccentricity error modeling and compensation in vision metrology
Shen, Yijun; Zhang, Xu; Cheng, Wei; Zhu, Limin
2018-04-01
Circular targets are commonly used in vision applications for its detection accuracy and robustness. The eccentricity error of the circular target caused by perspective projection is one of the main factors of measurement error which needs to be compensated in high-accuracy measurement. In this study, the impact of the lens distortion on the eccentricity error is comprehensively investigated. The traditional eccentricity error turns to a quasi-eccentricity error in the non-linear camera model. The quasi-eccentricity error model is established by comparing the quasi-center of the distorted ellipse with the true projection of the object circle center. Then, an eccentricity error compensation framework is proposed which compensates the error by iteratively refining the image point to the true projection of the circle center. Both simulation and real experiment confirm the effectiveness of the proposed method in several vision applications.
Archaeological predictive model set.
2015-03-01
This report is the documentation for Task 7 of the Statewide Archaeological Predictive Model Set. The goal of this project is to : develop a set of statewide predictive models to assist the planning of transportation projects. PennDOT is developing t...
Directory of Open Access Journals (Sweden)
Lisa D’Astolfo
2017-07-01
Full Text Available Modifying patients’ expectations by exposing them to expectation violation situations (thus maximizing the difference between the expected and the actual situational outcome is proposed to be a crucial mechanism for therapeutic success for a variety of different mental disorders. However, clinical observations suggest that patients often maintain their expectations regardless of experiences contradicting their expectations. It remains unclear which information processing mechanisms lead to modification or persistence of patients’ expectations. Insight in the processing could be provided by Neuroimaging studies investigating prediction error (PE, i.e., neuronal reactions to non-expected stimuli. Two methods are often used to investigate the PE: (1 paradigms, in which participants passively observe PEs (”passive” paradigms and (2 paradigms, which encourage a behavioral adaptation following a PE (“active” paradigms. These paradigms are similar to the methods used to induce expectation violations in clinical settings: (1 the confrontation with an expectation violation situation and (2 an enhanced confrontation in which the patient actively challenges his expectation. We used this similarity to gain insight in the different neuronal processing of the two PE paradigms. We performed a meta-analysis contrasting neuronal activity of PE paradigms encouraging a behavioral adaptation following a PE and paradigms enforcing passiveness following a PE. We found more neuronal activity in the striatum, the insula and the fusiform gyrus in studies encouraging behavioral adaptation following a PE. Due to the involvement of reward assessment and avoidance learning associated with the striatum and the insula we propose that the deliberate execution of action alternatives following a PE is associated with the integration of new information into previously existing expectations, therefore leading to an expectation change. While further research is needed
Levy, R.; Mcginness, H.
1976-01-01
Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.
Thermal Error Test and Intelligent Modeling Research on the Spindle of High Speed CNC Machine Tools
Luo, Zhonghui; Peng, Bin; Xiao, Qijun; Bai, Lu
2018-03-01
Thermal error is the main factor affecting the accuracy of precision machining. Through experiments, this paper studies the thermal error test and intelligent modeling for the spindle of vertical high speed CNC machine tools in respect of current research focuses on thermal error of machine tool. Several testing devices for thermal error are designed, of which 7 temperature sensors are used to measure the temperature of machine tool spindle system and 2 displacement sensors are used to detect the thermal error displacement. A thermal error compensation model, which has a good ability in inversion prediction, is established by applying the principal component analysis technology, optimizing the temperature measuring points, extracting the characteristic values closely associated with the thermal error displacement, and using the artificial neural network technology.
Errors and parameter estimation in precipitation-runoff modeling: 1. Theory
Troutman, Brent M.
1985-01-01
Errors in complex conceptual precipitation-runoff models may be analyzed by placing them into a statistical framework. This amounts to treating the errors as random variables and defining the probabilistic structure of the errors. By using such a framework, a large array of techniques, many of which have been presented in the statistical literature, becomes available to the modeler for quantifying and analyzing the various sources of error. A number of these techniques are reviewed in this paper, with special attention to the peculiarities of hydrologic models. Known methodologies for parameter estimation (calibration) are particularly applicable for obtaining physically meaningful estimates and for explaining how bias in runoff prediction caused by model error and input error may contribute to bias in parameter estimation.
Gurdak, Jason J.; Qi, Sharon L.; Geisler, Michael L.
2009-01-01
The U.S. Geological Survey Raster Error Propagation Tool (REPTool) is a custom tool for use with the Environmental System Research Institute (ESRI) ArcGIS Desktop application to estimate error propagation and prediction uncertainty in raster processing operations and geospatial modeling. REPTool is designed to introduce concepts of error and uncertainty in geospatial data and modeling and provide users of ArcGIS Desktop a geoprocessing tool and methodology to consider how error affects geospatial model output. Similar to other geoprocessing tools available in ArcGIS Desktop, REPTool can be run from a dialog window, from the ArcMap command line, or from a Python script. REPTool consists of public-domain, Python-based packages that implement Latin Hypercube Sampling within a probabilistic framework to track error propagation in geospatial models and quantitatively estimate the uncertainty of the model output. Users may specify error for each input raster or model coefficient represented in the geospatial model. The error for the input rasters may be specified as either spatially invariant or spatially variable across the spatial domain. Users may specify model output as a distribution of uncertainty for each raster cell. REPTool uses the Relative Variance Contribution method to quantify the relative error contribution from the two primary components in the geospatial model - errors in the model input data and coefficients of the model variables. REPTool is appropriate for many types of geospatial processing operations, modeling applications, and related research questions, including applications that consider spatially invariant or spatially variable error in geospatial data.
On the Correspondence between Mean Forecast Errors and Climate Errors in CMIP5 Models
Energy Technology Data Exchange (ETDEWEB)
Ma, H. -Y.; Xie, S.; Klein, S. A.; Williams, K. D.; Boyle, J. S.; Bony, S.; Douville, H.; Fermepin, S.; Medeiros, B.; Tyteca, S.; Watanabe, M.; Williamson, D.
2014-02-01
The present study examines the correspondence between short- and long-term systematic errors in five atmospheric models by comparing the 16 five-day hindcast ensembles from the Transpose Atmospheric Model Intercomparison Project II (Transpose-AMIP II) for July–August 2009 (short term) to the climate simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and AMIP for the June–August mean conditions of the years of 1979–2008 (long term). Because the short-term hindcasts were conducted with identical climate models used in the CMIP5/AMIP simulations, one can diagnose over what time scale systematic errors in these climate simulations develop, thus yielding insights into their origin through a seamless modeling approach. The analysis suggests that most systematic errors of precipitation, clouds, and radiation processes in the long-term climate runs are present by day 5 in ensemble average hindcasts in all models. Errors typically saturate after few days of hindcasts with amplitudes comparable to the climate errors, and the impacts of initial conditions on the simulated ensemble mean errors are relatively small. This robust bias correspondence suggests that these systematic errors across different models likely are initiated by model parameterizations since the atmospheric large-scale states remain close to observations in the first 2–3 days. However, biases associated with model physics can have impacts on the large-scale states by day 5, such as zonal winds, 2-m temperature, and sea level pressure, and the analysis further indicates a good correspondence between short- and long-term biases for these large-scale states. Therefore, improving individual model parameterizations in the hindcast mode could lead to the improvement of most climate models in simulating their climate mean state and potentially their future projections.
International Nuclear Information System (INIS)
Galia, A.V.
2011-01-01
The best estimate plus uncertainty approach (BEAU) requires the use of extensive resources and therefore it is usually applied for cases in which the available safety margin obtained with a conservative methodology can be questioned. Outside the BEAU methodology, there is not a clear approach on how to deal with the issue of considering the uncertainties resulting from prediction errors in the safety analyses performed for licensing submissions. However, the regulatory document RD-310 mentions that the analysis method shall account for uncertainties in the analysis data and models. A possible approach is presented, that is simple and reasonable, representing just the author's views, to take into account the impact of prediction errors and other uncertainties when performing safety analysis in line with regulatory requirements. The approach proposes taking into account the prediction error of relevant parameters. Relevant parameters would be those plant parameters that are surveyed and are used to initiate the action of a mitigating system or those that are representative of the most challenging phenomena for the integrity of a fission barrier. Examples of the application of the methodology are presented involving a comparison between the results with the new approach and a best estimate calculation during the blowdown phase for two small breaks in a generic CANDU 6 station. The calculations are performed with the CATHENA computer code. (author)
Predicting positional error of MLC using volumetric analysis
International Nuclear Information System (INIS)
Hareram, E.S.
2008-01-01
IMRT normally using multiple beamlets (small width of the beam) for a particular field to deliver so that it is imperative to maintain the positional accuracy of the MLC in order to deliver integrated computed dose accurately. Different manufacturers have reported high precession on MLC devices with leaf positional accuracy nearing 0.1 mm but measuring and rectifying the error in this accuracy is very difficult. Various methods are used to check MLC position and among this volumetric analysis is one of the technique. Volumetric approach was adapted in our method using primus machine and 0.6cc chamber at 5 cm depth In perspex. MLC of 1 mm error introduces an error of 20%, more sensitive to other methods
The conditions that promote fear learning: prediction error and Pavlovian fear conditioning.
Li, Susan Shi Yuan; McNally, Gavan P
2014-02-01
A key insight of associative learning theory is that learning depends on the actions of prediction error: a discrepancy between the actual and expected outcomes of a conditioning trial. When positive, such error causes increments in associative strength and, when negative, such error causes decrements in associative strength. Prediction error can act directly on fear learning by determining the effectiveness of the aversive unconditioned stimulus or indirectly by determining the effectiveness, or associability, of the conditioned stimulus. Evidence from a variety of experimental preparations in human and non-human animals suggest that discrete neural circuits code for these actions of prediction error during fear learning. Here we review the circuits and brain regions contributing to the neural coding of prediction error during fear learning and highlight areas of research (safety learning, extinction, and reconsolidation) that may profit from this approach to understanding learning. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Bard, D.; Chang, C.; Kahn, S. M.; Gilmore, K.; Marshall, S. [KIPAC, Stanford University, 452 Lomita Mall, Stanford, CA 94309 (United States); Kratochvil, J. M.; Huffenberger, K. M. [Department of Physics, University of Miami, Coral Gables, FL 33124 (United States); May, M. [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); AlSayyad, Y.; Connolly, A.; Gibson, R. R.; Jones, L.; Krughoff, S. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Ahmad, Z.; Bankert, J.; Grace, E.; Hannel, M.; Lorenz, S. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Haiman, Z.; Jernigan, J. G., E-mail: djbard@slac.stanford.edu [Department of Astronomy and Astrophysics, Columbia University, New York, NY 10027 (United States); and others
2013-09-01
We study the effect of galaxy shape measurement errors on predicted cosmological constraints from the statistics of shear peak counts with the Large Synoptic Survey Telescope (LSST). We use the LSST Image Simulator in combination with cosmological N-body simulations to model realistic shear maps for different cosmological models. We include both galaxy shape noise and, for the first time, measurement errors on galaxy shapes. We find that the measurement errors considered have relatively little impact on the constraining power of shear peak counts for LSST.
Dual Numbers Approach in Multiaxis Machines Error Modeling
Directory of Open Access Journals (Sweden)
Jaroslav Hrdina
2014-01-01
Full Text Available Multiaxis machines error modeling is set in the context of modern differential geometry and linear algebra. We apply special classes of matrices over dual numbers and propose a generalization of such concept by means of general Weil algebras. We show that the classification of the geometric errors follows directly from the algebraic properties of the matrices over dual numbers and thus the calculus over the dual numbers is the proper tool for the methodology of multiaxis machines error modeling.
Diuk, Carlos; Tsai, Karin; Wallis, Jonathan; Botvinick, Matthew; Niv, Yael
2013-03-27
Studies suggest that dopaminergic neurons report a unitary, global reward prediction error signal. However, learning in complex real-life tasks, in particular tasks that show hierarchical structure, requires multiple prediction errors that may coincide in time. We used functional neuroimaging to measure prediction error signals in humans performing such a hierarchical task involving simultaneous, uncorrelated prediction errors. Analysis of signals in a priori anatomical regions of interest in the ventral striatum and the ventral tegmental area indeed evidenced two simultaneous, but separable, prediction error signals corresponding to the two levels of hierarchy in the task. This result suggests that suitably designed tasks may reveal a more intricate pattern of firing in dopaminergic neurons. Moreover, the need for downstream separation of these signals implies possible limitations on the number of different task levels that we can learn about simultaneously.
Inverse and Predictive Modeling
Energy Technology Data Exchange (ETDEWEB)
Syracuse, Ellen Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-09-27
The LANL Seismo-Acoustic team has a strong capability in developing data-driven models that accurately predict a variety of observations. These models range from the simple – one-dimensional models that are constrained by a single dataset and can be used for quick and efficient predictions – to the complex – multidimensional models that are constrained by several types of data and result in more accurate predictions. Team members typically build models of geophysical characteristics of Earth and source distributions at scales of 1 to 1000s of km, the techniques used are applicable for other types of physical characteristics at an even greater range of scales. The following cases provide a snapshot of some of the modeling work done by the Seismo- Acoustic team at LANL.
Gao, J.
2014-12-01
Reducing modeling error is often a major concern of empirical geophysical models. However, modeling errors can be defined in different ways: When the response variable is continuous, the most commonly used metrics are squared (SQ) and absolute (ABS) errors. For most applications, ABS error is the more natural, but SQ error is mathematically more tractable, so is often used as a substitute with little scientific justification. Existing literature has not thoroughly investigated the implications of using SQ error in place of ABS error, especially not geospatially. This study compares the two metrics through the lens of bias-variance decomposition (BVD). BVD breaks down the expected modeling error of each model evaluation point into bias (systematic error), variance (model sensitivity), and noise (observation instability). It offers a way to probe the composition of various error metrics. I analytically derived the BVD of ABS error and compared it with the well-known SQ error BVD, and found that not only the two metrics measure the characteristics of the probability distributions of modeling errors differently, but also the effects of these characteristics on the overall expected error are different. Most notably, under SQ error all bias, variance, and noise increase expected error, while under ABS error certain parts of the error components reduce expected error. Since manipulating these subtractive terms is a legitimate way to reduce expected modeling error, SQ error can never capture the complete story embedded in ABS error. I then empirically compared the two metrics with a supervised remote sensing model for mapping surface imperviousness. Pair-wise spatially-explicit comparison for each error component showed that SQ error overstates all error components in comparison to ABS error, especially variance-related terms. Hence, substituting ABS error with SQ error makes model performance appear worse than it actually is, and the analyst would more likely accept a
Optical linear algebra processors - Noise and error-source modeling
Casasent, D.; Ghosh, A.
1985-01-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Optical linear algebra processors: noise and error-source modeling.
Casasent, D; Ghosh, A
1985-06-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Uehara, Shintaro; Mawase, Firas; Celnik, Pablo
2017-09-14
Humans can acquire knowledge of new motor behavior via different forms of learning. The two forms most commonly studied have been the development of internal models based on sensory-prediction errors (error-based learning) and success-based feedback (reinforcement learning). Human behavioral studies suggest these are distinct learning processes, though the neurophysiological mechanisms that are involved have not been characterized. Here, we evaluated physiological markers from the cerebellum and the primary motor cortex (M1) using noninvasive brain stimulations while healthy participants trained finger-reaching tasks. We manipulated the extent to which subjects rely on error-based or reinforcement by providing either vector or binary feedback about task performance. Our results demonstrated a double dissociation where learning the task mainly via error-based mechanisms leads to cerebellar plasticity modifications but not long-term potentiation (LTP)-like plasticity changes in M1; while learning a similar action via reinforcement mechanisms elicited M1 LTP-like plasticity but not cerebellar plasticity changes. Our findings indicate that learning complex motor behavior is mediated by the interplay of different forms of learning, weighing distinct neural mechanisms in M1 and the cerebellum. Our study provides insights for designing effective interventions to enhance human motor learning. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Errors in the SAP reference model
Mendling, J.; Aalst, van der W.M.P.; Dongen, van B.F.; Verbeek, H.M.W.
2006-01-01
The SAP Reference Model is a set of information models that is utilized to guide the configuration of SAP systems. A big part of these models are business process models represented in the Eventdriven Process Chains (EPC) notation. These EPC models provide a easy to comprehend overview of SAP
FMEA: a model for reducing medical errors.
Chiozza, Maria Laura; Ponzetti, Clemente
2009-06-01
Patient safety is a management issue, in view of the fact that clinical risk management has become an important part of hospital management. Failure Mode and Effect Analysis (FMEA) is a proactive technique for error detection and reduction, firstly introduced within the aerospace industry in the 1960s. Early applications in the health care industry dating back to the 1990s included critical systems in the development and manufacture of drugs and in the prevention of medication errors in hospitals. In 2008, the Technical Committee of the International Organization for Standardization (ISO), licensed a technical specification for medical laboratories suggesting FMEA as a method for prospective risk analysis of high-risk processes. Here we describe the main steps of the FMEA process and review data available on the application of this technique to laboratory medicine. A significant reduction of the risk priority number (RPN) was obtained when applying FMEA to blood cross-matching, to clinical chemistry analytes, as well as to point-of-care testing (POCT).
Managing errors in radiology: a working model
International Nuclear Information System (INIS)
Melvin, C.; Bodley, R.; Booth, A.; Meagher, T.; Record, C.; Savage, P.
2004-01-01
AIM: To develop a practical mechanism for reviewing reporting discrepancies as addressed in the Royal College of Radiologists publication 'To err is human. The case for review of reporting discrepancies'. MATERIALS AND METHODS: A regular meeting was developed, and has evolved, within the department to review discrepancies. Standard forms were devised for submission of cases as well as recording and classification of discrepancies. This has resulted in availability of figures that can be audited annually. RESULTS: Eighty-one cases involving error were reviewed over a 12-month period. Seven further cases flagged as discrepancies were not identified on peer review. Twenty-four reports were amended subsequent to the meeting. Nineteen additional cases were brought to the meeting as illustrative of teaching points or for discussion. CONCLUSION: We have evolved a successful process of reviewing reporting errors, which enjoys the confidence and support of all clinical radiologists, and is perceived as a method of improving patient care through an increasing awareness of lapses in performance
The error model and experiment of measuring angular position error based on laser collimation
Cai, Yangyang; Yang, Jing; Li, Jiakun; Feng, Qibo
2018-01-01
Rotary axis is the reference component of rotation motion. Angular position error is the most critical factor which impair the machining precision among the six degree-of-freedom (DOF) geometric errors of rotary axis. In this paper, the measuring method of angular position error of rotary axis based on laser collimation is thoroughly researched, the error model is established and 360 ° full range measurement is realized by using the high precision servo turntable. The change of space attitude of each moving part is described accurately by the 3×3 transformation matrices and the influences of various factors on the measurement results is analyzed in detail. Experiments results show that the measurement method can achieve high measurement accuracy and large measurement range.
Directory of Open Access Journals (Sweden)
Anne-Marike Schiffer
Full Text Available Influential concepts in neuroscientific research cast the brain a predictive machine that revises its predictions when they are violated by sensory input. This relates to the predictive coding account of perception, but also to learning. Learning from prediction errors has been suggested for take place in the hippocampal memory system as well as in the basal ganglia. The present fMRI study used an action-observation paradigm to investigate the contributions of the hippocampus, caudate nucleus and midbrain dopaminergic system to different types of learning: learning in the absence of prediction errors, learning from prediction errors, and responding to the accumulation of prediction errors in unpredictable stimulus configurations. We conducted analyses of the regions of interests' BOLD response towards these different types of learning, implementing a bootstrapping procedure to correct for false positives. We found both, caudate nucleus and the hippocampus to be activated by perceptual prediction errors. The hippocampal responses seemed to relate to the associative mismatch between a stored representation and current sensory input. Moreover, its response was significantly influenced by the average information, or Shannon entropy of the stimulus material. In accordance with earlier results, the habenula was activated by perceptual prediction errors. Lastly, we found that the substantia nigra was activated by the novelty of sensory input. In sum, we established that the midbrain dopaminergic system, the hippocampus, and the caudate nucleus were to different degrees significantly involved in the three different types of learning: acquisition of new information, learning from prediction errors and responding to unpredictable stimulus developments. We relate learning from perceptual prediction errors to the concept of predictive coding and related information theoretic accounts.
Schiffer, Anne-Marike; Ahlheim, Christiane; Wurm, Moritz F; Schubotz, Ricarda I
2012-01-01
Influential concepts in neuroscientific research cast the brain a predictive machine that revises its predictions when they are violated by sensory input. This relates to the predictive coding account of perception, but also to learning. Learning from prediction errors has been suggested for take place in the hippocampal memory system as well as in the basal ganglia. The present fMRI study used an action-observation paradigm to investigate the contributions of the hippocampus, caudate nucleus and midbrain dopaminergic system to different types of learning: learning in the absence of prediction errors, learning from prediction errors, and responding to the accumulation of prediction errors in unpredictable stimulus configurations. We conducted analyses of the regions of interests' BOLD response towards these different types of learning, implementing a bootstrapping procedure to correct for false positives. We found both, caudate nucleus and the hippocampus to be activated by perceptual prediction errors. The hippocampal responses seemed to relate to the associative mismatch between a stored representation and current sensory input. Moreover, its response was significantly influenced by the average information, or Shannon entropy of the stimulus material. In accordance with earlier results, the habenula was activated by perceptual prediction errors. Lastly, we found that the substantia nigra was activated by the novelty of sensory input. In sum, we established that the midbrain dopaminergic system, the hippocampus, and the caudate nucleus were to different degrees significantly involved in the three different types of learning: acquisition of new information, learning from prediction errors and responding to unpredictable stimulus developments. We relate learning from perceptual prediction errors to the concept of predictive coding and related information theoretic accounts.
Hand-eye calibration using a target registration error model.
Chen, Elvis C S; Morgan, Isabella; Jayarathne, Uditha; Ma, Burton; Peters, Terry M
2017-10-01
Surgical cameras are prevalent in modern operating theatres and are often used as a surrogate for direct vision. Visualisation techniques (e.g. image fusion) made possible by tracking the camera require accurate hand-eye calibration between the camera and the tracking system. The authors introduce the concept of 'guided hand-eye calibration', where calibration measurements are facilitated by a target registration error (TRE) model. They formulate hand-eye calibration as a registration problem between homologous point-line pairs. For each measurement, the position of a monochromatic ball-tip stylus (a point) and its projection onto the image (a line) is recorded, and the TRE of the resulting calibration is predicted using a TRE model. The TRE model is then used to guide the placement of the calibration tool, so that the subsequent measurement minimises the predicted TRE. Assessing TRE after each measurement produces accurate calibration using a minimal number of measurements. As a proof of principle, they evaluated guided calibration using a webcam and an endoscopic camera. Their endoscopic camera results suggest that millimetre TRE is achievable when at least 15 measurements are acquired with the tracker sensor ∼80 cm away on the laparoscope handle for a target ∼20 cm away from the camera.
Directory of Open Access Journals (Sweden)
Jun Yang
2014-01-01
Full Text Available To improve the CNC machine tools precision, a thermal error modeling for the motorized spindle was proposed based on time series analysis, considering the length of cutting tools and thermal declined angles, and the real-time error compensation was implemented. A five-point method was applied to measure radial thermal declinations and axial expansion of the spindle with eddy current sensors, solving the problem that the three-point measurement cannot obtain the radial thermal angle errors. Then the stationarity of the thermal error sequences was determined by the Augmented Dickey-Fuller Test Algorithm, and the autocorrelation/partial autocorrelation function was applied to identify the model pattern. By combining both Yule-Walker equations and information criteria, the order and parameters of the models were solved effectively, which improved the prediction accuracy and generalization ability. The results indicated that the prediction accuracy of the time series model could reach up to 90%. In addition, the axial maximum error decreased from 39.6 μm to 7 μm after error compensation, and the machining accuracy was improved by 89.7%. Moreover, the X/Y-direction accuracy can reach up to 77.4% and 86%, respectively, which demonstrated that the proposed methods of measurement, modeling, and compensation were effective.
Physical predictions from lattice QCD. Reducing systematic errors
International Nuclear Information System (INIS)
Pittori, C.
1994-01-01
Some recent developments in the theoretical understanding of lattice quantum chromodynamics and of its possible sources of systematic errors are reported, and a review of some of the latest Monte Carlo results for light quarks phenomenology is presented. A very general introduction on a quantum field theory on a discrete spacetime lattice is given, and the Monte Carlo methods which allow to compute many interesting physical quantities in the non-perturbative domain of strong interactions, is illustrated. (author). 17 refs., 3 figs., 3 tabs
Modeling and estimation of measurement errors
International Nuclear Information System (INIS)
Neuilly, M.
1998-01-01
Any person in charge of taking measures is aware of the inaccuracy of the results however cautiously he may handle. Sensibility, accuracy, reproducibility define the significance of a result. The use of statistical methods is one of the important tools to improve the quality of measurement. The accuracy due to these methods revealed the little difference in the isotopic composition of uranium ore which led to the discovery of Oklo fossil reactor. This book is dedicated to scientists and engineers interested in measurement whatever their investigation interests are. Experimental results are presented as random variables and their laws of probability are approximated by normal law, Poison law or Pearson distribution. The impact of 1 or more parameters on the total error can be evaluated by drawing factorial plans and by using variance analysis methods. This method is also used in intercomparison procedures between laboratories and to detect any abnormal shift in a series of measurement. (A.C.)
Measurement Error and Bias in Value-Added Models. Research Report. ETS RR-17-25
Kane, Michael T.
2017-01-01
By aggregating residual gain scores (the differences between each student's current score and a predicted score based on prior performance) for a school or a teacher, value-added models (VAMs) can be used to generate estimates of school or teacher effects. It is known that random errors in the prior scores will introduce bias into predictions of…
Neural prediction errors reveal a risk-sensitive reinforcement-learning process in the human brain.
Niv, Yael; Edlund, Jeffrey A; Dayan, Peter; O'Doherty, John P
2012-01-11
Humans and animals are exquisitely, though idiosyncratically, sensitive to risk or variance in the outcomes of their actions. Economic, psychological, and neural aspects of this are well studied when information about risk is provided explicitly. However, we must normally learn about outcomes from experience, through trial and error. Traditional models of such reinforcement learning focus on learning about the mean reward value of cues and ignore higher order moments such as variance. We used fMRI to test whether the neural correlates of human reinforcement learning are sensitive to experienced risk. Our analysis focused on anatomically delineated regions of a priori interest in the nucleus accumbens, where blood oxygenation level-dependent (BOLD) signals have been suggested as correlating with quantities derived from reinforcement learning. We first provide unbiased evidence that the raw BOLD signal in these regions corresponds closely to a reward prediction error. We then derive from this signal the learned values of cues that predict rewards of equal mean but different variance and show that these values are indeed modulated by experienced risk. Moreover, a close neurometric-psychometric coupling exists between the fluctuations of the experience-based evaluations of risky options that we measured neurally and the fluctuations in behavioral risk aversion. This suggests that risk sensitivity is integral to human learning, illuminating economic models of choice, neuroscientific models of affective learning, and the workings of the underlying neural mechanisms.
Feng, S.; Lauvaux, T.; Butler, M. P.; Keller, K.; Davis, K. J.; Jacobson, A. R.; Schuh, A. E.; Basu, S.; Liu, J.; Baker, D.; Crowell, S.; Zhou, Y.; Williams, C. A.
2017-12-01
Regional estimates of biogenic carbon fluxes over North America from top-down atmospheric inversions and terrestrial biogeochemical (or bottom-up) models remain inconsistent at annual and sub-annual time scales. While top-down estimates are impacted by limited atmospheric data, uncertain prior flux estimates and errors in the atmospheric transport models, bottom-up fluxes are affected by uncertain driver data, uncertain model parameters and missing mechanisms across ecosystems. This study quantifies both flux errors and transport errors, and their interaction in the CO2 atmospheric simulation. These errors are assessed by an ensemble approach. The WRF-Chem model is set up with 17 biospheric fluxes from the Multiscale Synthesis and Terrestrial Model Intercomparison Project, CarbonTracker-Near Real Time, and the Simple Biosphere model. The spread of the flux ensemble members represents the flux uncertainty in the modeled CO2 concentrations. For the transport errors, WRF-Chem is run using three physical model configurations with three stochastic perturbations to sample the errors from both the physical parameterizations of the model and the initial conditions. Additionally, the uncertainties from boundary conditions are assessed using four CO2 global inversion models which have assimilated tower and satellite CO2 observations. The error structures are assessed in time and space. The flux ensemble members overall overestimate CO2 concentrations. They also show larger temporal variability than the observations. These results suggest that the flux ensemble is overdispersive. In contrast, the transport ensemble is underdispersive. The averaged spatial distribution of modeled CO2 shows strong positive biogenic signal in the southern US and strong negative signals along the eastern coast of Canada. We hypothesize that the former is caused by the 3-hourly downscaling algorithm from which the nighttime respiration dominates the daytime modeled CO2 signals and that the latter
Incorporating measurement error in n = 1 psychological autoregressive modeling
Schuurman, Noémi K.; Houtveen, Jan H.; Hamaker, Ellen L.
2015-01-01
Measurement error is omnipresent in psychological data. However, the vast majority of applications of autoregressive time series analyses in psychology do not take measurement error into account. Disregarding measurement error when it is present in the data results in a bias of the autoregressive parameters. We discuss two models that take measurement error into account: An autoregressive model with a white noise term (AR+WN), and an autoregressive moving average (ARMA) model. In a simulation study we compare the parameter recovery performance of these models, and compare this performance for both a Bayesian and frequentist approach. We find that overall, the AR+WN model performs better. Furthermore, we find that for realistic (i.e., small) sample sizes, psychological research would benefit from a Bayesian approach in fitting these models. Finally, we illustrate the effect of disregarding measurement error in an AR(1) model by means of an empirical application on mood data in women. We find that, depending on the person, approximately 30–50% of the total variance was due to measurement error, and that disregarding this measurement error results in a substantial underestimation of the autoregressive parameters. PMID:26283988
Modelling vertical error in LiDAR-derived digital elevation models
Aguilar, Fernando J.; Mills, Jon P.; Delgado, Jorge; Aguilar, Manuel A.; Negreiros, J. G.; Pérez, José L.
2010-01-01
A hybrid theoretical-empirical model has been developed for modelling the error in LiDAR-derived digital elevation models (DEMs) of non-open terrain. The theoretical component seeks to model the propagation of the sample data error (SDE), i.e. the error from light detection and ranging (LiDAR) data capture of ground sampled points in open terrain, towards interpolated points. The interpolation methods used for infilling gaps may produce a non-negligible error that is referred to as gridding error. In this case, interpolation is performed using an inverse distance weighting (IDW) method with the local support of the five closest neighbours, although it would be possible to utilize other interpolation methods. The empirical component refers to what is known as "information loss". This is the error purely due to modelling the continuous terrain surface from only a discrete number of points plus the error arising from the interpolation process. The SDE must be previously calculated from a suitable number of check points located in open terrain and assumes that the LiDAR point density was sufficiently high to neglect the gridding error. For model calibration, data for 29 study sites, 200×200 m in size, belonging to different areas around Almeria province, south-east Spain, were acquired by means of stereo photogrammetric methods. The developed methodology was validated against two different LiDAR datasets. The first dataset used was an Ordnance Survey (OS) LiDAR survey carried out over a region of Bristol in the UK. The second dataset was an area located at Gador mountain range, south of Almería province, Spain. Both terrain slope and sampling density were incorporated in the empirical component through the calibration phase, resulting in a very good agreement between predicted and observed data (R2 = 0.9856 ; p reasonably good fit to the predicted errors. Even better results were achieved in the more rugged morphology of the Gador mountain range dataset. The findings
Eigen's Error Threshold and Mutational Meltdown in a Quasispecies Model
Bagnoli, F.; Bezzi, M.
1998-01-01
We introduce a toy model for interacting populations connected by mutations and limited by a shared resource. We study the presence of Eigen's error threshold and mutational meltdown. The phase diagram of the system shows that the extinction of the whole population due to mutational meltdown can occur well before an eventual error threshold transition.
Empirical study of the GARCH model with rational errors
International Nuclear Information System (INIS)
Chen, Ting Ting; Takaishi, Tetsuya
2013-01-01
We use the GARCH model with a fat-tailed error distribution described by a rational function and apply it to stock price data on the Tokyo Stock Exchange. To determine the model parameters we perform Bayesian inference to the model. Bayesian inference is implemented by the Metropolis-Hastings algorithm with an adaptive multi-dimensional Student's t-proposal density. In order to compare our model with the GARCH model with the standard normal errors, we calculate the information criteria AIC and DIC, and find that both criteria favor the GARCH model with a rational error distribution. We also calculate the accuracy of the volatility by using the realized volatility and find that a good accuracy is obtained for the GARCH model with a rational error distribution. Thus we conclude that the GARCH model with a rational error distribution is superior to the GARCH model with the normal errors and it can be used as an alternative GARCH model to those with other fat-tailed distributions
International Nuclear Information System (INIS)
Nijsten, S. M. J. J. G.; Elmpt, W. J. C. van; Mijnheer, B. J.; Minken, A. W. H.; Persoon, L. C. G. G.; Lambin, P.; Dekker, A. L. A. J.
2009-01-01
Electronic portal imaging devices (EPIDs) are increasingly used for portal dosimetry applications. In our department, EPIDs are clinically used for two-dimensional (2D) transit dosimetry. Predicted and measured portal dose images are compared to detect dose delivery errors caused for instance by setup errors or organ motion. The aim of this work is to develop a model to predict dose-volume histogram (DVH) changes due to setup errors during breast cancer treatment using 2D transit dosimetry. First, correlations between DVH parameter changes and 2D gamma parameters are investigated for different simulated setup errors, which are described by a binomial logistic regression model. The model calculates the probability that a DVH parameter changes more than a specific tolerance level and uses several gamma evaluation parameters for the planning target volume (PTV) projection in the EPID plane as input. Second, the predictive model is applied to clinically measured portal images. Predicted DVH parameter changes are compared to calculated DVH parameter changes using the measured setup error resulting from a dosimetric registration procedure. Statistical accuracy is investigated by using receiver operating characteristic (ROC) curves and values for the area under the curve (AUC), sensitivity, specificity, positive and negative predictive values. Changes in the mean PTV dose larger than 5%, and changes in V 90 and V 95 larger than 10% are accurately predicted based on a set of 2D gamma parameters. Most pronounced changes in the three DVH parameters are found for setup errors in the lateral-medial direction. AUC, sensitivity, specificity, and negative predictive values were between 85% and 100% while the positive predictive values were lower but still higher than 54%. Clinical predictive value is decreased due to the occurrence of patient rotations or breast deformations during treatment, but the overall reliability of the predictive model remains high. Based on our
Bayesian approach to errors-in-variables in regression models
Rozliman, Nur Aainaa; Ibrahim, Adriana Irawati Nur; Yunus, Rossita Mohammad
2017-05-01
In many applications and experiments, data sets are often contaminated with error or mismeasured covariates. When at least one of the covariates in a model is measured with error, Errors-in-Variables (EIV) model can be used. Measurement error, when not corrected, would cause misleading statistical inferences and analysis. Therefore, our goal is to examine the relationship of the outcome variable and the unobserved exposure variable given the observed mismeasured surrogate by applying the Bayesian formulation to the EIV model. We shall extend the flexible parametric method proposed by Hossain and Gustafson (2009) to another nonlinear regression model which is the Poisson regression model. We shall then illustrate the application of this approach via a simulation study using Markov chain Monte Carlo sampling methods.
Discrete choice models with multiplicative error terms
DEFF Research Database (Denmark)
Fosgerau, Mogens; Bierlaire, Michel
2009-01-01
The conditional indirect utility of many random utility maximization (RUM) discrete choice models is specified as a sum of an index V depending on observables and an independent random term ε. In general, the universe of RUM consistent models is much larger, even fixing some specification of V due...
Consiglio, Maria C.; Hoadley, Sherwood T.; Allen, B. Danette
2009-01-01
Wind prediction errors are known to affect the performance of automated air traffic management tools that rely on aircraft trajectory predictions. In particular, automated separation assurance tools, planned as part of the NextGen concept of operations, must be designed to account and compensate for the impact of wind prediction errors and other system uncertainties. In this paper we describe a high fidelity batch simulation study designed to estimate the separation distance required to compensate for the effects of wind-prediction errors throughout increasing traffic density on an airborne separation assistance system. These experimental runs are part of the Safety Performance of Airborne Separation experiment suite that examines the safety implications of prediction errors and system uncertainties on airborne separation assurance systems. In this experiment, wind-prediction errors were varied between zero and forty knots while traffic density was increased several times current traffic levels. In order to accurately measure the full unmitigated impact of wind-prediction errors, no uncertainty buffers were added to the separation minima. The goal of the study was to measure the impact of wind-prediction errors in order to estimate the additional separation buffers necessary to preserve separation and to provide a baseline for future analyses. Buffer estimations from this study will be used and verified in upcoming safety evaluation experiments under similar simulation conditions. Results suggest that the strategic airborne separation functions exercised in this experiment can sustain wind prediction errors up to 40kts at current day air traffic density with no additional separation distance buffer and at eight times the current day with no more than a 60% increase in separation distance buffer.
Learning (from) the errors of a systems biology model.
Engelhardt, Benjamin; Frőhlich, Holger; Kschischo, Maik
2016-02-11
Mathematical modelling is a labour intensive process involving several iterations of testing on real data and manual model modifications. In biology, the domain knowledge guiding model development is in many cases itself incomplete and uncertain. A major problem in this context is that biological systems are open. Missed or unknown external influences as well as erroneous interactions in the model could thus lead to severely misleading results. Here we introduce the dynamic elastic-net, a data driven mathematical method which automatically detects such model errors in ordinary differential equation (ODE) models. We demonstrate for real and simulated data, how the dynamic elastic-net approach can be used to automatically (i) reconstruct the error signal, (ii) identify the target variables of model error, and (iii) reconstruct the true system state even for incomplete or preliminary models. Our work provides a systematic computational method facilitating modelling of open biological systems under uncertain knowledge.
García-García, Isabel; Zeighami, Yashar; Dagher, Alain
2017-06-01
Surprises are important sources of learning. Cognitive scientists often refer to surprises as "reward prediction errors," a parameter that captures discrepancies between expectations and actual outcomes. Here, we integrate neurophysiological and functional magnetic resonance imaging (fMRI) results addressing the processing of reward prediction errors and how they might be altered in drug addiction and Parkinson's disease. By increasing phasic dopamine responses, drugs might accentuate prediction error signals, causing increases in fMRI activity in mesolimbic areas in response to drugs. Chronic substance dependence, by contrast, has been linked with compromised dopaminergic function, which might be associated with blunted fMRI responses to pleasant non-drug stimuli in mesocorticolimbic areas. In Parkinson's disease, dopamine replacement therapies seem to induce impairments in learning from negative outcomes. The present review provides a holistic overview of reward prediction errors across different pathologies and might inform future clinical strategies targeting impulsive/compulsive disorders.
Curiosity and reward: Valence predicts choice and information prediction errors enhance learning.
Marvin, Caroline B; Shohamy, Daphna
2016-03-01
Curiosity drives many of our daily pursuits and interactions; yet, we know surprisingly little about how it works. Here, we harness an idea implied in many conceptualizations of curiosity: that information has value in and of itself. Reframing curiosity as the motivation to obtain reward-where the reward is information-allows one to leverage major advances in theoretical and computational mechanisms of reward-motivated learning. We provide new evidence supporting 2 predictions that emerge from this framework. First, we find an asymmetric effect of positive versus negative information, with positive information enhancing both curiosity and long-term memory for information. Second, we find that it is not the absolute value of information that drives learning but, rather, the gap between the reward expected and reward received, an "information prediction error." These results support the idea that information functions as a reward, much like money or food, guiding choices and driving learning in systematic ways. (c) 2016 APA, all rights reserved).
A Model of Self-Monitoring Blood Glucose Measurement Error.
Vettoretti, Martina; Facchinetti, Andrea; Sparacino, Giovanni; Cobelli, Claudio
2017-07-01
A reliable model of the probability density function (PDF) of self-monitoring of blood glucose (SMBG) measurement error would be important for several applications in diabetes, like testing in silico insulin therapies. In the literature, the PDF of SMBG error is usually described by a Gaussian function, whose symmetry and simplicity are unable to properly describe the variability of experimental data. Here, we propose a new methodology to derive more realistic models of SMBG error PDF. The blood glucose range is divided into zones where error (absolute or relative) presents a constant standard deviation (SD). In each zone, a suitable PDF model is fitted by maximum-likelihood to experimental data. Model validation is performed by goodness-of-fit tests. The method is tested on two databases collected by the One Touch Ultra 2 (OTU2; Lifescan Inc, Milpitas, CA) and the Bayer Contour Next USB (BCN; Bayer HealthCare LLC, Diabetes Care, Whippany, NJ). In both cases, skew-normal and exponential models are used to describe the distribution of errors and outliers, respectively. Two zones were identified: zone 1 with constant SD absolute error; zone 2 with constant SD relative error. Goodness-of-fit tests confirmed that identified PDF models are valid and superior to Gaussian models used so far in the literature. The proposed methodology allows to derive realistic models of SMBG error PDF. These models can be used in several investigations of present interest in the scientific community, for example, to perform in silico clinical trials to compare SMBG-based with nonadjunctive CGM-based insulin treatments.
Regularized multivariate regression models with skew-t error distributions
Chen, Lianfu; Pourahmadi, Mohsen; Maadooliat, Mehdi
2014-01-01
We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both
Estimation of Mechanical Signals in Induction Motors using the Recursive Prediction Error Method
DEFF Research Database (Denmark)
Børsting, H.; Knudsen, Morten; Rasmussen, Henrik
1993-01-01
Sensor feedback of mechanical quantities for control applications in induction motors is troublesome and relative expensive. In this paper a recursive prediction error (RPE) method has successfully been used to estimate the angular rotor speed ........Sensor feedback of mechanical quantities for control applications in induction motors is troublesome and relative expensive. In this paper a recursive prediction error (RPE) method has successfully been used to estimate the angular rotor speed .....
Butcher, Peter A; Ivry, Richard B; Kuo, Sheng-Han; Rydz, David; Krakauer, John W; Taylor, Jordan A
2017-09-01
Individuals with damage to the cerebellum perform poorly in sensorimotor adaptation paradigms. This deficit has been attributed to impairment in sensory prediction error-based updating of an internal forward model, a form of implicit learning. These individuals can, however, successfully counter a perturbation when instructed with an explicit aiming strategy. This successful use of an instructed aiming strategy presents a paradox: In adaptation tasks, why do individuals with cerebellar damage not come up with an aiming solution on their own to compensate for their implicit learning deficit? To explore this question, we employed a variant of a visuomotor rotation task in which, before executing a movement on each trial, the participants verbally reported their intended aiming location. Compared with healthy control participants, participants with spinocerebellar ataxia displayed impairments in both implicit learning and aiming. This was observed when the visuomotor rotation was introduced abruptly ( experiment 1 ) or gradually ( experiment 2 ). This dual deficit does not appear to be related to the increased movement variance associated with ataxia: Healthy undergraduates showed little change in implicit learning or aiming when their movement feedback was artificially manipulated to produce similar levels of variability ( experiment 3 ). Taken together the results indicate that a consequence of cerebellar dysfunction is not only impaired sensory prediction error-based learning but also a difficulty in developing and/or maintaining an aiming solution in response to a visuomotor perturbation. We suggest that this dual deficit can be explained by the cerebellum forming part of a network that learns and maintains action-outcome associations across trials. NEW & NOTEWORTHY Individuals with cerebellar pathology are impaired in sensorimotor adaptation. This deficit has been attributed to an impairment in error-based learning, specifically, from a deficit in using sensory
Repeat-aware modeling and correction of short read errors.
Yang, Xiao; Aluru, Srinivas; Dorman, Karin S
2011-02-15
High-throughput short read sequencing is revolutionizing genomics and systems biology research by enabling cost-effective deep coverage sequencing of genomes and transcriptomes. Error detection and correction are crucial to many short read sequencing applications including de novo genome sequencing, genome resequencing, and digital gene expression analysis. Short read error detection is typically carried out by counting the observed frequencies of kmers in reads and validating those with frequencies exceeding a threshold. In case of genomes with high repeat content, an erroneous kmer may be frequently observed if it has few nucleotide differences with valid kmers with multiple occurrences in the genome. Error detection and correction were mostly applied to genomes with low repeat content and this remains a challenging problem for genomes with high repeat content. We develop a statistical model and a computational method for error detection and correction in the presence of genomic repeats. We propose a method to infer genomic frequencies of kmers from their observed frequencies by analyzing the misread relationships among observed kmers. We also propose a method to estimate the threshold useful for validating kmers whose estimated genomic frequency exceeds the threshold. We demonstrate that superior error detection is achieved using these methods. Furthermore, we break away from the common assumption of uniformly distributed errors within a read, and provide a framework to model position-dependent error occurrence frequencies common to many short read platforms. Lastly, we achieve better error correction in genomes with high repeat content. The software is implemented in C++ and is freely available under GNU GPL3 license and Boost Software V1.0 license at "http://aluru-sun.ece.iastate.edu/doku.php?id = redeem". We introduce a statistical framework to model sequencing errors in next-generation reads, which led to promising results in detecting and correcting errors
Roles of dopamine neurons in mediating the prediction error in aversive learning in insects.
Terao, Kanta; Mizunami, Makoto
2017-10-31
In associative learning in mammals, it is widely accepted that the discrepancy, or error, between actual and predicted reward determines whether learning occurs. The prediction error theory has been proposed to account for the finding of a blocking phenomenon, in which pairing of a stimulus X with an unconditioned stimulus (US) could block subsequent association of a second stimulus Y to the US when the two stimuli were paired in compound with the same US. Evidence for this theory, however, has been imperfect since blocking can also be accounted for by competitive theories. We recently reported blocking in classical conditioning of an odor with water reward in crickets. We also reported an "auto-blocking" phenomenon in appetitive learning, which supported the prediction error theory and rejected alternative theories. The presence of auto-blocking also suggested that octopamine neurons mediate reward prediction error signals. Here we show that blocking and auto-blocking occur in aversive learning to associate an odor with salt water (US) in crickets, and our results suggest that dopamine neurons mediate aversive prediction error signals. We conclude that the prediction error theory is applicable to both appetitive learning and aversive learning in insects.
Somarathna, P D S N; Minasny, Budiman; Malone, Brendan P; Stockmann, Uta; McBratney, Alex B
2018-08-01
Spatial modelling of environmental data commonly only considers spatial variability as the single source of uncertainty. In reality however, the measurement errors should also be accounted for. In recent years, infrared spectroscopy has been shown to offer low cost, yet invaluable information needed for digital soil mapping at meaningful spatial scales for land management. However, spectrally inferred soil carbon data are known to be less accurate compared to laboratory analysed measurements. This study establishes a methodology to filter out the measurement error variability by incorporating the measurement error variance in the spatial covariance structure of the model. The study was carried out in the Lower Hunter Valley, New South Wales, Australia where a combination of laboratory measured, and vis-NIR and MIR inferred topsoil and subsoil soil carbon data are available. We investigated the applicability of residual maximum likelihood (REML) and Markov Chain Monte Carlo (MCMC) simulation methods to generate parameters of the Matérn covariance function directly from the data in the presence of measurement error. The results revealed that the measurement error can be effectively filtered-out through the proposed technique. When the measurement error was filtered from the data, the prediction variance almost halved, which ultimately yielded a greater certainty in spatial predictions of soil carbon. Further, the MCMC technique was successfully used to define the posterior distribution of measurement error. This is an important outcome, as the MCMC technique can be used to estimate the measurement error if it is not explicitly quantified. Although this study dealt with soil carbon data, this method is amenable for filtering the measurement error of any kind of continuous spatial environmental data. Copyright © 2018 Elsevier B.V. All rights reserved.
Garcia, Tanya P; Ma, Yanyuan
2017-10-01
We develop consistent and efficient estimation of parameters in general regression models with mismeasured covariates. We assume the model error and covariate distributions are unspecified, and the measurement error distribution is a general parametric distribution with unknown variance-covariance. We construct root- n consistent, asymptotically normal and locally efficient estimators using the semiparametric efficient score. We do not estimate any unknown distribution or model error heteroskedasticity. Instead, we form the estimator under possibly incorrect working distribution models for the model error, error-prone covariate, or both. Empirical results demonstrate robustness to different incorrect working models in homoscedastic and heteroskedastic models with error-prone covariates.
Modeling and Prediction Using Stochastic Differential Equations
DEFF Research Database (Denmark)
Juhl, Rune; Møller, Jan Kloppenborg; Jørgensen, John Bagterp
2016-01-01
Pharmacokinetic/pharmakodynamic (PK/PD) modeling for a single subject is most often performed using nonlinear models based on deterministic ordinary differential equations (ODEs), and the variation between subjects in a population of subjects is described using a population (mixed effects) setup...... deterministic and can predict the future perfectly. A more realistic approach would be to allow for randomness in the model due to e.g., the model be too simple or errors in input. We describe a modeling and prediction setup which better reflects reality and suggests stochastic differential equations (SDEs...
Energy Technology Data Exchange (ETDEWEB)
Hong Junjie, E-mail: hongjjie@mail.sysu.edu.cn [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China); Li Liyi, E-mail: liliyi@hit.edu.cn [Dept. Electrical Engineering, Harbin Institute of Technology, Harbin 150000 (China); Zong Zhijian; Liu Zhongtu [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China)
2011-10-15
Highlights: {yields} The structure of the permanent magnet linear synchronous motor (SW-PMLSM) is new. {yields} A new current control method CEVPC is employed in this motor. {yields} The sectional power supply method is different to the others and effective. {yields} The performance gets worse with voltage and current limitations. - Abstract: To include features such as greater thrust density, higher efficiency without reducing the thrust stability, this paper proposes a section winding permanent magnet linear synchronous motor (SW-PMLSM), whose iron core is continuous, whereas winding is divided. The discrete system model of the motor is derived. With the definition of the current error vector and selection of the value function, the theory of the current error vector based prediction control (CEVPC) for the motor currents is explained clearly. According to the winding section feature, the motion region of the mover is divided into five zones, in which the implementation of the current predictive control method is proposed. Finally, the experimental platform is constructed and experiments are carried out. The results show: the current control effect has good dynamic response, and the thrust on the mover remains constant basically.
Prediction-error in the context of real social relationships modulates reward system activity
Directory of Open Access Journals (Sweden)
Joshua ePoore
2012-08-01
Full Text Available The human reward system is sensitive to both social (e.g., validation and non-social rewards (e.g., money and is likely integral for relationship development and reputation building. However, data is sparse on the question of whether implicit social reward processing meaningfully contributes to explicit social representations such as trust and attachment security in pre-existing relationships. This event-related fMRI experiment examined reward system prediction-error activity in response to a potent social reward—social validation—and this activity’s relation to both attachment security and trust in the context of real romantic relationships. During the experiment, participants’ expectations for their romantic partners’ positive regard of them were confirmed (validated or violated, in either positive or negative directions. Primary analyses were conducted using predefined regions of interest, the locations of which were taken from previously published research. Results indicate that activity for mid-brain and striatal reward system regions of interest was modulated by social reward expectation violation in ways consistent with prior research on reward prediction-error. Additionally, activity in the striatum during viewing of disconfirmatory information was associated with both increases in post-scan reports of attachment anxiety and decreases in post-scan trust, a finding that follows directly from representational models of attachment and trust.
Prediction-error in the context of real social relationships modulates reward system activity.
Poore, Joshua C; Pfeifer, Jennifer H; Berkman, Elliot T; Inagaki, Tristen K; Welborn, Benjamin L; Lieberman, Matthew D
2012-01-01
The human reward system is sensitive to both social (e.g., validation) and non-social rewards (e.g., money) and is likely integral for relationship development and reputation building. However, data is sparse on the question of whether implicit social reward processing meaningfully contributes to explicit social representations such as trust and attachment security in pre-existing relationships. This event-related fMRI experiment examined reward system prediction-error activity in response to a potent social reward-social validation-and this activity's relation to both attachment security and trust in the context of real romantic relationships. During the experiment, participants' expectations for their romantic partners' positive regard of them were confirmed (validated) or violated, in either positive or negative directions. Primary analyses were conducted using predefined regions of interest, the locations of which were taken from previously published research. Results indicate that activity for mid-brain and striatal reward system regions of interest was modulated by social reward expectation violation in ways consistent with prior research on reward prediction-error. Additionally, activity in the striatum during viewing of disconfirmatory information was associated with both increases in post-scan reports of attachment anxiety and decreases in post-scan trust, a finding that follows directly from representational models of attachment and trust.
A Benefit/Cost/Deficit (BCD) model for learning from human errors
International Nuclear Information System (INIS)
Vanderhaegen, Frederic; Zieba, Stephane; Enjalbert, Simon; Polet, Philippe
2011-01-01
This paper proposes an original model for interpreting human errors, mainly violations, in terms of benefits, costs and potential deficits. This BCD model is then used as an input framework to learn from human errors, and two systems based on this model are developed: a case-based reasoning system and an artificial neural network system. These systems are used to predict a specific human car driving violation: not respecting the priority-to-the-right rule, which is a decision to remove a barrier. Both prediction systems learn from previous violation occurrences, using the BCD model and four criteria: safety, for identifying the deficit or the danger; and opportunity for action, driver comfort, and time spent; for identifying the benefits or the costs. The application of learning systems to predict car driving violations gives a rate over 80% of correct prediction after 10 iterations. These results are validated for the non-respect of priority-to-the-right rule.
The Human Bathtub: Safety and Risk Predictions Including the Dynamic Probability of Operator Errors
International Nuclear Information System (INIS)
Duffey, Romney B.; Saull, John W.
2006-01-01
Reactor safety and risk are dominated by the potential and major contribution for human error in the design, operation, control, management, regulation and maintenance of the plant, and hence to all accidents. Given the possibility of accidents and errors, now we need to determine the outcome (error) probability, or the chance of failure. Conventionally, reliability engineering is associated with the failure rate of components, or systems, or mechanisms, not of human beings in and interacting with a technological system. The probability of failure requires a prior knowledge of the total number of outcomes, which for any predictive purposes we do not know or have. Analysis of failure rates due to human error and the rate of learning allow a new determination of the dynamic human error rate in technological systems, consistent with and derived from the available world data. The basis for the analysis is the 'learning hypothesis' that humans learn from experience, and consequently the accumulated experience defines the failure rate. A new 'best' equation has been derived for the human error, outcome or failure rate, which allows for calculation and prediction of the probability of human error. We also provide comparisons to the empirical Weibull parameter fitting used in and by conventional reliability engineering and probabilistic safety analysis methods. These new analyses show that arbitrary Weibull fitting parameters and typical empirical hazard function techniques cannot be used to predict the dynamics of human errors and outcomes in the presence of learning. Comparisons of these new insights show agreement with human error data from the world's commercial airlines, the two shuttle failures, and from nuclear plant operator actions and transient control behavior observed in transients in both plants and simulators. The results demonstrate that the human error probability (HEP) is dynamic, and that it may be predicted using the learning hypothesis and the minimum
Period, epoch, and prediction errors of ephemerides from continuous sets of timing measurements
Deeg, H. J.
2015-06-01
Space missions such as Kepler and CoRoT have led to large numbers of eclipse or transit measurements in nearly continuous time series. This paper shows how to obtain the period error in such measurements from a basic linear least-squares fit, and how to correctly derive the timing error in the prediction of future transit or eclipse events. Assuming strict periodicity, a formula for the period error of these time series is derived, σP = σT (12 / (N3-N))1 / 2, where σP is the period error, σT the timing error of a single measurement, and N the number of measurements. Compared to the iterative method for period error estimation by Mighell & Plavchan (2013), this much simpler formula leads to smaller period errors, whose correctness has been verified through simulations. For the prediction of times of future periodic events, usual linear ephemeris were epoch errors are quoted for the first time measurement, are prone to an overestimation of the error of that prediction. This may be avoided by a correction for the duration of the time series. An alternative is the derivation of ephemerides whose reference epoch and epoch error are given for the centre of the time series. For long continuous or near-continuous time series whose acquisition is completed, such central epochs should be the preferred way for the quotation of linear ephemerides. While this work was motivated from the analysis of eclipse timing measures in space-based light curves, it should be applicable to any other problem with an uninterrupted sequence of discrete timings for which the determination of a zero point, of a constant period and of the associated errors is needed.
Reyes, J.; Vizuete, W.; Serre, M. L.; Xu, Y.
2015-12-01
The EPA employs a vast monitoring network to measure ambient PM2.5 concentrations across the United States with one of its goals being to quantify exposure within the population. However, there are several areas of the country with sparse monitoring spatially and temporally. One means to fill in these monitoring gaps is to use PM2.5 modeled estimates from Chemical Transport Models (CTMs) specifically the Community Multi-scale Air Quality (CMAQ) model. CMAQ is able to provide complete spatial coverage but is subject to systematic and random error due to model uncertainty. Due to the deterministic nature of CMAQ, often these uncertainties are not quantified. Much effort is employed to quantify the efficacy of these models through different metrics of model performance. Currently evaluation is specific to only locations with observed data. Multiyear studies across the United States are challenging because the error and model performance of CMAQ are not uniform over such large space/time domains. Error changes regionally and temporally. Because of the complex mix of species that constitute PM2.5, CMAQ error is also a function of increasing PM2.5 concentration. To address this issue we introduce a model performance evaluation for PM2.5 CMAQ that is regionalized and non-linear. This model performance evaluation leads to error quantification for each CMAQ grid. Areas and time periods of error being better qualified. The regionalized error correction approach is non-linear and is therefore more flexible at characterizing model performance than approaches that rely on linearity assumptions and assume homoscedasticity of CMAQ predictions errors. Corrected CMAQ data are then incorporated into the modern geostatistical framework of Bayesian Maximum Entropy (BME). Through cross validation it is shown that incorporating error-corrected CMAQ data leads to more accurate estimates than just using observed data by themselves.
Bayesian modeling of measurement error in predictor variables
Fox, Gerardus J.A.; Glas, Cornelis A.W.
2003-01-01
It is shown that measurement error in predictor variables can be modeled using item response theory (IRT). The predictor variables, that may be defined at any level of an hierarchical regression model, are treated as latent variables. The normal ogive model is used to describe the relation between
Cultural Resource Predictive Modeling
2017-10-01
CR cultural resource CRM cultural resource management CRPM Cultural Resource Predictive Modeling DoD Department of Defense ESTCP Environmental...resource management ( CRM ) legal obligations under NEPA and the NHPA, military installations need to demonstrate that CRM decisions are based on objective...maxim “one size does not fit all,” and demonstrate that DoD installations have many different CRM needs that can and should be met through a variety
Bayesian networks modeling for thermal error of numerical control machine tools
Institute of Scientific and Technical Information of China (English)
Xin-hua YAO; Jian-zhong FU; Zi-chen CHEN
2008-01-01
The interaction between the heat source location,its intensity,thermal expansion coefficient,the machine system configuration and the running environment creates complex thermal behavior of a machine tool,and also makes thermal error prediction difficult.To address this issue,a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented.The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques.Due to the effective combination of domain knowledge and sampled data,the BN method could adapt to the change of running state of machine,and obtain satisfactory prediction accuracy.Ex-periments on spindle thermal deformation were conducted to evaluate the modeling performance.Experimental results indicate that the BN method performs far better than the least squares(LS)analysis in terms of modeling estimation accuracy.
Mismatch Negativity Encoding of Prediction Errors Predicts S-ketamine-Induced Cognitive Impairments
Schmidt, André; Bachmann, Rosilla; Kometer, Michael; Csomor, Philipp A; Stephan, Klaas E; Seifritz, Erich; Vollenweider, Franz X
2012-01-01
Psychotomimetics like the N-methyl--aspartate receptor (NMDAR) antagonist ketamine and the 5-hydroxytryptamine2A receptor (5-HT2AR) agonist psilocybin induce psychotic symptoms in healthy volunteers that resemble those of schizophrenia. Recent theories of psychosis posit that aberrant encoding of prediction errors (PE) may underlie the expression of psychotic symptoms. This study used a roving mismatch negativity (MMN) paradigm to investigate whether the encoding of PE is affected by pharmacological manipulation of NMDAR or 5-HT2AR, and whether the encoding of PE under placebo can be used to predict drug-induced symptoms. Using a double-blind within-subject placebo-controlled design, S-ketamine and psilocybin, respectively, were administrated to two groups of healthy subjects. Psychological alterations were assessed using a revised version of the Altered States of Consciousness (ASC-R) questionnaire. As an index of PE, we computed changes in MMN amplitudes as a function of the number of preceding standards (MMN memory trace effect) during a roving paradigm. S-ketamine, but not psilocybin, disrupted PE processing as expressed by a frontally disrupted MMN memory trace effect. Although both drugs produced positive-like symptoms, the extent of PE processing under placebo only correlated significantly with the severity of cognitive impairments induced by S-ketamine. Our results suggest that the NMDAR, but not the 5-HT2AR system, is implicated in PE processing during the MMN paradigm, and that aberrant PE signaling may contribute to the formation of cognitive impairments. The assessment of the MMN memory trace in schizophrenia may allow detecting early phases of the illness and might also serve to assess the efficacy of novel pharmacological treatments, in particular of cognitive impairments. PMID:22030715
A critique of recent models for human error rate assessment
International Nuclear Information System (INIS)
Apostolakis, G.E.
1988-01-01
This paper critically reviews two groups of models for assessing human error rates under accident conditions. The first group, which includes the US Nuclear Regulatory Commission (NRC) handbook model and the human cognitive reliability (HCR) model, considers as fundamental the time that is available to the operators to act. The second group, which is represented by the success likelihood index methodology multiattribute utility decomposition (SLIM-MAUD) model, relies on ratings of the human actions with respect to certain qualitative factors and the subsequent derivation of error rates. These models are evaluated with respect to two criteria: the treatment of uncertainties and the internal coherence of the models. In other words, this evaluation focuses primarily on normative aspects of these models. The principal findings are as follows: (1) Both of the time-related models provide human error rates as a function of the available time for action and the prevailing conditions. However, the HCR model ignores the important issue of state-of-knowledge uncertainties, dealing exclusively with stochastic uncertainty, whereas the model presented in the NRC handbook handles both types of uncertainty. (2) SLIM-MAUD provides a highly structured approach for the derivation of human error rates under given conditions. However, the treatment of the weights and ratings in this model is internally inconsistent. (author)
Cumulative error models for the tank calibration problem
International Nuclear Information System (INIS)
Goldman, A.; Anderson, L.G.; Weber, J.
1983-01-01
The purpose of a tank calibration equation is to obtain an estimate of the liquid volume that corresponds to a liquid level measurement. Calibration experimental errors occur in both liquid level and liquid volume measurements. If one of the errors is relatively small, the calibration equation can be determined from wellknown regression and calibration methods. If both variables are assumed to be in error, then for linear cases a prototype model should be considered. Many investigators are not familiar with this model or do not have computing facilities capable of obtaining numerical solutions. This paper discusses and compares three linear models that approximate the prototype model and have the advantage of much simpler computations. Comparisons among the four models and recommendations of suitability are made from simulations and from analyses of six sets of experimental data
Candidate Prediction Models and Methods
DEFF Research Database (Denmark)
Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Madsen, Henrik
2005-01-01
This document lists candidate prediction models for Work Package 3 (WP3) of the PSO-project called ``Intelligent wind power prediction systems'' (FU4101). The main focus is on the models transforming numerical weather predictions into predictions of power production. The document also outlines...... the possibilities w.r.t. different numerical weather predictions actually available to the project....
Directory of Open Access Journals (Sweden)
Shenghai Hu
2017-04-01
Full Text Available This study deals with the precision performance of the CNC flame-cutting machine used in spatial surface operating conditions and presents an accuracy enhancement method based on processing error modeling prediction and real-time compensation. Machining coordinate systems and transformation matrix models were established for the CNC flame processing system considering both geometric errors and thermal deformation effects. Meanwhile, prediction and compensation models were constructed related to the actual cutting situation. Focusing on the thermal deformation elements, finite element analysis was used to measure the testing data of thermal errors, the grey system theory was applied to optimize the key thermal points, and related thermal dynamics models were carried out to achieve high-precision prediction values. Comparison experiments between the proposed method and the teaching method were conducted on the processing system after performing calibration. The results showed that the proposed method is valid and the cutting quality could be improved by more than 30% relative to the teaching method. Furthermore, the proposed method can be used under any working condition by making a few adjustments to the prediction and compensation models.
Bailey, Stephanie L; Bono, Rose S; Nash, Denis; Kimmel, April D
2018-01-01
Spreadsheet software is increasingly used to implement systems science models informing health policy decisions, both in academia and in practice where technical capacity may be limited. However, spreadsheet models are prone to unintentional errors that may not always be identified using standard error-checking techniques. Our objective was to illustrate, through a methodologic case study analysis, the impact of unintentional errors on model projections by implementing parallel model versions. We leveraged a real-world need to revise an existing spreadsheet model designed to inform HIV policy. We developed three parallel versions of a previously validated spreadsheet-based model; versions differed by the spreadsheet cell-referencing approach (named single cells; column/row references; named matrices). For each version, we implemented three model revisions (re-entry into care; guideline-concordant treatment initiation; immediate treatment initiation). After standard error-checking, we identified unintentional errors by comparing model output across the three versions. Concordant model output across all versions was considered error-free. We calculated the impact of unintentional errors as the percentage difference in model projections between model versions with and without unintentional errors, using +/-5% difference to define a material error. We identified 58 original and 4,331 propagated unintentional errors across all model versions and revisions. Over 40% (24/58) of original unintentional errors occurred in the column/row reference model version; most (23/24) were due to incorrect cell references. Overall, >20% of model spreadsheet cells had material unintentional errors. When examining error impact along the HIV care continuum, the percentage difference between versions with and without unintentional errors ranged from +3% to +16% (named single cells), +26% to +76% (column/row reference), and 0% (named matrices). Standard error-checking techniques may not
Energy Technology Data Exchange (ETDEWEB)
Morley, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-07-01
This report reviews existing literature describing forecast accuracy metrics, concentrating on those based on relative errors and percentage errors. We then review how the most common of these metrics, the mean absolute percentage error (MAPE), has been applied in recent radiation belt modeling literature. Finally, we describe metrics based on the ratios of predicted to observed values (the accuracy ratio) that address the drawbacks inherent in using MAPE. Specifically, we define and recommend the median log accuracy ratio as a measure of bias and the median symmetric accuracy as a measure of accuracy.
Accounting for measurement error in log regression models with applications to accelerated testing.
Directory of Open Access Journals (Sweden)
Robert Richardson
Full Text Available In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.
Accounting for measurement error in log regression models with applications to accelerated testing.
Richardson, Robert; Tolley, H Dennis; Evenson, William E; Lunt, Barry M
2018-01-01
In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.
Predictive Surface Complexation Modeling
Energy Technology Data Exchange (ETDEWEB)
Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences
2016-11-29
Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO_{2} and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.
Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher; Gail, Alexander
2015-04-01
Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement ("jump") consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. Copyright © 2015 the American Physiological Society.
Cooper, Jeffrey C; Dunne, Simon; Furey, Teresa; O'Doherty, John P
2012-01-01
The dorsal striatum plays a key role in the learning and expression of instrumental reward associations that are acquired through direct experience. However, not all learning about instrumental actions require direct experience. Instead, humans and other animals are also capable of acquiring instrumental actions by observing the experiences of others. In this study, we investigated the extent to which human dorsal striatum is involved in observational as well as experiential instrumental reward learning. Human participants were scanned with fMRI while they observed a confederate over a live video performing an instrumental conditioning task to obtain liquid juice rewards. Participants also performed a similar instrumental task for their own rewards. Using a computational model-based analysis, we found reward prediction errors in the dorsal striatum not only during the experiential learning condition but also during observational learning. These results suggest a key role for the dorsal striatum in learning instrumental associations, even when those associations are acquired purely by observing others.
Guo, Rong; Böhmer, Wendelin; Hebart, Martin; Chien, Samson; Sommer, Tobias; Obermayer, Klaus; Gläscher, Jan
2016-12-14
Goal-directed and instrumental learning are both important controllers of human behavior. Learning about which stimulus event occurs in the environment and the reward associated with them allows humans to seek out the most valuable stimulus and move through the environment in a goal-directed manner. Stimulus-response associations are characteristic of instrumental learning, whereas response-outcome associations are the hallmark of goal-directed learning. Here we provide behavioral, computational, and neuroimaging results from a novel task in which stimulus-response and response-outcome associations are learned simultaneously but dominate behavior at different stages of the experiment. We found that prediction error representations in the ventral striatum depend on which type of learning dominates. Furthermore, the amygdala tracks the time-dependent weighting of stimulus-response versus response-outcome learning. Our findings suggest that the goal-directed and instrumental controllers dynamically engage the ventral striatum in representing prediction errors whenever one of them is dominating choice behavior. Converging evidence in human neuroimaging studies has shown that the reward prediction errors are correlated with activity in the ventral striatum. Our results demonstrate that this region is simultaneously correlated with a stimulus prediction error. Furthermore, the learning system that is currently dominating behavioral choice dynamically engages the ventral striatum for computing its prediction errors. This demonstrates that the prediction error representations are highly dynamic and influenced by various experimental context. This finding points to a general role of the ventral striatum in detecting expectancy violations and encoding error signals regardless of the specific nature of the reinforcer itself. Copyright © 2016 the authors 0270-6474/16/3612650-11$15.00/0.
Direct cointegration testing in error-correction models
F.R. Kleibergen (Frank); H.K. van Dijk (Herman)
1994-01-01
textabstractAbstract An error correction model is specified having only exact identified parameters, some of which reflect a possible departure from a cointegration model. Wald, likelihood ratio, and Lagrange multiplier statistics are derived to test for the significance of these parameters. The
Ihssen, Niklas; Mussweiler, Thomas; Linden, David E J
2016-08-01
Reward properties of stimuli can undergo sudden changes, and the detection of these 'reversals' is often made difficult by the probabilistic nature of rewards/punishments. Here we tested whether and how humans use social information (someone else's choices) to overcome uncertainty during reversal learning. We show a substantial social influence during reversal learning, which was modulated by the type of observed behavior. Participants frequently followed observed conservative choices (no switches after punishment) made by the (fictitious) other player but ignored impulsive choices (switches), even though the experiment was set up so that both types of response behavior would be similarly beneficial/detrimental (Study 1). Computational modeling showed that participants integrated the observed choices as a 'social prediction error' instead of ignoring or blindly following the other player. Modeling also confirmed higher learning rates for 'conservative' versus 'impulsive' social prediction errors. Importantly, this 'conservative bias' was boosted by interpersonal similarity, which in conjunction with the lack of effects observed in a non-social control experiment (Study 2) confirmed its social nature. A third study suggested that relative weighting of observed impulsive responses increased with increased volatility (frequency of reversals). Finally, simulations showed that in the present paradigm integrating social and reward information was not necessarily more adaptive to maximize earnings than learning from reward alone. Moreover, integrating social information increased accuracy only when conservative and impulsive choices were weighted similarly during learning. These findings suggest that to guide decisions in choice contexts that involve reward reversals humans utilize social cues conforming with their preconceptions more strongly than cues conflicting with them, especially when the other is similar. Copyright © 2016 The Authors. Published by Elsevier B
Haptic Data Processing for Teleoperation Systems: Prediction, Compression and Error Correction
Lee, Jae-young
2013-01-01
This thesis explores haptic data processing methods for teleoperation systems, including prediction, compression, and error correction. In the proposed haptic data prediction method, unreliable network conditions, such as time-varying delay and packet loss, are detected by a transport layer protocol. Given the information from the transport layer, a Bayesian approach is introduced to predict position and force data in haptic teleoperation systems. Stability of the proposed method within stoch...
Linear theory for filtering nonlinear multiscale systems with model error.
Berry, Tyrus; Harlim, John
2014-07-08
In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online , as part of a filtering
Directory of Open Access Journals (Sweden)
Nazelie Kassabian
2014-06-01
Full Text Available Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs. This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold.
International Nuclear Information System (INIS)
Fernández-Ahumada, E; Gómez, A; Vallesquino, P; Guerrero, J E; Pérez-Marín, D; Garrido-Varo, A; Fearn, T
2008-01-01
According to the current demands of the authorities, the manufacturers and the consumers, controls and assessments of the feed compound manufacturing process have become a key concern. Among others, it must be assured that a given compound feed is well manufactured and labelled in terms of the ingredient composition. When near-infrared spectroscopy (NIRS) together with linear models were used for the prediction of the ingredient composition, the results were not always acceptable. Therefore, the performance of nonlinear methods has been investigated. Artificial neural networks and least squares support vector machines (LS-SVM) have been applied to a large (N = 20 320) and heterogeneous population of non-milled feed compounds for the NIR prediction of the inclusion percentage of wheat and sunflower meal, as representative of two different classes of ingredients. Compared to partial least squares regression, results showed considerable reductions of standard error of prediction values for both methods and ingredients: reductions of 45% with ANN and 49% with LS-SVM for wheat and reductions of 44% with ANN and 46% with LS-SVM for sunflower meal. These improvements together with the facility of NIRS technology to be implemented in the process make it ideal for meeting the requirements of the animal feed industry
When theory and biology differ: The relationship between reward prediction errors and expectancy.
Williams, Chad C; Hassall, Cameron D; Trska, Robert; Holroyd, Clay B; Krigolson, Olave E
2017-10-01
Comparisons between expectations and outcomes are critical for learning. Termed prediction errors, the violations of expectancy that occur when outcomes differ from expectations are used to modify value and shape behaviour. In the present study, we examined how a wide range of expectancy violations impacted neural signals associated with feedback processing. Participants performed a time estimation task in which they had to guess the duration of one second while their electroencephalogram was recorded. In a key manipulation, we varied task difficulty across the experiment to create a range of different feedback expectancies - reward feedback was either very expected, expected, 50/50, unexpected, or very unexpected. As predicted, the amplitude of the reward positivity, a component of the human event-related brain potential associated with feedback processing, scaled inversely with expectancy (e.g., unexpected feedback yielded a larger reward positivity than expected feedback). Interestingly, the scaling of the reward positivity to outcome expectancy was not linear as would be predicted by some theoretical models. Specifically, we found that the amplitude of the reward positivity was about equivalent for very expected and expected feedback, and for very unexpected and unexpected feedback. As such, our results demonstrate a sigmoidal relationship between reward expectancy and the amplitude of the reward positivity, with interesting implications for theories of reinforcement learning. Copyright © 2017 Elsevier B.V. All rights reserved.
Bayesian analysis of data and model error in rainfall-runoff hydrological models
Kavetski, D.; Franks, S. W.; Kuczera, G.
2004-12-01
A major unresolved issue in the identification and use of conceptual hydrologic models is realistic description of uncertainty in the data and model structure. In particular, hydrologic parameters often cannot be measured directly and must be inferred (calibrated) from observed forcing/response data (typically, rainfall and runoff). However, rainfall varies significantly in space and time, yet is often estimated from sparse gauge networks. Recent work showed that current calibration methods (e.g., standard least squares, multi-objective calibration, generalized likelihood uncertainty estimation) ignore forcing uncertainty and assume that the rainfall is known exactly. Consequently, they can yield strongly biased and misleading parameter estimates. This deficiency confounds attempts to reliably test model hypotheses, to generalize results across catchments (the regionalization problem) and to quantify predictive uncertainty when the hydrologic model is extrapolated. This paper continues the development of a Bayesian total error analysis (BATEA) methodology for the calibration and identification of hydrologic models, which explicitly incorporates the uncertainty in both the forcing and response data, and allows systematic model comparison based on residual model errors and formal Bayesian hypothesis testing (e.g., using Bayes factors). BATEA is based on explicit stochastic models for both forcing and response uncertainty, whereas current techniques focus solely on response errors. Hence, unlike existing methods, the BATEA parameter equations directly reflect the modeler's confidence in all the data. We compare several approaches to approximating the parameter distributions: a) full Markov Chain Monte Carlo methods and b) simplified approaches based on linear approximations. Studies using synthetic and real data from the US and Australia show that BATEA systematically reduces the parameter bias, leads to more meaningful model fits and allows model comparison taking
Human error prediction and countermeasures based on CREAM in spent nuclear fuel (SNF) transportation
International Nuclear Information System (INIS)
Kim, Jae San
2007-02-01
Since the 1980s, in order to secure the storage capacity of spent nuclear fuel (SNF) at NPPs, SNF assemblies have been transported on-site from one unit to another unit nearby. However in the future the amount of the spent fuel will approach capacity in the areas used, and some of these SNFs will have to be transported to an off-site spent fuel repository. Most SNF materials used at NPPs will be transported by general cargo ships from abroad, and these SNFs will be stored in an interim storage facility. In the process of transporting SNF, human interactions will involve inspecting and preparing the cask and spent fuel, loading the cask onto the vehicle or ship, transferring the cask as well as storage or monitoring the cask. The transportation of SNF involves a number of activities that depend on reliable human performance. In the case of the transport of a cask, human errors may include spent fuel bundle misidentification or cask transport accidents among others. Reviews of accident events when transporting the Radioactive Material (RAM) throughout the world indicate that human error is the major causes for more than 65% of significant events. For the safety of SNF transportation, it is very important to predict human error and to deduce a method that minimizes the human error. This study examines the human factor effects on the safety of transporting spent nuclear fuel (SNF). It predicts and identifies the possible human errors in the SNF transport process (loading, transfer and storage of the SNF). After evaluating the human error mode in each transport process, countermeasures to minimize the human error are deduced. The human errors in SNF transportation were analyzed using Hollnagel's Cognitive Reliability and Error Analysis Method (CREAM). After determining the important factors for each process, countermeasures to minimize human error are provided in three parts: System design, Operational environment, and Human ability
Validation of the measurement model concept for error structure identification
International Nuclear Information System (INIS)
Shukla, Pavan K.; Orazem, Mark E.; Crisalle, Oscar D.
2004-01-01
The development of different forms of measurement models for impedance has allowed examination of key assumptions on which the use of such models to assess error structure are based. The stochastic error structures obtained using the transfer-function and Voigt measurement models were identical, even when non-stationary phenomena caused some of the data to be inconsistent with the Kramers-Kronig relations. The suitability of the measurement model for assessment of consistency with the Kramers-Kronig relations, however, was found to be more sensitive to the confidence interval for the parameter estimates than to the number of parameters in the model. A tighter confidence interval was obtained for Voigt measurement model, which made the Voigt measurement model a more sensitive tool for identification of inconsistencies with the Kramers-Kronig relations
Bakic, Jasmina; Pourtois, Gilles; Jepma, Marieke; Duprat, Romain; De Raedt, Rudi; Baeken, Chris
2017-01-01
Major depressive disorder (MDD) creates debilitating effects on a wide range of cognitive functions, including reinforcement learning (RL). In this study, we sought to assess whether reward processing as such, or alternatively the complex interplay between motivation and reward might potentially account for the abnormal reward-based learning in MDD. A total of 35 treatment resistant MDD patients and 44 age matched healthy controls (HCs) performed a standard probabilistic learning task. RL was titrated using behavioral, computational modeling and event-related brain potentials (ERPs) data. MDD patients showed comparable learning rate compared to HCs. However, they showed decreased lose-shift responses as well as blunted subjective evaluations of the reinforcers used during the task, relative to HCs. Moreover, MDD patients showed normal internal (at the level of error-related negativity, ERN) but abnormal external (at the level of feedback-related negativity, FRN) reward prediction error (RPE) signals during RL, selectively when additional efforts had to be made to establish learning. Collectively, these results lend support to the assumption that MDD does not impair reward processing per se during RL. Instead, it seems to alter the processing of the emotional value of (external) reinforcers during RL, when additional intrinsic motivational processes have to be engaged. © 2016 Wiley Periodicals, Inc.
Advanced error-prediction LDPC with temperature compensation for highly reliable SSDs
Tokutomi, Tsukasa; Tanakamaru, Shuhei; Iwasaki, Tomoko Ogura; Takeuchi, Ken
2015-09-01
To improve the reliability of NAND Flash memory based solid-state drives (SSDs), error-prediction LDPC (EP-LDPC) has been proposed for multi-level-cell (MLC) NAND Flash memory (Tanakamaru et al., 2012, 2013), which is effective for long retention times. However, EP-LDPC is not as effective for triple-level cell (TLC) NAND Flash memory, because TLC NAND Flash has higher error rates and is more sensitive to program-disturb error. Therefore, advanced error-prediction LDPC (AEP-LDPC) has been proposed for TLC NAND Flash memory (Tokutomi et al., 2014). AEP-LDPC can correct errors more accurately by precisely describing the error phenomena. In this paper, the effects of AEP-LDPC are investigated in a 2×nm TLC NAND Flash memory with temperature characterization. Compared with LDPC-with-BER-only, the SSD's data-retention time is increased by 3.4× and 9.5× at room-temperature (RT) and 85 °C, respectively. Similarly, the acceptable BER is increased by 1.8× and 2.3×, respectively. Moreover, AEP-LDPC can correct errors with pre-determined tables made at higher temperatures to shorten the measurement time before shipping. Furthermore, it is found that one table can cover behavior over a range of temperatures in AEP-LDPC. As a result, the total table size can be reduced to 777 kBytes, which makes this approach more practical.
Starns, Jeffrey J; Dubé, Chad; Frelinger, Matthew E
2018-05-01
In this report, we evaluate single-item and forced-choice recognition memory for the same items and use the resulting accuracy and reaction time data to test the predictions of discrete-state and continuous models. For the single-item trials, participants saw a word and indicated whether or not it was studied on a previous list. The forced-choice trials had one studied and one non-studied word that both appeared in the earlier single-item trials and both received the same response. Thus, forced-choice trials always had one word with a previous correct response and one with a previous error. Participants were asked to select the studied word regardless of whether they previously called both words "studied" or "not studied." The diffusion model predicts that forced-choice accuracy should be lower when the word with a previous error had a fast versus a slow single-item RT, because fast errors are associated with more compelling misleading memory retrieval. The two-high-threshold (2HT) model does not share this prediction because all errors are guesses, so error RT is not related to memory strength. A low-threshold version of the discrete state approach predicts an effect similar to the diffusion model, because errors are a mixture of responses based on misleading retrieval and guesses, and the guesses should tend to be slower. Results showed that faster single-trial errors were associated with lower forced-choice accuracy, as predicted by the diffusion and low-threshold models. Copyright © 2018 Elsevier Inc. All rights reserved.
Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models
DEFF Research Database (Denmark)
Kristensen, Dennis; Rahbæk, Anders
In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... of non-stationary non-linear time series models. Thus the paper provides a full asymptotic theory for estimators as well as standard and non-standard test statistics. The derived asymptotic results prove to be new compared to results found elsewhere in the literature due to the impact of the estimated...... symmetric non-linear error correction considered. A simulation study shows that the fi…nite sample properties of the bootstrapped tests are satisfactory with good size and power properties for reasonable sample sizes....
Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models
DEFF Research Database (Denmark)
Kristensen, Dennis; Rahbek, Anders
In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... of non-stationary non-linear time series models. Thus the paper provides a full asymptotic theory for estimators as well as standard and non-standard test statistics. The derived asymptotic results prove to be new compared to results found elsewhere in the literature due to the impact of the estimated...... symmetric non-linear error correction are considered. A simulation study shows that the finite sample properties of the bootstrapped tests are satisfactory with good size and power properties for reasonable sample sizes....
Predictive error detection in pianists: A combined ERP and motion capture study
Directory of Open Access Journals (Sweden)
Clemens eMaidhof
2013-09-01
Full Text Available Performing a piece of music involves the interplay of several cognitive and motor processes and requires extensive training to achieve a high skill level. However, even professional musicians commit errors occasionally. Previous event-related potential (ERP studies have investigated the neurophysiological correlates of pitch errors during piano performance, and reported pre-error negativity already occurring approximately 70-100 ms before the error had been committed and audible. It was assumed that this pre-error negativity reflects predictive control processes that compare predicted consequences with actual consequences of one’s own actions. However, in previous investigations, correct and incorrect pitch events were confounded by their different tempi. In addition, no data about the underlying movements were available. In the present study, we exploratively recorded the ERPs and 3D movement data of pianists’ fingers simultaneously while they performed fingering exercises from memory. Results showed a pre-error negativity for incorrect keystrokes when both correct and incorrect keystrokes were performed with comparable tempi. Interestingly, even correct notes immediately preceding erroneous keystrokes elicited a very similar negativity. In addition, we explored the possibility of computing ERPs time-locked to a kinematic landmark in the finger motion trajectories defined by when a finger makes initial contact with the key surface, that is, at the onset of tactile feedback. Results suggest that incorrect notes elicited a small difference after the onset of tactile feedback, whereas correct notes preceding incorrect ones elicited negativity before the onset of tactile feedback. The results tentatively suggest that tactile feedback plays an important role in error-monitoring during piano performance, because the comparison between predicted and actual sensory (tactile feedback may provide the information necessary for the detection of an
Lerch, F. J.; Nerem, R. S.; Chinn, D. S.; Chan, J. C.; Patel, G. B.; Klosko, S. M.
1993-01-01
A new method has been developed to provide a direct test of the error calibrations of gravity models based on actual satellite observations. The basic approach projects the error estimates of the gravity model parameters onto satellite observations, and the results of these projections are then compared with data residual computed from the orbital fits. To allow specific testing of the gravity error calibrations, subset solutions are computed based on the data set and data weighting of the gravity model. The approach is demonstrated using GEM-T3 to show that the gravity error estimates are well calibrated and that reliable predictions of orbit accuracies can be achieved for independent orbits.
Identification of linear error-models with projected dynamical systems
Czech Academy of Sciences Publication Activity Database
Krejčí, Pavel; Kuhnen, K.
2004-01-01
Roč. 10, č. 1 (2004), s. 59-91 ISSN 1387-3954 Keywords : identification * error models * projected dynamical systems Subject RIV: BA - General Mathematics Impact factor: 0.292, year: 2004 http://www.informaworld.com/smpp/content~db=all~content=a713682517
Mitigating Errors in External Respiratory Surrogate-Based Models of Tumor Position
International Nuclear Information System (INIS)
Malinowski, Kathleen T.; McAvoy, Thomas J.; George, Rohini; Dieterich, Sonja; D'Souza, Warren D.
2012-01-01
Purpose: To investigate the effect of tumor site, measurement precision, tumor–surrogate correlation, training data selection, model design, and interpatient and interfraction variations on the accuracy of external marker-based models of tumor position. Methods and Materials: Cyberknife Synchrony system log files comprising synchronously acquired positions of external markers and the tumor from 167 treatment fractions were analyzed. The accuracy of Synchrony, ordinary-least-squares regression, and partial-least-squares regression models for predicting the tumor position from the external markers was evaluated. The quantity and timing of the data used to build the predictive model were varied. The effects of tumor–surrogate correlation and the precision in both the tumor and the external surrogate position measurements were explored by adding noise to the data. Results: The tumor position prediction errors increased during the duration of a fraction. Increasing the training data quantities did not always lead to more accurate models. Adding uncorrelated noise to the external marker-based inputs degraded the tumor–surrogate correlation models by 16% for partial-least-squares and 57% for ordinary-least-squares. External marker and tumor position measurement errors led to tumor position prediction changes 0.3–3.6 times the magnitude of the measurement errors, varying widely with model algorithm. The tumor position prediction errors were significantly associated with the patient index but not with the fraction index or tumor site. Partial-least-squares was as accurate as Synchrony and more accurate than ordinary-least-squares. Conclusions: The accuracy of surrogate-based inferential models of tumor position was affected by all the investigated factors, except for the tumor site and fraction index.
Mitigating Errors in External Respiratory Surrogate-Based Models of Tumor Position
Energy Technology Data Exchange (ETDEWEB)
Malinowski, Kathleen T. [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Fischell Department of Bioengineering, University of Maryland, College Park, MD (United States); McAvoy, Thomas J. [Fischell Department of Bioengineering, University of Maryland, College Park, MD (United States); Department of Chemical and Biomolecular Engineering and Institute of Systems Research, University of Maryland, College Park, MD (United States); George, Rohini [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Dieterich, Sonja [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); D' Souza, Warren D., E-mail: wdsou001@umaryland.edu [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Fischell Department of Bioengineering, University of Maryland, College Park, MD (United States)
2012-04-01
Purpose: To investigate the effect of tumor site, measurement precision, tumor-surrogate correlation, training data selection, model design, and interpatient and interfraction variations on the accuracy of external marker-based models of tumor position. Methods and Materials: Cyberknife Synchrony system log files comprising synchronously acquired positions of external markers and the tumor from 167 treatment fractions were analyzed. The accuracy of Synchrony, ordinary-least-squares regression, and partial-least-squares regression models for predicting the tumor position from the external markers was evaluated. The quantity and timing of the data used to build the predictive model were varied. The effects of tumor-surrogate correlation and the precision in both the tumor and the external surrogate position measurements were explored by adding noise to the data. Results: The tumor position prediction errors increased during the duration of a fraction. Increasing the training data quantities did not always lead to more accurate models. Adding uncorrelated noise to the external marker-based inputs degraded the tumor-surrogate correlation models by 16% for partial-least-squares and 57% for ordinary-least-squares. External marker and tumor position measurement errors led to tumor position prediction changes 0.3-3.6 times the magnitude of the measurement errors, varying widely with model algorithm. The tumor position prediction errors were significantly associated with the patient index but not with the fraction index or tumor site. Partial-least-squares was as accurate as Synchrony and more accurate than ordinary-least-squares. Conclusions: The accuracy of surrogate-based inferential models of tumor position was affected by all the investigated factors, except for the tumor site and fraction index.
Bayesian network models for error detection in radiotherapy plans
International Nuclear Information System (INIS)
Kalet, Alan M; Ford, Eric C; Phillips, Mark H; Gennari, John H
2015-01-01
The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures. (paper)
Linear regression crash prediction models : issues and proposed solutions.
2010-05-01
The paper develops a linear regression model approach that can be applied to : crash data to predict vehicle crashes. The proposed approach involves novice data aggregation : to satisfy linear regression assumptions; namely error structure normality ...
Incorporating Measurement Error from Modeled Air Pollution Exposures into Epidemiological Analyses.
Samoli, Evangelia; Butland, Barbara K
2017-12-01
Outdoor air pollution exposures used in epidemiological studies are commonly predicted from spatiotemporal models incorporating limited measurements, temporal factors, geographic information system variables, and/or satellite data. Measurement error in these exposure estimates leads to imprecise estimation of health effects and their standard errors. We reviewed methods for measurement error correction that have been applied in epidemiological studies that use model-derived air pollution data. We identified seven cohort studies and one panel study that have employed measurement error correction methods. These methods included regression calibration, risk set regression calibration, regression calibration with instrumental variables, the simulation extrapolation approach (SIMEX), and methods under the non-parametric or parameter bootstrap. Corrections resulted in small increases in the absolute magnitude of the health effect estimate and its standard error under most scenarios. Limited application of measurement error correction methods in air pollution studies may be attributed to the absence of exposure validation data and the methodological complexity of the proposed methods. Future epidemiological studies should consider in their design phase the requirements for the measurement error correction method to be later applied, while methodological advances are needed under the multi-pollutants setting.
Joch, Michael; Hegele, Mathias; Maurer, Heiko; Müller, Hermann; Maurer, Lisa Katharina
2017-07-01
The error (related) negativity (Ne/ERN) is an event-related potential in the electroencephalogram (EEG) correlating with error processing. Its conditions of appearance before terminal external error information suggest that the Ne/ERN is indicative of predictive processes in the evaluation of errors. The aim of the present study was to specifically examine the Ne/ERN in a complex motor task and to particularly rule out other explaining sources of the Ne/ERN aside from error prediction processes. To this end, we focused on the dependency of the Ne/ERN on visual monitoring about the action outcome after movement termination but before result feedback (action effect monitoring). Participants performed a semi-virtual throwing task by using a manipulandum to throw a virtual ball displayed on a computer screen to hit a target object. Visual feedback about the ball flying to the target was masked to prevent action effect monitoring. Participants received a static feedback about the action outcome (850 ms) after each trial. We found a significant negative deflection in the average EEG curves of the error trials peaking at ~250 ms after ball release, i.e., before error feedback. Furthermore, this Ne/ERN signal did not depend on visual ball-flight monitoring after release. We conclude that the Ne/ERN has the potential to indicate error prediction in motor tasks and that it exists even in the absence of action effect monitoring. NEW & NOTEWORTHY In this study, we are separating different kinds of possible contributors to an electroencephalogram (EEG) error correlate (Ne/ERN) in a throwing task. We tested the influence of action effect monitoring on the Ne/ERN amplitude in the EEG. We used a task that allows us to restrict movement correction and action effect monitoring and to control the onset of result feedback. We ascribe the Ne/ERN to predictive error processing where a conscious feeling of failure is not a prerequisite. Copyright © 2017 the American Physiological
Hierarchical prediction errors in midbrain and basal forebrain during sensory learning.
Iglesias, Sandra; Mathys, Christoph; Brodersen, Kay H; Kasper, Lars; Piccirelli, Marco; den Ouden, Hanneke E M; Stephan, Klaas E
2013-10-16
In Bayesian brain theories, hierarchically related prediction errors (PEs) play a central role for predicting sensory inputs and inferring their underlying causes, e.g., the probabilistic structure of the environment and its volatility. Notably, PEs at different hierarchical levels may be encoded by different neuromodulatory transmitters. Here, we tested this possibility in computational fMRI studies of audio-visual learning. Using a hierarchical Bayesian model, we found that low-level PEs about visual stimulus outcome were reflected by widespread activity in visual and supramodal areas but also in the midbrain. In contrast, high-level PEs about stimulus probabilities were encoded by the basal forebrain. These findings were replicated in two groups of healthy volunteers. While our fMRI measures do not reveal the exact neuron types activated in midbrain and basal forebrain, they suggest a dichotomy between neuromodulatory systems, linking dopamine to low-level PEs about stimulus outcome and acetylcholine to more abstract PEs about stimulus probabilities. Copyright © 2013 Elsevier Inc. All rights reserved.
Shipitsin, M; Small, C; Choudhury, S; Giladi, E; Friedlander, S; Nardone, J; Hussain, S; Hurley, A D; Ernst, C; Huang, Y E; Chang, H; Nifong, T P; Rimm, D L; Dunyak, J; Loda, M; Berman, D M; Blume-Jensen, P
2014-09-09
Key challenges of biopsy-based determination of prostate cancer aggressiveness include tumour heterogeneity, biopsy-sampling error, and variations in biopsy interpretation. The resulting uncertainty in risk assessment leads to significant overtreatment, with associated costs and morbidity. We developed a performance-based strategy to identify protein biomarkers predictive of prostate cancer aggressiveness and lethality regardless of biopsy-sampling variation. Prostatectomy samples from a large patient cohort with long follow-up were blindly assessed by expert pathologists who identified the tissue regions with the highest and lowest Gleason grade from each patient. To simulate biopsy-sampling error, a core from a high- and a low-Gleason area from each patient sample was used to generate a 'high' and a 'low' tumour microarray, respectively. Using a quantitative proteomics approach, we identified from 160 candidates 12 biomarkers that predicted prostate cancer aggressiveness (surgical Gleason and TNM stage) and lethal outcome robustly in both high- and low-Gleason areas. Conversely, a previously reported lethal outcome-predictive marker signature for prostatectomy tissue was unable to perform under circumstances of maximal sampling error. Our results have important implications for cancer biomarker discovery in general and development of a sampling error-resistant clinical biopsy test for prediction of prostate cancer aggressiveness.
Prediction error demarcates the transition from retrieval, to reconsolidation, to new learning
Sevenster, Dieuwke|info:eu-repo/dai/nl/375491104; Beckers, Tom; Kindt, Merel
2014-01-01
Although disrupting reconsolidation is promising in targeting emotional memories, the conditions under which memory becomes labile are still unclear. The current study showed that post-retrieval changes in expectancy as an index for prediction error may serve as a read-out for the underlying
International Nuclear Information System (INIS)
Javaux, Denis
2002-01-01
This paper describes a method for predicting the errors that may appear when human operators or users interact with systems behaving as finite state systems. The method is a generalization of a method used for predicting errors when interacting with autopilot modes on modern, highly computerized airliners [Proc 17th Digital Avionics Sys Conf (DASC) (1998); Proc 10th Int Symp Aviat Psychol (1999)]. A cognitive model based on spreading activation networks is used for predicting the user's model of the system and its impact on the production of errors. The model strongly posits the importance of implicit learning in user-system interaction and its possible detrimental influence on users' knowledge of the system. An experiment conducted with Airbus Industrie and a major European airline on pilots' knowledge of autopilot behavior on the A340-200/300 confirms the model predictions, and in particular the impact of the frequencies with which specific state transitions and contexts are experienced
Evaluating and improving the representation of heteroscedastic errors in hydrological models
McInerney, D. J.; Thyer, M. A.; Kavetski, D.; Kuczera, G. A.
2013-12-01
Appropriate representation of residual errors in hydrological modelling is essential for accurate and reliable probabilistic predictions. In particular, residual errors of hydrological models are often heteroscedastic, with large errors associated with high rainfall and runoff events. Recent studies have shown that using a weighted least squares (WLS) approach - where the magnitude of residuals are assumed to be linearly proportional to the magnitude of the flow - captures some of this heteroscedasticity. In this study we explore a range of Bayesian approaches for improving the representation of heteroscedasticity in residual errors. We compare several improved formulations of the WLS approach, the well-known Box-Cox transformation and the more recent log-sinh transformation. Our results confirm that these approaches are able to stabilize the residual error variance, and that it is possible to improve the representation of heteroscedasticity compared with the linear WLS approach. We also find generally good performance of the Box-Cox and log-sinh transformations, although as indicated in earlier publications, the Box-Cox transform sometimes produces unrealistically large prediction limits. Our work explores the trade-offs between these different uncertainty characterization approaches, investigates how their performance varies across diverse catchments and models, and recommends practical approaches suitable for large-scale applications.
Tarone, Aaron M; Foran, David R
2008-07-01
Forensic entomologists use blow fly development to estimate a postmortem interval. Although accurate, fly age estimates can be imprecise for older developmental stages and no standard means of assigning confidence intervals exists. Presented here is a method for modeling growth of the forensically important blow fly Lucilia sericata, using generalized additive models (GAMs). Eighteen GAMs were created to predict the extent of juvenile fly development, encompassing developmental stage, length, weight, strain, and temperature data, collected from 2559 individuals. All measures were informative, explaining up to 92.6% of the deviance in the data, though strain and temperature exerted negligible influences. Predictions made with an independent data set allowed for a subsequent examination of error. Estimates using length and developmental stage were within 5% of true development percent during the feeding portion of the larval life cycle, while predictions for postfeeding third instars were less precise, but within expected error.
Confidence scores for prediction models
DEFF Research Database (Denmark)
Gerds, Thomas Alexander; van de Wiel, MA
2011-01-01
In medical statistics, many alternative strategies are available for building a prediction model based on training data. Prediction models are routinely compared by means of their prediction performance in independent validation data. If only one data set is available for training and validation,...
Lahat, Ayelet; Lamm, Connie; Chronis-Tuscano, Andrea; Pine, Daniel S; Henderson, Heather A; Fox, Nathan A
2014-04-01
Behavioral inhibition (BI) is an early childhood temperament characterized by fearful responses to novelty and avoidance of social interactions. During adolescence, a subset of children with stable childhood BI develop social anxiety disorder and concurrently exhibit increased error monitoring. The current study examines whether increased error monitoring in 7-year-old, behaviorally inhibited children prospectively predicts risk for symptoms of social phobia at age 9 years. A total of 291 children were characterized on BI at 24 and 36 months of age. Children were seen again at 7 years of age, when they performed a Flanker task, and event-related potential (ERP) indices of response monitoring were generated. At age 9, self- and maternal-report of social phobia symptoms were obtained. Children high in BI, compared to those low in BI, displayed increased error monitoring at age 7, as indexed by larger (i.e., more negative) error-related negativity (ERN) amplitudes. In addition, early BI was related to later childhood social phobia symptoms at age 9 among children with a large difference in amplitude between ERN and correct-response negativity (CRN) at age 7. Heightened error monitoring predicts risk for later social phobia symptoms in children with high BI. Research assessing response monitoring in children with BI may refine our understanding of the mechanisms underlying risk for later anxiety disorders and inform prevention efforts. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. All rights reserved.
Reversible Watermarking Using Prediction-Error Expansion and Extreme Learning Machine
Directory of Open Access Journals (Sweden)
Guangyong Gao
2015-01-01
Full Text Available Currently, the research for reversible watermarking focuses on the decreasing of image distortion. Aiming at this issue, this paper presents an improvement method to lower the embedding distortion based on the prediction-error expansion (PE technique. Firstly, the extreme learning machine (ELM with good generalization ability is utilized to enhance the prediction accuracy for image pixel value during the watermarking embedding, and the lower prediction error results in the reduction of image distortion. Moreover, an optimization operation for strengthening the performance of ELM is taken to further lessen the embedding distortion. With two popular predictors, that is, median edge detector (MED predictor and gradient-adjusted predictor (GAP, the experimental results for the classical images and Kodak image set indicate that the proposed scheme achieves improvement for the lowering of image distortion compared with the classical PE scheme proposed by Thodi et al. and outperforms the improvement method presented by Coltuc and other existing approaches.
Fault tree model of human error based on error-forcing contexts
International Nuclear Information System (INIS)
Kang, Hyun Gook; Jang, Seung Cheol; Ha, Jae Joo
2004-01-01
In the safety-critical systems such as nuclear power plants, the safety-feature actuation is fully automated. In emergency case, the human operator could also play the role of a backup for automated systems. That is, the failure of safety-feature-actuation signal generation implies the concurrent failure of automated systems and that of manual actuation. The human operator's manual actuation failure is largely affected by error-forcing contexts (EFC). The failures of sensors and automated systems are most important ones. The sensors, the automated actuation system and the human operators are correlated in a complex manner and hard to develop a proper model. In this paper, we will explain the condition-based human reliability assessment (CBHRA) method in order to treat these complicated conditions in a practical way. In this study, we apply the CBHRA method to the manual actuation of safety features such as reactor trip and safety injection in Korean Standard Nuclear Power Plants
Pathiraja, S.; Anghileri, D.; Burlando, P.; Sharma, A.; Marshall, L.; Moradkhani, H.
2018-03-01
The global prevalence of rapid and extensive land use change necessitates hydrologic modelling methodologies capable of handling non-stationarity. This is particularly true in the context of Hydrologic Forecasting using Data Assimilation. Data Assimilation has been shown to dramatically improve forecast skill in hydrologic and meteorological applications, although such improvements are conditional on using bias-free observations and model simulations. A hydrologic model calibrated to a particular set of land cover conditions has the potential to produce biased simulations when the catchment is disturbed. This paper sheds new light on the impacts of bias or systematic errors in hydrologic data assimilation, in the context of forecasting in catchments with changing land surface conditions and a model calibrated to pre-change conditions. We posit that in such cases, the impact of systematic model errors on assimilation or forecast quality is dependent on the inherent prediction uncertainty that persists even in pre-change conditions. Through experiments on a range of catchments, we develop a conceptual relationship between total prediction uncertainty and the impacts of land cover changes on the hydrologic regime to demonstrate how forecast quality is affected when using state estimation Data Assimilation with no modifications to account for land cover changes. This work shows that systematic model errors as a result of changing or changed catchment conditions do not always necessitate adjustments to the modelling or assimilation methodology, for instance through re-calibration of the hydrologic model, time varying model parameters or revised offline/online bias estimation.
Koenig, Stephan; Uengoer, Metin; Lachnit, Harald
2018-04-01
The attentional learning theory of Pearce and Hall () predicts more attention to uncertain cues that have caused a high prediction error in the past. We examined how the cue-elicited pupil dilation during associative learning was linked to such error-driven attentional processes. In three experiments, participants were trained to acquire associations between different cues and their appetitive (Experiment 1), motor (Experiment 2), or aversive (Experiment 3) outcomes. All experiments were designed to examine differences in the processing of continuously reinforced cues (consistently followed by the outcome) versus partially reinforced, uncertain cues (randomly followed by the outcome). We measured the pupil dilation elicited by the cues in anticipation of the outcome and analyzed how this conditioned pupil response changed over the course of learning. In all experiments, changes in pupil size complied with the same basic pattern: During early learning, consistently reinforced cues elicited greater pupil dilation than uncertain, randomly reinforced cues, but this effect gradually reversed to yield a greater pupil dilation for uncertain cues toward the end of learning. The pattern of data accords with the changes in prediction error and error-driven attention formalized by the Pearce-Hall theory. © 2017 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.
Modeling gene expression measurement error: a quasi-likelihood approach
Directory of Open Access Journals (Sweden)
Strimmer Korbinian
2003-03-01
Full Text Available Abstract Background Using suitable error models for gene expression measurements is essential in the statistical analysis of microarray data. However, the true probabilistic model underlying gene expression intensity readings is generally not known. Instead, in currently used approaches some simple parametric model is assumed (usually a transformed normal distribution or the empirical distribution is estimated. However, both these strategies may not be optimal for gene expression data, as the non-parametric approach ignores known structural information whereas the fully parametric models run the risk of misspecification. A further related problem is the choice of a suitable scale for the model (e.g. observed vs. log-scale. Results Here a simple semi-parametric model for gene expression measurement error is presented. In this approach inference is based an approximate likelihood function (the extended quasi-likelihood. Only partial knowledge about the unknown true distribution is required to construct this function. In case of gene expression this information is available in the form of the postulated (e.g. quadratic variance structure of the data. As the quasi-likelihood behaves (almost like a proper likelihood, it allows for the estimation of calibration and variance parameters, and it is also straightforward to obtain corresponding approximate confidence intervals. Unlike most other frameworks, it also allows analysis on any preferred scale, i.e. both on the original linear scale as well as on a transformed scale. It can also be employed in regression approaches to model systematic (e.g. array or dye effects. Conclusions The quasi-likelihood framework provides a simple and versatile approach to analyze gene expression data that does not make any strong distributional assumptions about the underlying error model. For several simulated as well as real data sets it provides a better fit to the data than competing models. In an example it also
MODELING OF MANUFACTURING ERRORS FOR PIN-GEAR ELEMENTS OF PLANETARY GEARBOX
Directory of Open Access Journals (Sweden)
Ivan M. Egorov
2014-11-01
Full Text Available Theoretical background for calculation of k-h-v type cycloid reducers was developed relatively long ago. However, recently the matters of cycloid reducer design again attracted heightened attention. The reason for that is that such devices are used in many complex engineering systems, particularly, in mechatronic and robotics systems. The development of advanced technological capabilities for manufacturing of such reducers today gives the possibility for implementation of essential features of such devices: high efficiency, high gear ratio, kinematic accuracy and smooth motion. The presence of an adequate mathematical model gives the possibility for adjusting kinematic accuracy of the reducer by rational selection of manufacturing tolerances for its parts. This makes it possible to automate the design process for cycloid reducers with account of various factors including technological ones. A mathematical model and mathematical technique have been developed giving the possibility for modeling the kinematic error of the reducer with account of multiple factors, including manufacturing errors. The errors are considered in the way convenient for prediction of kinematic accuracy early at the manufacturing stage according to the results of reducer parts measurement on coordinate measuring machines. During the modeling, the wheel manufacturing errors are determined by the eccentricity and radius deviation of the pin tooth centers circle, and the deviation between the pin tooth axes positions and the centers circle. The satellite manufacturing errors are determined by the satellite eccentricity deviation and the satellite rim eccentricity. Due to the collinearity, the pin tooth and pin tooth hole diameter errors and the satellite tooth profile errors for a designated contact point are integrated into one deviation. Software implementation of the model makes it possible to estimate the pointed errors influence on satellite rotation angle error and
Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors
Energy Technology Data Exchange (ETDEWEB)
Nelms, Benjamin E.; Zhen Heming; Tome, Wolfgang A. [Canis Lupus LLC and Department of Human Oncology, University of Wisconsin, Merrimac, Wisconsin 53561 (United States); Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705 (United States); Departments of Human Oncology, Medical Physics, and Biomedical Engineering, University of Wisconsin, Madison, Wisconsin 53792 (United States)
2011-02-15
Purpose: The purpose of this work is to determine the statistical correlation between per-beam, planar IMRT QA passing rates and several clinically relevant, anatomy-based dose errors for per-patient IMRT QA. The intent is to assess the predictive power of a common conventional IMRT QA performance metric, the Gamma passing rate per beam. Methods: Ninety-six unique data sets were created by inducing four types of dose errors in 24 clinical head and neck IMRT plans, each planned with 6 MV Varian 120-leaf MLC linear accelerators using a commercial treatment planning system and step-and-shoot delivery. The error-free beams/plans were used as ''simulated measurements'' (for generating the IMRT QA dose planes and the anatomy dose metrics) to compare to the corresponding data calculated by the error-induced plans. The degree of the induced errors was tuned to mimic IMRT QA passing rates that are commonly achieved using conventional methods. Results: Analysis of clinical metrics (parotid mean doses, spinal cord max and D1cc, CTV D95, and larynx mean) vs IMRT QA Gamma analysis (3%/3 mm, 2/2, 1/1) showed that in all cases, there were only weak to moderate correlations (range of Pearson's r-values: -0.295 to 0.653). Moreover, the moderate correlations actually had positive Pearson's r-values (i.e., clinically relevant metric differences increased with increasing IMRT QA passing rate), indicating that some of the largest anatomy-based dose differences occurred in the cases of high IMRT QA passing rates, which may be called ''false negatives.'' The results also show numerous instances of false positives or cases where low IMRT QA passing rates do not imply large errors in anatomy dose metrics. In none of the cases was there correlation consistent with high predictive power of planar IMRT passing rates, i.e., in none of the cases did high IMRT QA Gamma passing rates predict low errors in anatomy dose metrics or vice versa
Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors
International Nuclear Information System (INIS)
Nelms, Benjamin E.; Zhen Heming; Tome, Wolfgang A.
2011-01-01
Purpose: The purpose of this work is to determine the statistical correlation between per-beam, planar IMRT QA passing rates and several clinically relevant, anatomy-based dose errors for per-patient IMRT QA. The intent is to assess the predictive power of a common conventional IMRT QA performance metric, the Gamma passing rate per beam. Methods: Ninety-six unique data sets were created by inducing four types of dose errors in 24 clinical head and neck IMRT plans, each planned with 6 MV Varian 120-leaf MLC linear accelerators using a commercial treatment planning system and step-and-shoot delivery. The error-free beams/plans were used as ''simulated measurements'' (for generating the IMRT QA dose planes and the anatomy dose metrics) to compare to the corresponding data calculated by the error-induced plans. The degree of the induced errors was tuned to mimic IMRT QA passing rates that are commonly achieved using conventional methods. Results: Analysis of clinical metrics (parotid mean doses, spinal cord max and D1cc, CTV D95, and larynx mean) vs IMRT QA Gamma analysis (3%/3 mm, 2/2, 1/1) showed that in all cases, there were only weak to moderate correlations (range of Pearson's r-values: -0.295 to 0.653). Moreover, the moderate correlations actually had positive Pearson's r-values (i.e., clinically relevant metric differences increased with increasing IMRT QA passing rate), indicating that some of the largest anatomy-based dose differences occurred in the cases of high IMRT QA passing rates, which may be called ''false negatives.'' The results also show numerous instances of false positives or cases where low IMRT QA passing rates do not imply large errors in anatomy dose metrics. In none of the cases was there correlation consistent with high predictive power of planar IMRT passing rates, i.e., in none of the cases did high IMRT QA Gamma passing rates predict low errors in anatomy dose metrics or vice versa. Conclusions: There is a lack of correlation between
Some aspects of statistical modeling of human-error probability
International Nuclear Information System (INIS)
Prairie, R.R.
1982-01-01
Human reliability analyses (HRA) are often performed as part of risk assessment and reliability projects. Recent events in nuclear power have shown the potential importance of the human element. There are several on-going efforts in the US and elsewhere with the purpose of modeling human error such that the human contribution can be incorporated into an overall risk assessment associated with one or more aspects of nuclear power. An effort that is described here uses the HRA (event tree) to quantify and model the human contribution to risk. As an example, risk analyses are being prepared on several nuclear power plants as part of the Interim Reliability Assessment Program (IREP). In this process the risk analyst selects the elements of his fault tree that could be contributed to by human error. He then solicits the HF analyst to do a HRA on this element
Directory of Open Access Journals (Sweden)
Seyma Caliskan Cavdar
2015-08-01
Full Text Available In this study, we try to examine whether the forecast errors obtained by the ANN models affect the breakout of financial crises. Additionally, we try to investigate how much the asymmetric information and forecast errors are reflected on the output values. In our study, we used the exchange rate of USD/TRY (USD, the Borsa Istanbul 100 Index (BIST, and gold price (GP as our output variables of our Artificial Neural Network (ANN models. We observe that the predicted ANN model has a strong explanation capability for the 2001 and 2008 crises. Our calculations of some symmetry measures such as mean absolute percentage error (MAPE, symmetric mean absolute percentage error (sMAPE, and Shannon entropy (SE, clearly demonstrate the degree of asymmetric information and the deterioration of the financial system prior to, during, and after the financial crisis. We found that the asymmetric information prior to crisis is larger as compared to other periods. This situation can be interpreted as early warning signals before the potential crises. This evidence seems to favor an asymmetric information view of financial crises.
Sang, Huiyan
2011-12-01
This paper investigates the cross-correlations across multiple climate model errors. We build a Bayesian hierarchical model that accounts for the spatial dependence of individual models as well as cross-covariances across different climate models. Our method allows for a nonseparable and nonstationary cross-covariance structure. We also present a covariance approximation approach to facilitate the computation in the modeling and analysis of very large multivariate spatial data sets. The covariance approximation consists of two parts: a reduced-rank part to capture the large-scale spatial dependence, and a sparse covariance matrix to correct the small-scale dependence error induced by the reduced rank approximation. We pay special attention to the case that the second part of the approximation has a block-diagonal structure. Simulation results of model fitting and prediction show substantial improvement of the proposed approximation over the predictive process approximation and the independent blocks analysis. We then apply our computational approach to the joint statistical modeling of multiple climate model errors. © 2012 Institute of Mathematical Statistics.
Energy Technology Data Exchange (ETDEWEB)
Simsek, Esra Bilgin [Yalova University, Yalova (Turkmenistan); Beker, Ulker [Yldz Technical University, Istanbul (Turkmenistan)
2014-11-15
Arsenic adsorption properties of mono- (Fe or Al) and binary (Fe-Al) metal oxides supported on natural zeolite were investigated at three levels of temperature (298, 318 and 338 K). All data obtained from equilibrium experiments were analyzed by Freundlich, Langmuir, Dubinin-Radushkevich, Sips, Toth and Redlich-Peterson isotherms, and error functions were used to predict the best fitting model. The error analysis demonstrated that the As(Ⅴ) adsorption processes were best described by the Dubinin-Raduskevich model with the lowest sum of normalized error values. According to results, the presence of iron and aluminum oxides in the zeolite network improved the As(Ⅴ) adsorption capacity of the raw zeolite (ZNa). The X-ray photoelectron spectroscopy (XPS) analyses of ZNa-Fe and ZNa-AlFe samples suggested that the redox reactions are the postulated mechanisms for the adsorption onto them while the adsorption process is followed by surface complexation reactions for ZNa-Al.
International Nuclear Information System (INIS)
Fruehwirth, R.
1993-01-01
We present an estimation procedure of the error components in a linear regression model with multiple independent stochastic error contributions. After solving the general problem we apply the results to the estimation of the actual trajectory in track fitting with multiple scattering. (orig.)
Topological quantum error correction in the Kitaev honeycomb model
Lee, Yi-Chan; Brell, Courtney G.; Flammia, Steven T.
2017-08-01
The Kitaev honeycomb model is an approximate topological quantum error correcting code in the same phase as the toric code, but requiring only a 2-body Hamiltonian. As a frustrated spin model, it is well outside the commuting models of topological quantum codes that are typically studied, but its exact solubility makes it more amenable to analysis of effects arising in this noncommutative setting than a generic topologically ordered Hamiltonian. Here we study quantum error correction in the honeycomb model using both analytic and numerical techniques. We first prove explicit exponential bounds on the approximate degeneracy, local indistinguishability, and correctability of the code space. These bounds are tighter than can be achieved using known general properties of topological phases. Our proofs are specialized to the honeycomb model, but some of the methods may nonetheless be of broader interest. Following this, we numerically study noise caused by thermalization processes in the perturbative regime close to the toric code renormalization group fixed point. The appearance of non-topological excitations in this setting has no significant effect on the error correction properties of the honeycomb model in the regimes we study. Although the behavior of this model is found to be qualitatively similar to that of the standard toric code in most regimes, we find numerical evidence of an interesting effect in the low-temperature, finite-size regime where a preferred lattice direction emerges and anyon diffusion is geometrically constrained. We expect this effect to yield an improvement in the scaling of the lifetime with system size as compared to the standard toric code.
Prediction of pipeline corrosion rate based on grey Markov models
International Nuclear Information System (INIS)
Chen Yonghong; Zhang Dafa; Peng Guichu; Wang Yuemin
2009-01-01
Based on the model that combined by grey model and Markov model, the prediction of corrosion rate of nuclear power pipeline was studied. Works were done to improve the grey model, and the optimization unbiased grey model was obtained. This new model was used to predict the tendency of corrosion rate, and the Markov model was used to predict the residual errors. In order to improve the prediction precision, rolling operation method was used in these prediction processes. The results indicate that the improvement to the grey model is effective and the prediction precision of the new model combined by the optimization unbiased grey model and Markov model is better, and the use of rolling operation method may improve the prediction precision further. (authors)
Motivational state controls the prediction error in Pavlovian appetitive-aversive interactions.
Laurent, Vincent; Balleine, Bernard W; Westbrook, R Frederick
2018-01-01
Contemporary theories of learning emphasize the role of a prediction error signal in driving learning, but the nature of this signal remains hotly debated. Here, we used Pavlovian conditioning in rats to investigate whether primary motivational and emotional states interact to control prediction error. We initially generated cues that positively or negatively predicted an appetitive food outcome. We then assessed how these cues modulated aversive conditioning when a novel cue was paired with a foot shock. We found that a positive predictor of food enhances, whereas a negative predictor of that same food impairs, aversive conditioning. Critically, we also showed that the enhancement produced by the positive predictor is removed by reducing the value of its associated food. In contrast, the impairment triggered by the negative predictor remains insensitive to devaluation of its associated food. These findings provide compelling evidence that the motivational value attributed to a predicted food outcome can directly control appetitive-aversive interactions and, therefore, that motivational processes can modulate emotional processes to generate the final error term on which subsequent learning is based. Copyright © 2017 Elsevier Inc. All rights reserved.
Lardeux, Sylvie; Paleressompoulle, Dany; Pernaud, Remy; Cador, Martine; Baunez, Christelle
2013-10-01
The search for treatment of cocaine addiction raises the challenge to find a way to diminish motivation for the drug without decreasing it for natural rewards. Subthalamic nucleus (STN) inactivation decreases motivation for cocaine while increasing motivation for food, suggesting that STN can dissociate different rewards. Here, we investigated how rat STN neurons respond to cues predicting cocaine or sucrose and to reward delivery while rats are performing a discriminative stimuli task. We show that different neuronal populations of STN neurons encode cocaine and sucrose. In addition, we show that STN activity at the cue onset predicts future error. When changing the reward predicted unexpectedly, STN neurons show capacities of adaptation, suggesting a role in reward-prediction error. Furthermore, some STN neurons show a response to executive error (i.e., "oops neurons") that is specific to the missed reward. These results position the STN as a nexus where natural rewards and drugs of abuse are coded differentially and can influence the performance. Therefore, STN can be viewed as a structure where action could be taken for the treatment of cocaine addiction.
Modeling Conflict and Error in the Medial Frontal Cortex
Mayer, Andrew R.; Teshiba, Terri M.; Franco, Alexandre R.; Ling, Josef; Shane, Matthew S.; Stephen, Julia M.; Jung, Rex E.
2014-01-01
Despite intensive study, the role of the dorsal medial frontal cortex (dMFC) in error monitoring and conflict processing remains actively debated. The current experiment manipulated conflict type (stimulus conflict only or stimulus and response selection conflict) and utilized a novel modeling approach to isolate error and conflict variance during a multimodal numeric Stroop task. Specifically, hemodynamic response functions resulting from two statistical models that either included or isolated variance arising from relatively few error trials were directly contrasted. Twenty-four participants completed the task while undergoing event-related functional magnetic resonance imaging on a 1.5-Tesla scanner. Response times monotonically increased based on the presence of pure stimulus or stimulus and response selection conflict. Functional results indicated that dMFC activity was present during trials requiring response selection and inhibition of competing motor responses, but absent during trials involving pure stimulus conflict. A comparison of the different statistical models suggested that relatively few error trials contributed to a disproportionate amount of variance (i.e., activity) throughout the dMFC, but particularly within the rostral anterior cingulate gyrus (rACC). Finally, functional connectivity analyses indicated that an empirically derived seed in the dorsal ACC/pre-SMA exhibited strong connectivity (i.e., positive correlation) with prefrontal and inferior parietal cortex but was anticorrelated with the default-mode network. An empirically derived seed from the rACC exhibited the opposite pattern, suggesting that sub-regions of the dMFC exhibit different connectivity patterns with other large scale networks implicated in internal mentations such as daydreaming (default-mode) versus the execution of top-down attentional control (fronto-parietal). PMID:21976411
Modeling conflict and error in the medial frontal cortex.
Mayer, Andrew R; Teshiba, Terri M; Franco, Alexandre R; Ling, Josef; Shane, Matthew S; Stephen, Julia M; Jung, Rex E
2012-12-01
Despite intensive study, the role of the dorsal medial frontal cortex (dMFC) in error monitoring and conflict processing remains actively debated. The current experiment manipulated conflict type (stimulus conflict only or stimulus and response selection conflict) and utilized a novel modeling approach to isolate error and conflict variance during a multimodal numeric Stroop task. Specifically, hemodynamic response functions resulting from two statistical models that either included or isolated variance arising from relatively few error trials were directly contrasted. Twenty-four participants completed the task while undergoing event-related functional magnetic resonance imaging on a 1.5-Tesla scanner. Response times monotonically increased based on the presence of pure stimulus or stimulus and response selection conflict. Functional results indicated that dMFC activity was present during trials requiring response selection and inhibition of competing motor responses, but absent during trials involving pure stimulus conflict. A comparison of the different statistical models suggested that relatively few error trials contributed to a disproportionate amount of variance (i.e., activity) throughout the dMFC, but particularly within the rostral anterior cingulate gyrus (rACC). Finally, functional connectivity analyses indicated that an empirically derived seed in the dorsal ACC/pre-SMA exhibited strong connectivity (i.e., positive correlation) with prefrontal and inferior parietal cortex but was anti-correlated with the default-mode network. An empirically derived seed from the rACC exhibited the opposite pattern, suggesting that sub-regions of the dMFC exhibit different connectivity patterns with other large scale networks implicated in internal mentations such as daydreaming (default-mode) versus the execution of top-down attentional control (fronto-parietal). Copyright © 2011 Wiley Periodicals, Inc.
PREDICTED PERCENTAGE DISSATISFIED (PPD) MODEL ...
African Journals Online (AJOL)
HOD
their low power requirements, are relatively cheap and are environment friendly. ... PREDICTED PERCENTAGE DISSATISFIED MODEL EVALUATION OF EVAPORATIVE COOLING ... The performance of direct evaporative coolers is a.
BozorgMagham, Amir E.; Ross, Shane D.; Schmale, David G.
2013-09-01
The language of Lagrangian coherent structures (LCSs) provides a new means for studying transport and mixing of passive particles advected by an atmospheric flow field. Recent observations suggest that LCSs govern the large-scale atmospheric motion of airborne microorganisms, paving the way for more efficient models and management strategies for the spread of infectious diseases affecting plants, domestic animals, and humans. In addition, having reliable predictions of the timing of hyperbolic LCSs may contribute to improved aerobiological sampling of microorganisms with unmanned aerial vehicles and LCS-based early warning systems. Chaotic atmospheric dynamics lead to unavoidable forecasting errors in the wind velocity field, which compounds errors in LCS forecasting. In this study, we reveal the cumulative effects of errors of (short-term) wind field forecasts on the finite-time Lyapunov exponent (FTLE) fields and the associated LCSs when realistic forecast plans impose certain limits on the forecasting parameters. Objectives of this paper are to (a) quantify the accuracy of prediction of FTLE-LCS features and (b) determine the sensitivity of such predictions to forecasting parameters. Results indicate that forecasts of attracting LCSs exhibit less divergence from the archive-based LCSs than the repelling features. This result is important since attracting LCSs are the backbone of long-lived features in moving fluids. We also show under what circumstances one can trust the forecast results if one merely wants to know if an LCS passed over a region and does not need to precisely know the passage time.
Modeling of Bit Error Rate in Cascaded 2R Regenerators
DEFF Research Database (Denmark)
Öhman, Filip; Mørk, Jesper
2006-01-01
and the regenerating nonlinearity is investigated. It is shown that an increase in nonlinearity can compensate for an increase in noise figure or decrease in signal power. Furthermore, the influence of the improvement in signal extinction ratio along the cascade and the importance of choosing the proper threshold......This paper presents a simple and efficient model for estimating the bit error rate in a cascade of optical 2R-regenerators. The model includes the influences of of amplifier noise, finite extinction ratio and nonlinear reshaping. The interplay between the different signal impairments...
Likelihood-Based Inference in Nonlinear Error-Correction Models
DEFF Research Database (Denmark)
Kristensen, Dennis; Rahbæk, Anders
We consider a class of vector nonlinear error correction models where the transfer function (or loadings) of the stationary relation- ships is nonlinear. This includes in particular the smooth transition models. A general representation theorem is given which establishes the dynamic properties...... and a linear trend in general. Gaussian likelihood-based estimators are considered for the long- run cointegration parameters, and the short-run parameters. Asymp- totic theory is provided for these and it is discussed to what extend asymptotic normality and mixed normaity can be found. A simulation study...
Testing and inference in nonlinear cointegrating vector error correction models
DEFF Research Database (Denmark)
Kristensen, D.; Rahbek, A.
2013-01-01
We analyze estimators and tests for a general class of vector error correction models that allows for asymmetric and nonlinear error correction. For a given number of cointegration relationships, general hypothesis testing is considered, where testing for linearity is of particular interest. Under...... the null of linearity, parameters of nonlinear components vanish, leading to a nonstandard testing problem. We apply so-called sup-tests to resolve this issue, which requires development of new(uniform) functional central limit theory and results for convergence of stochastic integrals. We provide a full...... asymptotic theory for estimators and test statistics. The derived asymptotic results prove to be nonstandard compared to results found elsewhere in the literature due to the impact of the estimated cointegration relations. This complicates implementation of tests motivating the introduction of bootstrap...
International Nuclear Information System (INIS)
Wilson, P.A.
1986-01-01
The null hypothesis for this study suggested that there was no significant difference in the types of performance error indicators between accredited and non-accredited programs on the following types of indicators: (1) number of significant event reports per unit, (2) number of forced outages per unit, (3) number of unplanned automatic scrams per unit, and (4) amount of equivalent availability per unit. A sample of 90 nuclear power plants was selected for this study. Data were summarized from two data bases maintained by the Institute of Nuclear Power Operations. Results of this study did not support the research hypothesis. There was no significant difference between the accredited and non-accredited programs on any of the four performance error indicators. The primary conclusions of this include the following: (1) The four selected performance error indicators cannot be used individually or collectively to predict accreditation status in the nuclear power industry. (2) Annual performance error indicator ratings cannot be used to determine the effects of performance-based training on plant performance. (3) The four selected performance error indicators cannot be used to measure the effect of operator job performance on plant effectiveness
Prediction of Monte Carlo errors by a theory generalized to treat track-length estimators
International Nuclear Information System (INIS)
Booth, T.E.; Amster, H.J.
1978-01-01
Present theories for predicting expected Monte Carlo errors in neutron transport calculations apply to estimates of flux-weighted integrals sampled directly by scoring individual collisions. To treat track-length estimators, the recent theory of Amster and Djomehri is generalized to allow the score distribution functions to depend on the coordinates of two successive collisions. It has long been known that the expected track length in a region of phase space equals the expected flux integrated over that region, but that the expected statistical error of the Monte Carlo estimate of the track length is different from that of the flux integral obtained by sampling the sum of the reciprocals of the cross sections for all collisions in the region. These conclusions are shown to be implied by the generalized theory, which provides explicit equations for the expected values and errors of both types of estimators. Sampling expected contributions to the track-length estimator is also treated. Other general properties of the errors for both estimators are derived from the equations and physically interpreted. The actual values of these errors are then obtained and interpreted for a simple specific example
Shipitsin, M; Small, C; Choudhury, S; Giladi, E; Friedlander, S; Nardone, J; Hussain, S; Hurley, A D; Ernst, C; Huang, Y E; Chang, H; Nifong, T P; Rimm, D L; Dunyak, J; Loda, M
2014-01-01
Background: Key challenges of biopsy-based determination of prostate cancer aggressiveness include tumour heterogeneity, biopsy-sampling error, and variations in biopsy interpretation. The resulting uncertainty in risk assessment leads to significant overtreatment, with associated costs and morbidity. We developed a performance-based strategy to identify protein biomarkers predictive of prostate cancer aggressiveness and lethality regardless of biopsy-sampling variation. Methods: Prostatectom...
Multi-model analysis in hydrological prediction
Lanthier, M.; Arsenault, R.; Brissette, F.
2017-12-01
Hydrologic modelling, by nature, is a simplification of the real-world hydrologic system. Therefore ensemble hydrological predictions thus obtained do not present the full range of possible streamflow outcomes, thereby producing ensembles which demonstrate errors in variance such as under-dispersion. Past studies show that lumped models used in prediction mode can return satisfactory results, especially when there is not enough information available on the watershed to run a distributed model. But all lumped models greatly simplify the complex processes of the hydrologic cycle. To generate more spread in the hydrologic ensemble predictions, multi-model ensembles have been considered. In this study, the aim is to propose and analyse a method that gives an ensemble streamflow prediction that properly represents the forecast probabilities and reduced ensemble bias. To achieve this, three simple lumped models are used to generate an ensemble. These will also be combined using multi-model averaging techniques, which generally generate a more accurate hydrogram than the best of the individual models in simulation mode. This new predictive combined hydrogram is added to the ensemble, thus creating a large ensemble which may improve the variability while also improving the ensemble mean bias. The quality of the predictions is then assessed on different periods: 2 weeks, 1 month, 3 months and 6 months using a PIT Histogram of the percentiles of the real observation volumes with respect to the volumes of the ensemble members. Initially, the models were run using historical weather data to generate synthetic flows. This worked for individual models, but not for the multi-model and for the large ensemble. Consequently, by performing data assimilation at each prediction period and thus adjusting the initial states of the models, the PIT Histogram could be constructed using the observed flows while allowing the use of the multi-model predictions. The under-dispersion has been
Global tropospheric ozone modeling: Quantifying errors due to grid resolution
Wild, Oliver; Prather, Michael J.
2006-06-01
Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes on a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63, and T106 resolution is likewise monotonic but indicates that there are still large errors at 120 km scales, suggesting that T106 resolution is too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over east Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution. However, subsequent ozone production in the free troposphere is not greatly affected. We find that the export of short-lived precursors such as NOx by convection is overestimated at coarse resolution.
2015-02-01
Computational and Information Sciences Directorate Battlefield Environment Division (ATTN: RDRL- CIE -M) White Sands Missile Range, NM 88002-5501 8. PERFORMING...meteorological parameters, which became our focus. We found that elevation accounts for a significant portion of the variance in the model error. The...found that elevation accounts for a significant portion of the variance in the model error of surface temperature and relative humidity predictions
ANALYSIS AND CORRECTION OF SYSTEMATIC HEIGHT MODEL ERRORS
Directory of Open Access Journals (Sweden)
K. Jacobsen
2016-06-01
Full Text Available The geometry of digital height models (DHM determined with optical satellite stereo combinations depends upon the image orientation, influenced by the satellite camera, the system calibration and attitude registration. As standard these days the image orientation is available in form of rational polynomial coefficients (RPC. Usually a bias correction of the RPC based on ground control points is required. In most cases the bias correction requires affine transformation, sometimes only shifts, in image or object space. For some satellites and some cases, as caused by small base length, such an image orientation does not lead to the possible accuracy of height models. As reported e.g. by Yong-hua et al. 2015 and Zhang et al. 2015, especially the Chinese stereo satellite ZiYuan-3 (ZY-3 has a limited calibration accuracy and just an attitude recording of 4 Hz which may not be satisfying. Zhang et al. 2015 tried to improve the attitude based on the color sensor bands of ZY-3, but the color images are not always available as also detailed satellite orientation information. There is a tendency of systematic deformation at a Pléiades tri-stereo combination with small base length. The small base length enlarges small systematic errors to object space. But also in some other satellite stereo combinations systematic height model errors have been detected. The largest influence is the not satisfying leveling of height models, but also low frequency height deformations can be seen. A tilt of the DHM by theory can be eliminated by ground control points (GCP, but often the GCP accuracy and distribution is not optimal, not allowing a correct leveling of the height model. In addition a model deformation at GCP locations may lead to not optimal DHM leveling. Supported by reference height models better accuracy has been reached. As reference height model the Shuttle Radar Topography Mission (SRTM digital surface model (DSM or the new AW3D30 DSM, based on ALOS
Evaluation of CASP8 model quality predictions
Cozzetto, Domenico
2009-01-01
The model quality assessment problem consists in the a priori estimation of the overall and per-residue accuracy of protein structure predictions. Over the past years, a number of methods have been developed to address this issue and CASP established a prediction category to evaluate their performance in 2006. In 2008 the experiment was repeated and its results are reported here. Participants were invited to infer the correctness of the protein models submitted by the registered automatic servers. Estimates could apply to both whole models and individual amino acids. Groups involved in the tertiary structure prediction categories were also asked to assign local error estimates to each predicted residue in their own models and their results are also discussed here. The correlation between the predicted and observed correctness measures was the basis of the assessment of the results. We observe that consensus-based methods still perform significantly better than those accepting single models, similarly to what was concluded in the previous edition of the experiment. © 2009 WILEY-LISS, INC.
Beyond reward prediction errors: the role of dopamine in movement kinematics
Directory of Open Access Journals (Sweden)
Joseph eBarter
2015-05-01
Full Text Available We recorded activity of dopamine (DA neurons in the substantia nigra pars compacta in unrestrained mice while monitoring their movements with video tracking. Our approach allows an unbiased examination of the continuous relationship between single unit activity and behavior. Although DA neurons show characteristic burst firing following cue or reward presentation, as previously reported, their activity can be explained by the representation of actual movement kinematics. Unlike neighboring pars reticulata GABAergic output neurons, which can represent vector components of position, DA neurons represent vector components of velocity or acceleration. We found neurons related to movements in four directions—up, down, left right. For horizontal movements, there is significant lateralization of neurons: the left nigra contains more rightward neurons, whereas the right nigra contains more leftward neurons. The relationship between DA activity and movement kinematics was found on both appetitive trials using sucrose and aversive trials using air puff, showing that these neurons belong to a velocity control circuit that can be used for any number of purposes, whether to seek reward or to avoid harm. In support of this conclusion, mimicry of the phasic activation of DA neurons with selective optogenetic stimulation could also generate movements. Contrary to the popular hypothesis that DA neurons encode reward prediction errors, our results suggest that nigrostriatal DA plays an essential role in controlling the kinematics of voluntary movements. We hypothesize that DA signaling implements gain adjustment for adaptive transition control, and describe a new model of BG in which DA functions to adjust the gain of a transition controller. This model has significant implications for our understanding of movement disorders implicating DA and the BG.
Predictive validation of an influenza spread model.
Directory of Open Access Journals (Sweden)
Ayaz Hyder
Full Text Available BACKGROUND: Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread. METHODS AND FINDINGS: We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998-1999. Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type. Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic. CONCLUSIONS: Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve
Predictive Validation of an Influenza Spread Model
Hyder, Ayaz; Buckeridge, David L.; Leung, Brian
2013-01-01
Background Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread. Methods and Findings We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998–1999). Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type). Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic. Conclusions Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers) with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve their predictive
Duda, David P.; Minnis, Patrick
2009-01-01
Straightforward application of the Schmidt-Appleman contrail formation criteria to diagnose persistent contrail occurrence from numerical weather prediction data is hindered by significant bias errors in the upper tropospheric humidity. Logistic models of contrail occurrence have been proposed to overcome this problem, but basic questions remain about how random measurement error may affect their accuracy. A set of 5000 synthetic contrail observations is created to study the effects of random error in these probabilistic models. The simulated observations are based on distributions of temperature, humidity, and vertical velocity derived from Advanced Regional Prediction System (ARPS) weather analyses. The logistic models created from the simulated observations were evaluated using two common statistical measures of model accuracy, the percent correct (PC) and the Hanssen-Kuipers discriminant (HKD). To convert the probabilistic results of the logistic models into a dichotomous yes/no choice suitable for the statistical measures, two critical probability thresholds are considered. The HKD scores are higher when the climatological frequency of contrail occurrence is used as the critical threshold, while the PC scores are higher when the critical probability threshold is 0.5. For both thresholds, typical random errors in temperature, relative humidity, and vertical velocity are found to be small enough to allow for accurate logistic models of contrail occurrence. The accuracy of the models developed from synthetic data is over 85 percent for both the prediction of contrail occurrence and non-occurrence, although in practice, larger errors would be anticipated.
A method for the quantification of model form error associated with physical systems.
Energy Technology Data Exchange (ETDEWEB)
Wallen, Samuel P.; Brake, Matthew Robert
2014-03-01
In the process of model validation, models are often declared valid when the differences between model predictions and experimental data sets are satisfactorily small. However, little consideration is given to the effectiveness of a model using parameters that deviate slightly from those that were fitted to data, such as a higher load level. Furthermore, few means exist to compare and choose between two or more models that reproduce data equally well. These issues can be addressed by analyzing model form error, which is the error associated with the differences between the physical phenomena captured by models and that of the real system. This report presents a new quantitative method for model form error analysis and applies it to data taken from experiments on tape joint bending vibrations. Two models for the tape joint system are compared, and suggestions for future improvements to the method are given. As the available data set is too small to draw any statistical conclusions, the focus of this paper is the development of a methodology that can be applied to general problems.
Bootstrap prediction and Bayesian prediction under misspecified models
Fushiki, Tadayoshi
2005-01-01
We consider a statistical prediction problem under misspecified models. In a sense, Bayesian prediction is an optimal prediction method when an assumed model is true. Bootstrap prediction is obtained by applying Breiman's `bagging' method to a plug-in prediction. Bootstrap prediction can be considered to be an approximation to the Bayesian prediction under the assumption that the model is true. However, in applications, there are frequently deviations from the assumed model. In this paper, bo...
Specification and Aggregation Errors in Environmentally Extended Input-Output Models
Bouwmeester, Maaike C.; Oosterhaven, Jan
This article considers the specification and aggregation errors that arise from estimating embodied emissions and embodied water use with environmentally extended national input-output (IO) models, instead of with an environmentally extended international IO model. Model specification errors result
PENDEKATAN ERROR CORRECTION MODEL SEBAGAI PENENTU HARGA SAHAM
Directory of Open Access Journals (Sweden)
David Kaluge
2017-03-01
Full Text Available This research was to find the effect of profitability, rate of interest, GDP, and foreign exchange rate on stockprices. Approach used was error correction model. Profitability was indicated by variables EPS, and ROIwhile the SBI (1 month was used for representing interest rate. This research found that all variablessimultaneously affected the stock prices significantly. Partially, EPS, PER, and Foreign Exchange rate significantlyaffected the prices both in short run and long run. Interestingly that SBI and GDP did not affect theprices at all. The variable of ROI had only long run impact on the prices.
Prediction and error growth in the daily forecast of precipitation from ...
Indian Academy of Sciences (India)
J. Earth Syst. Sci. 125, No. 1, February ... various climate models (Shukla 1985; Savijarvi. 1994; Shukla and ... of view of the socio-economic impact perspective. The rate of error ..... bias over the Indian Ocean, cloud parameteriza- tion schemes ...
Modeling SMAP Spacecraft Attitude Control Estimation Error Using Signal Generation Model
Rizvi, Farheen
2016-01-01
Two ground simulation software are used to model the SMAP spacecraft dynamics. The CAST software uses a higher fidelity model than the ADAMS software. The ADAMS software models the spacecraft plant, controller and actuator models, and assumes a perfect sensor and estimator model. In this simulation study, the spacecraft dynamics results from the ADAMS software are used as CAST software is unavailable. The main source of spacecraft dynamics error in the higher fidelity CAST software is due to the estimation error. A signal generation model is developed to capture the effect of this estimation error in the overall spacecraft dynamics. Then, this signal generation model is included in the ADAMS software spacecraft dynamics estimate such that the results are similar to CAST. This signal generation model has similar characteristics mean, variance and power spectral density as the true CAST estimation error. In this way, ADAMS software can still be used while capturing the higher fidelity spacecraft dynamics modeling from CAST software.
Geometrical modelling of scanning probe microscopes and characterization of errors
International Nuclear Information System (INIS)
Marinello, F; Savio, E; Bariani, P; Carmignato, S
2009-01-01
Scanning probe microscopes (SPMs) allow quantitative evaluation of surface topography with ultra-high resolution, as a result of accurate actuation combined with the sharpness of tips. SPMs measure sequentially, by scanning surfaces in a raster fashion: topography maps commonly consist of data sets ideally reported in an orthonormal rectilinear Cartesian coordinate system. However, due to scanning errors and measurement distortions, the measurement process is far from the ideal Cartesian condition. The paper addresses geometrical modelling of the scanning system dynamics, presenting a mathematical model which describes the surface metric x-, y- and z- coordinates as a function of the measured x'-, y'- and z'-coordinates respectively. The complete mathematical model provides a relevant contribution to characterization and calibration, and ultimately to traceability, of SPMs, when applied for quantitative characterization
Modelling the basic error tendencies of human operators
International Nuclear Information System (INIS)
Reason, J.
1988-01-01
The paper outlines the primary structural features of human cognition: a limited, serial workspace interacting with a parallel distributed knowledge base. It is argued that the essential computational features of human cognition - to be captured by an adequate operator model - reside in the mechanisms by which stored knowledge structures are selected and brought into play. Two such computational 'primitives' are identified: similarity-matching and frequency-gambling. These two retrieval heuristics, it is argued, shape both the overall character of human performance (i.e. its heavy reliance on pattern-matching) and its basic error tendencies ('strong-but-wrong' responses, confirmation, similarity and frequency biases, and cognitive 'lock-up'). The various features of human cognition are integrated with a dynamic operator model capable of being represented in software form. This computer model, when run repeatedly with a variety of problem configurations, should produce a distribution of behaviours which, in total, simulate the general character of operator performance. (author)
Modelling the basic error tendencies of human operators
International Nuclear Information System (INIS)
Reason, James
1988-01-01
The paper outlines the primary structural features of human cognition: a limited, serial workspace interacting with a parallel distributed knowledge base. It is argued that the essential computational features of human cognition - to be captured by an adequate operator model - reside in the mechanisms by which stored knowledge structures are selected and brought into play. Two such computational 'primitives' are identified: similarity-matching and frequency-gambling. These two retrieval heuristics, it is argued, shape both the overall character of human performance (i.e. its heavy reliance on pattern-matching) and its basic error tendencies ('strong-but-wrong' responses, confirmation, similarity and frequency biases, and cognitive 'lock-up'). The various features of human cognition are integrated with a dynamic operator model capable of being represented in software form. This computer model, when run repeatedly with a variety of problem configurations, should produce a distribution of behaviours which, in toto, simulate the general character of operator performance. (author)
Evaluation Of Statistical Models For Forecast Errors From The HBV-Model
Engeland, K.; Kolberg, S.; Renard, B.; Stensland, I.
2009-04-01
Three statistical models for the forecast errors for inflow to the Langvatn reservoir in Northern Norway have been constructed and tested according to how well the distribution and median values of the forecasts errors fit to the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order autoregressive model was constructed for the forecast errors. The parameters were conditioned on climatic conditions. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order autoregressive model was constructed for the forecast errors. For the last model positive and negative errors were modeled separately. The errors were first NQT-transformed before a model where the mean values were conditioned on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: We wanted a) the median values to be close to the observed values; b) the forecast intervals to be narrow; c) the distribution to be correct. The results showed that it is difficult to obtain a correct model for the forecast errors, and that the main challenge is to account for the auto-correlation in the errors. Model 1 and 2 gave similar results, and the main drawback is that the distributions are not correct. The 95% forecast intervals were well identified, but smaller forecast intervals were over-estimated, and larger intervals were under-estimated. Model 3 gave a distribution that fits better, but the median values do not fit well since the auto-correlation is not properly accounted for. If the 95% forecast interval is of interest, Model 2 is recommended. If the whole distribution is of interest, Model 3 is recommended.
Semiparametric modeling: Correcting low-dimensional model error in parametric models
International Nuclear Information System (INIS)
Berry, Tyrus; Harlim, John
2016-01-01
In this paper, a semiparametric modeling approach is introduced as a paradigm for addressing model error arising from unresolved physical phenomena. Our approach compensates for model error by learning an auxiliary dynamical model for the unknown parameters. Practically, the proposed approach consists of the following steps. Given a physics-based model and a noisy data set of historical observations, a Bayesian filtering algorithm is used to extract a time-series of the parameter values. Subsequently, the diffusion forecast algorithm is applied to the retrieved time-series in order to construct the auxiliary model for the time evolving parameters. The semiparametric forecasting algorithm consists of integrating the existing physics-based model with an ensemble of parameters sampled from the probability density function of the diffusion forecast. To specify initial conditions for the diffusion forecast, a Bayesian semiparametric filtering method that extends the Kalman-based filtering framework is introduced. In difficult test examples, which introduce chaotically and stochastically evolving hidden parameters into the Lorenz-96 model, we show that our approach can effectively compensate for model error, with forecasting skill comparable to that of the perfect model.
Stable 1-Norm Error Minimization Based Linear Predictors for Speech Modeling
DEFF Research Database (Denmark)
Giacobello, Daniele; Christensen, Mads Græsbøll; Jensen, Tobias Lindstrøm
2014-01-01
In linear prediction of speech, the 1-norm error minimization criterion has been shown to provide a valid alternative to the 2-norm minimization criterion. However, unlike 2-norm minimization, 1-norm minimization does not guarantee the stability of the corresponding all-pole filter and can generate...... saturations when this is used to synthesize speech. In this paper, we introduce two new methods to obtain intrinsically stable predictors with the 1-norm minimization. The first method is based on constraining the roots of the predictor to lie within the unit circle by reducing the numerical range...... based linear prediction for modeling and coding of speech....
Zheng, F.; Zhu, J.
2015-12-01
To perform an ensemble-based ENSO probabilistic forecast, the crucial issue is to design a reliable ensemble prediction strategy that should include the major uncertainties of a forecast system. In this study, we developed a new general ensemble perturbation technique to improve the ensemble-mean predictive skill of forecasting ENSO using an intermediate coupled model (ICM). The model uncertainties are first estimated and analyzed from EnKF analysis results through assimilating observed SST. Then, based on the pre-analyzed properties of the model errors, a zero-mean stochastic model-error model is developed to mainly represent the model uncertainties induced by some important physical processes missed in the coupled model (i.e., stochastic atmospheric forcing/MJO, extra-tropical cooling and warming, Indian Ocean Dipole mode, etc.). Each member of an ensemble forecast is perturbed by the stochastic model-error model at each step during the 12-month forecast process, and the stochastical perturbations are added into the modeled physical fields to mimic the presence of these high-frequency stochastic noises and model biases and their effect on the predictability of the coupled system. The impacts of stochastic model-error perturbations on ENSO deterministic predictions are examined by performing two sets of 21-yr retrospective forecast experiments. The two forecast schemes are differentiated by whether they considered the model stochastic perturbations, with both initialized by the ensemble-mean analysis states from EnKF. The comparison results suggest that the stochastic model-error perturbations have significant and positive impacts on improving the ensemble-mean prediction skills during the entire 12-month forecast process. Because the nonlinear feature of the coupled model can induce the nonlinear growth of the added stochastic model errors with model integration, especially through the nonlinear heating mechanism with the vertical advection term of the model, the
Comparison of Predictive Modeling Methods of Aircraft Landing Speed
Diallo, Ousmane H.
2012-01-01
Expected increases in air traffic demand have stimulated the development of air traffic control tools intended to assist the air traffic controller in accurately and precisely spacing aircraft landing at congested airports. Such tools will require an accurate landing-speed prediction to increase throughput while decreasing necessary controller interventions for avoiding separation violations. There are many practical challenges to developing an accurate landing-speed model that has acceptable prediction errors. This paper discusses the development of a near-term implementation, using readily available information, to estimate/model final approach speed from the top of the descent phase of flight to the landing runway. As a first approach, all variables found to contribute directly to the landing-speed prediction model are used to build a multi-regression technique of the response surface equation (RSE). Data obtained from operations of a major airlines for a passenger transport aircraft type to the Dallas/Fort Worth International Airport are used to predict the landing speed. The approach was promising because it decreased the standard deviation of the landing-speed error prediction by at least 18% from the standard deviation of the baseline error, depending on the gust condition at the airport. However, when the number of variables is reduced to the most likely obtainable at other major airports, the RSE model shows little improvement over the existing methods. Consequently, a neural network that relies on a nonlinear regression technique is utilized as an alternative modeling approach. For the reduced number of variables cases, the standard deviation of the neural network models errors represent over 5% reduction compared to the RSE model errors, and at least 10% reduction over the baseline predicted landing-speed error standard deviation. Overall, the constructed models predict the landing-speed more accurately and precisely than the current state-of-the-art.
MODEL PREDICTIVE CONTROL FUNDAMENTALS
African Journals Online (AJOL)
2012-07-02
Jul 2, 2012 ... signal based on a process model, coping with constraints on inputs and ... paper, we will present an introduction to the theory and application of MPC with Matlab codes ... section 5 presents the simulation results and section 6.
Measurement error in epidemiologic studies of air pollution based on land-use regression models.
Basagaña, Xavier; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Foraster, Maria; Marrugat, Jaume; Elosua, Roberto; Künzli, Nino
2013-10-15
Land-use regression (LUR) models are increasingly used to estimate air pollution exposure in epidemiologic studies. These models use air pollution measurements taken at a small set of locations and modeling based on geographical covariates for which data are available at all study participant locations. The process of LUR model development commonly includes a variable selection procedure. When LUR model predictions are used as explanatory variables in a model for a health outcome, measurement error can lead to bias of the regression coefficients and to inflation of their variance. In previous studies dealing with spatial predictions of air pollution, bias was shown to be small while most of the effect of measurement error was on the variance. In this study, we show that in realistic cases where LUR models are applied to health data, bias in health-effect estimates can be substantial. This bias depends on the number of air pollution measurement sites, the number of available predictors for model selection, and the amount of explainable variability in the true exposure. These results should be taken into account when interpreting health effects from studies that used LUR models.
Quantification and handling of sampling errors in instrumental measurements: a case study
DEFF Research Database (Denmark)
Andersen, Charlotte Møller; Bro, R.
2004-01-01
in certain situations, the effect of systematic errors is also considerable. The relevant errors contributing to the prediction error are: error in instrumental measurements (x-error), error in reference measurements (y-error), error in the estimated calibration model (regression coefficient error) and model...
Space, time, and the third dimension (model error)
Moss, Marshall E.
1979-01-01
The space-time tradeoff of hydrologic data collection (the ability to substitute spatial coverage for temporal extension of records or vice versa) is controlled jointly by the statistical properties of the phenomena that are being measured and by the model that is used to meld the information sources. The control exerted on the space-time tradeoff by the model and its accompanying errors has seldom been studied explicitly. The technique, known as Network Analyses for Regional Information (NARI), permits such a study of the regional regression model that is used to relate streamflow parameters to the physical and climatic characteristics of the drainage basin.The NARI technique shows that model improvement is a viable and sometimes necessary means of improving regional data collection systems. Model improvement provides an immediate increase in the accuracy of regional parameter estimation and also increases the information potential of future data collection. Model improvement, which can only be measured in a statistical sense, cannot be quantitatively estimated prior to its achievement; thus an attempt to upgrade a particular model entails a certain degree of risk on the part of the hydrologist.
Study of Error Propagation in the Transformations of Dynamic Thermal Models of Buildings
Directory of Open Access Journals (Sweden)
Loïc Raillon
2017-01-01
Full Text Available Dynamic behaviour of a system may be described by models with different forms: thermal (RC networks, state-space representations, transfer functions, and ARX models. These models, which describe the same process, are used in the design, simulation, optimal predictive control, parameter identification, fault detection and diagnosis, and so on. Since more forms are available, it is interesting to know which one is the most suitable by estimating the sensitivity of the model to transform into a physical model, which is represented by a thermal network. A procedure for the study of error by Monte Carlo simulation and of factor prioritization is exemplified on a simple, but representative, thermal model of a building. The analysis of the propagation of errors and of the influence of the errors on the parameter estimation shows that the transformation from state-space representation to transfer function is more robust than the other way around. Therefore, if only one model is chosen, the state-space representation is preferable.
On modeling animal movements using Brownian motion with measurement error.
Pozdnyakov, Vladimir; Meyer, Thomas; Wang, Yu-Bo; Yan, Jun
2014-02-01
Modeling animal movements with Brownian motion (or more generally by a Gaussian process) has a long tradition in ecological studies. The recent Brownian bridge movement model (BBMM), which incorporates measurement errors, has been quickly adopted by ecologists because of its simplicity and tractability. We discuss some nontrivial properties of the discrete-time stochastic process that results from observing a Brownian motion with added normal noise at discrete times. In particular, we demonstrate that the observed sequence of random variables is not Markov. Consequently the expected occupation time between two successively observed locations does not depend on just those two observations; the whole path must be taken into account. Nonetheless, the exact likelihood function of the observed time series remains tractable; it requires only sparse matrix computations. The likelihood-based estimation procedure is described in detail and compared to the BBMM estimation.
Melanoma Risk Prediction Models
Developing statistical models that estimate the probability of developing melanoma cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Testing the predictive power of nuclear mass models
International Nuclear Information System (INIS)
Mendoza-Temis, J.; Morales, I.; Barea, J.; Frank, A.; Hirsch, J.G.; Vieyra, J.C. Lopez; Van Isacker, P.; Velazquez, V.
2008-01-01
A number of tests are introduced which probe the ability of nuclear mass models to extrapolate. Three models are analyzed in detail: the liquid drop model, the liquid drop model plus empirical shell corrections and the Duflo-Zuker mass formula. If predicted nuclei are close to the fitted ones, average errors in predicted and fitted masses are similar. However, the challenge of predicting nuclear masses in a region stabilized by shell effects (e.g., the lead region) is far more difficult. The Duflo-Zuker mass formula emerges as a powerful predictive tool
Modelling bankruptcy prediction models in Slovak companies
Directory of Open Access Journals (Sweden)
Kovacova Maria
2017-01-01
Full Text Available An intensive research from academics and practitioners has been provided regarding models for bankruptcy prediction and credit risk management. In spite of numerous researches focusing on forecasting bankruptcy using traditional statistics techniques (e.g. discriminant analysis and logistic regression and early artificial intelligence models (e.g. artificial neural networks, there is a trend for transition to machine learning models (support vector machines, bagging, boosting, and random forest to predict bankruptcy one year prior to the event. Comparing the performance of this with unconventional approach with results obtained by discriminant analysis, logistic regression, and neural networks application, it has been found that bagging, boosting, and random forest models outperform the others techniques, and that all prediction accuracy in the testing sample improves when the additional variables are included. On the other side the prediction accuracy of old and well known bankruptcy prediction models is quiet high. Therefore, we aim to analyse these in some way old models on the dataset of Slovak companies to validate their prediction ability in specific conditions. Furthermore, these models will be modelled according to new trends by calculating the influence of elimination of selected variables on the overall prediction ability of these models.
Artificial Neural Network Model for Predicting Compressive
Directory of Open Access Journals (Sweden)
Salim T. Yousif
2013-05-01
Full Text Available Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature. The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor affecting the output of the model. The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.
Tectonic predictions with mantle convection models
Coltice, Nicolas; Shephard, Grace E.
2018-04-01
Over the past 15 yr, numerical models of convection in Earth's mantle have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep mantle circulation. These digital tools provide a new window into the intimate connections between plate tectonics and mantle dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous mantle flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-mantle slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough
Predictive models of moth development
Degree-day models link ambient temperature to insect life-stages, making such models valuable tools in integrated pest management. These models increase management efficacy by predicting pest phenology. In Wisconsin, the top insect pest of cranberry production is the cranberry fruitworm, Acrobasis v...
International Nuclear Information System (INIS)
Hanafusa, Hidemitsu; Iwaki, Toshio; Embrey, D.
2000-01-01
The objective of this study was to develop and effective methodology for predicting and preventing errors in nuclear power plant maintenance tasks. A method was established by which chief maintenance personnel can predict and reduce errors when reviewing the maintenance procedures and while referring to maintenance supporting systems and methods in other industries including aviation and chemical plant industries. The method involves the following seven steps: 1. Identification of maintenance tasks. 2. Specification of important tasks affecting safety. 3. Assessment of human errors occurring during important tasks. 4. Identification of Performance Degrading Factors. 5. Dividing important tasks into sub-tasks. 6. Extraction of errors using Predictive Human Error Analysis (PHEA). 7. Development of strategies for reducing errors and for recovering from errors. By way of a trial, this method was applied to the pump maintenance procedure in nuclear power plants. This method is believed to be capable of identifying the expected errors in important tasks and supporting the development of error reduction measures. By applying this method, the number of accidents resulting form human errors during maintenance can be reduced. Moreover, the maintenance support base using computers was developed. (author)
James W. Hardin; Henrik Schmeidiche; Raymond J. Carroll
2003-01-01
This paper discusses and illustrates the method of regression calibration. This is a straightforward technique for fitting models with additive measurement error. We present this discussion in terms of generalized linear models (GLMs) following the notation defined in Hardin and Carroll (2003). Discussion will include specified measurement error, measurement error estimated by replicate error-prone proxies, and measurement error estimated by instrumental variables. The discussion focuses on s...
Predictive Models and Computational Embryology
EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...
Maggioni, V.; Anagnostou, E. N.; Reichle, R. H.
2013-01-01
The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters (representing model parameter uncertainty) or by adding randomly generated noise (representing model structure and parameter uncertainty) to the model prognostic variables. Our findings highlight that the method currently used in the NASA GEOS-5 Land Data Assimilation System to perturb CLSM variables poorly describes the uncertainty in the predicted soil moisture, even when combined with rainfall model perturbations. On the other hand, by adding model parameter perturbations to rainfall forcing perturbations, a better characterization of uncertainty in soil moisture simulations is observed. Specifically, an analysis of the rank histograms shows that the most consistent ensemble of soil moisture is obtained by combining rainfall and model parameter perturbations. When rainfall forcing and model prognostic perturbations are added, the rank histogram shows a U-shape at the domain average scale, which corresponds to a lack of variability in the forecast ensemble. The more accurate estimation of the soil moisture prediction uncertainty obtained by combining rainfall and parameter perturbations is encouraging for the application of this approach in ensemble data assimilation systems.
International Nuclear Information System (INIS)
Carl Stern; Martin Lee
1999-01-01
Phase I work studied the feasibility of developing software for automatic component calibration and error correction in beamline optics models. A prototype application was developed that corrects quadrupole field strength errors in beamline models
Local and omnibus goodness-of-fit tests in classical measurement error models
Ma, Yanyuan; Hart, Jeffrey D.; Janicki, Ryan; Carroll, Raymond J.
2010-01-01
We consider functional measurement error models, i.e. models where covariates are measured with error and yet no distributional assumptions are made about the mismeasured variable. We propose and study a score-type local test and an orthogonal
Carl-Stern
1999-01-01
Phase I work studied the feasibility of developing software for automatic component calibration and error correction in beamline optics models. A prototype application was developed that corrects quadrupole field strength errors in beamline models.
Incorporating measurement error in n=1 psychological autoregressive modeling
Schuurman, Noemi K.; Houtveen, Jan H.; Hamaker, Ellen L.
2015-01-01
Measurement error is omnipresent in psychological data. However, the vast majority of applications of autoregressive time series analyses in psychology do not take measurement error into account. Disregarding measurement error when it is present in the data results in a bias of the autoregressive
Peak-counts blood flow model-errors and limitations
International Nuclear Information System (INIS)
Mullani, N.A.; Marani, S.K.; Ekas, R.D.; Gould, K.L.
1984-01-01
The peak-counts model has several advantages, but its use may be limited due to the condition that the venous egress may not be negligible at the time of peak-counts. Consequently, blood flow measurements by the peak-counts model will depend on the bolus size, bolus duration, and the minimum transit time of the bolus through the region of interest. The effect of bolus size on the measurement of extraction fraction and blood flow was evaluated by injecting 1 to 30ml of rubidium chloride in the femoral vein of a dog and measuring the myocardial activity with a beta probe over the heart. Regional blood flow measurements were not found to vary with bolus sizes up to 30ml. The effect of bolus duration was studied by injecting a 10cc bolus of tracer at different speeds in the femoral vein of a dog. All intravenous injections undergo a broadening of the bolus duration due to the transit time of the tracer through the lungs and the heart. This transit time was found to range from 4-6 second FWHM and dominates the duration of the bolus to the myocardium for up to 3 second injections. A computer simulation has been carried out in which the different parameters of delay time, extraction fraction, and bolus duration can be changed to assess the errors in the peak-counts model. The results of the simulations show that the error will be greatest for short transit time delays and for low extraction fractions
Vlasceanu, Madalina; Drach, Rae; Coman, Alin
2018-05-03
The mind is a prediction machine. In most situations, it has expectations as to what might happen. But when predictions are invalidated by experience (i.e., prediction errors), the memories that generate these predictions are suppressed. Here, we explore the effect of prediction error on listeners' memories following social interaction. We find that listening to a speaker recounting experiences similar to one's own triggers prediction errors on the part of the listener that lead to the suppression of her memories. This effect, we show, is sensitive to a perspective-taking manipulation, such that individuals who are instructed to take the perspective of the speaker experience memory suppression, whereas individuals who undergo a low-perspective-taking manipulation fail to show a mnemonic suppression effect. We discuss the relevance of these findings for our understanding of the bidirectional influences between cognition and social contexts, as well as for the real-world situations that involve memory-based predictions.
Accounting for model error due to unresolved scales within ensemble Kalman filtering
Mitchell, Lewis; Carrassi, Alberto
2014-01-01
We propose a method to account for model error due to unresolved scales in the context of the ensemble transform Kalman filter (ETKF). The approach extends to this class of algorithms the deterministic model error formulation recently explored for variational schemes and extended Kalman filter. The model error statistic required in the analysis update is estimated using historical reanalysis increments and a suitable model error evolution law. Two different versions of the method are describe...
Modelling the Errors of EIA’s Oil Prices and Production Forecasts by the Grey Markov Model
Directory of Open Access Journals (Sweden)
Gholam Hossein Hasantash
2012-01-01
Full Text Available Grey theory is about systematic analysis of limited information. The Grey-Markov model can improve the accuracy of forecast range in the random fluctuating data sequence. In this paper, we employed this model in energy system. The average errors of Energy Information Administrations predictions for world oil price and domestic crude oil production from 1982 to 2007 and from 1985 to 2008 respectively were used as two forecasted examples. We showed that the proposed Grey-Markov model can improve the forecast accuracy of original Grey forecast model.
Evaluation of statistical models for forecast errors from the HBV model
Engeland, Kolbjørn; Renard, Benjamin; Steinsland, Ingelin; Kolberg, Sjur
2010-04-01
SummaryThree statistical models for the forecast errors for inflow into the Langvatn reservoir in Northern Norway have been constructed and tested according to the agreement between (i) the forecast distribution and the observations and (ii) median values of the forecast distribution and the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order auto-regressive model was constructed for the forecast errors. The parameters were conditioned on weather classes. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order auto-regressive model was constructed for the forecast errors. For the third model positive and negative errors were modeled separately. The errors were first NQT-transformed before conditioning the mean error values on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: we wanted (a) the forecast distribution to be reliable; (b) the forecast intervals to be narrow; (c) the median values of the forecast distribution to be close to the observed values. Models 1 and 2 gave almost identical results. The median values improved the forecast with Nash-Sutcliffe R eff increasing from 0.77 for the original forecast to 0.87 for the corrected forecasts. Models 1 and 2 over-estimated the forecast intervals but gave the narrowest intervals. Their main drawback was that the distributions are less reliable than Model 3. For Model 3 the median values did not fit well since the auto-correlation was not accounted for. Since Model 3 did not benefit from the potential variance reduction that lies in bias estimation and removal it gave on average wider forecasts intervals than the two other models. At the same time Model 3 on average slightly under-estimated the forecast intervals, probably explained by the use of average measures to evaluate the fit.
A stepwise model to predict monthly streamflow
Mahmood Al-Juboori, Anas; Guven, Aytac
2016-12-01
In this study, a stepwise model empowered with genetic programming is developed to predict the monthly flows of Hurman River in Turkey and Diyalah and Lesser Zab Rivers in Iraq. The model divides the monthly flow data to twelve intervals representing the number of months in a year. The flow of a month, t is considered as a function of the antecedent month's flow (t - 1) and it is predicted by multiplying the antecedent monthly flow by a constant value called K. The optimum value of K is obtained by a stepwise procedure which employs Gene Expression Programming (GEP) and Nonlinear Generalized Reduced Gradient Optimization (NGRGO) as alternative to traditional nonlinear regression technique. The degree of determination and root mean squared error are used to evaluate the performance of the proposed models. The results of the proposed model are compared with the conventional Markovian and Auto Regressive Integrated Moving Average (ARIMA) models based on observed monthly flow data. The comparison results based on five different statistic measures show that the proposed stepwise model performed better than Markovian model and ARIMA model. The R2 values of the proposed model range between 0.81 and 0.92 for the three rivers in this study.
Regularized multivariate regression models with skew-t error distributions
Chen, Lianfu
2014-06-01
We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both the regression coefficient and inverse scale matrices simultaneously. The sparsity is introduced through penalizing the negative log-likelihood by adding L1-penalties on the entries of the two matrices. Taking advantage of the hierarchical representation of skew-t distributions, and using the expectation conditional maximization (ECM) algorithm, we reduce the problem to penalized normal likelihood and develop a procedure to minimize the ensuing objective function. Using a simulation study the performance of the method is assessed, and the methodology is illustrated using a real data set with a 24-dimensional response vector. © 2014 Elsevier B.V.
Error modelling of quantum Hall array resistance standards
Marzano, Martina; Oe, Takehiko; Ortolano, Massimo; Callegaro, Luca; Kaneko, Nobu-Hisa
2018-04-01
Quantum Hall array resistance standards (QHARSs) are integrated circuits composed of interconnected quantum Hall effect elements that allow the realization of virtually arbitrary resistance values. In recent years, techniques were presented to efficiently design QHARS networks. An open problem is that of the evaluation of the accuracy of a QHARS, which is affected by contact and wire resistances. In this work, we present a general and systematic procedure for the error modelling of QHARSs, which is based on modern circuit analysis techniques and Monte Carlo evaluation of the uncertainty. As a practical example, this method of analysis is applied to the characterization of a 1 MΩ QHARS developed by the National Metrology Institute of Japan. Software tools are provided to apply the procedure to other arrays.
Implementing an error disclosure coaching model: A multicenter case study.
White, Andrew A; Brock, Douglas M; McCotter, Patricia I; Shannon, Sarah E; Gallagher, Thomas H
2017-01-01
National guidelines call for health care organizations to provide around-the-clock coaching for medical error disclosure. However, frontline clinicians may not always seek risk managers for coaching. As part of a demonstration project designed to improve patient safety and reduce malpractice liability, we trained multidisciplinary disclosure coaches at 8 health care organizations in Washington State. The training was highly rated by participants, although not all emerged confident in their coaching skill. This multisite intervention can serve as a model for other organizations looking to enhance existing disclosure capabilities. Success likely requires cultural change and repeated practice opportunities for coaches. © 2017 American Society for Healthcare Risk Management of the American Hospital Association.
What roles do errors serve in motor skill learning? An examination of two theoretical predictions.
Sanli, Elizabeth A; Lee, Timothy D
2014-01-01
Easy-to-difficult and difficult-to-easy progressions of task difficulty during skill acquisition were examined in 2 experiments that assessed retention, dual-task, and transfer tests of learning. Findings of the first experiment suggest that an easy-to difficult progression did not consistently induce implicit learning processes and was not consistently beneficial to performance under a secondary-task load. The findings of experiment two did not support the predictions made based on schema theory and only partially supported predictions based on reinvestment theory. The authors interpret these findings to suggest that the timing of error in relation to the difficulty of the task (functional task difficulty) plays a role in the transfer of learning to novel versions of a task.
Colas, Jaron T; Pauli, Wolfgang M; Larsen, Tobias; Tyszka, J Michael; O'Doherty, John P
2017-10-01
Prediction-error signals consistent with formal models of "reinforcement learning" (RL) have repeatedly been found within dopaminergic nuclei of the midbrain and dopaminoceptive areas of the striatum. However, the precise form of the RL algorithms implemented in the human brain is not yet well determined. Here, we created a novel paradigm optimized to dissociate the subtypes of reward-prediction errors that function as the key computational signatures of two distinct classes of RL models-namely, "actor/critic" models and action-value-learning models (e.g., the Q-learning model). The state-value-prediction error (SVPE), which is independent of actions, is a hallmark of the actor/critic architecture, whereas the action-value-prediction error (AVPE) is the distinguishing feature of action-value-learning algorithms. To test for the presence of these prediction-error signals in the brain, we scanned human participants with a high-resolution functional magnetic-resonance imaging (fMRI) protocol optimized to enable measurement of neural activity in the dopaminergic midbrain as well as the striatal areas to which it projects. In keeping with the actor/critic model, the SVPE signal was detected in the substantia nigra. The SVPE was also clearly present in both the ventral striatum and the dorsal striatum. However, alongside these purely state-value-based computations we also found evidence for AVPE signals throughout the striatum. These high-resolution fMRI findings suggest that model-free aspects of reward learning in humans can be explained algorithmically with RL in terms of an actor/critic mechanism operating in parallel with a system for more direct action-value learning.
Schroeder, Scott R; Salomon, Meghan M; Galanter, William L; Schiff, Gordon D; Vaida, Allen J; Gaunt, Michael J; Bryson, Michelle L; Rash, Christine; Falck, Suzanne; Lambert, Bruce L
2017-05-01
Drug name confusion is a common type of medication error and a persistent threat to patient safety. In the USA, roughly one per thousand prescriptions results in the wrong drug being filled, and most of these errors involve drug names that look or sound alike. Prior to approval, drug names undergo a variety of tests to assess their potential for confusability, but none of these preapproval tests has been shown to predict real-world error rates. We conducted a study to assess the association between error rates in laboratory-based tests of drug name memory and perception and real-world drug name confusion error rates. Eighty participants, comprising doctors, nurses, pharmacists, technicians and lay people, completed a battery of laboratory tests assessing visual perception, auditory perception and short-term memory of look-alike and sound-alike drug name pairs (eg, hydroxyzine/hydralazine). Laboratory test error rates (and other metrics) significantly predicted real-world error rates obtained from a large, outpatient pharmacy chain, with the best-fitting model accounting for 37% of the variance in real-world error rates. Cross-validation analyses confirmed these results, showing that the laboratory tests also predicted errors from a second pharmacy chain, with 45% of the variance being explained by the laboratory test data. Across two distinct pharmacy chains, there is a strong and significant association between drug name confusion error rates observed in the real world and those observed in laboratory-based tests of memory and perception. Regulators and drug companies seeking a validated preapproval method for identifying confusing drug names ought to consider using these simple tests. By using a standard battery of memory and perception tests, it should be possible to reduce the number of confusing look-alike and sound-alike drug name pairs that reach the market, which will help protect patients from potentially harmful medication errors. Published by the BMJ
Episodic Memory Encoding Interferes with Reward Learning and Decreases Striatal Prediction Errors
Braun, Erin Kendall; Daw, Nathaniel D.
2014-01-01
Learning is essential for adaptive decision making. The striatum and its dopaminergic inputs are known to support incremental reward-based learning, while the hippocampus is known to support encoding of single events (episodic memory). Although traditionally studied separately, in even simple experiences, these two types of learning are likely to co-occur and may interact. Here we sought to understand the nature of this interaction by examining how incremental reward learning is related to concurrent episodic memory encoding. During the experiment, human participants made choices between two options (colored squares), each associated with a drifting probability of reward, with the goal of earning as much money as possible. Incidental, trial-unique object pictures, unrelated to the choice, were overlaid on each option. The next day, participants were given a surprise memory test for these pictures. We found that better episodic memory was related to a decreased influence of recent reward experience on choice, both within and across participants. fMRI analyses further revealed that during learning the canonical striatal reward prediction error signal was significantly weaker when episodic memory was stronger. This decrease in reward prediction error signals in the striatum was associated with enhanced functional connectivity between the hippocampus and striatum at the time of choice. Our results suggest a mechanism by which memory encoding may compete for striatal processing and provide insight into how interactions between different forms of learning guide reward-based decision making. PMID:25378157
Episodic memory encoding interferes with reward learning and decreases striatal prediction errors.
Wimmer, G Elliott; Braun, Erin Kendall; Daw, Nathaniel D; Shohamy, Daphna
2014-11-05
Learning is essential for adaptive decision making. The striatum and its dopaminergic inputs are known to support incremental reward-based learning, while the hippocampus is known to support encoding of single events (episodic memory). Although traditionally studied separately, in even simple experiences, these two types of learning are likely to co-occur and may interact. Here we sought to understand the nature of this interaction by examining how incremental reward learning is related to concurrent episodic memory encoding. During the experiment, human participants made choices between two options (colored squares), each associated with a drifting probability of reward, with the goal of earning as much money as possible. Incidental, trial-unique object pictures, unrelated to the choice, were overlaid on each option. The next day, participants were given a surprise memory test for these pictures. We found that better episodic memory was related to a decreased influence of recent reward experience on choice, both within and across participants. fMRI analyses further revealed that during learning the canonical striatal reward prediction error signal was significantly weaker when episodic memory was stronger. This decrease in reward prediction error signals in the striatum was associated with enhanced functional connectivity between the hippocampus and striatum at the time of choice. Our results suggest a mechanism by which memory encoding may compete for striatal processing and provide insight into how interactions between different forms of learning guide reward-based decision making. Copyright © 2014 the authors 0270-6474/14/3414901-12$15.00/0.
Directory of Open Access Journals (Sweden)
Da Liu
2013-01-01
Full Text Available A combined forecast with weights adaptively selected and errors calibrated by Hidden Markov model (HMM is proposed to model the day-ahead electricity price. Firstly several single models were built to forecast the electricity price separately. Then the validation errors from every individual model were transformed into two discrete sequences: an emission sequence and a state sequence to build the HMM, obtaining a transmission matrix and an emission matrix, representing the forecasting ability state of the individual models. The combining weights of the individual models were decided by the state transmission matrixes in HMM and the best predict sample ratio of each individual among all the models in the validation set. The individual forecasts were averaged to get the combining forecast with the weights obtained above. The residuals of combining forecast were calibrated by the possible error calculated by the emission matrix of HMM. A case study of day-ahead electricity market of Pennsylvania-New Jersey-Maryland (PJM, USA, suggests that the proposed method outperforms individual techniques of price forecasting, such as support vector machine (SVM, generalized regression neural networks (GRNN, day-ahead modeling, and self-organized map (SOM similar days modeling.
Prediction skill of rainstorm events over India in the TIGGE weather prediction models
Karuna Sagar, S.; Rajeevan, M.; Vijaya Bhaskara Rao, S.; Mitra, A. K.
2017-12-01
Extreme rainfall events pose a serious threat of leading to severe floods in many countries worldwide. Therefore, advance prediction of its occurrence and spatial distribution is very essential. In this paper, an analysis has been made to assess the skill of numerical weather prediction models in predicting rainstorms over India. Using gridded daily rainfall data set and objective criteria, 15 rainstorms were identified during the monsoon season (June to September). The analysis was made using three TIGGE (THe Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble) models. The models considered are the European Centre for Medium-Range Weather Forecasts (ECMWF), National Centre for Environmental Prediction (NCEP) and the UK Met Office (UKMO). Verification of the TIGGE models for 43 observed rainstorm days from 15 rainstorm events has been made for the period 2007-2015. The comparison reveals that rainstorm events are predictable up to 5 days in advance, however with a bias in spatial distribution and intensity. The statistical parameters like mean error (ME) or Bias, root mean square error (RMSE) and correlation coefficient (CC) have been computed over the rainstorm region using the multi-model ensemble (MME) mean. The study reveals that the spread is large in ECMWF and UKMO followed by the NCEP model. Though the ensemble spread is quite small in NCEP, the ensemble member averages are not well predicted. The rank histograms suggest that the forecasts are under prediction. The modified Contiguous Rain Area (CRA) technique was used to verify the spatial as well as the quantitative skill of the TIGGE models. Overall, the contribution from the displacement and pattern errors to the total RMSE is found to be more in magnitude. The volume error increases from 24 hr forecast to 48 hr forecast in all the three models.
Predictive Model Equations for Palm Kernel (Elaeis guneensis J ...
African Journals Online (AJOL)
Estimated error of ± 0.18 and ± 0.2 are envisaged while applying the models for predicting palm kernel and sesame oil colours respectively. Keywords: Palm kernel, Sesame, Palm kernel, Oil Colour, Process Parameters, Model. Journal of Applied Science, Engineering and Technology Vol. 6 (1) 2006 pp. 34-38 ...
Modelling the basic error tendencies of human operators
Energy Technology Data Exchange (ETDEWEB)
Reason, J.
1988-01-01
The paper outlines the primary structural features of human cognition: a limited, serial workspace interacting with a parallel distributed knowledge base. It is argued that the essential computational features of human cognition - to be captured by an adequate operator model - reside in the mechanisms by which stored knowledge structures are selected and brought into play. Two such computational 'primitives' are identified: similarity-matching and frequency-gambling. These two retrieval heuristics, it is argued, shape both the overall character of human performance (i.e. its heavy reliance on pattern-matching) and its basic error tendencies ('strong-but-wrong' responses, confirmation, similarity and frequency biases, and cognitive 'lock-up'). The various features of human cognition are integrated with a dynamic operator model capable of being represented in software form. This computer model, when run repeatedly with a variety of problem configurations, should produce a distribution of behaviours which, in toto, simulate the general character of operator performance.
Entropy Error Model of Planar Geometry Features in GIS
Institute of Scientific and Technical Information of China (English)
LI Dajun; GUAN Yunlan; GONG Jianya; DU Daosheng
2003-01-01
Positional error of line segments is usually described by using "g-band", however, its band width is in relation to the confidence level choice. In fact, given different confidence levels, a series of concentric bands can be obtained. To overcome the effect of confidence level on the error indicator, by introducing the union entropy theory, we propose an entropy error ellipse index of point, then extend it to line segment and polygon,and establish an entropy error band of line segment and an entropy error donut of polygon. The research shows that the entropy error index can be determined uniquely and is not influenced by confidence level, and that they are suitable for positional uncertainty of planar geometry features.
Hebbian errors in learning: an analysis using the Oja model.
Rădulescu, Anca; Cox, Kingsley; Adams, Paul
2009-06-21
Recent work on long term potentiation in brain slices shows that Hebb's rule is not completely synapse-specific, probably due to intersynapse diffusion of calcium or other factors. We previously suggested that such errors in Hebbian learning might be analogous to mutations in evolution. We examine this proposal quantitatively, extending the classical Oja unsupervised model of learning by a single linear neuron to include Hebbian inspecificity. We introduce an error matrix E, which expresses possible crosstalk between updating at different connections. When there is no inspecificity, this gives the classical result of convergence to the first principal component of the input distribution (PC1). We show the modified algorithm converges to the leading eigenvector of the matrix EC, where C is the input covariance matrix. In the most biologically plausible case when there are no intrinsically privileged connections, E has diagonal elements Q and off-diagonal elements (1-Q)/(n-1), where Q, the quality, is expected to decrease with the number of inputs n and with a synaptic parameter b that reflects synapse density, calcium diffusion, etc. We study the dependence of the learning accuracy on b, n and the amount of input activity or correlation (analytically and computationally). We find that accuracy increases (learning becomes gradually less useful) with increases in b, particularly for intermediate (i.e., biologically realistic) correlation strength, although some useful learning always occurs up to the trivial limit Q=1/n. We discuss the relation of our results to Hebbian unsupervised learning in the brain. When the mechanism lacks specificity, the network fails to learn the expected, and typically most useful, result, especially when the input correlation is weak. Hebbian crosstalk would reflect the very high density of synapses along dendrites, and inevitably degrades learning.
Dynamic Simulation of Human Gait Model With Predictive Capability.
Sun, Jinming; Wu, Shaoli; Voglewede, Philip A
2018-03-01
In this paper, it is proposed that the central nervous system (CNS) controls human gait using a predictive control approach in conjunction with classical feedback control instead of exclusive classical feedback control theory that controls based on past error. To validate this proposition, a dynamic model of human gait is developed using a novel predictive approach to investigate the principles of the CNS. The model developed includes two parts: a plant model that represents the dynamics of human gait and a controller that represents the CNS. The plant model is a seven-segment, six-joint model that has nine degrees-of-freedom (DOF). The plant model is validated using data collected from able-bodied human subjects. The proposed controller utilizes model predictive control (MPC). MPC uses an internal model to predict the output in advance, compare the predicted output to the reference, and optimize the control input so that the predicted error is minimal. To decrease the complexity of the model, two joints are controlled using a proportional-derivative (PD) controller. The developed predictive human gait model is validated by simulating able-bodied human gait. The simulation results show that the developed model is able to simulate the kinematic output close to experimental data.
Volcanic ash modeling with the NMMB-MONARCH-ASH model: quantification of offline modeling errors
Marti, Alejandro; Folch, Arnau
2018-03-01
Volcanic ash modeling systems are used to simulate the atmospheric dispersion of volcanic ash and to generate forecasts that quantify the impacts from volcanic eruptions on infrastructures, air quality, aviation, and climate. The efficiency of response and mitigation actions is directly associated with the accuracy of the volcanic ash cloud detection and modeling systems. Operational forecasts build on offline coupled modeling systems in which meteorological variables are updated at the specified coupling intervals. Despite the concerns from other communities regarding the accuracy of this strategy, the quantification of the systematic errors and shortcomings associated with the offline modeling systems has received no attention. This paper employs the NMMB-MONARCH-ASH model to quantify these errors by employing different quantitative and categorical evaluation scores. The skills of the offline coupling strategy are compared against those from an online forecast considered to be the best estimate of the true outcome. Case studies are considered for a synthetic eruption with constant eruption source parameters and for two historical events, which suitably illustrate the severe aviation disruptive effects of European (2010 Eyjafjallajökull) and South American (2011 Cordón Caulle) volcanic eruptions. Evaluation scores indicate that systematic errors due to the offline modeling are of the same order of magnitude as those associated with the source term uncertainties. In particular, traditional offline forecasts employed in operational model setups can result in significant uncertainties, failing to reproduce, in the worst cases, up to 45-70 % of the ash cloud of an online forecast. These inconsistencies are anticipated to be even more relevant in scenarios in which the meteorological conditions change rapidly in time. The outcome of this paper encourages operational groups responsible for real-time advisories for aviation to consider employing computationally
A two-dimensional matrix correction for off-axis portal dose prediction errors
International Nuclear Information System (INIS)
Bailey, Daniel W.; Kumaraswamy, Lalith; Bakhtiari, Mohammad; Podgorsak, Matthew B.
2013-01-01
Purpose: This study presents a follow-up to a modified calibration procedure for portal dosimetry published by Bailey et al. [“An effective correction algorithm for off-axis portal dosimetry errors,” Med. Phys. 36, 4089–4094 (2009)]. A commercial portal dose prediction system exhibits disagreement of up to 15% (calibrated units) between measured and predicted images as off-axis distance increases. The previous modified calibration procedure accounts for these off-axis effects in most regions of the detecting surface, but is limited by the simplistic assumption of radial symmetry. Methods: We find that a two-dimensional (2D) matrix correction, applied to each calibrated image, accounts for off-axis prediction errors in all regions of the detecting surface, including those still problematic after the radial correction is performed. The correction matrix is calculated by quantitative comparison of predicted and measured images that span the entire detecting surface. The correction matrix was verified for dose-linearity, and its effectiveness was verified on a number of test fields. The 2D correction was employed to retrospectively examine 22 off-axis, asymmetric electronic-compensation breast fields, five intensity-modulated brain fields (moderate-high modulation) manipulated for far off-axis delivery, and 29 intensity-modulated clinical fields of varying complexity in the central portion of the detecting surface. Results: Employing the matrix correction to the off-axis test fields and clinical fields, predicted vs measured portal dose agreement improves by up to 15%, producing up to 10% better agreement than the radial correction in some areas of the detecting surface. Gamma evaluation analyses (3 mm, 3% global, 10% dose threshold) of predicted vs measured portal dose images demonstrate pass rate improvement of up to 75% with the matrix correction, producing pass rates that are up to 30% higher than those resulting from the radial correction technique alone. As
Cook, Nancy R; Rosner, Bernard A; Chen, Wei; Srinivasan, Sathanur R; Berenson, Gerald S
2004-11-30
Tracking correlations of blood pressure, particularly childhood measures, may be attenuated by within-person variability. Combining multiple measurements can reduce this error substantially. The area under the curve (AUC) computed from longitudinal growth curve models can be used to improve the prediction of young adult blood pressure from childhood measures. Quadratic random-effects models over unequally spaced repeated measures were used to compute the area under the curve separately within the age periods 5-14 and 20-34 years in the Bogalusa Heart Study. This method adjusts for the uneven age distribution and captures the underlying or average blood pressure, leading to improved estimates of correlation and risk prediction. Tracking correlations were computed by race and gender, and were approximately 0.6 for systolic, 0.5-0.6 for K4 diastolic, and 0.4-0.6 for K5 diastolic blood pressure. The AUC can also be used to regress young adult blood pressure on childhood blood pressure and childhood and young adult body mass index (BMI). In these data, while childhood blood pressure and young adult BMI were generally directly predictive of young adult blood pressure, childhood BMI was negatively correlated with young adult blood pressure when childhood blood pressure was in the model. In addition, racial differences in young adult blood pressure were reduced, but not eliminated, after controlling for childhood blood pressure, childhood BMI, and young adult BMI, suggesting that other genetic or lifestyle factors contribute to this difference. 2004 John Wiley & Sons, Ltd.
Approximating prediction uncertainty for random forest regression models
John W. Coulston; Christine E. Blinn; Valerie A. Thomas; Randolph H. Wynne
2016-01-01
Machine learning approaches such as random forest haveÂ increased for the spatial modeling and mapping of continuousÂ variables. Random forest is a non-parametric ensembleÂ approach, and unlike traditional regression approaches thereÂ is no direct quantification of prediction error. UnderstandingÂ prediction uncertainty is important when using model-basedÂ continuous maps as...
Results and Error Estimates from GRACE Forward Modeling over Antarctica
Bonin, Jennifer; Chambers, Don
2013-04-01
Forward modeling using a weighted least squares technique allows GRACE information to be projected onto a pre-determined collection of local basins. This decreases the impact of spatial leakage, allowing estimates of mass change to be better localized. The technique is especially valuable where models of current-day mass change are poor, such as over Antarctica. However when tested previously, the least squares technique has required constraints in the form of added process noise in order to be reliable. Poor choice of local basin layout has also adversely affected results, as has the choice of spatial smoothing used with GRACE. To develop design parameters which will result in correct high-resolution mass detection and to estimate the systematic errors of the method over Antarctica, we use a "truth" simulation of the Antarctic signal. We apply the optimal parameters found from the simulation to RL05 GRACE data across Antarctica and the surrounding ocean. We particularly focus on separating the Antarctic peninsula's mass signal from that of the rest of western Antarctica. Additionally, we characterize how well the technique works for removing land leakage signal from the nearby ocean, particularly that near the Drake Passage.
DEFF Research Database (Denmark)
Wu, Guanglei; Bai, Shaoping; Kepler, Jørgen Asbøl
2012-01-01
This paper deals with the error modelling and analysis of a 3-PPR planar parallel manipulator with joint clearances. The kinematics and the Cartesian workspace of the manipulator are analyzed. An error model is established with considerations of both configuration errors and joint clearances. Using...
Learning from Errors: A Model of Individual Processes
Tulis, Maria; Steuer, Gabriele; Dresel, Markus
2016-01-01
Errors bear the potential to improve knowledge acquisition, provided that learners are able to deal with them in an adaptive and reflexive manner. However, learners experience a host of different--often impeding or maladaptive--emotional and motivational states in the face of academic errors. Research has made few attempts to develop a theory that…
Penn, C. A.; Clow, D. W.; Sexstone, G. A.
2017-12-01
Water supply forecasts are an important tool for water resource managers in areas where surface water is relied on for irrigating agricultural lands and for municipal water supplies. Forecast errors, which correspond to inaccurate predictions of total surface water volume, can lead to mis-allocated water and productivity loss, thus costing stakeholders millions of dollars. The objective of this investigation is to provide water resource managers with an improved understanding of factors contributing to forecast error, and to help increase the accuracy of future forecasts. In many watersheds of the western United States, snowmelt contributes 50-75% of annual surface water flow and controls both the timing and volume of peak flow. Water supply forecasts from the Natural Resources Conservation Service (NRCS), National Weather Service, and similar cooperators use precipitation and snowpack measurements to provide water resource managers with an estimate of seasonal runoff volume. The accuracy of these forecasts can be limited by available snowpack and meteorological data. In the headwaters of the Rio Grande, NRCS produces January through June monthly Water Supply Outlook Reports. This study evaluates the accuracy of these forecasts since 1990, and examines what factors may contribute to forecast error. The Rio Grande headwaters has experienced recent changes in land cover from bark beetle infestation and a large wildfire, which can affect hydrological processes within the watershed. To investigate trends and possible contributing factors in forecast error, a semi-distributed hydrological model was calibrated and run to simulate daily streamflow for the period 1990-2015. Annual and seasonal watershed and sub-watershed water balance properties were compared with seasonal water supply forecasts. Gridded meteorological datasets were used to assess changes in the timing and volume of spring precipitation events that may contribute to forecast error. Additionally, a
Some Observations about the Nearest-Neighbor Model of the Error Threshold
International Nuclear Information System (INIS)
Gerrish, Philip J.
2009-01-01
I explore some aspects of the 'error threshold' - a critical mutation rate above which a population is nonviable. The phase transition that occurs as mutation rate crosses this threshold has been shown to be mathematically equivalent to the loss of ferromagnetism that occurs as temperature exceeds the Curie point. I will describe some refinements and new results based on the simplest of these mutation models, will discuss the commonly unperceived robustness of this simple model, and I will show some preliminary results comparing qualitative predictions with simulations of finite populations adapting at high mutation rates. I will talk about how these qualitative predictions are relevant to biomedical science and will discuss how my colleagues and I are looking for phase-transition signatures in real populations of Escherichia coli that go extinct as a result of excessive mutation.
Andreopoulos, Bill; Winter, Christof; Labudde, Dirk; Schroeder, Michael
2009-06-27
A lot of high-throughput studies produce protein-protein interaction networks (PPINs) with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs) were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs) representing binding evidence on proteins, forming PPI-SDDI-PPI triangles. We find low overlap between PPINs, SDDIs and known complexes, all well below 10%. We evaluate the overlap of PPI-SDDI-PPI triangles with known complexes from Munich Information center for Protein Sequences (MIPS). PPI-SDDI-PPI triangles have ~20 times higher overlap with MIPS complexes than using second-level neighbors in PPINs without SDDIs. The biological interpretation for triangles is that a SDDI causes two proteins to be observed with common interaction partners in high-throughput experiments. The relatively few SDDIs overlapping with PPINs are part of highly connected SDDI components, and are more likely to be detected in experimental studies. We demonstrate the utility of PPI-SDDI-PPI triangles by reconstructing myosin-actin processes in the nucleus, cytoplasm, and cytoskeleton, which were not obvious in the original PPIN. Using other complementary datatypes in place of SDDIs to form triangles, such as PubMed co-occurrences or threading information, results in a similar ability to find protein complexes. Given high-error PPINs with missing information, triangles of mixed datatypes are a promising direction for finding protein complexes. Integrating PPINs with SDDIs improves finding complexes. Structural SDDIs partially explain the high functional similarity of second-level neighbors in PPINs. We estimate that relatively little structural information would be sufficient
Directory of Open Access Journals (Sweden)
Labudde Dirk
2009-06-01
Full Text Available Abstract Background A lot of high-throughput studies produce protein-protein interaction networks (PPINs with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs representing binding evidence on proteins, forming PPI-SDDI-PPI triangles. Results We find low overlap between PPINs, SDDIs and known complexes, all well below 10%. We evaluate the overlap of PPI-SDDI-PPI triangles with known complexes from Munich Information center for Protein Sequences (MIPS. PPI-SDDI-PPI triangles have ~20 times higher overlap with MIPS complexes than using second-level neighbors in PPINs without SDDIs. The biological interpretation for triangles is that a SDDI causes two proteins to be observed with common interaction partners in high-throughput experiments. The relatively few SDDIs overlapping with PPINs are part of highly connected SDDI components, and are more likely to be detected in experimental studies. We demonstrate the utility of PPI-SDDI-PPI triangles by reconstructing myosin-actin processes in the nucleus, cytoplasm, and cytoskeleton, which were not obvious in the original PPIN. Using other complementary datatypes in place of SDDIs to form triangles, such as PubMed co-occurrences or threading information, results in a similar ability to find protein complexes. Conclusion Given high-error PPINs with missing information, triangles of mixed datatypes are a promising direction for finding protein complexes. Integrating PPINs with SDDIs improves finding complexes. Structural SDDIs partially explain the high functional similarity of second-level neighbors in PPINs. We estimate that
Directory of Open Access Journals (Sweden)
Rebecca J. Brooker
2014-07-01
Full Text Available Temperamentally fearful children are at increased risk for the development of anxiety problems relative to less-fearful children. This risk is even greater when early environments include high levels of harsh parenting behaviors. However, the mechanisms by which harsh parenting may impact fearful children's risk for anxiety problems are largely unknown. Recent neuroscience work has suggested that punishment is associated with exaggerated error-related negativity (ERN, an event-related potential linked to performance monitoring, even after the threat of punishment is removed. In the current study, we examined the possibility that harsh parenting interacts with fearfulness, impacting anxiety risk via neural processes of performance monitoring. We found that greater fearfulness and harsher parenting at 2 years of age predicted greater fearfulness and greater ERN amplitudes at age 4. Supporting the role of cognitive processes in this association, greater fearfulness and harsher parenting also predicted less efficient neural processing during preschool. This study provides initial evidence that performance monitoring may be a candidate process by which early parenting interacts with fearfulness to predict risk for anxiety problems.
Brooker, Rebecca J; Buss, Kristin A
2014-07-01
Temperamentally fearful children are at increased risk for the development of anxiety problems relative to less-fearful children. This risk is even greater when early environments include high levels of harsh parenting behaviors. However, the mechanisms by which harsh parenting may impact fearful children's risk for anxiety problems are largely unknown. Recent neuroscience work has suggested that punishment is associated with exaggerated error-related negativity (ERN), an event-related potential linked to performance monitoring, even after the threat of punishment is removed. In the current study, we examined the possibility that harsh parenting interacts with fearfulness, impacting anxiety risk via neural processes of performance monitoring. We found that greater fearfulness and harsher parenting at 2 years of age predicted greater fearfulness and greater ERN amplitudes at age 4. Supporting the role of cognitive processes in this association, greater fearfulness and harsher parenting also predicted less efficient neural processing during preschool. This study provides initial evidence that performance monitoring may be a candidate process by which early parenting interacts with fearfulness to predict risk for anxiety problems. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
State-space prediction model for chaotic time series
Alparslan, A. K.; Sayar, M.; Atilgan, A. R.
1998-08-01
A simple method for predicting the continuation of scalar chaotic time series ahead in time is proposed. The false nearest neighbors technique in connection with the time-delayed embedding is employed so as to reconstruct the state space. A local forecasting model based upon the time evolution of the topological neighboring in the reconstructed phase space is suggested. A moving root-mean-square error is utilized in order to monitor the error along the prediction horizon. The model is tested for the convection amplitude of the Lorenz model. The results indicate that for approximately 100 cycles of the training data, the prediction follows the actual continuation very closely about six cycles. The proposed model, like other state-space forecasting models, captures the long-term behavior of the system due to the use of spatial neighbors in the state space.
Driver's mental workload prediction model based on physiological indices.
Yan, Shengyuan; Tran, Cong Chi; Wei, Yingying; Habiyaremye, Jean Luc
2017-09-15
Developing an early warning model to predict the driver's mental workload (MWL) is critical and helpful, especially for new or less experienced drivers. The present study aims to investigate the correlation between new drivers' MWL and their work performance, regarding the number of errors. Additionally, the group method of data handling is used to establish the driver's MWL predictive model based on subjective rating (NASA task load index [NASA-TLX]) and six physiological indices. The results indicate that the NASA-TLX and the number of errors are positively correlated, and the predictive model shows the validity of the proposed model with an R 2 value of 0.745. The proposed model is expected to provide a reference value for the new drivers of their MWL by providing the physiological indices, and the driving lesson plans can be proposed to sustain an appropriate MWL as well as improve the driver's work performance.
Lindahl, Jonas; Danell, Rickard
The aim of this study was to provide a framework to evaluate bibliometric indicators as decision support tools from a decision making perspective and to examine the information value of early career publication rate as a predictor of future productivity. We used ROC analysis to evaluate a bibliometric indicator as a tool for binary decision making. The dataset consisted of 451 early career researchers in the mathematical sub-field of number theory. We investigated the effect of three different definitions of top performance groups-top 10, top 25, and top 50 %; the consequences of using different thresholds in the prediction models; and the added prediction value of information on early career research collaboration and publications in prestige journals. We conclude that early career performance productivity has an information value in all tested decision scenarios, but future performance is more predictable if the definition of a high performance group is more exclusive. Estimated optimal decision thresholds using the Youden index indicated that the top 10 % decision scenario should use 7 articles, the top 25 % scenario should use 7 articles, and the top 50 % should use 5 articles to minimize prediction errors. A comparative analysis between the decision thresholds provided by the Youden index which take consequences into consideration and a method commonly used in evaluative bibliometrics which do not take consequences into consideration when determining decision thresholds, indicated that differences are trivial for the top 25 and the 50 % groups. However, a statistically significant difference between the methods was found for the top 10 % group. Information on early career collaboration and publication strategies did not add any prediction value to the bibliometric indicator publication rate in any of the models. The key contributions of this research is the focus on consequences in terms of prediction errors and the notion of transforming uncertainty
Directory of Open Access Journals (Sweden)
R. Locatelli
2013-10-01
Full Text Available A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr−1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr−1 in North America to 7 Tg yr−1 in Boreal Eurasia (from 23 to 48%, respectively. At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly
Dreano, Denis; Tandeo, P.; Pulido, M.; Ait-El-Fquih, Boujemaa; Chonavel, T.; Hoteit, Ibrahim
2017-01-01
Specification and tuning of errors from dynamical models are important issues in data assimilation. In this work, we propose an iterative expectation-maximisation (EM) algorithm to estimate the model error covariances using classical extended
Sensitivity, Error and Uncertainty Quantification: Interfacing Models at Different Scales
International Nuclear Information System (INIS)
Krstic, Predrag S.
2014-01-01
Discussion on accuracy of AMO data to be used in the plasma modeling codes for astrophysics and nuclear fusion applications, including plasma-material interfaces (PMI), involves many orders of magnitude of energy, spatial and temporal scales. Thus, energies run from tens of K to hundreds of millions of K, temporal and spatial scales go from fs to years and from nm’s to m’s and more, respectively. The key challenge for the theory and simulation in this field is the consistent integration of all processes and scales, i.e. an “integrated AMO science” (IAMO). The principal goal of the IAMO science is to enable accurate studies of interactions of electrons, atoms, molecules, photons, in many-body environment, including complex collision physics of plasma-material interfaces, leading to the best decisions and predictions. However, the accuracy requirement for a particular data strongly depends on the sensitivity of the respective plasma modeling applications to these data, which stresses a need for immediate sensitivity analysis feedback of the plasma modeling and material design communities. Thus, the data provision to the plasma modeling community is a “two-way road” as long as the accuracy of the data is considered, requiring close interactions of the AMO and plasma modeling communities.
Evaluation of wave runup predictions from numerical and parametric models
Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.
2014-01-01
Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.
Modeling the cosmic-ray-induced soft-error rate in integrated circuits: An overview
International Nuclear Information System (INIS)
Srinivasan, G.R.
1996-01-01
This paper is an overview of the concepts and methodologies used to predict soft-error rates (SER) due to cosmic and high-energy particle radiation in integrated circuit chips. The paper emphasizes the need for the SER simulation using the actual chip circuit model which includes device, process, and technology parameters as opposed to using either the discrete device simulation or generic circuit simulation that is commonly employed in SER modeling. Concepts such as funneling, event-by-event simulation, nuclear history files, critical charge, and charge sharing are examined. Also discussed are the relative importance of elastic and inelastic nuclear collisions, rare event statistics, and device vs. circuit simulations. The semi-empirical methodologies used in the aerospace community to arrive at SERs [also referred to as single-event upset (SEU) rates] in integrated circuit chips are reviewed. This paper is one of four in this special issue relating to SER modeling. Together, they provide a comprehensive account of this modeling effort, which has resulted in a unique modeling tool called the Soft-Error Monte Carlo Model, or SEMM
Students’ errors in solving combinatorics problems observed from the characteristics of RME modeling
Meika, I.; Suryadi, D.; Darhim
2018-01-01
This article was written based on the learning evaluation results of students’ errors in solving combinatorics problems observed from the characteristics of Realistic Mathematics Education (RME); that is modeling. Descriptive method was employed by involving 55 students from two international-based pilot state senior high schools in Banten. The findings of the study suggested that the students still committed errors in simplifying the problem as much 46%; errors in making mathematical model (horizontal mathematization) as much 60%; errors in finishing mathematical model (vertical mathematization) as much 65%; and errors in interpretation as well as validation as much 66%.
AN EFFICIENT PATIENT INFLOW PREDICTION MODEL FOR HOSPITAL RESOURCE MANAGEMENT
Directory of Open Access Journals (Sweden)
Kottalanka Srikanth
2017-07-01
Full Text Available There has been increasing demand in improving service provisioning in hospital resources management. Hospital industries work with strict budget constraint at the same time assures quality care. To achieve quality care with budget constraint an efficient prediction model is required. Recently there has been various time series based prediction model has been proposed to manage hospital resources such ambulance monitoring, emergency care and so on. These models are not efficient as they do not consider the nature of scenario such climate condition etc. To address this artificial intelligence is adopted. The issues with existing prediction are that the training suffers from local optima error. This induces overhead and affects the accuracy in prediction. To overcome the local minima error, this work presents a patient inflow prediction model by adopting resilient backpropagation neural network. Experiment are conducted to evaluate the performance of proposed model inter of RMSE and MAPE. The outcome shows the proposed model reduces RMSE and MAPE over existing back propagation based artificial neural network. The overall outcomes show the proposed prediction model improves the accuracy of prediction which aid in improving the quality of health care management.
Energy Technology Data Exchange (ETDEWEB)
Xing, Y; Macq, B; Bondar, L [Universite catholique de Louvain, Louvain-la-Neuve (Belgium); Janssens, G [IBA, Louvain-la-Neuve (Belgium)
2016-06-15
Purpose: To quantify the accuracy in predicting the Bragg peak position using simulated in-room measurements of prompt gamma (PG) emissions for realistic treatment error scenarios that combine several sources of errors. Methods: Prompt gamma measurements by a knife-edge slit camera were simulated using an experimentally validated analytical simulation tool. Simulations were performed, for 143 treatment error scenarios, on an anthropomorphic phantom and a pencil beam scanning plan for nasal cavity. Three types of errors were considered: translation along each axis, rotation around each axis, and CT-calibration errors with magnitude ranging respectively, between −3 and 3 mm, −5 and 5 degrees, and between −5 and +5%. We investigated the correlation between the Bragg peak (BP) shift and the horizontal shift of PG profiles. The shifts were calculated between the planned (reference) position and the position by the error scenario. The prediction error for one spot was calculated as the absolute difference between the PG profile shift and the BP shift. Results: The PG shift was significantly and strongly correlated with the BP shift for 92% of the cases (p<0.0001, Pearson correlation coefficient R>0.8). Moderate but significant correlations were obtained for all cases that considered only CT-calibration errors and for 1 case that combined translation and CT-errors (p<0.0001, R ranged between 0.61 and 0.8). The average prediction errors for the simulated scenarios ranged between 0.08±0.07 and 1.67±1.3 mm (grand mean 0.66±0.76 mm). The prediction error was moderately correlated with the value of the BP shift (p=0, R=0.64). For the simulated scenarios the average BP shift ranged between −8±6.5 mm and 3±1.1 mm. Scenarios that considered combinations of the largest treatment errors were associated with large BP shifts. Conclusion: Simulations of in-room measurements demonstrate that prompt gamma profiles provide reliable estimation of the Bragg peak position for
Fouragnan, Elsa; Queirazza, Filippo; Retzler, Chris; Mullinger, Karen J; Philiastides, Marios G
2017-07-06
Reward learning depends on accurate reward associations with potential choices. These associations can be attained with reinforcement learning mechanisms using a reward prediction error (RPE) signal (the difference between actual and expected rewards) for updating future reward expectations. Despite an extensive body of literature on the influence of RPE on learning, little has been done to investigate the potentially separate contributions of RPE valence (positive or negative) and surprise (absolute degree of deviation from expectations). Here, we coupled single-trial electroencephalography with simultaneously acquired fMRI, during a probabilistic reversal-learning task, to offer evidence of temporally overlapping but largely distinct spatial representations of RPE valence and surprise. Electrophysiological variability in RPE valence correlated with activity in regions of the human reward network promoting approach or avoidance learning. Electrophysiological variability in RPE surprise correlated primarily with activity in regions of the human attentional network controlling the speed of learning. Crucially, despite the largely separate spatial extend of these representations our EEG-informed fMRI approach uniquely revealed a linear superposition of the two RPE components in a smaller network encompassing visuo-mnemonic and reward areas. Activity in this network was further predictive of stimulus value updating indicating a comparable contribution of both signals to reward learning.
Wang, Weijie; Lu, Yanmin
2018-03-01
Most existing Collaborative Filtering (CF) algorithms predict a rating as the preference of an active user toward a given item, which is always a decimal fraction. Meanwhile, the actual ratings in most data sets are integers. In this paper, we discuss and demonstrate why rounding can bring different influences to these two metrics; prove that rounding is necessary in post-processing of the predicted ratings, eliminate of model prediction bias, improving the accuracy of the prediction. In addition, we also propose two new rounding approaches based on the predicted rating probability distribution, which can be used to round the predicted rating to an optimal integer rating, and get better prediction accuracy compared to the Basic Rounding approach. Extensive experiments on different data sets validate the correctness of our analysis and the effectiveness of our proposed rounding approaches.
Sang, Huiyan; Jun, Mikyoung; Huang, Jianhua Z.
2011-01-01
This paper investigates the cross-correlations across multiple climate model errors. We build a Bayesian hierarchical model that accounts for the spatial dependence of individual models as well as cross-covariances across different climate models
Bayesian modeling of measurement error in predictor variables using item response theory
Fox, Gerardus J.A.; Glas, Cornelis A.W.
2000-01-01
This paper focuses on handling measurement error in predictor variables using item response theory (IRT). Measurement error is of great important in assessment of theoretical constructs, such as intelligence or the school climate. Measurement error is modeled by treating the predictors as unobserved
Dreano, Denis
2017-04-05
Specification and tuning of errors from dynamical models are important issues in data assimilation. In this work, we propose an iterative expectation-maximisation (EM) algorithm to estimate the model error covariances using classical extended and ensemble versions of the Kalman smoother. We show that, for additive model errors, the estimate of the error covariance converges. We also investigate other forms of model error, such as parametric or multiplicative errors. We show that additive Gaussian model error is able to compensate for non additive sources of error in the algorithms we propose. We also demonstrate the limitations of the extended version of the algorithm and recommend the use of the more robust and flexible ensemble version. This article is a proof of concept of the methodology with the Lorenz-63 attractor. We developed an open-source Python library to enable future users to apply the algorithm to their own nonlinear dynamical models.
On land-use modeling: A treatise of satellite imagery data and misclassification error
Sandler, Austin M.
Recent availability of satellite-based land-use data sets, including data sets with contiguous spatial coverage over large areas, relatively long temporal coverage, and fine-scale land cover classifications, is providing new opportunities for land-use research. However, care must be used when working with these datasets due to misclassification error, which causes inconsistent parameter estimates in the discrete choice models typically used to model land-use. I therefore adapt the empirical correction methods developed for other contexts (e.g., epidemiology) so that they can be applied to land-use modeling. I then use a Monte Carlo simulation, and an empirical application using actual satellite imagery data from the Northern Great Plains, to compare the results of a traditional model ignoring misclassification to those from models accounting for misclassification. Results from both the simulation and application indicate that ignoring misclassification will lead to biased results. Even seemingly insignificant levels of misclassification error (e.g., 1%) result in biased parameter estimates, which alter marginal effects enough to affect policy inference. At the levels of misclassification typical in current satellite imagery datasets (e.g., as high as 35%), ignoring misclassification can lead to systematically erroneous land-use probabilities and substantially biased marginal effects. The correction methods I propose, however, generate consistent parameter estimates and therefore consistent estimates of marginal effects and predicted land-use probabilities.
MJO prediction skill of the subseasonal-to-seasonal (S2S) prediction models
Son, S. W.; Lim, Y.; Kim, D.
2017-12-01
The Madden-Julian Oscillation (MJO), the dominant mode of tropical intraseasonal variability, provides the primary source of tropical and extratropical predictability on subseasonal to seasonal timescales. To better understand its predictability, this study conducts quantitative evaluation of MJO prediction skill in the state-of-the-art operational models participating in the subseasonal-to-seasonal (S2S) prediction project. Based on bivariate correlation coefficient of 0.5, the S2S models exhibit MJO prediction skill ranging from 12 to 36 days. These prediction skills are affected by both the MJO amplitude and phase errors, the latter becoming more important with forecast lead times. Consistent with previous studies, the MJO events with stronger initial amplitude are typically better predicted. However, essentially no sensitivity to the initial MJO phase is observed. Overall MJO prediction skill and its inter-model spread are further related with the model mean biases in moisture fields and longwave cloud-radiation feedbacks. In most models, a dry bias quickly builds up in the deep tropics, especially across the Maritime Continent, weakening horizontal moisture gradient. This likely dampens the organization and propagation of MJO. Most S2S models also underestimate the longwave cloud-radiation feedbacks in the tropics, which may affect the maintenance of the MJO convective envelop. In general, the models with a smaller bias in horizontal moisture gradient and longwave cloud-radiation feedbacks show a higher MJO prediction skill, suggesting that improving those processes would enhance MJO prediction skill.
Modeling the North American vertical datum of 1988 errors in the conterminous United States
Li, X.
2018-02-01
A large systematic difference (ranging from -20 cm to +130 cm) was found between NAVD 88 (North AmericanVertical Datum of 1988) and the pure gravimetric geoid models. This difference not only makes it very difficult to augment the local geoid model by directly using the vast NAVD 88 network with state-of-the-art technologies recently developed in geodesy, but also limits the ability of researchers to effectively demonstrate the geoid model improvements on the NAVD 88 network. Here, both conventional regression analyses based on various predefined basis functions such as polynomials, B-splines, and Legendre functions and the Latent Variable Analysis (LVA) such as the Factor Analysis (FA) are used to analyze the systematic difference. Besides giving a mathematical model, the regression results do not reveal a great deal about the physical reasons that caused the large differences in NAVD 88, which may be of interest to various researchers. Furthermore, there is still a significant amount of no-Gaussian signals left in the residuals of the conventional regression models. On the other side, the FA method not only provides a better not of the data, but also offers possible explanations of the error sources. Without requiring extra hypothesis tests on the model coefficients, the results from FA are more efficient in terms of capturing the systematic difference. Furthermore, without using a covariance model, a novel interpolating method based on the relationship between the loading matrix and the factor scores is developed for predictive purposes. The prediction error analysis shows that about 3-7 cm precision is expected in NAVD 88 after removing the systematic difference.
Modeling the North American vertical datum of 1988 errors in the conterminous United States
Directory of Open Access Journals (Sweden)
Li X.
2018-02-01
Full Text Available A large systematic difference (ranging from −20 cm to +130 cm was found between NAVD 88 (North AmericanVertical Datum of 1988 and the pure gravimetric geoid models. This difference not only makes it very difficult to augment the local geoid model by directly using the vast NAVD 88 network with state-of-the-art technologies recently developed in geodesy, but also limits the ability of researchers to effectively demonstrate the geoid model improvements on the NAVD 88 network. Here, both conventional regression analyses based on various predefined basis functions such as polynomials, B-splines, and Legendre functions and the Latent Variable Analysis (LVA such as the Factor Analysis (FA are used to analyze the systematic difference. Besides giving a mathematical model, the regression results do not reveal a great deal about the physical reasons that caused the large differences in NAVD 88, which may be of interest to various researchers. Furthermore, there is still a significant amount of no-Gaussian signals left in the residuals of the conventional regression models. On the other side, the FA method not only provides a better not of the data, but also offers possible explanations of the error sources. Without requiring extra hypothesis tests on the model coefficients, the results from FA are more efficient in terms of capturing the systematic difference. Furthermore, without using a covariance model, a novel interpolating method based on the relationship between the loading matrix and the factor scores is developed for predictive purposes. The prediction error analysis shows that about 3-7 cm precision is expected in NAVD 88 after removing the systematic difference.
Modelo de error en imágenes comprimidas con wavelets Error Model in Wavelet-compressed Images
Directory of Open Access Journals (Sweden)
Gloria Puetamán G.
2007-06-01
Full Text Available En este artículo se presenta la compresión de imágenes a través de la comparación entre el modelo Wavelet y el modelo Fourier, utilizando la minimización de la función de error. El problema que se estudia es específico, consiste en determinar una base {ei} que minimice la función de error entre la imagen original y la recuperada después de la compresión. Es de resaltar que existen muchas aplicaciones, por ejemplo, en medicina o astronomía, en donde no es aceptable ningún deterioro de la imagen porque toda la información contenida, incluso la que se estima como ruido, se considera imprescindible.In this paper we study image compression as a way to compare Wavelet and Fourier models, by minimizing the error function. The particular problem we consider is to determine basis {ei} minimizing the error function between the original image and the recovered one after compression. It is to be noted or remarked that there are many applications in such diverse ﬁelds as for example medicine and astronomy, where no image deteriorating is acceptable since even noise is considered essential.
Model-observer similarity, error modeling and social learning in rhesus macaques.
Directory of Open Access Journals (Sweden)
Elisabetta Monfardini
Full Text Available Monkeys readily learn to discriminate between rewarded and unrewarded items or actions by observing their conspecifics. However, they do not systematically learn from humans. Understanding what makes human-to-monkey transmission of knowledge work or fail could help identify mediators and moderators of social learning that operate regardless of language or culture, and transcend inter-species differences. Do monkeys fail to learn when human models show a behavior too dissimilar from the animals' own, or when they show a faultless performance devoid of error? To address this question, six rhesus macaques trained to find which object within a pair concealed a food reward were successively tested with three models: a familiar conspecific, a 'stimulus-enhancing' human actively drawing the animal's attention to one object of the pair without actually performing the task, and a 'monkey-like' human performing the task in the same way as the monkey model did. Reward was manipulated to ensure that all models showed equal proportions of errors and successes. The 'monkey-like' human model improved the animals' subsequent object discrimination learning as much as a conspecific did, whereas the 'stimulus-enhancing' human model tended on the contrary to retard learning. Modeling errors rather than successes optimized learning from the monkey and 'monkey-like' models, while exacerbating the adverse effect of the 'stimulus-enhancing' model. These findings identify error modeling as a moderator of social learning in monkeys that amplifies the models' influence, whether beneficial or detrimental. By contrast, model-observer similarity in behavior emerged as a mediator of social learning, that is, a prerequisite for a model to work in the first place. The latter finding suggests that, as preverbal infants, macaques need to perceive the model as 'like-me' and that, once this condition is fulfilled, any agent can become an effective model.
Test models for improving filtering with model errors through stochastic parameter estimation
International Nuclear Information System (INIS)
Gershgorin, B.; Harlim, J.; Majda, A.J.
2010-01-01
The filtering skill for turbulent signals from nature is often limited by model errors created by utilizing an imperfect model for filtering. Updating the parameters in the imperfect model through stochastic parameter estimation is one way to increase filtering skill and model performance. Here a suite of stringent test models for filtering with stochastic parameter estimation is developed based on the Stochastic Parameterization Extended Kalman Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative and additive biases and involve exact formulas for propagating the mean and covariance including the parameters in the test model. A comprehensive study is presented of robust parameter regimes for increasing filtering skill through stochastic parameter estimation for turbulent signals as the observation time and observation noise are varied and even when the forcing is incorrectly specified. The results here provide useful guidelines for filtering turbulent signals in more complex systems with significant model errors.
Buechel, Eva C; Zhang, Jiao; Morewedge, Carey K
2017-05-01
Affective forecasts are used to anticipate the hedonic impact of future events and decide which events to pursue or avoid. We propose that because affective forecasters are more sensitive to outcome specifications of events than experiencers, the outcome specification values of an event, such as its duration, magnitude, probability, and psychological distance, can be used to predict the direction of affective forecasting errors: whether affective forecasters will overestimate or underestimate its hedonic impact. When specifications are positively correlated with the hedonic impact of an event, forecasters will overestimate the extent to which high specification values will intensify and low specification values will discount its impact. When outcome specifications are negatively correlated with its hedonic impact, forecasters will overestimate the extent to which low specification values will intensify and high specification values will discount its impact. These affective forecasting errors compound additively when multiple specifications are aligned in their impact: In Experiment 1, affective forecasters underestimated the hedonic impact of winning a smaller prize that they expected to win, and they overestimated the hedonic impact of winning a larger prize that they did not expect to win. In Experiment 2, affective forecasters underestimated the hedonic impact of a short unpleasant video about a temporally distant event, and they overestimated the hedonic impact of a long unpleasant video about a temporally near event. Experiments 3A and 3B showed that differences in the affect-richness of forecasted and experienced events underlie these differences in sensitivity to outcome specifications, therefore accounting for both the impact bias and its reversal. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Efficient thermal error prediction in a machine tool using finite element analysis
International Nuclear Information System (INIS)
Mian, Naeem S; Fletcher, Simon; Longstaff, Andrew P; Myers, Alan
2011-01-01
Thermally induced errors have a major significance on the positional accuracy of a machine tool. Heat generated during the machining process produces thermal gradients that flow through the machine structure causing linear and nonlinear thermal expansions and distortions of associated complex discrete structures, producing deformations that adversely affect structural stability. The heat passes through structural linkages and mechanical joints where interfacial parameters such as the roughness and form of the contacting surfaces affect the thermal resistance and thus the heat transfer coefficients. This paper presents a novel offline technique using finite element analysis (FEA) to simulate the effects of the major internal heat sources such as bearings, motors and belt drives of a small vertical milling machine (VMC) and the effects of ambient temperature pockets that build up during the machine operation. Simplified models of the machine have been created offline using FEA software and evaluated experimental results applied for offline thermal behaviour simulation of the full machine structure. The FEA simulated results are in close agreement with the experimental results ranging from 65% to 90% for a variety of testing regimes and revealed a maximum error range of 70 µm reduced to less than 10 µm
Assessment of errors and uncertainty patterns in GIA modeling
DEFF Research Database (Denmark)
Barletta, Valentina Roberta; Spada, G.
2012-01-01
During the last decade many efforts have been devoted to the assessment of global sea level rise and to the determination of the mass balance of continental ice sheets. In this context, the important role of glacial-isostatic adjustment (GIA) has been clearly recognized. Yet, in many cases only one......, such as time-evolving shorelines and paleo-coastlines. In this study we quantify these uncertainties and their propagation in GIA response using a Monte Carlo approach to obtain spatio-temporal patterns of GIA errors. A direct application is the error estimates in ice mass balance in Antarctica and Greenland...
Directory of Open Access Journals (Sweden)
Indra Djati Sidi
2017-12-01
Full Text Available The model error N has been introduced to denote the discrepancy between measured and predicted capacity of pile foundation. This model error is recognized as epistemic uncertainty in pile capacity prediction. The statistics of N have been evaluated based on data gathered from various sites and may be considered only as a eneral-error trend in capacity prediction, providing crude estimates of the model error in the absence of more specific data from the site. The results of even a single load test to failure, should provide direct evidence of the pile capacity at a given site. Bayes theorem has been used as a rational basis for combining new data with previous data to revise assessment of uncertainty and reliability. This study is devoted to the development of procedures for updating model error (N, and subsequently the predicted pile capacity with a results of single failure test.
Khoshgoftaar, Taghi M; Van Hulse, Jason; Napolitano, Amri
2010-05-01
Neural network algorithms such as multilayer perceptrons (MLPs) and radial basis function networks (RBFNets) have been used to construct learners which exhibit strong predictive performance. Two data related issues that can have a detrimental impact on supervised learning initiatives are class imbalance and labeling errors (or class noise). Imbalanced data can make it more difficult for the neural network learning algorithms to distinguish between examples of the various classes, and class noise can lead to the formulation of incorrect hypotheses. Both class imbalance and labeling errors are pervasive problems encountered in a wide variety of application domains. Many studies have been performed to investigate these problems in isolation, but few have focused on their combined effects. This study presents a comprehensive empirical investigation using neural network algorithms to learn from imbalanced data with labeling errors. In particular, the first component of our study investigates the impact of class noise and class imbalance on two common neural network learning algorithms, while the second component considers the ability of data sampling (which is commonly used to address the issue of class imbalance) to improve their performances. Our results, for which over two million models were trained and evaluated, show that conclusions drawn using the more commonly studied C4.5 classifier may not apply when using neural networks.
International Nuclear Information System (INIS)
Wahlstroem, B.
1993-01-01
Human errors have a major contribution to the risks for industrial accidents. Accidents have provided important lesson making it possible to build safer systems. In avoiding human errors it is necessary to adapt the systems to their operators. The complexity of modern industrial systems is however increasing the danger of system accidents. Models of the human operator have been proposed, but the models are not able to give accurate predictions of human performance. Human errors can never be eliminated, but their frequency can be decreased by systematic efforts. The paper gives a brief summary of research in human error and it concludes with suggestions for further work. (orig.)
Where did I go wrong? : explaining errors in business process models
Lohmann, N.; Fahland, D.; Sadiq, S.; Soffer, P.; Völzer, H.
2014-01-01
Business process modeling is still a challenging task — especially since more and more aspects are added to the models, such as data lifecycles, security constraints, or compliance rules. At the same time, formal methods allow for a detection of errors in the early modeling phase. Detected errors
Estimating the Autocorrelated Error Model with Trended Data: Further Results,
1979-11-01
Perhaps the most serious deficiency of OLS in the presence of autocorrelation is not inefficiency but bias in its estimated standard errors--a bias...k for all t has variance var(b) = o2/ Tk2 2This refutes Maeshiro’s (1976) conjecture that "an estimator utilizing relevant extraneous information
Error Concealment Method Based on Motion Vector Prediction Using Particle Filters
Directory of Open Access Journals (Sweden)
B. Hrusovsky
2011-09-01
Full Text Available Video transmitted over unreliable environment, such as wireless channel or in generally any network with unreliable transport protocol, is facing the losses of video packets due to network congestion and different kind of noises. The problem is becoming more important using highly effective video codecs. Visual quality degradation could propagate into subsequent frames due to redundancy elimination in order to obtain high compression ratio. Since the video stream transmission in real time is limited by transmission channel delay, it is not possible to retransmit all faulty or lost packets. It is therefore inevitable to conceal these defects. To reduce the undesirable effects of information losses, the lost data is usually estimated from the received data, which is generally known as error concealment problem. This paper discusses packet loss modeling in order to simulate losses during video transmission, packet losses analysis and their impacts on the motion vectors losses.
Krawczyk, María C; Fernández, Rodrigo S; Pedreira, María E; Boccia, Mariano M
2017-07-01
Experimental psychology defines Prediction Error (PE) as a mismatch between expected and current events. It represents a unifier concept within the memory field, as it is the driving force of memory acquisition and updating. Prediction error induces updating of consolidated memories in strength or content by memory reconsolidation. This process has two different neurobiological phases, which involves the destabilization (labilization) of a consolidated memory followed by its restabilization. The aim of this work is to emphasize the functional role of PE on the neurobiology of learning and memory, integrating and discussing different research areas: behavioral, neurobiological, computational and clinical psychiatry. Copyright © 2016 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Philip J Kellman
Full Text Available Latent fingerprint examination is a complex task that, despite advances in image processing, still fundamentally depends on the visual judgments of highly trained human examiners. Fingerprints collected from crime scenes typically contain less information than fingerprints collected under controlled conditions. Specifically, they are often noisy and distorted and may contain only a portion of the total fingerprint area. Expertise in fingerprint comparison, like other forms of perceptual expertise, such as face recognition or aircraft identification, depends on perceptual learning processes that lead to the discovery of features and relations that matter in comparing prints. Relatively little is known about the perceptual processes involved in making comparisons, and even less is known about what characteristics of fingerprint pairs make particular comparisons easy or difficult. We measured expert examiner performance and judgments of difficulty and confidence on a new fingerprint database. We developed a number of quantitative measures of image characteristics and used multiple regression techniques to discover objective predictors of error as well as perceived difficulty and confidence. A number of useful predictors emerged, and these included variables related to image quality metrics, such as intensity and contrast information, as well as measures of information quantity, such as the total fingerprint area. Also included were configural features that fingerprint experts have noted, such as the presence and clarity of global features and fingerprint ridges. Within the constraints of the overall low error rates of experts, a regression model incorporating the derived predictors demonstrated reasonable success in predicting objective difficulty for print pairs, as shown both in goodness of fit measures to the original data set and in a cross validation test. The results indicate the plausibility of using objective image metrics to predict expert
Kellman, Philip J; Mnookin, Jennifer L; Erlikhman, Gennady; Garrigan, Patrick; Ghose, Tandra; Mettler, Everett; Charlton, David; Dror, Itiel E
2014-01-01
Latent fingerprint examination is a complex task that, despite advances in image processing, still fundamentally depends on the visual judgments of highly trained human examiners. Fingerprints collected from crime scenes typically contain less information than fingerprints collected under controlled conditions. Specifically, they are often noisy and distorted and may contain only a portion of the total fingerprint area. Expertise in fingerprint comparison, like other forms of perceptual expertise, such as face recognition or aircraft identification, depends on perceptual learning processes that lead to the discovery of features and relations that matter in comparing prints. Relatively little is known about the perceptual processes involved in making comparisons, and even less is known about what characteristics of fingerprint pairs make particular comparisons easy or difficult. We measured expert examiner performance and judgments of difficulty and confidence on a new fingerprint database. We developed a number of quantitative measures of image characteristics and used multiple regression techniques to discover objective predictors of error as well as perceived difficulty and confidence. A number of useful predictors emerged, and these included variables related to image quality metrics, such as intensity and contrast information, as well as measures of information quantity, such as the total fingerprint area. Also included were configural features that fingerprint experts have noted, such as the presence and clarity of global features and fingerprint ridges. Within the constraints of the overall low error rates of experts, a regression model incorporating the derived predictors demonstrated reasonable success in predicting objective difficulty for print pairs, as shown both in goodness of fit measures to the original data set and in a cross validation test. The results indicate the plausibility of using objective image metrics to predict expert performance and
Cardiac Concomitants of Feedback and Prediction Error Processing in Reinforcement Learning
Kastner, Lucas; Kube, Jana; Villringer, Arno; Neumann, Jane
2017-01-01
Successful learning hinges on the evaluation of positive and negative feedback. We assessed differential learning from reward and punishment in a monetary reinforcement learning paradigm, together with cardiac concomitants of positive and negative feedback processing. On the behavioral level, learning from reward resulted in more advantageous behavior than learning from punishment, suggesting a differential impact of reward and punishment on successful feedback-based learning. On the autonomic level, learning and feedback processing were closely mirrored by phasic cardiac responses on a trial-by-trial basis: (1) Negative feedback was accompanied by faster and prolonged heart rate deceleration compared to positive feedback. (2) Cardiac responses shifted from feedback presentation at the beginning of learning to stimulus presentation later on. (3) Most importantly, the strength of phasic cardiac responses to the presentation of feedback correlated with the strength of prediction error signals that alert the learner to the necessity for behavioral adaptation. Considering participants' weight status and gender revealed obesity-related deficits in learning to avoid negative consequences and less consistent behavioral adaptation in women compared to men. In sum, our results provide strong new evidence for the notion that during learning phasic cardiac responses reflect an internal value and feedback monitoring system that is sensitive to the violation of performance-based expectations. Moreover, inter-individual differences in weight status and gender may affect both behavioral and autonomic responses in reinforcement-based learning. PMID:29163004
Comparison of the prediction error in cataract surgery with Lenstar and conventional ultrasound
Directory of Open Access Journals (Sweden)
Hou-Cheng Liang
2013-12-01
Full Text Available AIM: To compare the prediction errors(PEin cataract surgery with Lenstar and conventional ultrasound. METHODS: The data of age-related cataract patients were retrospectively analyzed from March, 2013 to June, 2013 in our hospital. Preoperative measurements of ocular biological parameters and calculation of intraocular lens(IOLdegree using SRK/T's formula with ultrasound, keratometry and Lenstar were performed. Cataract extraction combined with IOL implantation in capsule was taken in every patient. Retinoscopy was taken postoperatively after 3 months. Comparison of the two inspection methods for measuring axial length, mean corneal curvature and postoperative refractive PE and absolute value of PE(APE. RESULTS: Preoperative axial length was 24.68±1.70mm and 24.42±1.65mm with Lenstar and ultrasound, respectively, and there was significant difference(t=-12.688, Pr=0.992, Pt=-1.241, P=0.217, but was the significant correlation(r=0.963, Pt=-5.494, Pt=6.379, PCONCLUSION: Accurate ocular biological parameters can be achieved with Lenstar, and postoperative PE is more precise with Lenstar compared with conventional ultrasound. Lenstar can be used for precise calculation of IOL degree in cataract operation.
Altered neural reward and loss processing and prediction error signalling in depression
Ubl, Bettina; Kuehner, Christine; Kirsch, Peter; Ruttorf, Michaela
2015-01-01
Dysfunctional processing of reward and punishment may play an important role in depression. However, functional magnetic resonance imaging (fMRI) studies have shown heterogeneous results for reward processing in fronto-striatal regions. We examined neural responsivity associated with the processing of reward and loss during anticipation and receipt of incentives and related prediction error (PE) signalling in depressed individuals. Thirty medication-free depressed persons and 28 healthy controls performed an fMRI reward paradigm. Regions of interest analyses focused on neural responses during anticipation and receipt of gains and losses and related PE-signals. Additionally, we assessed the relationship between neural responsivity during gain/loss processing and hedonic capacity. When compared with healthy controls, depressed individuals showed reduced fronto-striatal activity during anticipation of gains and losses. The groups did not significantly differ in response to reward and loss outcomes. In depressed individuals, activity increases in the orbitofrontal cortex and nucleus accumbens during reward anticipation were associated with hedonic capacity. Depressed individuals showed an absence of reward-related PEs but encoded loss-related PEs in the ventral striatum. Depression seems to be linked to blunted responsivity in fronto-striatal regions associated with limited motivational responses for rewards and losses. Alterations in PE encoding might mirror blunted reward- and enhanced loss-related associative learning in depression. PMID:25567763
Allam, Ahmed M; Abbas, Hazem M
2010-12-01
Neural cryptography deals with the problem of "key exchange" between two neural networks using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between the two communicating parties is eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process. Therefore, diminishing the probability of such a threat improves the reliability of exchanging the output bits through a public channel. The synchronization with feedback algorithm is one of the existing algorithms that enhances the security of neural cryptography. This paper proposes three new algorithms to enhance the mutual learning process. They mainly depend on disrupting the attacker confidence in the exchanged outputs and input patterns during training. The first algorithm is called "Do not Trust My Partner" (DTMP), which relies on one party sending erroneous output bits, with the other party being capable of predicting and correcting this error. The second algorithm is called "Synchronization with Common Secret Feedback" (SCSFB), where inputs are kept partially secret and the attacker has to train its network on input patterns that are different from the training sets used by the communicating parties. The third algorithm is a hybrid technique combining the features of the DTMP and SCSFB. The proposed approaches are shown to outperform the synchronization with feedback algorithm in the time needed for the parties to synchronize.
Cardiac Concomitants of Feedback and Prediction Error Processing in Reinforcement Learning
Directory of Open Access Journals (Sweden)
Lucas Kastner
2017-10-01
Full Text Available Successful learning hinges on the evaluation of positive and negative feedback. We assessed differential learning from reward and punishment in a monetary reinforcement learning paradigm, together with cardiac concomitants of positive and negative feedback processing. On the behavioral level, learning from reward resulted in more advantageous behavior than learning from punishment, suggesting a differential impact of reward and punishment on successful feedback-based learning. On the autonomic level, learning and feedback processing were closely mirrored by phasic cardiac responses on a trial-by-trial basis: (1 Negative feedback was accompanied by faster and prolonged heart rate deceleration compared to positive feedback. (2 Cardiac responses shifted from feedback presentation at the beginning of learning to stimulus presentation later on. (3 Most importantly, the strength of phasic cardiac responses to the presentation of feedback correlated with the strength of prediction error signals that alert the learner to the necessity for behavioral adaptation. Considering participants' weight status and gender revealed obesity-related deficits in learning to avoid negative consequences and less consistent behavioral adaptation in women compared to men. In sum, our results provide strong new evidence for the notion that during learning phasic cardiac responses reflect an internal value and feedback monitoring system that is sensitive to the violation of performance-based expectations. Moreover, inter-individual differences in weight status and gender may affect both behavioral and autonomic responses in reinforcement-based learning.
Prediction errors to emotional expressions: the roles of the amygdala in social referencing.
Meffert, Harma; Brislin, Sarah J; White, Stuart F; Blair, James R
2015-04-01
Social referencing paradigms in humans and observational learning paradigms in animals suggest that emotional expressions are important for communicating valence. It has been proposed that these expressions initiate stimulus-reinforcement learning. Relatively little is known about the role of emotional expressions in reinforcement learning, particularly in the context of social referencing. In this study, we examined object valence learning in the context of a social referencing paradigm. Participants viewed objects and faces that turned toward the objects and displayed a fearful, happy or neutral reaction to them, while judging the gender of these faces. Notably, amygdala activation was larger when the expressions following an object were less expected. Moreover, when asked, participants were both more likely to want to approach, and showed stronger amygdala responses to, objects associated with happy relative to objects associated with fearful expressions. This suggests that the amygdala plays two roles in social referencing: (i) initiating learning regarding the valence of an object as a function of prediction errors to expressions displayed toward this object and (ii) orchestrating an emotional response to the object when value judgments are being made regarding this object. Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.
Sakuma, Jun; Wright, Rebecca N.
Privacy-preserving classification is the task of learning or training a classifier on the union of privately distributed datasets without sharing the datasets. The emphasis of existing studies in privacy-preserving classification has primarily been put on the design of privacy-preserving versions of particular data mining algorithms, However, in classification problems, preprocessing and postprocessing— such as model selection or attribute selection—play a prominent role in achieving higher classification accuracy. In this paper, we show generalization error of classifiers in privacy-preserving classification can be securely evaluated without sharing prediction results. Our main technical contribution is a new generalized Hamming distance protocol that is universally applicable to preprocessing and postprocessing of various privacy-preserving classification problems, such as model selection in support vector machine and attribute selection in naive Bayes classification.
Pandey, Dhruva Kumar; Rai, Shailendra; Sahai, A. K.; Abhilash, S.; Shahi, N. K.
2016-02-01
This study investigates the forecast skill and predictability of various indices of south Asian monsoon as well as the subdivisions of the Indian subcontinent during JJAS season for the time domain of 2001-2013 using NCEP CFSv2 output. It has been observed that the daily mean climatology of precipitation over the land points of India is underestimated in the model forecast as compared to observation. The monthly model bias of precipitation shows the dry bias over the land points of India and also over the Bay of Bengal, whereas the Himalayan and Arabian Sea regions show the wet bias. We have divided the Indian landmass into five subdivisions namely central India, southern India, Western Ghat, northeast and southern Bay of Bengal regions based on the spatial variation of observed mean precipitation in JJAS season. The underestimation over the land points of India during mature phase was originated from the central India, southern Bay of Bengal, southern India and Western Ghat regions. The error growth in June forecast is slower as compared to July forecast in all the regions. The predictability error also grows slowly in June forecast as compared to July forecast in most of the regions. The doubling time of predictability error was estimated to be in the range of 3-5 days for all the regions. Southern India and Western Ghats are more predictable in the July forecast as compared to June forecast, whereas IMR, northeast, central India and southern Bay of Bengal regions have the opposite nature.
Resource-estimation models and predicted discovery
International Nuclear Information System (INIS)
Hill, G.W.
1982-01-01
Resources have been estimated by predictive extrapolation from past discovery experience, by analogy with better explored regions, or by inference from evidence of depletion of targets for exploration. Changes in technology and new insights into geological mechanisms have occurred sufficiently often in the long run to form part of the pattern of mature discovery experience. The criterion, that a meaningful resource estimate needs an objective measure of its precision or degree of uncertainty, excludes 'estimates' based solely on expert opinion. This is illustrated by development of error measures for several persuasive models of discovery and production of oil and gas in USA, both annually and in terms of increasing exploration effort. Appropriate generalizations of the models resolve many points of controversy. This is illustrated using two USA data sets describing discovery of oil and of U 3 O 8 ; the latter set highlights an inadequacy of available official data. Review of the oil-discovery data set provides a warrant for adjusting the time-series prediction to a higher resource figure for USA petroleum. (author)
Towards New Empirical Versions of Financial and Accounting Models Corrected for Measurement Errors
Francois-Éric Racicot; Raymond Théoret; Alain Coen
2006-01-01
In this paper, we propose a new empirical version of the Fama and French Model based on the Hausman (1978) specification test and aimed at discarding measurement errors in the variables. The proposed empirical framework is general enough to be used for correcting other financial and accounting models of measurement errors. Removing measurement errors is important at many levels as information disclosure, corporate governance and protection of investors.
A methodology for collection and analysis of human error data based on a cognitive model: IDA
International Nuclear Information System (INIS)
Shen, S.-H.; Smidts, C.; Mosleh, A.
1997-01-01
This paper presents a model-based human error taxonomy and data collection. The underlying model, IDA (described in two companion papers), is a cognitive model of behavior developed for analysis of the actions of nuclear power plant operating crew during abnormal situations. The taxonomy is established with reference to three external reference points (i.e. plant status, procedures, and crew) and four reference points internal to the model (i.e. information collected, diagnosis, decision, action). The taxonomy helps the analyst: (1) recognize errors as such; (2) categorize the error in terms of generic characteristics such as 'error in selection of problem solving strategies' and (3) identify the root causes of the error. The data collection methodology is summarized in post event operator interview and analysis summary forms. The root cause analysis methodology is illustrated using a subset of an actual event. Statistics, which extract generic characteristics of error prone behaviors and error prone situations are presented. Finally, applications of the human error data collection are reviewed. A primary benefit of this methodology is to define better symptom-based and other auxiliary procedures with associated training to minimize or preclude certain human errors. It also helps in design of control rooms, and in assessment of human error probabilities in the probabilistic risk assessment framework. (orig.)
Directory of Open Access Journals (Sweden)
Angel Lago-Rodriguez
2016-09-01
Full Text Available Prolonged exposure to movement perturbations leads to creation of motor memories which decay towards previous states when the perturbations are removed. However, it remains unclear whether this decay is due only to a spontaneous and passive recovery of the previous state. It has recently been reported that activation of reinforcement-based learning mechanisms delays the onset of the decay. This raises the question whether other motor learning mechanisms may also contribute to the retention and/or decay of the motor memory. Therefore, we aimed to test whether mechanisms of error-based motor adaptation are active during the decay of the motor memory. Forty-five right-handed participants performed point-to-point reaching movements under an external dynamic perturbation. We measured the expression of the motor memory through error-clamped (EC trials, in which lateral forces constrained movements to a straight line towards the target. We found greater and faster decay of the motor memory for participants who had access to full online visual feedback during these EC trials (Cursor group, when compared with participants who had no EC feedback regarding movement trajectory (Arc group. Importantly, we did not find between-group differences in adaptation to the external perturbation. In addition, we found greater decay of the motor memory when we artificially increased feedback errors through the manipulation of visual feedback (Augmented-Error group. Our results then support the notion of an active decay of the motor memory, suggesting that adaptive mechanisms are involved in correcting for the mismatch between predicted movement trajectories and actual sensory feedback, which leads to greater and faster decay of the motor memory.
Correcting electrode modelling errors in EIT on realistic 3D head models.
Jehl, Markus; Avery, James; Malone, Emma; Holder, David; Betcke, Timo
2015-12-01
Electrical impedance tomography (EIT) is a promising medical imaging technique which could aid differentiation of haemorrhagic from ischaemic stroke in an ambulance. One challenge in EIT is the ill-posed nature of the image reconstruction, i.e., that small measurement or modelling errors can result in large image artefacts. It is therefore important that reconstruction algorithms are improved with regard to stability to modelling errors. We identify that wrongly modelled electrode positions constitute one of the biggest sources of image artefacts in head EIT. Therefore, the use of the Fréchet derivative on the electrode boundaries in a realistic three-dimensional head model is investigated, in order to reconstruct electrode movements simultaneously to conductivity changes. We show a fast implementation and analyse the performance of electrode position reconstructions in time-difference and absolute imaging for simulated and experimental voltages. Reconstructing the electrode positions and conductivities simultaneously increased the image quality significantly in the presence of electrode movement.
Model predictive control using fuzzy decision functions
Kaymak, U.; Costa Sousa, da J.M.
2001-01-01
Fuzzy predictive control integrates conventional model predictive control with techniques from fuzzy multicriteria decision making, translating the goals and the constraints to predictive control in a transparent way. The information regarding the (fuzzy) goals and the (fuzzy) constraints of the
Predicting Market Impact Costs Using Nonparametric Machine Learning Models.
Directory of Open Access Journals (Sweden)
Saerom Park
Full Text Available Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.
Predicting Market Impact Costs Using Nonparametric Machine Learning Models.
Park, Saerom; Lee, Jaewook; Son, Youngdoo
2016-01-01
Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.
Analysis of errors in spectral reconstruction with a Laplace transform pair model
International Nuclear Information System (INIS)
Archer, B.R.; Bushong, S.C.
1985-01-01
The sensitivity of a Laplace transform pair model for spectral reconstruction to random errors in attenuation measurements of diagnostic x-ray units has been investigated. No spectral deformation or significant alteration resulted from the simulated attenuation errors. It is concluded that the range of spectral uncertainties to be expected from the application of this model is acceptable for most scientific applications. (author)
Potential Hydraulic Modelling Errors Associated with Rheological Data Extrapolation in Laminar Flow
International Nuclear Information System (INIS)
Shadday, Martin A. Jr.
1997-01-01
The potential errors associated with the modelling of flows of non-Newtonian slurries through pipes, due to inadequate rheological models and extrapolation outside of the ranges of data bases, are demonstrated. The behaviors of both dilatant and pseudoplastic fluids with yield stresses, and the errors associated with treating them as Bingham plastics, are investigated
Verduzco-Flores, Sergio O; O'Reilly, Randall C
2015-01-01
We present a cerebellar architecture with two main characteristics. The first one is that complex spikes respond to increases in sensory errors. The second one is that cerebellar modules associate particular contexts where errors have increased in the past with corrective commands that stop the increase in error. We analyze our architecture formally and computationally for the case of reaching in a 3D environment. In the case of motor control, we show that there are synergies of this architecture with the Equilibrium-Point hypothesis, leading to novel ways to solve the motor error and distal learning problems. In particular, the presence of desired equilibrium lengths for muscles provides a way to know when the error is increasing, and which corrections to apply. In the context of Threshold Control Theory and Perceptual Control Theory we show how to extend our model so it implements anticipative corrections in cascade control systems that span from muscle contractions to cognitive operations.
Directory of Open Access Journals (Sweden)
Sergio Oscar Verduzco-Flores
2015-03-01
Full Text Available We present a cerebellar architecture with two main characteristics. The first one is that complex spikes respond to increases in sensory errors. The second one is that cerebellar modules associate particular contexts where errors have increased in the past with corrective commands that stop the increase in error. We analyze our architecture formally and computationally for the case of reaching in a 3D environment. In the case of motor control, we show that there are synergies of this architecture with the Equilibrium-Point hypothesis, leading to novel ways to solve the motor error and distal learning problems. In particular, the presence of desired equilibrium lengths for muscles provides a way to know when the error is increasing, and which corrections to apply. In the context of Threshold Control Theory and Perceptual Control Theory we show how to extend our model so it implements anticipative corrections in cascade control systems that span from muscle contractions to cognitive operations.
Tops, Mattie; Boksem, Maarten A. S.
2010-01-01
We hypothesized that interactions between traits and context predict task engagement, as measured by the amplitude of the error-related negativity (ERN), performance, and relative frontal activity asymmetry (RFA). In Study 1, we found that drive for reward, absorption, and constraint independently
Preston, Jonathan L.; Hull, Margaret; Edwards, Mary Louise
2013-01-01
Purpose: To determine if speech error patterns in preschoolers with speech sound disorders (SSDs) predict articulation and phonological awareness (PA) outcomes almost 4 years later. Method: Twenty-five children with histories of preschool SSDs (and normal receptive language) were tested at an average age of 4;6 (years;months) and were followed up…
Directory of Open Access Journals (Sweden)
Volodymyr Kharchenko
2017-03-01
Full Text Available Purpose: the aim of this study is to research applied models of air traffic controllers’ errors prevention in terminal control areas (TMA under uncertainty conditions. In this work the theoretical framework descripting safety events and errors of air traffic controllers connected with the operations in TMA is proposed. Methods: optimisation of terminal control area formal description based on the Threat and Error management model and the TMA network model of air traffic flows. Results: the human factors variables associated with safety events in work of air traffic controllers under uncertainty conditions were obtained. The Threat and Error management model application principles to air traffic controller operations and the TMA network model of air traffic flows were proposed. Discussion: Information processing context for preventing air traffic controller errors, examples of threats in work of air traffic controllers, which are relevant for TMA operations under uncertainty conditions.
Prediction of human errors by maladaptive changes in event-related brain networks
Eichele, T.; Debener, S.; Calhoun, V.D.; Specht, K.; Engel, A.K.; Hugdahl, K.; Cramon, D.Y. von; Ullsperger, M.
2008-01-01
Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional Mill and applying independent component analysis followed by deconvolution of hemodynamic responses, we
On low-frequency errors of uniformly modulated filtered white-noise models for ground motions
Safak, Erdal; Boore, David M.
1988-01-01
Low-frequency errors of a commonly used non-stationary stochastic model (uniformly modulated filtered white-noise model) for earthquake ground motions are investigated. It is shown both analytically and by numerical simulation that uniformly modulated filter white-noise-type models systematically overestimate the spectral response for periods longer than the effective duration of the earthquake, because of the built-in low-frequency errors in the model. The errors, which are significant for low-magnitude short-duration earthquakes, can be eliminated by using the filtered shot-noise-type models (i. e. white noise, modulated by the envelope first, and then filtered).
Cross-Validation of Aerobic Capacity Prediction Models in Adolescents.
Burns, Ryan Donald; Hannon, James C; Brusseau, Timothy A; Eisenman, Patricia A; Saint-Maurice, Pedro F; Welk, Greg J; Mahar, Matthew T
2015-08-01
Cardiorespiratory endurance is a component of health-related fitness. FITNESSGRAM recommends the Progressive Aerobic Cardiovascular Endurance Run (PACER) or One mile Run/Walk (1MRW) to assess cardiorespiratory endurance by estimating VO2 Peak. No research has cross-validated prediction models from both PACER and 1MRW, including the New PACER Model and PACER-Mile Equivalent (PACER-MEQ) using current standards. The purpose of this study was to cross-validate prediction models from PACER and 1MRW against measured VO2 Peak in adolescents. Cardiorespiratory endurance data were collected on 90 adolescents aged 13-16 years (Mean = 14.7 ± 1.3 years; 32 girls, 52 boys) who completed the PACER and 1MRW in addition to a laboratory maximal treadmill test to measure VO2 Peak. Multiple correlations among various models with measured VO2 Peak were considered moderately strong (R = .74-0.78), and prediction error (RMSE) ranged from 5.95 ml·kg⁻¹,min⁻¹ to 8.27 ml·kg⁻¹.min⁻¹. Criterion-referenced agreement into FITNESSGRAM's Healthy Fitness Zones was considered fair-to-good among models (Kappa = 0.31-0.62; Agreement = 75.5-89.9%; F = 0.08-0.65). In conclusion, prediction models demonstrated moderately strong linear relationships with measured VO2 Peak, fair prediction error, and fair-to-good criterion referenced agreement with measured VO2 Peak into FITNESSGRAM's Healthy Fitness Zones.
Calvo, Roque; D’Amato, Roberto; Gómez, Emilio; Domingo, Rosario
2016-01-01
The development of an error compensation model for coordinate measuring machines (CMMs) and its integration into feature measurement is presented. CMMs are widespread and dependable instruments in industry and laboratories for dimensional measurement. From the tip probe sensor to the machine display, there is a complex transformation of probed point coordinates through the geometrical feature model that makes the assessment of accuracy and uncertainty measurement results difficult. Therefore, error compensation is not standardized, conversely to other simpler instruments. Detailed coordinate error compensation models are generally based on CMM as a rigid-body and it requires a detailed mapping of the CMM’s behavior. In this paper a new model type of error compensation is proposed. It evaluates the error from the vectorial composition of length error by axis and its integration into the geometrical measurement model. The non-explained variability by the model is incorporated into the uncertainty budget. Model parameters are analyzed and linked to the geometrical errors and uncertainty of CMM response. Next, the outstanding measurement models of flatness, angle, and roundness are developed. The proposed models are useful for measurement improvement with easy integration into CMM signal processing, in particular in industrial environments where built-in solutions are sought. A battery of implementation tests are presented in Part II, where the experimental endorsement of the model is included. PMID:27690052
Directory of Open Access Journals (Sweden)
Roque Calvo
2016-09-01
Full Text Available The development of an error compensation model for coordinate measuring machines (CMMs and its integration into feature measurement is presented. CMMs are widespread and dependable instruments in industry and laboratories for dimensional measurement. From the tip probe sensor to the machine display, there is a complex transformation of probed point coordinates through the geometrical feature model that makes the assessment of accuracy and uncertainty measurement results difficult. Therefore, error compensation is not standardized, conversely to other simpler instruments. Detailed coordinate error compensation models are generally based on CMM as a rigid-body and it requires a detailed mapping of the CMM’s behavior. In this paper a new model type of error compensation is proposed. It evaluates the error from the vectorial composition of length error by axis and its integration into the geometrical measurement model. The non-explained variability by the model is incorporated into the uncertainty budget. Model parameters are analyzed and linked to the geometrical errors and uncertainty of CMM response. Next, the outstanding measurement models of flatness, angle, and roundness are developed. The proposed models are useful for measurement improvement with easy integration into CMM signal processing, in particular in industrial environments where built-in solutions are sought. A battery of implementation tests are presented in Part II, where the experimental endorsement of the model is included.
Experiments in Error Propagation within Hierarchal Combat Models
2015-09-01
stochastic Lanchester campaign model that contains 18 Blue and 25 Red submarines. The outputs of the campaign models are analyzed statistically. The...sampled in a variety of ways, including just the mean, and used to calculate the attrition coefficients for a stochastic Lanchester campaign model...9 2. Lanchester Models .............................................................................10 III. SCENARIO AND MODEL DEVELOPMENT
Phase Error Modeling and Its Impact on Precise Orbit Determination of GRACE Satellites
Directory of Open Access Journals (Sweden)
Jia Tu
2012-01-01
Full Text Available Limiting factors for the precise orbit determination (POD of low-earth orbit (LEO satellite using dual-frequency GPS are nowadays mainly encountered with the in-flight phase error modeling. The phase error is modeled as a systematic and a random component each depending on the direction of GPS signal reception. The systematic part and standard deviation of random part in phase error model are, respectively, estimated by bin-wise mean and standard deviation values of phase postfit residuals computed by orbit determination. By removing the systematic component and adjusting the weight of phase observation data according to standard deviation of random component, the orbit can be further improved by POD approach. The GRACE data of 1–31 January 2006 are processed, and three types of orbit solutions, POD without phase error model correction, POD with mean value correction of phase error model, and POD with phase error model correction, are obtained. The three-dimensional (3D orbit improvements derived from phase error model correction are 0.0153 m for GRACE A and 0.0131 m for GRACE B, and the 3D influences arisen from random part of phase error model are 0.0068 m and 0.0075 m for GRACE A and GRACE B, respectively. Thus the random part of phase error model cannot be neglected for POD. It is also demonstrated by phase postfit residual analysis, orbit comparison with JPL precise science orbit, and orbit validation with KBR data that the results derived from POD with phase error model correction are better than another two types of orbit solutions generated in this paper.
Tso, Chak-Hau Michael; Kuras, Oliver; Wilkinson, Paul B.; Uhlemann, Sebastian; Chambers, Jonathan E.; Meldrum, Philip I.; Graham, James; Sherlock, Emma F.; Binley, Andrew
2017-11-01
Measurement errors can play a pivotal role in geophysical inversion. Most inverse models require users to prescribe or assume a statistical model of data errors before inversion. Wrongly prescribed errors can lead to over- or under-fitting of data; however, the derivation of models of data errors is often neglected. With the heightening interest in uncertainty estimation within hydrogeophysics, better characterisation and treatment of measurement errors is needed to provide improved image appraisal. Here we focus on the role of measurement errors in electrical resistivity tomography (ERT). We have analysed two time-lapse ERT datasets: one contains 96 sets of direct and reciprocal data collected from a surface ERT line within a 24 h timeframe; the other is a two-year-long cross-borehole survey at a UK nuclear site with 246 sets of over 50,000 measurements. Our study includes the characterisation of the spatial and temporal behaviour of measurement errors using autocorrelation and correlation coefficient analysis. We find that, in addition to well-known proportionality effects, ERT measurements can also be sensitive to the combination of electrodes used, i.e. errors may not be uncorrelated as often assumed. Based on these findings, we develop a new error model that allows grouping based on electrode number in addition to fitting a linear model to transfer resistance. The new model explains the observed measurement errors better and shows superior inversion results and uncertainty estimates in synthetic examples. It is robust, because it groups errors together based on the electrodes used to make the measurements. The new model can be readily applied to the diagonal data weighting matrix widely used in common inversion methods, as well as to the data covariance matrix in a Bayesian inversion framework. We demonstrate its application using extensive ERT monitoring datasets from the two aforementioned sites.
Model Predictive Control of Wind Turbines using Uncertain LIDAR Measurements
DEFF Research Database (Denmark)
Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad
2013-01-01
, we simplify state prediction for the MPC. Consequently, the control problem of the nonlinear system is simplified into a quadratic programming. We consider uncertainty in the wind propagation time, which is the traveling time of wind from the LIDAR measurement point to the rotor. An algorithm based......The problem of Model predictive control (MPC) of wind turbines using uncertain LIDAR (LIght Detection And Ranging) measurements is considered. A nonlinear dynamical model of the wind turbine is obtained. We linearize the obtained nonlinear model for different operating points, which are determined...... on wind speed estimation and measurements from the LIDAR is devised to find an estimate of the delay and compensate for it before it is used in the controller. Comparisons between the MPC with error compensation, the MPC without error compensation and an MPC with re-linearization at each sample point...
Irving, J.; Koepke, C.; Elsheikh, A. H.
2017-12-01
Bayesian solutions to geophysical and hydrological inverse problems are dependent upon a forward process model linking subsurface parameters to measured data, which is typically assumed to be known perfectly in the inversion procedure. However, in order to make the stochastic solution of the inverse problem computationally tractable using, for example, Markov-chain-Monte-Carlo (MCMC) methods, fast approximations of the forward model are commonly employed. This introduces model error into the problem, which has the potential to significantly bias posterior statistics and hamper data integration efforts if not properly accounted for. Here, we present a new methodology for addressing the issue of model error in Bayesian solutions to hydrogeophysical inverse problems that is geared towards the common case where these errors cannot be effectively characterized globally through some parametric statistical distribution or locally based on interpolation between a small number of computed realizations. Rather than focusing on the construction of a global or local error model, we instead work towards identification of the model-error component of the residual through a projection-based approach. In this regard, pairs of approximate and detailed model runs are stored in a dictionary that grows at a specified rate during the MCMC inversion procedure. At each iteration, a local model-error basis is constructed for the current test set of model parameters using the K-nearest neighbour entries in the dictionary, which is then used to separate the model error from the other error sources before computing the likelihood of the proposed set of model parameters. We demonstrate the performance of our technique on the inversion of synthetic crosshole ground-penetrating radar traveltime data for three different subsurface parameterizations of varying complexity. The synthetic data are generated using the eikonal equation, whereas a straight-ray forward model is assumed in the inversion
OOK power model based dynamic error testing for smart electricity meter
International Nuclear Information System (INIS)
Wang, Xuewei; Chen, Jingxia; Jia, Xiaolu; Zhu, Meng; Yuan, Ruiming; Jiang, Zhenyu
2017-01-01
This paper formulates the dynamic error testing problem for a smart meter, with consideration and investigation of both the testing signal and the dynamic error testing method. To solve the dynamic error testing problems, the paper establishes an on-off-keying (OOK) testing dynamic current model and an OOK testing dynamic load energy (TDLE) model. Then two types of TDLE sequences and three modes of OOK testing dynamic power are proposed. In addition, a novel algorithm, which helps to solve the problem of dynamic electric energy measurement’s traceability, is derived for dynamic errors. Based on the above researches, OOK TDLE sequence generation equipment is developed and a dynamic error testing system is constructed. Using the testing system, five kinds of meters were tested in the three dynamic power modes. The test results show that the dynamic error is closely related to dynamic power mode and the measurement uncertainty is 0.38%. (paper)
OOK power model based dynamic error testing for smart electricity meter
Wang, Xuewei; Chen, Jingxia; Yuan, Ruiming; Jia, Xiaolu; Zhu, Meng; Jiang, Zhenyu
2017-02-01
This paper formulates the dynamic error testing problem for a smart meter, with consideration and investigation of both the testing signal and the dynamic error testing method. To solve the dynamic error testing problems, the paper establishes an on-off-keying (OOK) testing dynamic current model and an OOK testing dynamic load energy (TDLE) model. Then two types of TDLE sequences and three modes of OOK testing dynamic power are proposed. In addition, a novel algorithm, which helps to solve the problem of dynamic electric energy measurement’s traceability, is derived for dynamic errors. Based on the above researches, OOK TDLE sequence generation equipment is developed and a dynamic error testing system is constructed. Using the testing system, five kinds of meters were tested in the three dynamic power modes. The test results show that the dynamic error is closely related to dynamic power mode and the measurement uncertainty is 0.38%.
Two-component model application for error calculus in the environmental monitoring data analysis
International Nuclear Information System (INIS)
Carvalho, Maria Angelica G.; Hiromoto, Goro
2002-01-01
Analysis and interpretation of results of an environmental monitoring program is often based on the evaluation of the mean value of a particular set of data, which is strongly affected by the analytical errors associated with each measurement. A model proposed by Rocke and Lorenzato assumes two error components, one additive and one multiplicative, to deal with lower and higher concentration values in a single model. In this communication, an application of this method for re-evaluation of the errors reported in a large set of results of total alpha measurements in a environmental sample is presented. The results show that the mean values calculated taking into account the new errors is higher than as obtained with the original errors, being an indicative that the analytical errors reported before were underestimated in the region of lower concentrations. (author)
Error-related brain activity and error awareness in an error classification paradigm.
Di Gregorio, Francesco; Steinhauser, Marco; Maier, Martin E
2016-10-01
Error-related brain activity has been linked to error detection enabling adaptive behavioral adjustments. However, it is still unclear which role error awareness plays in this process. Here, we show that the error-related negativity (Ne/ERN), an event-related potential reflecting early error monitoring, is dissociable from the degree of error awareness. Participants responded to a target while ignoring two different incongruent distractors. After responding, they indicated whether they had committed an error, and if so, whether they had responded to one or to the other distractor. This error classification paradigm allowed distinguishing partially aware errors, (i.e., errors that were noticed but misclassified) and fully aware errors (i.e., errors that were correctly classified). The Ne/ERN was larger for partially aware errors than for fully aware errors. Whereas this speaks against the idea that the Ne/ERN foreshadows the degree of error awareness, it confirms the prediction of a computational model, which relates the Ne/ERN to post-response conflict. This model predicts that stronger distractor processing - a prerequisite of error classification in our paradigm - leads to lower post-response conflict and thus a smaller Ne/ERN. This implies that the relationship between Ne/ERN and error awareness depends on how error awareness is related to response conflict in a specific task. Our results further indicate that the Ne/ERN but not the degree of error awareness determines adaptive performance adjustments. Taken together, we conclude that the Ne/ERN is dissociable from error awareness and foreshadows adaptive performance adjustments. Our results suggest that the relationship between the Ne/ERN and error awareness is correlative and mediated by response conflict. Copyright © 2016 Elsevier Inc. All rights reserved.
Modeling and Experimental Study of Soft Error Propagation Based on Cellular Automaton
He, Wei; Wang, Yueke; Xing, Kefei; Yang, Jianwei
2016-01-01
Aiming to estimate SEE soft error performance of complex electronic systems, a soft error propagation model based on cellular automaton is proposed and an estimation methodology based on circuit partitioning and error propagation is presented. Simulations indicate that different fault grade jamming and different coupling factors between cells are the main parameters influencing the vulnerability of the system. Accelerated radiation experiments have been developed to determine the main paramet...
Saddoris, Michael P; Cacciapaglia, Fabio; Wightman, R Mark; Carelli, Regina M
2015-08-19
Mesolimbic dopamine (DA) is phasically released during appetitive behaviors, though there is substantive disagreement about the specific purpose of these DA signals. For example, prediction error (PE) models suggest a role of learning, while incentive salience (IS) models argue that the DA signal imbues stimuli with value and thereby stimulates motivated behavior. However, within the nucleus accumbens (NAc) patterns of DA release can strikingly differ between subregions, and as such, it is possible that these patterns differentially contribute to aspects of PE and IS. To assess this, we measured DA release in subregions of the NAc during a behavioral task that spatiotemporally separated sequential goal-directed stimuli. Electrochemical methods were used to measure subsecond NAc dopamine release in the core and shell during a well learned instrumental chain schedule in which rats were trained to press one lever (seeking; SL) to gain access to a second lever (taking; TL) linked with food delivery, and again during extinction. In the core, phasic DA release was greatest following initial SL presentation, but minimal for the subsequent TL and reward events. In contrast, phasic shell DA showed robust release at all task events. Signaling decreased between the beginning and end of sessions in the shell, but not core. During extinction, peak DA release in the core showed a graded decrease for the SL and pauses in release during omitted expected rewards, whereas shell DA release decreased predominantly during the TL. These release dynamics suggest parallel DA signals capable of supporting distinct theories of appetitive behavior. Dopamine signaling in the brain is important for a variety of cognitive functions, such as learning and motivation. Typically, it is assumed that a single dopamine signal is sufficient to support these cognitive functions, though competing theories disagree on how dopamine contributes to reward-based behaviors. Here, we have found that real
Hughes, Charmayne M L; Baber, Chris; Bienkiewicz, Marta; Worthington, Andrew; Hazell, Alexa; Hermsdörfer, Joachim
2015-01-01
Approximately 33% of stroke patients have difficulty performing activities of daily living, often committing errors during the planning and execution of such activities. The objective of this study was to evaluate the ability of the human error identification (HEI) technique SHERPA (Systematic Human Error Reduction and Prediction Approach) to predict errors during the performance of daily activities in stroke patients with left and right hemisphere lesions. Using SHERPA we successfully predicted 36 of the 38 observed errors, with analysis indicating that the proportion of predicted and observed errors was similar for all sub-tasks and severity levels. HEI results were used to develop compensatory cognitive strategies that clinicians could employ to reduce or prevent errors from occurring. This study provides evidence for the reliability and validity of SHERPA in the design of cognitive rehabilitation strategies in stroke populations.
Greenberg, Tsafrir; Chase, Henry W.; Almeida, Jorge R.; Stiffler, Richelle; Zevallos, Carlos R.; Aslam, Haris A.; Deckersbach, Thilo; Weyandt, Sarah; Cooper, Crystal; Toups, Marisa; Carmody, Thomas; Kurian, Benji; Peltier, Scott; Adams, Phillip; McInnis, Melvin G.; Oquendo, Maria A.; McGrath, Patrick J.; Fava, Maurizio; Weissman, Myrna; Parsey, Ramin; Trivedi, Madhukar H.; Phillips, Mary L.
2016-01-01
Objective Anhedonia, disrupted reward processing, is a core symptom of major depressive disorder. Recent findings demonstrate altered reward-related ventral striatal reactivity in depressed individuals, but the extent to which this is specific to anhedonia remains poorly understood. The authors examined the effect of anhedonia on reward expectancy (expected outcome value) and prediction error-(discrepancy between expected and actual outcome) related ventral striatal reactivity, as well as the relationship between these measures. Method A total of 148 unmedicated individuals with major depressive disorder and 31 healthy comparison individuals recruited for the multisite EMBARC (Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care) study underwent functional MRI during a well-validated reward task. Region of interest and whole-brain data were examined in the first- (N=78) and second- (N=70) recruited cohorts, as well as the total sample, of depressed individuals, and in healthy individuals. Results Healthy, but not depressed, individuals showed a significant inverse relationship between reward expectancy and prediction error-related right ventral striatal reactivity. Across all participants, and in depressed individuals only, greater anhedonia severity was associated with a reduced reward expectancy-prediction error inverse relationship, even after controlling for other symptoms. Conclusions The normal reward expectancy and prediction error-related ventral striatal reactivity inverse relationship concords with conditioning models, predicting a shift in ventral striatal responding from reward outcomes to reward cues. This study shows, for the first time, an absence of this relationship in two cohorts of unmedicated depressed individuals and a moderation of this relationship by anhedonia, suggesting reduced reward-contingency learning with greater anhedonia. These findings help elucidate neural mechanisms of anhedonia, as a step toward
Greenberg, Tsafrir; Chase, Henry W; Almeida, Jorge R; Stiffler, Richelle; Zevallos, Carlos R; Aslam, Haris A; Deckersbach, Thilo; Weyandt, Sarah; Cooper, Crystal; Toups, Marisa; Carmody, Thomas; Kurian, Benji; Peltier, Scott; Adams, Phillip; McInnis, Melvin G; Oquendo, Maria A; McGrath, Patrick J; Fava, Maurizio; Weissman, Myrna; Parsey, Ramin; Trivedi, Madhukar H; Phillips, Mary L
2015-09-01
Anhedonia, disrupted reward processing, is a core symptom of major depressive disorder. Recent findings demonstrate altered reward-related ventral striatal reactivity in depressed individuals, but the extent to which this is specific to anhedonia remains poorly understood. The authors examined the effect of anhedonia on reward expectancy (expected outcome value) and prediction error- (discrepancy between expected and actual outcome) related ventral striatal reactivity, as well as the relationship between these measures. A total of 148 unmedicated individuals with major depressive disorder and 31 healthy comparison individuals recruited for the multisite EMBARC (Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care) study underwent functional MRI during a well-validated reward task. Region of interest and whole-brain data were examined in the first- (N=78) and second- (N=70) recruited cohorts, as well as the total sample, of depressed individuals, and in healthy individuals. Healthy, but not depressed, individuals showed a significant inverse relationship between reward expectancy and prediction error-related right ventral striatal reactivity. Across all participants, and in depressed individuals only, greater anhedonia severity was associated with a reduced reward expectancy-prediction error inverse relationship, even after controlling for other symptoms. The normal reward expectancy and prediction error-related ventral striatal reactivity inverse relationship concords with conditioning models, predicting a shift in ventral striatal responding from reward outcomes to reward cues. This study shows, for the first time, an absence of this relationship in two cohorts of unmedicated depressed individuals and a moderation of this relationship by anhedonia, suggesting reduced reward-contingency learning with greater anhedonia. These findings help elucidate neural mechanisms of anhedonia, as a step toward identifying potential biosignatures
Dettmer, Jan; Dosso, Stan E
2012-10-01
This paper develops a trans-dimensional approach to matched-field geoacoustic inversion, including interacting Markov chains to improve efficiency and an autoregressive model to account for correlated errors. The trans-dimensional approach and hierarchical seabed model allows inversion without assuming any particular parametrization by relaxing model specification to a range of plausible seabed models (e.g., in this case, the number of sediment layers is an unknown parameter). Data errors are addressed by sampling statistical error-distribution parameters, including correlated errors (covariance), by applying a hierarchical autoregressive error model. The well-known difficulty of low acceptance rates for trans-dimensional jumps is addressed with interacting Markov chains, resulting in a substantial increase in efficiency. The trans-dimensional seabed model and the hierarchical error model relax the degree