WorldWideScience

Sample records for model plant nicotiana

  1. Nicotiana tabacum as model for ozone - plant surface reactions

    Science.gov (United States)

    Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the

  2. Isolating fungal pathogens from a dynamic disease outbreak in a native plant population to establish plant-pathogen bioassays for the ecological model plant Nicotiana attenuata.

    Science.gov (United States)

    Schuck, Stefan; Weinhold, Arne; Luu, Van Thi; Baldwin, Ian T

    2014-01-01

    The wild tobacco species Nicotiana attenuata has been intensively used as a model plant to study its interaction with insect herbivores and pollinators in nature, however very little is known about its native pathogen community. We describe a fungal disease outbreak in a native N. attenuata population comprising 873 plants growing in an area of about 1500 m2. The population was divided into 14 subpopulations and disease symptom development in the subpopulations was monitored for 16 days, revealing a waxing and waning of visible disease symptoms with some diseased plants recovering fully. Native fungal N. attenuata pathogens were isolated from diseased plants, characterized genetically, chemotaxonomically and morphologically, revealing several isolates of the ascomycete genera Fusarium and Alternaria, that differed in the type and strength of the disease symptoms they caused in bioassays on either detached leaves or intact soil-grown plants. These isolates and the bioassays will empower the study of N. attenuata-pathogen interactions in a realistic ecological context.

  3. Differences in internalization and growth of Escherichia coli O157:H7 within the apoplast of edible plants, spinach and lettuce, compared with the model species Nicotiana benthamiana

    OpenAIRE

    Wright, Kathryn M.; Crozier, Louise; Marshall, Jacqueline; Merget, Bernhard; Holmes, Ashleigh; Holden, Nicola J.

    2017-01-01

    Summary Internalization of food?borne bacteria into edible parts of fresh produce plants represents a serious health risk. Therefore, internalization of verocytotoxigenic E.?coli O157:H7 isolate Sakai was assessed in two species associated with outbreaks, spinach (Spinacia oleracea) and lettuce (Lactuca sativa) and compared to the model species Nicotiana benthamiana. Internalization occurred in the leaves and roots of spinach and lettuce throughout a 10?day time?course. The plant species, tis...

  4. Differences in internalization and growth of Escherichia coli O157:H7 within the apoplast of edible plants, spinach and lettuce, compared with the model species Nicotiana benthamiana.

    Science.gov (United States)

    Wright, Kathryn M; Crozier, Louise; Marshall, Jacqueline; Merget, Bernhard; Holmes, Ashleigh; Holden, Nicola J

    2017-05-01

    Internalization of food-borne bacteria into edible parts of fresh produce plants represents a serious health risk. Therefore, internalization of verocytotoxigenic E. coli O157:H7 isolate Sakai was assessed in two species associated with outbreaks, spinach (Spinacia oleracea) and lettuce (Lactuca sativa) and compared to the model species Nicotiana benthamiana. Internalization occurred in the leaves and roots of spinach and lettuce throughout a 10 day time-course. The plant species, tissue type and inoculum dose all impacted the outcome. A combination of low inoculum dose (~10 2 CFU) together with light microscopy imaging highlighted marked differences in the fate of endophytic E. coli O157:H7 Sakai. In the fresh produce species, bacterial growth was restricted but viable cells persisted over 20 days, whereas there was > 400-fold (~2.5 Log 10 ) increase in growth in N. benthamiana. Colony formation occurred adjacent to epidermal cells and mesophyll cells or close to vascular bundles of N. benthamiana and contained components of a biofilm matrix, including curli expression and elicitation, extracellular DNA and a limited presence of cellulose. Together the data show that internalization is a relevant issue in crop production and that crop species and tissue need to be considered as food safety risk parameters. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  5. Antimicrobial Activity of Bacteriophage Endolysin Produced in Nicotiana benthamiana Plants.

    Science.gov (United States)

    Kovalskaya, Natalia; Foster-Frey, Juli; Donovan, David M; Bauchan, Gary; Hammond, Rosemarie W

    2016-01-01

    The increasing spread of antibiotic-resistant pathogens has raised the interest in alternative antimicrobial treatments. In our study, the functionally active gram-negative bacterium bacteriophage CP933 endolysin was produced in Nicotiana benthamiana plants by a combination of transient expression and vacuole targeting strategies, and its antimicrobial activity was investigated. Expression of the cp933 gene in E. coli led to growth inhibition and lysis of the host cells or production of trace amounts of CP933. Cytoplasmic expression of the cp933 gene in plants using Potato virus X-based transient expression vectors (pP2C2S and pGR107) resulted in death of the apical portion of experimental plants. To protect plants against the toxic effects of the CP933 protein, the cp933 coding region was fused at its Nterminus to an N-terminal signal peptide from the potato proteinase inhibitor I to direct CP933 to the delta-type vacuoles. Plants producing the CP933 fusion protein did not exhibit the severe toxic effects seen with the unfused protein and the level of expression was 0.16 mg/g of plant tissue. Antimicrobial assays revealed that, in contrast to gram-negative bacterium E. coli (BL21(DE3)), the gram-positive plant pathogenic bacterium Clavibacter michiganensis was more susceptible to the plant-produced CP933, showing 18% growth inhibition. The results of our experiments demonstrate that the combination of transient expression and protein targeting to the delta vacuoles is a promising approach to produce functionally active proteins that exhibit toxicity when expressed in plant cells.

  6. [A hydroponic cultivation system for rapid high-yield transient protein expression in Nicotiana plants under laboratory conditions].

    Science.gov (United States)

    Mo, Qianzhen; Mai, Rongjia; Yang, Zhixiao; Chen, Minfang; Yang, Tiezhao; Lai, Huafang; Yang, Peiliang; Chen, Qiang; Zhou, Xiaohong

    2012-06-01

    To develop a hydroponic Nicotiana cultivation system for rapid and high-yield transient expression of recombinant proteins under laboratory conditions. To establish the hydroponic cultivation system, several parameters were examined to define the optimal conditions for the expression of recombinant proteins in plants. We used the green fluorescent protein (GFP) and the geminiviral plant transient expression vector as the model protein/expression vector. We examined the impact of Nicotiana species, the density and time of Agrobacterium infiltration, and the post-infiltration growth period on the accumulation of GFP. The expression levels of GFP in Nicotiana leaves were then examined by Western blotting and ELISA. Our data indicated that a hydroponic Nicotiana cultivation system with a light intensity of 9000 LX/layer, a light cycle of 16 h day/8 h night, a temperature regime of 28 degrees celsius; day/21 degrees celsius; night, and a relative humidity of 80% could support the optimal plant growth and protein expression. After agroinfiltration with pBYGFPDsRed.R/LBA4404, high levels of GFP expression were observed in both N. benthamiana and N. tobaccum (cv. Yuyan No.5) plants cultured with this hydroponic cultivation system. An optimal GFP expression was achieved in both Nicotiana species leaves 4 days after infiltration by Agrobacterium with an OD(600) of 0.8. At a given time point, the average biomass of N. tobaccum (cv. Yuyan No.5) was significantly higher than that of N. benthamiana. The leaves from 6-week-old N. benthamiana plants and 5-week-old N. tobaccum (cv. Yuyan No.5) plants could be the optimal material for agroinfiltration. We have established a hydroponic cultivation system that allows robust growth of N. benthamiana and N. tobaccum (cv. Yuyan No.5) plants and the optimal GFP expression in the artificial climate box.

  7. Variations in alkaloidal constituents of plant tissue cultures. [Nicotiana tabacum, Nicotiana rustica, Datura stramonium and Hyoscyamus niger

    Energy Technology Data Exchange (ETDEWEB)

    Essa, A.K.

    1987-01-01

    The accumulation of tobacco and Solanaceae-tropane alkaloids in calluses and suspensions of Nicotiana tabacum, Nicotiana rustica, Datura stramonium and Hyoscyamus niger was the main concern of this work. Nicotine, anabasine and anatabine had regularly been found in tobacco callus tissues grown for several passages. For the first time, N. tabacum suspensions were shown able to accumulate anabasine, anatabine, anatalline, myosmine and nicotelline whereas N. rustica calluses, N-methyl-, N,N-dimethyl- and N-methyl-N-nitroso anilines. The aim of these experiments was an attempt to affect the yields and types of alkaloids produced. The interrelationship between nicotine and protein contents in N. tabacum and N. rustica calluses was investigated. The possible role of urea and sodium propionate as precursors of nicotine in tobacco suspensions was checked by feeding the latter with carbon-14 radioactive substrates. The scope and quantum of the principle alkaloidal components present in the source N. tabacum plants and D. stramonium and H. niger seeds were investigated to stand as references against in vitro production. Identification of the products found was made by using gas chromatography-mass spectrometry (GC-MS) and/or MS.

  8. Transgenic Nicotiana tabacum plants expressing a fungal copper transporter gene show enhanced acquisition of copper.

    Science.gov (United States)

    Singh, Sudhir; Korripally, Premsagar; Vancheeswaran, Ramachandran; Eapen, Susan

    2011-10-01

    The diets of two-thirds of the world's population are deficient in one or more essential elements and one of the approaches to enhance the levels of mineral elements in food crops is by developing plants with ability to accumulate them in edible parts. Besides conventional methods, transgenic technology can be used for enhancing metal acquisition in plants. Copper is an essential element, which is often deficient in human diet. With the objective of developing plants with improved copper acquisition, a high-affinity copper transporter gene (tcu-1) was cloned from fungus Neurospora crassa and introduced into a model plant (Nicotiana tabacum). Integration of the transgene was confirmed by Southern blot hybridization. Transgenic tobacco plants (T(0) and T(1)) expressing tcu-1, when grown in hydroponic medium spiked with different concentrations of copper, showed higher acquisition of copper (up to 3.1 times) compared with control plants. Transgenic plants grown in soil spiked with copper could also take up more copper compared with wild-type plants. Supplementation of other divalent cations such as Cd(2+) and Zn(2+) did not alter uptake of Cu by transgenic plants. The present study has shown that expression of a heterologous copper transporter in tobacco could enhance acquisition of copper.

  9. Isoprene emission protects photosynthesis but reduces plant productivity during drought in transgenic tobacco (Nicotiana tabacum) plants.

    Science.gov (United States)

    Ryan, Annette C; Hewitt, C Nicholas; Possell, Malcolm; Vickers, Claudia E; Purnell, Anna; Mullineaux, Philip M; Davies, William J; Dodd, Ian C

    2014-01-01

    Isoprene protects the photosynthetic apparatus of isoprene-emitting plants from oxidative stress. The role of isoprene in the response of plants to drought is less clear. Water was withheld from transgenic isoprene-emitting and non-emitting tobacco (Nicotiana tabacum) plants, to examine: the response of isoprene emission to plant water deficit; a possible relationship between concentrations of the drought-induced phytohormone abscisic acid (ABA) and isoprene; and whether isoprene affected foliar reactive oxygen species (ROS) and lipid peroxidation levels. Isoprene emission did not affect whole-plant water use, foliar ABA concentration or leaf water potential under water deficit. Compared with well-watered controls, droughted non-emitting plants significantly increased ROS content (31-46%) and lipid peroxidation (30-47%), concomitant with decreased operating and maximum efficiencies of photosystem II photochemistry and lower leaf and whole-plant water use efficiency (WUE). Droughted isoprene-emitting plants showed no increase in ROS content or lipid peroxidation relative to well-watered controls, despite isoprene emission decreasing before leaf wilting. Although isoprene emission protected the photosynthetic apparatus and enhanced leaf and whole-plant WUE, non-emitting plants had 8-24% more biomass under drought, implying that isoprene emission incurred a yield penalty. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  10. [Induced expression of Serratia marcescens ribonuclease III gene in transgenic Nicotiana tabacum L. cv. SR1 tobacco plants].

    Science.gov (United States)

    Zhirnov, I V; Trifonova, E A; Romanova, A V; Filipenko, E A; Sapotsky, M V; Malinovsky, V I; Kochetov, A V; Shumny, V K

    2016-11-01

    Transgenic Nicotiana tabacum L. cv. SR1 plants, characterized by an increase in the level of dsRNA-specific hydrolytic activity after induction by wounding, were obtained. The Solanum lycopersicum anionic peroxidase gene promoter (new for plant genetic engineering) was for the first time used for the induced expression of the target Serratia marcescens RNase III gene. Upon infection with the tobacco mosaic virus (TMV), the transgenic plants of the obtained lines did not differ significantly from the control group in the level of TMV capsid protein accumulation. In general, no delay in the development of the infection symptoms was observed in transgenic plants as compared with the control group. The obtained transgenic plants represent a new model for the study of the biological role of endoribonucleases from the RNase III family, including in molecular mechanisms of resistance to pathogens.

  11. Evaluation of Nicotiana tabacum plants transformed for the expression of verocytotoxic Escherichia coli antigens.

    Directory of Open Access Journals (Sweden)

    Angela Lombardi

    2015-07-01

    Full Text Available Two transgenic Nicotiana tabacum plants, carrying respectively the F18 adhesive fimbriae and the B subunit of verocytotoxin genes from O138 Verocytotoxic E.coli serotype were developed as a model of edible vaccine. Tobacco plants were transformed by agroinfection according to Rossi et al. (2013 stably.  The F18 adhesive fimbriae and VT2e B-subunit were placed under control of the GLOB promoter for the seed-specific protein expression. Agrobacterium tumefaciens binary vector system is an efficient tool to transform plant cells; however, the exogenous gene integrates at semi-random into the nuclear chromosome. PCR products, using specific oligonucleotides putatively encoding the B-subunit of VT2e-B and F18 fimbriae were identified on agarose gel (1.5% - 0.9% as bands with a length of 270 and 519 base pairs, respectively. We showed that the foreign VT2e-B and F18 fimbriae genes were stably integrated into the tobacco genome. Northern blot and Western blot analyses carried out respectively on total mRNA and total soluble protein extract obtained from seeds. For each line, the obtained amount of antigens is sufficient for subsequent oral immunization trials. Three lines of tobacco seeds (F18, VT2e-B, and WT were seeded in homogeneous conditions and were harvested simultaneously. Tobacco plants were analysed also by optical and electronic microscope in different phases of growth. Germination of transgenic seeds were delayed of three/five days compared to WT in two replicated experiments, suggesting that genetic manipulation may influenced mechanisms leading to germination. In conclusion the genes coding for VT2e-B and the F18 are stably maintained in the seeds and obtained tobacco seeds represent a valid strategy to ferry antigenic proteins to the gut and a promising non-invasive method of vaccination in pig industry.

  12. Metabolomic analysis of wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses: unraveling metabolic responses.

    Science.gov (United States)

    Scalabrin, Elisa; Radaelli, Marta; Rizzato, Giovanni; Bogani, Patrizia; Buiatti, Marcello; Gambaro, Andrea; Capodaglio, Gabriele

    2015-08-01

    Nicotiana langsdorffii plants, wild and transgenic for the Agrobacterium rhizogenes rol C gene and the rat glucocorticoid receptor (GR) gene, were exposed to different abiotic stresses (high temperature, water deficit, and high chromium concentrations). An untargeted metabolomic analysis was carried out in order to investigate the metabolic effects of the inserted genes in response to the applied stresses and to obtain a comprehensive profiling of metabolites induced during abiotic stresses. High-performance liquid chromatography separation (HPLC) coupled to high-resolution mass spectrometry (HRMS) enabled the identification of more than 200 metabolites, and statistical analysis highlighted the most relevant compounds for each plant treatment. The plants exposed to heat stress showed a unique set of induced secondary metabolites, some of which were known while others were not previously reported for this kind of stress; significant changes were observed especially in lipid composition. The role of trichome, as a protection against heat stress, is here suggested by the induction of both acylsugars and glykoalkaloids. Water deficit and Cr(VI) stresses resulted mainly in enhanced antioxidant (HCAs, polyamine) levels and in the damage of lipids, probably as a consequence of reactive oxygen species (ROS) production. Moreover, the ability of rol C expression to prevent oxidative burst was confirmed. The results highlighted a clear influence of GR modification on plant stress response, especially to water deficiency-a phenomenon whose applications should be further investigated. This study provides new insights into the field of system biology and demonstrates the importance of metabolomics in the study of plant functioning. Graphical Abstract Untargeted metabolomic analysis was applied to wild type, GR and RolC modified Nicotiana Langsdorffii plants exposed to heat, water and Cr(VI) stresses. The key metabolites, highly affected by stress application, were identified

  13. Plant coexistence can enhance phytoextraction of cadmium by tobacco (Nicotiana tabacum L.) in contaminated soil.

    Science.gov (United States)

    Liu, Ling; Li, Yuefang; Tang, Jianjun; Hu, Liangliang; Chen, Xin

    2011-01-01

    A mesocosm experiment was conducted to investigate whether plant coexistence affects cadmium (Cd) uptake by plant in contaminated soil. Tobacco (Nicotiana tabacum L. var. K326) and Japanese clover (Kummerowia striata (Thunb.) Schindl.) were used. Cadmium was applied as 3CdSO4 x 8H2O in solution at three levels (0, 1, and 3 mg/kg soil) to simulate an unpolluted soil and soils that were slightly and moderately polluted with Cd. Tobacco (crop), Japanese clover (non-crop), and their combination were grown under each Cd treatment. Compared to monoculture and under all Cd treatments, co-planting with Japanese clover did not affect tobacco biomass but significantly increased Cd concentration in all tobacco tissues and enhanced Cd accumulation in tobacco shoots and roots. Compared to monoculture, co-planting reduced soil pH and increased Cd bioavailability. For tobacco, co-planting with Japanese clover increased the Cd bioconcentration factor (BCF) in Cd contaminated soil. Japanese clover also accumulated substantial quantities of Cd in shoots and roots. Thus, total Cd uptake by the plants was much greater with co-planting than with monoculture. The results suggested that phytoextraction can be effectively increased through tobacco co-planting with Japanese clover in mildly Cd-contaminated soil.

  14. Uptake and translocation of 109Cd and stable Cd within tobacco plants (Nicotiana sylvestris)

    International Nuclear Information System (INIS)

    Rosén, K.; Eriksson, J.; Vinichuk, M.

    2012-01-01

    The availability, uptake, and translocation of recently added ( 109 Cd) and naturally occurring (stable) soil Cd within tobacco plants were compared. 109 Cd was added to soil in two treatments, A (0.25 MBq kg soil −1 DW) and B (eight-fold dose): stable Cd was measured in both treatments. Both the added and the stable Cd were higher in leaves and reproductive structures of the plant than in stalks and roots. The uptake of 109 Cd was 5.3 kBq plant −1 for treatment A and 36.7 kBq plant −1 for treatment B, and about 26 μg plant −1 for stable Cd. Leaves of the tobacco plants accumulated 40–45% of the total 109 Cd and about 50% of total stable Cd taken up by the plant. Cadmium concentration in the plant was three times higher than in roots and two times higher than the concentration in soil: the concentration in roots was lower than in the soil. - Capsule: The availability, uptake, and translocation of recently added ( 109 Cd) and naturally occurring (stable) soil Cd within tobacco plants (Nicotiana sylvestris) were investigated. - Highlights: ► We compared uptake recently added and naturally occurring soil Cd by tobacco plant. ► Both added and stable Cd display similar uptake and translocation within the plant. ► Leaves of tobacco plants accumulate half of the total Cd taken up by the plant. ► Recently added 109 Cd to soil is more available than naturally occurring cadmium.

  15. Temporal and spatial resolution of activated plant defense responses in leaves of Nicotiana benthamiana infected with Dickeya dadantii

    Directory of Open Access Journals (Sweden)

    María Luisa ePérez-Bueno

    2016-01-01

    Full Text Available The necrotrophic bacteria Dickeya dadantii is the causal agent of soft-rot disease in a broad range of hosts. The model plant Nicotiana benthamiana, commonly used as experimental host for a very broad range of plant pathogens, is susceptible to infection by D. dadantii. The inoculation with D. dadantii at high dose seems to overcome the plant defense capacity, inducing maceration and death of the tissue, although restricted to the infiltrated area. By contrast, the output of the defense response to low dose inoculation is inhibition of maceration and limitation in the growth, or even eradication, of bacteria. Responses of tissue invaded by bacteria (neighbouring the infiltrated areas after 2-3 days post-inoculation included: i inhibition of photosynthesis in terms of photosystem II efficiency; ii activation of energy dissipation as non-photochemical quenching in photosystem II, which is related to the activation of plant defense mechanisms; and iii accumulation of secondary metabolites in cell walls of the epidermis (lignins and the apoplast of the mesophyll (phytoalexins. Infiltrated tissues showed an increase in the content of the main hormones regulating stress responses, including abscisic acid (ABA, jasmonic acid (JA and salicylic acid (SA. We propose a mechanism involving the three hormones by which N. benthamiana could activate an efficient defense response against D. dadantii.

  16. Unbiased transcriptional comparisons of generalist and specialist herbivores feeding on progressively defenseless Nicotiana attenuata plants.

    Directory of Open Access Journals (Sweden)

    Geetha Govind

    2010-01-01

    Full Text Available Herbivore feeding elicits dramatic increases in defenses, most of which require jasmonate (JA signaling, and against which specialist herbivores are thought to be better adapted than generalist herbivores. Unbiased transcriptional analyses of how neonate larvae cope with these induced plant defenses are lacking.We created cDNA microarrays for Manduca sexta and Heliothis virescens separately, by spotting normalized midgut-specific cDNA libraries created from larvae that fed for 24 hours on MeJA-elicited wild-type (WT Nicotiana attenuata plants. These microarrays were hybridized with labeled probes from neonates that fed for 24 hours on WT and isogenic plants progressively silenced in JA-mediated defenses (N: nicotine; N/PI: N and trypsin protease inhibitors; JA: all JA-mediated defenses. H. virescens neonates regulated 16 times more genes than did M. sexta neonates when they fed on plants silenced in JA-mediated defenses, and for both species, the greater the number of defenses silenced in the host plant (JA > N/PI > N, the greater were the number of transcripts regulated in the larvae. M. sexta larvae tended to down-regulate while H. virescens larvae up- and down-regulated transcripts from the same functional categories of genes. M. sexta larvae regulated transcripts in a diet-specific manner, while H. virescens larvae regulated a similar suite of transcripts across all diet types.The observations are consistent with the expectation that specialists are better adapted than generalist herbivores to the defense responses elicited in their host plants by their feeding. While M. sexta larvae appear to be better adapted to N. attenuata's defenses, some of the elicited responses remain effective defenses against both herbivore species. The regulated genes provide novel insights into larval adaptations to N. attenuata's induced defenses, and represent potential targets for plant-mediated RNAi to falsify hypotheses about the process of adaptation.

  17. Non-host Plant Resistance against Phytophthora capsici Is Mediated in Part by Members of the I2 R Gene Family in Nicotiana spp.

    Science.gov (United States)

    Vega-Arreguín, Julio C; Shimada-Beltrán, Harumi; Sevillano-Serrano, Jacobo; Moffett, Peter

    2017-01-01

    The identification of host genes associated with resistance to Phytophthora capsici is crucial to developing strategies of control against this oomycete pathogen. Since there are few sources of resistance to P. capsici in crop plants, non-host plants represent a promising source of resistance genes as well as excellent models to study P. capsici - plant interactions. We have previously shown that non-host resistance to P. capsici in Nicotiana spp. is mediated by the recognition of a specific P. capsici effector protein, PcAvr3a1 in a manner that suggests the involvement of a cognate disease resistance (R) genes. Here, we have used virus-induced gene silencing (VIGS) and transgenic tobacco plants expressing dsRNA in Nicotiana spp. to identify candidate R genes that mediate non-host resistance to P. capsici . Silencing of members of the I2 multigene family in the partially resistant plant N. edwardsonii and in the resistant N. tabacum resulted in compromised resistance to P. capsici . VIGS of two other components required for R gene-mediated resistance, EDS1 and SGT1 , also enhanced susceptibility to P. capsici in N. edwardsonii , as well as in the susceptible plants N. benthamiana and N. clevelandii . The silencing of I2 family members in N. tabacum also compromised the recognition of PcAvr3a1. These results indicate that in this case, non-host resistance is mediated by the same components normally associated with race-specific resistance.

  18. Metabolic engineering of medium-chain fatty acid biosynthesis in Nicotiana benthamiana plant leaf lipids

    Science.gov (United States)

    Reynolds, Kyle B.; Taylor, Matthew C.; Zhou, Xue-Rong; Vanhercke, Thomas; Wood, Craig C.; Blanchard, Christopher L.; Singh, Surinder P.; Petrie, James R.

    2015-01-01

    Various research groups are investigating the production of oil in non-seed biomass such as leaves. Recently, high levels of oil accumulation have been achieved in plant biomass using a combination of biotechnological approaches which also resulted in significant changes to the fatty acid composition of the leaf oil. In this study, we were interested to determine whether medium-chain fatty acids (MCFA) could be accumulated in leaf oil. MCFA are an ideal feedstock for biodiesel and a range of oleochemical products including lubricants, coatings, and detergents. In this study, we explore the synthesis, accumulation, and glycerolipid head-group distribution of MCFA in leaves of Nicotiana benthamiana after transient transgenic expression of C12:0-, C14:0-, and C16:0-ACP thioesterase genes. We demonstrate that the production of these MCFA in leaf is increased by the co-expression of the WRINKLED1 (WRI1) transcription factor, with the lysophosphatidic acid acyltransferase (LPAAT) from Cocos nucifera being required for the assembly of tri-MCFA TAG species. We also demonstrate that the newly-produced MCFA are incorporated into the triacylglycerol of leaves in which WRI1 + diacylglycerol acyltransferase1 (DGAT1) genes are co-expressed for increased oil accumulation. PMID:25852716

  19. Effects of Iron Excess on Nicotiana plumbaginifolia Plants (Implications to Oxidative Stress).

    Science.gov (United States)

    Kampfenkel, K.; Van Montagu, M.; Inze, D.

    1995-03-01

    Fe excess is believed to generate oxidative stress. To contribute to the understanding of Fe metabolism, Fe excess was induced in Nicotiana plumbaginifolia grown in hydroponic culture upon root cutting. Toxicity symptoms leading to brown spots covering the leaf surface became visible after 6 h. Photosynthesis was greatly affected within 12 h; the photosynthetic rate was decreased by 40%. Inhibition of photosynthesis was accompanied by photoinhibition, increased reduction of photosystem II, and higher thylakoid energization. Fe excess seemed to stimulate photorespiration because catalase activity doubled. To cope with cellular damage, respiration rate increased and cytosolic glucose-6-phosphate dehydrogenase activity more than doubled. Simultaneously, the content of free hexoses was reduced. Indicative of generation of oxidative stress was doubling of ascorbate peroxidase activity within 12 h. Contents of the antioxidants ascorbate and glutathione were reduced by 30%, resulting in equivalent increases of dehydroascorbate and oxidized glutathione. Taken together, moderate changes in leaf Fe content have a dramatic effect on plant metabolism. This indicates that cellular Fe concentrations must be finely regulated to avoid cellular damage most probably because of oxidative stress induced by Fe.

  20. Production of complex multiantennary N-glycans in Nicotiana benthamiana plants.

    Science.gov (United States)

    Nagels, Bieke; Van Damme, Els J M; Pabst, Martin; Callewaert, Nico; Weterings, Koen

    2011-03-01

    In recent years, plants have been developed as an alternative expression system to mammalian hosts for the production of therapeutic proteins. Many modifications to the plant glycosylation machinery have been made to render it more human because of the importance of glycosylation for functionality, serum half-life, and the safety profile of the expressed proteins. These modifications include removal of plant-specific β1,2-xylose and core α1,3-fucose, and addition of bisecting N-acetylglucosamine, β1,4-galactoses, and sialic acid residues. Another glycosylation step that is essential for the production of complex human-type glycans is the synthesis of multiantennary structures, which are frequently found on human N-glycans but are not generated by wild-type plants. Here, we report both the magnICON-based transient as well as stable introduction of the α1,3-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnT-IV isozymes a and b) and α1,6-mannosyl-β1,6-N-acetylglucosaminyltransferase (GnT-V) in Nicotiana benthamiana plants. The enzymes were targeted to the Golgi apparatus by fusing their catalytic domains to the plant-specific localization signals of xylosyltransferase and fucosyltransferase. The GnT-IV and -V modifications were tested in the wild-type background, but were also combined with the RNA interference-mediated knockdown of β1,2-xylosyltransferase and α1,3-fucosyltransferase. Results showed that triantennary Gn[GnGn] and [GnGn]Gn N-glycans could be produced according to the expected activities of the respective enzymes. Combination of the two enzymes by crossing stably transformed GnT-IV and GnT-V plants showed that up to 10% tetraantennary [GnGn][GnGn], 25% triantennary, and 35% biantennary N-glycans were synthesized. All transgenic plants were viable and showed no aberrant phenotype under standard growth conditions.

  1. Production of Complex Multiantennary N-Glycans in Nicotiana benthamiana Plants1[W][OA

    Science.gov (United States)

    Nagels, Bieke; Van Damme, Els J.M.; Pabst, Martin; Callewaert, Nico; Weterings, Koen

    2011-01-01

    In recent years, plants have been developed as an alternative expression system to mammalian hosts for the production of therapeutic proteins. Many modifications to the plant glycosylation machinery have been made to render it more human because of the importance of glycosylation for functionality, serum half-life, and the safety profile of the expressed proteins. These modifications include removal of plant-specific β1,2-xylose and core α1,3-fucose, and addition of bisecting N-acetylglucosamine, β1,4-galactoses, and sialic acid residues. Another glycosylation step that is essential for the production of complex human-type glycans is the synthesis of multiantennary structures, which are frequently found on human N-glycans but are not generated by wild-type plants. Here, we report both the magnICON-based transient as well as stable introduction of the α1,3-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnT-IV isozymes a and b) and α1,6-mannosyl-β1,6-N-acetylglucosaminyltransferase (GnT-V) in Nicotiana benthamiana plants. The enzymes were targeted to the Golgi apparatus by fusing their catalytic domains to the plant-specific localization signals of xylosyltransferase and fucosyltransferase. The GnT-IV and -V modifications were tested in the wild-type background, but were also combined with the RNA interference-mediated knockdown of β1,2-xylosyltransferase and α1,3-fucosyltransferase. Results showed that triantennary Gn[GnGn] and [GnGn]Gn N-glycans could be produced according to the expected activities of the respective enzymes. Combination of the two enzymes by crossing stably transformed GnT-IV and GnT-V plants showed that up to 10% tetraantennary [GnGn][GnGn], 25% triantennary, and 35% biantennary N-glycans were synthesized. All transgenic plants were viable and showed no aberrant phenotype under standard growth conditions. PMID:21233332

  2. The activity and isoforms of NADP-malic enzyme in Nicotiana benthamiana plants under biotic stress

    Czech Academy of Sciences Publication Activity Database

    Doubnerová, V.; Jirásková, A.; Janošková, M.; Müller, Karel; Baťková, Petra; Synková, Helena; Čeřovská, Noemi; Ryšlavá, H.

    2007-01-01

    Roč. 26, č. 4 (2007), s. 281-289 ISSN 0231-5882 Institutional research plan: CEZ:AV0Z50380511 Keywords : NADP * malic enzyme isoforms * Nicotiana benthamiana Subject RIV: EF - Botanics Impact factor: 1.286, year: 2007 http://www.gpb.sav.sk/2007-4.htm

  3. Mitochondrial respiratory pathways modulate nitrate sensing and nitrogen-dependent regulation of plant architecture in Nicotiana sylvestris.

    Science.gov (United States)

    Pellny, Till K; Van Aken, Olivier; Dutilleul, Christelle; Wolff, Tonja; Groten, Karin; Bor, Melike; De Paepe, Rosine; Reyss, Agnès; Van Breusegem, Frank; Noctor, Graham; Foyer, Christine H

    2008-06-01

    Mitochondrial electron transport pathways exert effects on carbon-nitrogen (C/N) relationships. To examine whether mitochondria-N interactions also influence plant growth and development, we explored the responses of roots and shoots to external N supply in wild-type (WT) Nicotiana sylvestris and the cytoplasmic male sterile II (CMSII) mutant, which has a N-rich phenotype. Root architecture in N. sylvestris seedlings showed classic responses to nitrate and sucrose availability. In contrast, CMSII showed an altered 'nitrate-sensing' phenotype with decreased sensitivity to C and N metabolites. The WT growth phenotype was restored in CMSII seedling roots by high nitrate plus sugars and in shoots by gibberellic acid (GA). Genome-wide cDNA-amplified fragment length polymorphism (AFLP) analysis of leaves from mature plants revealed that only a small subset of transcripts was altered in CMSII. Tissue abscisic acid content was similar in CMSII and WT roots and shoots, and growth responses to zeatin were comparable. However, the abundance of key transcripts associated with GA synthesis was modified both by the availability of N and by the CMSII mutation. The CMSII mutant maintained a much higher shoot/root ratio at low N than WT, whereas no difference was observed at high N. Shoot/root ratios were strikingly correlated with root amines/nitrate ratios, values of <1 being characteristic of high N status. We propose a model in which the amine/nitrate ratio interacts with GA signalling and respiratory pathways to regulate the partitioning of biomass between shoots and roots.

  4. Response to metal stress of Nicotiana langsdorffii plants wild-type and transgenic for the rat glucocorticoid receptor gene.

    Science.gov (United States)

    Fuoco, Roger; Bogani, Patrizia; Capodaglio, Gabriele; Del Bubba, Massimo; Abollino, Ornella; Giannarelli, Stefania; Spiriti, Maria Michela; Muscatello, Beatrice; Doumett, Saer; Turetta, Clara; Zangrando, Roberta; Zelano, Vincenzo; Buiatti, Marcello

    2013-05-01

    Recently our findings have shown that the integration of the gene coding for the rat gluco-corticoid receptor (GR receptor) in Nicotiana langsdorffii plants induced morphophysiological effects in transgenic plants through the modification of their hormonal pattern. Phytohormones play a key role in plant responses to many different biotic and abiotic stresses since a modified hormonal profile up-regulates the activation of secondary metabolites involved in the response to stress. In this work transgenic GR plants and isogenic wild type genotypes were exposed to metal stress by treating them with 30ppm cadmium(II) or 50ppm chromium(VI). Hormonal patterns along with changes in key response related metabolites were then monitored and compared. Heavy metal up-take was found to be lower in the GR plants. The transgenic plants exhibited higher values of S-abscisic acid (S-ABA) and 3-indole acetic acid (IAA), salicylic acid and total polyphenols, chlorogenic acid and antiradical activity, compared to the untransformed wild type plants. Both Cd and Cr treatments led to an increase in hormone concentrations and secondary metabolites only in wild type plants. Analysis of the results suggests that the stress responses due to changes in the plant's hormonal system may derive from the interaction between the GR receptor and phytosteroids, which are known to play a key role in plant physiology and development. Copyright © 2013 Elsevier GmbH. All rights reserved.

  5. Ectopic Terpene Synthase Expression Enhances Sesquiterpene Emission in Nicotiana attenuata without Altering Defense or Development of Transgenic Plants or Neighbors1[W

    Science.gov (United States)

    Schuman, Meredith C.; Palmer-Young, Evan C.; Schmidt, Axel; Gershenzon, Jonathan; Baldwin, Ian T.

    2014-01-01

    Sesquiterpenoids, with approximately 5,000 structures, are the most diverse class of plant volatiles with manifold hypothesized functions in defense, stress tolerance, and signaling between and within plants. These hypotheses have often been tested by transforming plants with sesquiterpene synthases expressed behind the constitutively active 35S promoter, which may have physiological costs measured as inhibited growth and reduced reproduction or may require augmentation of substrate pools to achieve enhanced emission, complicating the interpretation of data from affected transgenic lines. Here, we expressed maize (Zea mays) terpene synthase10 (ZmTPS10), which produces (E)-α-bergamotene and (E)-β-farnesene, or a point mutant ZmTPS10M, which produces primarily (E)-β-farnesene, under control of the 35S promoter in the ecological model plant Nicotiana attenuata. Transgenic N. attenuata plants had specifically enhanced emission of target sesquiterpene(s) with no changes detected in their emission of any other volatiles. Treatment with herbivore or jasmonate elicitors induces emission of (E)-α-bergamotene in wild-type plants and also tended to increase emission of (E)-α-bergamotene and (E)-β-farnesene in transgenics. However, transgenics did not differ from the wild type in defense signaling or chemistry and did not alter defense chemistry in neighboring wild-type plants. These data are inconsistent with within-plant and between-plant signaling functions of (E)-β-farnesene and (E)-α-bergamotene in N. attenuata. Ectopic sesquiterpene emission was apparently not costly for transgenics, which were similar to wild-type plants in their growth and reproduction, even when forced to compete for common resources. These transgenics would be well suited for field experiments to investigate indirect ecological effects of sesquiterpenes for a wild plant in its native habitat. PMID:25187528

  6. Repression of the DCL2 and DCL4 genes in Nicotiana benthamiana plants for the transient expression of recombinant proteins.

    Science.gov (United States)

    Matsuo, Kouki; Matsumura, Takeshi

    2017-08-01

    The production of recombinant proteins in plants has many advantages, including safety and reduced costs. However, this technology still faces several issues, including low levels of production. The repression of RNA silencing seems to be particularly important for improving recombinant protein production because RNA silencing effectively degrades transgene-derived mRNAs in plant cells. Therefore, to overcome this, we used RNA interference technology to develop DCL2- and DCL4-repressed transgenic Nicotiana benthamiana plants (ΔD2, ΔD4, and ΔD2ΔD4 plants), which had much lower levels of NbDCL2 and/or NbDCL4 mRNAs than wild-type plants. A transient gene expression assay showed that the ΔD2ΔD4 plants accumulated larger amounts of green fluorescent protein (GFP) and human acidic fibroblast growth factor (aFGF) than ΔD2, ΔD4, and wild-type plants. Furthermore, the levels of GFP and aFGF mRNAs were also higher in ΔD2ΔD4 plants than in ΔD2, ΔD4, and wild-type plants. These findings demonstrate that ΔD2ΔD4 plants express larger amounts of recombinant proteins than wild-type plants, and so would be useful for recombinant protein production. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Improved phytoaccumulation of cadmium by genetically modified tobacco plants (Nicotiana tabacum L.). Physiological and biochemical response of the transformants to cadmium toxicity

    International Nuclear Information System (INIS)

    Gorinova, N.; Nedkovska, M.; Todorovska, E.; Simova-Stoilova, L.; Stoyanova, Z.; Georgieva, K.; Demirevska-Kepova, K.; Atanassov, A.; Herzig, R.

    2007-01-01

    The response of tobacco plants (Nicotiana tabacum L.)-non-transformed and transformed with a metallothionein gene MThis from Silene vulgaris L. - to increase cadmium supply in the nutrient solution was compared. The transgenic plants accumulated significantly more Cd both in the roots and the leaves. Visual toxicity symptoms and disturbance in water balance were correlated with Cd tissue content. Treatment with 300 μM CdCl 2 resulted in inhibition of photosynthesis and mobilization of the ascorbate-glutathione cycle. Treatment with 500 μM CdCl 2 led to irreversible damage of photosynthesis and oxidative stress. An appearance of a new peroxidase isoform and changes in the leaf polypeptide pattern were observed at the highest Cd concentration. The level of non-protein thiols gradually increased following the Cd treatment both in transgenic and non-transformed plants. - Genetic transformation of Nicotiana tabacum L. by metallothionein gene improved phytoaccumulation of cadmium

  8. Mp10 and Mp42 from the aphid species Myzus persicae trigger plant defenses in Nicotiana benthamiana through different activities.

    Science.gov (United States)

    Rodriguez, Patricia A; Stam, Remco; Warbroek, Tim; Bos, Jorunn I B

    2014-01-01

    Aphids are phloem-feeding insects that, like other plant parasites, deliver effectors inside their host to manipulate host responses. The Myzus persicae (green peach aphid) candidate effectors Mp10 and Mp42 were previously found to reduce aphid fecundity upon intracellular transient overexpression in Nicotiana benthamiana. We performed functional analyses of these proteins to investigate whether they activate defenses through similar activities. We employed a range of functional characterization experiments based on intracellular transient overexpression in N. benthamiana to determine the subcellular localization of Mp10 and Mp42 and investigate their role in activating plant defense signaling. Mp10 and Mp42 showed distinct subcellular localization in planta, suggesting that they target different host compartments. Also, Mp10 reduced the levels of Agrobacterium-mediated overexpression of proteins. This reduction was not due to an effect on Agrobacterium viability. Transient overexpression of Mp10 but not Mp42 activated jasmonic acid and salicylic acid signaling pathways and decreased susceptibility to the hemibiotrophic plant pathogen Phytophthora capsici. We found that two candidate effectors from the broad-host-range aphid M. persicae can trigger aphid defenses through different mechanisms. Importantly, we found that some (candidate) effectors such as Mp10 interfere with Agrobacterium-based overexpression assays, an important tool to study effector activity and function.

  9. Effects of plant density on recombinant hemagglutinin yields in an Agrobacterium-mediated transient gene expression system using Nicotiana benthamiana plants.

    Science.gov (United States)

    Fujiuchi, Naomichi; Matsuda, Ryo; Matoba, Nobuyuki; Fujiwara, Kazuhiro

    2017-08-01

    Agrobacterium-mediated transient expression systems enable plants to rapidly produce a wide range of recombinant proteins. To achieve economically feasible upstream production and downstream processing, it is beneficial to obtain high levels of two yield-related quantities of upstream production: recombinant protein content per fresh mass of harvested biomass (g gFM -1 ) and recombinant protein productivity per unit area-time (g m -2 /month). Here, we report that the density of Nicotiana benthamiana plants during upstream production had significant impacts on the yield-related quantities of recombinant hemagglutinin (HA). The two quantities were smaller at a high plant density of 400 plants m -2 than at a low plant density of 100 plants m -2 . The smaller quantities at the high plant density were attributed to: (i) a lower HA content in young leaves, which usually have high HA accumulation potentials; (ii) a lower biomass allocation to the young leaves; and (iii) a high area-time requirement for plants. Thus, plant density is a key factor for improving upstream production in Agrobacterium-mediated transient expression systems. Biotechnol. Bioeng. 2017;114: 1762-1770. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Cadmium and zinc activate adaptive mechanisms in Nicotiana tabacum similar to those observed in metal tolerant plants.

    Science.gov (United States)

    Vera-Estrella, Rosario; Gómez-Méndez, María F; Amezcua-Romero, Julio C; Barkla, Bronwyn J; Rosas-Santiago, Paul; Pantoja, Omar

    2017-09-01

    Tobacco germinated and grew in the presence of high concentrations of cadmium and zinc without toxic symptoms. Evidence suggests that these ions are sequestered into the vacuole by heavy metal/H + exchanger mechanisms. Heavy metal hyperaccumulation and hypertolerance are traits shared by a small set of plants which show specialized physiological and molecular adaptations allowing them to accumulate and sequester toxic metal ions. Nicotiana tabacum was used to test its potential as a metal-accumulator in a glass house experiment. Seed germination was not affected in the presence of increasing concentrations of zinc and cadmium. Juvenile and adult plants could concentrate CdCl 2 and ZnSO 4 to levels exceeding those in the hydroponic growth medium and maintained or increased their leaf dry weight when treated with 0.5- or 1-mM CdCl 2 or 1-mM ZnSO 4 for 5 days. Accumulation of heavy metals did not affect the chlorophyll and carotenoid levels, while variable effects were observed in cell sap osmolarity. Heavy metal-dependent H + transport across the vacuole membrane was monitored using quinacrine fluorescence quenching. Cadmium- or zinc-dependent fluorescence recovery revealed that increasing concentrations of heavy metals stimulated the activities of the tonoplast Cd 2+ or Zn 2+ /H + exchangers. Immunodetection of the V-ATPase subunits showed that the increased proton transport by zinc was not due to changes in protein amount. MTP1 and MTP4 immunodetection and semiquantitative RT-PCR of NtMTP1, NtNRAMP1, and NtZIP1 helped to identify the genes that are likely involved in sequestration of cadmium and zinc in the leaf and root tissue. Finally, we demonstrated that cadmium and zinc treatments induced an accumulation of zinc in leaf tissues. This study shows that N. tabacum possesses a hyperaccumulation response, and thus could be used for phytoremediation purposes.

  11. Arabidopsis Vacuolar Pyrophosphatase gene (AVP1) induces drought and salt tolerance in Nicotiana tabacum plants (abstract)

    International Nuclear Information System (INIS)

    Arif, A.; Mohsin, A.M.; Shafiq, S.; Zafar, Y.; Hameed, S.M.; Arif, M.; Javed, M.; Gaxiola, R.A.

    2005-01-01

    Drought and salinity are global problems. In Pakistan these problems are increasing to an alarming situation due to low rain-fall and bad agricultural practices. Salt and drought stress shows a high degree of similarity with respect to physiological, biochemical, molecular and genetic effects. This is due to the fact that sub-lethal salt-stress condition is ultimately an osmotic effect which is apparently similar to that brought in by water deficit. Genetic engineering allows the re-introduction of plant genes into their genomes by increasing their expression level. Plant vacuoles play a central role in cellular mechanisms of adaptation to salinity and drought stresses. In principle, increased vacuolar solute accumulation should have a positive impact in the adaptation of plants to salinity and drought. The active transport of the solutes depends on the proton gradients established by proton pumps. We have over expressed Arabidopsis gene AVP1 (Arabidopsis thaliana vacuolar pyro phosphatase H/sup +/ pump) to increase drought/salt tolerance in tobacco. The AVP1 ORF with a tandem repeat of 358 promoter was cloned in pPZP212 vector and Agrobacterium-mediated transformation was performed. Transgenic plants were selected on plant nutrient agar medium supplemented with 50 mg/liter kanamycin. Transgenic plants were confirmed for transfer of genes by AVP1 and nptll gene specific PCR and Southern hybridization. AVP1 transgenic plants were screened for salt tolerance by providing NaCl solution in addition to nutrient solution. AVP1 transgenic plants showed tolerance up to 300 mM NaCl as compared to control which died ten days after 200 mM NaCl. Sodium and potassium were measured in salt treated and control plants. Results showed that sodium ion uptake in the salt treated transgenic plants was four times more as compared to wild type. This remarkable increase in Na/sup +/ ion uptake indicates that AVP1 vacuole proton pumps are actively involved in the transport of Na

  12. Response morphology and anatomy of tobacco (Nicotiana tabacum L.) plant on waterlogging

    Science.gov (United States)

    Nurhidayati, Tutik; Wardhani, Selfrina Puri; Purnobasuki, Hery; Hariyanto, Sucipto; Jadid, Nurul; Nurcahyani, Desy Dwi

    2017-11-01

    This study has conducted research on morphological and anatomical responses of some varieties of tobacco plants to waterlogging stress. Parameters measured were morphology, anatomy, and plants sensitivity index. Results were analyzed using two-way ANOVA followed by the Tukey test. The results show that waterlogging stress can reduce the growth of tobacco plants, including a decrease in plant height with the lowest value of 15.6 cm, root length reduction to the lowest value of 4.6 cm and plant dry weight reduction to the lowest value of 0.26 gr. But waterlogging stress can increase the number of adventitious roots with the highest value of 18.33. In addition, waterlogging stress can lead to the formation of aerenchyma tissue. The sensitivity index showed that plant varieties that are resistant to waterlogging stress are the varieties Kemloko 3 (index value of 0.03), varieties of Paiton 2 (index value of 0.18), and the varieties Kemloko 2 (index value of 0.42).

  13. Development of radioimmunological methods to determine the constituents of nicotiana plants and cell cultures

    International Nuclear Information System (INIS)

    Kolossa, E.

    1983-01-01

    This study outlines the technique, optimisation and range of uses of radioimmunoassays for nicotine as well as α-cembratriendiol and β-cembratriendiol, which due to their specificity are suitable for relevant detection procedures in non-purified raw extracts from plants. The tests are characterised by high accuracy (with an intra-assay variance between 3.3 and 4.5% and an interassay variance between 12 and 17%) and sensitivity (the limits of detection being 0.5 ng for nicotine, 1 ng for α-cembratriendiol and 3 ng for β-cembratriendiol) and easy enough to handle to permit quantitative determination of 800 samples per day and person. (orig./MG) [de

  14. Expression of a cucumber class III chitinase and Nicotiana plumbaginifolia class I glucanase genes in transgenic potato plants

    NARCIS (Netherlands)

    Moravcikova, J.; Matusikova, I.; Libantova, J.; Bauer, M.; Mlynarova, L.

    2004-01-01

    The genes encoding for a cucumber class III chitinase and Nicotiana plumbaginifolia class I glucanase were co-introduced into Slovak potato (Solanum tuberosum L.) breeding line 116/86 using Agrobacterium tumefaciens. For both transgenes the number of integrated copies and level of RNA expression

  15. Recombinant jacalin-like plant lectins are produced at high levels in Nicotiana benthamiana and retain agglutination activity and sugar specificity.

    Science.gov (United States)

    Fernandez-del-Carmen, Asun; Juárez, Paloma; Presa, Silvia; Granell, Antonio; Orzáez, Diego

    2013-02-20

    The plant kingdom is an underexplored source of valuable proteins which, like plant lectins, display unique interacting specificities. Furthermore, plant protein diversity remains under-exploited due to the low availability and heterogeneity of native sources. All these hurdles could be overcome with recombinant production. A narrow phylogenetic gap between the native source and the recombinant platform is likely to facilitate proper protein processing and stability; therefore, the plant cell chassis should be specially suited for the recombinant production of many plant native proteins. This is illustrated herein with the recombinant production of two representatives of the plant jacalin-related lectin (JRLs) protein family in Nicotiana benthamiana using state-of-the-art magnICON technology. Mannose-specific Banlec JRL was produced at very high levels in leaves, reaching 1.0mg of purified protein per gram of fresh weight and showing strong agglutination activity. Galactose-specific jacalin JRL, with its complicated processing requirements, was also successfully produced in N. benthamiana at levels of 0.25 mg of purified protein per gram of fresh weight. Recombinant Jacalin (rJacalin) proved efficient in the purification of human IgA1, and was able to discriminate between plant-made and native IgA1 due to their differential glycosylation status. Together, these results show that the plant cell factory should be considered a primary option in the recombinant production of valuable plant proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Biologically active, magnICON®-expressed EPO-Fc from stably transformed Nicotiana benthamiana plants presenting tetra-antennary N-glycan structures.

    Science.gov (United States)

    Nagels, Bieke; Van Damme, Els J M; Callewaert, Nico; Zabeau, Lennart; Tavernier, Jan; Delanghe, Joris R; Boets, Annemie; Castilho, Alexandra; Weterings, Koen

    2012-08-31

    In the past two decades plants have emerged as a valuable alternative for the production of pharmaceutical proteins. Since N-glycosylation influences functionality and stability of therapeutic proteins, the plant N-glycosylation pathway should be humanized. Here, we report the transient magnICON(®) expression of the erythropoietin fusion protein (EPO-Fc) in Nicotiana benthamiana plants that produce multi-antennary N-glycans without the plant-specific β1,2-xylose and α1,3-fucose residues in a stable manner (Nagels et al., 2011). The EPO-Fc fusion protein consists of EPO with a C-terminal-linked IgG-Fc domain and is used for pulmonary delivery of recombinant EPO to patients (Bitonti et al., 2004). Plant expressed EPO-Fc was quantified using a paramagnetic-particle chemiluminescent immunoassay and shown to be active in vitro via receptor binding experiments in HEK293T cells. Mass spectrometry-based N-glycan analysis confirmed the presence of multi-antennary N-glycans on plant-expressed EPO-Fc. The described research is the next step towards the development of a production platform for pharmaceutical proteins in plants. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. NaJAZh Regulates a Subset of Defense Responses against Herbivores and Spontaneous Leaf Necrosis in Nicotiana attenuata Plants[C][W][OA

    Science.gov (United States)

    Oh, Youngjoo; Baldwin, Ian T.; Gális, Ivan

    2012-01-01

    The JASMONATE ZIM DOMAIN (JAZ) proteins function as negative regulators of jasmonic acid signaling in plants. We cloned 12 JAZ genes from native tobacco (Nicotiana attenuata), including nine novel JAZs in tobacco, and examined their expression in plants that had leaves elicited by wounding or simulated herbivory. Most JAZ genes showed strong expression in the elicited leaves, but NaJAZg was mainly expressed in roots. Another novel herbivory-elicited gene, NaJAZh, was analyzed in detail. RNA interference suppression of this gene in inverted-repeat (ir)JAZh plants deregulated a specific branch of jasmonic acid-dependent direct and indirect defenses: irJAZh plants showed greater trypsin protease inhibitor activity, 17-hydroxygeranyllinalool diterpene glycosides accumulation, and emission of volatile organic compounds from leaves. Silencing of NaJAZh also revealed a novel cross talk in JAZ-regulated secondary metabolism, as irJAZh plants had significantly reduced nicotine levels. In addition, irJAZh spontaneously developed leaf necrosis during the transition to flowering. Because the lesions closely correlated with the elevated expression of programmed cell death genes and the accumulations of salicylic acid and hydrogen peroxide in the leaves, we propose a novel role of the NaJAZh protein as a repressor of necrosis and/or programmed cell death during plant development. PMID:22496510

  18. Immunity to potato mop-top virus in Nicotiana benthamiana plants expressing the coat protein gene is effective against fungal inoculation of the virus.

    Science.gov (United States)

    Reavy, B; Arif, M; Kashiwazaki, S; Webster, K D; Barker, H

    1995-01-01

    Nicotiana benthamiana stem tissue was transformed with Agrobacterium tumefaciens harboring a binary vector containing the potato mop-top virus (PMTV) coat protein (CP) gene. PMTV CP was expressed in large amounts in some of the primary transformants. The five transgenic lines which produced the most CP were selected for resistance testing. Flowers on transformed plants were allowed to self-fertilize. Transgenic seedlings selected from the T1 seed were mechanically inoculated with two strains of PMTV. Virus multiplication, assayed by infectivity, was detected in only one transgenic plant of 98 inoculated. T1 plants were also highly resistant to graft inoculation; PMTV multiplied in only one plant of 45 inoculated. Transgenic T1 seedlings were challenged in a bait test in which they were grown in soil containing viruliferous spores of the vector fungus Spongospora subterranea. In these tests only two plants out of 99 became infected. Of the five transgenic lines tested, plants of three lines were immune to infection following manual, graft, or fungal inoculation.

  19. Fusion of Agrobacterium and E. coli spheroplasts with Nicotiana tabacum protoplasts - Direct gene transfer from microorganism to higher plant.

    Science.gov (United States)

    Hain, R; Steinbiß, H H; Schell, J

    1984-04-01

    Spheroplasts of Agrobacterium tumefaciens strains and E. coli were fused with protoplasts of Nicotiana tabacum. Fusion products were cultured in the presence of antibiotics to eliminate remaining bacterial spheroplasts. On hormone free medium, tobacco protoplasts treated with wild type Agrobacterium-strains formed colonies with an average frequency of 10(-4). Opine synthesis was detected in the tissues. Some calli derived from protoplasts treated with A. tumefaciens C58C1pRi15834 formed typical hairy roots. Kanamycin resistant calli were obtained after fusion with A. tumefaciens containing pLGVTi23 neo (frequency=10(-3)). Fusion of E. coli spheroplasts containing a virulent pTiB6S3::RP4 co-integrate with tobacco protoplasts yielded two hormone independent growing calli producing octopine out of 10(5) microcalli.

  20. Nicotiana benthamiana as a Production Platform for Artemisinin Precursors

    NARCIS (Netherlands)

    Herpen, van T.W.J.M.; Cankar, K.; Nogueira, M.; Bosch, H.J.; Bouwmeester, H.J.; Beekwilder, M.J.

    2010-01-01

    Background Production of pharmaceuticals in plants provides an alternative for chemical synthesis, fermentation or natural sources. Nicotiana benthamiana is deployed at commercial scale for production of therapeutic proteins. Here the potential of this plant is explored for rapid production of

  1. Tobacco plants transformed with the bean. alpha. ai gene express an inhibitor of insect. alpha. -amylase in their seeds. [Nicotiana tabacum; Tenebrio molitor

    Energy Technology Data Exchange (ETDEWEB)

    Altabella, T.; Chrispeels, M.J. (Univ. of California, San Diego, La Jolla (USA))

    1990-06-01

    Bean (Phaseolus vulgaris L.) seeds contain a putative plant defense protein that inhibits insect and mammalian but not plant {alpha}-amylases. We recently presented strong circumstantial evidence that this {alpha}-amylase inhibitor ({alpha}Al) is encoded by an already-identified lectin gene whose product is referred to as lectin-like-protein (LLP). We have now made a chimeric gene consisting of the coding sequence of the lectin gene that encodes LLP and the 5{prime} and 3{prime} flanking sequences of the lectin gene that encodes phytohemagglutinin-L. When this chimeric gene was expressed in transgenic tobacco (Nicotiana tabacum), we observed in the seeds a series of polypeptides (M{sub r} 10,000-18,000) that cross-react with antibodies to the bean {alpha}-amylase inhibitor. Most of these polypeptides bind to a pig pancreas {alpha}-amylase affinity column. An extract of the seeds of the transformed tobacco plants inhibits pig pancreas {alpha}-amylase activity as well as the {alpha}-amylase present in the midgut of Tenebrio molitor. We suggest that introduction of this lectin gene (to be called {alpha}ai) into other leguminous plants may be a strategy to protect the seeds from the seed-eating larvae of Coleoptera.

  2. Accumulation of human EGF in nectar of transformed plants of Nicotiana langsdorffii x N. sanderae and transfer to honey by bees.

    Science.gov (United States)

    Helsper, J P F G; Ruyter-Spira, C P; Kwakman, P H S; Bleeker, W K; Keizer, L C P; Bade, J B; Te Velde, A A; Zaat, S A J; Verbeek, M; Creemers-Molenaar, J

    2011-09-01

    Honey has been used successfully in wound healing for thousands of years. The peptide hormone human epidermal growth factor (hEGF) is also known to have a beneficial effect in various wound healing processes via mechanisms that differ from those for honey. In this study, we show that hEGF can be incorporated into honey via nectar. Plants of Nicotiana langsdorffii x N. sanderae were transformed with the gene for hEGF, equipped with a nectary-targeted promoter and a signal sequence for secretion to nectar. These plants accumulated hEGF in the nectar. The maximum hEGF concentration recorded with ELISA in these plants is 2.5 ng·ml⁻¹. There is a significant linear relationship (Phoney from their nectar, we used feeding solutions, spiked with synthetic hEGF, to study transfer of this peptide into honey through bee activity. Transfer of hEGF from a feeding solution to honey by bees occurred with retention of the hEGF concentration and the capacity to induce hEGF-receptor phosphorylation. These observations indicate that plants can function as a production platform for honey containing biologically active peptides, which may enhance wound healing and other biological processes. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. The B cell death function of obinutuzumab-HDEL produced in plant (Nicotiana benthamiana L.) is equivalent to obinutuzumab produced in CHO cells.

    Science.gov (United States)

    Lee, Jin Won; Heo, Woon; Lee, Jinu; Jin, Narae; Yoon, Sei Mee; Park, Ki Youl; Kim, Eun Yu; Kim, Woo Taek; Kim, Joo Young

    2018-01-01

    Plants have attracted attention as bio-drug production platforms because of their economical and safety benefits. The preliminary efficacy of ZMapp, a cocktail of antibodies produced in N. benthamiana (Nicotiana benthamiana L.), suggested plants may serve as a platform for antibody production. However, because the amino acid sequences of the Fab fragment are diverse and differences in post-transcriptional processes between animals and plants remain to be elucidated, it is necessary to confirm functional equivalence of plant-produced antibodies to the original antibody. In this study, Obinutuzumab, a third generation anti-CD20 antibody, was produced in N. benthamiana leaves (plant-obinutuzumab) and compared to the original antibody produced in glyco-engineered Chinese hamster ovary (CHO) cells (CHO-obinutuzumab). Two forms (with or without an HDEL tag) were generated and antibody yields were compared. The HDEL-tagged form was more highly expressed than the non-HDEL-tagged form which was cleaved in the N-terminus. To determine the equivalence in functions of the Fab region between the two forms, we compared the CD20 binding affinities and direct binding induced cell death of a CD20-positive B cells. Both forms showed similar CD20 binding affinities and direct cell death of B cell. The results suggested that plant-obinutuzumab was equivalent to CHO-obinutuzumab in CD20 binding, cell aggregation, and direct cell death via binding. Therefore, our findings suggest that Obinutuzumab is a promising biosimilar candidate that can be produced efficiently in plants.

  4. The B cell death function of obinutuzumab-HDEL produced in plant (Nicotiana benthamiana L. is equivalent to obinutuzumab produced in CHO cells.

    Directory of Open Access Journals (Sweden)

    Jin Won Lee

    Full Text Available Plants have attracted attention as bio-drug production platforms because of their economical and safety benefits. The preliminary efficacy of ZMapp, a cocktail of antibodies produced in N. benthamiana (Nicotiana benthamiana L., suggested plants may serve as a platform for antibody production. However, because the amino acid sequences of the Fab fragment are diverse and differences in post-transcriptional processes between animals and plants remain to be elucidated, it is necessary to confirm functional equivalence of plant-produced antibodies to the original antibody. In this study, Obinutuzumab, a third generation anti-CD20 antibody, was produced in N. benthamiana leaves (plant-obinutuzumab and compared to the original antibody produced in glyco-engineered Chinese hamster ovary (CHO cells (CHO-obinutuzumab. Two forms (with or without an HDEL tag were generated and antibody yields were compared. The HDEL-tagged form was more highly expressed than the non-HDEL-tagged form which was cleaved in the N-terminus. To determine the equivalence in functions of the Fab region between the two forms, we compared the CD20 binding affinities and direct binding induced cell death of a CD20-positive B cells. Both forms showed similar CD20 binding affinities and direct cell death of B cell. The results suggested that plant-obinutuzumab was equivalent to CHO-obinutuzumab in CD20 binding, cell aggregation, and direct cell death via binding. Therefore, our findings suggest that Obinutuzumab is a promising biosimilar candidate that can be produced efficiently in plants.

  5. Pneumatic hydrodynamics influence transplastomic protein yields and biological responses duringin vitroshoot regeneration ofNicotiana tabacumcallus: Implications for bioprocess routes to plant-made biopharmaceuticals.

    Science.gov (United States)

    Barretto, Sherwin S; Michoux, Franck; Hellgardt, Klaus; Nixon, Peter J

    2017-01-15

    Transplastomic plants are capable of high-yield production of recombinant biopharmaceutical proteins. Plant tissue culture combines advantages of agricultural cultivation with the bioprocess consistency associated with suspension culture. Overexpression of recombinant proteins through regeneration of transplastomic Nicotiana tabacum shoots from callus tissue in RITA ® temporary immersion bioreactors has been previously demonstrated. In this study we investigated the hydrodynamics of periodic pneumatic suspension of liquid medium during temporary immersion culture (4 min aeration every 8 h), and the impact on biological responses and transplastomic expression of fragment C of tetanus toxin (TetC). Biomass was grown under a range of aeration rates for 3, 20 and 40-day durations. Growth, mitochondrial activity (a viability indicator) and TetC protein yields were correlated against the hydrodynamic parameters, shear rate and energy dissipation rate (per kg of medium). A critical aeration rate of 440 ml min -1 was identified, corresponding to a shear rate of 96.7 s -1 , pneumatic power input of 8.8 mW kg -1 and initial 20-day pneumatic energy dissipation of 127 J kg -1 , at which significant reductions in biomass accumulation and mitochondrial activity were observed. There was an exponential decline in TetC yields with increasing aeration rates at 40 days, across the entire range of conditions tested. These observations have important implications for the optimisation and scale-up of transplastomic plant tissue culture bioprocesses for biopharmaceutical production.

  6. Testing the efficiency of plant artificial microRNAs by transient expression in Nicotiana benthamiana reveals additional action at the translational level

    Directory of Open Access Journals (Sweden)

    Shi eYu

    2014-11-01

    Full Text Available Artificial microRNAs (amiRNAs have become an important tool to assess gene functions due to their high efficiency and specificity to decrease target gene expression. Based on the observed degree of complementarity between microRNAs (miRNAs and their targets, it was widely accepted that plant miRNAs act at the mRNA stability level, while the animal miRNAs act at the translational level. Contrary to these canonical dogmas, recent evidence suggests that both plant and animal miRNAs act at both levels. Nevertheless, it is still impossible to predict the effect of an artificial miRNA on the stability or translation of the target mRNA in plants. Consequently, identifying and discarding inefficient amiRNAs prior to stable plant transformation would help getting suppressed mutants faster and at reduced cost. We designed and tested a method using transient expression of amiRNAs and the corresponding target genes in Nicotiana benthamiana leaves to test the efficacy of amiRNAs for suppression of the target protein accumulation. The ability of the amiRNAs to suppress the target gene expression in N. benthamiana was then compared to that in stably transformed Arabidopsis. It was found that the efficacy of sixteen amiRNAs, targeting a total of four genes, varied greatly. The effects of amiRNAs on target mRNAs accumulation did not always correlate with target protein accumulation or the corresponding phenotypes, while a similar trend of the silencing efficacy of amiRNAs determined between N. benthamiana and stably transformed Arabidopsis could be observed. Our results showed that, similar to endogenous plant miRNAs, plant amiRNAs could act at the translational level, a property needed to be taken into account when testing the efficacy of individual amiRNAs. Preliminary tests in N. benthamiana can help determine which amiRNA would be the most likely to suppress target gene expression in stably transformed plants.

  7. A simple and rapid in vitro test for large-scale screening of fungal endophytes from drought-adapted Australian wild plants for conferring water deprivation tolerance and growth promotion in Nicotiana benthamiana seedlings.

    Science.gov (United States)

    Dastogeer, Khondoker M G; Li, Hua; Sivasithamparam, Krishnapillai; Jones, Michael G K; Wylie, Stephen J

    2017-12-01

    Some fungal endophytes confer novel phenotypes and enhance existing ones in plants, including tolerance to water deprivation stress. A range of fungal endophytes was isolated from wild Nicotiana plants growing in arid parts of northern Australia. These were screened for ability to enhance water deprivation stress tolerance by inoculating seedlings of the model plant N. benthamiana in two in vitro tests. Sixty-eight endophyte isolates were co-cultivated with N. benthamiana seedlings on either damp filter paper or on agar medium before being subjected to water deprivation. Seventeen isolates were selected for further testing under water deprivation conditions in a sand-based test in a glasshouse. Only two fungal isolates, Cladosporium cladosporioides (E-162) and an unknown fungus (E-284), significantly enhanced seedling tolerance to moisture deprivation consistently in both in vitro and sand-based tests. Although a strongly significant correlation was observed between any two screening methods, the result of filter paper test was more strongly reflected (r = 0.757, p < 0.001) in results of the glasshouse test, indicating its relative suitability over the agar-based test. In another experiment, the same 17 isolates carried forward to the sand-based test used in the glasshouse screening test were inoculated to N. benthamiana plants in pots in a nutrient-limiting environment to test their influence on growth promotion. Isolates related to C. cladosporioides, Fusarium equiseti, and Thozetella sp. promoted seedling growth by increasing shoot length and biomass. The fungal isolate E-162 (C. cladosporioides) significantly enhanced moisture deprivation tolerance as well as promoted seedling growth.

  8. Evaluation of two gene-silencing constructs for resistance to tomato yellow leaf curl viruses in Nicotiana benthamiana plants.

    Science.gov (United States)

    Gharsallah Chouchane, S; Gorsane, F; Nakhla, M K; Salus, M; Martin, C T; Maxwell, D P; Marrakchi, M; Fakhfakh, H

    2008-01-01

    Infiltration of Agrobacterium tumefaciens into intact plant leaves of N. benthamiana was used to test the efficiency of two virus-based silencing constructs conferring resistance to the closely related begomoviruses. The constructs contained the most conserved sequences of the coat protein (CP) gene and replication-associated protein (Rep) gene of Tomato yellow leaf curl Sardinia virus (Sicily strain) (TYLCSV-[Sic]). Both constructs formed a hairpin structure that enhanced the post-transcriptional gene-silencing mechanism. When agro-infiltrated plants were challenged separately with infectious viruses TYLCSV-[Sic] and Tomato yellow leaf curl virus (TYLCV), the plants showed resistance to TYLCSV-[Sic], but not to the related TYLCV.

  9. Effect of potassium application in drought-stressed tobacco (Nicotiana rustica L. plants: Comparison of root with foliar application

    Directory of Open Access Journals (Sweden)

    Sara Bahrami-Rad

    2017-12-01

    Full Text Available Effect of potassium (K application through leaves (LA or roots (RA was studied in tobacco plants grown under K deficiency and drought stress conditions. Application of K was effective in improving the shoot growth only under drought conditions, whereas root biomass and length responded under both watering regimes. Under drought conditions, photosynthesis and transpiration activities increased upon K application leading to a reduced water use efficiency. Both RA and LA increased the leaf water potential, relative water content and turgor under both well-watered and drought conditions; RA was more effective than LA in the recovery of leaf turgor. Analyses of water relation parameters in different aged leaves showed lower susceptibility of the middle-aged leaves to both K deficiency and drought stresses than the upper and lower leaves; this phenomenon was accompanied by a more conservative control of water loss in the middle-aged leaves. In contrast, proline was accumulated in the young leaves, and K application increased it further. Although various organic osmolytes were accumulated under the combinative effect of K deficiency and drought stress, they did not exceed the amounts found in the control (well-watered +K plants and were merely a result of the concentration effect. Collectively, our results revealed that the majority of leaf biochemical responses to drought stress are developmentally regulated processes. In addition, the alleviating effect of both RA and LA despite higher water loss indicated that an improved stomatal function upon K application allowed carbohydrates synthesis, thus, enhancing plant growth under water stress.

  10. Influence of planting frame in the cultivar “Corojo 2006” of tobacco (Nicotiana tabacum L. on productive indicators

    Directory of Open Access Journals (Sweden)

    Luis Gustavo González Gómez

    2015-03-01

    Full Text Available The investigation was developed in the General CCS-F Victor Ramos Hernandez, Located in the area of the Oven, on a carbonated brown floor. The valued variety of tobacco was the Corojo 2006, with the objective of evaluating different plantation marks, for they were evaluated it four plantation distances that in turn were the valued treatments with a design of totally randomized in parcels of 20 m of long and wide The utilized materials they are characteristic of a field investigation and the cultural attentions were carried out by the Technical Instructive of the Tobacco (2011. the main indicators of the cultivation were evaluated like they were number of leaves, long and wide of the leaves, dry mass and yield, with its respective economic valuation. The data were processed with the statistical package it ESTATISTICA version 8 on Windows, through an analysis of simple variance and a test of multiple comparison for Tukey for 5% of probability of the error, The reached results indicate us that the best yields are obtained when the plants have a distance among them of 0.30 m and the lowest results when they are planted 0.25 m.

  11. Effect of calcium carbonate on cadmium and nutrients uptake in tobacco (Nicotiana tabacum L.) planted on contaminated soil.

    Science.gov (United States)

    Zeng, Wei-Ai; Li, Fan; Zhou, Hang; Qin, Xiao-Li; Zou, Zi-Jin; Tian, Tao; Zeng, Min; Liao, Bo-Han

    2016-01-01

    In the present study, calcium carbonate (CaCO3) was applied to Cd-contaminated soil at rates of 0, 0.5 and 1.0 g kg(-1). The effect of CaCO3 on soil pH, organic matter, available Cd, exchangeable Cd and level of major nutrients in a tobacco field and on accumulation of various elements in tobacco plants was determined. The results showed that CaCO3 application significantly increased the pH level, available P and exchangeable Ca but decreased organic matter, available Cd, exchangeable Cd, available heavy metals (Fe, Mn, Zn and Cu) and available K in soil. Additionally, CaCO3 application substantially reduced Cd accumulation in tobacco roots, stems, upper leaves, middle leaves and lower leaves, with maximum decrease of 22.3%, 32.1%, 24.5%, 22.0% and 18.2%, respectively. There were large increase in total Ca and slight increases in total N and K but decrease to varying degrees in total Fe, Cu and Zn due to CaCO3 application. CaCO3 had little effect on total P and Mn levels in tobacco leaves.

  12. Omzettingen van koolhydraten in het blad van Nicotiana tabacum L.

    NARCIS (Netherlands)

    Tollenaar, D.

    1925-01-01

    Nicotiana tabacum L. was chosen as an experimental plant for several practical reasons. The plants were grown in large pots in a glasshouse at 22 °C and great humidity in February-March and September-October until 4 normal leaves were present. Each day at 16.00 h the plants were brought into

  13. Phytophthora nicotianae var. nicotianae on tomatoes

    NARCIS (Netherlands)

    Weststeijn, G.

    1973-01-01

    Around 1960 some disorders which initially were considered to be of a physiological nature were found in tomato plants grown in glasshouses in the Netherlands. One complex of symptoms was a brown rot of the lateral roots and the tap root, often followed by decomposition of the stem base

  14. Silicon delays tobacco Ringspot virus systemic symptoms in Nicotiana tabacum

    Science.gov (United States)

    Soluble silicon (Si) provides protection to plants against a variety of abiotic and biotic stress. However, the role of Si in viral infections has been elusive. To investigate the role of Si in viral infections, hydroponic studies were conducted in Nicotiana tabacum with two pathogens: Tobacco rings...

  15. Pollen irradiation and possible gene transfer in Nicotiana species

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1985-01-01

    Progeny from crosses of Nicotiana langsdorffii with gamma irradiated pollen of Nicotiana alata ‘Crimson Bedder’ showed skewed segregation in the F2 favoring the maternal parent. This is probably not gene transfer in a strict sense, rather just an extreme case of reduced transmission of irradiated...... chromosomes, leading to massive overrepresentation of maternal genes. Gene transfer or mutational loss may explain some anomalous F1 plants. Segregation in the F2 progeny showed the presence of several genes from the irradiated pollen. Crosses of Nicotiana sylvestris, N. plumbaginifolia N. paniculata......, and Petunia parodii with irradiated pollen from N. alata and Petunia hybrida showed no evidence of gene transfer, nor did experiments with irradiated mentor pollen. This indicates that gene transfer with irradiated pollen between non-crossing species or between species giving sterile hybrids is probably...

  16. Nicotiana benthamiana as a production platform for artemisinin precursors

    OpenAIRE

    Nogueira, Marilise; Bouwmeester, Harro; Cankar, Katarina; Harpen, Teun W. J. M. van; Bosch, Dirk; Beekwilder, Jules

    2015-01-01

    BACKGROUND: Production of pharmaceuticals in plants provides an alternative for chemical synthesis, fermentation or natural sources. Nicotiana benthamiana is deployed at commercial scale for production of therapeutic proteins. Here the potential of this plant is explored for rapid production of precursors of artemisinin, a sesquiterpenoid compound that is used for malaria treatment. METHODOLOGY/PRINCIPAL FINDINGS: Biosynthetic genes leading to artemisinic acid, a precursor of artemisinin, wer...

  17. Genomes and virulence difference between two physiological races of Phytophthora nicotianae.

    Science.gov (United States)

    Liu, Hui; Ma, Xiao; Yu, Haiqin; Fang, Dunhuang; Li, Yongping; Wang, Xiao; Wang, Wen; Dong, Yang; Xiao, Bingguang

    2016-01-01

    Black shank is a severe plant disease caused by the soil-borne pathogen Phytophthora nicotianae. Two physiological races of P. nicotianae, races 0 and 1, are predominantly observed in cultivated tobacco fields around the world. Race 0 has been reported to be more aggressive, having a shorter incubation period, and causing worse root rot symptoms, while race 1 causes more severe necrosis. The molecular mechanisms underlying the difference in virulence between race 0 and 1 remain elusive. We assembled and annotated the genomes of P. nicotianae races 0 and 1, which were obtained by a combination of PacBio single-molecular real-time sequencing and second-generation sequencing (both HiSeq and MiSeq platforms). Gene family analysis revealed a highly expanded ATP-binding cassette transporter gene family in P. nicotianae. Specifically, more RxLR effector genes were found in the genome of race 0 than in that of race 1. In addition, RxLR effector genes were found to be mainly distributed in gene-sparse, repeat-rich regions of the P. nicotianae genome. These results provide not only high quality reference genomes of P. nicotianae, but also insights into the infection mechanisms of P. nicotianae and its co-evolution with the host plant. They also reveal insights into the difference in virulence between the two physiological races.

  18. Power plant design model

    International Nuclear Information System (INIS)

    Hartsock, D.K.

    1988-01-01

    This paper reports on the Power Plant Design Model (PPDM) which is an interactive FORTRAN/2020 program with over 15,000 lines of code that allows a user to create an engineering model of a grass roots solid fuel-fired facility capable of generating steam for electrical power generation and/or sale. Capital, operating, and maintenance cost estimates of the modeled plant are also generated. The model's technical output contains complete material and energy balances of all major streams, parasitic power calculations, boiler operating data and a major equipment list. The economic output consists of a capital cost estimate for the plant in a spreadsheet format detailing the material, labor and indirect costs associated with each piece of equipment. The model was intended for use as a marketing tool to replace engineering feasibility studies which are needed to determine the viability of a project. The model provides preliminary economics at a fraction of time and manpower effort normally associated with this task

  19. The Cotton WRKY Gene GhWRKY41 Positively Regulates Salt and Drought Stress Tolerance in Transgenic Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Xiaoqian Chu

    Full Text Available WRKY transcription factors constitute a very large family of proteins in plants and participate in modulating plant biological processes, such as growth, development and stress responses. However, the exact roles of WRKY proteins are unclear, particularly in non-model plants. In this study, Gossypium hirsutum WRKY41 (GhWRKY41 was isolated and transformed into Nicotiana benthamiana. Our results showed that overexpression of GhWRKY41 enhanced the drought and salt stress tolerance of transgenic Nicotiana benthamiana. The transgenic plants exhibited lower malondialdehyde content and higher antioxidant enzyme activity, and the expression of antioxidant genes was upregulated in transgenic plants exposed to osmotic stress. A β-glucuronidase (GUS staining assay showed that GhWRKY41 was highly expressed in the stomata when plants were exposed to osmotic stress, and plants overexpressing GhWRKY41 exhibited enhanced stomatal closure when they were exposed to osmotic stress. Taken together, our findings demonstrate that GhWRKY41 may enhance plant tolerance to stress by functioning as a positive regulator of stoma closure and by regulating reactive oxygen species (ROS scavenging and the expression of antioxidant genes.

  20. Overexpression of the PAP1 transcription factor reveals a complex regulation of flavonoid and phenylpropanoid metabolism in Nicotiana tabacum plants attacked by Spodoptera litura.

    Science.gov (United States)

    Mitsunami, Tomoko; Nishihara, Masahiro; Galis, Ivan; Alamgir, Kabir Md; Hojo, Yuko; Fujita, Kohei; Sasaki, Nobuhiro; Nemoto, Keichiro; Sawasaki, Tatsuya; Arimura, Gen-ichiro

    2014-01-01

    Anthocyanin pigments and associated flavonoids have demonstrated antioxidant properties and benefits for human health. Consequently, current plant bioengineers have focused on how to modify flavonoid metabolism in plants. Most of that research, however, does not consider the role of natural biotic stresses (e.g., herbivore attack). To understand the influence of herbivore attack on the metabolic engineering of flavonoids, we examined tobacco plants overexpressing the Arabidopsis PAP1 gene (encoding an MYB transcription factor), which accumulated anthocyanin pigments and other flavonoids/phenylpropanoids. In comparison to wild-type and control plants, transgenic plants exhibited greater resistance to Spodoptera litura. Moreover, herbivory suppressed the PAP1-induced increase of transcripts of flavonoid/phenylpropanoid biosynthetic genes (e.g., F3H) and the subsequent accumulation of these genes' metabolites, despite the unaltered PAP1 mRNA levels after herbivory. The instances of down-regulation were independent of the signaling pathways mediated by defense-related jasmonates but were relevant to the levels of PAP1-induced and herbivory-suppressed transcription factors, An1a and An1b. Although initially F3H transcripts were suppressed by herbivory, after the S. litura feeding was interrupted, F3H transcripts increased. We hypothesize that in transgenic plants responding to herbivory, there is a complex mechanism regulating enriched flavonoid/phenylpropanoid compounds, via biotic stress signals.

  1. Overexpression of the PAP1 transcription factor reveals a complex regulation of flavonoid and phenylpropanoid metabolism in Nicotiana tabacum plants attacked by Spodoptera litura.

    Directory of Open Access Journals (Sweden)

    Tomoko Mitsunami

    Full Text Available Anthocyanin pigments and associated flavonoids have demonstrated antioxidant properties and benefits for human health. Consequently, current plant bioengineers have focused on how to modify flavonoid metabolism in plants. Most of that research, however, does not consider the role of natural biotic stresses (e.g., herbivore attack. To understand the influence of herbivore attack on the metabolic engineering of flavonoids, we examined tobacco plants overexpressing the Arabidopsis PAP1 gene (encoding an MYB transcription factor, which accumulated anthocyanin pigments and other flavonoids/phenylpropanoids. In comparison to wild-type and control plants, transgenic plants exhibited greater resistance to Spodoptera litura. Moreover, herbivory suppressed the PAP1-induced increase of transcripts of flavonoid/phenylpropanoid biosynthetic genes (e.g., F3H and the subsequent accumulation of these genes' metabolites, despite the unaltered PAP1 mRNA levels after herbivory. The instances of down-regulation were independent of the signaling pathways mediated by defense-related jasmonates but were relevant to the levels of PAP1-induced and herbivory-suppressed transcription factors, An1a and An1b. Although initially F3H transcripts were suppressed by herbivory, after the S. litura feeding was interrupted, F3H transcripts increased. We hypothesize that in transgenic plants responding to herbivory, there is a complex mechanism regulating enriched flavonoid/phenylpropanoid compounds, via biotic stress signals.

  2. Ionome changes in Xylella fastidiosa-infected Nicotiana tabacum correlate with virulence and discriminate between subspecies of bacterial isolates.

    Science.gov (United States)

    Oliver, J E; Sefick, S A; Parker, J K; Arnold, T; Cobine, P A; De La Fuente, L

    2014-10-01

    Characterization of ionomes has been used to uncover the basis of nutrient utilization and environmental adaptation of plants. Here, ionomic profiles were used to understand the phenotypic response of a plant to infection by genetically diverse isolates of Xylella fastidiosa, a gram-negative, xylem-limited bacterial plant pathogen. In this study, X. fastidiosa isolates were used to infect a common model host (Nicotiana tabacum 'SR1'), and leaf and sap concentrations of eleven elements together with plant colonization and symptoms were assessed. Multivariate statistical analysis revealed that changes in the ionome were significantly correlated with symptom severity and bacterial populations in host petioles. Moreover, plant ionome modification by infection could be used to differentiate the X. fastidiosa subspecies with which the plant was infected. This report establishes host ionome modification as a phenotypic response to infection.

  3. Transformation of tobacco plant (Nicotiana tabacum L. with the recombinant hepatitis B virus genes 35SHBsAg and 35SHBsAgER

    Directory of Open Access Journals (Sweden)

    Juliana Martins Ribeiro

    2010-03-01

    Full Text Available The recombinant surface antigen of hepatitis B virus (HBsAg, purified from transgenic plants, proved to be efficient when utilized for raising anti-HB antibodies for the prevention of hepatitis B. Because of the important role of the HBsAg antigen in hepatitis B prevention, the coding sequence of HBsAg antigen, with or without the addition of the carboxi-terminus sequence for protein retention in the endoplasmatic reticulum, was linked to cauliflower mosaic virus 35S promoter, tobacco mosaic virus leader sequence Ω, and the transcription terminator sequence. The aim of this work was to clone the chimeric gene 35SHBsAgER in the plant expression vector pGPTV/Kan/Asc. The resulting plasmid, called pG35SHBsAgER, and another plasmid produced previously in our laboratory called pG35SHBsAg, were transferred to Agrobacterium tumefaciens, and tobacco leaves, of the SR1 cultivar were used as explants for genetic transformation. Twenty-one fully regenerated plants were obtained (10 for the pG35SHBsAg construction and 11 for the pG35SHBsAgER construction. The genomic DNA of all plants was analyzed by PCR, and the presence of the transgene was confirmed in all plants.

  4. The IRE1/bZIP60 pathway and bax inhibitor 1 suppress systemic accumulation of potyviruses and potexviruses in Arabidopsis and Nicotiana benthamiana Plants

    DEFF Research Database (Denmark)

    Gaguancela, Omar Arias; Zúñiga, Lizbeth Peña; Arias, Alexis Vela

    2016-01-01

    that regulates cell death in response to environmental assaults. The potyvirus 6K2 and potexvirus TGB3 proteins are known to reside in the ER, serving, respectively, as anchors for the viral replicase and movement protein complex. This study used green fluorescent protein (GFP)-tagged Turnip mosaic virus (Tu...... genes into plant cells activated bZIP60 and BI-1 expression in Arabidopsis thaliana, N. benthamiana, and S. tuberosum. Homozygous ire1a-2, ire1b-4, and ire1a-2/ire1b-4 mutant Arabidopsis plants were inoculated with TuMV-GFP or PlAMV-GFP. PlAMV accumulates to a higher level in ire1a-2 or ire1a-2/ire1b-4...... mutant plants than in ire1b-4 or wild-type plants. TuMV-GFP accumulates to a higher level in ire1a-2, ire1b-4, or ire1a-2/ire1b-4 compared with wild-type plants, suggesting that both isoforms contribute to TuMV-GFP infection. Gene silencing was used to knock down bZIP60 and BI-1 expression in N...

  5. Promiscuous, non-catalytic, tandem carbohydrate-binding modules modulate the cell-wall structure and development of transgenic tobacco (Nicotiana tabacum) plants

    Science.gov (United States)

    Obembe, Olawole O.; Jacobsen, Evert; Timmers, Jaap; Gilbert, Harry; Blake, Anthony W.; Knox, J. Paul; Visser, Richard G. F.

    2007-01-01

    We have compared heterologous expression of two types of carbohydrate binding module (CBM) in tobacco cell walls. These are the promiscuous CBM29 modules (a tandem CBM29-1-2 and its single derivative CBM29-2), derived from a non-catalytic protein1, NCP1, of the Piromyces equi cellulase/hemicellulase complex, and the less promiscuous tandem CBM2b-1-2 from the Cellulomonas fimi xylanase 11A. CBM-labelling studies revealed that CBM29-1-2 binds indiscriminately to every tissue of the wild-type tobacco stem whereas binding of CBM2b-1-2 was restricted to vascular tissue. The promiscuous CBM29-1-2 had much more pronounced effects on transgenic tobacco plants than the less promiscuous CBM2b-1-2. Reduced stem elongation and prolonged juvenility, resulting in delayed flower development, were observed in transformants expressing CBM29-1-2 whereas such growth phenotypes were not observed for CBM2b-1-2 plants. Histological examination and electron microscopy revealed layers of collapsed cortical cells in the stems of CBM29-1-2 plants whereas cellular deformation in the stem cortical cells of CBM2b-1-2 transformants was less severe. Altered cell expansion was also observed in most parts of the CBM29-1-2 stem whereas for the CBM2b-1-2 stem this was observed in the xylem cells only. The cellulose content of the transgenic plants was not altered. These results support the hypothesis that CBMs can modify cell wall structure leading to modulation of wall loosening and plant growth. PMID:17622484

  6. [Experimental tolerance to boron of the plant species Nicotiana glauca, Jacaranda mimosifolia, Tecoma stans, Medicago sativa y Spinacea oleracea in Argentina].

    Science.gov (United States)

    de Viana, Marta L; Albarracín Franco, Silvia

    2008-09-01

    The activity of boron industries is a punctual and diffuse source of air, soil and water pollution. Therefore, it is a priority to study possible ways of reducing this impact. A relatively new technology for reducing soil pollution is phytoremediation, which uses plants and associate microorganisms. The first step in phytoremediation is to detect tolerant plant species, which is the objective of this work. A laboratory experiment to assess the germination, survival and growth of different species at different boron concentrations was carried out following a factorial design with two factors: plant species and boron concentration. Boron concentrations were determined at the beginning and the end of the experiment, taking into account substrates with and without vegetation. We found significant differences for treatment, species and the interaction species*treatment. N. glauca, M. sativa and J. mimosifolia were the most tolerant species. The other species had a decrease in the response variables, with the concentration of the pollutant. All the species had a low survival at the highest boron concentration. The reduction in boron concentration at the end of the experiment was higher in the 30 ppm treatment with M. sativa and the lower was registered in the 20 ppm treatment with J. mimosifolia and in 30 ppm with T. stans and S. oleraceae. We conclude that N. glauca, M. sativa and J. mimosifolia can be considered in remediation plans.

  7. Experimental tolerance to boron of the plant species Nicotiana glauca, Jacaranda mimosifolia, Tecoma stans, Medicago sativa y Spinacea oleracea in Argentina

    International Nuclear Information System (INIS)

    Viana, Marta L. de; Albarracin Franco, Silvia

    2008-01-01

    The activity of the borate deposits industries constitutes a point source and diffuse pollution of air, soil and water. Therefore, the study and experimentation on possible ways to offset this impact is a priority. A relatively new technique to decontaminate soils is phytoremediation, which uses plants and associated microorganisms. The first step is to identify tolerant plant species, which is the focus of this work. An experiment was conducted in the laboratory to evaluate the germination, survival and growth of different species in different concentrations of boron. At the beginning and end of the experiment was determined concentration of boron in the substrate for each treatment and for substrates with and without vegetation. Significant differences due to treatment, the species and species-treatment interaction. M. sativa, N. glauca and J. mimosifolia were the species most tolerant to boron. The other species showed a decrease in all variables-response function of the concentration of the contaminant. All had low survival in the highest concentration. The decrease of boron was highest in the treatment of 30 ppm of boron with M. sativa and the lowest was recorded in the treatment of 20 ppm of boron with J. mimosifolia and 30 ppm of boron with T. stans and S. oleracea. It is concluded that N. glauca, M. sativa and J. mimosifolia could be considered as promising remediation. (author) [es

  8. Anaerobic soil disinfestation reduces survival and infectivity of Phytophthora nicotianae chlamydospores in pepper

    Science.gov (United States)

    Phytophthora nicotianae is the principal causal agent of root and crown rot disease of pepper plants in Extremadura (western Spain), a spring-summer crop in this region. Preplant soil treatment by anaerobic soil disinfestation (ASD) may effectively control plant pathogens in many crop production sys...

  9. Zoospore exudates from Phytophthora nicotianae affect immune responses in Arabidopsis.

    Science.gov (United States)

    Kong, Ping; McDowell, John M; Hong, Chuanxue

    2017-01-01

    Zoospore exudates play important roles in promoting zoospore communication, homing and germination during plant infection by Phytophthora. However, it is not clear whether exudates affect plant immunity. Zoospore-free fluid (ZFF) and zoospores of P. nicotianae were investigated comparatively for effects on resistance of Arabidopsis thaliana Col-0 and mutants that affect signaling mediated by salicylic acid (SA) and jasmonic acid (JA): eds16 (enhanced disease susceptibility16), pad4 (phytoalexin deficient4), and npr1 (nonexpressor of pathogenesis-related genes1). Col-0 attracted more zoospores and had severe tissue damage when flooded with a zoospore suspension in ZFF. Mutants treated with ZFF alone developed disease symptoms similar to those inoculated with zoospores and requirements of EDS16 and PAD4 for plant responses to zoospores and the exudates was apparent. Zoospore and ZFFs also induced expression of the PR1 and PDF1.2 marker genes for defense regulated by SA and JA, respectively. However, ZFF affected more JA defense signaling, down regulating PR1 when SA signaling or synthesis is deficient, which may be responsible for Arabidopsis mutant plants more susceptible to infection by high concentration of P. nicotianae zoospores. These results suggest that zoospore exudates can function as virulence factors and inducers of plant immune responses during plant infection by Phytophthora.

  10. Zoospore exudates from Phytophthora nicotianae affect immune responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ping Kong

    Full Text Available Zoospore exudates play important roles in promoting zoospore communication, homing and germination during plant infection by Phytophthora. However, it is not clear whether exudates affect plant immunity. Zoospore-free fluid (ZFF and zoospores of P. nicotianae were investigated comparatively for effects on resistance of Arabidopsis thaliana Col-0 and mutants that affect signaling mediated by salicylic acid (SA and jasmonic acid (JA: eds16 (enhanced disease susceptibility16, pad4 (phytoalexin deficient4, and npr1 (nonexpressor of pathogenesis-related genes1. Col-0 attracted more zoospores and had severe tissue damage when flooded with a zoospore suspension in ZFF. Mutants treated with ZFF alone developed disease symptoms similar to those inoculated with zoospores and requirements of EDS16 and PAD4 for plant responses to zoospores and the exudates was apparent. Zoospore and ZFFs also induced expression of the PR1 and PDF1.2 marker genes for defense regulated by SA and JA, respectively. However, ZFF affected more JA defense signaling, down regulating PR1 when SA signaling or synthesis is deficient, which may be responsible for Arabidopsis mutant plants more susceptible to infection by high concentration of P. nicotianae zoospores. These results suggest that zoospore exudates can function as virulence factors and inducers of plant immune responses during plant infection by Phytophthora.

  11. Nicotiana benthamiana as a production platform for artemisinin precursors.

    Science.gov (United States)

    van Herpen, Teun W J M; Cankar, Katarina; Nogueira, Marilise; Bosch, Dirk; Bouwmeester, Harro J; Beekwilder, Jules

    2010-12-03

    Production of pharmaceuticals in plants provides an alternative for chemical synthesis, fermentation or natural sources. Nicotiana benthamiana is deployed at commercial scale for production of therapeutic proteins. Here the potential of this plant is explored for rapid production of precursors of artemisinin, a sesquiterpenoid compound that is used for malaria treatment. Biosynthetic genes leading to artemisinic acid, a precursor of artemisinin, were combined and expressed in N. benthamiana by agro-infiltration. The first committed precursor of artemisinin, amorpha-4,11-diene, was produced upon infiltration of a construct containing amorpha-4,11-diene synthase, accompanied by 3-hydroxy-3-methylglutaryl-CoA reductase and farnesyl diphosphate synthase. Amorpha-4,11-diene was detected both in extracts and in the headspace of the N. benthamiana leaves. When the amorphadiene oxidase CYP71AV1 was co-infiltrated with the amorphadiene-synthesizing construct, the amorpha-4,11-diene levels strongly decreased, suggesting it was oxidized. Surprisingly, no anticipated oxidation products, such as artemisinic acid, were detected upon GC-MS analysis. However, analysis of leaf extracts with a non-targeted metabolomics approach, using LC-QTOF-MS, revealed the presence of another compound, which was identified as artemisinic acid-12-β-diglucoside. This compound accumulated to 39.5 mg x kg(-1) fwt. Apparently the product of the heterologous pathway that was introduced, artemisinic acid, is further metabolized efficiently by glycosyl transferases that are endogenous to N. benthamiana. This work shows that agroinfiltration of N. bentamiana can be used as a model to study the production of sesquiterpenoid pharmaceutical compounds. The interaction between the ectopically introduced pathway and the endogenous metabolism of the plant is discussed.

  12. Nicotiana benthamiana as a production platform for artemisinin precursors.

    Directory of Open Access Journals (Sweden)

    Teun W J M van Herpen

    Full Text Available BACKGROUND: Production of pharmaceuticals in plants provides an alternative for chemical synthesis, fermentation or natural sources. Nicotiana benthamiana is deployed at commercial scale for production of therapeutic proteins. Here the potential of this plant is explored for rapid production of precursors of artemisinin, a sesquiterpenoid compound that is used for malaria treatment. METHODOLOGY/PRINCIPAL FINDINGS: Biosynthetic genes leading to artemisinic acid, a precursor of artemisinin, were combined and expressed in N. benthamiana by agro-infiltration. The first committed precursor of artemisinin, amorpha-4,11-diene, was produced upon infiltration of a construct containing amorpha-4,11-diene synthase, accompanied by 3-hydroxy-3-methylglutaryl-CoA reductase and farnesyl diphosphate synthase. Amorpha-4,11-diene was detected both in extracts and in the headspace of the N. benthamiana leaves. When the amorphadiene oxidase CYP71AV1 was co-infiltrated with the amorphadiene-synthesizing construct, the amorpha-4,11-diene levels strongly decreased, suggesting it was oxidized. Surprisingly, no anticipated oxidation products, such as artemisinic acid, were detected upon GC-MS analysis. However, analysis of leaf extracts with a non-targeted metabolomics approach, using LC-QTOF-MS, revealed the presence of another compound, which was identified as artemisinic acid-12-β-diglucoside. This compound accumulated to 39.5 mg x kg(-1 fwt. Apparently the product of the heterologous pathway that was introduced, artemisinic acid, is further metabolized efficiently by glycosyl transferases that are endogenous to N. benthamiana. CONCLUSION/SIGNIFICANCE: This work shows that agroinfiltration of N. bentamiana can be used as a model to study the production of sesquiterpenoid pharmaceutical compounds. The interaction between the ectopically introduced pathway and the endogenous metabolism of the plant is discussed.

  13. Description of reference (model) plant

    International Nuclear Information System (INIS)

    Schneider, R.A.

    1984-01-01

    For the workshop on Safeguards System design for a fuel fabrication plant, a generic example of a LEU bulk-handling facility that is based on the Exxon LWR fuel fabrication plants is used. The model plant information is given in the following separate sections: (1) process assumptions; (2) six-month material balance model; (3) measurements; (4) error parameters, measurements, and sigma MUF calculations; (5) material control areas; (6) accounting, records, and reports; (7) tamper-safing; and (8) measurement control program

  14. Nicotiana glauca poisoning in ostriches (Struthio camelus)

    CSIR Research Space (South Africa)

    Botha, CJ

    2011-01-01

    Full Text Available Putative Nicotiana glauca (wild tobacco) poisoning was diagnosed in a flock of ostriches near Oudtshoorn, South Africa. Post mortem examinations (n = 7) were performed on ostriches (Struthio camelus) that had died. Suspicious leaf remnants (weighing...

  15. Model plant key measurement points

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The key measurement points for the model low enriched fuel fabrication plant are described as well as the measurement methods. These are the measurement points and methods that are used to complete the plant's formal material balance. The purpose of the session is to enable participants to: (1) understand the basis for each key measurement; and (2) understand the importance of each measurement to the overall plant material balance. The feed to the model low enriched uranium fuel fabrication plant is UF 6 and the product is finished light water reactor fuel assemblies. The waste discards are solid and liquid wastes. The plant inventory consists of unopened UF 6 cylinders, UF 6 heels, fuel assemblies, fuel rods, fuel pellets, UO 2 powder, U 3 O 8 powder, and various scrap materials. At the key measurement points the total plant material balance (flow and inventory) is measured. The two types of key measurement points-flow and inventory are described

  16. Citroenzuur- en nicotinegehalte in enkele variëteiten van Nicotiana tabacum en Nicotiana rustica

    NARCIS (Netherlands)

    Fatton, Numa Edouard

    1939-01-01

    Van technisch rijpe bladen van verschillende varieteiten van Nicotiana rustica en Nicotiana Tabacum werden het citroenzuuren het nicotinegehalte bepaald, uitgedrukt in % op de droge stof. Hetzelfde werd gedaan van bladmoes en hoofdnerf afzonderlijk, verder van de wortel, de stengel, de bloemen en de

  17. Bacteriophage endolysin production in Nicotiana benthamiana plants

    Science.gov (United States)

    The increasing spread of antibiotic resistant microorganisms is a growing concern for both modern animal husbandry and medicine. In recent years, peptidoglycan hydrolases (lysins) have acquired significant attention in the fight against bacterial diseases. The main advantages of lysins versus antib...

  18. A Distinct Endogenous Pararetrovirus Family in Nicotiana tomentosiformis, a Diploid Progenitor of Polyploid Tobacco1[w

    Science.gov (United States)

    Gregor, Wolfgang; Mette, M. Florian; Staginnus, Christina; Matzke, Marjori A.; Matzke, Antonius J.M.

    2004-01-01

    A distinct endogenous pararetrovirus (EPRV) family corresponding to a previously unknown virus has been identified in the genome of Nicotiana tomentosiformis, a diploid ancestor of allotetraploid tobacco (Nicotiana tabacum). The putative virus giving rise to N. tomentosiformis EPRVs (NtoEPRVs) is most similar to tobacco vein clearing virus, an episomal form of a normally silent EPRV family in Nicotiana glutinosa; it is also related to a putative virus giving rise to the NsEPRV family in Nicotiana sylvestris (the second diploid progenitor of tobacco) and in the N. sylvestris fraction of the tobacco genome. The copy number of NtoEPRVs is significantly higher in N. tomentosiformis than in tobacco. This suggests that after the polyploidization event, many copies were lost from the polyploid genome or were accumulated specifically in the diploid genome. By contrast, the copy number of NsEPRVs has remained constant in N. sylvestris and tobacco, indicating that changes have occurred preferentially in the NtoEPRV family during evolution of the three Nicotiana species. NtoEPRVs are often flanked by Gypsy retrotransposon-containing plant DNA. Although the mechanisms of NtoEPRV integration, accumulation, and/or elimination are unknown, these processes are possibly linked to retrotransposon activity. PMID:14988473

  19. Virus-induced gene silencing and Agrobacterium tumefaciens-mediated transient expression in Nicotiana tabacum

    NARCIS (Netherlands)

    Zhang, Z.; Thomma, B.P.H.J.

    2014-01-01

    Virus-induced gene silencing (VIGS) is a rapid method for transient silencing of plant genes. In this chapter, we describe the methodology for Tobacco rattle virus (TRV)-based VIGS in Nicotiana tabacum. In combination with subsequent co-expression of the tomato immune receptor Ve1 and the

  20. Genetic characterization of Phytophthora nicotianae by the analysis of polymorphic regions of the mitochondrial DNA.

    Science.gov (United States)

    A new method based on the analysis of mitochondrial intergenic regions characterized by intraspecific variation in DNA sequences was developed and applied to the study of the plant pathogen Phytophthora nicotianae. Two regions flanked by genes trny and rns and trnw and cox2 were identified by compa...

  1. GENE-REGULATION IN INTERTYPIC HETEROKARYONS OF SOLANUM-TUBEROSUM AND NICOTIANA-TABACUM TISSUE PROTOPLASTS

    NARCIS (Netherlands)

    VANKESTEREN, WJP; BIJMOLT, EW; TEMPELAAR, MJ

    1994-01-01

    Activities of the beta-glucuronidase (GUS) reporter enzyme were evaluated in transgenic plants, protoplasts, and intertypic heterokaryons of Solanum tuberosum and Nicotiana tabacum. With GUS under control of the promoter of the cauliflower-mosaicvirus 35S RNA gene (CaMV), activities of the enzyme

  2. FIRST REPORT OF Phytophthora nicotianae CAUSING ROOT ROT OF SOURSOP IN NORTHEASTERN BRAZIL

    Directory of Open Access Journals (Sweden)

    JAQUELINE FIGUEREDO DE OLIVEIRA COSTA

    Full Text Available ABSTRACT In 2013, soursop trees showing symptoms of root rot were observed in a field in Maceió, state of Alagoas, Brazil. It was isolated Phytophthora sp. which pathogenicity was confirmed in the host seedlings. Morphological and physiological characteristics in carrot-agar modified medium were consistent with Phytophthora nicotianae description. The PCR sequences products obtained with ITS1/ITS4 primers were compared to sequences of ribosomal DNA of Phytophthora species from the GenBank database observing high identity with other P. nicotianae isolates. A phylogenetic tree was performed to compare the isolate with other sequences of P. nicotianae, which clustering has been verified with 99% of bootstrap, confirming the morphophysiological studies. This is the first report of this pathogen on annonaceous plants in the Northeastern Brazil.

  3. Stomatal Closure and SA-, JA/ET-Signaling Pathways Are Essential for Bacillus amyloliquefaciens FZB42 to Restrict Leaf Disease Caused by Phytophthora nicotianae in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Liming Wu

    2018-04-01

    Full Text Available Bacillus amyloliquefaciens FZB42 is a plant growth-promoting rhizobacterium that induces resistance to a broad spectrum of pathogens. This study analyzed the mechanism by which FZB42 restricts leaf disease caused by Phytophthora nicotianae in Nicotiana benthamiana. The oomycete foliar pathogen P. nicotianae is able to reopen stomata which had been closed by the plant innate immune response to initiate penetration and infection. Here, we showed that root colonization by B. amyloliquefaciens FZB42 restricted pathogen-mediated stomatal reopening in N. benthamiana. Abscisic acid (ABA and salicylic acid (SA-regulated pathways mediated FZB42-induced stomatal closure after pathogen infection. Moreover, the defense-related genes PR-1a, LOX, and ERF1, involved in the SA and jasmonic acid (JA/ethylene (ET signaling pathways, respectively, were overexpressed, and levels of the hormones SA, JA, and ET increased in the leaves of B. amyloliquefaciens FZB42-treated wild type plants. Disruption of one of these three pathways in N. benthamiana plants increased susceptibility to the pathogen. These suggest that SA- and JA/ET-dependent signaling pathways were important in plant defenses against the pathogen. Our data thus explain a biocontrol mechanism of soil rhizobacteria in a plant.

  4. Modelling and controlling hydropower plants

    CERN Document Server

    Munoz-Hernandez, German Ardul; Jones, Dewi Ieuan

    2013-01-01

    Hydroelectric power stations are a major source of electricity around the world; understanding their dynamics is crucial to achieving good performance.  Modelling and Controlling Hydropower Plants discusses practical and well-documented cases of modelling and controlling hydropower station modelling and control, focussing on a pumped storage scheme based in Dinorwig, North Wales.  Single-input-single-output and multiple-input-multiple-output models, which cover the linear and nonlinear characteristics of pump-storage hydroelectric power stations, are reviewed. The most important dynamic features are discussed, and the verification of these models by hardware in the loop simulation is described. To show how the performance of a pump-storage hydroelectric power station can be improved, classical and modern controllers are applied to simulated models of the Dinorwig power plant. These include PID, fuzzy approximation, feed-forward and model-based predictive control with linear and hybrid prediction models. Mod...

  5. Modeling of solar polygeneration plant

    Science.gov (United States)

    Leiva, Roberto; Escobar, Rodrigo; Cardemil, José

    2017-06-01

    In this work, a exergoeconomic analysis of the joint production of electricity, fresh water, cooling and process heat for a simulated concentrated solar power (CSP) based on parabolic trough collector (PTC) with thermal energy storage (TES) and backup energy system (BS), a multi-effect distillation (MED) module, a refrigeration absorption module, and process heat module is carried out. Polygeneration plant is simulated in northern Chile in Crucero with a yearly total DNI of 3,389 kWh/m2/year. The methodology includes designing and modeling a polygeneration plant and applying exergoeconomic evaluations and calculating levelized cost. Solar polygeneration plant is simulated hourly, in a typical meteorological year, for different solar multiple and hour of storage. This study reveals that the total exergy cost rate of products (sum of exergy cost rate of electricity, water, cooling and heat process) is an alternative method to optimize a solar polygeneration plant.

  6. Model plant Key Measurement Points

    International Nuclear Information System (INIS)

    Schneider, R.A.

    1984-01-01

    For IAEA safeguards a Key Measurement Point is defined as the location where nuclear material appears in such a form that it may be measured to determine material flow or inventory. This presentation describes in an introductory manner the key measurement points and associated measurements for the model plant used in this training course

  7. Plant and safety system model

    International Nuclear Information System (INIS)

    Beltracchi, Leo

    1999-01-01

    The design and development of a digital computer-based safety system for a nuclear power plant is a complex process. The process of design and product development must result in a final product free of critical errors; operational safety of nuclear power plants must not be compromised. This paper focuses on the development of a safety system model to assist designers, developers, and regulators in establishing and evaluating requirements for a digital computer-based safety system. The model addresses hardware, software, and human elements for use in the requirements definition process. The purpose of the safety system model is to assist and serve as a guide to humans in the cognitive reasoning process of establishing requirements. The goals in the use of the model are to: (1) enhance the completeness of the requirements and (2) reduce the number of errors associated with the requirements definition phase of a project

  8. Design of plant safety model in plant enterprise engineering environment

    International Nuclear Information System (INIS)

    Gabbar, Hossam A.; Suzuki, Kazuhiko; Shimada, Yukiyasu

    2001-01-01

    Plant enterprise engineering environment (PEEE) is an approach aiming to manage the plant through its lifecycle. In such environment, safety is considered as the common objective for all activities throughout the plant lifecycle. One approach to achieve plant safety is to embed safety aspects within each function and activity within such environment. One ideal way to enable safety aspects within each automated function is through modeling. This paper proposes a theoretical approach to design plant safety model as integrated with the plant lifecycle model within such environment. Object-oriented modeling approach is used to construct the plant safety model using OO CASE tool on the basis of unified modeling language (UML). Multiple views are defined for plant objects to express static, dynamic, and functional semantics of these objects. Process safety aspects are mapped to each model element and inherited from design to operation stage, as it is naturally embedded within plant's objects. By developing and realizing the plant safety model, safer plant operation can be achieved and plant safety can be assured

  9. Tissue-specific expression of telomerase reverse transcriptase gene variants in Nicotiana tabacum

    Czech Academy of Sciences Publication Activity Database

    Jurečková, J.; Sýkorová, Eva; Hafidh, Said; Honys, David; Fajkus, Jiří; Fojtová, M.

    2017-01-01

    Roč. 245, č. 3 (2017), s. 549-561 ISSN 0032-0935 R&D Projects: GA ČR GA13-06943S; GA MŠk(CZ) LQ1601 Institutional support: RVO:68081707 ; RVO:61389030 Keywords : male gametophyte development * tobacco male gametophyte * allotetraploid nicotiana Subject RIV: EF - Botanics; EF - Botanics (UEB-Q) OBOR OECD: Plant sciences, botany; Plant sciences, botany (UEB-Q) Impact factor: 3.361, year: 2016

  10. Virus-induced gene silencing and Agrobacterium tumefaciens-mediated transient expression in Nicotiana tabacum.

    Science.gov (United States)

    Zhang, Zhao; Thomma, Bart P H J

    2014-01-01

    Virus-induced gene silencing (VIGS) is a rapid method for transient silencing of plant genes. In this chapter, we describe the methodology for Tobacco rattle virus (TRV)-based VIGS in Nicotiana tabacum. In combination with subsequent co-expression of the tomato immune receptor Ve1 and the corresponding Verticillium effector Ave1 through Agrobacterium tumefaciens-mediated transient transformation (agroinfiltration), we established a rapid system for assessing the requirement of candidate plant genes for Ve1-mediated immune signaling.

  11. [TMV-infection localization and development of induced virus resistance in Nicotiana sanderae Hort., Datura stramonium L. and Datura metel].

    Science.gov (United States)

    Kovalenko, O H; Kyrychenko, A M

    2004-01-01

    The localization of virus infection and development of local and systemic induced resistance in plants Nicotiana sanderae Hort., Datura stramonium L. and D. metel L. infected by TMV have been studied. It was shown that acquired resistance to the second infection is induced in hypersensitive plants infected by TMV independent of localization mechanism. No definite correlation exists between these defense reactions.

  12. Biotechnological Reduction of Tobacco (Nicotiana Tabacum L. Toxicity

    Directory of Open Access Journals (Sweden)

    Samane Sattar

    2012-11-01

    Full Text Available Background: Nicotiana tobacco contains large amounts of alkaloid nicotine. Tobacco plant is used for smoking and causes many health problems since it is high in nicotine which is one of the widely-recognized toxic compounds with serious side effects for different body organs. Reducing nicotine content of this plant is a way to reduce its health hazards in cigarette smokers. Utilizing the new methods of genetic engineering can modify nicotine levels in the plant. In this study, through transferring the blocking gene, the pathway of nicotine biosynthesis was blocked to produce transgenic tobacco with low levels of nicotine. Methods: Transgenic plants carrying T DNA, and non-transgenic plants were grown on MS medium. Then their leaves were dried and powdered. The plants were extracted with alkali solution. Eventually, the nicotine content of the extract were analyzed using GC. Results: The analysis of extracts showed a reduction in the nicotine content of the transgenic plant (contain T-DNA in comparison with non-transgenic plants. Conclusion: Tobacco with lower nicotine reduction can reduce the toxic effects of smoking on smokers and can facilitate withdrawal from it.

  13. Modeling of Wind Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Spacil, D.; Santarius, P. [VSB - Technical University of Ostrava, Department of Electrical Measurement, FEECS, 17. listopadu 15, 708 33 Ostrava- Poruba (Czech Republic); Dobrucky, B. [University of Zilina, Department of Mechatronics and Electronics, FEE, Univerzitna 1, 010 26 Zilina (Slovakia)

    2006-07-01

    The electrical power produced by the wind power plant has increased in the last years in the world and probably will increase further in the future. Therefore, wind power plants have a significant influence on the power production. In this article the connection of the wind turbine to a grid is described in order to determine the impact of the existing wind turbines as well as planned wind turbines on the grid and ensure the proper functioning of the wind turbine. The purpose of the presented work is to find an analytical generator model for the simulation of the wind power plant and determine the influence on the grid by programming with Matlab/Simulink.

  14. Mathematical Modelling Plant Signalling Networks

    KAUST Repository

    Muraro, D.

    2013-01-01

    During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.

  15. Modeling and dynamic behaviour of hydropower plants

    CERN Document Server

    Kishor, Nand

    2017-01-01

    This book presents a systematic approach to mathematical modeling of different configurations of hydropower plants over four sections - modeling and simulation approaches; control of hydropower plants; operation and scheduling of hydropower plants, including pumped storage; and special features of small hydropower plants.

  16. Ecotoxicity of natural insecticide based on tobacco plant extract and hematological effects on the Nile tilapia (Oreochromis niloticus. Ecotoxicity and hematological effects of a natural insecticide based on tobacco (Nicotiana tabacum extract on Nile tilapia (Oreochromis niloticus - doi: 10.4025/actascibiolsci.v35i2.14131

    Directory of Open Access Journals (Sweden)

    Marisa Narciso Fernandes

    2013-05-01

    Full Text Available Natural insecticides derived from plant extracts have been used as an alternative to synthetic products in order to reduce environmental contamination. The present study aimed to examine the effects of Fumydro®, a natural insecticide based in the tobacco plant Nicotiana tabacum, on the Nile tilapia (Oreochromis niloticus by determining the 48-h LC50 and evaluating their effects on hematological variables. Adult specimens of O. niloticus were exposed to four Fumydro® concentrations (200, 300, 400 and 500 μL L-1. The 48-h LC50 of Fumydro® was determined as 370 ± 50 μL L-1. Surviving fish showed increasing in the red blood cells, hemoglobin concentration, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration. The thrombocytes did not change but the percentage of neutrophils increased. These results indicated that the insecticide Fumydro® is toxic to Nile tilapia and the changes of the erythrocyte variables suggested hypoxemia induction with low effect on the immune system.Natural insecticides from plant extracts represent an alternative to the highly toxic synthetic products in order to reduce environmental contamination; however some might also be toxic for non-target organisms. The present study determined the 50% lethal concentration (48h; LC50 for adults Nile tilapia (Oreochromis niloticus exposed to the natural insecticide Fumydro®, based on the tobacco plant (Nicotiana tabacum, and evaluated its effect on hematological variables. After preliminary tests, adult specimens of O. niloticus were exposed to four Fumydro® concentrations (200, 300, 400 and 500 μL L-1. The 48h; LC50 of Fumydro® was determined at 370 ± 50 μL L-1. The surviving fish after exposure to Fumydro® showed an increase in the number of red blood cells, hemoglobin concentration, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration. The number of thrombocytes and leukocytes has not changed, unlike the differential leukocyte

  17. Changes in cytokinins are sufficient to alter developmental patterns of defense metabolites in Nicotiana attenuata

    Czech Academy of Sciences Publication Activity Database

    Bruetting, C.; Schaefer, N.; Vaňková, Radomíra; Gase, K.; Baldwin, I.T.; Meldau, S.

    2017-01-01

    Roč. 89, č. 1 (2017), s. 15-30 ISSN 0960-7412 R&D Projects: GA MŠk LD14120 Institutional support: RVO:61389030 Keywords : proteinase-inhibitor production * plant defense * arabidopsis-thaliana * leaf senescence * insect interactions * tobacco plants * jasmonic acid * manduca-sexta * cis-zeatin * responses * cytokinins * optimal defense * herbivores * inducible defense * Nicotiana attenuata * Manduca sexta * plant development * immunosenescence * phytohormones Subject RIV: ED - Physiology OBOR OECD: Plant sciences, botany Impact factor: 5.901, year: 2016

  18. The extremophile Nicotiana benthamiana has traded viral defence for early vigour.

    Science.gov (United States)

    Bally, Julia; Nakasugi, Kenlee; Jia, Fangzhi; Jung, Hyungtaek; Ho, Simon Y W; Wong, Mei; Paul, Chloe M; Naim, Fatima; Wood, Craig C; Crowhurst, Ross N; Hellens, Roger P; Dale, James L; Waterhouse, Peter M

    2015-11-02

    A single lineage of Nicotiana benthamiana is widely used as a model plant(1) and has been instrumental in making revolutionary discoveries about RNA interference (RNAi), viral defence and vaccine production. It is peerless in its susceptibility to viruses and its amenability in transiently expressing transgenes(2,3). These unparalleled characteristics have been associated both positively and negatively with a disruptive insertion in the RNA-dependent RNA polymerase 1 gene, Rdr1(4-6). For a plant so routinely used in research, the origin, diversity and evolution of the species, and the basis of its unusual abilities, have been relatively unexplored. Here, by comparison with wild accessions from across the spectrum of the species' natural distribution, we show that the laboratory strain of N. benthamiana is an extremophile originating from a population that has retained a mutation in Rdr1 for ∼0.8 Myr and thereby traded its defence capacity for early vigour and survival in the extreme habitat of central Australia. Reconstituting Rdr1 activity in this isolate provided protection. Silencing the functional allele in a wild strain rendered it hypersusceptible and was associated with a doubling of seed size and enhanced early growth rate. These findings open the way to a deeper understanding of the delicate balance between protection and vigour.

  19. Cloning the bacterial bphC gene into Nicotiana tabacum to improve the efficiency of phytoremediation of polychlorinated biphenyls

    Czech Academy of Sciences Publication Activity Database

    Nováková, Martina; Macková, M.; Antošová, Z.; Viktorová, J.; Szekeres, M.; Demnerová, K.; Macek, Tomáš

    2010-01-01

    Roč. 1, č. 6 (2010), s. 419-423 ISSN 1949-1018 R&D Projects: GA MŠk 1M06030 Grant - others:GA MŠk(CZ) ME09024 Institutional research plan: CEZ:AV0Z40550506 Keywords : phytoremediation * transgenic plant * Nicotiana tabacum * bphC Subject RIV: EI - Biotechnology ; Bionics

  20. Mathematical models for plant-herbivore interactions

    Science.gov (United States)

    Feng, Zhilan; DeAngelis, Donald L.

    2017-01-01

    Mathematical Models of Plant-Herbivore Interactions addresses mathematical models in the study of practical questions in ecology, particularly factors that affect herbivory, including plant defense, herbivore natural enemies, and adaptive herbivory, as well as the effects of these on plant community dynamics. The result of extensive research on the use of mathematical modeling to investigate the effects of plant defenses on plant-herbivore dynamics, this book describes a toxin-determined functional response model (TDFRM) that helps explains field observations of these interactions. This book is intended for graduate students and researchers interested in mathematical biology and ecology.

  1. Flower-bud formation in explants of photoperiodic and day-neutral Nicotiana biotypes and its bearing on the regulation of flower formation

    Energy Technology Data Exchange (ETDEWEB)

    Rajeevan, M.S.; Lang, A. (Michigan State Univ., East Lansing (United States))

    1993-05-15

    The capacity to form flower buds in thin-layer explants was studied in Nicotiana of several species, cultivars, and lines of differing in their response to photoperiod. This capacity was found in all biotypes examined and could extend into sepals and corolla. It varied depending on genotype, source tissue and its developmental state, and composition of the culture medium, particularly the levels of glucose, auxin, and cytokinin. It was greatest in the two day-neutral plants examined, Samsun tobacco and Nicotiana rustica, where it extended from the inflorescence region down the vegetative stem, in a basipetally decreasing gradient; it was least in the two qualitative photoperiodic plants studied, the long-day plant Nicotiana silvestris and the short-day plant Maryland Mammoth tobacco, the quantitative long-day plant Nicotiana alata and the quantitative short-day plant Nicotiana otophora line 38-G-81, where it was limited to the pedicels (and, in some cases, the sepals). Regardless of the photoperiodic response of the source plants, the response was the same in explants cultured under long and short days. The capacity to form flow buds in explants is present in all Nicotiana biotypes studied supports the idea that it is regulated by the same mechanism(s), regardless of the plant's photoperiodic character. However, flower formation in the explants is not identical with de novo flower formation in a hitherto vegetative plant: it is rather the expression of a floral state already established in the plant, although it can vary widely in extent and spatial distribution. Culture conditions that permit flower-bud formation in an explant are conditions that maintain the floral state and encourage its expression; conditions under which no flower buds are formed reduce this state and/or prevent its expression. 14 refs., 5 figs., 3 tabs.

  2. Flower Colour Inheritance in Nicotiana alata (Solanaceae) and its ...

    African Journals Online (AJOL)

    Flower Colour Inheritance in Nicotiana alata (Solanaceae) and its Use as a Genetic Marker for Gene Flow Studies. ... Abstract. In Nicotiana alata, flower colour inheritance has followed Mendelian inheritance with dark colours being dominant over lighter colours. Reciprocal crosses concluded the absence of the cytoplasm ...

  3. Profiling of altered metabolomic states in Nicotiana tabacum cells induced by priming agents.

    Directory of Open Access Journals (Sweden)

    Msizi Innocent Mhlongo

    2016-10-01

    Full Text Available Metabolomics has developed into a valuable tool for advancing our understanding of plant metabolism. Plant innate immune defenses can be activated and enhanced so that, subsequent to being pre-sensitized, plants are able to launch a stronger and faster defense response upon exposure to pathogenic microorganisms, a phenomenon known as priming. Here, three contrasting chemical activators, namely acibenzolar-S-methyl, azelaic acid and riboflavin, were used to induce a primed state in Nicotiana tabacum cells. Identified biomarkers were then compared to responses induced by three phytohormones - abscisic acid, methyljasmonate and salicylic acid. Altered metabolomes were studied using a metabolite fingerprinting approach based on liquid chromatography and mass spectrometry. Multivariate data models indicated that these inducers cause time-dependent metabolic perturbations in the cultured cells and revealed biomarkers of which the levels are affected by these agents. A total of 34 metabolites were annotated from the mass spectral data and online databases. Venn diagrams were used to identify common biomarkers as well as those unique to a specific agent. Results implicate 20 cinnamic acid derivatives conjugated to (i quinic acid (chlorogenic acids, (ii tyramine, (iii polyamines or (iv glucose as discriminatory biomarkers of priming in tobacco cells. Functional roles for most of these metabolites in plant defense responses could thus be proposed. Metabolites induced by the activators belong to the early phenylpropanoid pathway, which indicates that different stimuli can activate similar pathways but with different metabolite fingerprints. Possible linkages to phytohormone-dependent pathways at a metabolomic level were indicated in the case of cells treated with salicylic acid and methyljasmonate. The results contribute to a better understanding of the priming phenomenon and advance our knowledge of cinnamic acid derivatives as versatile defense

  4. Simultaneous detection and quantification of Phytophthora nicotianae and P. cactorum, and distribution analyses in strawberry greenhouses by duplex real-time PCR.

    Science.gov (United States)

    Li, Mingzhu; Inada, Minoru; Watanabe, Hideki; Suga, Haruhisa; Kageyama, Koji

    2013-01-01

    Phytophthora nicotianae and P. cactorum cause Phytophthora rot of strawberry. A duplex real-time PCR technique for simultaneous detection and quantification of the two pathogens was developed. Species-specific primers for P. nicotianae and P. cactorum were designed based on the internal transcribed spacer regions (ITS) of rDNA and the ras-related protein gene Ypt1, respectively. TaqMan probes were labeled with FAM for P. nicotianae and HEX for P. cactorum. Specificities were demonstrated using 52 isolates, including various soil-borne pathogens. Sensitivities for P. nicotianae and P. cactorum DNAs were 10 fg and 1 pg, respectively. The technique was applied to naturally infested soil and root samples; the two pathogens were detected and the target DNA concentrations were quantified. Significant correlations of DNA quantities in roots and the surrounding soils were found. The minimum soil DNA concentration predicting the development of disease symptoms was estimated as 20 pg (g soil)(-1). In three strawberry greenhouses examined, the target DNA concentrations ranged from 1 to 1,655 pg (g soil)(-1) for P. nicotianae and from 13 to 233 pg (g soil)(-1) for P. cactorum. The method proved fast and reliable, and provides a useful tool to monitor P. nicotianae and P. cactorum in plants or soils.

  5. Characterization of Phytophthora nicotianae isolates in southeast Spain and their detection and quantification through a real-time TaqMan PCR.

    Science.gov (United States)

    Blaya, Josefa; Lacasa, Carmen; Lacasa, Alfredo; Martínez, Victoriano; Santísima-Trinidad, Ana B; Pascual, Jose A; Ros, Margarita

    2015-04-01

    The soil-borne pathogens Phytophthora nicotianae and P. capsici are the causal agents of root and stem rot of many plant species. Although P. capsici was considered the causal agent in one of the main pepper production areas of Spain to date, evidence of the presence of P. nicotianae was found. We aimed to survey the presence of P. nicotianae and study the variability in its populations in this area in order to improve the management of Tristeza disease. A new specific primer and a TaqMan probe were designed based on the internal transcribed spacer regions of ribosomal DNA to detect and quantify P. nicotianae. Both morphological and molecular analysis showed its presence and confirmed it to be the causal agent of the Phytophthora disease symptoms in the studied area. The genetic characterization among P. nicotianae populations showed a low variability of genetic diversity among the isolates. Only isolates of the A2 mating type were detected. Not only is a specific and early detection of P. nicotianae essential but also the study of genetic variability among isolates for the appropriate management of the disease, above all, in producing areas with favorable conditions for the advance of the disease. © 2014 Society of Chemical Industry.

  6. Capital cost models for geothermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, P.D.; Bloomster, C.H.

    1976-07-01

    A computer code, titled GEOCOST, has been developed at Battelle, Pacific Northwest Laboratories, to rapidly and systematically calculate the potential costs of geothermal power. A description of the cost models in GEOCOST for the geothermal power plants is given here. Plant cost models include the flashed steam and binary systems. The data sources are described, along with the cost data correlations, resulting equations, and uncertainties. Comparison among GEOCOST plant cost estimates and recent A-E estimates are presented. The models are intended to predict plant costs for second and third generation units, rather than the more expensive first-of-a-kind units.

  7. Infection of non-host model plant species with the narrow-host-range Cacao swollen shoot virus.

    Science.gov (United States)

    Friscina, Arianna; Chiappetta, Laura; Jacquemond, Mireille; Tepfer, Mark

    2017-02-01

    Cacao swollen shoot virus (CSSV) is a major pathogen of cacao (Theobroma cacao) in Africa, and long-standing efforts to limit its spread by the culling of infected trees have had very limited success. CSSV is a particularly difficult virus to study, as it has a very narrow host range, limited to several tropical tree species. Furthermore, the virus is not mechanically transmissible, and its insect vector can only be used with difficulty. Thus, the only efficient means to infect cacao plants that have been experimentally described so far are by particle bombardment or the agroinoculation of cacao plants with an infectious clone. We have genetically transformed three non-host species with an infectious form of the CSSV genome: two experimental hosts widely used in plant virology (Nicotiana tabacum and N. benthamiana) and the model species Arabidopsis thaliana. In transformed plants of all three species, the CSSV genome was able to replicate, and, in tobacco, CSSV particles could be observed by immunosorbent electron microscopy, demonstrating that the complete virus cycle could be completed in a non-host plant. These results will greatly facilitate the preliminary testing of CSSV control strategies using plants that are easy to raise and to transform genetically. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  8. Model-based explanation of plant knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Huuskonen, P.J. [VTT Electronics, Oulu (Finland). Embedded Software

    1997-12-31

    This thesis deals with computer explanation of knowledge related to design and operation of industrial plants. The needs for explanation are motivated through case studies and literature reviews. A general framework for analysing plant explanations is presented. Prototypes demonstrate key mechanisms for implementing parts of the framework. Power plants, steel mills, paper factories, and high energy physics control systems are studied to set requirements for explanation. The main problems are seen to be either lack or abundance of information. Design knowledge in particular is found missing at plants. Support systems and automation should be enhanced with ways to explain plant knowledge to the plant staff. A framework is formulated for analysing explanations of plant knowledge. It consists of three parts: 1. a typology of explanation, organised by the class of knowledge (factual, functional, or strategic) and by the target of explanation (processes, automation, or support systems), 2. an identification of explanation tasks generic for the plant domain, and 3. an identification of essential model types for explanation (structural, behavioural, functional, and teleological). The tasks use the models to create the explanations of the given classes. Key mechanisms are discussed to implement the generic explanation tasks. Knowledge representations based on objects and their relations form a vocabulary to model and present plant knowledge. A particular class of models, means-end models, are used to explain plant knowledge. Explanations are generated through searches in the models. Hypertext is adopted to communicate explanations over dialogue based on context. The results are demonstrated in prototypes. The VICE prototype explains the reasoning of an expert system for diagnosis of rotating machines at power plants. The Justifier prototype explains design knowledge obtained from an object-oriented plant design tool. Enhanced access mechanisms into on-line documentation are

  9. Use of total plant models for plant performance optimisation

    International Nuclear Information System (INIS)

    Ardron, K.H.

    2004-01-01

    Consideration is given to the mathematical techniques used by Nuclear Electric for steady state power plant analysis and performance optimisation. A quasi-Newton method is deployed to calculate the steady state followed by a model fitting procedure based on Lagrange's method to yield a fit to measured plant data. An optimising algorithm is used to establish maximum achievable power and efficiency. An example is described in which the techniques are applied to identify the plant constraints preventing output increases at a Nuclear Electric Advanced Gas Cooled Reactor. (author)

  10. Modeling Operating Modes during Plant Life Cycle

    DEFF Research Database (Denmark)

    Jørgensen, Sten Bay; Lind, Morten

    2012-01-01

    of candidate control structures. The present contribution focuses on development of a model ensemble for a plant with an illustartive example for a bioreactor. Starting from a functional model a process plant may be conceptually designed and qualitative operating models may be developed to cover the different...... regions within the plant operating window, including transitions between operating regions. Subsequently qualitative functional models may be developed when the means for achieving the desired functionality are sufficiently specified during the design process. Quantitative mathematical models of plant...... physics can be used for detailed design and optimization. However the qualitative functional models already provide a systematic framework based on the notion of means-end abstraction hierarchies. Thereby functional modeling provides a scientific basis for managing complexity. A functional modelling...

  11. Management of chili pepper root rot and wilt (caused by Phytophthora nicotianae by grafting onto resistant rootstock

    Directory of Open Access Journals (Sweden)

    Mourad SAADOUN

    2013-05-01

    Full Text Available Root rot and plant wilting caused by Phytophthora nicotianae is a severe disease of chili pepper (Capsicum annuum L. in open fields and under greenhouse production in Tunisia. Chili pepper grafting for disease manage- ment is attracting increased interest in recent years. Using the tube grafting technique, different compatible scion/rootstock combinations were obtained with the wild-type pepper SCM334 and the local chili pepper cultivars ‘Beldi’ and ‘Baker’. SCM334 was resistant to P. nicotianae, while the cultivars Beldi and Baker were susceptible. Plant inoculations were performed with P. nicotianae zoospores, and severity of root rot was rated 30 days post- inoculation using a 0 (healthy plant to 5 (dead plant severity score. On SCM334 rootstock and with ‘Beldi’ or ‘Baker’ scions, the intensity of root rot was very low (mean score 0.1–0.2 and plants were healthy. However, with Baker or Beldi rootstocks and SCM334 scions, root rot was severe (mean score 3.1–4.6, leading to high numbers of wilting and dead plants. This severe root rot was similar to that observed on non-grafted plants of ‘Baker’ and ‘Beldi’ inoculated with the pathogen. Under greenhouse conditions, measurements of agronomic characters indicated non-consistent improvement of these features on the scion cultivar when SCM334 was the rootstock. Since plant foliage is not attacked by this pathogen, these results show that susceptible chili pepper scions grafted onto SCM334 rootstocks could be used for root rot management and improvement of pepper yields in P. nicotianae infested soils.

  12. Ectopic expression of class 1 KNOX genes induce and adventitious shoot regeneration and alter growth and development of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L)

    Science.gov (United States)

    Transgenic plants of tobacco (Nicotiana tabacum L) and plum (Prunus domestica L) were produced by transforming with apple class 1 KNOX genes (MdKN1 and MdKN2) or corn KN1 gene. Transgenic tobacco plants were regenerated in vitro from transformed leaf discs cultured in a tissue medium lacking cytoki...

  13. Regulation of catalase activity and gene expression during Phytophthora nicotianae development and infection of tobacco.

    Science.gov (United States)

    Blackman, Leila M; Hardham, Adrienne R

    2008-07-01

    Plant defence against pathogen attack typically incorporates an oxidative burst involving elevated levels of reactive oxygen species such as hydrogen peroxide. In the present study, we have used an in-gel assay to monitor the activity of the hydrogen peroxide scavenging enzyme, catalase, during asexual development of Phytophthora nicotianae and during infection of host tobacco plants. In vitro, catalase activity is highest in sporulating hyphae; in planta, catalase activity increases dramatically about 8 h after host inoculation. We have cloned and characterized three catalase genes, designated PnCat1, PnCat2 and PnCat3, from P. nicotianae and identified their homologues in P. infestans, P. sojae and P. ramorum. In all three species, Cat2 is predicted to be targeted to the peroxisome and the other catalases are likely to be cytosolic. Quantitative real-time PCR assessment of catalase transcripts during development and infection indicates that peroxisomal PnCat2 is the gene predominantly expressed, with transcript levels peaking in vitro in sporulating hyphae and in planta increasing dramatically during the first 24 h after inoculation of susceptible tobacco seedlings. Levels of tobacco catalase gene expression are significantly down-regulated in susceptible tobacco 4, 8 and 24 h post-inoculation and in resistant plants at 24 h post-inoculation. Together, our results give evidence that during infection P. nicotianae increases its own peroxisomal catalase levels while concurrently down-regulating host catalase expression. This behaviour is consistent with a role of pathogen catalase in counterdefence and protection against oxidative stress and of pathogen-orchestrated enhanced plant cell death to support necrotrophic pathogen growth and plant colonization.

  14. Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp.

    Directory of Open Access Journals (Sweden)

    Sandra Fresquet-Corrales

    Full Text Available Proanthocyanidins (PAs, or condensed tannins, are powerful antioxidants that remove harmful free oxygen radicals from cells. To engineer the anthocyanin and proanthocyanidin biosynthetic pathways to de novo produce PAs in two Nicotiana species, we incorporated four transgenes to the plant chassis. We opted to perform a simultaneous transformation of the genes linked in a multigenic construct rather than classical breeding or retransformation approaches. We generated a GoldenBraid 2.0 multigenic construct containing two Antirrhinum majus transcription factors (AmRosea1 and AmDelila to upregulate the anthocyanin pathway in combination with two Medicago truncatula genes (MtLAR and MtANR to produce the enzymes that will derivate the biosynthetic pathway to PAs production. Transient and stable transformation of Nicotiana benthamiana and Nicotiana tabacum with the multigenic construct were respectively performed. Transient expression experiments in N. benthamiana showed the activation of the anthocyanin pathway producing a purple color in the agroinfiltrated leaves and also the effective production of 208.5 nmol (- catechin/g FW and 228.5 nmol (- epicatechin/g FW measured by the p-dimethylaminocinnamaldehyde (DMACA method. The integration capacity of the four transgenes, their respective expression levels and their heritability in the second generation were analyzed in stably transformed N. tabacum plants. DMACA and phoroglucinolysis/HPLC-MS analyses corroborated the activation of both pathways and the effective production of PAs in T0 and T1 transgenic tobacco plants up to a maximum of 3.48 mg/g DW. The possible biotechnological applications of the GB2.0 multigenic approach in forage legumes to produce "bloat-safe" plants and to improve the efficiency of conversion of plant protein into animal protein (ruminal protein bypass are discussed.

  15. Phenotypic and Transcriptomic Analysis of Nicotiana benthamiana Expressing Cucumber mosaic virus 2b gene

    Directory of Open Access Journals (Sweden)

    Seong-Han Sohn

    2015-09-01

    Full Text Available Cucumber mosaic virus possesses 2b gene known as a suppressor of post-transcriptional gene silencing (PTGS. To investigate its function and effect in plant, transgenic Nicotiana benethamiana expressing 2b gene was developed and analyzed in phenotypic characteristics and differential gene expression (DEG comparing with wild-type. Eight lines of transgenic plants (T0 were obtained with difficulty and showed severe deformed phenotypes in leaves, flowers, petioles and etc. Moreover, transgenic plants were hardly able to set seeds, but small amounts of seeds were barely produced in some of transgene-hemizygous plants. DEG analysis showed that transgenic plant ectopically accumulated diverse RNA transcripts at higher levels than wild-type probably due to the disturbance in RNA metabolism, especially of RNA decay, caused by 2b-mediated inhibition of PTGS. These ectopic accumulations of RNAs disrupt protein and RNA homeostasis and then subsequently lead to abnormal phenotypes of transgenic plants.

  16. Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana

    DEFF Research Database (Denmark)

    Qian, W; Yu, C; Qin, H

    2007-01-01

    , soybean, tomato, rice and wheat. Amino acid sequence comparisons indicated that plant PMM proteins exhibited significant identity to their fungal and mammalian orthologs. In line with the similarity in primary structure, plant PMM complemented the sec53-6 temperature sensitive mutant of Saccharomyces......-vector-mediated ectopic expression led to a 20-50% increase in AsA content. Consistent with this finding, transgenic expression of an AtPMM-GFP fusion protein in Arabidopsis also increased AsA content by 25-33%. Collectively, this study improves our understanding on the molecular and functional properties of plant PMM...

  17. Highly Oxygenated Flavonoids from the Leaves of Nicotiana plumbaginifolia (Solanaceae

    Directory of Open Access Journals (Sweden)

    Md. Shafiullah Shajib

    2017-11-01

    Full Text Available Nicotiana plumbaginifolia Viv. is an annual herb of the family Solanaceae, which grows abundantly in the weedy lands of Bangladesh . This plant possesses analgesic, antibacterial, anti-anxiety and hepatoprotective properties, and produces various phenolic compounds including flavonoids. The present study afforded determination of total phenolic and flavonoid contents, and for the first time, the isolation and characterization of highly oxygenated flavonoids, e.g., 3,3' ,5,6,7,8-hexamethoxy- 4',5'-methylenedioxyflavone (1, 3,3' ,4' ,5',5,6,7,8-octamethoxyflavone (2, exoticin, 6,7,4',5'-dimethylenedioxy-3,5,3'-trimethoxyflavone (3 and ( 3,3' ,4',5,5',8-hexamethoxy-6,7-methylenedioxyflavone (4 from the leaves of N. plumbaginifolia . All these flavonoids are rather rare natural products, and only found in a few genera, e.g.,Polygonum and Murraya. The structures of the isolated flavonoids were elucidated by comprehensive spectroscopic analyses, e.g., UV, 1H, 13C NMR, DEPT, HSQC, HMBC and MS.

  18. Typical NRC inspection procedures for model plant

    International Nuclear Information System (INIS)

    Blaylock, J.

    1984-01-01

    A summary of NRC inspection procedures for a model LEU fuel fabrication plant is presented. Procedures and methods for combining inventory data, seals, measurement techniques, and statistical analysis are emphasized

  19. New concepts for dynamic plant uptake models

    DEFF Research Database (Denmark)

    Rein, Arno; Legind, Charlotte Nielsen; Trapp, Stefan

    2011-01-01

    Models for the prediction of chemical uptake into plants are widely applied tools for human and wildlife exposure assessment, pesticide design and for environmental biotechnology such as phytoremediation. Steady-state considerations are often applied, because they are simple and have a small data...... need. However, often the emission pattern is non-steady. Examples are pesticide spraying, or the application of manure and sewage sludge on agricultural fields. In these scenarios, steady-state solutions are not valid, and dynamic simulation is required. We compared different approaches for dynamic...... modelling of plant uptake in order to identify relevant processes and timescales of processes in the soil–plant–air system. Based on the outcome, a new model concept for plant uptake models was developed, approximating logistic growth and coupling transpiration to growing plant mass. The underlying system...

  20. Nicotiana small RNA sequences support a host genome origin of cucumber mosaic virus satellite RNA.

    Directory of Open Access Journals (Sweden)

    Kiran Zahid

    2015-01-01

    Full Text Available Satellite RNAs (satRNAs are small noncoding subviral RNA pathogens in plants that depend on helper viruses for replication and spread. Despite many decades of research, the origin of satRNAs remains unknown. In this study we show that a β-glucuronidase (GUS transgene fused with a Cucumber mosaic virus (CMV Y satellite RNA (Y-Sat sequence (35S-GUS:Sat was transcriptionally repressed in N. tabacum in comparison to a 35S-GUS transgene that did not contain the Y-Sat sequence. This repression was not due to DNA methylation at the 35S promoter, but was associated with specific DNA methylation at the Y-Sat sequence. Both northern blot hybridization and small RNA deep sequencing detected 24-nt siRNAs in wild-type Nicotiana plants with sequence homology to Y-Sat, suggesting that the N. tabacum genome contains Y-Sat-like sequences that give rise to 24-nt sRNAs capable of guiding RNA-directed DNA methylation (RdDM to the Y-Sat sequence in the 35S-GUS:Sat transgene. Consistent with this, Southern blot hybridization detected multiple DNA bands in Nicotiana plants that had sequence homology to Y-Sat, suggesting that Y-Sat-like sequences exist in the Nicotiana genome as repetitive DNA, a DNA feature associated with 24-nt sRNAs. Our results point to a host genome origin for CMV satRNAs, and suggest novel approach of using small RNA sequences for finding the origin of other satRNAs.

  1. Nicotiana small RNA sequences support a host genome origin of cucumber mosaic virus satellite RNA.

    Science.gov (United States)

    Zahid, Kiran; Zhao, Jian-Hua; Smith, Neil A; Schumann, Ulrike; Fang, Yuan-Yuan; Dennis, Elizabeth S; Zhang, Ren; Guo, Hui-Shan; Wang, Ming-Bo

    2015-01-01

    Satellite RNAs (satRNAs) are small noncoding subviral RNA pathogens in plants that depend on helper viruses for replication and spread. Despite many decades of research, the origin of satRNAs remains unknown. In this study we show that a β-glucuronidase (GUS) transgene fused with a Cucumber mosaic virus (CMV) Y satellite RNA (Y-Sat) sequence (35S-GUS:Sat) was transcriptionally repressed in N. tabacum in comparison to a 35S-GUS transgene that did not contain the Y-Sat sequence. This repression was not due to DNA methylation at the 35S promoter, but was associated with specific DNA methylation at the Y-Sat sequence. Both northern blot hybridization and small RNA deep sequencing detected 24-nt siRNAs in wild-type Nicotiana plants with sequence homology to Y-Sat, suggesting that the N. tabacum genome contains Y-Sat-like sequences that give rise to 24-nt sRNAs capable of guiding RNA-directed DNA methylation (RdDM) to the Y-Sat sequence in the 35S-GUS:Sat transgene. Consistent with this, Southern blot hybridization detected multiple DNA bands in Nicotiana plants that had sequence homology to Y-Sat, suggesting that Y-Sat-like sequences exist in the Nicotiana genome as repetitive DNA, a DNA feature associated with 24-nt sRNAs. Our results point to a host genome origin for CMV satRNAs, and suggest novel approach of using small RNA sequences for finding the origin of other satRNAs.

  2. Actant model of an extraction plant

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Helle

    1999-05-01

    Facing a growing complexity of industrial plants, we recognise the need for qualitative modelling methods capturing functional and causal complexity in a human-centred way. The present paper presents actant modelling as a functional modelling method rooted in linguistics and semiotics. Actant modelling combines actant models from linguistics with multilevel flow modelling (MFM). Thus the semantics of MFM functions is developed further and given an interpretation in terms of actant functions. The present challenge is to provide coherence between seemingly different categories of knowledge. Yet the gap between functional and causal modelling methods can be bridged. Actant modelling provides an open and provisional, but in no way exhaustive or final answer as to how teleological concepts like goals and functions relate to causal concepts. As the main focus of the paper an actant model of an extraction plant is presented. It is shown how the actant model merges functional and causal knowledge in a natural way.

  3. Actant model of an extraction plant

    International Nuclear Information System (INIS)

    Poulsen, Helle

    1999-01-01

    Facing a growing complexity of industrial plants, we recognise the need for qualitative modelling methods capturing functional and causal complexity in a human-centred way. The present paper presents actant modelling as a functional modelling method rooted in linguistics and semiotics. Actant modelling combines actant models from linguistics with multilevel flow modelling (MFM). Thus the semantics of MFM functions is developed further and given an interpretation in terms of actant functions. The present challenge is to provide coherence between seemingly different categories of knowledge. Yet the gap between functional and causal modelling methods can be bridged. Actant modelling provides an open and provisional, but in no way exhaustive or final answer as to how teleological concepts like goals and functions relate to causal concepts. As the main focus of the paper an actant model of an extraction plant is presented. It is shown how the actant model merges functional and causal knowledge in a natural way

  4. Potency of Nicotiana tabacum as anti - microfouling

    Science.gov (United States)

    Aunurohim, Nurilma, Dian Ahmada; Kuswytasari, Nengah Dwianita

    2017-06-01

    In general, the attachment and growth of organisms on the surface of the object or material immersed in the sea are called Biofouling. Biofouling microscopic called microfouling, where it acts as a precursor of the next engaging organisms that are generally larger in size (called macrofouling). In recent time, biofouling control over the use of chemicals in antifouling paints. Usage tributyltin polishing copolymer paints (TBT - SPC paint) containing TBT has adverse effects on non-target marine organisms. This study uses tobacco dust as an anti-microfouling, which is the waste generated during the process of tobacco leaves. Five of bacterial isolates have been founded at Surabaya coastal in a preliminary test with iron plates. Then those isolates tested to detect and visualized of biofilm. The activity of anti-bacteria had been done and the result is known that more high of tobacco extract given, a diameter of zone inhibit high too. The extract of tobacco dust can be applied most effectively to be anti-microfouling is a concentration of 40%, isolates 3 and 4 are a type of bacteria that is most inhibited growth. So, in this result, Nicotiana tabacum is potential as an anti-microfouling.

  5. Hazard identification based on plant functional modelling

    International Nuclear Information System (INIS)

    Rasmussen, B.; Whetton, C.

    1993-10-01

    A major objective of the present work is to provide means for representing a process plant as a socio-technical system, so as to allow hazard identification at a high level. The method includes technical, human and organisational aspects and is intended to be used for plant level hazard identification so as to identify critical areas and the need for further analysis using existing methods. The first part of the method is the preparation of a plant functional model where a set of plant functions link together hardware, software, operations, work organisation and other safety related aspects of the plant. The basic principle of the functional modelling is that any aspect of the plant can be represented by an object (in the sense that this term is used in computer science) based upon an Intent (or goal); associated with each Intent are Methods, by which the Intent is realized, and Constraints, which limit the Intent. The Methods and Constraints can themselves be treated as objects and decomposed into lower-level Intents (hence the procedure is known as functional decomposition) so giving rise to a hierarchical, object-oriented structure. The plant level hazard identification is carried out on the plant functional model using the Concept Hazard Analysis method. In this, the user will be supported by checklists and keywords and the analysis is structured by pre-defined worksheets. The preparation of the plant functional model and the performance of the hazard identification can be carried out manually or with computer support. (au) (4 tabs., 10 ills., 7 refs.)

  6. Temperature response of in vivo Rubisco kinetics and mesophyll conductance in Arabidopsis thaliana: comparisons to Nicotiana tabacum.

    Science.gov (United States)

    Walker, Berkley; Ariza, Loren S; Kaines, Sarah; Badger, Murray R; Cousins, Asaph B

    2013-12-01

    Biochemical models are used to predict and understand the response of photosynthesis to rising temperatures and CO2 partial pressures. These models require the temperature dependency of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) kinetics and mesophyll conductance to CO2 (g(m)). However, it is not known how the temperature response of Rubisco kinetics differs between species, and comprehensive in vivo Rubisco kinetics that include gm have only been determined in the warm-adapted Nicotiana tabacum. Here, we measured the temperature response of Rubisco kinetics and gm in N. tabacum and the cold-adapted Arabidopsis thaliana using gas exchange and (13)CO2 isotopic discrimination on plants with genetically reduced levels of Rubisco. While the individual Rubisco kinetic parameters in N. tabacum and A. thaliana were similar across temperatures, they collectively resulted in significantly different modelled rates of photosynthesis. Additionally, gm increased with temperature in N. tabacum but not in A. thaliana. These findings highlight the importance of considering species-dependent differences in Rubisco kinetics and gm when modelling the temperature response of photosynthesis. © 2013 John Wiley & Sons Ltd.

  7. Transient Expression of Hemagglutinin Antigen from Low Pathogenic Avian Influenza A (H7N7) in Nicotiana benthamiana

    OpenAIRE

    Kanagarajan, Selvaraju; Tolf, Conny; Lundgren, Anneli; Waldenström, Jonas; Brodelius, Peter E.

    2012-01-01

    The influenza A virus is of global concern for the poultry industry, especially the H5 and H7 subtypes as they have the potential to become highly pathogenic for poultry. In this study, the hemagglutinin (HA) of a low pathogenic avian influenza virus of the H7N7 subtype isolated from a Swedish mallard Anas platyrhynchos was sequenced, characterized and transiently expressed in Nicotiana benthamiana. Recently, plant expression systems have gained interest as an alternative for the production o...

  8. Suitability of Nicotiana tabacum 'Bel W3' for biomonitoring ozone in Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Sant'Anna, Silvia M.R.; Esposito, Marisia P.; Domingos, Marisa; Souza, Silvia R.

    2008-01-01

    Nicotiana tabacum 'Bel W3' is a widely used sensitive bioindicator for ambient ozone, but it is rarely used in tropical countries. Our goal was to determine the suitability of this plant for biomonitoring ozone in the city of Sao Paulo by evaluating the relationships between leaf necroses and ozone under field conditions and measurements of chlorophyll a fluorescence and antioxidants in plants exposed to different concentrations of ozone in closed chambers. While a weak linear relationship between leaf injury and ozone concentrations (R 2 = 0.10) was determined in the field, a strong linear relationship was observed in the chamber experiments. Maximum leaf injury was observed in plants submitted to 40 ppb, which coincided with a significant decrease in fluorescence and total ascorbic acid. The relationship between leaf damage observed in the field and ozone was improved when the concentrations were limited to 40 ppb (R 2 = 0.28). - Nicotiana tabacum 'Bel W3' is suitable for indicating low ozone levels in Brazil

  9. Ectopic expression of Arabidopsis L-type lectin receptor kinase genes LecRK-I.9 and LecRK-IX.1 in Nicotiana benthamiana confers Phytophthora resistance

    NARCIS (Netherlands)

    Wang, Yan; Nsibo, D.L.; Juhar, H.M.; Govers, Francine; Bouwmeester, Klaas

    2016-01-01

    Key message: TransgenicNicotiana benthamianalines with constitutive expression of an Arabidopsis lectin receptor kinase gene (LecRK-I.9orLecRK-IX.1) show enhanced resistance toPhytophthorapathogens, demonstrating conserved gene functionality after interfamily transfer.Abstract: In plants, cell

  10. NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions

    NARCIS (Netherlands)

    Portieles, R.; Ayra, C.; Gonzalez, E.; Gallo, A.; Rodriguez, R.; Chacón, O.; López, Y.; Rodriguez, M.; Castillo, J.; Pujol, M.; Enriquez, G.; Borroto, C.; Trujillo, L.; Thomma, B.P.H.J.; Borrás-Hidalgo, O.

    2010-01-01

    Plant defensins are small cysteine-rich peptides that inhibit the growth of a broad range of microbes. In this article, we describe NmDef02, a novel cDNA encoding a putative defensin isolated from Nicotiana megalosiphon upon inoculation with the tobacco blue mould pathogen Peronospora hyoscyami

  11. Visualization study of operators' plant knowledge model

    International Nuclear Information System (INIS)

    Kanno, Tarou; Furuta, Kazuo; Yoshikawa, Shinji

    1999-03-01

    Nuclear plants are typically very complicated systems and are required extremely high level safety on the operations. Since it is never possible to include all the possible anomaly scenarios in education/training curriculum, plant knowledge formation is desired for operators to enable thein to act against unexpected anomalies based on knowledge base decision making. The authors have been conducted a study on operators' plant knowledge model for the purpose of supporting operators' effort in forming this kind of plant knowledge. In this report, an integrated plant knowledge model consisting of configuration space, causality space, goal space and status space is proposed. The authors examined appropriateness of this model and developed a prototype system to support knowledge formation by visualizing the operators' knowledge model and decision making process in knowledge-based actions with this model on a software system. Finally the feasibility of this prototype as a supportive method in operator education/training to enhance operators' ability in knowledge-based performance has been evaluated. (author)

  12. Modeling and optimization of a chiller plant

    International Nuclear Information System (INIS)

    Wei, Xiupeng; Xu, Guanglin; Kusiak, Andrew

    2014-01-01

    A data-driven approach is utilized to model a chiller plant that has four chillers, four cooling towers, and two chilled water storage tanks. The chillers have varying energy efficiency. Since the chiller plant model derived from data-driven approach is nonlinear and non-convex, it is not practical to solve it by using the traditional gradient-based optimization algorithm. A two-level intelligent algorithm is developed to solve the model aiming at minimizing the total cost of the chilled water plant. The proposed algorithm can effectively search the optimum under the non-convex and nonlinear situation. A simulation case is conducted and the corresponding results are discussed. - Highlights: • Development of a data-driven based model of a complete chiller plant. • A two-level intelligent algorithm is proposed to optimize the chiller plant which is non-convex and nonlinear problem. • A simulation is conducted to verify the performance of the model and algorithm. • 14 percent of energy saving can be achieved with proposed method

  13. Modeling of a combined cycle power plant

    International Nuclear Information System (INIS)

    Faridah Mohamad Idris

    2001-01-01

    The combined cycle power plant is a non-linear, closed loop system, which consists of high-pressure (HP) superheater, HP evaporator, HP economizer, low-pressure (LP) evaporator, HP drum, HP deaerator, condenser, HP and LP steam turbine and gas turbine. The two types of turbines in the plant for example the gas turbine and the HP and LP steam turbines operate concurrently to generate power to the plant. The exhaust gas which originate from the combustion chamber drives the gas turbine, after which it flows into the heat recovery steam generator (HRSG) to generate superheated steam to be used in driving the HP and LP steam turbines. In this thesis, the combined cycle power plant is modeled at component level using the physical method. Assuming that there is delay in transport, except for the gas turbine system, the mass and heat balances are applied on the components of the plant to derive the governing equations of the components. These time dependent equations, which are of first order differential types, are then solved for the mass and enthalpy of the components. The solutions were simulated using Matlab Simulink using measured plant data. Where necessary there is no plant data available, approximated data were used. The generalized regression neural networks are also used to generate extra sets of simulation data for the HRSG system. Comparisons of the simulation results with its corresponding plant data showed good agreements between the two and indicated that the models developed for the components could be used to represent the combined cycle power plant under study. (author)

  14. Model feedstock supply processing plants

    Directory of Open Access Journals (Sweden)

    V. M. Bautin

    2013-01-01

    Full Text Available The model of raw providing the processing enterprises entering into vertically integrated structure on production and processing of dairy raw materials, differing by an orientation on achievement of cumulative effect by the integrated structure acting as criterion function which maximizing is reached by optimization of capacities, volumes of deliveries of raw materials and its qualitative characteristics, costs of industrial processing of raw materials and demand for dairy production is developed.

  15. Dynamic modelling of Industrial Heavy Water Plant

    International Nuclear Information System (INIS)

    Teruel, F.E.

    1997-01-01

    The dynamic behavior of the isotopic enrichment unites of the Industrial Heavy Water Plant, located in Arroyito, Neuquen, Argentina, was modeled and simulated in the present work. Dynamic models of the chemical and isotopic interchange processes existent in the plant, were developed. This served as a base to obtain representative models of the different unit and control systems. The developed models were represented in a modular code for each unit. Each simulator consists of approximately one hundred non-linear-first-order differential equations and some other algebraic equation, which are time resolved by the code. The different simulators allow to change a big number of boundary conditions and the control systems set point for each simulation, so that the program become very versatile. The output of the code allows to see the evolution through time of the variables of interest. An interface which facilitates the use of the first enrichment stage simulator was developed. This interface allows an easy access to generate wished events during the simulation and includes the possibility to plot evolution of the variables involved. The obtained results agree with the expected tendencies. The calculated nominal steady state matches by the manufacturer. The different steady states obtained, agree with previous works. The times and tendencies involved in the transients generated by the program, are in good agreement with the experience obtained at the plant. Based in the obtained results, it is concluded that the characteristic times of the plant are determined by the masses involved in the process. Different characteristics in the system dynamic behavior were generated with the different simulators, and were validated by plant personnel. This work allowed to understand the different process involved in the heavy water manufacture, and to develop a very useful tool for the personnel of the plant. (author). 14 refs., figs., tabs. plant. (author). 14 refs., figs., tabs

  16. Model of how plants sense zinc deficiency

    DEFF Research Database (Denmark)

    Assuncao, Ana G.L.; Persson, Daniel Olof; Husted, Søren

    2013-01-01

    to develop plant-based solutions addressing nutrient-use-efficiency and adaptation to nutrient-limited or -toxic soils. Recently two transcription factors of the bZIP family (basic-region leucine zipper) have been identified in Arabidopsis and shown to be pivotal in the adaptation response to zinc deficiency....... They represent not only the first regulators of zinc homeostasis identified in plants, but also a very promising starting-point that can provide new insights into the molecular basis of how plants sense and adapt to the stress of zinc deficiency. Considering the available information thus far we propose...... in this review a putative model of how plants sense zinc deficiency....

  17. Modelling and simulation of thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Eborn, J.

    1998-02-01

    Mathematical modelling and simulation are important tools when dealing with engineering systems that today are becoming increasingly more complex. Integrated production and recycling of materials are trends that give rise to heterogenous systems, which are difficult to handle within one area of expertise. Model libraries are an excellent way to package engineering knowledge of systems and units to be reused by those who are not experts in modelling. Many commercial packages provide good model libraries, but they are usually domain-specific and closed. Heterogenous, multi-domain systems requires open model libraries written in general purpose modelling languages. This thesis describes a model database for thermal power plants written in the object-oriented modelling language OMOLA. The models are based on first principles. Subunits describe volumes with pressure and enthalpy dynamics and flows of heat or different media. The subunits are used to build basic units such as pumps, valves and heat exchangers which can be used to build system models. Several applications are described; a heat recovery steam generator, equipment for juice blending, steam generation in a sulphuric acid plant and a condensing steam plate heat exchanger. Model libraries for industrial use must be validated against measured data. The thesis describes how parameter estimation methods can be used for model validation. Results from a case-study on parameter optimization of a non-linear drum boiler model show how the technique can be used 32 refs, 21 figs

  18. Assessment of 210Pb concentration in Nicotiana tabacum L., burley variety, cultivated in Brazil

    International Nuclear Information System (INIS)

    Rocha, Rique J.F.X.; Silva, Carolina F.; Frujuele, Jonatan V.; Bovolini, Raquel R.; Damatto, Sandra R.

    2013-01-01

    Tobacco products are extensively used throughout the world and the most consumed are cigarettes, cigars and narghile. The damaging effects that these products cause to human health are discussed worldwide and many researches are performed with the aim of relating the use of these products with various diseases. Brazil is the largest exporter and second largest producer of tobacco worldwide, according to the crop year 2009/2010 production. The tobacco plant (Nicotiana tabacum L.) is used to manufacture all derivatives and the chemical composition of the resulting tobacco varies with the type of tobacco leaves, how they are grown, the region where they are cultivated, the characteristics of preparation and the temperature variations resulting from the tobacco incomplete combustion. There is lack of information about the chemical and radiological characterization of the tobacco plant both in international and Brazilian literature. Thus a project was established with the objectives of characterizing chemically and radiologically the three varieties most cultivated in Brazil of Nicotiana tobacum L., Virginia, Burley and Common; this paper presents the preliminary results of 210 Pb concentrations for the Burley variety. Plants from this variety were cultivated in pots with organic substrate and fertilizer and in a small farm in natural conditions. The entire plant was analyzed, the organic substrates, the fertilizers and the soil. The results obtained presented higher values for 210 Pb in leaves when compared with the other parts of the plant. Comparing the three study areas the highest results of 210 Pb concentration were obtained in the plants cultivated in the urban area probably due to its atmospheric deposition. (author)

  19. Assessment of {sup 210}Pb concentration in Nicotiana tabacum L., burley variety, cultivated in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Rique J.F.X.; Silva, Carolina F.; Frujuele, Jonatan V.; Bovolini, Raquel R.; Damatto, Sandra R., E-mail: rjrocha@ipen.br, E-mail: cfsilva@ipen.br, E-mail: jonatanfrujuele@hotmail.com, E-mail: ra_bovolini@yahoo.com.br, E-mail: damatto@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Lab. de Radiometria Ambiental

    2013-07-01

    Tobacco products are extensively used throughout the world and the most consumed are cigarettes, cigars and narghile. The damaging effects that these products cause to human health are discussed worldwide and many researches are performed with the aim of relating the use of these products with various diseases. Brazil is the largest exporter and second largest producer of tobacco worldwide, according to the crop year 2009/2010 production. The tobacco plant (Nicotiana tabacum L.) is used to manufacture all derivatives and the chemical composition of the resulting tobacco varies with the type of tobacco leaves, how they are grown, the region where they are cultivated, the characteristics of preparation and the temperature variations resulting from the tobacco incomplete combustion. There is lack of information about the chemical and radiological characterization of the tobacco plant both in international and Brazilian literature. Thus a project was established with the objectives of characterizing chemically and radiologically the three varieties most cultivated in Brazil of Nicotiana tobacum L., Virginia, Burley and Common; this paper presents the preliminary results of {sup 210}Pb concentrations for the Burley variety. Plants from this variety were cultivated in pots with organic substrate and fertilizer and in a small farm in natural conditions. The entire plant was analyzed, the organic substrates, the fertilizers and the soil. The results obtained presented higher values for {sup 210}Pb in leaves when compared with the other parts of the plant. Comparing the three study areas the highest results of {sup 210}Pb concentration were obtained in the plants cultivated in the urban area probably due to its atmospheric deposition. (author)

  20. Differences in the Detoxification Metabolism between Two clonal Lineages of the Aphid Myzus persicae (Sulzer (Hemiptera: Aphididae Reared on Tobacco (Nicotiana tabacum L. Diferencias en el Metabolismo de Detoxificación entre dos Linajes Clonales del Áfido Myzus persicae (Sulzer (Hemiptera: Aphididae creados sobre tabaco (Nicotiana tabacum L.

    Directory of Open Access Journals (Sweden)

    Marco A Cabrera-Brandt

    2010-12-01

    Full Text Available Myzus persicae (Sulzer is a highly polyphagous aphid species, with a subspecies (M. persicae nicotianae well adapted to tobacco (Nicotiana tabacum L.. We evaluated the effect of this host plant on the aphid performance and detoxification enzymes, in order to test the participation of xenobiotic metabolism on the ability of this aphid to overcome the tobacco chemical defences. Two genotypes, one corresponding to the only M. persicae nicotianae genotype reported in Chile on tobacco, and one genotype belonging to M. persicae sensu stricto were reared on tobacco and pepper (Capsicum annuum L., respectively. M. persicae nicotianae showed a significantly higher intrinsic rate of increase (r m on pepper than on tobacco, and M. persicae s.s. performed similarly, but with no reproduction at all on tobacco. In order to evaluate the effect of tobacco on detoxification enzymes, esterases, glutathione S-transferases (GST and cytochrome P-450 monooxygenases (MO were determined in both selected aphid genotypes after 12, 24, 36, 48 and 72 h of rearing on tobacco and pepper. M. persicae nicotianae exhibited the higher total esterase activities when reared on tobacco than on pepper after 48 h of rearing, while the activities of GST and MO did not show any significant difference between host-plants and duration of treatment. For M. persicae s.s., no significant differences were observed among host-plants for the studied enzymes. These results suggest a participation of the esterases, on the ability of this M. persicae nicotianae to overcome the tobacco defences.Myzus persicae (Sulzer es un áfido polífago que incluye a Myzus persicae nicotianae, una subespecie altamente adaptada sobre tabaco (Nicotiana tabacum L.. Evaluamos el efecto del tabaco sobre el desempeño biológico y sobre determinadas enzimas de detoxificación en áfidos, para estudiar su participación en la capacidad de M. persicae nicotianae de superar las defensas químicas del tabaco. Dos

  1. The Fetal Cleft palate: V. Elucidation of the Mechanism of Palatal Clefting in the Congenital Caprine Model

    Science.gov (United States)

    Maternal ingestion of Nicotiana glauca from gestation days 32 through 41 results in a high incidence of cleft palate in Spanish goats. This caprine cleft palate model was used to evaluate the temporal sequence of palatal shelf fusion throughout the period of cleft induction with the poisonous plant...

  2. A novel thioredoxin h is secreted in Nicotiana alata and reduces S-RNase in vitro.

    Science.gov (United States)

    Juárez-Díaz, Javier Andrés; McClure, Bruce; Vázquez-Santana, Sonia; Guevara-García, Arturo; León-Mejía, Patricia; Márquez-Guzmán, Judith; Cruz-García, Felipe

    2006-02-10

    Thioredoxins type h are classified into three subgroups. The subgroup II includes thioredoxins containing an N-terminal extension, the role of which is still unclear. Although thioredoxin secretion has been observed in animal cells, there is no evidence suggesting that any thioredoxin h is secreted in plants. In this study, we report that a thioredoxin h, subgroup II, from Nicotiana alata (NaTrxh) is secreted into the extracellular matrix of the stylar transmitting tract tissue. Fractionation studies showed that NaTrxh is extracted along with well characterized secretion proteins such as S-RNases and NaTTS (N. alata transmitting tissue-specific protein). Moreover, an NaTrxh-green fluorescent fusion protein transiently expressed in Nicotiana benthamiana and Arabidopsis thaliana leaves was also secreted, showing that NaTrxh has the required information for its secretion. We performed reduction assays in vitro to identify potential extracellular targets of NaTrxh. We found that S-RNase is one of the several potential substrates of the NaTrxh in the extracellular matrix. In addition, we proved by affinity chromatography that NaTrxh specifically interacts with S-RNase. Our findings showed that NaTrxh is a new thioredoxin h in Nicotiana that is secreted as well as in animal systems. Because NaTrxh is localized in the extracellular matrix of the stylar transmitting tract and its specific interaction with S-RNase to reduce it in vitro, we suggest that this thioredoxin h may be involved either in general pollen-pistil interaction processes or particularly in S-RNase-based self-incompatibility.

  3. Transient analysis models for nuclear power plants

    International Nuclear Information System (INIS)

    Agapito, J.R.

    1981-01-01

    The modelling used for the simulation of the Angra-1 start-up reactor tests, using the RETRAN computer code is presented. Three tests are simulated: a)nuclear power plant trip from 100% of power; b)great power excursions tests and c)'load swing' tests.(E.G.) [pt

  4. Probabilistic Harmonic Modeling of Wind Power Plants

    DEFF Research Database (Denmark)

    Guest, Emerson; Jensen, Kim H.; Rasmussen, Tonny Wederberg

    2017-01-01

    A probabilistic sequence domain (SD) harmonic model of a grid-connected voltage-source converter is used to estimate harmonic emissions in a wind power plant (WPP) comprised of Type-IV wind turbines. The SD representation naturally partitioned converter generated voltage harmonics into those...

  5. Plant balance model for RELAP/SCDAPSIM

    International Nuclear Information System (INIS)

    Mendoza M, R.; Filio L, C.; Araiza M, E.; Ortiz V, J.

    2017-09-01

    In this work we developed an integral model for a nuclear power plant and have a more general picture of what happens in both the Nuclear Steam Supply System (NSSS) and the Balance of Plant (Bop) system during abnormal events that are presented in operation. RELAP/SCDAPSIM (RSS) is a computation code of the type of best estimate that can simulate the transient and accident behavior of a nuclear installation. The development of a Bop model for RSS can result in the simulation of transients such as turbine trip due to loss of vacuum in the main steam condenser. This work shows the development of models of the Bop main components for the RSS code, such as the set of high and low pressure turbines, as well as their steam extractions to the feed water heaters, the main steam condenser, a feed water heater and the condensate and water feed pumps. This new model of the Plant Balance system was then coupled to the NSSS model that is already in RSS. First, results of the steady state with this new integral model are show, to later show results of the transients simulation: 1) turbine trip due to loss of vacuum in the main steam condenser; 2) loss of condensate pumps; and 3) failure of the feed water heater. (Author)

  6. Interannual variability of plant phenology in tussock tundra: modelling interactions of plant productivity, plant phenology, snowmelt and soil thaw

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Laundre, J.A.; Shaver, G.R.

    2003-01-01

    We present a linked model of plant productivity, plant phenology, snowmelt and soil thaw in order to estimate interannual variability of arctic plant phenology and its effects on plant productivity. The model is tested using 8 years of soil temperature data, and three years of bud break data of

  7. Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum.

    Science.gov (United States)

    Dixit, Prachy; Mukherjee, Prasun K; Ramachandran, V; Eapen, Susan

    2011-01-21

    Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. Vast agricultural areas worldwide are contaminated with Cd. Plants take up Cd and through the food chain it reaches humans and causes toxicity. It is ideal to develop plants tolerant to Cd, without enhanced accumulation in the edible parts for human consumption. Glutathione transferases (GST) are a family of multifunctional enzymes known to have important roles in combating oxidative stresses induced by various heavy metals including Cd. Some GSTs are also known to function as glutathione peroxidases. Overexpression/heterologous expression of GSTs is expected to result in plants tolerant to heavy metals such as Cd. Here, we report cloning of a glutathione transferase gene from Trichoderma virens, a biocontrol fungus and introducing it into Nicotiana tabacum plants by Agrobacterium-mediated gene transfer. Transgenic nature of the plants was confirmed by Southern blot hybridization and expression by reverse transcription PCR. Transgene (TvGST) showed single gene Mendelian inheritance. When transgenic plants expressing TvGST gene were exposed to different concentrations of Cd, they were found to be more tolerant compared to wild type plants, with transgenic plants showing lower levels of lipid peroxidation. Levels of different antioxidant enzymes such as glutathione transferase, superoxide dismutase, ascorbate peroxidase, guiacol peroxidase and catalase showed enhanced levels in transgenic plants expressing TvGST compared to control plants, when exposed to Cd. Cadmium accumulation in the plant biomass in transgenic plants were similar or lower than wild-type plants. The results of the present study suggest that transgenic tobacco plants expressing a Trichoderma virens GST are more tolerant to Cd, without enhancing its accumulation in the plant biomass. It should be possible to extend the present results to crop plants for developing Cd tolerance and in limiting Cd availability

  8. Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum.

    Directory of Open Access Journals (Sweden)

    Prachy Dixit

    Full Text Available BACKGROUND: Cadmium (Cd is a major heavy metal pollutant which is highly toxic to plants and animals. Vast agricultural areas worldwide are contaminated with Cd. Plants take up Cd and through the food chain it reaches humans and causes toxicity. It is ideal to develop plants tolerant to Cd, without enhanced accumulation in the edible parts for human consumption. Glutathione transferases (GST are a family of multifunctional enzymes known to have important roles in combating oxidative stresses induced by various heavy metals including Cd. Some GSTs are also known to function as glutathione peroxidases. Overexpression/heterologous expression of GSTs is expected to result in plants tolerant to heavy metals such as Cd. RESULTS: Here, we report cloning of a glutathione transferase gene from Trichoderma virens, a biocontrol fungus and introducing it into Nicotiana tabacum plants by Agrobacterium-mediated gene transfer. Transgenic nature of the plants was confirmed by Southern blot hybridization and expression by reverse transcription PCR. Transgene (TvGST showed single gene Mendelian inheritance. When transgenic plants expressing TvGST gene were exposed to different concentrations of Cd, they were found to be more tolerant compared to wild type plants, with transgenic plants showing lower levels of lipid peroxidation. Levels of different antioxidant enzymes such as glutathione transferase, superoxide dismutase, ascorbate peroxidase, guiacol peroxidase and catalase showed enhanced levels in transgenic plants expressing TvGST compared to control plants, when exposed to Cd. Cadmium accumulation in the plant biomass in transgenic plants were similar or lower than wild-type plants. CONCLUSION: The results of the present study suggest that transgenic tobacco plants expressing a Trichoderma virens GST are more tolerant to Cd, without enhancing its accumulation in the plant biomass. It should be possible to extend the present results to crop plants for

  9. Glutathione Transferase from Trichoderma virens Enhances Cadmium Tolerance without Enhancing Its Accumulation in Transgenic Nicotiana tabacum

    Science.gov (United States)

    Dixit, Prachy; Mukherjee, Prasun K.; Ramachandran, V.; Eapen, Susan

    2011-01-01

    Background Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. Vast agricultural areas worldwide are contaminated with Cd. Plants take up Cd and through the food chain it reaches humans and causes toxicity. It is ideal to develop plants tolerant to Cd, without enhanced accumulation in the edible parts for human consumption. Glutathione transferases (GST) are a family of multifunctional enzymes known to have important roles in combating oxidative stresses induced by various heavy metals including Cd. Some GSTs are also known to function as glutathione peroxidases. Overexpression/heterologous expression of GSTs is expected to result in plants tolerant to heavy metals such as Cd. Results Here, we report cloning of a glutathione transferase gene from Trichoderma virens, a biocontrol fungus and introducing it into Nicotiana tabacum plants by Agrobacterium-mediated gene transfer. Transgenic nature of the plants was confirmed by Southern blot hybridization and expression by reverse transcription PCR. Transgene (TvGST) showed single gene Mendelian inheritance. When transgenic plants expressing TvGST gene were exposed to different concentrations of Cd, they were found to be more tolerant compared to wild type plants, with transgenic plants showing lower levels of lipid peroxidation. Levels of different antioxidant enzymes such as glutathione transferase, superoxide dismutase, ascorbate peroxidase, guiacol peroxidase and catalase showed enhanced levels in transgenic plants expressing TvGST compared to control plants, when exposed to Cd. Cadmium accumulation in the plant biomass in transgenic plants were similar or lower than wild-type plants. Conclusion The results of the present study suggest that transgenic tobacco plants expressing a Trichoderma virens GST are more tolerant to Cd, without enhancing its accumulation in the plant biomass. It should be possible to extend the present results to crop plants for developing Cd tolerance and

  10. Plant adaptive behaviour in hydrological models (Invited)

    Science.gov (United States)

    van der Ploeg, M. J.; Teuling, R.

    2013-12-01

    Models that will be able to cope with future precipitation and evaporation regimes need a solid base that describes the essence of the processes involved [1]. Micro-behaviour in the soil-vegetation-atmosphere system may have a large impact on patterns emerging at larger scales. A complicating factor in the micro-behaviour is the constant interaction between vegetation and geology in which water plays a key role. The resilience of the coupled vegetation-soil system critically depends on its sensitivity to environmental changes. As a result of environmental changes vegetation may wither and die, but such environmental changes may also trigger gene adaptation. Constant exposure to environmental stresses, biotic or abiotic, influences plant physiology, gene adaptations, and flexibility in gene adaptation [2-6]. Gene expression as a result of different environmental conditions may profoundly impact drought responses across the same plant species. Differences in response to an environmental stress, has consequences for the way species are currently being treated in models (single plant to global scale). In particular, model parameters that control root water uptake and plant transpiration are generally assumed to be a property of the plant functional type. Assigning plant functional types does not allow for local plant adaptation to be reflected in the model parameters, nor does it allow for correlations that might exist between root parameters and soil type. Models potentially provide a means to link root water uptake and transport to large scale processes (e.g. Rosnay and Polcher 1998, Feddes et al. 2001, Jung 2010), especially when powered with an integrated hydrological, ecological and physiological base. We explore the experimental evidence from natural vegetation to formulate possible alternative modeling concepts. [1] Seibert, J. 2000. Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrology and Earth System Sciences 4(2): 215

  11. Cloning of the Lycopene β-cyclase Gene in Nicotiana tabacum and Its Overexpression Confers Salt and Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Yanmei Shi

    2015-12-01

    Full Text Available Carotenoids are important pigments in plants that play crucial roles in plant growth and in plant responses to environmental stress. Lycopene β cyclase (β-LCY functions at the branch point of the carotenoid biosynthesis pathway, catalyzing the cyclization of lycopene. Here, a β-LCY gene from Nicotiana tabacum, designated as Ntβ-LCY1, was cloned and functionally characterized. Robust expression of Ntβ-LCY1 was found in leaves, and Ntβ-LCY1 expression was obviously induced by salt, drought, and exogenous abscisic acid treatments. Strong accumulation of carotenoids and expression of carotenoid biosynthesis genes resulted from Ntβ-LCY1 overexpression. Additionally, compared to wild-type plants, transgenic plants with overexpression showed enhanced tolerance to salt and drought stress with higher abscisic acid levels and lower levels of malondialdehyde and reactive oxygen species. Conversely, transgenic RNA interference plants had a clear albino phenotype in leaves, and some plants did not survive beyond the early developmental stages. The suppression of Ntβ-LCY1 expression led to lower expression levels of genes in the carotenoid biosynthesis pathway and to reduced accumulation of carotenoids, chlorophyll, and abscisic acid. These results indicate that Ntβ-LCY1 is not only a likely cyclization enzyme involved in carotenoid accumulation but also confers salt and drought stress tolerance in Nicotiana tabacum.

  12. Antinuclear human autoantibodies as markers in Nicotiana tabacum pollen tubes

    Directory of Open Access Journals (Sweden)

    C. Poggialini

    2014-01-01

    Full Text Available In the present paper we report on the use of antinuclear human autoantibodies as specific markers in Nicotiana tabacum pollen tubes. The antibodies have been tested by fluorescence techniques using a confocal laser scanning microscope. All the antibodies showed specifc labelling pattern and the results, although preliminary in nature, could open new perspectives of research.

  13. Purine metabolism in mesophyll protoplasts of tobacco (Nicotiana tabacum) leaves.

    OpenAIRE

    Barankiewicz, J; Paszkowski, J

    1980-01-01

    The overall metabolism of purines was studied in tobacco (Nicotiana tabacum) mesophyll protoplasts. Metabolic pathways were studied by measuring the conversion of radioactive adenine, adenosine, hypoxanthine and guanine into purine ribonucleotides, ribonucleosides, bases and nucleic acid constituents. Adenine was extensively deaminated to hypoxanthine, whereupon it was also converted into AMP and incorporated into nucleic acids. Adenosine was mainly hydrolysed to adenine. Inosinate formed fro...

  14. Acute toxicity of tobacco ( Nicotiana tobaccum ) leaf dust on ...

    African Journals Online (AJOL)

    Experiments were conducted using dry tobacco (Nicotiana tobaccum) leaves aqueous extract to determine the acute toxicity and sub lethal effects on some haematological indices of Oreochromis niloticus using static renewable bioassay method. The extract was found to be toxic with a 48-h LC50 value of 109.6 mg/l.

  15. Pressurizer model for Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Parkansky, D.G.; Bedrossian, G.C.

    1993-01-01

    Since the models normally used for he simulation of eventual accidents at the Embalse nuclear power plant with the FIREBIRD III code did not work satisfactorily when the pressurizer becomes empty of liquid, a new model was developed. This report presents the governing equations as well as the calculation technique, for which a computer program was made. An example of application is also presented. The results show that this new model can easily solve the problem of lack of liquid in the pressurizer, as it lets the fluid enter and exit freely, according to the pressure transient at the reactor outlet headers. (author)

  16. Expression of a bioactive bacteriophage endolysin in Nicotiana benthamiana plants

    Science.gov (United States)

    The emergence and spread of antibiotic-resistant pathogens has led to an increased interest in alternative antimicrobial treatments, such as bacteriophage, bacteriophage-encoded peptidoglycan hydrolases (endolysins) and antimicrobial peptides. In our study, the antimicrobial activity of the CP933 en...

  17. Transcriptome analysis of Nicotiana tabacum infected by Cucumber mosaic virus during systemic symptom development.

    Directory of Open Access Journals (Sweden)

    Jie Lu

    Full Text Available Virus infection of plants may induce a variety of disease symptoms. However, little is known about the molecular mechanism of systemic symptom development in infected plants. Here we performed the first next-generation sequencing study to identify gene expression changes associated with disease development in tobacco plants (Nicotiana tabacum cv. Xanthi nc induced by infection with the M strain of Cucumber mosaic virus (M-CMV. Analysis of the tobacco transcriptome by RNA-Seq identified 95,916 unigenes, 34,408 of which were new transcripts by database searches. Deep sequencing was subsequently used to compare the digital gene expression (DGE profiles of the healthy plants with the infected plants at six sequential disease development stages, including vein clearing, mosaic, severe chlorosis, partial and complete recovery, and secondary mosaic. Thousands of differentially expressed genes were identified, and KEGG pathway analysis of these genes suggested that many biological processes, such as photosynthesis, pigment metabolism and plant-pathogen interaction, were involved in systemic symptom development. Our systematic analysis provides comprehensive transcriptomic information regarding systemic symptom development in virus-infected plants. This information will help further our understanding of the detailed mechanisms of plant responses to viral infection.

  18. Optimization and utilization of Agrobacterium-mediated transient protein production in Nicotiana.

    Science.gov (United States)

    Shamloul, Moneim; Trusa, Jason; Mett, Vadim; Yusibov, Vidadi

    2014-04-19

    Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).

  19. Plants status monitor: Modelling techniques and inherent benefits

    International Nuclear Information System (INIS)

    Breeding, R.J.; Lainoff, S.M.; Rees, D.C.; Prather, W.A.; Fickiessen, K.O.E.

    1987-01-01

    The Plant Status Monitor (PSM) is designed to provide plant personnel with information on the operational status of the plant and compliance with the plant technical specifications. The PSM software evaluates system models using a 'distributed processing' technique in which detailed models of individual systems are processed rather than by evaluating a single, plant-level model. In addition, development of the system models for PSM provides inherent benefits to the plant by forcing detailed reviews of the technical specifications, system design and operating procedures, and plant documentation. (orig.)

  20. Fractionation and characterization of semi polar and polar compounds from leaf extract Nicotiana tabaccum L. reflux ethanol extraction results

    Science.gov (United States)

    Rahardjo, Andhika Priotomo; Fauzantoro, Ahmad; Gozan, Misri

    2018-02-01

    The decline in cigarette production as the solution of health problems can interfere with the welfare of tobacco farmers in Indonesia. So, it is required to utilize the alternative uses of tobacco with chemical compounds inside it as the raw material for producing alternative products. One of the methods that is efficient in separating chemical compounds from plant extracts is fractionation and characterization method. This method has never been used for Nicotiana tabaccum L. extract using semi polar and polar solvents. This study begins with preparing Nicotiana tabaccum L. extract ingredients obtained through reflux ethanol extraction process. Extracts are analyzed by HPLC which serves to determine the chemical compounds in tobacco extract qualitatively. Extract that has been analyzed, is then fractionated using column chromatography with semi polar (ethyl acetate) and polar (ethane) solvents sequentially. Chemical compounds from tobacco extracts will be dissolved in accordance with the polarity of each solvents. The chemical compound is then characterized using HPLC quantitatively and qualitatively. Then, the data that has been obtained is used to find the partition coefficient of the main components in Nicotiana tabaccum L., which is Nicotine (kN) in Virginia 1 (Ethyl Acetate) fraction at 0.075; Virginia 2 (Ethyl Acetate) fraction at 0.037; And Virginia 3 (Ethyl Acetate) fraction at 0.043.

  1. Initiation of Setaria as a model plant

    Directory of Open Access Journals (Sweden)

    Xianmin DIAO,James SCHNABLE,Jeffrey L. BENNETZEN,Jiayang LI

    2014-02-01

    Full Text Available Model organisms such as Arabidopsis (Arabidopsis thaliana and rice (Oryza sativa have proven essential for efficient scientific discovery and development of new methods. With the diversity of plant lineages, some important processes such as C4 photosynthesis are not found in either Arabidopsis or rice, so new model species are needed. Due to their small diploid genomes, short life cycles, self-pollination, small adult statures and prolific seed production, domesticated foxtail millet (Setaria italica and its wild ancestor, green foxtail (S. viridis, have recently been proposed as novel model species for functional genomics of the Panicoideae, especially for study of C4 photosynthesis. This review outlines the development of these species as model organisms, and discusses current challenges and future potential of a Setaria model.

  2. Complexities in a Plant-Herbivore Model

    Directory of Open Access Journals (Sweden)

    Rajni SHARMA

    2017-10-01

    Full Text Available A simple host-parasite type model has been considered to study the interaction of certain plants and herbivores. The two dimensional discrete time model utilizes leaf and herbivore biomass as state variables. The parameter space consists of the growth rate of the host population and a parameter describing the damage inflicted by herbivores. Perceptive bifurcation diagrams, which give insightful results, have been present here showing chaos and complexity in the system during evolution. Measure of complexity and chaos in the system be explained by performing numerical calculations and obtaining Lyapunov exponents, topological entropies and correlation dimension. Results are displayed through interesting graphics.

  3. A gene expression microarray for Nicotiana benthamiana based on de novo transcriptome sequence assembly.

    Science.gov (United States)

    Goralski, Michal; Sobieszczanska, Paula; Obrepalska-Steplowska, Aleksandra; Swiercz, Aleksandra; Zmienko, Agnieszka; Figlerowicz, Marek

    2016-01-01

    Nicotiana benthamiana has been widely used in laboratories around the world for studying plant-pathogen interactions and posttranscriptional gene expression silencing. Yet the exploration of its transcriptome has lagged behind due to the lack of both adequate sequence information and genome-wide analysis tools, such as DNA microarrays. Despite the increasing use of high-throughput sequencing technologies, the DNA microarrays still remain a popular gene expression tool, because they are cheaper and less demanding regarding bioinformatics skills and computational effort. We designed a gene expression microarray with 103,747 60-mer probes, based on two recently published versions of N. benthamiana transcriptome (v.3 and v.5). Both versions were reconstructed from RNA-Seq data of non-strand-specific pooled-tissue libraries, so we defined the sense strand of the contigs prior to designing the probe. To accomplish this, we combined a homology search against Arabidopsis thaliana proteins and hybridization to a test 244k microarray containing pairs of probes, which represented individual contigs. We identified the sense strand in 106,684 transcriptome contigs and used this information to design an Nb-105k microarray on an Agilent eArray platform. Following hybridization of RNA samples from N. benthamiana roots and leaves we demonstrated that the new microarray had high specificity and sensitivity for detection of differentially expressed transcripts. We also showed that the data generated with the Nb-105k microarray may be used to identify incorrectly assembled contigs in the v.5 transcriptome, by detecting inconsistency in the gene expression profiles, which is indicated using multiple microarray probes that match the same v.5 primary transcripts. We provided a complete design of an oligonucleotide microarray that may be applied to the research of N. benthamiana transcriptome. This, in turn, will allow the N. benthamiana research community to take full advantage of

  4. Silencing of the FRO1 gene and its effects on iron partition in Nicotiana benthamiana.

    Science.gov (United States)

    Gama, Florinda; Saavedra, Teresa; Dandlen, Susana; de Varennes, Amarilis; Correia, Pedro J; Pestana, Maribela; Nolasco, Gustavo

    2017-05-01

    To evaluate the dynamic role of the ferric-chelate reductase enzyme (FCR) and to identify possible pathways of regulation of its activity in different plant organs an investigation was conducted by virus-induced gene silencing (VIGS) using tobacco rattle virus (TRV) to silence the ferric reductase oxidase gene (FRO1) that encodes the FCR enzyme. Half of Nicotiana benthamiana plants received the VIGS vector and the rest remained as control. Four treatments were imposed: two levels of Fe in the nutrient solution (0 or 2.5 μM of Fe), each one with silenced or non-silenced (VIGS-0; VIGS-2.5) plants. Plants grown without iron (0; VIGS-0) developed typical symptoms of iron deficiency in the youngest leaves. To prove that FRO1 silencing had occurred, resupply of Fe (R) was done by adding 2.5 μM of Fe to the nutrient solution in a subset of chlorotic plants (0-R; VIGS-R). Twelve days after resupply, 0-R plants had recovered from Fe deficiency while plants containing the VIGS vector (VIGS-R) remained chlorotic and both FRO1 gene expression and FCR activity were considerably reduced, consequently preventing Fe uptake. With the VIGS technique we were able to silence the FRO1 gene in N. benthamiana and point out its importance in chlorophyll synthesis and Fe partition. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Citrus leaf blotch virus invades meristematic regions in Nicotiana benthamiana and citrus.

    Science.gov (United States)

    Agüero, Jesús; Vives, María Carmen; Velázquez, Karelia; Ruiz-Ruiz, Susana; Juárez, Jose; Navarro, Luis; Moreno, Pedro; Guerri, José

    2013-08-01

    To invade systemically host plants, viruses need to replicate in the infected cells, spread to neighbouring cells through plasmodesmata and move to distal parts of the plant via sieve tubes to start new infection foci. To monitor the infection of Nicotiana benthamiana plants by Citrus leaf blotch virus (CLBV), leaves were agroinoculated with an infectious cDNA clone of the CLBV genomic RNA expressing green fluorescent protein (GFP) under the transcriptional control of a duplicate promoter of the coat protein subgenomic RNA. Fluorescent spots first appeared in agroinfiltrated leaves 11-12 days after infiltration, indicating CLBV replication. Then, after entering the phloem vascular system, CLBV was unloaded in the upper parts of the plant and invaded all tissues, including flower organs and meristems. GFP fluorescence was not visible in citrus plants infected with CLBV-GFP. Therefore, to detect CLBV in meristematic regions, Mexican lime (Citrus aurantifolia) plants were graft inoculated with CLBV, with Citrus tristeza virus (CTV), a virus readily eliminated by shoot-tip grafting in vitro, or with both simultaneously. Although CLBV was detected by hybridization and real-time reverse transcription-polymerase chain reaction (RT-PCR) in 0.2-mm shoot tips in all CLBV-inoculated plants, CTV was not detected. These results explain the difficulty in eliminating CLBV by shoot-tip grafting in vitro. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  6. Unpredictability of nectar nicotine promotes outcrossing by hummingbirds in Nicotiana attenuata.

    Science.gov (United States)

    Kessler, Danny; Bhattacharya, Samik; Diezel, Celia; Rothe, Eva; Gase, Klaus; Schöttner, Matthias; Baldwin, Ian T

    2012-08-01

    Many plants use sophisticated strategies to maximize their reproductive success via outcrossing. Nicotiana attenuata flowers produce nectar with nicotine at concentrations that are repellent to hummingbirds, increasing the number of flowers visited per plant. In choice tests using native hummingbirds, we show that these important pollinators learn to tolerate high-nicotine nectar but prefer low-nicotine nectar, and show no signs of nicotine addiction. Nectar nicotine concentrations, unlike those of other vegetative tissues, are unpredictably variable among flowers, not only among populations, but also within populations, and even among flowers within an inflorescence. To evaluate whether variations in nectar nicotine concentrations increase outcrossing, polymorphic microsatellite markers, optimized to evaluate paternity in native N. attenuata populations, were used to compare outcrossing in plants silenced for expression of a biosynthetic gene for nicotine production (Napmt1/2) and in control empty vector plants, which were antherectomized and transplanted into native populations. When only exposed to hummingbird pollinators, seeds produced by flowers with nicotine in their nectar had a greater number of genetically different sires, compared to seeds from nicotine-free flowers. As the variation in nectar nicotine levels among flowers in an inflorescence decreased in N. attenuata plants silenced in various combinations of three Dicer-like (DCL) proteins, small RNAs are probably involved in the unpredictable variation in nectar nicotine levels within a plant. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  7. Towards a reference plant trait ontology for modeling knowledge of plant traits and phenotypes

    Science.gov (United States)

    Ontology engineering and knowledge modeling for the plant sciences is expected to contribute to the understanding of the basis of plant traits that determine phenotypic expression in a given environment. Several crop- or clade-specific plant trait ontologies have been developed to describe plant tr...

  8. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen phytophthora infestans in Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Angela Chaparro-Garcia

    2011-01-01

    Full Text Available The filamentous oomycete plant pathogen Phytophthora infestans causes late blight, an economically important disease, on members of the nightshade family (Solanaceae, such as the crop plants potato and tomato. The related plant Nicotiana benthamiana is a model system to study plant-pathogen interactions, and the susceptibility of N. benthamiana to Phytophthora species varies from susceptible to resistant. Little is known about the extent to which plant basal immunity, mediated by membrane receptors that recognise conserved pathogen-associated molecular patterns (PAMPs, contributes to P. infestans resistance.We found that different species of Phytophthora have varying degrees of virulence on N. benthamiana ranging from avirulence (incompatible interaction to moderate virulence through to full aggressiveness. The leucine-rich repeat receptor-like kinase (LRR-RLK BAK1/SERK3 is a major modulator of PAMP-triggered immunity (PTI in Arabidopsis thaliana and N. benthamiana. We cloned two NbSerk3 homologs, NbSerk3A and NbSerk3B, from N. benthamiana based on sequence similarity to the A. thaliana gene. N. benthamiana plants silenced for NbSerk3 showed markedly enhanced susceptibility to P. infestans infection but were not altered in resistance to Phytophthora mirabilis, a sister species of P. infestans that specializes on a different host plant. Furthermore, silencing of NbSerk3 reduced the cell death response triggered by the INF1, a secreted P. infestans protein with features of PAMPs.We demonstrated that N. benthamiana NbSERK3 significantly contributes to resistance to P. infestans and regulates the immune responses triggered by the P. infestans PAMP protein INF1. In the future, the identification of novel surface receptors that associate with NbSERK3A and/or NbSERK3B should lead to the identification of new receptors that mediate recognition of oomycete PAMPs, such as INF1.

  9. stressed tobacco (Nicotiana rustica L. var. Souffi)

    African Journals Online (AJOL)

    edoja

    African Journal of Biotechnology Vol. 12(12), pp. 1392-1400, 20 March, 2013. Available online at ... Key words: Assimilation, growth, salt stress, nitrogen, mineral nutrition, tobacco. INTRODUCTION. Plants are continuously exposed ... 2009). Ammonium originated from direct absorption,. NR/NiR activities, photorespiration, ...

  10. Nicotiana benthamiana MAPK-WRKY pathway confers resistance to a necrotrophic pathogen Botrytis cinerea.

    Science.gov (United States)

    Adachi, Hiroaki; Ishihama, Nobuaki; Nakano, Takaaki; Yoshioka, Miki; Yoshioka, Hirofumi

    2016-06-02

    MEK2-SIPK/WIPK cascade, a Nicotiana benthamiana mitogen-activated protein kinase (MAPK) cascade, is an essential signaling pathway for plant immunity and involved in hypersensitive response (HR) accompanied by cell death. WRKY transcription factors as substrates of SIPK and WIPK have been isolated and implicated in HR cell death. Here, we show virus-induced gene silencing of WRKY genes compromised constitutively active MEK2-triggered cell death in N. benthamiana leaves. In general, HR cell death enhances susceptibility to necrotrophic pathogens such as Botrytis cinerea. However, the WRKY gene silencing elevated susceptibility to B. cinerea. These findings suggest that downstream WRKYs of MEK2-SIPK/WIPK cascade are required for cell death-dependent and -independent immunities in N. benthamiana.

  11. Early events induced by the toxin deoxynivalenol lead to programmed cell death in Nicotiana tabacum cells.

    Science.gov (United States)

    Yekkour, Amine; Tran, Daniel; Arbelet-Bonnin, Delphine; Briand, Joël; Mathieu, Florence; Lebrihi, Ahmed; Errakhi, Rafik; Sabaou, Nasserdine; Bouteau, François

    2015-09-01

    Deoxynivalenol (DON) is a mycotoxin affecting animals and plants. This toxin synthesized by Fusarium culmorum and Fusarium graminearum is currently believed to play a decisive role in the fungal phytopathogenesis as a virulence factor. Using cultured cells of Nicotiana tabacum BY2, we showed that DON-induced programmed cell death (PCD) could require transcription and translation processes, in contrast to what was observed in animal cells. DON could induce different cross-linked pathways involving (i) reactive oxygen species (ROS) generation linked, at least partly, to a mitochondrial dysfunction and a transcriptional down-regulation of the alternative oxidase (Aox1) gene and (ii) regulation of ion channel activities participating in cell shrinkage, to achieve PCD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Expression, Purification, and Biophysical Characterization of a Secreted Anthrax Decoy Fusion Protein in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Kalimuthu Karuppanan

    2017-01-01

    Full Text Available Anthrax toxin receptor-mediated drug development for blocking anthrax toxin action has received much attention in recent decades. In this study, we produced a secreted anthrax decoy fusion protein comprised of a portion of the human capillary morphogenesis gene-2 (CMG2 protein fused via a linker to the fragment crystallizable (Fc domain of human immunoglobulin G1 in Nicotiana benthamiana plants using a transient expression system. Using the Cauliflower Mosaic Virus (CaMV 35S promoter and co-expression with the p19 gene silencing suppressor, we were able to achieve a high level of recombinant CMG2-Fc-Apo (rCMG2-Fc-Apo protein accumulation. Production kinetics were observed up to eight days post-infiltration, and maximum production of 826 mg/kg fresh leaf weight was observed on day six. Protein A affinity chromatography purification of the rCMG2-Fc-Apo protein from whole leaf extract and apoplast wash fluid showed the homodimeric form under non-reducing gel electrophoresis and mass spectrometry analysis confirmed the molecular integrity of the secreted protein. The N-glycosylation pattern of purified rCMG2-Fc-Apo protein was analysed; the major portion of N-glycans consists of complex type structures in both protein samples. The most abundant (>50% N-glycan structure was GlcNAc2(XylMan3(FucGlcNAc2 in rCMG2-Fc-Apo recovered from whole leaf extract and apoplast wash fluid. High mannose N-glycan structures were not detected in the apoplast wash fluid preparation, which confirmed the protein secretion. Altogether, these findings demonstrate that high-level production of rCMG2-Fc-Apo can be achieved by transient production in Nicotiana benthamiana plants with apoplast targeting.

  13. 3D modelling of branching in plants

    NARCIS (Netherlands)

    Evers, J.B.

    2011-01-01

    Shoot branching is a key determinant of overall aboveground plant form. During plant development, the number of branches formed strongly influences the amount of light absorbed by the plant, and thus the plant’s competitive strength in terms of light capture in relation to neighbouring plants.

  14. Non-host resistance induced by the Xanthomonas effector XopQ is widespread within the genus Nicotiana and functionally depends on EDS1

    Directory of Open Access Journals (Sweden)

    Norman Adlung

    2016-11-01

    Full Text Available Most Gram-negative plant pathogenic bacteria translocate effector proteins (T3Es directly into plant cells via a conserved type III secretion system, which is essential for pathogenicity in susceptible plants. In resistant plants, recognition of some T3Es is mediated by corresponding resistance (R genes or R proteins and induces effector triggered immunity (ETI that often results in programmed cell death reactions. The identification of R genes and understanding their evolution/distribution bears great potential for the generation of resistant crop plants. We focus on T3Es from Xanthomonas campestris pv. vesicatoria (Xcv, the causal agent of bacterial spot disease on pepper and tomato plants. Here, 86 Solanaceae lines mainly of the genus Nicotiana were screened for phenotypical reactions after Agrobacterium tumefaciens-mediated transient expression of 21 different Xcv effectors to (i identify new plant lines for T3E characterization, (ii analyze conservation/evolution of putative R genes and (iii identify promising plant lines as repertoire for R-gene isolation. The effectors provoked different reactions on closely related plant lines indicative of a high variability and evolution rate of potential R genes. In some cases, putative R genes were conserved within a plant species but not within superordinate phylogenetical units. Interestingly, the effector XopQ was recognized by several Nicotiana spp. lines, and Xcv infection assays revealed that XopQ is a host range determinant in many Nicotiana species. Non-host resistance against Xcv and XopQ recognition in N. benthamiana required EDS1, strongly suggesting the presence of a TIR domain-containing XopQ-specific R protein in these plant lines. XopQ is a conserved effector among most xanthomonads, pointing out the XopQ-recognizing RxopQ as candidate for targeted crop improvement.

  15. Management of chili pepper root rot and wilt (caused by Phytophthora nicotianae) by grafting onto resistant rootstock

    OpenAIRE

    Mourad SAADOUN; Mohamed Bechir ALLAGUI

    2013-01-01

    Root rot and plant wilting caused by Phytophthora nicotianae is a severe disease of chili pepper (Capsicum annuum L.) in open fields and under greenhouse production in Tunisia. Chili pepper grafting for disease manage- ment is attracting increased interest in recent years. Using the tube grafting technique, different compatible scion/rootstock combinations were obtained with the wild-type pepper SCM334 and the local chili pepper cultivars ‘Beldi’ and ‘Baker’. SCM334 was resistant to P. nicoti...

  16. Spatial analysis of the incidence of Phytophthora infestans (Mont. De Bary and Phytophthora nicotianae Breda de Haan on potato

    Directory of Open Access Journals (Sweden)

    Leónides Castellanos González

    2016-03-01

    Full Text Available The objective of this research was to conduct a spatial analysis of the incidence of Phytophthora nicotianae Breda de Haan and Phytophthora infestans (Mont. De Bary, during five seasons of potato in Fields Company Miscellaneous Crops in Horquita, Cienfuegos (2003-2004 to 2007-2008. Information about pathogens, collected by the Plant Protection Station of Yaguaramas, was used in order to do so. An alpha numerical database was made, oriented to a group of areas under center pivot irrigation machines (Kubans and Bayamón and its quadrants. Parallel to this, mapping of center pivot machines and quadrants was generated in MapInfo GIS 8.5. Several automatic geo codifications were made in order to relate the alphanumeric database and the mapping, and thematic maps were generated in the presence or absence of pathogens. The two study agents have presented high spatial variability during the five planting seasons. Both have influenced the same geographical area with similar appearance date. P. infestans has not expressed a defined dispersion pattern and it has spread at random from the primary source of incidence, while Phytophthora nicotianae has become an endemic agent which shows a dispersion pattern towards neighboring areas or areas connected by the road network from the primary sources, which have been associated with poor land leveling and late or intermediate planting seasons.

  17. Evolution of herbivore-induced early defense signaling was shaped by genome-wide duplications inNicotiana.

    Science.gov (United States)

    Zhou, Wenwu; Brockmöller, Thomas; Ling, Zhihao; Omdahl, Ashton; Baldwin, Ian T; Xu, Shuqing

    2016-11-04

    Herbivore-induced defenses are widespread, rapidly evolving and relevant for plant fitness. Such induced defenses are often mediated by early defense signaling (EDS) rapidly activated by the perception of herbivore associated elicitors (HAE) that includes transient accumulations of jasmonic acid (JA). Analyzing 60 HAE-induced leaf transcriptomes from closely-related Nicotiana species revealed a key gene co-expression network (M4 module) which is co-activated with the HAE-induced JA accumulations but is elicited independently of JA, as revealed in plants silenced in JA signaling. Functional annotations of the M4 module were consistent with roles in EDS and a newly identified hub gene of the M4 module (NaLRRK1) mediates a negative feedback loop with JA signaling. Phylogenomic analysis revealed preferential gene retention after genome-wide duplications shaped the evolution of HAE-induced EDS in Nicotiana . These results highlight the importance of genome-wide duplications in the evolution of adaptive traits in plants.

  18. Crop plants as models for understanding plant adaptation and diversification

    Science.gov (United States)

    Olsen, Kenneth M.; Wendel, Jonathan F.

    2013-01-01

    Since the time of Darwin, biologists have understood the promise of crop plants and their wild relatives for providing insight into the mechanisms of phenotypic evolution. The intense selection imposed by our ancestors during plant domestication and subsequent crop improvement has generated remarkable transformations of plant phenotypes. Unlike evolution in natural settings, descendent and antecedent conditions for crop plants are often both extant, providing opportunities for direct comparisons through crossing and other experimental approaches. Moreover, since domestication has repeatedly generated a suite of “domestication syndrome” traits that are shared among crops, opportunities exist for gaining insight into the genetic and developmental mechanisms that underlie parallel adaptive evolution. Advances in our understanding of the genetic architecture of domestication-related traits have emerged from combining powerful molecular technologies with advanced experimental designs, including nested association mapping, genome-wide association studies, population genetic screens for signatures of selection, and candidate gene approaches. These studies may be combined with high-throughput evaluations of the various “omics” involved in trait transformation, revealing a diversity of underlying causative mutations affecting phenotypes and their downstream propagation through biological networks. We summarize the state of our knowledge of the mutational spectrum that generates phenotypic novelty in domesticated plant species, and our current understanding of how domestication can reshape gene expression networks and emergent phenotypes. An exploration of traits that have been subject to similar selective pressures across crops (e.g., flowering time) suggests that a diversity of targeted genes and causative mutational changes can underlie parallel adaptation in the context of crop evolution. PMID:23914199

  19. Crop plants as models for understanding plant adaptation and diversification

    Directory of Open Access Journals (Sweden)

    Kenneth M Olsen

    2013-08-01

    Full Text Available Since the time of Darwin, biologists have understood the promise of crop plants and their wild relatives for providing insight into the mechanisms of phenotypic evolution. The intense selection imposed by our ancestors during plant domestication and subsequent crop improvement has generated remarkable transformations of plant phenotypes. Unlike evolution in natural settings, descendent and antecedent conditions for crop plants are often both extant, providing opportunities for direct comparisons through crossing and other experimental approaches. Moreover, since domestication has repeatedly generated a suite of domestication syndrome traits that are shared among crops, opportunities exist for gaining insight into the genetic and developmental mechanisms that underlie parallel adaptive evolution. Advances in our understanding of the genetic architecture of domestication-related traits have emerged from combining powerful molecular technologies with advanced experimental designs, including nested association mapping, genome-wide association studies, population genetic screens for signatures of selection, and candidate gene approaches. These studies may be combined with high-throughput evaluations of the various omics involved in trait transformation, revealing a diversity of underlying causative mutations affecting phenotypes and their downstream propagation through biological networks. We summarize the state of our knowledge of the mutational spectrum that generates phenotypic novelty in domesticated plant species, and our current understanding of how domestication can reshape gene expression networks and emergent phenotypes. An exploration of traits that have been subject to similar selective pressures across crops (e.g., flowering time suggests that a diversity of targeted genes and causative mutational changes can underlie parallel adaptation in the context of crop evolution.

  20. C3HC4-type RING finger protein NbZFP1 is involved in growth and fruit development in Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Wenxian Wu

    Full Text Available C3HC4-type RING finger proteins constitute a large family in the plant kingdom and play important roles in various physiological processes of plant life. In this study, a C3HC4-type zinc finger gene was isolated from Nicotiana benthamiana. Sequence analysis indicated that the gene encodes a 24-kDa protein with 191 amino acids containing one typical C3HC4-type zinc finger domain; this gene was named NbZFP1. Transient expression of pGDG-NbZFP1 demonstrated that NbZFP1 was localized to the chloroplast, especially in the chloroplasts of cells surrounding leaf stomata. Virus-induced gene silencing (VIGS analysis indicated that silencing of NbZFP1 hampered fruit development, although the height of the plants was normal. An overexpression construct was then designed and transferred into Nicotiana benthamiana, and PCR and Southern blot showed that the NbZFP1 gene was successfully integrated into the Nicotiana benthamiana genome. The transgenic lines showed typical compactness, with a short internode length and sturdy stems. This is the first report describing the function of a C3HC4-type RING finger protein in tobacco.

  1. Changes in cytokinins are sufficient to alter developmental patterns of defense metabolites in Nicotiana attenuata.

    Science.gov (United States)

    Brütting, Christoph; Schäfer, Martin; Vanková, Radomíra; Gase, Klaus; Baldwin, Ian T; Meldau, Stefan

    2017-01-01

    Plant defense metabolites are well known to be regulated developmentally. The optimal defense (OD) theory posits that a tssue's fitness values and probability of attack should determine defense metabolite allocations. Young leaves are expected to provide a larger fitness value to the plant, and therefore their defense allocations should be higher when compared with older leaves. The mechanisms that coordinate development with defense remain unknown and frequently confound tests of the OD theory predictions. Here we demonstrate that cytokinins (CKs) modulate ontogeny-dependent defenses in Nicotiana attenuata. We found that leaf CK levels highly correlate with inducible defense expressions with high levels in young and low levels in older leaves. We genetically manipulated the developmental patterns of two different CK classes by using senescence- and chemically inducible expression of CK biosynthesis genes. Genetically modifying the levels of different CKs in leaves was sufficient to alter ontogenic patterns of defense metabolites. We conclude that the developmental regulation of growth hormones that include CKs plays central roles in connecting development with defense and therefore in establishing optimal patterns of defense allocation in plants. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  2. Larval Helicoverpa zea Transcriptional, Growth and Behavioral Responses to Nicotine and Nicotiana tabacum

    Directory of Open Access Journals (Sweden)

    Linus Gog

    2014-09-01

    Full Text Available The polyphagous feeding habits of the corn earworm, Helicoverpa zea (Boddie, underscore its status as a major agricultural pest with a wide geographic distribution and host plant repertoire. To study the transcriptomic response to toxins in diet, we conducted a microarray analysis of H. zea caterpillars feeding on artificial diet, diet laced with nicotine and Nicotiana tabacum (L. plants. We supplemented our analysis with growth and aversion bioassays. The transcriptome reflects an abundant expression of proteases, chitin, cytochrome P450 and immune-related genes, many of which are shared between the two experimental treatments. However, the tobacco treatment tended to elicit stronger transcriptional responses than nicotine-laced diet. The salivary factor glucose oxidase, known to suppress nicotine induction in the plant, was upregulated by H. zea in response to tobacco but not to nicotine-laced diet. Reduced caterpillar growth rates accompanied the broad regulation of genes associated with growth, such as juvenile hormone epoxide hydrolase. The differential expression of chemosensory proteins, such as odorant binding-protein-2 precursor, as well as the neurotransmitter nicotinic-acetylcholine-receptor subunit 9, highlights candidate genes regulating aversive behavior towards nicotine. We suggest that an observed coincidental rise in cannibalistic behavior and regulation of proteases and protease inhibitors in H. zea larvae signify a compensatory response to induced plant defenses.

  3. Modeling the element cycle of aquatic plants

    International Nuclear Information System (INIS)

    Asaeda, Takashi

    2007-01-01

    Aquatic plants play an important role in element cycles in wetlands and the efficiency of the process is extremely related to their proportional biomass allocation to above- and belowground organs. Therefore, the framework of most macrophyte productivity models is usually similar with a mass-balance approach consisting of gross production, respiration and mortality losses and the translocation between organs. These growth models are incorporated with decomposition models to evaluate the annual cycle of elements. Perennial emergent macrophytes with a relatively large biomass have a particularly important role in element cycles. Their phenological stages, such as the beginning of hibernation of belowground rhizome systems, emergence of new shoots in spring with resources stocked in the rhizomes, flowering, downward translocation of photosynthetic products later on and then the mortality of the aboveground system in late autumn, depend on the environmental conditions, basically the nutrients, water depth, climatic variations, etc. Although some species retain standing dead shoots for a long time, dead shoots easily fall into water, starting to decompose in the immediate aftermath. However, their decomposition rates in the water are relatively low, causing to accumulate large amounts of organic sediments on the bottom. Together with the deposition of allochthonous suspended matters in the stand, this process decreases the water depth, transforming wetlands gradually into land. The depth of penetration of roots into the sediments to uptake nutrients and water is extremely site specific, however, in water-logged areas, the maximum penetrable depth may be approximately estimated by considering the ability of oxygen transport into the rhizome system. The growth of perennial submerged plants is also estimated by a process similar to that of emergent macrophytes. However, compared with emergent macrophytes, the root system of submerged macrophytes is weaker, and the nutrient

  4. Application of succulent plant leaves for Agrobacterium infiltration-mediated protein production

    Science.gov (United States)

    Infiltration of tobacco leaves with a suspension of Agrobacterium tumefaciens harboring a binary plant expression plasmid provides a convenient method for laboratory scale protein production. When expressing plant cell wall degrading enzymes in the widely used tobacco (Nicotiana benthamiana), diffic...

  5. Multiscale and Multimodal Approaches to Study Autophagy in Model Plants

    Directory of Open Access Journals (Sweden)

    Jessica Marion

    2018-01-01

    Full Text Available Autophagy is a catabolic process used by eukaryotic cells to maintain or restore cellular and organismal homeostasis. A better understanding of autophagy in plant biology could lead to an improvement of the recycling processes of plant cells and thus contribute, for example, towards reducing the negative ecological consequences of nitrogen-based fertilizers in agriculture. It may also help to optimize plant adaptation to adverse biotic and abiotic conditions through appropriate plant breeding or genetic engineering to incorporate useful traits in relation to this catabolic pathway. In this review, we describe useful protocols for studying autophagy in the plant cell, taking into account some specificities of the plant model.

  6. Pollination ecology of the invasive tree tobacco Nicotiana glauca: comparisons across native and non-native ranges

    Directory of Open Access Journals (Sweden)

    Jeff Ollerton

    2012-10-01

    Full Text Available Interactions with pollinators are thought to play a significant role in determining whether plant species become invasive, and ecologically generalised species are predicted to be more likely to invade than more specialised species. Using published and unpublished data we assessed the floral biology and pollination ecology of the South American native Nicotiana glauca (Solanaceae which has become a significant invasive of semi-arid parts of the world. In regions where specialised bird pollinators are available, for example hummingbirds in California and sunbirds in South Africa and Israel, N. glauca interacts with these local pollinators and sets seed by both out-crossing and selfing. In areas where there are no such birds, such as the Canary Islands and Greece, abundant viable seed is set by selfing, facilitated by the shorter stigma-anther distance compared to plants in native populations. Surprisingly, in these areas without pollinating birds, the considerable nectar resources are only rarely exploited by other flower visitors such as bees or butterflies, either legitimately or by nectar robbing. We conclude that Nicotiana glauca is a successful invasive species outside of its native range, despite its functionally specialised hummingbird pollination system, because it has evolved to become more frequently self pollinating in areas where it is introduced. Its invasion success is not predictable from what is known of its interactions with pollinators in its home range.

  7. SASSYS-1 balance-of-plant component models for an integrated plant response

    International Nuclear Information System (INIS)

    Ku, J.-Y.

    1989-01-01

    Models of power plant heat transfer components and rotating machinery have been added to the balance-of-plant model in the SASSYS-1 liquid metal reactor systems analysis code. This work is part of a continuing effort in plant network simulation based on the general mathematical models developed. The models described in this paper extend the scope of the balance-of-plant model to handle non-adiabatic conditions along flow paths. While the mass and momentum equations remain the same, the energy equation now contains a heat source term due to energy transfer across the flow boundary or to work done through a shaft. The heat source term is treated fully explicitly. In addition, the equation of state is rewritten in terms of the quality and separate parameters for each phase. The models are simple enough to run quickly, yet include sufficient detail of dominant plant component characteristics to provide accurate results. 5 refs., 16 figs., 2 tabs

  8. Coupling of Groundwater Transport and Plant Uptake Models

    DEFF Research Database (Denmark)

    Rein, Arno; Bauer-Gottwein, Peter; Trapp, Stefan

    2010-01-01

    Plants significantly influence contaminant transport and fate. Important processes are uptake of soil and groundwater contaminants, as well as biodegradation in plants and their root zones. Models for the prediction of chemical uptake into plants are required for the setup of mass balances...... in environmental systems at different scale. Feedback mechanisms between plants and hydrological systems can play an important role, however having received little attention to date. Here, a new model concept for dynamic plant uptake models applying analytical matrix solutions is presented, which can be coupled...... to groundwater transport simulation tools. Exemplary simulations of plant uptake were carried out, in order to estimate concentrations in the soilplant- air system and the influence of plants on contaminant mass fluxes from soil to groundwater....

  9. Dynamic plant uptake modelling and mass flux estimation

    DEFF Research Database (Denmark)

    Rein, Arno; Bauer-Gottwein, Peter; Trapp, Stefan

    2011-01-01

    Plants significantly influence contaminant transport and fate. Important processes are uptake of soil and groundwater contaminants, as well as biodegradation in plants and their root zones. Models for the prediction of chemical uptake into plants are required for the set-up of mass balances...... in environmental systems at different scales. Feedback mechanisms between plants and hydrological systems can play an important role. However, they have received little attention to date. Here, a new model concept for dynamic plant uptake models applying analytical matrix solutions is presented, which can...... be coupled to groundwater transport simulation tools. Exemplary simulations of plant uptake were carried out in order to estimate chemical concentrations in the soil–plant–air system and the influence of plants on contaminant mass fluxes from soil to groundwater....

  10. Numerical Modeling for the Solute Uptake from Groundwater by Plants-Plant Uptake Package

    OpenAIRE

    El-Sayed, Amr A.

    2006-01-01

    A numerical model is presented to describe solute transport in groundwater coupled to sorption by plant roots, translocation into plant stems, and finally evapotranspiration. The conceptual model takes into account both Root Concentration Factor, RCF, and Transpiration Stream Concentration Factor, TSCF for chemicals which are a function of Kow. A similar technique used to simulate the solute transport in groundwater to simulate sorption and plant uptake is used. The mathematical equation is s...

  11. Oxylipin channelling in Nicotiana attenuata: lipoxygenase 2 supplies substrates for green leaf volatile production.

    Science.gov (United States)

    Allmann, Silke; Halitschke, Rayko; Schuurink, Robert C; Baldwin, Ian T

    2010-12-01

    Lipoxygenases (LOXs) are key enzymes in the biosynthesis of oxylipins, and catalyse the formation of fatty acid hydroperoxides (HPs), which represent the first committed step in the synthesis of metabolites that function as signals and defences in plants. HPs are the initial substrates for different branches of the oxylipin pathway, and some plant species may express different LOX isoforms that supply specific branches. Here, we compare isogenic lines of the wild tobacco Nicotiana attenuata with reduced expression of NaLOX2 (irlox2) or NaLOX3 (irlox3) to determine the role of these different LOX isoforms in supplying substrates for two different pathways: green leaf volatiles (GLVs) and jasmonic acid (JA). Reduced NaLOX2 expression strongly decreased the production of GLVs without influencing the formation of JA and JA-related secondary metabolites. Conversely, reduced NaLOX3 expression strongly decreased JA biosynthesis, without influencing GLV production. The temporal expression of NaLOX2 and NaLOX3 also differed after elicitation; NaLOX3 was rapidly induced, attaining highest transcript levels within 1 h after elicitation, whereas NaLOX2 transcripts reached maximum levels after 14 h. These results demonstrate that N. attenuata channels the flux of HPs through the activities of different LOXs, leading to different direct and indirect defence responses mediating the plant's herbivore resistance. © 2010 Blackwell Publishing Ltd.

  12. Analysis of Guard Cell Viability and Action in Senescing Leaves of Nicotiana glauca (Graham), Tree Tobacco.

    Science.gov (United States)

    Ozuna, R; Yera, R; Ortega, K; Tallman, G

    1985-09-01

    In an attempt to determine whether low epidermal conductances to water vapor diffusion of senescing leaves were caused by internal changes in guard cells or by factors external to guard cells, stomatal behavior was examined in intact senescing and nonsenescing leaves of Nicotiana glauca (Graham), tree tobacco, grown in the field or in an environmental chamber. Conductances of senescing leaves were 5 to 10% of the maximum conductances of nonsenescing leaves of the same plant, yet guard cell duplexes isolated from epidermal peels of senescing leaves developed full turgor in the light in solutions containing KCl, and sodium cobaltinitrite staining showed that K(+) accumulated as turgor developed. Ninety-five per cent of the guard cells isolated from senescing leaves concentrated neutral red and excluded trypan blue. Intercellular leaf CO(2) concentrations of senescing and nonsenescing leaves of chamber-grown plants were not significantly different (about 240 microliters per liter), but the potassium contents of adaxial and abaxial epidermes of senescing leaves taken from plants grown in the field were less than half those of nonsenescing leaves. We conclude that guard cells do not undergo the orderly senescence process that characteristically takes place in mesophyll tissue during whole-leaf senescence and that the reduced conductances of senescing leaves are produced by factors external to guard cells.

  13. Plant reference genes for development and stress response studies

    Indian Academy of Sciences (India)

    Plant species included in thisreview are Arabidopsis thaliana, cotton (Gossypium hirsutum), tobacco (Nicotiana benthamiana and N. tabacum), soybean(Glycine max), rice (Oryza sativa), blueberry (Vaccinium corymbosum), tomato (Solanum lycopersicum), wheat (Triticumaestivum), potato (Solanum tuberosum), sugar cane ...

  14. Mathematical modeling tendencies in plant pathology | Contreras ...

    African Journals Online (AJOL)

    Nowadays plant diseases represent one of the major threats for crops around the world, because they carry healthy, economical, environmental and social problems. Considering this, it is necessary to have a description of the dynamics of plant disease in order to have sustainable strategies to prevent and diminish the ...

  15. Modelling asymmetric growth in crowded plant communities

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2010-01-01

    -asymmetric growth part, where growth is assumed to be proportional to a power function of the size of the individual, and a term that reduces the relative growth rate as a decreasing function of the individual plant size and the competitive interactions from other plants in the neighbourhood....

  16. Mathematical modeling tendencies in plant pathology

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-29

    Dec 29, 2009 ... Computers and electronics in agriculture, 64: 149-161. Pandey KK, Pandey PK, Kallo G, Benerje MK (2003). Resistance to early blight of tomato with respect to various parameters of disease epidemics. J. Gen. Plant Pathol. 69: 364-371. Parker IM, Gilbert GS (2004). The evolutionary ecology of novel plant-.

  17. An automation model of Effluent Treatment Plant

    Directory of Open Access Journals (Sweden)

    Luiz Alberto Oliveira Lima Roque

    2012-07-01

    on the conservation of water resources, this paper aims to propose an automation model of an Effluent Treatment Plant, using Ladder programming language and supervisory systems.

  18. Modelling of nuclear power plant decommissioning financing.

    Science.gov (United States)

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Multilevel flow modeling of Monju Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Yoshikawa, Hidekazu; Jørgensen, Sten Bay

    2011-01-01

    functions and structure. The paper will describe how MFM can be used to represent the goals and functions of the Japanese Monju Nuclear Power Plant. A detailed explanation will be given of the model describing the relations between levels of goal, function and structural. Furthermore, it will be explained......Multilevel Flow Modeling is a method for modeling complex processes on multiple levels of means-end and part-whole abstraction. The modeling method has been applied on a wide range of processes including power plants, chemical engineering plants and power systems. The modeling method is supported...

  20. How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model

    Science.gov (United States)

    Jones, Kathryn M.; Kobayashi, Hajime; Davies, Bryan W.; Taga, Michiko E.; Walker, Graham C.

    2009-01-01

    Nitrogen-fixing rhizobial bacteria and leguminous plants have evolved complex signal exchange mechanisms that allow a specific bacterial species to induce its host plant to form invasion structures through which the bacteria can enter the plant root. Once the bacteria have been endocytosed within a host-membrane-bound compartment by root cells, the bacteria differentiate into a new form that can convert atmospheric nitrogen into ammonia. Bacterial differentiation and nitrogen fixation are dependent on the microaerobic environment and other support factors provided by the plant. In return, the plant receives nitrogen from the bacteria, which allows it to grow in the absence of an external nitrogen source. Here, we review recent discoveries about the mutual recognition process that allows the model rhizobial symbiont Sinorhizobium meliloti to invade and differentiate inside its host plant alfalfa (Medicago sativa) and the model host plant barrel medic (Medicago truncatula). PMID:17632573

  1. Description of the power plant model BWR-plasim outlined for the Barsebaeck 2 plant

    International Nuclear Information System (INIS)

    Christensen, P. la Cour.

    1979-08-01

    A description is given of a BWR power plant model outlined for the Barsebaeck 2 plant with data placed at our disposal by the Swedish Power Company Sydkraft A/B. The basic operations are derived and simplifications discussed. The model is implemented with a simulation system DYSYS which assures reliable solutions and easy programming. Emphasis has been placed on the models versatility and flexibility so new features are easy to incorporate. The model may be used for transient calculations for both normal plant conditions and for abnormal occurences as well as for control system studies. (author)

  2. Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences

    Science.gov (United States)

    Bucksch, Alexander; Atta-Boateng, Acheampong; Azihou, Akomian F.; Battogtokh, Dorjsuren; Baumgartner, Aly; Binder, Brad M.; Braybrook, Siobhan A.; Chang, Cynthia; Coneva, Viktoirya; DeWitt, Thomas J.; Fletcher, Alexander G.; Gehan, Malia A.; Diaz-Martinez, Diego Hernan; Hong, Lilan; Iyer-Pascuzzi, Anjali S.; Klein, Laura L.; Leiboff, Samuel; Li, Mao; Lynch, Jonathan P.; Maizel, Alexis; Maloof, Julin N.; Markelz, R. J. Cody; Martinez, Ciera C.; Miller, Laura A.; Mio, Washington; Palubicki, Wojtek; Poorter, Hendrik; Pradal, Christophe; Price, Charles A.; Puttonen, Eetu; Reese, John B.; Rellán-Álvarez, Rubén; Spalding, Edgar P.; Sparks, Erin E.; Topp, Christopher N.; Williams, Joseph H.; Chitwood, Daniel H.

    2017-01-01

    The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics. PMID:28659934

  3. Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences

    Directory of Open Access Journals (Sweden)

    Alexander Bucksch

    2017-06-01

    Full Text Available The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics.

  4. Evaluation model and experimental validation of tritium in agricultural plant

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hee Suk; Keum, Dong Kwon; Lee, Han Soo; Jun, In; Choi, Yong Ho; Lee, Chang Woo [KAERI, Daejon (Korea, Republic of)

    2005-12-15

    This paper describes a compartment dynamic model for evaluating the contamination level of tritium in agricultural plants exposed by accidentally released tritium. The present model uses a time dependent growth equation of plant so that it can predict the effect of growth stage of plant during the exposure time. The model including atmosphere, soil and plant compartments is described by a set of nonlinear ordinary differential equations, and is able to predict time-dependent concentrations of tritium in the compartments. To validate the model, a series of exposure experiments of HTO vapor on Chinese cabbage and radish was carried out at the different growth stage of each plant. At the end of exposure, the tissue free water(TFWT) and the organically bound tritium (OBT) were measured. The measured concentrations were agreed well with model predictions.

  5. Plant lessons: exploring ABCB functionality through structural modeling

    Directory of Open Access Journals (Sweden)

    Aurélien eBailly

    2012-01-01

    Full Text Available In contrast to mammalian ABCB1 proteins, narrow substrate specificity has been extensively documented for plant orthologs shown to catalyze the transport of the plant hormone, auxin. Using the crystal structures of the multidrug exporters Sav1866 and MmABCB1 as templates, we have developed structural models of plant ABCB proteins with a common architecture. Comparisons of these structures identified kingdom-specific candidate substrate-binding regions within the translocation chamber formed by the transmembrane domains of ABCBs from the model plant Arabidopsis. These results suggest an early evolutionary divergence of plant and mammalian ABCBs. Validation of these models becomes a priority for efforts to elucidate ABCB function and manipulate this class of transporters to enhance plant productivity and quality.

  6. Plant Lessons: Exploring ABCB Functionality Through Structural Modeling

    Science.gov (United States)

    Bailly, Aurélien; Yang, Haibing; Martinoia, Enrico; Geisler, Markus; Murphy, Angus S.

    2012-01-01

    In contrast to mammalian ABCB1 proteins, narrow substrate specificity has been extensively documented for plant orthologs shown to catalyze the transport of the plant hormone, auxin. Using the crystal structures of the multidrug exporters Sav1866 and MmABCB1 as templates, we have developed structural models of plant ABCB proteins with a common architecture. Comparisons of these structures identified kingdom-specific candidate substrate-binding regions within the translocation chamber formed by the transmembrane domains of ABCBs from the model plant Arabidopsis. These results suggest an early evolutionary divergence of plant and mammalian ABCBs. Validation of these models becomes a priority for efforts to elucidate ABCB function and manipulate this class of transporters to enhance plant productivity and quality. PMID:22639627

  7. Individualism in plant populations: using stochastic differential equations to model individual neighbourhood-dependent plant growth.

    Science.gov (United States)

    Lv, Qiming; Schneider, Manuel K; Pitchford, Jonathan W

    2008-08-01

    We study individual plant growth and size hierarchy formation in an experimental population of Arabidopsis thaliana, within an integrated analysis that explicitly accounts for size-dependent growth, size- and space-dependent competition, and environmental stochasticity. It is shown that a Gompertz-type stochastic differential equation (SDE) model, involving asymmetric competition kernels and a stochastic term which decreases with the logarithm of plant weight, efficiently describes individual plant growth, competition, and variability in the studied population. The model is evaluated within a Bayesian framework and compared to its deterministic counterpart, and to several simplified stochastic models, using distributional validation. We show that stochasticity is an important determinant of size hierarchy and that SDE models outperform the deterministic model if and only if structural components of competition (asymmetry; size- and space-dependence) are accounted for. Implications of these results are discussed in the context of plant ecology and in more general modelling situations.

  8. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Haihong Jia

    Full Text Available The WRKY transcription factors modulate numerous physiological processes, including plant growth, development and responses to various environmental stresses. Currently, our understanding of the functions of the majority of the WRKY family members and their possible roles in signalling crosstalk is limited. In particular, very few WRKYs have been identified and characterised from an economically important crop, cotton. In this study, we characterised a novel group IIc WRKY gene, GhWRKY68, which is induced by different abiotic stresses and multiple defence-related signalling molecules. The β-glucuronidase activity driven by the GhWRKY68 promoter was enhanced after exposure to drought, salt, abscisic acid (ABA and H2O2. The overexpression of GhWRKY68 in Nicotiana benthamiana reduced resistance to drought and salt and affected several physiological indices. GhWRKY68 may mediate salt and drought responses by modulating ABA content and enhancing the transcript levels of ABA-responsive genes. GhWRKY68-overexpressing plants exhibited reduced tolerance to oxidative stress after drought and salt stress treatments, which correlated with the accumulation of reactive oxygen species (ROS, reduced enzyme activities, elevated malondialdehyde (MDA content and altered ROS-related gene expression. These results indicate that GhWRKY68 is a transcription factor that responds to drought and salt stresses by regulating ABA signalling and modulating cellular ROS.

  9. Jasmonate mediates salt-induced nicotine biosynthesis in tobacco (Nicotiana tabacum L.

    Directory of Open Access Journals (Sweden)

    Xiaodong Chen

    2016-04-01

    Full Text Available Jasmonate (JA, as an important signal, plays a key role in multiple processes of plant growth, development and stress response. Nicotine and related pyridine alkaloids in tobacco (Nicotiana tabacum L. are essential secondary metabolites. Whether environmental factors control nicotine biosynthesis and the underlying mechanism remains previously unreported. Here, we applied physiological and biochemical approaches to investigate how salt stress affects nicotine biosynthesis in tobacco. We found that salt stress induced the biosynthesis of JA, which subsequently triggered the activation of JA-responsive gene expression and, ultimately, nicotine synthesis. Bioinformatics analysis revealed the existence of many NtMYC2a-recognized G-box motifs in the promoter regions of NtLOX, NtAOS, NtAOC and NtOPR genes. Applying exogenous JA increased nicotine content, while suppressing JA biosynthesis reduced nicotine biosynthesis. Salt treatment could not efficiently induce nicotine biosynthesis in transgenic anti-COI1 tobacco plants. These results demonstrate that JA acts as the essential signal which triggers nicotine biosynthesis in tobacco after salt stress.

  10. Role of pathogen-induced volatiles in the Nicotiana tabacum-Golovinomyces cichoracearum interaction.

    Science.gov (United States)

    Quaglia, Mara; Fabrizi, Mario; Zazzerini, Antonio; Zadra, Claudia

    2012-03-01

    Plant injuries activate signal transduction cascades mediated by the plant hormones, which lead to enhanced expression of defence related genes and/or to changes in the emission of volatile organic compounds that can act as semiochemicals. In this research we demostrated that infection with the biotrophic pathogen Golovinomyces cichoracearum (DC.) V.P. Heluta (ex Erysiphe cichoracearum DC.), the causal agent of powdery mildew, led in the susceptible host Nicotiana tabacum L. cv Havana 425 to an increased emission of volatile compounds including Methyl-jasmonate (MeJA), (E)-2-hexenal and (E)-β-ocimene. Furthermore we investigated the role of these volatiles in the plant-pathogen interaction. Exogenous application of MeJA induced in tobacco an increase in the transcripts level of the defence related genes lipoxygenase, allene oxide cyclase and defensin and a decrease in the severity of the infection. Qualitative and quantitative differences in volatile compounds emission were showed also in MeJA-treated plants, where the emission of (E)-β-ocimene was significantly increased instead (E)-2-hexenal was not detected. Application of (E)-2-hexenal reduced the severity of powdery mildew while application of (E)-β-ocimene did not. Since (E)-2-hexenal did not activate in tobacco the accumulation of the above reported genes transcripts and the plant cell death, the reduction of the infection severity could be attributable to its inhibitory activity on the fungal germ tube growth. Our data highlight the contributions of natural substances that can act, directly or indirectly, against phytopathogens. In the global context of sustainability, food safety and environmental protection, such semiochemicals represent an alternative and promising approach to integrated pest management. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  11. Artificial Life of Soybean Plant Growth Modeling Using Intelligence Approaches

    Directory of Open Access Journals (Sweden)

    Atris Suyantohadi

    2010-03-01

    Full Text Available The natural process on plant growth system has a complex system and it has could be developed on characteristic studied using intelligent approaches conducting with artificial life system. The approaches on examining the natural process on soybean (Glycine Max L.Merr plant growth have been analyzed and synthesized in these research through modeling using Artificial Neural Network (ANN and Lindenmayer System (L-System methods. Research aimed to design and to visualize plant growth modeling on the soybean varieties which these could help for studying botany of plant based on fertilizer compositions on plant growth with Nitrogen (N, Phosphor (P and Potassium (K. The soybean plant growth has been analyzed based on the treatments of plant fertilizer compositions in the experimental research to develop plant growth modeling. By using N, P, K fertilizer compositions, its capable result on the highest production 2.074 tons/hectares. Using these models, the simulation on artificial life for describing identification and visualization on the characteristic of soybean plant growth could be demonstrated and applied.

  12. Towards aspect-oriented functional--structural plant modelling.

    Science.gov (United States)

    Cieslak, Mikolaj; Seleznyova, Alla N; Prusinkiewicz, Przemyslaw; Hanan, Jim

    2011-10-01

    Functional-structural plant models (FSPMs) are used to integrate knowledge and test hypotheses of plant behaviour, and to aid in the development of decision support systems. A significant amount of effort is being put into providing a sound methodology for building them. Standard techniques, such as procedural or object-oriented programming, are not suited for clearly separating aspects of plant function that criss-cross between different components of plant structure, which makes it difficult to reuse and share their implementations. The aim of this paper is to present an aspect-oriented programming approach that helps to overcome this difficulty. The L-system-based plant modelling language L+C was used to develop an aspect-oriented approach to plant modelling based on multi-modules. Each element of the plant structure was represented by a sequence of L-system modules (rather than a single module), with each module representing an aspect of the element's function. Separate sets of productions were used for modelling each aspect, with context-sensitive rules facilitated by local lists of modules to consider/ignore. Aspect weaving or communication between aspects was made possible through the use of pseudo-L-systems, where the strict-predecessor of a production rule was specified as a multi-module. The new approach was used to integrate previously modelled aspects of carbon dynamics, apical dominance and biomechanics with a model of a developing kiwifruit shoot. These aspects were specified independently and their implementation was based on source code provided by the original authors without major changes. This new aspect-oriented approach to plant modelling is well suited for studying complex phenomena in plant science, because it can be used to integrate separate models of individual aspects of plant development and function, both previously constructed and new, into clearly organized, comprehensive FSPMs. In a future work, this approach could be further

  13. Effect of increased UV-B radiation on carotenoid accumulation and total antioxidant capacity in tobacco (Nicotiana tabacum L.) leaves.

    Science.gov (United States)

    Shen, J; Jiang, C Q; Yan, Y F; Liu, B R; Zu, C L

    2017-03-08

    Carotenoids are important components of plant antioxidant systems, which protect photosystems from photooxidative destruction during ultraviolet-B (UV-B) exposure. The influence of carotenoids on total antioxidant capacity (TAC) of plants has rarely been studied. In this study, tobacco (Nicotiana tabacum L., 'K326') seedlings exposed to UV-B radiation were used in order to evaluate the effects of ambient levels of UV-B radiation on carotenoid accumulation. The aim was to investigate whether carotenoids could enhance TAC as a means of UV protection. Our results showed that leaf carotenoid content in the low UV-B exposure (+9.75 μW/cm 2 ) plants was approximately 8% higher than that observed in control plants at 2-8 days of exposure. At high UV-B exposure (+20.76 μW/cm 2 ), the carotenoid content increased rapidly after 1 day's exposure (10.41% higher than the control), followed by a return to the content as in control plants. Furthermore, carotenoid content positively correlated with TAC (P = 0.024). These results suggest that carotenoids have antioxidant properties and play an important role in the antioxidant system. UV-B exposure increased the carotenoid synthesis capability of plants. The plants could deplete the carotenoids to scavenge excess ROS at high UV-B radiation levels, which protects the tobacco plant from oxidative damage caused by UV-B stress.

  14. Wild Nicotiana Species as a Source of Cytoplasmic Male Sterility in Nicotianatabacum

    Directory of Open Access Journals (Sweden)

    Nikova V

    2014-12-01

    Full Text Available The results of our experiments executed to obtain tobacco male sterile lines through interspecific hybridization are summarized. Ten wild species from the genus Nicotiana: N. excelsior (exc, N. amplexicaulis (amp, N. rustica (rus, Nicotianaglauca (gla, N. velutina (vel, N. benthamiana (ben, N. maritima (mar, N. paniculata (pan, N. longiflora (lon and N. africana (afr were used as cytoplasmic donors and N. tabacum, cv. HarmanliiskaBasma (HB as a donor of the nucleus. Genetic effects of cytoplasmic-nuclear interaction of the studied species are discussed. Our results suggested that cytoplasmic male sterility (CMS was expressed when the cytoplasms of the above mentioned wild Nicotiana species were combined with the nucleus of N. tabacum. The 10 sources of CMS obtained in tobacco were characterized by altered flower phenotypes. Flowers are classified into types according the stamen, pistil and corolla modification. All these CMS sources were backcrossed to Oriental tobaccos, cvs. Tekne, Nevrokop B-12, Kroumovgrad 90 and Djebel 576, to develop corresponding CMS lines. The investigated cytoplasms produced compete male sterility in all those cultivars. The CMS lines preserved flower types, specific for every “sterile” cytoplasm. The extent of male organ modifications varied from apparently normal (but pollenless stamens in CMS (pan, (afr, some plants of (vel (mar through different degrees of malformations (shriveled anther on shortened filaments (lon, pinnate-like anthers on filaments of normal length (amp, petal - (ben, pistil- or stigma-like structures (rus, (gla to lack of male reproductive organs in (exc and in some plants of (vel, (mar, (rus and (gla. Most of the above mentioned cytoplasms had normal female gametophyte and good seed productivity. Alterations of the pistils were observed in CMS (rus, (exc and (ben causing reduction of the seed set. Electrophoresis of seed proteins of the tobacco cultivars and their CMS lines also suggested that

  15. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.

    Science.gov (United States)

    Dalton, Heidi L; Blomstedt, Cecilia K; Neale, Alan D; Gleadow, Ros; DeBoer, Kathleen D; Hamill, John D

    2016-05-01

    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana. © The

  16. Purine metabolism in mesophyll protoplasts of tobacco (Nicotiana tabacum) leaves.

    Science.gov (United States)

    Barankiewicz, J; Paszkowski, J

    1980-01-15

    The overall metabolism of purines was studied in tobacco (Nicotiana tabacum) mesophyll protoplasts. Metabolic pathways were studied by measuring the conversion of radioactive adenine, adenosine, hypoxanthine and guanine into purine ribonucleotides, ribonucleosides, bases and nucleic acid constituents. Adenine was extensively deaminated to hypoxanthine, whereupon it was also converted into AMP and incorporated into nucleic acids. Adenosine was mainly hydrolysed to adenine. Inosinate formed from hypoxanthine was converted into AMP and GMP, which were then catabolized to adenine and guanosine respectively. Guanine was mainly deaminated to xanthine and also incorporated into nucleic acids via GTP. Increased RNA synthesis in the protoplasts resulted in enhanced incorporation of adenine and guanine, but not of hypoxanthine and adenosine, into the nucleic acid fraction. The overall pattern of purine-nucleotide metabolic pathways in protoplasts of tobacco leaf mesophyll is proposed.

  17. Functional diversity of microbial decomposers facilitates plant coexistence in a plant-microbe-soil feedback model.

    Science.gov (United States)

    Miki, Takeshi; Ushio, Masayuki; Fukui, Shin; Kondoh, Michio

    2010-08-10

    Theory and empirical evidence suggest that plant-soil feedback (PSF) determines the structure of a plant community and nutrient cycling in terrestrial ecosystems. The plant community alters the nutrient pool size in soil by affecting litter decomposition processes, which in turn shapes the plant community, forming a PSF system. However, the role of microbial decomposers in PSF function is often overlooked, and it remains unclear whether decomposers reinforce or weaken litter-mediated plant control over nutrient cycling. Here, we present a theoretical model incorporating the functional diversity of both plants and microbial decomposers. Two fundamental microbial processes are included that control nutrient mineralization from plant litter: (i) assimilation of mineralized nutrient into the microbial biomass (microbial immobilization), and (ii) release of the microbial nutrients into the inorganic nutrient pool (net mineralization). With this model, we show that microbial diversity may act as a buffer that weakens plant control over the soil nutrient pool, reversing the sign of PSF from positive to negative and facilitating plant coexistence. This is explained by the decoupling of litter decomposability and nutrient pool size arising from a flexible change in the microbial community composition and decomposition processes in response to variations in plant litter decomposability. Our results suggest that the microbial community plays a central role in PSF function and the plant community structure. Furthermore, the results strongly imply that the plant-centered view of nutrient cycling should be changed to a plant-microbe-soil feedback system, by incorporating the community ecology of microbial decomposers and their functional diversity.

  18. Hydroponic Treatment of Nicotiana benthamiana with Kifunensine Modifies the N-glycans of Recombinant Glycoprotein Antigens to Predominantly Man9 High-Mannose Type upon Transient Overexpression

    Directory of Open Access Journals (Sweden)

    Sugata Roychowdhury

    2018-01-01

    Full Text Available Nicotiana benthamiana transient overexpression systems offer unique advantages for rapid and scalable biopharmaceuticals production, including high scalability and eukaryotic post-translational modifications such as N-glycosylation. High-mannose-type glycans (HMGs of glycoprotein antigens have been implicated in the effectiveness of some subunit vaccines. In particular, Man9GlcNAc2 (Man9 has high binding affinity to mannose-specific C-type lectin receptors such as the mannose receptor and dendritic cell-specific intracellular adhesion molecule 3-grabbing non-integrin (DC-SIGN. Here, we investigated the effect of kifunensine, an α-mannosidase I inhibitor, supplemented in a hydroponic culture of N. benthamiana for the production of Man9-rich HMG glycoproteins, using N-glycosylated cholera toxin B subunit (gCTB and human immunodeficiency virus gp120 that are tagged with a H/KDEL endoplasmic reticulum retention signal as model vaccine antigens. Biochemical analysis using anti-fucose and anti-xylose antibodies as well as Endo H and PNGase F digestion showed that kifunensine treatment effectively reduced plant-specific glycoforms while increasing HMGs in the N-glycan compositions of gCTB. Detailed glycan profiling revealed that plant-produced gp120 had a glycan profile bearing mostly HMGs regardless of kifunensine treatment. However, the gp120 produced under kifunensine-treatment conditions showed Man9 being the most prominent glycoform (64.5%, while the protein produced without kifunensine had a substantially lower Man9 composition (20.3%. Our results open up possibilities for efficient production of highly mannosylated recombinant vaccine antigens in plants.

  19. Application of 3-dimensional CAD modeling system in nuclear plants

    International Nuclear Information System (INIS)

    Suwa, Minoru; Saito, Shunji; Nobuhiro, Minoru

    1990-01-01

    Until now, the preliminary work for mutual components in nuclear plant were readied by using plastic models. Recently with the development of computer graphic techniques, we can display the components on the graphics terminal, better than with use of plastic model and actual plants. The computer model can be handled, both telescopically and microscopically. A computer technique called 3-dimensional CAD modeling system was used as the preliminary work and design system. Through application of this system, database for nuclear plants was completed in arrangement step. The data can be used for piping design, stress analysis, shop production, testing and site construction, in all steps. In addition, the data can be used for various planning works, even after starting operation of plant. This paper describes the outline of the 3-dimensional CAD modeling system. (author)

  20. MODELLING OF NUCLEAR POWER PLANT DECOMMISSIONING FINANCING

    Czech Academy of Sciences Publication Activity Database

    Bemš, J.; Knápek, J.; Králík, T.; Hejhal, M.; Kubančák, Ján; Vašíček, J.

    2015-01-01

    Roč. 164, č. 4 (2015), s. 519-522 ISSN 0144-8420 Institutional support: RVO:61389005 Keywords : nuclear power plant * methodology * future decommissioning costs Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.894, year: 2015

  1. Modeling the kinetics of essential oil hydrodistillation from plant materials

    Directory of Open Access Journals (Sweden)

    Milojević Svetomir Ž.

    2013-01-01

    Full Text Available The present work deals with modeling the kinetics of essential oils extraction from plant materials by water and steam distillation. The experimental data were obtained by studying the hydrodistillation kinetics of essential oil from juniper berries. The literature data on the kinetics of essential oils hydrodistillation from different plant materials were also included into the modeling. A physical model based on simultaneous washing and diffusion of essential oil from plant materials were developed to describe the kinetics of essential oils hydrodistillation, and two other simpler models were derived from this physical model assuming either instantaneous washing followed by diffusion or diffusion with no washing (i.e. the first-order kinetics. The main goal was to compare these models and suggest the optimum ones for water and steam distillation and for different plant materials. All three models described well the experimental kinetic data on water distillation irrespective of the type of distillation equipment and its scale, the type of plant materials and the operational conditions. The most applicable one is the model involving simultaneous washing and diffusion of the essential oil. However, this model was generally inapplicable for steam distillation of essential oils, except for juniper berries. For this hydrodistillation technique, the pseudo first-order model was shown to be the best one. In a few cases, a variation of the essential oil yield with time was observed to be sigmoidal and was modeled by the Boltzmann sigmoid function.

  2. The development of Arabidopsis as a plant model

    NARCIS (Netherlands)

    Koornneef, M.; Meinke, D.W.

    2010-01-01

    Twenty-five years ago, Arabidopsis thaliana emerged as the model organism of choice for research in plant biology. A consensus was reached about the need to focus on a single organism to integrate the classical disciplines of plant science with the expanding fields of genetics and molecular biology.

  3. Editorial: Plant organ abscission: from models to crops

    Science.gov (United States)

    The shedding of plant organs is a highly coordinated process essential for both vegetative and reproductive development (Addicott, 1982; Sexton and Roberts, 1982; Roberts et al., 2002; Leslie et al., 2007; Roberts and Gonzalez-Carranza, 2007; Estornell et al., 2013). Research with model plants, name...

  4. Optimized carbon dioxide removal model for gas fired power plant

    OpenAIRE

    Arachchige, Udara Sampath P.; Mohsin, Muhammad; Melaaen, Morten Christian

    2012-01-01

    The carbon capture process model was developed for 500MW gas-fired power plant flue gas treating. Three different efficiencies, 85%, 90%, and 95%, were used to implement the model in Aspen Plus. The electrolyte NRTL rate base model was used to develop the model. The selected solvent properties were used to develop and implemented model is used for further simulations. The implemented open loop base case model of 85% removal efficiency is used to check the parameters' effect on removal efficie...

  5. The antioxidative defense system is involved in the premature senescence in transgenic tobacco (Nicotiana tabacum NC89

    Directory of Open Access Journals (Sweden)

    Yu Liu

    Full Text Available BACKGROUND: α-Farnesene is a volatile sesquiterpene synthesized by the plant mevalonate (MVA pathway through the action of α-farnesene synthase. The α-farnesene synthase 1 (MdAFS1 gene was isolated from apple peel (var. white winterpearmain, and transformed into tobacco (Nicotiana tabacum NC89. The transgenic plants had faster stem elongation during vegetative growth and earlier flowering than wild type (WT. Our studies focused on the transgenic tobacco phenotype. RESULTS: The levels of chlorophyll and soluble protein decreased and a lower seed biomass and reduced net photosynthetic rate (Pn in transgenic plants. Reactive oxygen species (ROS such as hydrogen peroxide (H2O2 and superoxide radicals (O2._ had higher levels in transgenics compared to controls. Transgenic plants also had enhanced sensitivity to oxidative stress. The transcriptome of 8-week-old plants was studied to detect molecular changes. Differentially expressed unigene analysis showed that ubiquitin-mediated proteolysis, cell growth, and death unigenes were upregulated. Unigenes related to photosynthesis, antioxidant activity, and nitrogen metabolism were downregulated. Combined with the expression analysis of senescence marker genes, these results indicate that senescence started in the leaves of the transgenic plants at the vegetative growth stage. CONCLUSIONS: The antioxidative defense system was compromised and the accumulation of reactive oxygen species (ROS played an important role in the premature aging of transgenic plants.

  6. Pea early-browning virus -mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis

    KAUST Repository

    Ali, Zahir

    2017-10-17

    The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated (Cas9) system has enabled efficient genome engineering in diverse plant species. However, delivery of genome engineering reagents, such as the single guide RNA (sgRNA), into plant cells remains challenging. Here, we report the engineering of Tobacco rattle virus (TRV) and Pea early browning virus (PEBV) to deliver one or multiple sgRNAs into Nicotiana benthamiana and Arabidopsis thaliana (Col-0) plants that overexpress a nuclear localization signal containing Cas9. Our data showed that TRV and PEBV can deliver sgRNAs into inoculated and systemic leaves, and this resulted in mutagenesis of the targeted genomic loci. Moreover, in N. benthamiana, PEBV-based sgRNA delivery resulted in more targeted mutations than TRV-based delivery. Our data indicate that TRV and PEBV can facilitate plant genome engineering and can be used to produce targeted mutations for functional analysis and other biotechnological applications across diverse plant species.Key message: Delivery of genome engineering reagents into plant cells is challenging and inefficient and this limit the applications of this technology in many plant species. RNA viruses such as TRV and PEBV provide an efficient tool to systemically deliver sgRNAs for targeted genome modification.

  7. Fire models for assessment of nuclear power plant fires

    International Nuclear Information System (INIS)

    Nicolette, V.F.; Nowlen, S.P.

    1989-01-01

    This paper reviews the state-of-the-art in available fire models for the assessment of nuclear power plants fires. The advantages and disadvantages of three basic types of fire models (zone, field, and control volume) and Sandia's experience with these models will be discussed. It is shown that the type of fire model selected to solve a particular problem should be based on the information that is required. Areas of concern which relate to all nuclear power plant fire models are identified. 17 refs., 6 figs

  8. In vivo nanotoxicity assays in plant models.

    Science.gov (United States)

    Kumari, Mamta; Ernest, Vinita; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2012-01-01

    Increasing application of silver nanoparticles (SNPs) and zinc oxide nanoparticles (nZnO) in consumer products like textiles, cosmetics, washing machines and other household products increases their chance to reach the environment. Intensive research is required to assess the nanoparticles' toxicity to the environmental system. The toxicological effect of nanoparticles has been studied at the miniscule scale and requires intensive research to be conducted to assess its unknown effects. Plants are the primary target species which need to be included to develop a comprehensive toxicity profile for nanoparticles. So far, the mechanisms of toxicity of nanoparticles to the plant system remains largely unknown and little information on the potential uptake of nanoparticles by plants and their subsequent fate within the food chain is available. The phytoxicological behaviour of silver and zinc oxide nanoparticles on Allium cepa and seeds of Zea mays (maize), Cucumis sativus (cucumber) and Lycopersicum esculentum (tomato) was done. The in vitro studies on A. cepa have been done to check the cytotoxicological effects including mitotic index, chromosomal aberrations, vagrant chromosomes, sticky chromosomes, disturbed metaphase, breaks and formation of micronucleus. In vitro and in vivo studies on seed systems exposed to different concentration of nanoparticles dispersion to check phytotoxicity end point as root length, germination effect, adsorption and accumulation of nanoparticles (uptake studies) into the plant systems. In vivo studies in a seed system was done using phytagel medium. Biochemical studies were done to check effect on protein, DNA and thiobarbituric acid reactive species concentration. FT-IR studies were done to analyze the functional and conformational changes in the treated and untreated samples. The toxicological effects of nanoparticles had to be studied at the miniscule scale to address existing environment problems or prevent future problems. The

  9. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Zhang, Xinxin

    2014-01-01

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow...

  10. Applying Functional Modeling for Accident Management of Nucler Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Zhang, Xinxin

    2014-01-01

    The paper investigates applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow...

  11. Modeling of air pollution from the power plant ash dumps

    Science.gov (United States)

    Aleksic, Nenad M.; Balać, Nedeljko

    A simple model of air pollution from power plant ash dumps is presented, with emission rates calculated from the Bagnold formula and transport simulated by the ATDL type model. Moisture effects are accounted for by assumption that there is no pollution on rain days. Annual mean daily sedimentation rates, calculated for the area around the 'Nikola Tesla' power plants near Belgrade for 1987, show reasonably good agreement with observations.

  12. Design of XML-based plant data model

    International Nuclear Information System (INIS)

    Nair, Preetha M.; Padmini, S.; Gaur, Swati; Diwakar, M.P.

    2013-01-01

    XML has emerged as an open standard for exchanging structured data on various platforms to handle rich, nested, complex data structures. XML with its flexible tree-like data structure allows a more natural representation as compared to traditional databases. In this paper we present data model for plant data acquisition systems captured using XML technologies. Plant data acquisition systems in a typical Nuclear Power Plant consists of embedded nodes at the first tier and operator consoles at the second tier for operator operation, interaction and display of Plant parameters. This paper discusses a generic data model that was designed to capture process, network architecture, communication/interface protocol and diagnostics aspects required for a Nuclear Power Plant. (author)

  13. The Subcellular Localization and Functional Analysis of Fibrillarin2, a Nucleolar Protein in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Luping Zheng

    2016-01-01

    Full Text Available Nucleolar proteins play important roles in plant cytology, growth, and development. Fibrillarin2 is a nucleolar protein of Nicotiana benthamiana (N. benthamiana. Its cDNA was amplified by RT-PCR and inserted into expression vector pEarley101 labeled with yellow fluorescent protein (YFP. The fusion protein was localized in the nucleolus and Cajal body of leaf epidermal cells of N. benthamiana. The N. benthamiana fibrillarin2 (NbFib2 protein has three functional domains (i.e., glycine and arginine rich domain, RNA-binding domain, and α-helical domain and a nuclear localization signal (NLS in C-terminal. The protein 3D structure analysis predicted that NbFib2 is an α/β protein. In addition, the virus induced gene silencing (VIGS approach was used to determine the function of NbFib2. Our results showed that symptoms including growth retardation, organ deformation, chlorosis, and necrosis appeared in NbFib2-silenced N. benthamiana.

  14. Metabolite Fingerprinting in Transgenic Nicotiana tabacum Altered by the Escherichia coli Glutamate Dehydrogenase Gene

    Directory of Open Access Journals (Sweden)

    R. Mungur

    2005-01-01

    Full Text Available With about 200 000 phytochemicals in existence, identifying those of biomedical significance is a mammoth task. In the postgenomic era, relating metabolite fingerprints, abundances, and profiles to genotype is also a large task. Ion analysis using Fourier transformed ion cyclotron resonance mass spectrometry (FT-ICR-MS may provide a high-throughput approach to measure genotype dependency of the inferred metabolome if reproducible techniques can be established. Ion profile inferred metabolite fingerprints are coproducts. We used FT-ICR-MS-derived ion analysis to examine gdhA (glutamate dehydrogenase (GDH; EC 1.4.1.1 transgenic Nicotiana tabacum (tobacco carrying out altered glutamate, amino acid, and carbon metabolisms, that fundamentally alter plant productivity. Cause and effect between gdhA expression, glutamate metabolism, and plant phenotypes was analyzed by 13NH4+ labeling of amino acid fractions, and by FT-ICR-MS analysis of metabolites. The gdhA transgenic plants increased 13N labeling of glutamate and glutamine significantly. FT-ICR-MS detected 2 012 ions reproducible in 2 to 4 ionization protocols. There were 283 ions in roots and 98 ions in leaves that appeared to significantly change abundance due to the measured GDH activity. About 58% percent of ions could not be used to infer a corresponding metabolite. From the 42% of ions that inferred known metabolites we found that certain amino acids, organic acids, and sugars increased and some fatty acids decreased. The transgene caused increased ammonium assimilation and detectable ion variation. Thirty-two compounds with biomedical significance were altered in abundance by GDH including 9 known carcinogens and 14 potential drugs. Therefore, the GDH transgene may lead to new uses for crops like tobacco.

  15. Multilevel Flow Modelling of Process Plant for Diagnosis and Control

    DEFF Research Database (Denmark)

    Lind, Morten

    1982-01-01

    The paper describes the multilevel flow modelling methodology which can be used to construct functional models of energy and material processing systems. The models describe mass and energy flow topology on different levels of abstraction and represent the hierarchical functional structure...... operator. Plant control requirements can be derived from the models and due to independence of the actual controller implementation the method may be used as a basis for design of control strategies and for the allocation of control tasks to the computer and the plant operator....

  16. Heavy metal concentrations in plants and different harvestable parts: A soil-plant equilibrium model

    Energy Technology Data Exchange (ETDEWEB)

    Guala, Sebastian D. [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Gutierrez 1150, Los Polvorines, Buenos Aires (Argentina); Vega, Flora A. [Departamento de Bioloxia Vexetal e Ciencia do Solo, Facultade de Bioloxia, Universidade de Vigo, Lagoas, Marcosende, 36310 Vigo, Pontevedra (Spain); Covelo, Emma F., E-mail: emmaf@uvigo.e [Departamento de Bioloxia Vexetal e Ciencia do Solo, Facultade de Bioloxia, Universidade de Vigo, Lagoas, Marcosende, 36310 Vigo, Pontevedra (Spain)

    2010-08-15

    A mathematical interaction model, validated by experimental results, was developed to modeling the metal uptake by plants and induced growth decrease, by knowing metal in soils. The model relates the dynamics of the uptake of metals from soil to plants. Also, two types of relationships are tested: total and available metal content. The model successfully fitted the experimental data and made it possible to predict the threshold values of total mortality with a satisfactory approach. Data are taken from soils treated with Cd and Ni for ryegrass (Lolium perenne, L.) and oats (Avena sativa L.), respectively. Concentrations are measured in the aboveground biomass of plants. In the latter case, the concentration of metals in different parts of the plants (tillering, shooting and earing) is also modeled. At low concentrations, the effects of metals are moderate, and the dynamics appear to be linear. However, increasing concentrations show nonlinear behaviors. - The model proposed in this study makes possible to characterize the nonlinear behavior of the soil-plant interaction with metal pollution.

  17. Soft material-based microculture system having air permeable cover sheet for the protoplast culture of Nicotiana tabacum.

    Science.gov (United States)

    Ju, Jong Il; Ko, Jung-Moon; Kim, So Hyeon; Baek, Ju Yeoul; Cha, Hyeon-Cheol; Lee, Sang Hoon

    2006-08-01

    In plant cell culture, the delivery of nutrition and gas (mainly oxygen) to the cells is the most important factor for viability. In this paper, we propose a polydimethylsiloxane (PDMS)-based microculture system that is designed to have good aeration. PDMS is known to have excellent air permeability, and through the experimental method, we investigated the relation between the degree of air delivery and the thickness of the PDMS sheet covering the culture chamber. We determined the proper thickness of the cover sheet, and cultured protoplasts of Nicotiana tabacum in a culture chamber covered with a PDMS sheet having thickness of 400 microm. The cells were successfully divided, and lived well inside the culture chamber for 10 days. In addition, protoplasts were cultured inside the culture chambers covered with the cover glass and the PDMS sheet, respectively, and the microcolonies were formed well inside the PDMS covered chamber after 10 days.

  18. Untargeted metabolomics analysis reveals dynamic changes in azelaic acid- and salicylic acid derivatives in LPS-treated Nicotiana tabacum cells.

    Science.gov (United States)

    Mhlongo, M I; Tugizimana, F; Piater, L A; Steenkamp, P A; Madala, N E; Dubery, I A

    2017-01-22

    To counteract biotic stress factors, plants employ multilayered defense mechanisms responsive to pathogen-derived elicitor molecules, and regulated by different phytohormones and signaling molecules. Here, lipopolysaccharide (LPS), a microbe-associated molecular pattern (MAMP) molecule, was used to induce defense responses in Nicotiana tabacum cell suspensions. Intracellular metabolites were extracted with methanol and analyzed using a liquid chromatography-mass spectrometry (UHPLC-qTOF-MS/MS) platform. The generated data were processed and examined with multivariate and univariate statistical tools. The results show time-dependent dynamic changes and accumulation of glycosylated signaling molecules, specifically those of azelaic acid, salicylic acid and methyl-salicylate as contributors to the altered metabolomic state in LPS-treated cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Virus-induced gene silencing (VIGS) in Nicotiana benthamiana and tomato.

    Science.gov (United States)

    Velásquez, André C; Chakravarthy, Suma; Martin, Gregory B

    2009-06-10

    RNA interference (RNAi) is a highly specific gene-silencing phenomenon triggered by dsRNA. This silencing mechanism uses two major classes of RNA regulators: microRNAs, which are produced from non-protein coding genes and short interfering RNAs (siRNAs). Plants use RNAi to control transposons and to exert tight control over developmental processes such as flower organ formation and leaf development. Plants also use RNAi to defend themselves against infection by viruses. Consequently, many viruses have evolved suppressors of gene silencing to allow their successful colonization of their host. Virus-induced gene silencing (VIGS) is a method that takes advantage of the plant RNAi-mediated antiviral defense mechanism. In plants infected with unmodified viruses the mechanism is specifically targeted against the viral genome. However, with virus vectors carrying sequences derived from host genes, the process can be additionally targeted against the corresponding host mRNAs. VIGS has been adapted for high-throughput functional genomics in plants by using the plant pathogen Agrobacterium tumefaciens to deliver, via its Ti plasmid, a recombinant virus carrying the entire or part of the gene sequence targeted for silencing. Systemic virus spread and the endogenous plant RNAi machinery take care of the rest. dsRNAs corresponding to the target gene are produced and then cleaved by the ribonuclease Dicer into siRNAs of 21 to 24 nucleotides in length. These siRNAs ultimately guide the RNA-induced silencing complex (RISC) to degrade the target transcript. Different vectors have been employed in VIGS and one of the most frequently used is based on tobacco rattle virus (TRV). TRV is a bipartite virus and, as such, two different A. tumefaciens strains are used for VIGS. One carries pTRV1, which encodes the replication and movement viral functions while the other, pTRV2, harbors the coat protein and the sequence used for VIGS. Inoculation of Nicotiana benthamiana and tomato seedlings

  20. The use of plant models in deep learning: an application to leaf counting in rosette plants

    OpenAIRE

    Ubbens, Jordan; Cieslak, Mikolaj; Prusinkiewicz, Przemyslaw; Stavness, Ian

    2018-01-01

    Deep learning presents many opportunities for image-based plant phenotyping. Here we consider the capability of deep convolutional neural networks to perform the leaf counting task. Deep learning techniques typically require large and diverse datasets to learn generalizable models without providing a priori an engineered algorithm for performing the task. This requirement is challenging, however, for applications in the plant phenotyping field, where available datasets are often small and the...

  1. Commercial second-generation PFBC plant transient model: Task 15

    Energy Technology Data Exchange (ETDEWEB)

    White, J.S.; Getty, R.T.; Torpey, M.R.

    1995-04-01

    The advanced pressurized fluidized bed combustor (APFBC) power plant combines an efficient gas-fired combined cycle, a low-emission PFB combustor, and a coal pyrolysis unit (carbonizer) that converts coal, America`s most plentiful fuel, into the gas turbine fuel. From an operation standpoint, the APFBC plant is similar to an integrated gasification combined cycle (IGCC) plant, except that the PFBC and fluid bed heat exchanger (FBHE) allow a considerable fraction of coal energy to be shunted around the gas turbine and sent directly to the steam turbine. By contrast, the fuel energy in IGCC plants and most other combined cycles is primarily delivered to the gas turbine and then to the steam turbine. Another characteristic of the APFBC plant is the interaction among three large thermal inertias--carbonizer, PFBC, and FBHE--that presents unique operational challenges for modeling and operation of this type of plant. This report describes the operating characteristics and dynamic responses of the APFBC plant and discusses the advantages and shortcomings of several alternative control strategies for the plant. In particular, interactions between PFBC, FBHE, and steam bottoming cycle are analyzed and the effect of their interactions on plant operation is discussed. The technical approach used in the study is described in Section 2. The dynamic model is introduced in Section 3 and described is detail in the appendices. Steady-state calibration and transient simulations are presented in Sections 4 and 5. The development of the operating philosophy is discussed in Section 6. Potential design changes to the dynamic model and trial control schemes are listed in Sections 7 and 8. Conclusions derived from the study are presented in Section 9.

  2. Public Lakes, Private Lakeshore: Modeling Protection of Native Aquatic Plants

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.

    2013-07-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221-279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey ( n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners' behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  3. Public lakes, private lakeshore: Modeling protection of native aquatic plants

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.

    2013-01-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221–279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey (n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners’ behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  4. Heterologous expression of the isopimaric acid pathway in Nicotiana benthamiana and the effect of N-terminal modifications of the involved cytochrome P450 enzyme

    DEFF Research Database (Denmark)

    Gnanasekaran, Thiyagarajan; Vavitsas, Konstantinos; Andersen-Ranberg, Johan

    2015-01-01

    in the infiltrated leaves. Furthermore, we demonstrated that a modified membrane anchor is a prerequisite for a functional CYP720B4 enzyme when the chloroplast targeting peptide is added. We report the accumulation of 45-55 μg/g plant dry weight of isopimaric acid four days after the infiltration with the modified...... in the chloroplast and subsequently oxidized by a cytochrome P450, CYP720B4. RESULTS: We transiently expressed the isopimaric acid pathway in Nicotiana benthamiana leaves and enhanced its productivity by the expression of two rate-limiting steps in the pathway (providing the general precursor of diterpenes). This co...

  5. Modelling of an oil refinery wastewater treatment plant.

    Science.gov (United States)

    Pinzón Pardo, A L; Brdjanovic, D; Moussa, M S; López-Vázquez, C M; Meijer, S C F; Van Straten, H H A; Janssen, A J H; Amy, G; Van Loosdrecht, M C M

    2007-11-01

    The Activated Sludge Model No. 3 (ASM3) and Dutch calibration guidelines (STOWA) were evaluated in the modelling of an activated sludge system treating effluents from a large oil refinery. The plant was designed to remove suspended solids, organic matter and nitrogen from wastewater at an average water temperature of 34 degrees C. The plant consists of three tanks in series; the first two tanks operate in on-off aeration mode with pure oxygen for N-removal, whilst extra methanol is added for the denitrification, and the third tank is maintained as constantly aerobic. Calibration was performed based on a simplified influent characterisation and extra batch experiments (nitrification and denitrification). With the adjustment of only four parameters the model proved capable of describing the performance of the plant concerning both the liquid phase and the biomass. The model was further used to analyse possible modifications in the plant layout and optimize operational conditions in order to reduce operating costs. Modelling results indicated reduction in methanol dosage by implementing an idle time between aerobic and anoxic phases. In this way, surplus methanol was prevented from entering during the aerobic period. Moreover, simulations showed that the most cost-effective option regarding the denitrification process was a combined pre-post-denitrification scheme, without the need for enlarging existing basins. It can be concluded that although ASM3 and STOWA guidelines were originally developed for domestic wastewater application at a temperature range of 10 to 20 degrees C, they proved well capable of describing the performance of an oil refinery wastewater treatment plant operating at 34 degrees C. Moreover, the plant model proved useful for optimization of the plant performance regarding operational costs.

  6. Modeling of water treatment plant using timed continuous Petri nets

    Science.gov (United States)

    Nurul Fuady Adhalia, H.; Subiono, Adzkiya, Dieky

    2017-08-01

    Petri nets represent graphically certain conditions and rules. In this paper, we construct a model of the Water Treatment Plant (WTP) using timed continuous Petri nets. Specifically, we consider that (1) the water pump always active and (2) the water source is always available. After obtaining the model, the flow through the transitions and token conservation laws are calculated.

  7. Standard model for safety analysis report of fuel reprocessing plants

    International Nuclear Information System (INIS)

    1979-12-01

    A standard model for a safety analysis report of fuel reprocessing plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.) [pt

  8. Standard model for safety analysis report of fuel fabrication plants

    International Nuclear Information System (INIS)

    1980-09-01

    A standard model for a safety analysis report of fuel fabrication plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.) [pt

  9. Dynamic plant uptake model applied for drip irrigation of an insecticide to pepper fruit plants

    DEFF Research Database (Denmark)

    Legind, Charlotte Nielsen; Kennedy, C. M.; Rein, Arno

    2011-01-01

    irrigation, its application for a soil-applied insecticide and a sensitivity analysis of the model parameters. RESULTS: The model predicted the measured increase and decline of residues following two soil applications of an insecticide to peppers, with an absolute error between model and measurement ranging......BACKGROUND: Drip application of insecticides is an effective way to deliver the chemical to the plant that avoids off-site movement via spray drift and minimizes applicator exposure. The aim of this paper is to present a cascade model for the uptake of pesticide into plants following drip....... CONCLUSION: Repeated simulations of pulse inputs with the cascade model adequately describe soil pesticide applications to an actual cropped system and reasonably mimic it. The model has the potential to be used for the optimization of practical features, such as application rates and waiting times between...

  10. Norovirus Narita 104 Virus-Like Particles Expressed in Nicotiana benthamiana Induce Serum and Mucosal Immune Responses

    Directory of Open Access Journals (Sweden)

    Lolita George Mathew

    2014-01-01

    Full Text Available Narita 104 virus is a human pathogen belonging to the norovirus (family Caliciviridae genogroup II. Noroviruses cause epidemic gastroenteritis worldwide. To explore the potential of developing a plant-based vaccine, a plant optimized gene encoding Narita 104 virus capsid protein (NaVCP was expressed transiently in Nicotiana benthamiana using a tobacco mosaic virus expression system. NaVCP accumulated up to approximately 0.3 mg/g fresh weight of leaf at 4 days postinfection. Initiation of hypersensitive response-like symptoms followed by tissue necrosis necessitated a brief infection time and was a significant factor limiting expression. Transmission electron microscopy of plant-derived NaVCP confirmed the presence of fully assembled virus-like particles (VLPs. In this study, an optimized method to express and partially purify NaVCP is described. Further, partially purified NaVCP was used to immunize mice by intranasal delivery and generated significant mucosal and serum antibody responses. Thus, plant-derived Narita 104 VLPs have potential for use as a candidate subunit vaccine or as a component of a multivalent subunit vaccine, along with other genotype-specific plant-derived VLPs.

  11. Dynamic Models of Vacuum-Evaporator Plants for Dairy Industry

    Directory of Open Access Journals (Sweden)

    G. M. Airapetiants

    2009-01-01

    Full Text Available The paper studies problems of linearized dynamic models intended for synthesis of automatic temperature control systems and vacuum depth in vacuum evaporators. А single-casing vacuum evaporator plant is considered as an object of automatic control. Disturbance input channels are discerned and transfer functions permitting to determine laws of temperature and vacuum regulation and optimum parameters for setting automatic regulators used for various operational modes of vacuum-evaporator plants are obtained on the basis of the executed analysis.

  12. Production of human vitronectin in Nicotiana benthamiana using the INPACT hyperexpression platform.

    Science.gov (United States)

    Dugdale, Benjamin; Kato, Maiko; Deo, Pradeep; Plan, Manuel; Harrison, Mark; Lloyd, Robyn; Walsh, Terry; Harding, Robert; Dale, James

    2018-02-01

    Human vitronectin (hVN) is a glycoprotein that functions as a cell adhesion molecule and a regulator of coagulation in blood plasma and the extracellular matrix. In vitro, hVN is added to serum-free media in order to promote the adhesion of animal cells to tissue culture surfaces and the proliferation of undifferentiated stem cells. Here, we report the production of hVN in Nicotiana benthamiana using the inducible In Plant ACTivation (INPACT) hyperexpression platform. N. benthamiana plants were transformed with an INPACT expression cassette encoding hVN, and both the Tobacco yellow dwarf virus Rep/RepA activator and Tomato bushy stunt virus p19 gene under the transcriptional control of the ethanol-inducible AlcR:alcA gene switch. hVN expression was maximal 4-5 days postactivation of the INPACT platform with a dilute ethanol solution, and crude yields of the recombinant protein reached a maximum of 643 ± 78 mg/kg fresh weight. A three-stage purification protocol was developed using heparin and polyhistidine tag affinity binding and size exclusion filtration, resulting in a plant-made hVN product of >90% purity. Storage conditions for plant-made hVN were identified that maximized the capacity of the recombinant protein to promote cell adhesion. Critically, plant-made hVN was shown to be functionally equivalent to commercial, plasma-derived hVN at promoting one-half maximal attachment of murine fibroblast cells (BALB-C/3T3) in serum-free medium at <0.1 μg/cm 2 to tissue culture plasticware. The INPACT platform represents an attractive means of producing large quantities of functional, animal-free hVN for in vitro applications. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Steady-state plant model to predict hydrogen levels in power plant components

    Science.gov (United States)

    Glatzmaier, Greg C.; Cable, Robert; Newmarker, Marc

    2017-06-01

    The National Renewable Energy Laboratory (NREL) and Acciona Energy North America developed a full-plant steady-state computational model that estimates levels of hydrogen in parabolic trough power plant components. The model estimated dissolved hydrogen concentrations in the circulating heat transfer fluid (HTF), and corresponding partial pressures within each component. Additionally for collector field receivers, the model estimated hydrogen pressure in the receiver annuli. The model was developed to estimate long-term equilibrium hydrogen levels in power plant components, and to predict the benefit of hydrogen mitigation strategies for commercial power plants. Specifically, the model predicted reductions in hydrogen levels within the circulating HTF that result from purging hydrogen from the power plant expansion tanks at a specified target rate. Our model predicted hydrogen partial pressures from 8.3 mbar to 9.6 mbar in the power plant components when no mitigation treatment was employed at the expansion tanks. Hydrogen pressures in the receiver annuli were 8.3 to 8.4 mbar. When hydrogen partial pressure was reduced to 0.001 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.001 mbar to 0.02 mbar. When hydrogen partial pressure was reduced to 0.3 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.25 mbar to 0.28 mbar. Our results show that controlling hydrogen partial pressure in the expansion tanks allows us to reduce and maintain hydrogen pressures in the receiver annuli to any practical level.

  14. Steady-State Plant Model to Predict Hydroden Levels in Power Plant Components

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, Greg C.; Cable, Robert; Newmarker, Marc

    2017-06-27

    The National Renewable Energy Laboratory (NREL) and Acciona Energy North America developed a full-plant steady-state computational model that estimates levels of hydrogen in parabolic trough power plant components. The model estimated dissolved hydrogen concentrations in the circulating heat transfer fluid (HTF), and corresponding partial pressures within each component. Additionally for collector field receivers, the model estimated hydrogen pressure in the receiver annuli. The model was developed to estimate long-term equilibrium hydrogen levels in power plant components, and to predict the benefit of hydrogen mitigation strategies for commercial power plants. Specifically, the model predicted reductions in hydrogen levels within the circulating HTF that result from purging hydrogen from the power plant expansion tanks at a specified target rate. Our model predicted hydrogen partial pressures from 8.3 mbar to 9.6 mbar in the power plant components when no mitigation treatment was employed at the expansion tanks. Hydrogen pressures in the receiver annuli were 8.3 to 8.4 mbar. When hydrogen partial pressure was reduced to 0.001 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.001 mbar to 0.02 mbar. When hydrogen partial pressure was reduced to 0.3 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.25 mbar to 0.28 mbar. Our results show that controlling hydrogen partial pressure in the expansion tanks allows us to reduce and maintain hydrogen pressures in the receiver annuli to any practical level.

  15. Dynamic plant uptake model applied for drip irrigation of an insecticide to pepper fruit plants.

    Science.gov (United States)

    Legind, Charlotte N; Kennedy, Coleen M; Rein, Arno; Snyder, Nathan; Trapp, Stefan

    2011-05-01

    Drip application of insecticides is an effective way to deliver the chemical to the plant that avoids off-site movement via spray drift and minimizes applicator exposure. The aim of this paper is to present a cascade model for the uptake of pesticide into plants following drip irrigation, its application for a soil-applied insecticide and a sensitivity analysis of the model parameters. The model predicted the measured increase and decline of residues following two soil applications of an insecticide to peppers, with an absolute error between model and measurement ranging from 0.002 to 0.034 mg kg fw(-1). Maximum measured concentrations in pepper fruit were approximately 0.22 mg kg fw(-1). Temperature was the most sensitive component for predicting the peak and final concentration in pepper fruit, through its influence on soil and plant degradation rates. Repeated simulations of pulse inputs with the cascade model adequately describe soil pesticide applications to an actual cropped system and reasonably mimic it. The model has the potential to be used for the optimization of practical features, such as application rates and waiting times between applications and before harvest, through the integrated accounting of soil, plant and environmental influences. Copyright © 2011 Society of Chemical Industry.

  16. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  17. Expression of Aspergillus nidulans phy Gene in Nicotiana benthamiana Produces Active Phytase with Broad Specificities

    Directory of Open Access Journals (Sweden)

    Tae-Kyun Oh

    2014-09-01

    Full Text Available A full-length phytase gene (phy of Aspergillus nidulans was amplified from the cDNA library by polymerase chain reaction (PCR, and it was introduced into a bacterial expression vector, pET-28a. The recombinant protein (rPhy-E, 56 kDa was overexpressed in the insoluble fraction of Escherichia coli culture, purified by Ni-NTA resin under denaturing conditions and injected into rats as an immunogen. To express A. nidulans phytase in a plant, the full-length of phy was cloned into a plant expression binary vector, pPZP212. The resultant construct was tested for its transient expression by Agrobacterium-infiltration into Nicotiana benthamiana leaves. Compared with a control, the agro-infiltrated leaf tissues showed the presence of phy mRNA and its high expression level in N. benthamiana. The recombinant phytase (rPhy-P, 62 kDa was strongly reacted with the polyclonal antibody against the nonglycosylated rPhy-E. The rPhy-P showed glycosylation, two pH optima (pH 4.5 and pH 5.5, an optimum temperature at 45~55 °C, thermostability and broad substrate specificities. After deglycosylation by peptide-N-glycosidase F (PNGase-F, the rPhy-P significantly lost the phytase activity and retained 1/9 of the original activity after 10 min of incubation at 45 °C. Therefore, the deglycosylation caused a significant reduction in enzyme thermostability. In animal experiments, oral administration of the rPhy-P at 1500 U/kg body weight/day for seven days caused a significant reduction of phosphorus excretion by 16% in rat feces. Besides, the rPhy-P did not result in any toxicological changes and clinical signs.

  18. The use of plant models in deep learning: an application to leaf counting in rosette plants.

    Science.gov (United States)

    Ubbens, Jordan; Cieslak, Mikolaj; Prusinkiewicz, Przemyslaw; Stavness, Ian

    2018-01-01

    Deep learning presents many opportunities for image-based plant phenotyping. Here we consider the capability of deep convolutional neural networks to perform the leaf counting task. Deep learning techniques typically require large and diverse datasets to learn generalizable models without providing a priori an engineered algorithm for performing the task. This requirement is challenging, however, for applications in the plant phenotyping field, where available datasets are often small and the costs associated with generating new data are high. In this work we propose a new method for augmenting plant phenotyping datasets using rendered images of synthetic plants. We demonstrate that the use of high-quality 3D synthetic plants to augment a dataset can improve performance on the leaf counting task. We also show that the ability of the model to generate an arbitrary distribution of phenotypes mitigates the problem of dataset shift when training and testing on different datasets. Finally, we show that real and synthetic plants are significantly interchangeable when training a neural network on the leaf counting task.

  19. Plant physiology in theory and practice: an analysis of the WBE model for vascular plants.

    Science.gov (United States)

    Petit, Giai; Anfodillo, Tommaso

    2009-07-07

    The theoretical model of West, Brown and Enquist (hereafter WBE) proposed the fractal geometry of the transport system as the origin of the allometric scaling laws observed in nature. The WBE model has either been criticized for some restrictive and biologically unrealistic constraints or its reliability debated on the evidence of empirical tests. In this work, we revised the structure of the WBE model for vascular plants, highlighting some critical assumptions and simplifications and discuss them with regard to empirical evidence from plant anatomy and physiology. We conclude that the WBE model had the distinct merit of shedding light on some important features such as conduit tapering. Nonetheless, it is over-simplistic and a revised model would be desirable with an ontogenetic perspective that takes some important phenomena into account, such as the transformation of the inner sapwood into heartwood and the effect of hydraulic constraints in limiting the growth in height.

  20. Incorporating Plant Phenology Dynamics in a Biophysical Canopy Model

    Science.gov (United States)

    Barata, Raquel A.; Drewry, Darren

    2012-01-01

    The Multi-Layer Canopy Model (MLCan) is a vegetation model created to capture plant responses to environmental change. Themodel vertically resolves carbon uptake, water vapor and energy exchange at each canopy level by coupling photosynthesis, stomatal conductance and leaf energy balance. The model is forced by incoming shortwave and longwave radiation, as well as near-surface meteorological conditions. The original formulation of MLCan utilized canopy structural traits derived from observations. This project aims to incorporate a plant phenology scheme within MLCan allowing these structural traits to vary dynamically. In the plant phenology scheme implemented here, plant growth is dependent on environmental conditions such as air temperature and soil moisture. The scheme includes functionality that models plant germination, growth, and senescence. These growth stages dictate the variation in six different vegetative carbon pools: storage, leaves, stem, coarse roots, fine roots, and reproductive. The magnitudes of these carbon pools determine land surface parameters such as leaf area index, canopy height, rooting depth and root water uptake capacity. Coupling this phenology scheme with MLCan allows for a more flexible representation of the structure and function of vegetation as it responds to changing environmental conditions.

  1. Design of nuclear power generation plants adopting model engineering method

    International Nuclear Information System (INIS)

    Waki, Masato

    1983-01-01

    The utilization of model engineering as the method of design has begun about ten years ago in nuclear power generation plants. By this method, the result of design can be confirmed three-dimensionally before actual production, and it is the quick and sure method to meet the various needs in design promptly. The adoption of models aims mainly at the improvement of the quality of design since the high safety is required for nuclear power plants in spite of the complex structure. The layout of nuclear power plants and piping design require the model engineering to arrange rationally enormous quantity of things in a limited period. As the method of model engineering, there are the use of check models and of design models, and recently, the latter method has been mainly taken. The procedure of manufacturing models and engineering is explained. After model engineering has been completed, the model information must be expressed in drawings, and the automation of this process has been attempted by various methods. The computer processing of design is in progress, and its role is explained (CAD system). (Kako, I.)

  2. Dynamic Models for Wind Turbines and Wind Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Santoso, S.

    2011-10-01

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  3. Tecnomatix Plant Simulation modeling and programming by means of examples

    CERN Document Server

    Bangsow, Steffen

    2015-01-01

    This book systematically introduces the development of simulation models as well as the implementation and evaluation of simulation experiments with Tecnomatix Plant Simulation. It deals with all users of Plant Simulation, who have more complex tasks to handle. It also looks for an easy entry into the program. Particular attention has been paid to introduce the simulation flow language SimTalk and its use in various areas of the simulation. The author demonstrates with over 200 examples how to combine the blocks for simulation models and how to deal with SimTalk for complex control and analys

  4. Model-based reasoning and the control of process plants

    International Nuclear Information System (INIS)

    Vaelisuo, Heikki

    1993-02-01

    In addition to feedback control, safe and economic operation of industrial process plants requires discrete-event type logic control like for example automatic control sequences, interlocks, etc. A lot of complex routine reasoning is involved in the design and verification and validation (VandV) of such automatics. Similar reasoning tasks are encountered during plant operation in action planning and fault diagnosis. The low-level part of the required problem solving is so straightforward that it could be accomplished by a computer if only there were plant models which allow versatile mechanised reasoning. Such plant models and corresponding inference algorithms are the main subject of this report. Deep knowledge and qualitative modelling play an essential role in this work. Deep knowledge refers to mechanised reasoning based on the first principles of the phenomena in the problem domain. Qualitative modelling refers to knowledge representation formalism and related reasoning methods which allow solving problems on an abstraction level higher than for example traditional simulation and optimisation. Prolog is a commonly used platform for artificial intelligence (Al) applications. Constraint logic languages like CLP(R) and Prolog-III extend the scope of logic programming to numeric problem solving. In addition they allow a programming style which often reduces the computational complexity significantly. An approach to model-based reasoning implemented in constraint logic programming language CLP(R) is presented. The approach is based on some of the principles of QSIM, an algorithm for qualitative simulation. It is discussed how model-based reasoning can be applied in the design and VandV of plant automatics and in action planning during plant operation. A prototype tool called ISIR is discussed and some initial results obtained during the development of the tool are presented. The results presented originate from preliminary test results of the prototype obtained

  5. Nuclear glutamine synthetase evolution in Nicotiana: phylogenetics and the origins of allotetraploid and homoploid (diploid) hybrids.

    Science.gov (United States)

    Clarkson, James J; Kelly, Laura J; Leitch, Andrew R; Knapp, Sandra; Chase, Mark W

    2010-04-01

    Interspecies relationships in Nicotiana (Solanaceae) are complex because 40 species are diploid (two sets of chromosomes) and 35 species are allotetraploid (four sets of chromosomes, two from each progenitor diploid species). We sequenced a fragment (containing four introns) of the nuclear gene 'chloroplast-expressed glutamine synthetase' (ncpGS) in 65 species of Nicotiana. Here we present the first phylogenetic analysis based on a low-copy nuclear gene for this well studied and important genus. Diploid species have a single-copy of ncpGS, and allotetraploids as expected have two homeologous copies, each derived from their progenitor diploid. Results were particularly useful for determining the paternal lineage of previously enigmatic taxa (for which our previous analyses had revealed only the maternal progenitors). In particular, we were able to shed light on the origins of the two oldest and largest allotetraploid sections, N. sects. Suaveolentes and Repandae. All homeologues have an intact reading frame and apparently similar rates of divergence, suggesting both remain functional. Difficulties in fitting certain diploid species into the sectional classification of Nicotiana on morphological grounds, coupled with discordance between the ncpGS data and previous trees (i.e. plastid, nuclear ribosomal DNA), indicate a number of homoploid (diploid) hybrids in the genus. We have evidence for Nicotiana glutinosa and Nicotiana linearis being of hybrid origin and patterns of intra-allelic recombination also indicate the possibility of reticulate origins for other diploid species. (c) 2009 Elsevier Inc. All rights reserved.

  6. A hyper-thermostable α-amylase from Pyrococcus furiosus accumulates in Nicotiana tabacum as functional aggregates.

    Science.gov (United States)

    Zhu, Hong; Reynolds, L Bruce; Menassa, Rima

    2017-06-19

    Alpha amylase hydrolyzes α-bonds of polysaccharides such as starch and produces malto-oligosaccharides. Its starch saccharification applications make it an essential enzyme in the textile, food and brewing industries. Commercially available α-amylase is mostly produced from Bacillus or Aspergillus. A hyper-thermostable and Ca 2++ independent α-amylase from Pyrococcus furiosus (PFA) expressed in E.coli forms insoluble inclusion bodies and thus is not feasible for industrial applications. We expressed PFA in Nicotiana tabacum and found that plant-produced PFA forms functional aggregates with an accumulation level up to 3.4 g/kg FW (fresh weight) in field conditions. The aggregates are functional without requiring refolding and therefore have potential to be applied as homogenized plant tissue without extraction or purification. PFA can also be extracted from plant tissue upon dissolution in a mild reducing buffer containing SDS. Like the enzyme produced in P. furiosus and in E. coli, plant produced PFA preserves hyper-thermophilicity and hyper-thermostability and has a long shelf life when stored in lyophilized leaf tissue. With tobacco's large biomass and high yield, hyper-thermostable α-amylase was produced at a scale of 42 kg per hectare. Tobacco may be a suitable bioreactor for industrial production of active hyperthermostable alpha amylase.

  7. [Cloning of y3 gene encoding a tobacco mosaic virus inhibitor from Coprinus comatus and transformation to Nicotiana tabacum].

    Science.gov (United States)

    Wang, Xueren; He, Tao; Zhang, Gaina; Hao, Jianguo; Jia, Jingfen

    2010-02-01

    The protein Y3 was a TMV inhibitor which was encoded by y3 gene. The aim of this work was to clone the full length of y3 gene from Coprinus comatus and to reveal its inhibitory function to TMV in in vivo conditions. We amplified the unknown 5'- terminal cDNA sequence of y3 gene with 5'- Full RACE Core Set (TaKaRa), obtained the full length of this gene by RT-PCR, constructed the expression plasmid pCAMBIA1301-y3 via inserting gene y3 sequence, CaMV 35 S promoter, and NOS terminator at MCS and transformed it into Nicotiana tabacum via agrobacterium-mediation. The full length of y3 gene was 534 bps including one ORF encoding 130 amino acid residues (GenBank Accession No. GQ859168; EMBL FN546262). The cDNA sequence and its deduced amino acid sequence showed high similarity (94%) to the published fragment of y3 gene sequence. Northern blot analysis proved the transcription of y3 gene in transgenic tobacco plants. The transgenic plants inoculated with TMV expressed the inhibitory activity to TMV. We cloned the full length of y3 gene and obtained transgenic tobacco plants. The expression of y3 gene in transgenic plants improved the inhibitory activity to TMV. The cloning and expression analysis of y3 gene might provide background information for future studying of y3 gene.

  8. Rapid Transient Production of a Monoclonal Antibody Neutralizing the Porcine Epidemic Diarrhea Virus (PEDV) in Nicotiana benthamiana and Lactuca sativa.

    Science.gov (United States)

    Rattanapisit, Kaewta; Srijangwad, Anchalee; Chuanasa, Taksina; Sukrong, Suchada; Tantituvanont, Angkana; Mason, Hugh S; Nilubol, Dachrit; Phoolcharoen, Waranyoo

    2017-12-01

    Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration, weight loss, and high mortality rate in neonatal piglets. Porcine epidemic diarrhea (PED) has been reported in Europe, America, and Asia including Thailand. The disease causes substantial losses to the swine industry in many countries. Presently, there is no effective PEDV vaccine available. In this study, we developed a plant-produced monoclonal antibody (mAb) 2C10 as a prophylactic candidate to prevent the PEDV infection. Recently, plant expression systems have gained interest as an alternative for the production of antibodies because of many advantages, such as low production cost, lack of human and animal pathogen, large scalability, etc. The 2C10 mAb was transiently expressed in Nicotiana benthamiana and lettuce using geminiviral vector. After purification by protein A affinity chromatography, the antibody was tested for the binding and neutralizing activity against PEDV. Our result showed that the plant produced 2C10 mAb can bind to the virus and also inhibit PEDV infection in vitro . These results show excellent potential for a plant-expressed 2C10 as a PEDV prophylaxis and a diagnostic for PEDV infection. Georg Thieme Verlag KG Stuttgart · New York.

  9. Root jasmonic acid synthesis and perception regulate folivore-induced shoot metabolites and increase Nicotiana attenuata resistance.

    Science.gov (United States)

    Fragoso, Variluska; Rothe, Eva; Baldwin, Ian T; Kim, Sang-Gyu

    2014-06-01

    While jasmonic acid (JA) signaling is widely accepted as mediating plant resistance to herbivores, and the importance of the roots in plant defenses is recently being recognized, the role of root JA in the defense of above-ground parts remains unstudied. To restrict JA impairment to the roots, we micrografted wildtype Nicotiana attenuata shoots to the roots of transgenic plants impaired in JA signaling and evaluated ecologically relevant traits in the glasshouse and in nature. Root JA synthesis and perception are involved in regulating nicotine production in roots. Strikingly, systemic root JA regulated local leaf JA and abscisic acid (ABA) concentrations, which were associated with differences in nicotine transport from roots to leaves via the transpiration stream. Root JA signaling also regulated the accumulation of other shoot metabolites; together these account for differences in resistance against a generalist, Spodoptera littoralis, and a specialist herbivore, Manduca sexta. In N. attenuata's native habitat, silencing root JA synthesis increased the shoot damage inflicted by Empoasca leafhoppers, which are able to select natural jasmonate mutants. Silencing JA perception in roots also increased damage by Tupiocoris notatus. We conclude that attack from above-ground herbivores recruits root JA signaling to launch the full complement of plant defense responses. © 2014 Max Planck Society. New Phytologist © 2014 New Phytologist Trust.

  10. Simulation of wastewater treatment plant within integrated urban wastewater models.

    Science.gov (United States)

    Heusch, S; Kamradt, B; Ostrowski, M

    2010-01-01

    In the federal state of Hesse in Germany the application of an integrated software modelling framework is becoming part of the planning process to attain legal approval for the operation of combined sewer systems. The software allows for parallel simulation of flow and water quality routing in the sewer system and in receiving rivers. It combines existing pollution load model approaches with a simplified version of the River Water Quality Model No. 1 (RWQM1). Comprehensive simulation of the wastewater treatment plant (WWTP) is not considered yet. The paper analyses alternatives for the implementation of a WWTP module to model activated sludge plants. For both primary and secondary clarifiers as well as for the activated sludge process concepts for the integration into the existing software framework were developed. The activated sludge concept which uses a linearized version of the well known ASM1 model is presented in detail.

  11. Use of linear programming models in experimentation with plant nutrients

    Directory of Open Access Journals (Sweden)

    Mauro Brino Garcia

    2013-06-01

    Full Text Available Nutrition is an important issue of plant cultivation and experimentation with plant nutrients is a supporting tool for agriculture. However, use of high purity grade reagents as nutrient sources can be expensive and increases the cost of an experiment. The objective of this study was to minimize the acquisition cost of high purity grade reagents in experiments on plant nutrient deficiency by using the missing element technique through linear programming models, and to generate recommendation tables for preparation of culture solutions, as well as to quantify gains through a simulated experiment. Two linear programming models were formulated containing concentration constraints for each nutrient in the culture solution. Model A was based on 16 reagents for preparation of the culture solution, while model B was based on 27 reagents, looking to increase choice options. Results showed that both models minimized the acquisition cost of reagents, allowing a 9.03% reduction in model A and a 25.98% reduction in model B. The missing sulfur treatment proved the most costly for reagent acquisition while the missing nitrogen treatment proved the least costly. It was concluded that the formulated models were capable of reducing acquisition costs of reagents, yet the recommendations generated by them should be tested and checked for practical viability.

  12. Nontransgenic genome modification in plant cells.

    Science.gov (United States)

    Marton, Ira; Zuker, Amir; Shklarman, Elena; Zeevi, Vardit; Tovkach, Andrey; Roffe, Suzy; Ovadis, Marianna; Tzfira, Tzvi; Vainstein, Alexander

    2010-11-01

    Zinc finger nucleases (ZFNs) are a powerful tool for genome editing in eukaryotic cells. ZFNs have been used for targeted mutagenesis in model and crop species. In animal and human cells, transient ZFN expression is often achieved by direct gene transfer into the target cells. Stable transformation, however, is the preferred method for gene expression in plant species, and ZFN-expressing transgenic plants have been used for recovery of mutants that are likely to be classified as transgenic due to the use of direct gene-transfer methods into the target cells. Here we present an alternative, nontransgenic approach for ZFN delivery and production of mutant plants using a novel Tobacco rattle virus (TRV)-based expression system for indirect transient delivery of ZFNs into a variety of tissues and cells of intact plants. TRV systemically infected its hosts and virus ZFN-mediated targeted mutagenesis could be clearly observed in newly developed infected tissues as measured by activation of a mutated reporter transgene in tobacco (Nicotiana tabacum) and petunia (Petunia hybrida) plants. The ability of TRV to move to developing buds and regenerating tissues enabled recovery of mutated tobacco and petunia plants. Sequence analysis and transmission of the mutations to the next generation confirmed the stability of the ZFN-induced genetic changes. Because TRV is an RNA virus that can infect a wide range of plant species, it provides a viable alternative to the production of ZFN-mediated mutants while avoiding the use of direct plant-transformation methods.

  13. Health effects models for nuclear power plant accident consequence analysis

    International Nuclear Information System (INIS)

    Abrahamson, S.; Bender, M.A.; Boecker, B.B.; Scott, B.R.

    1993-05-01

    The Nuclear Regulatory Commission (NRC) has sponsored several studies to identify and quantify, through the use of models, the potential health effects of accidental releases of radionuclides from nuclear power plants. The Reactor Safety Study provided the basis for most of the earlier estimates related to these health effects. Subsequent efforts by NRC-supported groups resulted in improved health effects models that were published in the report entitled open-quotes Health Effects Models for Nuclear Power Plant Consequence Analysisclose quotes, NUREG/CR-4214, 1985 and revised further in the 1989 report NUREG/CR-4214, Rev. 1, Part 2. The health effects models presented in the 1989 NUREG/CR-4214 report were developed for exposure to low-linear energy transfer (LET) (beta and gamma) radiation based on the best scientific information available at that time. Since the 1989 report was published, two addenda to that report have been prepared to (1) incorporate other scientific information related to low-LET health effects models and (2) extend the models to consider the possible health consequences of the addition of alpha-emitting radionuclides to the exposure source term. The first addendum report, entitled open-quotes Health Effects Models for Nuclear Power Plant Accident Consequence Analysis, Modifications of Models Resulting from Recent Reports on Health Effects of Ionizing Radiation, Low LET Radiation, Part 2: Scientific Bases for Health Effects Models,close quotes was published in 1991 as NUREG/CR-4214, Rev. 1, Part 2, Addendum 1. This second addendum addresses the possibility that some fraction of the accident source term from an operating nuclear power plant comprises alpha-emitting radionuclides. Consideration of chronic high-LET exposure from alpha radiation as well as acute and chronic exposure to low-LET beta and gamma radiations is a reasonable extension of the health effects model

  14. [Evaluation of Fusarium spp. pathogenicity in plant and murine models].

    Science.gov (United States)

    Forero-Reyes, Consuelo M; Alvarado-Fernández, Angela M; Ceballos-Rojas, Ana M; González-Carmona, Lady C; Linares-Linares, Melva Y; Castañeda-Salazar, Rubiela; Pulido-Villamarín, Adriana; Góngora-Medina, Manuel E; Cortés-Vecino, Jesús A; Rodríguez-Bocanegra, María X

    The genus Fusarium is widely recognized for its phytopathogenic capacity. However, it has been reported as an opportunistic pathogen in immunocompetent and immunocompromised patients. Thus, it can be considered a microorganism of interest in pathogenicity studies on different hosts. Therefore, this work evaluated the pathogenicity of Fusarium spp. isolates from different origins in plants and animals (murine hosts). Twelve isolates of Fusarium spp. from plants, animal superficial mycoses, and human superficial and systemic mycoses were inoculated in tomato, passion fruit and carnation plants, and in immunocompetent and immunosuppressed BALB/c mice. Pathogenicity tests in plants did not show all the symptoms associated with vascular wilt in the three plant models; however, colonization and necrosis of the vascular bundles, regardless of the species and origin of the isolates, showed the infective potential of Fusarium spp. in different plant species. Moreover, the pathogenicity tests in the murine model revealed behavioral changes. It was noteworthy that only five isolates (different origin and species) caused mortality. Additionally, it was observed that all isolates infected and colonized different organs, regardless of the species and origin of the isolates or host immune status. In contrast, the superficial inoculation test showed no evidence of epidermal injury or colonization. The observed results in plant and murine models suggest the pathogenic potential of Fusarium spp. isolates in different types of hosts. However, further studies on pathogenicity are needed to confirm the multihost capacity of this genus. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Cloning and characterization of a 9-lipoxygenase gene induced by pathogen attack from Nicotiana benthamiana for biotechnological application

    Directory of Open Access Journals (Sweden)

    Schwab Wilfried

    2011-03-01

    Full Text Available Abstract Background Plant lipoxygenases (LOXs have been proposed to form biologically active compounds both during normal developmental stages such as germination or growth as well as during responses to environmental stress such as wounding or pathogen attack. In our previous study, we found that enzyme activity of endogenous 9-LOX in Nicotiana benthamiana was highly induced by agroinfiltration using a tobacco mosaic virus (TMV based vector system. Results A LOX gene which is expressed after treatment of the viral vectors was isolated from Nicotiana benthamiana. As the encoded LOX has a high amino acid identity to other 9-LOX proteins, the gene was named as Nb-9-LOX. It was heterologously expressed in yeast cells and its enzymatic activity was characterized. The yeast cells expressed large quantities of stable 9-LOX (0.9 U ml-1 cell cultures which can oxygenate linoleic acid resulting in high yields (18 μmol ml-1 cell cultures of hydroperoxy fatty acid. The product specificity of Nb-9-LOX was examined by incubation of linoleic acid and Nb-9-LOX in combination with a 13-hydroperoxide lyase from watermelon (Cl-13-HPL or a 9/13-hydroperoxide lyase from melon (Cm-9/13-HPL and by LC-MS analysis. The result showed that Nb-9-LOX possesses both 9- and 13-LOX specificity, with high predominance for the 9-LOX function. The combination of recombinant Nb-9-LOX and recombinant Cm-9/13-HPL produced large amounts of C9-aldehydes (3.3 μmol mg-1 crude protein. The yield of C9-aldehydes from linoleic acid was 64%. Conclusion The yeast expressed Nb-9-LOX can be used to produce C9-aldehydes on a large scale in combination with a HPL gene with 9-HPL function, or to effectively produce 9-hydroxy-10(E,12(Z-octadecadienoic acid in a biocatalytic process in combination with cysteine as a mild reducing agent.

  16. Study of photosynthesis process in the presence of low concentrations of clomazone herbicide in tobacco (Nicotiana tabacum

    Directory of Open Access Journals (Sweden)

    Darwish, Majd

    2013-02-01

    Full Text Available The effect of chemical residues of clomazone on photosynthetic processes has been studiedby using several low concentrations of the herbicide (0, 1, 0.1, 0.01, 0.001, 0.0001 and 0.00001 µM and seedlings of two varieties of tobacco (Nicotiana tabacum L. cv. Virginie vk51, Nicotiana tabacum, L. cv. Xanthi. The content of photosynthetic pigments, the parameters of the chlorophyll-a fluorescence and the JIP-test were performed on an adult leaf (AL and a young leaf (YL, that gave a complementary designto know the action's mode of clomazone on the plant physiological processes. Clomazone reducedthe total chlorophyll (a+b, carotenoids pigments (reduction in size antenna pigments judged by an increase in the chlorophyll a/b ratio in young leaves more than adults leaves. The maximal photochemical efficiency (Fv/Fm of photosystem II (PSII decreased significantly in youngleavescompared to adult leaves and in (Virginie variety than (Xanthi variety. Among the parameters calculated of the JIP-test most affected by the treatment, PIabs, 1-VJ, ABS/RC, DI0/RC, TR0/RC, ET0/RC, ET0/ABS, which indicated acomparable effects of clomazone(1μM, 0.1µM, 0.01µM between the two types of leaves and the varieties used. More, the results showed that the concentration ( 1μM was the most effective amongthe other low concentrations used and the (Virginie variety ismore sensitive than the (Xanthivariety. We conclude that clomazone has probably two combined functions (physiological, toxic judged by the different behavior of both types of leaves in the presence of the herbicide.

  17. Comparative assessment of PV plant performance models considering climate effects

    DEFF Research Database (Denmark)

    Tina, Giuseppe; Ventura, Cristina; Sera, Dezso

    2017-01-01

    . The methodological approach is based on comparative tests of the analyzed models applied to two PV plants installed respectively in north of Denmark (Aalborg) and in the south of Italy (Agrigento). The different ambient, operating and installation conditions allow to understand how these factors impact the precision...

  18. Gene Discovery and Functional Analyses in the Model Plant Arabidopsis

    DEFF Research Database (Denmark)

    Feng, Cai-ping; Mundy, J.

    2006-01-01

    The present mini-review describes newer methods and strategies, including transposon and T-DNA insertions, TILLING, Deleteagene, and RNA interference, to functionally analyze genes of interest in the model plant Arabidopsis. The relative advantages and disadvantages of the systems are also...

  19. A multiple-compartment model for biokinetics studies in plants

    International Nuclear Information System (INIS)

    Garcia, Fermin; Pietrobron, Flavio; Fonseca, Agnes M.F.; Mol, Anderson W.; Rodriguez, Oscar; Guzman, Fernando

    2001-01-01

    In the present work is used the system of linear equations based in the general Assimakopoulos's GMCM model , for the development of a new method that will determine the flow's parameters and transfer coefficients in plants. The need of mathematical models to quantify the penetration of a trace substance in animals and plants, has often been stressed in the literature. Usually, in radiological environment studies, it is used the mean value of contaminant concentrations on whole or edible part plant body, without taking in account vegetable physiology regularities. In this work concepts and mathematical formulation of a Vegetable Multi-compartment Model (VMCM), taking into account the plant's physiology regularities is presented. The model based in general ideas of the GMCM , and statistical Square Minimum Method STATFLUX is proposed to use in inverse sense: the experimental time dependence of concentration in each compartment, should be input, and the parameters should be determined from this data in a statistical approach. The case of Uranium metabolism is discussed. (author)

  20. Classroom: Models Made from Local Materials for Teaching Plant ...

    African Journals Online (AJOL)

    In an attempt to find out if simulated teaching-learning materials could effectively fill in the gap for expensively imported science teaching-learning resources, models for teaching plant and animal cells and the solar system were made and tested. The results showed that between 13.33 -50 % of the students obtained ...

  1. Grass plants crop water consumption model in urban parks located ...

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... Grass plants crop water consumption model in urban parks located in three different ... The result of calculations, using the climate data of July, value of the province of Antalya were. ETo=7,10464 mm/day, for Ankara .... method is recommended by Food and Agriculture. Organisation (FAO) (Allen et al., ...

  2. Production of Nicotiana glauca R. C. Graham aerial biomass in relation to irrigation regime

    Energy Technology Data Exchange (ETDEWEB)

    Curt, M.D.; Fernandez, Jesus (Ciudad Univ., Madrid (ES). Dept. de Produccion Vegetal)

    1990-01-01

    Nicotiana glauca R. C. Graham is a member of the Solanaceae, naturalized in the areas of warm-arid climates of the Iberian Peninsula. This species could have a great importance as a possible energy crop, because of its drought hardiness, sprouting capacity, large biomass productivity and high content of non-structural carbohydrates. In this work the production of the above-ground biomass of Nicotiana glauca was studied in relation to the irrigation regime in a cycle of cultivation. It is concluded that Nicotiana glauca could be cultivated in marginal lands of warm-arid climates; and a production of above-ground biomass of 3.9 t d.m. ha{sup -1} year{sup -1} was estimated, from which it would be possible to extract about 900 kg of easily fermentable carbohydrates. (author).

  3. New model concepts for dynamic plant uptake and mass flux estimates in the soil-plant-air system

    DEFF Research Database (Denmark)

    Rein, Arno; Bauer-Gottwein, Peter; Trapp, Stefan

    2010-01-01

    Plants significantly influence contaminant transport and fate. Important processes are uptake of soil and groundwater contaminants, as well as biodegradation in plants and their root zones. Models for the prediction of chemical uptake into plants are required for the setup of mass balances...... in environmental systems at different scales. Feedback mechanisms between plants and hydrological systems can play an important role. However, they have received little attention to date. Here, a new model concept for dynamic plant uptake models applying analytical matrix solutions is presented, which can...... be coupled to groundwater transport simulation tools. Exemplary simulations of plant uptake were carried out in order to estimate chemical concentrations in the soil-plant-air system and the influence of plants on contaminant mass fluxes from soil to groundwater....

  4. Plant Information Models: Supporting the Management of Design Knowledge throughout the Nuclear Power Plant Life Cycle

    International Nuclear Information System (INIS)

    Adams, R.; Grosbois, J. de; Gladyshev, M.

    2016-01-01

    Full text: In 2014, the IAEA’s Department of Nuclear Energy launched a new initiative aimed at strengthening design knowledge management throughout the life cycle of nuclear facilities, and as a part of this initiative, set out to publish a series of IAEA technical reports and guidance on information modelling of nuclear facilities, and to develop a generic prototype plant information model (PIM) for demonstration purposes. New nuclear facilities are being designed and constructed using modern computer-aided design and engineering systems, multidimensional modelling and design information sources such as data, databases, and electronic documents. As a result, new facilities can be delivered with a computer-based information environment that is able to be transferred, integrated and interoperable with the computer-based information environments of the organizations that own and operate them. The opportunity exists to radically improve knowledge capture, integration and transfer between stakeholders, however, these computer-based information environments typically consist of one or more plant information models with minimal standardization and information interoperability between them. A Knowledge-centric plant information model could be developed and leveraged to better support, manage and enable seamless exchange and transfer of sustainable design and design knowledge information throughout the nuclear facility life cycle. (author

  5. Reduced abundance of the CYP6CY3-targeting let-7 and miR-100 miRNAs accounts for host adaptation of Myzus persicae nicotianae.

    Science.gov (United States)

    Peng, Tianfei; Pan, Yiou; Gao, Xiwu; Xi, Jinghui; Zhang, Lei; Ma, Kangsheng; Wu, Yongqiang; Zhang, Juhong; Shang, Qingli

    2016-08-01

    Nicotine is one of the most abundant and toxic secondary plant metabolites in nature and is defined by high toxicity to plant-feeding insects. Studies suggest that increased expression of cytochrome P450 (CYP6CY3) and the homologous CYP6CY4 genes in Myzus persicae nicotianae is correlated with tolerance to nicotine. Indeed, through expression analyses of the CYP6CY3 and CYP6CY4 genes of different M. persicae subspecies, we determined that the mRNA levels of these two genes were much higher in M. persicae nicotianae than in M. persicae sensu stricto. We hypothesized that the expression of these two genes is subject to post-transcriptional regulation. To investigate the underlying mechanism, the miRNA profile of M. persicae nicotianae was sequenced, and twenty-two miRNAs were predicted to target CYP6CY3. Validation of these miRNAs identified two miRNAs, let-7 and miR-100, whose abundance was highly inversely correlated with the abundance of the CYP6CY3 gene. This result implies that the let-7 and miR-100 miRNAs play a major role in the post-transcriptional regulation of the CYP6CY3 gene. Modulation of the abundance of let-7 and miR-100 through the addition of inhibitors/mimics of let-7 or miR-100 to artificial diet significantly altered the tolerance of M. persicae nicotianae to nicotine, further confirming the regulatory role of these two miRNAs. Interestingly, after decreasing the transcript levels of CYP6CY3 by modulating regulatory miRNAs, the transcript levels of the homologous isozyme CYP6CY4 were significantly elevated, suggesting a compensatory mechanism between the CYP6CY3 gene and its homologous CYP6CY4 gene. Our findings provide insight into the molecular drivers of insect host shifts and reveal an important source of genetic variation for adaptive evolution in insect species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Elucidating the physiological and biochemical responses of different tobacco (Nicotiana tabacum) genotypes to lead toxicity.

    Science.gov (United States)

    Maodzeka, Antony; Hussain, Nazim; Wei, Liquan; Zvobgo, Gerald; Mapodzeke, James Mutemachani; Adil, Muhammad Faheem; Jabeen, Salma; Wang, Feng; Jiang, Lixi; Shamsi, Imran Haider

    2017-01-01

    In the present study, the effects of lead (Pb) uptake and toxicity were investigated in a hydroponic culture using 7 tobacco (Nicotiana tabacum L.) genotypes (Bina 1 [B1], Kutsaga Mammoth 10 [KM10], Nanjing 3 [N3], Kutsaga 35 [K35], Kutsaga E1 [KE1], Cocker 176 [C176], and Kutsaga RK6 [KRK6]) that differed in Pb tolerance. Lead was applied as a solution of Pb nitrate at concentrations of 0 μM, 10 μM, 250 μM, and 500 μM. After 4 wk of Pb treatment, tissue biomass and photosynthetic parameters were measured and elemental analysis was performed. The results showed decreases in growth and photosynthetic parameters with increases in Pb concentration compared with the control. The least reduction in the recorded physiological parameters was noted in K35, whereas the greatest reduction was observed in N3, which is an obvious indication of genotypic differences. Activities of peroxidase, catalase, and malondialdehyde increased significantly with increases in Pb concentration, with genotypes K35 and N3 showing the least and the greatest reduction, respectively. The results demonstrate the phototoxic nature of Pb on plants, and it can be concluded that in Pb-prone areas genotypes K35 and B1 can be used for cultivation because they can grow efficiently in the presence of high Pb concentrations while restricting Pb uptake in the aboveground parts, as seen by the higher Pb tolerance index. Environ Toxicol Chem 2017;36:175-181. © 2016 SETAC. © 2016 SETAC.

  7. [Effect of metalaxyl on the synthesis of RNA, DNA and protein in Phytophthora nicotianae].

    Science.gov (United States)

    Wollgiehn, R; Bräutigam, E; Schumann, B; Erge, D

    1984-01-01

    Metalaxyl is used to control diseases caused by fungi of the order of the Perenosporales. We investigated the action of this fungicid eon nucleic acid and protein synthesis in liquid cultures of Phytophthora nicotianae. The uptake of 32P, 3H-uridine, 3H-thymidine and 14C-leucine as precursors of nuclei acid and protein synthesis by the mycelium was not inhibited by metalaxyl. RNA synthesis as indicated by 3H-uridine incorporation was strongly inhibited (about 80%) by 0.5 micrograms/ml of metalaxyl. The inhibition was visible already few minutes after addition of the toxicant. Since the inhibition of incorporation of 3H-thymidine into DNA and of 14C-leucine into protein became significant 2-3 hours later, we conclude that metalaxyl primarily interfers with RNA synthesis. Synthesis of ribosomal RNA is more affected (more than 90%) than that of tRNA (about 55%) and poly(A)-containing RNA. Since in the presence of actinomycin, in contrast to metalaxyl, protein synthesis is inhibited immediately as a consequence of complete inhibition of RNA synthesis and of the short life-time of mRNA, it is also evident that mRNA synthesis is less strongly inhibited, at least during the early period of metalaxyl action. The molecular mechanism of metalaxyl inhibition of the transcription process remains open. The fungicide did not inhibit the activity of a partially purified RNA polymerase isolated from the fungus. On the other hand, the RNA synthesis (14C-UTP-incorporation) by a cell homogenate and by isolated nuclear fractions was inhibited significantly. Possibilities of the molecular action of metalaxyl are discussed. The RNA synthesis of some plant systems (cell cultures of Lycopersicon peruvianum, isolated nuclei from the same cell cultures, purified RNA polymerase from Spinacia oleracea chloroplasts) was not inhibited by metalaxyl, not even at high concentrations.

  8. Plant water potential improves prediction of empirical stomatal models.

    Directory of Open Access Journals (Sweden)

    William R L Anderegg

    Full Text Available Climate change is expected to lead to increases in drought frequency and severity, with deleterious effects on many ecosystems. Stomatal responses to changing environmental conditions form the backbone of all ecosystem models, but are based on empirical relationships and are not well-tested during drought conditions. Here, we use a dataset of 34 woody plant species spanning global forest biomes to examine the effect of leaf water potential on stomatal conductance and test the predictive accuracy of three major stomatal models and a recently proposed model. We find that current leaf-level empirical models have consistent biases of over-prediction of stomatal conductance during dry conditions, particularly at low soil water potentials. Furthermore, the recently proposed stomatal conductance model yields increases in predictive capability compared to current models, and with particular improvement during drought conditions. Our results reveal that including stomatal sensitivity to declining water potential and consequent impairment of plant water transport will improve predictions during drought conditions and show that many biomes contain a diversity of plant stomatal strategies that range from risky to conservative stomatal regulation during water stress. Such improvements in stomatal simulation are greatly needed to help unravel and predict the response of ecosystems to future climate extremes.

  9. Detailed modelling of a flue-gas desulfurisation plant

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, A.; Fueyo, N.; Tomas, A. [University of Zaragoza, Zaragoza (Spain)

    2007-11-15

    This paper presents a CFD model for a flue-gas desulfurisation plant, and its application to an operating plant. The FGD plant is of the wet-scrubber type, with co-current and counter-current sections. The sorbent used is limestone, and, after cleaning the flue gases, the limestone slurry is collected in an oxidation tank for the production of gypsum. The model uses an Eulerian-Eulerian treatment of the multiphase flow in the absorber and the tank. The essential mass-transfer mechanisms (such as SO{sub 2} and O{sub 2} absorption and CO{sub 2} desorption) are accounted for, as are also the main chemical kinetics leading to the formation of gypsum. Given the different nature of the flow in the absorber and tank, two separate simulations are conducted for each of these domains, and the solutions are iteratively coupled through boundary conditions during the calculations. The model is applied to the FGD plant of the Teruel powerstation located in Andorra (Teruel, Spain). The powerstation is fired with a high-sulfur coal (up to 4.5 percent), and the FGD system has been designed for a desulfurisation capacity of 1.4 million N m{sup 3}/hr for a desulfurisation efficiency in excess of 90 percent. Validation of the model is conducted by comparison with available plant data for two design coals and two desulfurisation efficiencies. The model accuracy is reasonable, given the complexity of the aero/hydrodynamical and thermo-chemical phenomena involved.

  10. Plant model of KIPT neutron source facility simulator

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yan [Argonne National Lab. (ANL), Argonne, IL (United States); Wei, Thomas Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Grelle, Austin L. [Argonne National Lab. (ANL), Argonne, IL (United States); Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system is coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.

  11. Signalling network construction for modelling plant defence response.

    Directory of Open Access Journals (Sweden)

    Dragana Miljkovic

    Full Text Available Plant defence signalling response against various pathogens, including viruses, is a complex phenomenon. In resistant interaction a plant cell perceives the pathogen signal, transduces it within the cell and performs a reprogramming of the cell metabolism leading to the pathogen replication arrest. This work focuses on signalling pathways crucial for the plant defence response, i.e., the salicylic acid, jasmonic acid and ethylene signal transduction pathways, in the Arabidopsis thaliana model plant. The initial signalling network topology was constructed manually by defining the representation formalism, encoding the information from public databases and literature, and composing a pathway diagram. The manually constructed network structure consists of 175 components and 387 reactions. In order to complement the network topology with possibly missing relations, a new approach to automated information extraction from biological literature was developed. This approach, named Bio3graph, allows for automated extraction of biological relations from the literature, resulting in a set of (component1, reaction, component2 triplets and composing a graph structure which can be visualised, compared to the manually constructed topology and examined by the experts. Using a plant defence response vocabulary of components and reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting in 137 newly detected reactions between the components. Finally, the manually constructed topology and the new reactions were merged to form a network structure consisting of 175 components and 524 reactions. The resulting pathway diagram of plant defence signalling represents a valuable source for further computational modelling and interpretation of omics data. The developed Bio3graph approach, implemented as an executable language processing and graph visualisation workflow, is publically available at http://ropot.ijs.si/bio3graph/and can be

  12. Modeling external constraints: Applying expert systems to nuclear plants

    International Nuclear Information System (INIS)

    Beck, C.E.; Behera, A.K.

    1993-01-01

    Artificial Intelligence (AI) applications in nuclear plants have received much attention over the past decade. Specific applications that have been addressed include development of models and knowledge-bases, plant maintenance, operations, procedural guidance, risk assessment, and design tools. This paper examines the issue of external constraints, with a focus on the use of Al and expert systems as design tools. It also provides several suggested methods for addressing these constraints within the Al framework. These methods include a State Matrix scheme, a layered structure for the knowledge base, and application of the dynamic parameter concept

  13. Gravity research on plants: use of single cell experimental models

    Directory of Open Access Journals (Sweden)

    Youssef eChebli

    2011-09-01

    Full Text Available Future space missions and implementation of permanent bases on Moon and Mars will greatly depend on the availability of ambient air and sustainable food supply. Therefore, understanding the effects of altered gravity conditions on plant metabolism and growth is vital for space missions and extra-terrestrial human existence. In this mini-review we summarize how plant cells are thought to perceive changes in magnitude and orientation of the gravity vector. The particular advantages of several single celled model systems for gravity research are explored and an overview over recent advancements and potential use of these systems is provided.

  14. Model-free adaptive control of advanced power plants

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  15. Modeling of the core of Atucha II nuclear power plant

    International Nuclear Information System (INIS)

    Blanco, Anibal

    2007-01-01

    This work is part of a Nuclear Engineer degree thesis of the Instituto Balseiro and it is carried out under the development of an Argentinean Nuclear Power Plant Simulator. To obtain the best representation of the reactor physical behavior using the state of the art tools this Simulator should couple a 3D neutronics core calculation code with a thermal-hydraulics system code. Focused in the neutronic nature of this job, using PARCS, we modeled and performed calculations of the nuclear power plant Atucha 2 core. Whenever it is possible, we compare our results against results obtained with PUMA (the official core code for Atucha 2). (author) [es

  16. Modeling the Buoyancy System of a Wave Energy Power Plant

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Nielsen, Kirsten M.

    2009-01-01

    producing electrical power. Through air chambers it is possible to control the level of the WD. It is important to control the level in order to maximize the power production in proportion to the wave height, here the amount of overtopping water and the amount of potential energy is conflicting......A nonlinear dynamic model of the buoyancy system in a wave energy power plant is presented. The plant ("Wave Dragon") is a floating device using the potential energy in overtopping waves to produce power. A water reservoir is placed on top of the WD, and hydro turbines lead the water to the sea...

  17. Heat shock protein 70 is required for tabtoxinine-β-lactam-induced cell death in Nicotiana benthamiana.

    Science.gov (United States)

    Ito, Makoto; Yamamoto, Yu; Kim, Chul-Sa; Ohnishi, Kouhei; Hikichi, Yasufumi; Kiba, Akinori

    2014-01-15

    Tabtoxinine-β-lactam (TβL), a non-specific bacterial toxin, is produced by Pseudomonas syringae pv. tabaci, the causal agent of tobacco wildfire disease. TβL causes death of plant cells through the inhibition of glutamine synthetase, which leads to an abnormal accumulation of ammonium ions and the characteristic necrotic wildfire lesions. To better understand the mechanisms involved in TβL-induced cell death, we studied its regulation in Nicotiana benthamiana. TβL-induced lesions, similar to those in controls, could be observed in SGT1-, RAR1- and Hsp90-silenced plants. In contrast, Hsp70-silenced plants showed suppression of lesion formation. Expression of hin1, a marker gene for the hypersensitive response (HR), which is a characteristic of programmed cell death in plants, was strongly induced in controls by TβL treatment but only slightly in Hsp70-silenced plants. However, in these TβL-treated Hsp70-silenced plants, the amount of ammonium ions was considerably increased. Furthermore, the silencing of Hsp70 also suppressed l-methionine sulfoximine-induced cell death and hin1 expression and caused the over-accumulation of ammonium ions. When inoculated directly with P. syringae pv. tabaci, Hsp70-silenced plants showed only reduced symptoms. Our results suggest that the TβL-induced pathway to cell death in N. benthamiana is at least partially similar to HR response, and that Hsp70 might play an essential role in these events. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Wind Plant Models in IEC 61400-27-2 and WECC - latest developments in international standards on wind turbine and wind plant modeling

    DEFF Research Database (Denmark)

    Fortmann, Jens; Miller, Nicholas; Kazachkov, Yuri

    2015-01-01

    This paper describes the latest developments in the standardization of wind plant and wind plant controller models. As a first step IEC TC88 WG 27 and WECC jointly developed generic wind turbine models which have been published by WECC in 2014 and IEC in 2015 as IEC 61400-27-1, which also included...... a draft plant controller model in an informative annex. In a second step, parallel activities have been going on in WECC and IEC TC88 WG 27 to create plant models that can include a number of wind turbines, a plant controller and optional equipment. The WECC models are intended to be finalized in 2015...

  19. Analysis of Guard Cell Viability and Action in Senescing Leaves of Nicotiana glauca (Graham), Tree Tobacco 1

    Science.gov (United States)

    Ozuna, Richard; Yera, Ramon; Ortega, Kim; Tallman, Gary

    1985-01-01

    In an attempt to determine whether low epidermal conductances to water vapor diffusion of senescing leaves were caused by internal changes in guard cells or by factors external to guard cells, stomatal behavior was examined in intact senescing and nonsenescing leaves of Nicotiana glauca (Graham), tree tobacco, grown in the field or in an environmental chamber. Conductances of senescing leaves were 5 to 10% of the maximum conductances of nonsenescing leaves of the same plant, yet guard cell duplexes isolated from epidermal peels of senescing leaves developed full turgor in the light in solutions containing KCl, and sodium cobaltinitrite staining showed that K+ accumulated as turgor developed. Ninety-five per cent of the guard cells isolated from senescing leaves concentrated neutral red and excluded trypan blue. Intercellular leaf CO2 concentrations of senescing and nonsenescing leaves of chamber-grown plants were not significantly different (about 240 microliters per liter), but the potassium contents of adaxial and abaxial epidermes of senescing leaves taken from plants grown in the field were less than half those of nonsenescing leaves. We conclude that guard cells do not undergo the orderly senescence process that characteristically takes place in mesophyll tissue during whole-leaf senescence and that the reduced conductances of senescing leaves are produced by factors external to guard cells. PMID:16664404

  20. Revealing complexity and specificity in the activation of lipase-mediated oxylipin biosynthesis: a specific role of the Nicotiana attenuata GLA1 lipase in the activation of jasmonic acid biosynthesis in leaves and roots.

    Science.gov (United States)

    Bonaventure, Gustavo; Schuck, Stefan; Baldwin, Ian T

    2011-09-01

    The activation of enzymatic oxylipin biosynthesis upon wounding, herbivory and pathogen attack depends on the biochemical activation of lipases that make polyunsaturated fatty acids (PUFAs) available to lipoxygenases (LOXs). The identity and number of the lipases involved in this process remain controversial and they probably differ among plant species. Analysis of transgenic Nicotiana attenuata plants (ir-gla1) stably reduced in the expression of the NaGLA1 gene showed that this plastidial glycerolipase is a major supplier of trienoic fatty acids for jasmonic acid (JA) biosynthesis in leaves and roots after wounding and simulated herbivory, but not during infection with the oomycete Phytophthora parasitica (var. nicotianae). NaGLA1 was not essential for the developmental control of JA biosynthesis in flowers and for the biosynthesis of C(6) volatiles by the hydroperoxide lyase (HPL) pathway; however, it affected the metabolism of divinyl ethers (DVEs) early during infection with P. parasitica (var. nicotianae) and the accumulation of NaDES1 and NaLOX1 mRNAs. Profiling of lysolipids by LC-MS/MS was consistent with a rapid activation of NaGLA1 and indicated that this lipase utilizes different lipid classes as substrates. The results revealed the complexity and specificity of the regulation of lipase-mediated oxylipin biosynthesis, highlighting the existence of pathway- and stimulus-specific lipases. © 2011 Blackwell Publishing Ltd.

  1. The appliance of graphics modeling in nuclear plant information system

    International Nuclear Information System (INIS)

    Bai Zhe; Li Guofang

    2010-01-01

    The nuclear plants contain a lot of sub-system, such as operation management, manufacture system, inventory system, human resource system and so forth. The standardized data graphics modeling technology can ensure the data interaction, compress the design cycle, avoid the replicated design, ensure the data integrity and consistent. The standardized data format which is on the basis of STEP standard and complied with XML is competent tool in different sub-system of nuclear plants. In order to meet this demand, a data graphics modeling standard is proposed. It is shown the relationship between systems, in system, between data by the standard. The graphic modeling effectively improves the performance between systems, designers, engineers, operations, supports department. It also provides the reliable and available data source for data mining and business intelligence. (authors)

  2. Common modelling approaches for training simulators for nuclear power plants

    International Nuclear Information System (INIS)

    1990-02-01

    Training simulators for nuclear power plant operating staff have gained increasing importance over the last twenty years. One of the recommendations of the 1983 IAEA Specialists' Meeting on Nuclear Power Plant Training Simulators in Helsinki was to organize a Co-ordinated Research Programme (CRP) on some aspects of training simulators. The goal statement was: ''To establish and maintain a common approach to modelling for nuclear training simulators based on defined training requirements''. Before adapting this goal statement, the participants considered many alternatives for defining the common aspects of training simulator models, such as the programming language used, the nature of the simulator computer system, the size of the simulation computers, the scope of simulation. The participants agreed that it was the training requirements that defined the need for a simulator, the scope of models and hence the type of computer complex that was required, the criteria for fidelity and verification, and was therefore the most appropriate basis for the commonality of modelling approaches. It should be noted that the Co-ordinated Research Programme was restricted, for a variety of reasons, to consider only a few aspects of training simulators. This report reflects these limitations, and covers only the topics considered within the scope of the programme. The information in this document is intended as an aid for operating organizations to identify possible modelling approaches for training simulators for nuclear power plants. 33 refs

  3. Identification of plant configurations maximizing radiation capture in relay strip cotton using a functional-structural plant model

    NARCIS (Netherlands)

    Mao, Lili; Zhang, Lizhen; Evers, J.B.; Henke, M.; Werf, van der W.; Liu, Shaodong; Zhang, Siping; Zhao, Xinhua; Wang, Baomin; Li, Zhaohu

    2016-01-01

    One of the key decisions in crop production is the choice of row distance and plant density. The choice of these planting pattern parameters is especially challenging in heterogeneous systems, such as systems containing alternating strips. Here we use functional-structural plant modelling to

  4. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    Science.gov (United States)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  5. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators' preferences than organic acids and inorganic ions.

    Directory of Open Access Journals (Sweden)

    Kira Tiedge

    Full Text Available Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold. As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context

  6. Advancing environmentally explicit structured population models of plants

    DEFF Research Database (Denmark)

    Ehrlén, Johan; Morris, William; von Euler, Tove

    2016-01-01

    The relationship between the performance of individuals and the surrounding environment is fundamental in ecology and evolutionary biology. Assessing how abiotic and biotic environmental factors influence demographic processes is necessary to understand and predict population dynamics, as well...... as species distributions and abundances. We searched the literature for studies that have linked abiotic and biotic environmental factors to vital rates and, using structured demographic models, population growth rates of plants. We found 136 studies that had examined the environmental drivers of plant...... demography. The number of studies has been increasing rapidly in recent years. Based on the reviewed studies, we identify and discuss several major gaps in our knowledge of environmentally driven demography of plants. We argue that some drivers may have been underexplored and that the full potential...

  7. A modular approach to modeling power plant systems

    International Nuclear Information System (INIS)

    Yee, N.S.

    1990-01-01

    This paper reports on power plants which are large, non-linear systems with numerous interactions between its component parts. In the analysis of such complex systems, dynamic simulation is recognized as a powerful method of keeping track of the myriad of interactions. A simulation can be used to answer the what if questions that are asked when replacing components, changing operational procedures, or training operators. While there are many applications for the simulation of power plant components and systems, its use is often discouraged because it can be difficult and expensive. Power plant engineering is itself a multi-disciplinary field involving fluid mechanics, heat transfer, thermodynamics, chemical engineering, nuclear engineering, and electrical engineering. Simulation requires, in addition, knowledge in model formulation, computer programming and numerical solution of differential equations

  8. The development and use of plant models to assist with both the commissioning and performance optimisation of plant control systems

    International Nuclear Information System (INIS)

    Conner, A.S.; Region, S.E.

    1984-01-01

    Successful engagement of cascade control systems used to control complex nuclear plant often present control engineers with difficulties when trying to obtain early automatic operation of these systems. These difficulties often arise because prior to the start of live plant operation, control equipment performance can only be assessed using open loop techniques. By simulating simple models of plant on a computer and linking it to the site control equipment, the performance of the system can be examined and optimised prior to live plant operation. This significantly reduces the plant down time required to correct control equipment performance faults during live plant operation

  9. Thermal Recirculation Modeling for Power Plants in an Estuarine Environment

    Directory of Open Access Journals (Sweden)

    Mehrdad Salehi

    2017-01-01

    Full Text Available Many power plants require large quantities of water for cooling purposes. The water taken from the source water body (e.g., lakes, estuaries, bays and rivers circulates through the plant and returns to the source through outfall with a higher temperature. For optimal performance of the power plant, the intake inlet and discharge outlet should be meticulously placed so that the heated water will not recirculate back into the power plant. In this study, the Flow module of the Delft3D software is employed to simulate the temperature transport within the study area in three-dimensional and nested format. Model results are used to optimize the location of intake inlets, outfall outlets and diffuser port orientations. The physical processes used in the study are tidal fluctuations, winds, river discharges, salinity and temperature. The subject power plant (power plant parameters presented in this paper are realistic; however, they do not target any specific power plant within the study area has a nominal capacity of 2600 MW and is planned to be located in Delaware Bay, USA. Existing field measurements are used to calibrate the model in a coupled two-staged fashion for main tidal constituents, currents and water temperature. The sensitivity of the model against various input parameters is tested, and conservative values are selected. The location of the intake is fixed, and the location of the outfall is changed until the thermal impact to the intake is less than 1 °C. Analysis of the results shows that there is a linear logarithmic relation between the excess temperatures at the intake inlet and horizontal eddy diffusivity. The k - ϵ turbulence closure results in higher excess temperature and a more conservative design. Extending the outfall location to the deeper portion of the estuary combined with port orientations reduces the impact by keeping the thermal plume away from the intake inlet and meeting the established criteria. It is concluded that

  10. NEURO-FUZZY MODELLING OF BLENDING PROCESS IN CEMENT PLANT

    Directory of Open Access Journals (Sweden)

    Dauda Olarotimi Araromi

    2015-11-01

    Full Text Available The profitability of a cement plant depends largely on the efficient operation of the blending stage, therefore, there is a need to control the process at the blending stage in order to maintain the chemical composition of the raw mix near or at the desired value with minimum variance despite variation in the raw material composition. In this work, neuro-fuzzy model is developed for a dynamic behaviour of the system to predict the total carbonate content in the raw mix at different clay feed rates. The data used for parameter estimation and model validation was obtained from one of the cement plants in Nigeria. The data was pre-processed to remove outliers and filtered using smoothening technique in order to reveal its dynamic nature. Autoregressive exogenous (ARX model was developed for comparison purpose. ARX model gave high root mean square error (RMSE of 5.408 and 4.0199 for training and validation respectively. Poor fit resulting from ARX model is an indication of nonlinear nature of the process. However, both visual and statistical analyses on neuro-fuzzy (ANFIS model gave a far better result. RMSE of training and validation are 0.28167 and 0.7436 respectively, and the sum of square error (SSE and R-square are 39.6692 and 0.9969 respectively. All these are an indication of good performance of ANFIS model. This model can be used for control design of the process.

  11. Verification of Geometric Model-Based Plant Phenotyping Methods for Studies of Xerophytic Plants

    Science.gov (United States)

    Drapikowski, Paweł; Kazimierczak-Grygiel, Ewa; Korecki, Dominik; Wiland-Szymańska, Justyna

    2016-01-01

    This paper presents the results of verification of certain non-contact measurement methods of plant scanning to estimate morphological parameters such as length, width, area, volume of leaves and/or stems on the basis of computer models. The best results in reproducing the shape of scanned objects up to 50 cm in height were obtained with the structured-light DAVID Laserscanner. The optimal triangle mesh resolution for scanned surfaces was determined with the measurement error taken into account. The research suggests that measuring morphological parameters from computer models can supplement or even replace phenotyping with classic methods. Calculating precise values of area and volume makes determination of the S/V (surface/volume) ratio for cacti and other succulents possible, whereas for classic methods the result is an approximation only. In addition, the possibility of scanning and measuring plant species which differ in morphology was investigated. PMID:27355949

  12. Plant water uptake at the single plant scale: experiment vs. model

    Science.gov (United States)

    Deery, D. M.; Passioura, J. B.; Condon, J.; Katupitiya, A.

    2008-12-01

    This study tested the hypotheses that the soil is the main resistance to the extraction of water by the plant roots, owing to a combination of low root length density (unit length of root per unit volume of soil), low soil water diffusivity at low soil water content. To test this hypothesis wheat plants were grown in undisturbed and repacked clay-loam and repacked sand. The plants were kept in a controlled environment where they were challenged with a range of evaporative demands, first rising and then falling, and the transpiration rate, E, and the null measurement of the xylem water potential, B, were measured non-destructively and continuously. The experimental measurements were compared to the output of a mathematical model that solves the radial diffusion equation for the flow of water to a single plant root, assumed to represent all roots. For the repacked clay-loam and the repacked sand, the model could match the data during the rising phase of E, if it was assumed that only 10% of the roots were taking up water and that the soil water diffusivity was constant and low. However it could not match the data during the falling phase of E, unless it was assumed that there had been a significant rise in the hydraulic resistance of the plant, or perhaps more likely, that an additional, yet constant, interfacial resistance had developed when E was high and B was rapidly increasing. That the slope of B(E) during the falling phase of E, for the repacked clay-loam and the repacked sand, was essentially constant suggests that the radial flow of water through the soil generated only minor gradients in soil suction and therefore that neither low soil water diffusivity nor low root length density was inhibiting the extraction of water from the soil by the plant roots. For the undisturbed clay-loam soil, the radial-flow model did not agree with the experimental data even when various combinations of soil water diffusivity and root length density were tried. This

  13. An Evolutionary Robotics Approach to the Control of Plant Growth and Motion: Modeling Plants and Crossing the Reality Gap

    DEFF Research Database (Denmark)

    Wahby, Mostafa; Hofstadler, Daniel Nicolas; Heinrich, Mary Katherine

    2016-01-01

    The self-organizing bio-hybrid collaboration of robots and natural plants allows for a variety of interesting applications. As an example we investigate how robots can be used to control the growth and motion of a natural plant, using LEDs to provide stimuli. We follow an evolutionary robotics...... approach where task performance is determined by monitoring the plant's reaction. First, we do initial plant experiments with simple, predetermined controllers. Then we use image sampling data as a model of the dynamics of the plant tip xy position. Second, we use this approach to evolve robot controllers...... in simulation. The task is to make the plant approach three predetermined, distinct points in an xy-plane. Finally, we test the evolved controllers in real plant experiments and find that we cross the reality gap successfully. We shortly describe how we have extended from plant tip to many points on the plant...

  14. Modeling gas exchange in a closed plant growth chamber

    Science.gov (United States)

    Cornett, J. D.; Hendrix, J. E.; Wheeler, R. M.; Ross, C. W.; Sadeh, W. Z.

    1994-01-01

    Fluid transport models for fluxes of water vapor and CO2 have been developed for one crop of wheat and three crops of soybean grown in a closed plant growth chamber. Correspondence among these fluxes is discussed. Maximum fluxes of gases are provided for engineering design requirements of fluid recycling equipment in growth chambers. Furthermore, to investigate the feasibility of generalized crop models, dimensionless representations of water vapor fluxes are presented. The feasibility of such generalized models and the need for additional data are discussed.

  15. Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions

    OpenAIRE

    Khayet, Mohamed; Fernandez Fernandez, Victoria

    2012-01-01

    Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we int...

  16. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional-structural plant model

    NARCIS (Netherlands)

    Sarlikioti, V.; Visser, de P.H.B.; Buck-Sorlin, G.H.; Marcelis, L.F.M.

    2011-01-01

    Background and Aims - Manipulation of plant structure can strongly affect light distribution in the canopy and photosynthesis. The aim of this paper is to find a plant ideotype for optimization of light absorption and canopy photosynthesis. Using a static functional structural plant model (FSPM), a

  17. MODELING OF HIGH STORAGE SHEET DEPOT WITH PLANT SIMULATION

    Directory of Open Access Journals (Sweden)

    Andrzej Jardzioch

    2013-03-01

    Full Text Available Manufacturing processes are becoming increasingly automated. Introduction of innovative solutions often necessitate processing very large number of signals from various devices. Correctness tests of the components configuration becomes a compiled operation requiring vast expenditure of time and knowledge. The models may be a mathematical reflection of the actual object. Many actions can be computer-assisted to varying degree. One example is construction of simulation models. These can also be simulation models developed in advanced software. The stages of creating a model may be purely random. This paper aims at a closer analysis of the simulation model based on the high storage sheet depot modeling using Plant Simulation software. The results of analysis can be used for optimization, but this stage is a separate issue.

  18. A hierarchical causal modeling for large industrial plants supervision

    International Nuclear Information System (INIS)

    Dziopa, P.; Leyval, L.

    1994-01-01

    A supervision system has to analyse the process current state and the way it will evolve after a modification of the inputs or disturbance. It is proposed to base this analysis on a hierarchy of models, witch differ by the number of involved variables and the abstraction level used to describe their temporal evolution. In a first step, special attention is paid to causal models building, from the most abstract one. Once the hierarchy of models has been build, the most detailed model parameters are estimated. Several models of different abstraction levels can be used for on line prediction. These methods have been applied to a nuclear reprocessing plant. The abstraction level could be chosen on line by the operator. Moreover when an abnormal process behaviour is detected a more detailed model is automatically triggered in order to focus the operator attention on the suspected subsystem. (authors). 11 refs., 11 figs

  19. Future of Plant Functional Types in Terrestrial Biosphere Models

    Science.gov (United States)

    Wullschleger, S. D.; Euskirchen, E. S.; Iversen, C. M.; Rogers, A.; Serbin, S.

    2015-12-01

    Earth system models describe the physical, chemical, and biological processes that govern our global climate. While it is difficult to single out one component as being more important than another in these sophisticated models, terrestrial vegetation is a critical player in the biogeochemical and biophysical dynamics of the Earth system. There is much debate, however, as to how plant diversity and function should be represented in these models. Plant functional types (PFTs) have been adopted by modelers to represent broad groupings of plant species that share similar characteristics (e.g. growth form) and roles (e.g. photosynthetic pathway) in ecosystem function. In this review the PFT concept is traced from its origin in the early 1800s to its current use in regional and global dynamic vegetation models (DVMs). Special attention is given to the representation and parameterization of PFTs and to validation and benchmarking of predicted patterns of vegetation distribution in high-latitude ecosystems. These ecosystems are sensitive to changing climate and thus provide a useful test case for model-based simulations of past, current, and future distribution of vegetation. Models that incorporate the PFT concept predict many of the emerging patterns of vegetation change in tundra and boreal forests, given known processes of tree mortality, treeline migration, and shrub expansion. However, representation of above- and especially belowground traits for specific PFTs continues to be problematic. Potential solutions include developing trait databases and replacing fixed parameters for PFTs with formulations based on trait co-variance and empirical trait-environment relationships. Surprisingly, despite being important to land-atmosphere interactions of carbon, water, and energy, PFTs such as moss and lichen are largely absent from DVMs. Close collaboration among those involved in modelling with the disciplines of taxonomy, biogeography, ecology, and remote sensing will be

  20. Model based evaluation of plant improvement at a large wastewater treatment plant (WWTP).

    Science.gov (United States)

    Drewnowski, Jakub; Remiszewska-Skwarek, Anna; Fernandez-Morales, Francisco Jesus

    2018-02-21

    In this work, the effect of the improvement carried out at a large-scale wastewater treatment plant (WWTP) was evaluated, by means of modelling works, with the aim to determine the influence of the modernization over the process performance. After modernization, the energy consumption due to the aeration decreased about a 20% maintaining the effluent quality. In order to double-check the good effluent quality, modelling works were carried out at the full-scale plant. After calibration, the model was applied to the upgraded full-scale plant obtaining deviations lower than 10%. Then, the performance of the main biochemical processes was evaluated in terms of oxygen uptake rate (OUR), ammonia uptake rate (AUR), and chemical oxygen demand (COD) consumption. The rate of the main processes depending on the aeration, that is OUR and AUR, were about 22 gO 2 /(kg VSS·h) and 2.9 gN/(kg VSS·h), respectively.

  1. Perspectives on modelling micropollutants in wastewater treatment plants

    DEFF Research Database (Denmark)

    Clouzot, Ludiwine; Cloutier, Frédéric; Vanrolleghem, Peter A.

    2013-01-01

    Models for predicting the fate of micropollutants (MPs) in wastewater treatment plants (WWTPs) have been developed to provide engineers and decision-makers with tools that they can use to improve their understanding of, and evaluate how to optimize, the removal of MPs and determine their impact o......) addressing advancements in WWTP treatment technologies, (iii) making use of common approaches to data acquisition for model calibration and (iv) integrating ecotoxicological effects of MPs in receiving waters.......Models for predicting the fate of micropollutants (MPs) in wastewater treatment plants (WWTPs) have been developed to provide engineers and decision-makers with tools that they can use to improve their understanding of, and evaluate how to optimize, the removal of MPs and determine their impact...... on the receiving waters. This paper provides an overview of such models, and discusses the impact of regulation, engineering practice and research on model development. A review of the current status of MP models reveals that a single model cannot represent the wide range of MPs that are present in wastewaters...

  2. Mathematical modeling of plant allelopathic hormesis based on ecological-limiting-factor models.

    Science.gov (United States)

    Liu, Yinghu; Chen, Xiaoqiu; Duan, Shunshan; Feng, Yuanjiao; An, Min

    2010-05-28

    Allelopathy arises from the release of chemicals by one plant species that affect other species in its vicinity, usually to their detriment. Allelopathic effects have been demonstrated to be limiting factors for species distributions and ecological processes in some natural or agricultural communities. Based on the biphasic hormetic responses of plants to allelochemicals, ecological-limiting-factor models were introduced into the An-Johnson-Lovett hormesis model to improve modelling the phenomenon of allelopathic hormesis and to better reflect the nature of allelopathy as a limiting factor in ecological processes. Outcomes of the models have been compared for several sets of experimental data from the literature and good agreement between the models and data was observed, which indicates that the new models give some insight into the ecological mechanisms involved and may provide more options for modelling the allelopathic phenomenon as well as platforms for further research on plant allelopathic hormesis.

  3. Modelling of the Nutrient Medium for Plants Cultivation in Spaceflight

    Science.gov (United States)

    Nechitailo, Galina S.

    2016-07-01

    MODELLING OF THE NUTRIENT MEDIUM FOR PLANTS CULTIVATION IN SPACEFLIGHT Nechitajlo G.S.*, Rakhmetova A.A.**, Bogoslovskaja O.A.**, Ol'hovskay I.P.**, Glushchenko N.N.** *Emanuel Institute of Biochemical Physics of Russian Academy of Sciences (IBCP RAS) mail: spacemal@mail.ru **V.L. Talrose Institute for Energy Problems of Chemical Physics of Russian Academy of Science (INEPCP RAS) mail: nnglu@ mail.ru The valuable life and fruitful activity of cosmonauts and researchers in conditions of spaceflights and prolonged work at space stations are only possible with creating life area providing fresh air, natural food, comfortable psychological conditions, etc. The solution of that problem under space conditions seems impossible without use of high nano- and biotechnologies for plants growth. A priority should be given not only to choose species of growth plants in space, but also to improve conditions for their growth which includes optimal nourishing components for plants, preparation of nutrient mediums, illumination and temperature. We are deeply convinced that just manipulations with growing conditions for cultivated plants, but not genes changes, is a guarantee of success in the decision of this problem. For improving the method of plants growing on the artificial nutrient medium with balanced content of components, being necessary for growth and development of plants, we added essential metal elements: Fe, Zn, Cu - in an electroneutral state in the form of nanoparticles instead of sulfates or other easily dissolving salts. Nanoparticulated metals are known to have a number of advantages in comparison with salts: metals in an electroneutral form are characterized with the prolonged and multifunctional action, low toxicity per se and appearing to be much below the toxicity of the same metals in the ionic forms, accumulation as a reserve being used in biotic dozes, active distribution in bodies and organs of plants and stimulation of vital processes. A high reactivity

  4. Hydraulic modelling of drinking water treatment plant operations

    Directory of Open Access Journals (Sweden)

    L. C. Rietveld

    2009-06-01

    Full Text Available The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filtration and cascade and tower aeration. Using this treatment step library, a hydraulic model was set up, calibrated and validated for the drinking water treatment plant Harderbroek. With the actual valve position and pump speeds, the flows were calculated through the several treatment steps. A case shows the use of the model to calculate the new setpoints for the current frequency converters of the effluent pumps during a filter backwash.

  5. Biomimetic polymers of plant cutin: An approach from molecular modeling

    OpenAIRE

    San-Miguel, M. A.; Oviedo, Jaime; Heredia-Guerrero, José A.; Heredia, Antonio; Benítez, José J.

    2014-01-01

    Biomimetics of materials is based on adopting and reproducing a model in nature with a well-defined functionality optimized through evolution. An example is barrier polymers that protect living tissues from the environment. The protecting layer of fruits, leaves, and non-lignified stems is the plant cuticle. The cuticle is a complex system in which the cutin is the main component. Cutin is a biopolyester made of polyhydroxylated carboxylic acids of 16 and 18 carbon atoms. The biosynthesis of ...

  6. Introducing Model Predictive Control for Improving Power Plant Portfolio Performance

    DEFF Research Database (Denmark)

    Edlund, Kristian Skjoldborg; Bendtsen, Jan Dimon; Børresen, Simon

    2008-01-01

    This paper introduces a model predictive control (MPC) approach for construction of a controller for balancing the power generation against consumption in a power system. The objective of the controller is to coordinate a portfolio consisting of multiple power plant units in the effort to perform...... implementation consisting of a distributed PI controller structure, both in terms of minimising the overall cost but also in terms of the ability to minimise deviation, which is the classical objective....

  7. Black shank of tobacco in the former Dutch East Indies, caused by Phytophthora nicotianae

    NARCIS (Netherlands)

    Zadoks, J.C.

    2014-01-01

    Jacob van Breda de Haan is known as the author of the name Phytophthora nicotianae n.sp., the causal agent of ‘black shank’, an important disease of tobacco. Who was he? Where did he work? What did he publish? He published in Dutch, 1896, in a Dutch colonial report series. Next question: what more

  8. Effect of lethal and sub-lethal concentrations of tobacco (Nicotiana ...

    African Journals Online (AJOL)

    Lethal and sub-lethal bioassays on Clarias gariepinus were conducted to evaluate the toxicity of tobacco (Nicotiana tobaccum) leaf dust on weight gain and haematological indices of Clarias gariepinus (mean weight 10.5±0.70g) in glass aquaria with aeration system. The concentrations used during the lethal exposure are: ...

  9. The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae)

    Czech Academy of Sciences Publication Activity Database

    Leitch, I.J.; Hanson, L.; Lim, K.Y.; Kovařík, Aleš; Chase, M.W.; Clarkson, J.J.; Leitch, A.R.

    2008-01-01

    Roč. 101, č. 6 (2008), s. 805-814 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GA521/07/0116 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : genome size * allopolyploidy * evolution-Nicotiana Subject RIV: BO - Biophysics Impact factor: 2.755, year: 2008

  10. Population structure and genetic diversity of Phytophthora nicotianae from tobacco in Georgia

    Science.gov (United States)

    Black shank caused by Phytophthora nicotianae occurs worldwide and is responsible for significant yield loss in tobacco production in Georgia. Management of the disease has primarily relied on utilization of tobacco cultivars with resistance to race 0 of the pathogen and application of the fungicide...

  11. Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years

    Czech Academy of Sciences Publication Activity Database

    Koukalová, Blažena; Moraes, A.P.; Renny-Byfield, S.; Matyášek, Roman; Leitch, A.R.; Kovařík, Aleš

    2010-01-01

    Roč. 186, č. 1 (2010), s. 148-160 ISSN 0028-646X R&D Projects: GA ČR(CZ) GA521/07/0116 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : concerted evolution * interlocus homogenization * Nicotiana Subject RIV: BO - Biophysics Impact factor: 6.516, year: 2010

  12. Data Quality Enhanced Prediction Model for Massive Plant Data

    Energy Technology Data Exchange (ETDEWEB)

    Park, Moon-Ghu [Nuclear Engr. Sejong Univ., Seoul (Korea, Republic of); Kang, Seong-Ki [Monitoring and Diagnosis, Suwon (Korea, Republic of); Shin, Hajin [Saint Paul Preparatory Seoul, Seoul (Korea, Republic of)

    2016-10-15

    This paper introduces an integrated signal preconditioning and model prediction mainly by kernel functions. The performance and benefits of the methods are demonstrated by a case study with measurement data from a power plant and its components transient data. The developed methods will be applied as a part of monitoring massive or big data platform where human experts cannot detect the fault behaviors due to too large size of the measurements. Recent extensive efforts for on-line monitoring implementation insists that a big surprise in the modeling for predicting process variables was the extent of data quality problems in measurement data especially for data-driven modeling. Bad data for training will be learned as normal and can make significant degrade in prediction performance. For this reason, the quantity and quality of measurement data in modeling phase need special care. Bad quality data must be removed from training sets to the bad data considered as normal system behavior. This paper presented an integrated structure of supervisory system for monitoring the plants or sensors performance. The quality of the data-driven model is improved with a bilateral kernel filter for preprocessing of the noisy data. The prediction module is also based on kernel regression having the same basis with noise filter. The model structure is optimized by a grouping process with nonlinear Hoeffding correlation function.

  13. Data Quality Enhanced Prediction Model for Massive Plant Data

    International Nuclear Information System (INIS)

    Park, Moon-Ghu; Kang, Seong-Ki; Shin, Hajin

    2016-01-01

    This paper introduces an integrated signal preconditioning and model prediction mainly by kernel functions. The performance and benefits of the methods are demonstrated by a case study with measurement data from a power plant and its components transient data. The developed methods will be applied as a part of monitoring massive or big data platform where human experts cannot detect the fault behaviors due to too large size of the measurements. Recent extensive efforts for on-line monitoring implementation insists that a big surprise in the modeling for predicting process variables was the extent of data quality problems in measurement data especially for data-driven modeling. Bad data for training will be learned as normal and can make significant degrade in prediction performance. For this reason, the quantity and quality of measurement data in modeling phase need special care. Bad quality data must be removed from training sets to the bad data considered as normal system behavior. This paper presented an integrated structure of supervisory system for monitoring the plants or sensors performance. The quality of the data-driven model is improved with a bilateral kernel filter for preprocessing of the noisy data. The prediction module is also based on kernel regression having the same basis with noise filter. The model structure is optimized by a grouping process with nonlinear Hoeffding correlation function

  14. A vegetation-focused soil-plant-atmospheric continuum model to study hydrodynamic soil-plant water relations

    Science.gov (United States)

    Deng, Zijuan; Guan, Huade; Hutson, John; Forster, Michael A.; Wang, Yunquan; Simmons, Craig T.

    2017-06-01

    A novel simple soil-plant-atmospheric continuum model that emphasizes the vegetation's role in controlling water transfer (v-SPAC) has been developed in this study. The v-SPAC model aims to incorporate both plant and soil hydrological measurements into plant water transfer modeling. The model is different from previous SPAC models in which v-SPAC uses (1) a dynamic plant resistance system in the form of a vulnerability curve that can be easily obtained from sap flow and stem xylem water potential time series and (2) a plant capacitance parameter to buffer the effects of transpiration on root water uptake. The unique representation of root resistance and capacitance allows the model to embrace SPAC hydraulic pathway from bulk soil, to soil-root interface, to root xylem, and finally to stem xylem where the xylem water potential is measured. The v-SPAC model was tested on a native tree species in Australia, Eucalyptus crenulata saplings, with controlled drought treatment. To further validate the robustness of the v-SPAC model, it was compared against a soil-focused SPAC model, LEACHM. The v-SPAC model simulation results closely matched the observed sap flow and stem water potential time series, as well as the soil moisture variation of the experiment. The v-SPAC model was found to be more accurate in predicting measured data than the LEACHM model, underscoring the importance of incorporating root resistance into SPAC models and the benefit of integrating plant measurements to constrain SPAC modeling.

  15. Comparative Modeling of a Parabolic Trough Collectors Solar Power Plant with MARS Models

    Directory of Open Access Journals (Sweden)

    Jose Ramón Rogada

    2017-12-01

    Full Text Available Power plants producing energy through solar fields use a heat transfer fluid that lends itself to be influenced and changed by different variables. In solar power plants, a heat transfer fluid (HTF is used to transfer the thermal energy of solar radiation through parabolic collectors to a water vapor Rankine cycle. In this way, a turbine is driven that produces electricity when coupled to an electric generator. These plants have a heat transfer system that converts the solar radiation into heat through a HTF, and transfers that thermal energy to the water vapor heat exchangers. The best possible performance in the Rankine cycle, and therefore in the thermal plant, is obtained when the HTF reaches its maximum temperature when leaving the solar field (SF. In addition, it is necessary that the HTF does not exceed its own maximum operating temperature, above which it degrades. The optimum temperature of the HTF is difficult to obtain, since the working conditions of the plant can change abruptly from moment to moment. Guaranteeing that this HTF operates at its optimal temperature to produce electricity through a Rankine cycle is a priority. The oil flowing through the solar field has the disadvantage of having a thermal limit. Therefore, this research focuses on trying to make sure that this fluid comes out of the solar field with the highest possible temperature. Modeling using data mining is revealed as an important tool for forecasting the performance of this kind of power plant. The purpose of this document is to provide a model that can be used to optimize the temperature control of the fluid without interfering with the normal operation of the plant. The results obtained with this model should be necessarily contrasted with those obtained in a real plant. Initially, we compare the PID (proportional–integral–derivative models used in previous studies for the optimization of this type of plant with modeling using the multivariate adaptive

  16. Multilevel Flow Modeling for Nuclear Power Plant Diagnosis

    DEFF Research Database (Denmark)

    Gola, G; Lind, Morten; Thunem, Harald P-J

    2012-01-01

    As complexity and safety requirements of current and future nuclear power plants increase, innovative methods are being investigated to perform accurate and reliable system diagnoses. Detecting malfunctions, identifying their causes and possibly predicting their consequences are major challenges......-scale monitoring systems is hard to handle manually. In this paper, the use of an innovative function-oriented modeling approach, called Multilevel Flow Modeling, is proposed for performing an automatic analysis of the outcomes of the monitoring systems with the aim of identifying the root causes of the possibly...

  17. RESPONSE OF PLANT-BACTERIA INTERACTION MODELS TO NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Giuliano Degrassi

    2012-07-01

    Full Text Available The aim of this study was to evaluate the possibility of using some models developed to study the plant-bacteria interaction mechanisms for the assessment of the impact of chronic exposure to nanoparticles. Rice-associated bacteria showed that some models are sensitive to the presence of NPs and allow a quantification of the effects. Further work needs to be performed in order to set appropriate reference baselines and standards to assess the impact of NPs on the proposed biological systems.

  18. Jasmonoyl-L-isoleucine coordinates metabolic networks required for anthesis and floral attractant emission in wild tobacco (Nicotiana attenuata).

    Science.gov (United States)

    Stitz, Michael; Hartl, Markus; Baldwin, Ian T; Gaquerel, Emmanuel

    2014-10-01

    Jasmonic acid and its derivatives (jasmonates [JAs]) play central roles in floral development and maturation. The binding of jasmonoyl-L-isoleucine (JA-Ile) to the F-box of CORONATINE INSENSITIVE1 (COI1) is required for many JA-dependent physiological responses, but its role in anthesis and pollinator attraction traits remains largely unexplored. Here, we used the wild tobacco Nicotiana attenuata, which develops sympetalous flowers with complex pollination biology, to examine the coordinating function of JA homeostasis in the distinct metabolic processes that underlie flower maturation, opening, and advertisement to pollinators. From combined transcriptomic, targeted metabolic, and allometric analyses of transgenic N. attenuata plants for which signaling deficiencies were complemented with methyl jasmonate, JA-Ile, and its functional homolog, coronatine (COR), we demonstrate that (1) JA-Ile/COR-based signaling regulates corolla limb opening and a JA-negative feedback loop; (2) production of floral volatiles (night emissions of benzylacetone) and nectar requires JA-Ile/COR perception through COI1; and (3) limb expansion involves JA-Ile-induced changes in limb fresh mass and carbohydrate metabolism. These findings demonstrate a master regulatory function of the JA-Ile/COI1 duet for the main function of a sympetalous corolla, that of advertising for and rewarding pollinator services. Flower opening, by contrast, requires JA-Ile signaling-dependent changes in primary metabolism, which are not compromised in the COI1-silenced RNA interference line used in this study. © 2014 American Society of Plant Biologists. All rights reserved.

  19. Differential RNAi responses of Nicotiana benthamiana individuals transformed with a hairpin-inducing construct during Plum pox virus challenge.

    Science.gov (United States)

    Montes, Christian; Castro, Álvaro; Barba, Paola; Rubio, Julia; Sánchez, Evelyn; Carvajal, Denisse; Aguirre, Carlos; Tapia, Eduardo; DelÍ Orto, Paola; Decroocq, Veronique; Prieto, Humberto

    2014-10-01

    Gene silencing and large-scale small RNA analysis can be used to develop RNA interference (RNAi)-based resistance strategies for Plum pox virus (PPV), a high impact disease of Prunus spp. In this study, a pPPViRNA hairpin-inducing vector harboring two silencing motif-rich regions of the PPV coat protein (CP) gene was evaluated in transgenic Nicotiana benthamiana (NB) plants. Wild-type NB plants infected with a chimeric PPV virus (PPV::GFP) exhibited affected leaves with mosaic chlorosis congruent to GFP fluorescence at 21 day post-inoculation; transgenic lines depicted a range of phenotypes from fully resistant to susceptible. ELISA values and GFP fluorescence intensities were used to select transgenic-resistant (TG-R) and transgenic-susceptible (TG-S) lines for further characterization of small interfering RNAs (siRNAs) by large-scale small RNA sequencing. In infected TG-S and untransformed (WT) plants, the observed siRNAs were nearly exclusively 21- and 22-nt siRNAs that targeted the whole PPV::GFP genome; 24-nt siRNAs were absent in these individuals. Challenged TG-R plants accumulated a full set of 21- to 24-nt siRNAs that were primarily associated with the selected motif-rich regions, indicating that a trans-acting siRNAs process prevented viral multiplication. BLAST analysis identified 13 common siRNA clusters targeting the CP gene. 21-nt siRNA sequences were associated with the 22-nt siRNAs and the scarce 23- and 24-nt molecules in TG-S plants and with most of the observed 22-, 23-, and 24-nt siRNAs in TG-R individuals. These results validate the use of a multi-hot spot silencing vector against PPV and elucidate the molecules by which hairpin-inducing vectors initiate RNAi in vivo.

  20. Modeling Forest Structure and Vascular Plant Diversity in Piedmont Forests

    Science.gov (United States)

    Hakkenberg, C.

    2014-12-01

    When the interacting stressors of climate change and land cover/land use change (LCLUC) overwhelm ecosystem resilience to environmental and climatic variability, forest ecosystems are at increased risk of regime shifts and hyperdynamism in process rates. To meet the growing range of novel biotic and environmental stressors on human-impacted ecosystems, the maintenance of taxonomic diversity and functional redundancy in metacommunities has been proposed as a risk spreading measure ensuring that species critical to landscape ecosystem functioning are available for recruitment as local systems respond to novel conditions. This research is the first in a multi-part study to establish a dynamic, predictive model of the spatio-temporal dynamics of vascular plant diversity in North Carolina Piedmont mixed forests using remotely sensed data inputs. While remote sensing technologies are optimally suited to monitor LCLUC over large areas, direct approaches to the remote measurement of plant diversity remain a challenge. This study tests the efficacy of predicting indices of vascular plant diversity using remotely derived measures of forest structural heterogeneity from aerial LiDAR and high spatial resolution broadband optical imagery in addition to derived topo-environmental variables. Diversity distribution modelling of this sort is predicated upon the idea that environmental filtering of dispersing species help define fine-scale (permeable) environmental envelopes within which biotic structural and compositional factors drive competitive interactions that, in addition to background stochasticity, determine fine-scale alpha diversity. Results reveal that over a range of Piedmont forest communities, increasing structural complexity is positively correlated with measures of plant diversity, though the nature of this relationship varies by environmental conditions and community type. The diversity distribution model is parameterized and cross-validated using three high

  1. Root-specific expression of opine genes and opine accumulation in some cultivars of the naturally occurring genetically modified organism Nicotiana tabacum.

    Science.gov (United States)

    Chen, Ke; de Borne, François Dorlhac; Julio, Emilie; Obszynski, Julie; Pale, Patrick; Otten, Léon

    2016-08-01

    Previous studies have shown that Nicotiana tabacum contains three Agrobacterium-derived T-DNA sequences inherited from its paternal ancestor Nicotiana tomentosiformis. Among these, the TB locus carries an intact mannopine synthase 2' gene (TB-mas2'). This gene is similar to the Agrobacterium rhizogenes A4-mas2' gene that encodes the synthesis of the Amadori compound deoxyfructosyl-glutamine (DFG or santhopine). In this study we show that TB-mas2' is expressed at very low levels in N. tomentosiformis and in most N. tabacum cultivars; however, some cultivars show high TB-mas2' expression levels. The TB-mas2' promoter sequences of low- and high-expressing cultivars are identical. The low/high level of expression segregates as a single Mendelian factor in a cross between a low- and a high-expression cultivar. pTB-mas2'-GUS and pA4-mas2'-GUS reporter genes were stably introduced in N. benthamiana. Both were mainly expressed in the root expansion zone and leaf vasculature. Roots of tobacco cultivars with high TB-mas2' expression contain detectable levels of DFG. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  2. An Evolutionary Robotics Approach to the Control of Plant Growth and Motion: Modeling Plants and Crossing the Reality Gap

    DEFF Research Database (Denmark)

    Wahby, Mostafa; Hofstadler, Daniel Nicolas; Heinrich, Mary Katherine

    2016-01-01

    The self-organizing bio-hybrid collaboration of robots and natural plants allows for a variety of interesting applications. As an example we investigate how robots can be used to control the growth and motion of a natural plant, using LEDs to provide stimuli. We follow an evolutionary robotics...... approach where task performance is determined by monitoring the plant's reaction. First, we do initial plant experiments with simple, predetermined controllers. Then we use image sampling data as a model of the dynamics of the plant tip xy position. Second, we use this approach to evolve robot controllers...

  3. Concept of a cognitive-numeric plant and process modelizer

    International Nuclear Information System (INIS)

    Vetterkind, D.

    1990-01-01

    To achieve automatic modeling of plant distrubances and failure limitation procedures, first the system's hardware and the present media (water, steam, coolant fluid) are formalized into fully computable matrices, called topographies. Secondly a microscopic cellular automation model, using lattice gases and state transition rules, is combined with a semi - microscopic cellular process model and with a macroscopic model, too. In doing this, at semi-microscopic level there are acting a cellular data compressor, a feature detection device and the Intelligent Physical Element's process dynamics. At macroscopic level the Walking Process Elements, a process evolving module, a test-and-manage device and abstracting process net are involved. Additionally, a diagnosis-coordinating and a counter measurements coordinating device are used. In order to automatically get process insights, object transformations, elementary process functions and associative methods are used. Developments of optoelectronic hardware language components are under consideration

  4. Modelling and use of the STUDS nuclear power plant simulator

    International Nuclear Information System (INIS)

    Blomberg, P.E.; Espefaelt, R.; Josefsson, R.; Schuch, N.

    1979-02-01

    The simulator models, belonging to the STUDS-family, which have been developed at Studsvik in cooperation with the Swedish utilities, are briefly described. The scope of the simulation is presented and the fundamental equations used are indicated. Different needs have led to a number of STUDS-versions for BWR and PWR type plants, primarily intended for application in the following fields: 1) transient analysis, 2) system design verification, 3) control system development, 4) testing of new on-line techniques for disturbance analysis, noise analysis, man-machine communication, etc, 5) training of power plant operators, 6) operational planning. The simulator was initially implemented on a hybrid computer system but more recent work has led to pure digital simulations maintaining the real time feature and adding features like snapshot and backtrack. The latest version for PWR is used at the Halden Project and in the general purpose COMPACT SIMULATOR: developed at Studsvik and made commercially available. (author)

  5. Change of plant phenophases explained by survival modeling

    Science.gov (United States)

    Templ, Barbara; Fleck, Stefan; Templ, Matthias

    2017-05-01

    It is known from many studies that plant species show a delay in the timing of flowering events with an increase in latitude and altitude, and an advance with an increase in temperature. Furthermore, in many locations and for many species, flowering dates have advanced over the long-term. New insights using survival modeling are given based on data collected (1970-2010) along a 3000-km long transect from northern to eastern central Europe. We could clearly observe that in the case of dandelion ( Taraxacum officinale) the risk of flowering time, in other words the probability that flowering occurs, is higher for an earlier day of year in later decades. Our approach assume that temperature has greater influence than precipitation on the timing of flowering. Evaluation of the predictive power of tested models suggests that Cox models may be used in plant phenological research. The applied Cox model provides improved predictions of flowering dates compared to traditional regression methods and gives further insights into drivers of phenological events.

  6. Model of fire spread around Krsko Power Plant

    International Nuclear Information System (INIS)

    Vidmar, P.; Petelin, S.

    2001-01-01

    The idea behind the article is how to define fire behaviour. The work is based on an analytical study of fire origin, its development and spread. The study is based on thermodynamics, heat transfer and the study of hydrodynamics and combustion, which represent the bases of fire dynamics. The article shows a practical example of a leak of hazardous chemicals from a tank. Because of the inflammability of the fluid, fire may start. We have tried to model fire propagation around the Krsko power plant, and show what extended surrounding area could be affected. The model also considers weather conditions, in particular wind speed and direction. For this purpose we have used the computer code Safer Trace, which is based on zone models. That means that phenomena are described by physical and empirical equations. An imperfection in this computer code is the inability to consider ground topology. However in the case of the Krsko power plant, topology is not so important, as the plan is located in a relatively flat region. Mathematical models are presented. They show the propagation of hazardous fluid in the environment considering meteorological data. The work also shows which data are essential to define fire spread and shows the main considerations of Probabilistic Safety Assessment for external fire event.(author)

  7. Modeling temperature variations in a pilot plant thermophilic anaerobic digester.

    Science.gov (United States)

    Valle-Guadarrama, Salvador; Espinosa-Solares, Teodoro; López-Cruz, Irineo L; Domaschko, Max

    2011-05-01

    A model that predicts temperature changes in a pilot plant thermophilic anaerobic digester was developed based on fundamental thermodynamic laws. The methodology utilized two simulation strategies. In the first, model equations were solved through a searching routine based on a minimal square optimization criterion, from which the overall heat transfer coefficient values, for both biodigester and heat exchanger, were determined. In the second, the simulation was performed with variable values of these overall coefficients. The prediction with both strategies allowed reproducing experimental data within 5% of the temperature span permitted in the equipment by the system control, which validated the model. The temperature variation was affected by the heterogeneity of the feeding and extraction processes, by the heterogeneity of the digestate recirculation through the heating system and by the lack of a perfect mixing inside the biodigester tank. The use of variable overall heat transfer coefficients improved the temperature change prediction and reduced the effect of a non-ideal performance of the pilot plant modeled.

  8. Fungitoxic properties of four crude plant extacts on fusarium ...

    African Journals Online (AJOL)

    Fungitoxic properties of four crude plant extacts on fusarium oxysporum schl. F. sp phaseoli. ... African Journal of Food, Agriculture, Nutrition and Development ... Crude plant extracts from Azadirachta indica, Tagetes minuta, Nicotiana tobacum and Vinca rosea were tested against Fusarium oxysporum Schl. F. sp. phaseoli.

  9. Variance-based sensitivity analysis for wastewater treatment plant modelling.

    Science.gov (United States)

    Cosenza, Alida; Mannina, Giorgio; Vanrolleghem, Peter A; Neumann, Marc B

    2014-02-01

    Global sensitivity analysis (GSA) is a valuable tool to support the use of mathematical models that characterise technical or natural systems. In the field of wastewater modelling, most of the recent applications of GSA use either regression-based methods, which require close to linear relationships between the model outputs and model factors, or screening methods, which only yield qualitative results. However, due to the characteristics of membrane bioreactors (MBR) (non-linear kinetics, complexity, etc.) there is an interest to adequately quantify the effects of non-linearity and interactions. This can be achieved with variance-based sensitivity analysis methods. In this paper, the Extended Fourier Amplitude Sensitivity Testing (Extended-FAST) method is applied to an integrated activated sludge model (ASM2d) for an MBR system including microbial product formation and physical separation processes. Twenty-one model outputs located throughout the different sections of the bioreactor and 79 model factors are considered. Significant interactions among the model factors are found. Contrary to previous GSA studies for ASM models, we find the relationship between variables and factors to be non-linear and non-additive. By analysing the pattern of the variance decomposition along the plant, the model factors having the highest variance contributions were identified. This study demonstrates the usefulness of variance-based methods in membrane bioreactor modelling where, due to the presence of membranes and different operating conditions than those typically found in conventional activated sludge systems, several highly non-linear effects are present. Further, the obtained results highlight the relevant role played by the modelling approach for MBR taking into account simultaneously biological and physical processes. © 2013.

  10. Effects of Mechanical Stress and Plant Density on Mechanical Characteristics, Growth, and Lifetime Reproduction of Tobacco Plants

    NARCIS (Netherlands)

    Anten, N.P.R.; Casado-Garcia, R.; Nagashima, H.

    2005-01-01

    Plastic increases in stem elongation in dense vegetation are generally believed to be induced by canopy shading, but because plants protect each other from wind, shielding (reduced mechanical stress) could also play a role. To address this issue, tobacco Nicotiana tabacum plants were subjected to

  11. Optimized transitory ectopic expression of promastigote surface antigen protein in Nicotiana benthamiana, a potential anti-leishmaniasis vaccine candidate.

    Science.gov (United States)

    Lacombe, Séverine; Bangratz, Martine; Brizard, Jean-Paul; Petitdidier, Elodie; Pagniez, Julie; Sérémé, Drissa; Lemesre, Jean-Loup; Brugidou, Christophe

    2018-01-01

    In recent years, plants have been shown to be an efficient alternative expression system for high-value pharmaceuticals such as vaccines. However, constitutive expression of recombinant protein remains uncertain on their level of production and biological activity. To overcome these problems, transitory expression systems have been developed. Here, a series of experiments were performed to determine the most effective conditions to enhance vaccine antigen transient accumulation in Nicotiana benthamiana leaves using the promastigote surface antigen (PSA) from the parasitic protozoan Leishmania infantum. This protein has been previously identified as the major antigen of a licensed canine anti-leishmaniasis vaccine. The classical prokaryote Escherichia coli biosystem failed in accumulating PSA. Consequently, the standard plant system based on N. benthamiana has been optimized for the production of putatively active PSA. First, the RNA silencing defense mechanism set up by the plant against PSA ectopic expression was abolished by using three viral suppressors acting at different steps of the RNA silencing pathway. Then, we demonstrated that the signal peptide at the N-terminal side of the PSA is required for its accumulation. The PSA ER signaling and retention with the PSA signal peptide and the KDEL motif, respectively were optimized to significantly increase its accumulation. Finally, we demonstrate that the production of recombinant PSA in N. benthamiana leaves allows the conservation of its immunogenic property. These approaches demonstrate that based on these optimizations, plant based systems can be used to effectively produce the biological active PSA protein. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Brown algae as a model for plant organogenesis.

    Science.gov (United States)

    Bogaert, Kenny A; Arun, Alok; Coelho, Susana M; De Clerck, Olivier

    2013-01-01

    Brown algae are an extremely interesting, but surprisingly poorly explored, group of organisms. They are one of only five eukaryotic lineages to have independently evolved complex multicellularity, which they express through a wide variety of morphologies ranging from uniseriate branched filaments to complex parenchymatous thalli with multiple cell types. Despite their very distinct evolutionary history, brown algae and land plants share a striking amount of developmental features. This has led to an interest in several aspects of brown algal development, including embryogenesis, polarity, cell cycle, asymmetric cell division and a putative role for plant hormone signalling. This review describes how investigations using brown algal models have helped to increase our understanding of the processes controlling early embryo development, in particular polarization, axis formation and asymmetric cell division. Additionally, the diversity of life cycles in the brown lineage and the emergence of Ectocarpus as a powerful model organism, are affording interesting insights on the molecular mechanisms underlying haploid-diploid life cycles. The use of these and other emerging brown algal models will undoubtedly add to our knowledge on the mechanisms that regulate development in multicellular photosynthetic organisms.

  13. Cooling problems of thermal power plants. Physical model studies

    International Nuclear Information System (INIS)

    Neale, L.C.

    1975-01-01

    The Alden Research Laboratories of Worcester Polytechnic Institute has for many years conducted physical model studies, which are normally classified as river or structural hydraulic studies. Since 1952 one aspect of these studies has involved the heated discharge from steam power plants. The early studies on such problems concentrated on improving the thermal efficiency of the system. This was accomplished by minimizing recirculation and by assuring full use of available cold water supplies. With the growing awareness of the impact of thermal power generation on the environment attention has been redirected to reducing the effect of heated discharges on the biology of the receiving body of water. More specifically the efforts of designers and operators of power plants are aimed at meeting or complying with standards established by various governmental agencies. Thus the studies involve developing means of minimizing surface temperatures at an outfall or establishing a local area of higher temperature with limits specified in terms of areas or distances. The physical models used for these studies have varied widely in scope, size, and operating features. These models have covered large areas with both distorted geometric scales and uniform dimensions. Instrumentations has also varied from simple mercury thermometers to computer control and processing of hundreds of thermocouple indicators

  14. Physiological factors into plant uptake models for pollutant

    International Nuclear Information System (INIS)

    Goncharova, N.; Kalinkevich, E.; Pytyrskaya, V.; Lopareva, E.; Suvorov, D.

    2002-01-01

    The main principles of biological control of the intensity of pollutant flow into system soil-plant have been analysed. It demonstrated that functional state of plants is so far significant factor in determination of rate of pollutant turn on trophic chains as physical-chemical property of mineral elements Most biosphere and contamination assessment models are based on uniform soil conditions,since single coefficients are used to describe the transfer of contaminants to the plant. The main pathway of the functional control intensity of pollutant flow such as possibility of plant to increase mobility of mineral elements into soil and change of ion's exchange characteristics of plant tissues, which determine the degree of attraction and capacity of accumulation of non biogenic elements by a plant have been considered. It is known that there are two groups of factors which determine the level of pollutant accumulation by plant. The first group is connected with determination of the level of biological availability of pollutants for a plant in soil, the second group of factors determine attractive of the higher plants and capacity of radionuclides and heavy metals accumulation in biomass. At the same time in accordance with modern eco physiological data, different alive organisms can play active part in processes of the mineral elements migration. Metabolites of the coil microorganisms and especially root excretion of higher plants. Our investigations carried out earlier demonstrated that there is high correlation between the level of Cs, Cu, Zn and Co accumulation and cation exchange capacity of the intact plant tissues and on the other hand similar changes of these characteristics in condition of the experimental modification of radionuclide and heavy metals accumulation by different environmental factors. These data suggest that namely cation exchange capacity may be one of the main 'driving force' and physiological characteristics in absorption of non biogenic

  15. Asymmetric Modeling of the Industrial Heavy Water Plant (PIAP)

    International Nuclear Information System (INIS)

    Teruel, Federico; Aprea, J; Guido Lavalle, German

    2000-01-01

    Software of asymmetric stationary simulation for the Industrial Heavy Water Plant (PIAP) was developed, based on an existing symmetric simulator (Brigitte 2.0).This software allows to turn off some of the isotopic enrichment twin units present in the plant and to simulate them asymmetrically, in other words, with different selection of parameters between twins.Other incorporations were done, such as passing flows between units and entering flows in strategic points of the plant.The iterative system in which the symmetric simulator is based was insufficient to develop the asymmetric simulator, so the system was modeled according to an implicit scheme for the units that form the simulator.This type of resolution resulted in a simulator that supports a big range of boundary conditions and internal parameters.Moreover, the time of calculus is short (∼3 minutes), making it actually useful.The asymmetric simulator is at the PIAP now, for its study and validation. It shows expected tendencies and results according to the symmetric simulator already validated

  16. Biomimetic polymers of plant cutin: an approach from molecular modeling.

    Science.gov (United States)

    San-Miguel, Miguel A; Oviedo, Jaime; Heredia-Guerrero, Jose Alejandro; Heredia, Antonio; Benitez, Jose Jesus

    2014-07-01

    Biomimetics of materials is based on adopting and reproducing a model in nature with a well-defined functionality optimized through evolution. An example is barrier polymers that protect living tissues from the environment. The protecting layer of fruits, leaves, and non-lignified stems is the plant cuticle. The cuticle is a complex system in which the cutin is the main component. Cutin is a biopolyester made of polyhydroxylated carboxylic acids of 16 and 18 carbon atoms. The biosynthesis of cutin in plants is not well understood yet, but a direct chemical route involving the self-assembly of either molecules or molecular aggregates has been proposed. In this work, we present a combined study using experimental and simulation techniques on self-assembled layers of monomers selectively functionalized with hydroxyl groups. Our results demonstrate that the number and position of the hydroxyl groups are critical for the interaction between single molecules and the further rearrangement. Also, the presence of lateral hydroxyl groups reinforces lateral interactions and favors the bi-dimensional growth (2D), while terminal hydroxyl groups facilitate the formation of a second layer caused by head-tail interactions. The balance of 2D/3D growth is fundamental for the plant to create a protecting layer both large enough in 2D and thick enough in 3D.

  17. Micrasterias as a model system in plant cell biology

    Directory of Open Access Journals (Sweden)

    Ursula Luetz-Meindl

    2016-07-01

    Full Text Available The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its extraordinary star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 µm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells.

  18. Modelled basic parameters for semi-industrial irradiation plant design

    International Nuclear Information System (INIS)

    Mangussi, J.

    2009-01-01

    The basic parameters of an irradiation plant design are the total activity, the product uniformity ratio and the efficiency process. The target density, the minimum dose required and the throughput depends on the use to which the irradiator will be put at. In this work, a model for calculating the specific dose rate at several depths in an infinite homogeneous medium produced by a slab source irradiator is presented. The product minimum dose rate for a set of target thickness is obtained. The design method steps are detailed and an illustrative example is presented. (author)

  19. The two α-dox genes of Nicotiana attenuata: overlapping but distinct functions in development and stress responses

    Directory of Open Access Journals (Sweden)

    Steppuhn Anke

    2010-08-01

    Full Text Available Abstract Background Plant fatty acid α-dioxygenases (α-DOX are oxylipin-forming enzymes induced by biotic and abiotic stresses, which also participate in developmental processes. In Nicotiana attenuata, herbivory strongly induces the expression of an α-dox1 gene. To determine its role, we silenced its expression using Agrobacterium-mediated plant transformation with an inverted repeat construct. More than half of the transformed lines showed a severe dwarf growth phenotype that was very similar to the phenotype of tomato plants mutated at a second α-dox isoform. This led us to identify the corresponding α-dox2 gene in N. attenuata and examine the regulation of both α-dox genes as well as the consequences of their silencing in plant development and anti-herbivore defense. Results The transformed lines exhibiting a dwarf growth phenotype are co-silenced for both α-dox genes resulting in a nearly complete suppression of α-DOX activity, which is associated with increases in ABA, JA and anthocyanin levels, all metabolic signatures of oxidative stress. The other lines, only silenced for α-dox1, developed similarly to wild-type plants, exhibited a 40% reduction of α-DOX activity resulting in a 50% reduction of its main product in planta (2-HOT and showed no signs of oxidative stress. In contrast to α-dox1, the expression of α-dox2 gene is not induced by wounding or elicitors in the oral secretions of Manduca sexta. Instead, α-dox2 is expressed in roots and flowers which lack α-dox1 expression, but both genes are equally regulated during leaf maturation. We transiently silenced α-dox gene copies with gene-specific constructs using virus induced gene silencing and determined the consequences for plant development and phytohormone and 2-HOT levels. While individual silencing of α-dox1 or α-dox2 had no effects on plant growth, the co-suppression of both α-dox genes decreased plant growth. Plants transiently silenced for both α-dox genes

  20. [Glucose isomerase activity in suspension of Arthrobacter nicotianae cells and adsorption immobilization of the microorganisms on inorganic carriers].

    Science.gov (United States)

    Kovalenko, G A; Perminova, L V; Terent'eva, T G; Sapunova, L I; Lobanok, A G; Chuenko, T V; Rudina, N A; Cherniak, E I

    2008-01-01

    Kinetics of monosaccharide isomerization has been studied in suspensions of intact, non-growing Arthrobacter nicotianae cells. Under the conditions of the study, glucose and fructose were isomerized at the same maximum rate of 700 micromol/min per 1 g dried cells, which increased with temperature (the dependence was linear at 60-80 degrees C). The proposed means of adsorption immobilization of A. nicotianae cells involve inorganic carriers differing in macrostructure, chemical nature, and surface characteristics. Biocatalysts obtained by adsorbing the cells of A. nicotianae on carbon-containing foam ceramics in the coarse of submerged cultivation were relatively stable and retained original activity (catalysis of monosaccharide isomerization) throughout 14 h of use at 70 degrees C. Maximum glucose isomerase activity (2 micromol/min per 1 g) was observed with biocatalysts prepared by adsorption of non-growing A. nicotianae cells to the macroporous carbon-mineral carrier Sapropel and subsequent drying of the cell suspension together with the carrier.

  1. Wheat bran soil inoculant of sumateran nematode-trapping fungi as biocontrol agents of the root-knot nematode meloidogyne incognita on deli tobacco (nicotiana tabaccum l) cv. deli 4

    Science.gov (United States)

    Dwi Sri Hastuti, Liana; Faull, Jane

    2018-03-01

    A pot experiment was carried out to test the effectiveness of nematode-trapping fungi (NTF) isolated from Sumatera for controlling infection by the root-knot nematode (RKN) on Deli tobacco plant. Wheat bran soil containing 109 conidia of Arthrobotrys. oligospora, Candellabrella musiformis and Dactylella eudermata was added to the soil as a dry inoculum. Carbofuran was also applied as chemical agent and comparison treatment. Seedling tobacco (Nicotiana tabacum L.) cv. Deli 4 was inoculated with root knot (Meloidogyne incognita Chitwood.) seven days after the plant were transplanted to the pots. A. oligospora, C. musiformis and D. eudermata were found to be reliable as biocontrol agents, reducing the number of vermiform nematodes, swollen root, sausage shaped and galls in tobacco plant after 7, 15 and 30 days of infection with M. incognita. Treatment with NTF produced results that were comparable with Carbofuran® as a control agent in the reduction of the number of infections in tobacco plant caused by M. incognita in Nicotiana tabacum var. Deli 4. They also optimize the growth of the tobacco plants especially up to 15 days after infection.

  2. Summary report of seismic PSA of BWR model plant

    International Nuclear Information System (INIS)

    1999-05-01

    This report presents a seismic PSA (Probabilistic Safety Assessment) methodology developed at the Japan Atomic Energy Research Institute (JAERI) for evaluating risks of nuclear power plants (NPPs) and the results from an application of the methodology to a BWR plant in Japan, which is termed Model Plant'. The seismic PSA procedures developed at JAERI are to evaluate core damage frequency (CDF) and have the following four steps: (1) evaluation of seismic hazard, (2) evaluation of realistic response, (3) evaluation of component capacities and failure probabilities, and (4) evaluation of conditional probability of system failure and CDF. Although these procedures are based on the methodologies established and used in the United States, they include several unique features: (1) seismic hazard analysis is performed with use of available knowledge and database on seismological conditions in Japan; (2) response evaluation is performed with a response factor method which is cost effective and associated uncertainties can be reduced with use of modern methods of design calculations; (3) capacity evaluation is performed with use of test results available in Japan in combination with design information and generic capacity data in the U.S.A.; (4) systems reliability analysis, performed with use of the computer code SECOM-2 developed at JAERI, includes identification of dominant accident sequences, importance analysis of components and systems as well as the CDF evaluation with consideration of the effect of correlation of failures by a newly developed method based on the Monte Carlo method. The effect of correlation has been recognized as an important issue in seismic PSAs. The procedures was used to perform a seismic PSA of a 1100 MWe BWR plant. Results are shown as well as the insights derived and future research needs identified in this seismic PSA. (J.P.N.)

  3. Komposisi Kimia Minyak Atsiri Pada Beberapa Tipe Daun Tembakau (Nicotiana Tabaccum L.) [Chemical Compound of Essential Oils From Several Types of Tobacco Leaves (Nicotiana Tabaccum L.)

    OpenAIRE

    Nurnasari, Elda; Subiyakto, Subiyakto

    2011-01-01

    Steam distilation of tobacco (Nicotiana tabaccum L) from 4 different area, Madura (1160 gram), Temanggung (2000 gram),Bondowoso (3528 gram), and Blitar (950 gram) yielded 2,67x10-2 %, 6,93x10-2 %, 0,8428%, and 0,0632 % essensial oil respectively.The oils then analyzed using GC-MS methods. The results identified 30 components from the Madura's tobacco, 11 components from the Temanggung's tobacco, 67 components from the Bondowoso's tobacco, and 20 components from the Blitar's tobacco.The major ...

  4. Virtual medical plant modeling based on L-system | Ding | African ...

    African Journals Online (AJOL)

    ... aid of graphics and PlantVR, we implemented the plant shape and 3-D structure's reconstruction. Conclusion: Three-dimensional structure virtual plant growth model based on time- controlled L-system has been successfully established. Keywords: Drug R&D, toxicity, medical plants, fractals; L-system; quasi binary-trees.

  5. Modeling the radiation balance within a planted trench system

    Science.gov (United States)

    Kramer, Isaac; Agam, Nurit; Berliner, Pedro

    2017-04-01

    Micro-catchment systems (MCs) are designed to harvest and utilize rainwater, with the aim of supporting tree growth in arid regions. While MCs were traditionally built with shallow infiltration basins, recent research indicates that MCs with deeper basins retain more water than MCs with shallower basins, and that trees grown in deeper MCs outperform those grown in shallow MCs. This may be partially because the flux of incoming shortwave radiation reaching the surface is decreased in deeper basins. The degree to which the incoming radiation reaching the floor of the MC is reduced, however, depends on the system's dimensions and orientation, geographical location, canopy geometry, soil properties, date, and time. Existing radiation models are either capable of modeling radiation penetration into trenches, or describe transmission of radiation through canopy. None can describe the penetration of radiation through canopy into a trench. The goal of our research was to model the incoming shortwave and longwave radiation flux densities reaching a MC floor in which trees are planted. The model calculates the incoming shortwave and longwave radiation at any given point on the trench floor. In calculating the incoming shortwave radiation, the model considers direct radiation, diffuse radiation, and direct and diffuse radiation reflected from the walls of the MC system. The model also accounts for possible shading and attenuation of the radiation caused by the presence of a canopy in the system. Validation of the model is performed by comparing measured incoming shortwave radiation to modeled outputs. The measurements are conducted at various positions within existing trenches with width of 1 m and length of 12 m, in which three 6-year old olive trees are grown, with 4 m spacing between trees. The flexibility of the model and the ability to change the trench configurations will help enable the maximization of water use efficiency inside MC systems.

  6. Modelling Hotspots for Invasive Alien Plants in India.

    Science.gov (United States)

    Adhikari, Dibyendu; Tiwary, Raghuvar; Barik, Saroj Kanta

    2015-01-01

    Identification of invasion hotspots that support multiple invasive alien species (IAS) is a pre-requisite for control and management of invasion. However, till recently it remained a methodological challenge to precisely determine such invasive hotspots. We identified the hotspots of alien species invasion in India through Ecological Niche Modelling (ENM) using species occurrence data from the Global Biodiversity Information Facility (GBIF). The predicted area of invasion for selected species were classified into 4 categories based on number of model agreements for a region i.e. high, medium, low and very low. About 49% of the total geographical area of India was predicted to be prone to invasion at moderate to high levels of climatic suitability. The intersection of anthropogenic biomes and ecoregions with the regions of 'high' climatic suitability was classified as hotspot of alien plant invasion. Nineteen of 47 ecoregions of India, harboured such hotspots. Most ecologically sensitive regions of India, including the 'biodiversity hotspots' and coastal regions coincide with invasion hotspots, indicating their vulnerability to alien plant invasion. Besides demonstrating the usefulness of ENM and open source data for IAS management, the present study provides a knowledge base for guiding the formulation of an effective policy and management strategy for controlling the invasive alien species.

  7. Modelling operator cognitive interactions in nuclear power plant safety evaluation

    International Nuclear Information System (INIS)

    Senders, J.W.; Moray, N.; Smiley, A.; Sellen, A.

    1985-08-01

    The overall objectives of the study were to review methods which are applicable to the analysis of control room operator cognitive interactions in nuclear plant safety evaluations and to indicate where future research effort in this area should be directed. This report is based on an exhaustive search and review of the literature on NPP (Nuclear Power Plant) operator error, human error, human cognitive function, and on human performance. A number of methods which have been proposed for the estimation of data for probabilistic risk analysis have been examined and have been found wanting. None addresses the problem of diagnosis error per se. Virtually all are concerned with the more easily detected and identified errors of action. None addresses underlying cause and mechanism. It is these mechanisms which must be understood if diagnosis errors and other cognitive errors are to be controlled and predicted. We have attempted to overcome the deficiencies of earlier work and have constructed a model/taxonomy, EXHUME, which we consider to be exhaustive. This construct has proved to be fruitful in organizing our thinking about the kinds of error that can occur and the nature of self-correcting mechanisms, and has guided our thinking in suggesting a research program which can provide the data needed for quantification of cognitive error rates and of the effects of mitigating efforts. In addition a preliminary outline of EMBED, a causal model of error, is given based on general behavioural research into perception, attention, memory, and decision making. 184 refs

  8. An allometric model for mapping seed development in plants.

    Science.gov (United States)

    Huang, Zhongwen; Tong, Chunfa; Bo, Wenhao; Pang, Xiaoming; Wang, Zhong; Xu, Jichen; Gai, Junyi; Wu, Rongling

    2014-07-01

    Despite a tremendous effort to map quantitative trait loci (QTLs) responsible for agriculturally and biologically important traits in plants, our understanding of how a QTL governs the developmental process of plant seeds remains elusive. In this article, we address this issue by describing a model for functional mapping of seed development through the incorporation of the relationship between vegetative and reproductive growth. The time difference of reproductive from vegetative growth is described by Reeve and Huxley’s allometric equation. Thus, the implementation of this equation into the framework of functional mapping allows dynamic QTLs for seed development to be identified more precisely. By estimating and testing mathematical parameters that define Reeve and Huxley’s allometric equations of seed growth, the dynamic pattern of the genetic effects of the QTLs identified can be analyzed. We used the model to analyze a soybean data, leading to the detection of QTLs that control the growth of seed dry weight. Three dynamic QTLs, located in two different linkage groups, were detected to affect growth curves of seed dry weight. The QTLs detected may be used to improve seed yield with marker-assisted selection by altering the pattern of seed development in a hope to achieve a maximum size of seeds at a harvest time.

  9. Thermal IR exitance model of a plant canopy

    Science.gov (United States)

    Kimes, D. S.; Smith, J. A.; Link, L. E.

    1981-01-01

    A thermal IR exitance model of a plant canopy based on a mathematical abstraction of three horizontal layers of vegetation was developed. Canopy geometry within each layer is quantitatively described by the foliage and branch orientation distributions and number density. Given this geometric information for each layer and the driving meteorological variables, a system of energy budget equations was determined and solved for average layer temperatures. These estimated layer temperatures, together with the angular distributions of radiating elements, were used to calculate the emitted thermal IR radiation as a function of view angle above the canopy. The model was applied to a lodgepole pine (Pinus contorta) canopy over a diurnal cycle. Simulated vs measured radiometric average temperatures of the midcanopy layer corresponded with 2 C. Simulation results suggested that canopy geometry can significantly influence the effective radiant temperature recorded at varying sensor view angles.

  10. The role of Nicotiana gluca Graham (paraguayan herbs as an adjuvant in immunomodulation of Newcastle disease vaccine for broilers Estudo da ação de Nicotiana glauca Graham (erva paraguaia como coadjuvante em vacina contra a doença de Newcastle em frangos de corte

    Directory of Open Access Journals (Sweden)

    Fabiane Pereira Gentilini

    2008-07-01

    Full Text Available The Nicotiana glauca is a native plant species from Argentina, but found all over South América, being used against headaches, rheumatism, injuries, ulcers, and so on. Researchers have considered it as having immunomodulation effect. This study was conducted to investigate the use of a aqueous extract of Nicotiana glauca Graham as an immunomodulator (adjuvant of a Newcastle disease vaccine.. A total of 56 broilers were distributed into 4 experimental groups. Each one of them received 3 dosages of this vaccine with or without the addition of different concentrations of the extract Using hemmoaglutination inhibition techniques , the results have shown differences (P<0.05 in the third sera collection. An increase in the antibody titer with the inclusion of 5 mg/dosage of the extract (Treatment 3 as compared to 1 mg/dosage (Treatment 2 and 10 mg/dosage of the extract (Treatment 4 was observed, However, birds from Treatment 3 did not differ (P> 0.05 from Treatment 1. These results indicated that further investigations are required, including the use of cytotoxicity tests in vitro, to evaluate the immunomodulation effect of this extract.

     

    KEY WORDS: Immunomodulation effect, Nicotiana glauca Graham, vaccine.

    A Nicotiana glauca Graham é uma espécie nativa da Argentina, bem distribuída na América do Sul, sendo empregada, popularmente, contra dores de cabeça, dores reumáticas, cicatrização de feridas e úlceras, entre outros. Pesquisas têm avaliado a sua ação na potencialização da resposta imune. Assim, com este estudo, buscou-se avaliar a ação de um extrato aquoso de Nicotiana glauca Graham como coadjuvante imunológico em uma vacina contra a doença de Newcastle (DNC. Utilizaram-se 56 frangos de corte, distribuídos em quatro grupos experimentais, que receberam tr

  11. Microspores irradiation in anther culture: testing a new technique to obtain mutations immediatly detected and fixed (Application to Nicotiana tabacum)

    International Nuclear Information System (INIS)

    Mondeil, Fanja

    1974-01-01

    In order to consider the effects of microspores irradiation on embryo development, and in order to observe the morphological responses of haploid plantlets derived from androgenetic anthers to ionizing irradiation, 1000, 1500 and 2000r of gamma rays were delivered on anthers of Nicotiana tabacum (DL 50 range calculated: 1500r). The cytological studies of embryo development revealed an apparent increase in irradiated microspores: cell division is stimulated but followed by an early mortality. A sharp rise in lethality effects was observed when gamma rays were applied beyond the seventh day of culture, when the proembryo contains an average of 4 cells. Morphological aberrations and colour changes in the Mo progeny derived from irradiated microspores are diverse. But after chromosome doubling and mutation checking out, all the plants were not recorded to have transmitted their aberrant characters. Thus, heritable character 'mutations) and not heritable character (variations) were obtained. The variations characters include dwarfing, excessive branching, fasciation and dichotomy of the stems, altered flower form, especially of petals. As to the leaves, they usually show induced changes in their colour (chlorotic areas, mosaic-colour changes, or an over-all colour changes), in their form (irregularity in outline) and in their texture (thickening, hairless leaf). Among the mutants, a monster tobacco, with excrescences on the leaves and the flowers is certainly the most conspicuous. But mutants also include altered leaf colour (over-all pale green) and altered flower colour, (dark red, clear pink, white) [fr

  12. Changes accompanying proliferative capacity and morphology of Nicotiana tabacum L. callus in response to 2,4-D

    Directory of Open Access Journals (Sweden)

    Andrzej Gatz

    2017-12-01

    Full Text Available The common trait of all auxins is a stimulation of cell elongation and also cell division in the presence of cytokinin; both are essential for callus induction and its multiplication. The response of plant tissues to various compounds with auxin activity may be quite different. In this study, the effectiveness of a synthetic auxin, 2,4-dichlorofenoxyacetic acid (2,4-D, instead of the generally applied natural auxin, indole-3-acetic acid (IAA, was tested for the proliferation of Nicotiana tabacum callus. The following concentrations of 2,4-D were tested: 0.1, 0.5, 1.0, 1.5, and 2.0 mg dm−3. Callus was derived from stem pith and its proliferation allowed on MS medium through five subcultures at 25°C and in darkness. After each passage, the fresh weight and morphological features of the callus were determined. The 0.5 mg dm−3 2,4-D treatment was the most favorable for producing the greatest increase in fresh weight in each of five subsequent subcultures as well as maintaining normal morphological features for proliferation. However, the 1.0 mg dm−3 2,4-D treatment in comparison with the lowest, 0.1 mg dm−3, was more beneficial when considering regular increases of fresh weight and a better cell cohesion for callus growth.

  13. Transient production of artemisinin in Nicotiana benthamiana is boosted by a specific lipid transfer protein from A. annua.

    Science.gov (United States)

    Wang, Bo; Kashkooli, Arman Beyraghdar; Sallets, Adrienne; Ting, Hieng-Ming; de Ruijter, Norbert C A; Olofsson, Linda; Brodelius, Peter; Pottier, Mathieu; Boutry, Marc; Bouwmeester, Harro; van der Krol, Alexander R

    2016-11-01

    Our lack of full understanding of transport and sequestration of the heterologous products currently limit metabolic engineering in plants for the production of high value terpenes. For instance, although all genes of the artemisinin/arteannuin B (AN/AB) biosynthesis pathway (AN-PW) from Artemisia annua have been identified, ectopic expression of these genes in Nicotiana benthamiana yielded mostly glycosylated pathway intermediates and only very little free (dihydro)artemisinic acid [(DH)AA]. Here we demonstrate that Lipid Transfer Protein 3 (AaLTP3) and the transporter Pleiotropic Drug Resistance 2 (AaPDR2) from A. annua enhance accumulation of (DH)AA in the apoplast of N. benthamiana leaves. Analysis of apoplast and cell content and apoplast exclusion assays show that AaLTP3 and AaPDR2 prevent reflux of (DH)AA from the apoplast back into the cells and enhances overall flux through the pathway. Moreover, AaLTP3 is stabilized in the presence of AN-PW activity and co-expression of AN-PW+AaLTP3+AaPDR2 genes yielded AN and AB in necrotic N. benthamiana leaves at 13 days post-agroinfiltration. This newly discovered function of LTPs opens up new possibilities for the engineering of biosynthesis pathways of high value terpenes in heterologous expression systems. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Synthesis of C-Glucosylated Octaketide Anthraquinones in Nicotiana benthamiana by Using a Multispecies-Based Biosynthetic Pathway.

    Science.gov (United States)

    Andersen-Ranberg, Johan; Kongstad, Kenneth Thermann; Nafisi, Majse; Staerk, Dan; Okkels, Finn Thyge; Mortensen, Uffe Hasbro; Lindberg Møller, Birger; Frandsen, Rasmus John Normand; Kannangara, Rubini

    2017-10-05

    Carminic acid is a C-glucosylated octaketide anthraquinone and the main constituent of the natural dye carmine (E120), possessing unique coloring, stability, and solubility properties. Despite being used since ancient times, longstanding efforts to elucidate its route of biosynthesis have been unsuccessful. Herein, a novel combination of enzymes derived from a plant (Aloe arborescens, Aa), a bacterium (Streptomyces sp. R1128, St), and an insect (Dactylopius coccus, Dc) that allows for the biosynthesis of the C-glucosylated anthraquinone, dcII, a precursor for carminic acid, is reported. The pathway, which consists of AaOKS, StZhuI, StZhuJ, and DcUGT2, presents an alternative biosynthetic approach for the production of polyketides by using a type III polyketide synthase (PKS) and tailoring enzymes originating from a type II PKS system. The current study showcases the power of using transient expression in Nicotiana benthamiana for efficient and rapid identification of functional biosynthetic pathways, including both soluble and membrane-bound enzymes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Characterization of a pollen-specific cDNA clone from Nicotiana tabacum expressed during microgametogenesis and germination.

    Science.gov (United States)

    Weterings, K; Reijnen, W; van Aarssen, R; Kortstee, A; Spijkers, J; van Herpen, M; Schrauwen, J; Wullems, G

    1992-04-01

    This report describes the isolation and characterization of a cDNA clone representing a gene specifically expressed in pollen. A cDNA library was constructed against mRNA from mature pollen of Nicotiana tabacum. It was screened differentially against cDNA from mRNA of leaf and of pollen. One clone, NTPc303, was further characterized. On northern blot this clone hybridizes to a transcript 2100 nucleotides in length. NTPc303 is abundant in pollen. Expression of the corresponding gene is restricted to pollen, because no other generative or vegetative tissue contains transcripts hybridizing to NTPc303. Expression of NTP303 is evolutionarily conserved: homologous transcripts are present in pollen from various plant species. The first NTP303 transcripts are detectable on northern blot at the early bi-nucleate stage and accumulate until the pollen has reached maturity. During germination and pollen tube growth in vitro new NTP303 transcripts appear. This transcription has been proved by northern blots as well as by pulse labelling experiments. Nucleotide sequence analysis revealed that NTPc303 has an open reading frame coding for a predicted protein of 62 kDa. This protein shares homology to ascorbate oxidase and other members of the blue copper oxidase family. A possible function for this clone during pollen germination is discussed.

  16. Uranium uptake in Nicotiana sp under hydroponic conditions

    Czech Academy of Sciences Publication Activity Database

    Soudek, Petr; Petrová, Šárka; Buzek, Martin; Lhotský, Ondřej; Vaněk, Tomáš

    2014-01-01

    Roč. 142, SI (2014), s. 130-137 ISSN 0375-6742 R&D Projects: GA MŠk(CZ) LD13029 Institutional support: RVO:61389030 Keywords : Radionuclides * Accumulation * Plants Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.747, year: 2014

  17. Infrastructure development assistance modeling for nuclear power plant

    International Nuclear Information System (INIS)

    Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M.

    2012-01-01

    The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task would be to

  18. Health effects models for nuclear power plant accident consequence analysis

    International Nuclear Information System (INIS)

    Evans, J.S.; Abrahmson, S.; Bender, M.A.; Boecker, B.B.; Scott, B.R.; Gilbert, E.S.

    1993-10-01

    This report is a revision of NUREG/CR-4214, Rev. 1, Part 1 (1990), Health Effects Models for Nuclear Power Plant Accident Consequence Analysis. This revision has been made to incorporate changes to the Health Effects Models recommended in two addenda to the NUREG/CR-4214, Rev. 1, Part 11, 1989 report. The first of these addenda provided recommended changes to the health effects models for low-LET radiations based on recent reports from UNSCEAR, ICRP and NAS/NRC (BEIR V). The second addendum presented changes needed to incorporate alpha-emitting radionuclides into the accident exposure source term. As in the earlier version of this report, models are provided for early and continuing effects, cancers and thyroid nodules, and genetic effects. Weibull dose-response functions are recommended for evaluating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary, and gastrointestinal syndromes are considered. Linear and linear-quadratic models are recommended for estimating the risks of seven types of cancer in adults - leukemia, bone, lung, breast, gastrointestinal, thyroid, and ''other''. For most cancers, both incidence and mortality are addressed. Five classes of genetic diseases -- dominant, x-linked, aneuploidy, unbalanced translocations, and multifactorial diseases are also considered. Data are provided that should enable analysts to consider the timing and severity of each type of health risk

  19. UV irradiation as a tool for obtaining asymmetric somatic hybrids between Nicotiana plumbaginifolia and Lycopersicon esculentum

    International Nuclear Information System (INIS)

    Vlahova, M.; Hinnisdaels, S.; Frulleux, F.; Claeys, M.; Atanassov, A.; Jacobs, M.

    1997-01-01

    UV-irradiated kanamycin-resistant Lycopersicon esculentum leaf protoplasts were fused with wild-type Nicotiana plumbaginifolia leaf protoplasts. Hybrid calli were recovered after selection in kanamycin-containing medium and subsequently regenerated. Cytological analysis of these regenerants showed that several (2–4) tomato chromosomes, or chromosome fragments, were present in addition to a polyploid Nicotiana genome complement. All lines tested had neomycin phosphotransferase (NPTII) activity and the presence of the kanamycin gene was shown by Southern blotting. In two cases a different hybridization profile for the kanamycin gene, compared to the tomato donor partner, was observed, suggesting the occurence of intergenomic recombination events. The hybrid nature of the regenerants was further confirmed by Southernblotting experiments using either a ribosomal DNA sequence or a tomato-specific repeat as probes. The hybrids were partially fertile and some progeny could be obtained. Our results demonstrate that UV irradiation is a valuable alternative for asymmetric cell-hybridization experiments. (author)

  20. Wind Plant Models in IEC 61400-27-2 and WECC - latest developments in international standards on wind turbine and wind plant modeling

    DEFF Research Database (Denmark)

    Fortmann, Jens; Miller, Nicholas; Kazachkov, Yuri

    This paper describes the latest developments in the standardization of wind plant and wind plant controller models. As a first step IEC TC88 WG 27 and WECC jointly developed generic wind turbine models which have been published by WECC in 2014 and IEC in 2015 as IEC 61400-27-1, which also include...

  1. Organ- and Growing Stage-Specific Expression of Solanesol Biosynthesis Genes in Nicotiana tabacum Reveals Their Association with Solanesol Content

    Directory of Open Access Journals (Sweden)

    Ning Yan

    2016-11-01

    Full Text Available Solanesol is a noncyclic terpene alcohol that is composed of nine isoprene units and mainly accumulates in solanaceous plants, especially tobacco (Nicotiana tabacum L.. In the present study, RNA-seq analyses of tobacco leaves, stems, and roots were used to identify putative solanesol biosynthesis genes. Six 1-deoxy-d-xylulose 5-phosphate synthase (DXS, two 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR, two 2-C-methyl-d-erythritol 4-phosphate cytidylyltransferase (IspD, four 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase (IspE, two 2-C-methyl-d-erythritol 2,4-cyclo-diphosphate synthase (IspF, four 1-hydroxy-2-methyl-2-(E-butenyl 4-diphosphate synthase (IspG, two 1-hydroxy-2-methyl-2-(E-butenyl 4-diphosphate reductase (IspH, six isopentenyl diphosphate isomerase (IPI, and two solanesyl diphosphate synthase (SPS candidate genes were identified in the solanesol biosynthetic pathway. Furthermore, the two N. tabacum SPS proteins (NtSPS1 and NtSPS2, which possessed two conserved aspartate-rich DDxxD domains, were highly homologous with SPS enzymes from other solanaceous plant species. In addition, the solanesol contents of three organs and of leaves from four growing stages of tobacco plants corresponded with the distribution of chlorophyll. Our findings provide a comprehensive evaluation of the correlation between the expression of different biosynthesis genes and the accumulation of solanesol, thus providing valuable insight into the regulation of solanesol biosynthesis in tobacco.

  2. Modeling Operating Modes for the Monju Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Yoshikawa, Hidekazu; Jørgensen, Sten Bay

    2012-01-01

    The specification of supervision and control tasks in complex processes requires definition of plant states on various levels of abstraction related to plant operation in start-up, normal operation and shut-down. Modes of plant operation are often specified in relation to a plant decomposition in...

  3. Mental models and learning from experience in nuclear power plants

    International Nuclear Information System (INIS)

    Carroll, J.S.

    1992-01-01

    This paper proposes that the improvement of plant functioning and the enhancement of safe performance depend greatly on the ability to interpret experience from within and outside the plant: Plants are learning organizations. The management of risk thus involves learning to identify and reduce entry into precursor situations and to recover rapidly from deficiencies. Various learning mechanisms exist that analyze plant incidents and disseminate this information inside plants, across plants, and worldwide, including, for example, various Institute of Nuclear Power Operations and International Atomic Energy Agency programs. Underlying these learning processes are plant employees' own understanding and interpretation of operational experience

  4. Nicotiana Occidentalis Chloroplast Ultrastructure imaged with Transmission Electron Microscopes Working at Different Accelerating Voltages

    OpenAIRE

    SVIDENSKÁ, Silvie

    2010-01-01

    The main goal of this thesis is to study and compare electron microscopy images of Nicotiana Occidentalis chloroplasts, obtained from two types of transmission electron microscopes,which work with different accelerating voltage of 80kV and 5kV. The two instruments, TEM JEOL 1010 and low voltage electron microscope LVEM5 are employed for experiments. In the first theoretical part, principle of electron microscopy and chloroplast morphology is described. In experimental part, electron microscop...

  5. Pathogenicity of «Phytophthora nicotianae» Isolates to Tobacco and Tomato Cultivars

    OpenAIRE

    Kalomira Elena

    2000-01-01

    Sixty-one isolates of Phytophthora nicotianae were tested for pathogenicity to tobacco and tomato. All the isolates but one from tobacco were pathogenic to tobacco but none of the isolates from tobacco were pathogenic to tomato. Of the 53 isolates from non tobacco hosts, 19 proved pathogenic to tomato. Seven isolates from different non tobacco hosts colonized the tobacco stem and produced necrosis but not black shank. Five isolates colonized the tomato stem without causing disease...

  6. Development of probabilistic models for quantitative pathway analysis of plant pests introduction for the EU territory

    NARCIS (Netherlands)

    Douma, J.C.; Robinet, C.; Hemerik, L.; Mourits, M.C.M.; Roques, A.; Werf, van der W.

    2015-01-01

    The aim of this report is to provide EFSA with probabilistic models for quantitative pathway analysis of plant pest introduction for the EU territory through non-edible plant products or plants. We first provide a conceptualization of two types of pathway models. The individual based PM simulates an

  7. Can inducible resistance in plants cause herbivore aggregations? Spatial patterns in an inducible plant/herbivore model

    OpenAIRE

    Anderson, KE; Inouye, BD; Underwood, N

    2015-01-01

    © 2015 by the Ecological Society of America. Many theories regarding the evolution of inducible resistance in plants have an implicit spatial component, but most relevant population dynamic studies ignore spatial dynamics. We examined a spatially explicit model of plant inducible resistance and herbivore population dynamics to explore how realistic features of resistance and herbivore responses influence spatial patterning. Both transient and persistent spatial patterns developed in all model...

  8. Drosophila melanogaster "a potential model organism" for identification of pharmacological properties of plants/plant-derived components.

    Science.gov (United States)

    Panchal, Komal; Tiwari, Anand K

    2017-05-01

    Plants/plant-derived components have been used from ancient times to treat/cure several human diseases. Plants and their parts possess several chemical components that play the vital role in the improvement of human health and their life expectancy. Allopathic medicines have been playing a key role in the treatment of several diseases. Though allopathic medicines provide fast relief, long time consumption cause serious health concerns such as hyperallergic reactions, liver damage, etc. So, the study of medicinal plants which rarely cause any side effect is very important to mankind. Plants contain many health benefit properties like antioxidant, anti-aging, neuroprotective, anti-genotoxic, anti-mutagenic and bioinsecticidal activity. Thus, identification of pharmacological properties of plants/plant-derived components are of utmost importance to be explored. Several model organisms have been used to identify the pharmacological properties of the different plants or active components therein and Drosophila is one of them. Drosophila melanogaster "fruit fly" is a well understood, high-throughput model organism being used more than 110 years to study the different biological aspects related to the development and diseases. Most of the developmental and cell signaling pathways and ∼75% human disease-related genes are conserved between human and Drosophila. Using Drosophila, one can easily analyze the pharmacological properties of plants/plant-derived components by performing several assays available with flies such as survivorship, locomotor, antioxidant, cell death, etc. The current review focuses on the potential of Drosophila melanogaster for the identification of medicinal/pharmacological properties associated with plants/plant-derived components. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Investigation of the interaction of 85Kr with plants in model experiments

    International Nuclear Information System (INIS)

    Butkus, D.V.; Morkunas, G.S.; Bluvshtejn, D.Yu.; Styro, B.I.

    1988-01-01

    The method of investigation of the interaction of 85 Kr with plants is described using model experiments and data analysis. The dependencies of the coefficient of 85 Kr absorption by plants on the biological structure of the plant, the concentration of krypton-85 in the environment, the method of plant exposition in the environment with the 85 Kr admixture are provided. The time dependencies of 85 Kr desorption from plants are given. 4 refs.; 7 figs.; 3 tabs

  10. System Dynamics Modeling for the Resilience in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Florah, Kamanj; Kim, Jonghyun

    2013-01-01

    This paper aims to model and evaluate emergency operation system (EOS) resilience using the System Dynamics. System Dynamics is the study of causal interactions between elements of a complex system. This paper identifies the EOS resilience attributes and their interactions by constructing a causal loop diagram. Then, the interactions are quantified based on literature review and simulated to analyze resilience dynamics. This paper describes the use of system dynamics to improve understanding of the resilience dynamics of complex systems such as emergency operation systems. This paper takes into account two aspects; the strength of resilience attributes interactions and the quantification of dynamic behaviour of resilience over time. This model can be applied to review NPP safety in terms of the resilience level and organization. Simulation results can give managers insights to support their decisions in safety management. A nuclear power plant (NPP) is classified as a safety critical organization whose safety objective is to control hazards that can cause significant harm to the environment, public, or personnel. There has been a significant improvement of safety designs as well as risk analysis tools and methods applied in nuclear power plants over the last decade. Conventional safety analysis methods such as PSA have several limitations they primarily focus on technical dimension, the analysis are linear and sequential, they are dominated by static models, they do not take a systemic view into account, and they focus primarily on why accidents happen and not how success is achieved. Hence new approaches to risk analysis for NPPs are needed to complement the conventional approaches. Resilience is the intrinsic ability of a system to adjust to its functioning prior to, during, or following changes and disturbances, so that it can sustain required operations under both expected and unexpected conditions. An EOS in a NPP refers to a system consisting of personnel

  11. Rapid modification of the insect elicitor N-linolenoyl-glutamate via a lipoxygenase-mediated mechanism on Nicotiana attenuata leaves

    Directory of Open Access Journals (Sweden)

    VanDoorn Arjen

    2010-08-01

    Full Text Available Abstract Background Some plants distinguish mechanical wounding from herbivore attack by recognizing specific constituents of larval oral secretions (OS which are introduced into plant wounds during feeding. Fatty acid-amino acid conjugates (FACs are major constituents of Manduca sexta OS and strong elicitors of herbivore-induced defense responses in Nicotiana attenuata plants. Results The metabolism of one of the major FACs in M. sexta OS, N-linolenoyl-glutamic acid (18:3-Glu, was analyzed on N. attenuata wounded leaf surfaces. Between 50 to 70% of the 18:3-Glu in the OS or of synthetic 18:3-Glu were metabolized within 30 seconds of application to leaf wounds. This heat-labile process did not result in free α-linolenic acid (18:3 and glutamate but in the biogenesis of metabolites both more and less polar than 18:3-Glu. Identification of the major modified forms of this FAC showed that they corresponded to 13-hydroxy-18:3-Glu, 13-hydroperoxy-18:3-Glu and 13-oxo-13:2-Glu. The formation of these metabolites occurred on the wounded leaf surface and it was dependent on lipoxygenase (LOX activity; plants silenced in the expression of NaLOX2 and NaLOX3 genes showed more than 50% reduced rates of 18:3-Glu conversion and accumulated smaller amounts of the oxygenated derivatives compared to wild-type plants. Similar to 18:3-Glu, 13-oxo-13:2-Glu activated the enhanced accumulation of jasmonic acid (JA in N. attenuata leaves whereas 13-hydroxy-18:3-Glu did not. Moreover, compared to 18:3-Glu elicitation, 13-oxo-13:2-Glu induced the differential emission of two monoterpene volatiles (β-pinene and an unidentified monoterpene in irlox2 plants. Conclusions The metabolism of one of the major elicitors of herbivore-specific responses in N. attenuata plants, 18:3-Glu, results in the formation of oxidized forms of this FAC by a LOX-dependent mechanism. One of these derivatives, 13-oxo-13:2-Glu, is an active elicitor of JA biosynthesis and differential

  12. A new model of dynamic of plant biodiversity in changing farmlands ...

    African Journals Online (AJOL)

    A new model of dynamic of plant biodiversity in changing farmlands: Implications for the management of plant biodiversity along differential environmental gradient in the Yellow River of Henan Province in the spring.

  13. Plant functional type mapping for earth system models

    Directory of Open Access Journals (Sweden)

    B. Poulter

    2011-11-01

    Full Text Available The sensitivity of global carbon and water cycling to climate variability is coupled directly to land cover and the distribution of vegetation. To investigate biogeochemistry-climate interactions, earth system models require a representation of vegetation distributions that are either prescribed from remote sensing data or simulated via biogeography models. However, the abstraction of earth system state variables in models means that data products derived from remote sensing need to be post-processed for model-data assimilation. Dynamic global vegetation models (DGVM rely on the concept of plant functional types (PFT to group shared traits of thousands of plant species into usually only 10–20 classes. Available databases of observed PFT distributions must be relevant to existing satellite sensors and their derived products, and to the present day distribution of managed lands. Here, we develop four PFT datasets based on land-cover information from three satellite sensors (EOS-MODIS 1 km and 0.5 km, SPOT4-VEGETATION 1 km, and ENVISAT-MERIS 0.3 km spatial resolution that are merged with spatially-consistent Köppen-Geiger climate zones. Using a beta (ß diversity metric to assess reclassification similarity, we find that the greatest uncertainty in PFT classifications occur most frequently between cropland and grassland categories, and in dryland systems between shrubland, grassland and forest categories because of differences in the minimum threshold required for forest cover. The biogeography-biogeochemistry DGVM, LPJmL, is used in diagnostic mode with the four PFT datasets prescribed to quantify the effect of land-cover uncertainty on climatic sensitivity of gross primary productivity (GPP and transpiration fluxes. Our results show that land-cover uncertainty has large effects in arid regions, contributing up to 30% (20% uncertainty in the sensitivity of GPP (transpiration to precipitation. The availability of PFT datasets that are consistent

  14. Simulation of nuclear plant operation into a stochastic energy production model

    International Nuclear Information System (INIS)

    Pacheco, R.L.

    1983-04-01

    A simulation model of nuclear plant operation is developed to fit into a stochastic energy production model. In order to improve the stochastic model used, and also reduce its computational time burdened by the aggregation of the model of nuclear plant operation, a study of tail truncation of the unsupplied demand distribution function has been performed. (E.G.) [pt

  15. Climate driven crop planting date in the ACME Land Model (ALM): Impacts on productivity and yield

    Science.gov (United States)

    Drewniak, B.

    2017-12-01

    Climate is one of the key drivers of crop suitability and productivity in a region. The influence of climate and weather on the growing season determine the amount of time crops spend in each growth phase, which in turn impacts productivity and, more importantly, yields. Planting date can have a strong influence on yields with earlier planting generally resulting in higher yields, a sensitivity that is also present in some crop models. Furthermore, planting date is already changing and may continue, especially if longer growing seasons caused by future climate change drive early (or late) planting decisions. Crop models need an accurate method to predict plant date to allow these models to: 1) capture changes in crop management to adapt to climate change, 2) accurately model the timing of crop phenology, and 3) improve crop simulated influences on carbon, nutrient, energy, and water cycles. Previous studies have used climate as a predictor for planting date. Climate as a plant date predictor has more advantages than fixed plant dates. For example, crop expansion and other changes in land use (e.g., due to changing temperature conditions), can be accommodated without additional model inputs. As such, a new methodology to implement a predictive planting date based on climate inputs is added to the Accelerated Climate Model for Energy (ACME) Land Model (ALM). The model considers two main sources of climate data important for planting: precipitation and temperature. This method expands the current temperature threshold planting trigger and improves the estimated plant date in ALM. Furthermore, the precipitation metric for planting, which synchronizes the crop growing season with the wettest months, allows tropical crops to be introduced to the model. This presentation will demonstrate how the improved model enhances the ability of ALM to capture planting date compared with observations. More importantly, the impact of changing the planting date and introducing tropical

  16. Nonlinear Fuzzy Model Predictive Control for a PWR Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Xiangjie Liu

    2014-01-01

    Full Text Available Reliable power and temperature control in pressurized water reactor (PWR nuclear power plant is necessary to guarantee high efficiency and plant safety. Since the nuclear plants are quite nonlinear, the paper presents nonlinear fuzzy model predictive control (MPC, by incorporating the realistic constraints, to realize the plant optimization. T-S fuzzy modeling on nuclear power plant is utilized to approximate the nonlinear plant, based on which the nonlinear MPC controller is devised via parallel distributed compensation (PDC scheme in order to solve the nonlinear constraint optimization problem. Improved performance compared to the traditional PID controller for a TMI-type PWR is obtained in the simulation.

  17. Species distribution modelling for plant communities: Stacked single species or multivariate modelling approaches?

    Science.gov (United States)

    Emilie B. Henderson; Janet L. Ohmann; Matthew J. Gregory; Heather M. Roberts; Harold S.J. Zald

    2014-01-01

    Landscape management and conservation planning require maps of vegetation composition and structure over large regions. Species distribution models (SDMs) are often used for individual species, but projects mapping multiple species are rarer. We compare maps of plant community composition assembled by stacking results from many SDMs with multivariate maps constructed...

  18. Modeling of PWR plant by multilevel flow model and its application in fault diagnosis

    International Nuclear Information System (INIS)

    Ouyang, Jun; Yoshikawa, Hidekazu; Zhou, Yangping; Yang Ming

    2005-01-01

    The paper describes the application of Multilevel Flow Modeling (MFM) - a modeling method in means-end and part-whole way, in interface design of supervisory control of Pressurized Water Reactor (PWR) plant, and automatic real-time fault diagnosis of PWR accident. The MFM decomposes the complex plant process from the main goal to each component at multiple levels to represent the contribution of each component to the whole system to make clear how the main goal of the system is achieved. The plant process is described abstractly in function level by mass, energy and information flows, which represent the interaction between different components and enable the causal reasoning between functions according to the flow properties. Thus, in the abnormal status, a goal-function-component oriented fault diagnosis can be performed with the model at a very quick speed and abnormal alarms can be fully explained by the reasoning relationship of the model. In this paper, an interface design of the PWR plant is built by the conception of means-end nad part-whole by using MFM, and several simulation cases are used for evaluating the fault diagnosis performance. The results show that the system has a good ability to detect and diagnose accidents timely before reactor trip. (author)

  19. Parabolic Trough Reference Plant for Cost Modeling with the Solar Advisor Model (SAM)

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C.

    2010-07-01

    This report describes a component-based cost model developed for parabolic trough solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), assisted by WorleyParsons Group Inc., for use with NREL's Solar Advisor Model (SAM). This report includes an overview and explanation of the model, two summary contract reports from WorleyParsons, and an Excel spreadsheet for use with SAM. The cost study uses a reference plant with a 100-MWe capacity and six hours of thermal energy storage. Wet-cooling and dry-cooling configurations are considered. The spreadsheet includes capital and operating cost by component to allow users to estimate the impact of changes in component costs.

  20. Modeling of biobasins of an oil refinery wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    RADOSTIN K. KUTSAROV

    2015-04-01

    Full Text Available The biobasins of the largest wastewater treatment plant (WWTP on the Balkans has been examined. Samples were taken four times from the inlet and outlet flow. The concentration of the total hydrocarbons, benzene, toluene, ethylbenzene, p-xylene, m-xylene, o-xylene and styrene in the wastewater has been obtained by gas chromatography. The average experimental concentrations were used when the mass balance was made. The results indicate that about 60% of pollutants are emitted in the air, about 22% are assimilated through biodegradation, and nearly 18% leave WWTP with the purified water. The measured concentrations were also modeled by Water 9.3 program. Comparison between the measured amounts of pollution concentrations and those forecasted by the Water 9.3 program has been made.

  1. Has the plant genetic variability any role in models of water transfer in the soil-plant-atmosphere continuum ?

    Science.gov (United States)

    Tardieu, F.

    2012-04-01

    Water transfer in the SPAC is essentially linked to environmental conditions such as evaporative demand or soil water potential, and physical parameters such as soil hydraulic capacity or hydraulic conductivity. Models used in soil science most often represent the plant via a small number of variables such as the water flux that crosses the base of the stem or the root length (or area) in each soil layer. Because there is an increasing demand for computer simulations of plants that would perform better under water deficit, models of SPA water transfer are needed that could better take into account the genetic variability of traits involved in plant hydraulics. (i) The water flux through the plant is essentially limited by stomata, which present a much higher resistance to water flow than those in the soil - root continuum. This can lead to unexpected relations between flux, leaf water potential and root hydraulic conductance. (ii) A large genetic variability exists within and between species for stomatal control, with important consequences for the minimum soil water potential that is accessible to the plant. In particular, isohydric plants that maintain leaf water potential in a narrow range via stomatal control have a higher (nearer to 0) 'wilting point' than anisohydric plants that allow leaf water potential to reach very low values. (iii) The conductivity for water transfer in roots and shoots is controlled by plants via aquaporins. It largely varies with time of the day, water and nutrient status, in particular via plant hormones and circadian rhythms. Models of SPA water transfer with a time definition of minutes to hour should probably not ignore this, while those with longer time steps are probably less sensitive to changes in plant hydraulic conductivity. (iv) The "dogma" that dense root systems provide tolerance to water deficit is profoundly affected when the balance "H2O gain vs C investment" is taken into account. At least three programmes of recurrent

  2. A modelling framework to simulate foliar fungal epidemics using functional-structural plant models.

    Science.gov (United States)

    Garin, Guillaume; Fournier, Christian; Andrieu, Bruno; Houlès, Vianney; Robert, Corinne; Pradal, Christophe

    2014-09-01

    Sustainable agriculture requires the identification of new, environmentally responsible strategies of crop protection. Modelling of pathosystems can allow a better understanding of the major interactions inside these dynamic systems and may lead to innovative protection strategies. In particular, functional-structural plant models (FSPMs) have been identified as a means to optimize the use of architecture-related traits. A current limitation lies in the inherent complexity of this type of modelling, and thus the purpose of this paper is to provide a framework to both extend and simplify the modelling of pathosystems using FSPMs. Different entities and interactions occurring in pathosystems were formalized in a conceptual model. A framework based on these concepts was then implemented within the open-source OpenAlea modelling platform, using the platform's general strategy of modelling plant-environment interactions and extending it to handle plant interactions with pathogens. New developments include a generic data structure for representing lesions and dispersal units, and a series of generic protocols to communicate with objects representing the canopy and its microenvironment in the OpenAlea platform. Another development is the addition of a library of elementary models involved in pathosystem modelling. Several plant and physical models are already available in OpenAlea and can be combined in models of pathosystems using this framework approach. Two contrasting pathosystems are implemented using the framework and illustrate its generic utility. Simulations demonstrate the framework's ability to simulate multiscaled interactions within pathosystems, and also show that models are modular components within the framework and can be extended. This is illustrated by testing the impact of canopy architectural traits on fungal dispersal. This study provides a framework for modelling a large number of pathosystems using FSPMs. This structure can accommodate both

  3. Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions.

    Science.gov (United States)

    Khayet, Mohamed; Fernández, Victoria

    2012-11-14

    Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.

  4. Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions

    Science.gov (United States)

    2012-01-01

    Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions. PMID:23151272

  5. Modeling risk assessment for nuclear processing plants with LAVA

    International Nuclear Information System (INIS)

    Smith, S.T.; Tisinger, R.M.

    1988-01-01

    Using the Los Alamos Vulnerability and Risk Assessment (LAVA) methodology, the authors developed a model for assessing risks associated with nuclear processing plants. LAVA is a three-part systematic approach to risk assessment. The first part is the mathematical methodology; the second is the general personal computer-based software engine; and the third is the application itself. The methodology provides a framework for creating applications for the software engine to operate upon; all application-specific information is data. Using LAVA, the authors build knowledge-based expert systems to assess risks in applications systems comprising a subject system and a safeguards system. The subject system model is sets of threats, assets, and undesirable outcomes. The safeguards system model is sets of safeguards functions for protecting the assets from the threats by preventing or ameliorating the undesirable outcomes, sets of safeguards subfunctions whose performance determine whether the function is adequate and complete, and sets of issues, appearing as interactive questionnaires, whose measures (in both monetary and linguistic terms) define both the weaknesses in the safeguards system and the potential costs of an undesirable outcome occurring

  6. Modeling utility-scale wind power plants, part 1: Economics

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.

    2000-06-29

    As the worldwide use of wind turbine generators continues to increase in utility-scale applications, it will become increasingly important to assess the economic and reliability impact of these intermittent resources. Although the utility industry in the United States appears to be moving towards a restructured environment, basic economic and reliability issues will continue to be relevant to companies involved with electricity generation. This paper is the first of two that address modeling approaches and results obtained in several case studies and research projects at the National Renewable Energy Laboratory (NREL). This first paper addresses the basic economic issues associated with electricity production from several generators that include large-scale wind power plants. An important part of this discussion is the role of unit commitment and economic dispatch in production-cost models. This paper includes overviews and comparisons of the prevalent production-cost modeling met hods, including several case studies applied to a variety of electric utilities. The second paper discusses various methods of assessing capacity credit and results from several reliability-based studies performed at NREL.

  7. Transient Expression of Lumbrokinase (PI239 in Tobacco (Nicotiana tabacum Using a Geminivirus-Based Single Replicon System Dissolves Fibrin and Blood Clots

    Directory of Open Access Journals (Sweden)

    Alexia Dickey

    2017-01-01

    Full Text Available Lumbrokinases, a group of fibrinolytic enzymes extracted from earthworm, have been widely used to prevent and treat various cardiovascular diseases. They specifically target fibrin to effectively degrade thrombi without major side effects. Plant expression systems are becoming potential alternative expression platforms for producing pharmaceutical proteins. In this work, a lumbrokinase (PI239 was produced from a plant system. Both wild-type (WT and plant codon-optimized (OP PI239 gene sequences were synthesized and cloned into a geminivirus-based single-vector DNA replicon system. Both vectors were independently expressed in tobacco (Nicotiana tabacum leaves transiently by agroinfiltration. Overexpressed PI239 resulted in sudden tissue necrosis 3 days after infiltration. Remaining proteins were purified through His-tag affinity chromatography and analyzed with SDS-PAGE and Western blot methods. Purified PI239 successfully degraded artificial fibrin with relative activity of 13,400 U/mg when compared with commercial lumbrokinase product. In vitro tests demonstrated that plant-derived PI239 dissolved human blood clots and that the plant expression system is capable of producing functional PI239.

  8. Application of a procedure oriented crew model to modelling nuclear plant operation

    International Nuclear Information System (INIS)

    Baron, S.

    1986-01-01

    PROCRU (PROCEDURE-ORIENTED CREW MODEL) is a model developed to analyze flight crew procedures in a commercial ILS approach-to-landing. The model builds on earlier, validated control-theoretic models for human estimation and control behavior, but incorporates features appropriate to analyzing supervisory control in multi-task environments. In this paper, the basic ideas underlying the PROCRU model, and the generalization of these ideas to provide a supervisory control model of wider applicability are discussed. The potential application of this supervisory control model to nuclear power plant operations is considered. The range of problems that can be addressed, the kinds of data that will be needed and the nature of the results that might be expected from such an application are indicated

  9. Economical analyses of build-operate-transfer model in establishing alternative power plants

    International Nuclear Information System (INIS)

    Yumurtaci, Zehra; Erdem, Hasan Hueseyin

    2007-01-01

    The most widely employed method to meet the increasing electricity demand is building new power plants. The most important issue in building new power plants is to find financial funds. Various models are employed, especially in developing countries, in order to overcome this problem and to find a financial source. One of these models is the build-operate-transfer (BOT) model. In this model, the investor raises all the funds for mandatory expenses and provides financing, builds the plant and, after a certain plant operation period, transfers the plant to the national power organization. In this model, the object is to decrease the burden of power plants on the state budget. The most important issue in the BOT model is the dependence of the unit electricity cost on the transfer period. In this study, the model giving the unit electricity cost depending on the transfer of the plants established according to the BOT model, has been discussed. Unit electricity investment cost and unit electricity cost in relation to transfer period for plant types have been determined. Furthermore, unit electricity cost change depending on load factor, which is one of the parameters affecting annual electricity production, has been determined, and the results have been analyzed. This method can be employed for comparing the production costs of different plants that are planned to be established according to the BOT model, or it can be employed to determine the appropriateness of the BOT model

  10. Virus-Induced Gene Silencing Using Tobacco Rattle Virus as a Tool to Study the Interaction between Nicotiana attenuata and Rhizophagus irregularis.

    Directory of Open Access Journals (Sweden)

    Karin Groten

    Full Text Available Most land plants live in a symbiotic association with arbuscular mycorrhizal fungi (AMF that belong to the phylum Glomeromycota. Although a number of plant genes involved in the plant-AMF interactions have been identified by analyzing mutants, the ability to rapidly manipulate gene expression to study the potential functions of new candidate genes remains unrealized. We analyzed changes in gene expression of wild tobacco roots (Nicotiana attenuata after infection with mycorrhizal fungi (Rhizophagus irregularis by serial analysis of gene expression (SuperSAGE combined with next generation sequencing, and established a virus-induced gene-silencing protocol to study the function of candidate genes in the interaction. From 92,434 SuperSAGE Tag sequences, 32,808 (35% matched with our in-house Nicotiana attenuata transcriptome database and 3,698 (4% matched to Rhizophagus genes. In total, 11,194 Tags showed a significant change in expression (p2-fold change after infection. When comparing the functions of highly up-regulated annotated Tags in this study with those of two previous large-scale gene expression studies, 18 gene functions were found to be up-regulated in all three studies mainly playing roles related to phytohormone metabolism, catabolism and defense. To validate the function of identified candidate genes, we used the technique of virus-induced gene silencing (VIGS to silence the expression of three putative N. attenuata genes: germin-like protein, indole-3-acetic acid-amido synthetase GH3.9 and, as a proof-of-principle, calcium and calmodulin-dependent protein kinase (CCaMK. The silencing of the three plant genes in roots was successful, but only CCaMK silencing had a significant effect on the interaction with R. irregularis. Interestingly, when a highly activated inoculum was used for plant inoculation, the effect of CCaMK silencing on fungal colonization was masked, probably due to trans-complementation. This study demonstrates that

  11. Short-Term Forecasting Models for Photovoltaic Plants: Analytical versus Soft-Computing Techniques

    OpenAIRE

    Monteiro, Claudio; Fernandez-Jimenez, L. Alfredo; Ramirez-Rosado, Ignacio J.; Muñoz-Jimenez, Andres; Lara-Santillan, Pedro M.

    2013-01-01

    We present and compare two short-term statistical forecasting models for hourly average electric power production forecasts of photovoltaic (PV) plants: the analytical PV power forecasting model (APVF) and the multiplayer perceptron PV forecasting model (MPVF). Both models use forecasts from numerical weather prediction (NWP) tools at the location of the PV plant as well as the past recorded values of PV hourly electric power production. The APVF model consists of an original modeling for adj...

  12. An integrated translation of design data of a nuclear power plant from a specification-driven plant design system to neutral model data

    International Nuclear Information System (INIS)

    Mun, Duhwan; Yang, Jeongsam

    2010-01-01

    How to efficiently integrate and manage lifecycle data of a nuclear power plant has gradually become an important object of study. Because plants usually have a very long period of operation and maintenance, the plant design data need to be presented in a computer-interpretable form and to be independent of any commercial systems. The conversion of plant design data from various design systems into neutral model data is therefore an important technology for the effective operation and maintenance of plants. In this study, a neutral model for the efficient integration of plant design data is chosen from among the currently available options and extended in order to cover the information model requirements of nuclear power plants in Korea. After the mapping of the neutral model and the data model of a specification-driven plant design system, a plant data translator is also implemented in accordance with the schema mapping results.

  13. Source modelling in seismic risk analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Yucemen, M.S.

    1978-12-01

    The proposed probabilistic procedure provides a consistent method for the modelling, analysis and updating of uncertainties that are involved in the seismic risk analysis for nuclear power plants. The potential earthquake activity zones are idealized as point, line or area sources. For these seismic source types, expressions to evaluate their contribution to seismic risk are derived, considering all the possible site-source configurations. The seismic risk at a site is found to depend not only on the inherent randomness of the earthquake occurrences with respect to magnitude, time and space, but also on the uncertainties associated with the predicted values of the seismic and geometric parameters, as well as the uncertainty in the attenuation model. The uncertainty due to the attenuation equation is incorporated into the analysis through the use of random correction factors. The influence of the uncertainty resulting from the insufficient information on the seismic parameters and source geometry is introduced into the analysis by computing a mean risk curve averaged over the various alternative assumptions on the parameters and source geometry. Seismic risk analysis is carried for the city of Denizli, which is located in the seismically most active zone of Turkey. The second analysis is for Akkuyu

  14. Plant canopy light absorption model with application to wheat

    Science.gov (United States)

    Chance, J. E.; Lemaster, E. W.

    1978-01-01

    A light absorption model (LAM) for vegetative plant canopies has been derived from the Suits reflectance model. From the LAM the absorption of light in the photosynthetically active region of the spectrum (400-700 nm) has been calculated for a Penjamo wheat crop for several situations including (a) the percent absorption of the incident radiation by a canopy of LAI 3.1 having a four-layer structure, (b) the percent absorption of light by the individual layers within a four-layer canopy and by the underlying soil, (c) the percent absorption of light by each vegetative canopy layer for variable sun angle, and (d) the cumulative solar energy absorbed by the developing wheat canopy as it progresses from a single layer through its growth stages to a three-layer canopy. This calculation is also presented as a function of the leaf area index and is shown to be in agreement with experimental data reported by Kanemasu on Plainsman V wheat.

  15. Modelling and Simulation of VSC-HVDC Connection for Wind Power Plants

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay Kumar; Teodorescu, Remus; Rodriguez, Pedro

    2009-01-01

    This paper describes the modelling and simulation of offshore wind power plants (WPP) connected to the onshore power system grid by VSC based HVDC transmission. Offshore wind power plant is modelled with several wind turbine generators connected to two separate collector buses with their own plant...... wind turbines. Simulation of power ramping up and down as well as steady state operation has been demonstrated. As an additional case, the primary reserve control logic has been implemented and simulated in PSCAD model....

  16. Remote Sensing and Modeling for Improving Operational Aquatic Plant Management

    Science.gov (United States)

    Bubenheim, Dave

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California’s water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  17. Plantagora: modeling whole genome sequencing and assembly of plant genomes.

    Directory of Open Access Journals (Sweden)

    Roger Barthelson

    Full Text Available BACKGROUND: Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them. METHODOLOGY/PRINCIPAL FINDINGS: For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website. CONCLUSIONS/SIGNIFICANCE: Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly

  18. Energetic-economic dynamic computational analysis of plants with small capacity - Gera model

    International Nuclear Information System (INIS)

    Storfer, A.F.; Demanboro, A.C. de; Campello, C.A.G.B.

    1990-01-01

    A methodology and mathematical model for energy and economic analysis of hydroelectric power plants with low and medium capacity are presented. This methodology will be used for isolated or integrated hydroelectric power plants, including plants that part of their produced energy will go to the site market and part will go to regional electric system. (author)

  19. Matematical modeling of galophytic plants productivity taking into account the temperature factor and soil salinity level

    Science.gov (United States)

    Natalia, Slyusar; Pisman, Tamara; Pechurkin, Nikolai S.

    Among the most challenging tasks faced by contemporary ecology is modeling of biological production process in different plant communities. The difficulty of the task is determined by the complexity of the study material. Models showing the influence of climate and climate change on plant growth, which would also involve soil site parameters, could be of both practical and theoretical interest. In this work a mathematical model has been constructed to describe the growth dynamics of different plant communities of halophytic meadows as dependent upon the temperature factor and soil salinity level, which could be further used to predict yields of these plant communities. The study was performed on plants of halophytic meadows in the coastal area of Lake of the Republic of Khakasia in 2004 - 2006. Every plant community grew on the soil of a different level of salinity - the amount of the solid residue of the saline soil aqueous extract. The mathematical model was analyzed using field data of 2004 and 2006, the years of contrasting air temperatures. Results of model investigations show that there is a correlation between plant growth and the temperature of the air for plant communities growing on soils containing the lowest (0.1Thus, results of our study, in which we used a mathematical model describing the development of plant communities of halophytic meadows and field measurements, suggest that both climate conditions (temperature) and ecological factors of the plants' habitat (soil salinity level) should be taken into account when constructing models for predicting crop yields.

  20. Nuclear power plant training simulator modeling organization and method

    International Nuclear Information System (INIS)

    Alliston, W.H.

    1975-01-01

    A description is given of a training simulator for the full-scope real-time dynamic operation of a nuclear power plant which utilizes apparatus that includes control consoles having manual and automatic devices corresponding to simulated plant components and indicating devices for monitoring physical values in the simulated plants. A digital computer configuration is connected to the control consoles to calculate the dynamic real-time simulated operation of the plant in accordance with the simulated plant components to provide output data including data for operating the control console indicating devices. The plant simulation is modularized into various plant components or component systems. Simulated plant components or component systems are described by a mathematical equation embodied in a computer program which accepts data from other simulated plant components or systems, calculates output values including values which are used as inputs for simulator calculators by other simulated plant components or systems, and responds in a manner similar to that of its corresponding physical entity in both transient and steady states

  1. Characterization of natural leaf senescence in tobacco (Nicotiana tabacum) plants grown in vitro

    Czech Academy of Sciences Publication Activity Database

    Uzelac, B.; Janošević, D.; Simonović, A.; Motyka, Václav; Dobrev, Petre; Budimir, S.

    2016-01-01

    Roč. 253, č. 2 (2016), s. 259-275 ISSN 0033-183X R&D Projects: GA ČR(CZ) GAP506/11/0774 Institutional support: RVO:61389030 Keywords : Leaf senescence * Mesophyll ultrastructure * Phytohormones Subject RIV: EF - Botanics Impact factor: 2.870, year: 2016

  2. Effect of Potato Virus Y on the NADP-Malic Enzyme from Nicotiana tabacum L.: mRNA, Expressed Protein and Activity

    Directory of Open Access Journals (Sweden)

    Helena Ryšlavá

    2009-08-01

    Full Text Available The effect of biotic stress induced by viral infection (Potato virus Y, strain NTN and O on NADP-malic enzyme (EC 1.1.1.40 in tobacco plants (Nicotiana tabacum L., cv. Petit Havana, SR1 was tested at the transcriptional, translational and activity level. The increase of enzyme activity in infected leaves was correlated with the increased amount of expressed protein and with mRNA of cytosolic NADP-ME isoform. Transcription of the chloroplastic enzyme was not influenced by viral infection. The increase of the enzyme activity was also detected in stems and roots of infected plants. The effect of viral infection induced by Potato virus Y, NTN strain, causing more severe symptoms, was compared with the effect induced by milder strain PVYO. The observed increase in NADP-malic enzyme activity in all parts of the studied plants was higher in the case of PVYNTN strain than in the case of strain PVYO. The relevance of NADP-malic enzyme in plants under stress conditions was discussed.

  3. Effect of Potato virus Y on the NADP-malic enzyme from Nicotiana tabacum L.: mRNA, expressed protein and activity.

    Science.gov (United States)

    Doubnerová, Veronika; Müller, Karel; Cerovská, Noemi; Synková, Helena; Spoustová, Petra; Ryslavá, Helena

    2009-08-13

    The effect of biotic stress induced by viral infection (Potato virus Y, strain NTN and O) on NADP-malic enzyme (EC 1.1.1.40) in tobacco plants (Nicotiana tabacum L., cv. Petit Havana, SR1) was tested at the transcriptional, translational and activity level. The increase of enzyme activity in infected leaves was correlated with the increased amount of expressed protein and with mRNA of cytosolic NADP-ME isoform. Transcription of the chloroplastic enzyme was not influenced by viral infection. The increase of the enzyme activity was also detected in stems and roots of infected plants. The effect of viral infection induced by Potato virus Y, NTN strain, causing more severe symptoms, was compared with the effect induced by milder strain PVY(O). The observed increase in NADP-malic enzyme activity in all parts of the studied plants was higher in the case of PVY(NTN) strain than in the case of strain PVY(O). The relevance of NADP-malic enzyme in plants under stress conditions was discussed.

  4. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress.

    Science.gov (United States)

    Xie, He; Yang, Da-Hai; Yao, Heng; Bai, Ge; Zhang, Yi-Han; Xiao, Bing-Guang

    2016-01-15

    Drought is one of the most severe forms of abiotic stresses that threaten the survival of plants, including crops. In turn, plants dramatically change their physiology to increase drought tolerance, including reconfiguration of proteomes. Here, we studied drought-induced proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum), a solanaceous plant, using the isobaric tags for relative and absolute quantitation (iTRAQ)-based protein labeling technology. Of identified 5570 proteins totally, drought treatment increased and decreased abundance of 260 and 206 proteins, respectively, compared with control condition. Most of these differentially regulated proteins are involved in photosynthesis, metabolism, and stress and defense. Although abscisic acid (ABA) levels greatly increased in drought-treated tobacco leaves, abundance of detected ABA biosynthetic enzymes showed no obvious changes. In contrast, heat shock proteins (HSPs), thioredoxins, ascorbate-, glutathione-, and hydrogen peroxide (H2O2)-related proteins were up- or down-regulated in drought-treated tobacco leaves, suggesting that chaperones and redox signaling are important for tobacco tolerance to drought, and it is likely that redox-induced posttranslational modifications play an important role in modulating protein activity. This study not only provides a comprehensive dataset on overall protein changes in drought-treated tobacco leaves, but also shed light on the mechanism by which solanaceous plants adapt to drought stress. Copyright © 2015 Yunnan Academy of Tobacco Agricultural Sciences. Published by Elsevier Inc. All rights reserved.

  5. Model of Yield Response of Corn to Plant Population and Absorption of Solar Energy

    OpenAIRE

    Overman, Allen R.; Scholtz, Richard V.

    2011-01-01

    Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha(-1) and g plant(-1)) on plant population (plants m(-2)). Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L.) grown in the United States. Data are analyzed with a simple exponential mathematical model ...

  6. Modeling terrestrial carbon and water dynamics across climatic gradients: does plant trait diversity matter?

    Science.gov (United States)

    Pappas, Christoforos; Fatichi, Simone; Burlando, Paolo

    2016-01-01

    Plant trait diversity in many vegetation models is crudely represented using a discrete classification of a handful of 'plant types' (named plant functional types; PFTs). The parameterization of PFTs reflects mean properties of observed plant traits over broad categories ignoring most of the inter- and intraspecific plant trait variability. Taking advantage of a multivariate leaf-trait distribution (leaf economics spectrum), as well as documented plant drought strategies, we generate an ensemble of hypothetical species with coordinated attributes, rather than using few PFTs. The behavior of these proxy species is tested using a mechanistic ecohydrological model that translates plant traits into plant performance. Simulations are carried out for a range of climates representative of different elevations and wetness conditions in the European Alps. Using this framework we investigate the sensitivity of ecosystem response to plant trait diversity and compare it with the sensitivity to climate variability. Plant trait diversity leads to highly divergent vegetation carbon dynamics (fluxes and pools) and to a lesser extent water fluxes (transpiration). Abiotic variables, such as soil water content and evaporation, are only marginally affected. These results highlight the need for revising the representation of plant attributes in vegetation models. Probabilistic approaches, based on observed multivariate whole-plant trait distributions, provide a viable alternative. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Efficacy Of Selected Plant Extracts Against Bean Rust Disease ...

    African Journals Online (AJOL)

    In vivo evaluation of the efficacy of selected plant extracts; Neem (Azadirachta indica A. Juss) derivatives (Neem oil, Neem cake powder and Neem leaf powder) and leaf extracts of pawpaw (Carica papaya L), Tephrosia vogelii, stinging Nettle (Urtica massaica L), Tobacco (Nicotiana tabacum L.) and commercial fungicide: ...

  8. Cre recombinase expression can result in phenotypic aberrations in plants

    NARCIS (Netherlands)

    Coppoolse, E.; Vroomen, de M.J.; Roelofs, D.; Smit, J.; Gennip, van F.; Hersmus, B.J.M.; Nijkamp, H.J.J.; Haaren, van M.J.

    2003-01-01

    The cre recombinase gene was stably introduced and expressed in tomato, petunia and Nicotiana tabacum. Some plants expressing the cre gene driven by a CaMV 35S promoter displayed growth retardation and a distinct pattern of chlorosis in their leaves. Although no direct relation can be proven between

  9. Cre recombinase expression can result in phenotypic aberrations in plants

    NARCIS (Netherlands)

    Coppoolse, Eric R; de Vroomen, Marianne J; Roelofs, Dick; Smit, Jaap; van Gennip, Femke; Hersmus, Bart J M; Nijkamp, H John J; van Haaren, Mark J J

    The cre recombinase gene was stably introduced and expressed in tomato, petunia and Nicotiana tabacum. Some plants expressing the cre gene driven by a CaMV 35S promoter displayed growth retardation and a distinct pattern of chlorosis in their leaves. Although no direct relation can be proven between

  10. Empirical modeling of nuclear power plants using neural networks

    International Nuclear Information System (INIS)

    Parlos, A.G.; Atiya, A.; Chong, K.T.

    1991-01-01

    A summary of a procedure for nonlinear identification of process dynamics encountered in nuclear power plant components is presented in this paper using artificial neural systems. A hybrid feedforward/feedback neural network, namely, a recurrent multilayer perceptron, is used as the nonlinear structure for system identification. In the overall identification process, the feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of time-dependent system nonlinearities. The standard backpropagation learning algorithm is modified and is used to train the proposed hybrid network in a supervised manner. The performance of recurrent multilayer perceptron networks in identifying process dynamics is investigated via the case study of a U-tube steam generator. The nonlinear response of a representative steam generator is predicted using a neural network and is compared to the response obtained from a sophisticated physical model during both high- and low-power operation. The transient responses compare well, though further research is warranted for training and testing of recurrent neural networks during more severe operational transients and accident scenarios

  11. The effect of polyploidy and hybridization on the evolution of floral colour in Nicotiana (Solanaceae).

    Science.gov (United States)

    McCarthy, Elizabeth W; Arnold, Sarah E J; Chittka, Lars; Le Comber, Steven C; Verity, Robert; Dodsworth, Steven; Knapp, Sandra; Kelly, Laura J; Chase, Mark W; Baldwin, Ian T; Kovařík, Aleš; Mhiri, Corinne; Taylor, Lin; Leitch, Andrew R

    2015-06-01

    Speciation in angiosperms can be accompanied by changes in floral colour that may influence pollinator preference and reproductive isolation. This study investigates whether changes in floral colour can accompany polyploid and homoploid hybridization, important processes in angiosperm evolution. Spectral reflectance of corolla tissue was examined for 60 Nicotiana (Solanaceae) accessions (41 taxa) based on spectral shape (corresponding to pigmentation) as well as bee and hummingbird colour perception in order to assess patterns of floral colour evolution. Polyploid and homoploid hybrid spectra were compared with those of their progenitors to evaluate whether hybridization has resulted in floral colour shifts. Floral colour categories in Nicotiana seem to have arisen multiple times independently during the evolution of the genus. Most younger polyploids displayed an unexpected floral colour, considering those of their progenitors, in the colour perception of at least one pollinator type, whereas older polyploids tended to resemble one or both of their progenitors. Floral colour evolution in Nicotiana is weakly constrained by phylogeny, and colour shifts do occur in association with both polyploid and homoploid hybrid divergence. Transgressive floral colour in N. tabacum has arisen by inheritance of anthocyanin pigmentation from its paternal progenitor while having a plastid phenotype like its maternal progenitor. Potentially, floral colour evolution has been driven by, or resulted in, pollinator shifts. However, those polyploids that are not sympatric (on a regional scale) with their progenitor lineages are typically not divergent in floral colour from them, perhaps because of a lack of competition for pollinators. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. ‘COROJO 2006’: NUEVA VARIEDAD CUBANA DE TABACO NEGRO (Nicotiana tabacum L.)

    OpenAIRE

    Vivaldo García Morejón; Nancy Santana Ferrer; Humberto García Cruz; Emis Mena Padrón

    2013-01-01

    En la Estación Experimental del Tabaco, de San Juan y Martínez, Pinar del Río durante la campaña tabacalera 2001-2002, se realizó un cruzamiento sexual con el objetivo de obtener una variedad de tabaco negro con mayor rendimiento que la comercial ‘Criollo 98’, resistente al moho azul ( Peronospora hyocyami de Bary), a la pata prieta ( Phytophthora parasitica Dast. var . Nicotianae Breda de Haan), al virus del mosaico del tabaco (VMT) y a la necrosis ambiental. Después de cinco generaciones de...

  13. Grass plants crop water consumption model in urban parks located ...

    African Journals Online (AJOL)

    The most important issue is the to use of urban space to increase the number and size of green areas. As well as another important issue is to work towards maintaining these spaces. One such important effort is to meet the water needs of plants. Naturally, the amount of water needed by plants depends on the species.

  14. Modeling Operating Modes for the Monju Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Yoshikawa, H.; Jørgensen, Sten Bay

    2012-01-01

    of the process plant, its function and its structural elements. The paper explains how the means-end concepts of MFM can be used to provide formalized definitions of plant operation modes. The paper will introduce the mode types defined by MFM and show how selected operation modes can be represented...

  15. A dynamic mathematical model for packed columns in carbon capture plants

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Jørgensen, John Bagterp; Fosbøl, Philip Loldrup

    2015-01-01

    is suitable for gas-liquid packed columns, e.g. for CO2 absorption and desorption. The model is based on rigorous thermodynamic and conservation principles and it is set up to preserve these properties upon numerical integration in time. The developed model is applied for CO2 absorption and desorption......In this paper, we present a dynamic mathematical model for the absorption and desorption columns in a carbon capture plant. Carbon capture plants must be operated in synchronization with the operation of thermal power plants. Dynamic and flexible operation of the carbon capture plant is important...

  16. Use of a dam break model to assess flooding at Haddam Neck Nuclear Power Plant

    International Nuclear Information System (INIS)

    Scherrer, J.S.; Chery, D.L. Jr.

    1984-01-01

    Because of their proximity to necessary supplies of cooling water, nuclear power plants are susceptible to riverine flooding. Greater flood hazards exist where plants are located downstream of larger dams. The consequences of the Quabbin Reservoir dam failure on the Haddam Neck Nuclear Power Plant situated on the Connecticut River were investigated using a dam break flood routing model. Reasons for selecting a particular model are presented and the input assumption for the modeling process are developed. Relevant information concerning the level of manpower involvement is presented. The findings of this analysis demonstrate that the plant is adequately protected from the consequences of the postulated flood event

  17. Arabidopsis thaliana: A model host plant to study plant-pathogen interaction using Chilean field isolates of Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    JUAN GONZÁLEZ

    2006-01-01

    Full Text Available One of the fungal pathogens that causes more agriculture damage is Botrytis cinerea. Botrytis is a constant threat to crops because the fungus infects a wide range of host species, both native and cultivated. Furthermore, Botrytis persists on plant debris in and on the soil. Some of the most serious diseases caused by Botrytis include gray mold on vegetables and fruits, such as grapes and strawberries. Botrytis also causes secondary soft rot of fruits and vegetables during storage, transit and at the market. In many plant-pathogen interactions, resistance often is associated with the deposition of callose, accumulation of autofluorescent compounds, the synthesis and accumulation of salicylic acid as well as pathogenesis-related proteins. Arabidopsis thaliana has been used as a plant model to study plant-pathogen interaction. The genome of Arabidopsis has been completely sequenced and this plant serves as a good genetic and molecular model. In this study, we demonstrate that Chilean field isolates infect Arabidopsis thaliana and that Arabidopsis subsequently activates several defense response mechanisms associated with a hypersensitive response. Furthermore, we propose that Arabidopsis may be used as a model host species to analyze the diversity associated with infectivity among populations of Botrytis cinerea field isolates

  18. Arabidopsis thaliana: a model host plant to study plant-pathogen interaction using Chilean field isolates of Botrytis cinerea.

    Science.gov (United States)

    González, Juan; Reyes, Francisca; Salas, Carlos; Santiag, Margarita; Codriansky, Yael; Coliheuque, Nelson; Silva, Herman

    2006-01-01

    One of the fungal pathogens that causes more agriculture damage is Botrytis cinerea. Botrytis is a constant threat to crops because the fungus infects a wide range of host species, both native and cultivated. Furthermore, Botrytis persists on plant debris in and on the soil. Some of the most serious diseases caused by Botrytis include gray mold on vegetables and fruits, such as grapes and strawberries. Botrytis also causes secondary soft rot of fruits and vegetables during storage, transit and at the market. In many plant-pathogen interactions, resistance often is associated with the deposition of callose, accumulation of autofluorescent compounds, the synthesis and accumulation of salicylic acid as well as pathogenesis-related proteins. Arabidopsis thaliana has been used as a plant model to study plant-pathogen interaction. The genome of Arabidopsis has been completely sequenced and this plant serves as a good genetic and molecular model. In this study, we demonstrate that Chilean field isolates infect Arabidopsis thaliana and that Arabidopsis subsequently activates several defense response mechanisms associated with a hypersensitive response. Furthermore, we propose that Arabidopsis may be used as a model host species to analyze the diversity associated with infectivity among populations of Botrytis cinerea field isolates.

  19. IEA Wind Task 37: Systems Modeling Framework and Ontology for Wind Turbines and Plants

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zahle, Frederik [Technical University of Denmark; Merz, Karl [SINTEF Energy Research; McWilliam, Mike [Technical University of Denmark; Bortolotti, Pietro [Technical University Munich

    2017-08-14

    This presentation will provide an overview of progress to date in the development of a system modeling framework and ontology for wind turbines and plants as part of the larger IEA Wind Task 37 on wind energy systems engineering. The goals of the effort are to create a set of guidelines for a common conceptual architecture for wind turbines and plants so that practitioners can more easily share descriptions of wind turbines and plants across multiple parties and reduce the effort for translating descriptions between models; integrate different models together and collaborate on model development; and translate models among different levels of fidelity in the system.

  20. Effects of ion strength and ion pairing on (plant-wide) modelling of anaerobic digestion processes

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Mbamba, Christian Kazadi; Solon, Kimberly

    2014-01-01

    The objective of this study is to show the influence of ionic strength (as activity corrections) andion pairing on (plant-wide) modelling of anaerobic digestion processes in wastewater treatment plants(WWTPs). Using the Benchmark Simulation Model No. 2 (BSM2) as a case study, this paper presents ...

  1. Plant Metabolic Modeling: Achieving New Insight into Metabolism and Metabolic Engineering

    Science.gov (United States)

    Baghalian, Kambiz; Hajirezaei, Mohammad-Reza; Schreiber, Falk

    2014-01-01

    Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology. PMID:25344492

  2. Tree root systems competing for soil moisture in a 3D soil–plant model

    Science.gov (United States)

    Gabriele Manoli; Sara Bonetti; Jean-Christophe Domec; Mario Putti; Gabriel Katul; Marco Marani

    2014-01-01

    Competition for water among multiple tree rooting systems is investigated using a soil–plant model that accounts for soil moisture dynamics and root water uptake (RWU), whole plant transpiration, and leaflevel photosynthesis. The model is based on a numerical solution to the 3D Richards equation modified to account for a 3D RWU, trunk xylem, and stomatal conductances....

  3. A study of online plant modelling methods for active control of sound and vibration

    DEFF Research Database (Denmark)

    Laugesen, Søren

    1996-01-01

    Active control systems using the filtered-x algorithm require plant models to describe the relations between the secondary sources and the error sensors. For practical applications online plant modelling may be required if the environment changes significantly. In this study, two dominant methods...

  4. Modeling the eutrophication of two mature planted stormwater ponds for runoff control

    DEFF Research Database (Denmark)

    Wium-Andersen, Tove; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild

    2013-01-01

    A model, targeting eutrophication of stormwater detention ponds was developed and applied to sim-ulate pH, dissolved oxygen and the development of algae and plant biomass in two mature plantedwetponds for run off control. The model evaluated algal and plant biomass growth into three groupsnamely;...

  5. A scalable plant-resolving radiative transfer model based on optimized GPU ray tracing

    Science.gov (United States)

    A new model for radiative transfer in participating media and its application to complex plant canopies is presented. The goal was to be able to efficiently solve complex canopy-scale radiative transfer problems while also representing sub-plant heterogeneity. In the model, individual leaf surfaces ...

  6. Using dynamical uncertainty models estimating uncertainty bounds on power plant performance prediction

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Mataji, B.

    2007-01-01

    of the prediction error. These proposed dynamical uncertainty models result in an upper and lower bound on the predicted performance of the plant. The dynamical uncertainty models are used to estimate the uncertainty of the predicted performance of a coal-fired power plant. The proposed scheme, which uses dynamical...

  7. Visualized modeling platform for virtual plant growth and monitoring on the internet

    Science.gov (United States)

    Zhou, De-fu; Tian, Feng-qui; Ren, Ping

    2009-07-01

    Virtual plant growth is a key research topic in Agriculture Information Technique and Computer Graphics. It has been applied in botany, agronomy, environmental sciences, computre sciences and applied mathematics. Modeling leaf color dynamics in plant is of significant importance for realizing virtual plant growth. Using systematic analysis method and dynamic modeling technology, a SPAD-based leaf color dynamic model was developed to simulate time-course change characters of leaf SPAD on the plant. In addition, process of plant growth can be computer-stimulated using Virtual Reality Modeling Language (VRML) to establish a vivid and visible model, including shooting, rooting, blooming, as well as growth of the stems and leaves. In the resistance environment, e.g., lacking of water, air or nutrient substances, high salt or alkaline, freezing injury, high temperature, suffering from diseases and insect pests, the changes from the level of whole plant to organs, tissues and cells could be computer-stimulated. Changes from physiological and biochemistry could also be described. When a series of indexes were input by the costumers, direct view and microcosmic changes could be shown. Thus, the model has a good performance in predicting growth condition of the plant, laying a foundation for further constructing virtual plant growth system. The results revealed that realistic physiological and pathological processes of 3D virtual plants could be demonstrated by proper design and effectively realized in the internet.

  8. Heterologous Expression of Moss Light-harvesting Complex Stress-related 1 (LHCSR1), the Chlorophyll a-Xanthophyll Pigment-protein Complex Catalyzing Non-photochemical Quenching, in Nicotiana sp.*

    Science.gov (United States)

    Pinnola, Alberta; Ghin, Leonardo; Gecchele, Elisa; Merlin, Matilde; Alboresi, Alessandro; Avesani, Linda; Pezzotti, Mario; Capaldi, Stefano; Cazzaniga, Stefano; Bassi, Roberto

    2015-01-01

    Oxygenic photosynthetic organisms evolved mechanisms for thermal dissipation of energy absorbed in excess to prevent formation of reactive oxygen species. The major and fastest component, called non-photochemical quenching, occurs within the photosystem II antenna system by the action of two essential light-harvesting complex (LHC)-like proteins, photosystem II subunit S (PSBS) in plants and light-harvesting complex stress-related (LHCSR) in green algae and diatoms. In the evolutionary intermediate Physcomitrella patens, a moss, both gene products are active. These proteins, which are present in low amounts, are difficult to purify, preventing structural and functional analysis. Here, we report on the overexpression of the LHCSR1 protein from P. patens in the heterologous systems Nicotiana benthamiana and Nicotiana tabacum using transient and stable nuclear transformation. We show that the protein accumulated in both heterologous systems is in its mature form, localizes in the chloroplast thylakoid membranes, and is correctly folded with chlorophyll a and xanthophylls but without chlorophyll b, an essential chromophore for plants and algal LHC proteins. Finally, we show that recombinant LHCSR1 is active in quenching in vivo, implying that the recombinant protein obtained is a good material for future structural and functional studies. PMID:26260788

  9. Heterologous expression of moss light-harvesting complex stress-related 1 (LHCSR1), the chlorophyll a-xanthophyll pigment-protein complex catalyzing non-photochemical quenching, in Nicotiana sp.

    Science.gov (United States)

    Pinnola, Alberta; Ghin, Leonardo; Gecchele, Elisa; Merlin, Matilde; Alboresi, Alessandro; Avesani, Linda; Pezzotti, Mario; Capaldi, Stefano; Cazzaniga, Stefano; Bassi, Roberto

    2015-10-02

    Oxygenic photosynthetic organisms evolved mechanisms for thermal dissipation of energy absorbed in excess to prevent formation of reactive oxygen species. The major and fastest component, called non-photochemical quenching, occurs within the photosystem II antenna system by the action of two essential light-harvesting complex (LHC)-like proteins, photosystem II subunit S (PSBS) in plants and light-harvesting complex stress-related (LHCSR) in green algae and diatoms. In the evolutionary intermediate Physcomitrella patens, a moss, both gene products are active. These proteins, which are present in low amounts, are difficult to purify, preventing structural and functional analysis. Here, we report on the overexpression of the LHCSR1 protein from P. patens in the heterologous systems Nicotiana benthamiana and Nicotiana tabacum using transient and stable nuclear transformation. We show that the protein accumulated in both heterologous systems is in its mature form, localizes in the chloroplast thylakoid membranes, and is correctly folded with chlorophyll a and xanthophylls but without chlorophyll b, an essential chromophore for plants and algal LHC proteins. Finally, we show that recombinant LHCSR1 is active in quenching in vivo, implying that the recombinant protein obtained is a good material for future structural and functional studies. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Mathematical modeling of heat transfer between the plant seedling and the environment during a radiation frost

    Directory of Open Access Journals (Sweden)

    Finnikov K.A.

    2010-11-01

    Full Text Available The power of the internal heat source sufficient to maintain a positive temperature of plants during one of the possible form of cold stress - radiation frost was determined with the help of numerical simulation.The simulation of unsteady heat transfer in the soil-plant-air system in the conditions of radiation frost showed that the the ground part of plants is cooling most rapidly, and this process is partially slowed down by the natural-convection heat transfer with warmer air. If the frost is not continuous, the radiative cooling is the main danger for plant. The necessary power of heat-production inside plant that allows it to avoid hypothermia depends both on natural conditions and the size of the plant. For plants with a typical diameter of the stem about 2 mm this heat-production should be from 50 to 100 W / kg. Within 2 hours a total amount of heat about 0.5 MJ / kg in the plant should be allocated. Larger plants will have a smaller surface to mass ratio, and the maintaining of it's temperature will require a lower cost of nutrients per unit, accordingly. Modeling of the influence of plant surface trichomes presence on the process of its cooling showed that the role of trichomes in the protection of plants from hypothermia during radiation frost usually is negative due to the fact that the presence of trichomes increases the radiative heat transfer from the plant and the impediment in air movement near the plant reduces heat flux entering the plant from a warmer air. But in cases where the intensity of heat generation within the plant is sufficient for the maintenance of the plant temperature higher than the air temperature, the presence of trichomes impairs heat transfer from plant to air, and therefore contributes to a better heating of plants.

  11. Model of yield response of corn to plant population and absorption of solar energy.

    Science.gov (United States)

    Overman, Allen R; Scholtz, Richard V

    2011-01-31

    Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha(-1) and g plant(-1)) on plant population (plants m(-2)). Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L.) grown in the United States. Data are analyzed with a simple exponential mathematical model which contains two parameters, viz. Y(m) (Mg ha(-1)) for maximum yield at high plant population and c (m(2) plant(-1)) for the population response coefficient. This analysis leads to a new parameter called characteristic plant population, x(c) = 1/c (plants m(-2)). The model is shown to describe the data rather well for the three field studies. In one study measurements were made of solar radiation at different positions in the plant canopy. The coefficient of absorption of solar energy was assumed to be the same as c and provided a physical basis for the exponential model. The three studies showed no definitive peak in yield with plant population, but generally exhibited asymptotic approach to maximum yield with increased plant population. Values of x(c) were very similar for the three field studies with the same crop species.

  12. Model of yield response of corn to plant population and absorption of solar energy.

    Directory of Open Access Journals (Sweden)

    Allen R Overman

    Full Text Available Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha(-1 and g plant(-1 on plant population (plants m(-2. Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L. grown in the United States. Data are analyzed with a simple exponential mathematical model which contains two parameters, viz. Y(m (Mg ha(-1 for maximum yield at high plant population and c (m(2 plant(-1 for the population response coefficient. This analysis leads to a new parameter called characteristic plant population, x(c = 1/c (plants m(-2. The model is shown to describe the data rather well for the three field studies. In one study measurements were made of solar radiation at different positions in the plant canopy. The coefficient of absorption of solar energy was assumed to be the same as c and provided a physical basis for the exponential model. The three studies showed no definitive peak in yield with plant population, but generally exhibited asymptotic approach to maximum yield with increased plant population. Values of x(c were very similar for the three field studies with the same crop species.

  13. Evolution of crop production under a pseudo-space environment using model plants, Lotus japonicus

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Motohashi, Kyohei; Omi, Naomi; Sato, Seigo; Aoki, Toshio; Hashimoto, Hirofumi; Yamashita, Masamichi

    Habitation in outer space is one of our challenges. We have been studying space agriculture and/or spacecraft agriculture to provide food and oxygen for the habitation area in the space environment. However, careful investigation should be made concerning the results of exotic environmental effects on the endogenous production of biologically active substances in indi-vidual cultivated plants in a space environment. We have already reported that the production of functional substances in cultivated plants as crops are affected by gravity. The amounts of the main physiological substances in these plants grown under terrestrial control were different from that grown in a pseudo-microgravity. These results suggested that the nutrition would be changed in the plants/crops grown in the space environment when human beings eat in space. This estimation required us to investigate each of the useful components produced by each plant grown in the space environment. These estimations involved several study fields, includ-ing nutrition, plant physiology, etc. On the other hand, the analysis of model plant genomes has recently been remarkably advanced. Lotus japonicus, a leguminous plant, is also one of the model plant. The leguminosae is a large family in the plant vegetable kingdom and almost the entire genome sequence of Lotus japonicus has been determined. Nitrogen fixation would be possible even in a space environment. We are trying to determine the best conditions and evolution for crop production using the model plants.

  14. Stability analysis and optimal control of plant fungal epidemic: An explicit model with curative factor

    Science.gov (United States)

    Anggriani, N.; Putri, L. Nurul; Supriatna, A. K.

    2015-03-01

    Many plants could not escape from diseases caused by fungi. The use of fungicide can help to reduce the spread of the fungi but if it used continuously with the same dosage, the fungi would be invulnerable to fungicide eventually. Hence, it is critical to know the appropriate level of fungicide application and its impact on the dynamics of the plants. In this paper we use an explicit model of fungal outbreaks of plant by taking into account a curative factor including the dynamic of fungicides itself. Granting of fungicide on crops is useful to control the infected plants as well as protecting the vulnerable plants. Optimal control is used to find out how many doses of the appropriate fungicide should be used to cure infected plants. Optimal control is obtained by applying Pontryagin's Minimum Principle. We found that the presence of appropriate level of fungicide speeds up the reduction of infected plants as well as accelerates the growth of healthy plants.

  15. Development of a CSP plant energy yield calculation tool applying predictive models to analyze plant performance sensitivities

    Science.gov (United States)

    Haack, Lukas; Peniche, Ricardo; Sommer, Lutz; Kather, Alfons

    2017-06-01

    At early project stages, the main CSP plant design parameters such as turbine capacity, solar field size, and thermal storage capacity are varied during the techno-economic optimization to determine most suitable plant configurations. In general, a typical meteorological year with at least hourly time resolution is used to analyze each plant configuration. Different software tools are available to simulate the annual energy yield. Software tools offering a thermodynamic modeling approach of the power block and the CSP thermal cycle, such as EBSILONProfessional®, allow a flexible definition of plant topologies. In EBSILON, the thermodynamic equilibrium for each time step is calculated iteratively (quasi steady state), which requires approximately 45 minutes to process one year with hourly time resolution. For better presentation of gradients, 10 min time resolution is recommended, which increases processing time by a factor of 5. Therefore, analyzing a large number of plant sensitivities, as required during the techno-economic optimization procedure, the detailed thermodynamic simulation approach becomes impracticable. Suntrace has developed an in-house CSP-Simulation tool (CSPsim), based on EBSILON and applying predictive models, to approximate the CSP plant performance for central receiver and parabolic trough technology. CSPsim significantly increases the speed of energy yield calculations by factor ≥ 35 and has automated the simulation run of all predefined design configurations in sequential order during the optimization procedure. To develop the predictive models, multiple linear regression techniques and Design of Experiment methods are applied. The annual energy yield and derived LCOE calculated by the predictive model deviates less than ±1.5 % from the thermodynamic simulation in EBSILON and effectively identifies the optimal range of main design parameters for further, more specific analysis.

  16. The Y-12 Plant - a model for environmental excellence

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    The Department of Energy`s Y-12 Plant, located in Oak Ridge, Tennessee, occupies more than 800 acres and has a work force of over 4,000 employees. The Y-12 Plant is managed by Martin Marietta Energy Systems, Inc., a subsidiary of Martin Marietta Corporation. Although mission emphases at the Y-12 Plant have evolved and changed with the easing of international tensions, the Plant continues to serve as a key manufacturing unit and technology demonstration center for the Department of Energy and the nation. The Y-12 Plant has undergone many changes in the last 14 years. One of the most dramatic changes has occurred in the environmental programs with measurable improvements in environmental quality, the development of an award-winning pollution prevention program, and the institution of an environmentally-conscious work ethic among the work force. Because the plant is committed to achieving excellence, not just compliance with laws and regulations, a highly structured, multimedia environmental management program is in place. This program, combined with a commitment to protect the environment while striving for continued improvement, has placed Y-12 in the position to reach excellence. As a result of the Y-12 Plant`s changing mission, they are now working closely with American industry through technology transfer to share their experiences and {open_quotes}lessons learned{close_quotes}--including environmental and pollution prevention technology. To facilitate this effort, the Oak Ridge Centers for Manufacturing Technology has been established at the Y-12 Plant. Through the Centers, the Oak Ridge staff applies skills, capabilities, and facilities developed over a 50-year history of the Oak Ridge Complex to a variety of peacetime missions. The services found at the Centers are a key to helping America`s businesses--both small and large--compete in the global marketplace while protecting the nations environment and conserving its resources.

  17. Modeling complex flow structures and drag around a submerged plant of varied posture

    Science.gov (United States)

    Boothroyd, Richard J.; Hardy, Richard J.; Warburton, Jeff; Marjoribanks, Timothy I.

    2017-04-01

    Although vegetation is present in many rivers, the bulk of past work concerned with modeling the influence of vegetation on flow has considered vegetation to be morphologically simple and has generally neglected the complexity of natural plants. Here we report on a combined flume and numerical model experiment which incorporates time-averaged plant posture, collected through terrestrial laser scanning, into a computational fluid dynamics model to predict flow around a submerged riparian plant. For three depth-limited flow conditions (Reynolds number = 65,000-110,000), plant dynamics were recorded through high-definition video imagery, and the numerical model was validated against flow velocities collected with an acoustic Doppler velocimeter. The plant morphology shows an 18% reduction in plant height and a 14% increase in plant length, compressing and reducing the volumetric canopy morphology as the Reynolds number increases. Plant shear layer turbulence is dominated by Kelvin-Helmholtz type vortices generated through shear instability, the frequency of which is estimated to be between 0.20 and 0.30 Hz, increasing with Reynolds number. These results demonstrate the significant effect that the complex morphology of natural plants has on in-stream drag, and allow a physically determined, species-dependent drag coefficient to be calculated. Given the importance of vegetation in river corridor management, the approach developed here demonstrates the necessity to account for plant motion when calculating vegetative resistance.

  18. Hydrophobin fusion of an influenza virus hemagglutinin allows high transient expression in Nicotiana benthamiana, easy purification and immune response with neutralizing activity.

    Directory of Open Access Journals (Sweden)

    Nicolas Jacquet

    Full Text Available The expression of recombinant hemagglutinin in plants is a promising alternative to the current egg-based production system for the influenza vaccines. Protein-stabilizing fusion partners have been developed to overcome the low production yields and the high downstream process costs associated with the plant expression system. In this context, we tested the fusion of hydrophobin I to the hemagglutinin ectodomain of the influenza A (H1N1pdm09 virus controlled by the hybrid En2PMA4 transcriptional promoter to rapidly produce high levels of recombinant antigen by transient expression in agro-infiltrated Nicotiana benthamiana leaves. The fusion increased the expression level by a factor of ∼ 2.5 compared to the unfused protein allowing a high accumulation level of 8.6% of the total soluble proteins. Hemagglutinin was located in ER-derived protein bodies and was successfully purified by combining an aqueous-two phase partition system and a salting out step. Hydrophobin interactions allowed the formation of high molecular weight hemagglutinin structures, while unfused proteins were produced as monomers. Purified protein was shown to be biologically active and to induce neutralizing antibodies after mice immunization. Hydrophobin fusion to influenza hemagglutinin might therefore be a promising approach for rapid, easy, and low cost production of seasonal or pandemic influenza vaccines in plants.

  19. Phosphoenolpyruvate carboxylase, NADP-malic enzyme, and pyruvate, phosphate dikinase are involved in the acclimation of Nicotiana tabacum L. to drought stress.

    Science.gov (United States)

    Doubnerová Hýsková, Veronika; Miedzińska, Lucia; Dobrá, Jana; Vankova, Radomira; Ryšlavá, Helena

    2014-03-01

    Drought stress is one of the most frequent forms of abiotic stresses, which occurs under condition of limited water availability. In this work, the possible participation of phosphoenolpyruvate carboxylase (EC 4.1.1.31; PEPC), NADP-malic enzyme (EC 1.1.1.40; NADP-ME), and pyruvate, phosphate dikinase (EC 2.7.9.1; PPDK) in response to drought of tobacco plants (Nicotiana tabacum L., cv. W38) was investigated. Enzyme specific activities in tobacco leaves of drought stressed plants were significantly increased after 11 days of stress, PEPC 2.3-fold, NADP-ME 3.9-fold, and PPDK 2.7-fold compared to control plants. The regulation of PEPC and NADP-ME activities were studied on transcriptional level by the quantitative RT PCR and on translational level - immunochemically. The amount of NADP-ME protein and transcription of mRNA for chloroplastic NADP-ME isoform were increased indicating their enhanced synthesis de novo. On the other hand, mRNA for cytosolic isoform of NADP-ME was decreased. The changes in PEPC protein and PEPC mRNA were not substantial. Therefore regulation of PEPC activity by phosphorylation was evaluated and found to be involved in the stress response. During recovery, activities of the tested enzymes returned close to their basal levels. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Using functional-structural plant modeling to explore the response of cotton to mepiquat chloride application and plant population density

    NARCIS (Netherlands)

    Gu, S.; Evers, J.B.; Zhang, L.; Mao, L.; Vos, J.; Li, Z.

    2013-01-01

    The crop growth regulator Mepiquat Chloride (MC) is widely used in cotton production to optimize the canopy structure in order to maximize the yield and fiber quality. Cotton plasticity in relation to MC and other agronomical practice was quantified using a functional-structural plant model of

  1. Optimized production planning model for a multi-plant cultivation system under uncertainty

    Science.gov (United States)

    Ke, Shunkui; Guo, Doudou; Niu, Qingliang; Huang, Danfeng

    2015-02-01

    An inexact multi-constraint programming model under uncertainty was developed by incorporating a production plan algorithm into the crop production optimization framework under the multi-plant collaborative cultivation system. In the production plan, orders from the customers are assigned to a suitable plant under the constraints of plant capabilities and uncertainty parameters to maximize profit and achieve customer satisfaction. The developed model and solution method were applied to a case study of a multi-plant collaborative cultivation system to verify its applicability. As determined in the case analysis involving different orders from customers, the period of plant production planning and the interval between orders can significantly affect system benefits. Through the analysis of uncertain parameters, reliable and practical decisions can be generated using the suggested model of a multi-plant collaborative cultivation system.

  2. Cardinal principle and application practice of 3D digital model design for nuclear power plant

    International Nuclear Information System (INIS)

    Wang Ruobing; Wu Yan

    2005-01-01

    The practical application of 3D digital model design at nuclear power plants was introduced in detail in the paper. The whole process for system choice, program constitution, model design and project practice were also summarized. By demonstrating the cardinal principal and application practice of 3D digital model design as an important sub-project of CGNPC Digital Plant, the paper validates the rationality and validity of the major architecture system and program configuration of the digital plant, carries out beneficial attempt and study in the overall power plant life engineering management and site practice, and has achieved significant engineering and social benefits. The success of practices in the project accelerates the extended and extensive application of Digital Plant in the operation and maintenance simulation of Daya Bay and Ling'ao Nuclear Power Plants, and the engineering design management for Ling'ao II and III of CGNPC on a consolidated basis. (authors)

  3. Systems Modeling For The Laser Fusion-Fission Energy (LIFE) Power Plant

    International Nuclear Information System (INIS)

    Meier, W.R.; Abbott, R.; Beach, R.; Blink, J.; Caird, J.; Erlandson, A.; Farmer, J.; Halsey, W.; Ladran, T.; Latkowski, J.; MacIntyre, A.; Miles, R.; Storm, E.

    2008-01-01

    A systems model has been developed for the Laser Inertial Fusion-Fission Energy (LIFE) power plant. It combines cost-performance scaling models for the major subsystems of the plant including the laser, inertial fusion target factory, engine (i.e., the chamber including the fission and tritium breeding blankets), energy conversion systems and balance of plant. The LIFE plant model is being used to evaluate design trade-offs and to identify high-leverage R and D. At this point, we are focused more on doing self consistent design trades and optimization as opposed to trying to predict a cost of electricity with a high degree of certainty. Key results show the advantage of large scale (>1000 MWe) plants and the importance of minimizing the cost of diodes and balance of plant cost

  4. A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation.

    Science.gov (United States)

    Lowder, Levi G; Zhang, Dengwei; Baltes, Nicholas J; Paul, Joseph W; Tang, Xu; Zheng, Xuelian; Voytas, Daniel F; Hsieh, Tzung-Fu; Zhang, Yong; Qi, Yiping

    2015-10-01

    The relative ease, speed, and biological scope of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated Protein9 (Cas9)-based reagents for genomic manipulations are revolutionizing virtually all areas of molecular biosciences, including functional genomics, genetics, applied biomedical research, and agricultural biotechnology. In plant systems, however, a number of hurdles currently exist that limit this technology from reaching its full potential. For example, significant plant molecular biology expertise and effort is still required to generate functional expression constructs that allow simultaneous editing, and especially transcriptional regulation, of multiple different genomic loci or multiplexing, which is a significant advantage of CRISPR/Cas9 versus other genome-editing systems. To streamline and facilitate rapid and wide-scale use of CRISPR/Cas9-based technologies for plant research, we developed and implemented a comprehensive molecular toolbox for multifaceted CRISPR/Cas9 applications in plants. This toolbox provides researchers with a protocol and reagents to quickly and efficiently assemble functional CRISPR/Cas9 transfer DNA constructs for monocots and dicots using Golden Gate and Gateway cloning methods. It comes with a full suite of capabilities, including multiplexed gene editing and transcriptional activation or repression of plant endogenous genes. We report the functionality and effectiveness of this toolbox in model plants such as tobacco (Nicotiana benthamiana), Arabidopsis (Arabidopsis thaliana), and rice (Oryza sativa), demonstrating its utility for basic and applied plant research. © 2015 American Society of Plant Biologists. All Rights Reserved.

  5. The use of comet assay in plant toxicology: recent advances

    Directory of Open Access Journals (Sweden)

    Conceição LV Santos

    2015-06-01

    Full Text Available The systematic study of genotoxicity in plants induced by contaminants and other stress agents has been hindered to date by the lack of reliable and robust biomarkers. The comet assay is a versatile and sensitive method for the evaluation of DNA damages and DNA repair capacity at single-cell level. Due to its simplicity and sensitivity, and the small number of cells required to obtain robust results, the use of plant comet assay has drastically increased in the last decade. For years its use was restricted to a few model species, e.g. Allium cepa, Nicotiana tabacum, Vicia faba, or Arabidopsis thaliana but this number largely increased in the last years. Plant comet assay has been used to study the genotoxic impact of radiation, chemicals including pesticides, phytocompounds, heavy metals, nanoparticles or contaminated complex matrices. Here we will review the most recent data on the use of this technique as a standard approach for studying the genotoxic effects of different stress conditions on plants. Also, we will discuss the integration of information provided by the comet assay with other DNA-damage indicators, and with cellular responses including oxidative stress, cell division or cell death. Finally, we will focus on putative relations between transcripts related with DNA damage pathways, DNA replication and repair, oxidative stress and cell cycle progression that have been identified in plant cells with comet assays demonstrating DNA damage.

  6. Characterization of Plant Growth under Single-Wavelength Laser Light Using the Model Plant Arabidopsis Thaliana

    KAUST Repository

    Ooi, Amanda

    2016-12-01

    Indoor horticulture offers a promising solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available lighting is suboptimal, therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. Lasers are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Besides, laser beams can be tailored to match the absorption profiles of different plants. We have developed a prototype laser growth chamber and demonstrate that laser-grown plants can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteomic data show that the singlewavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture. Furthermore, stomatal movement partly determines the plant productivity and stress management. Abscisic acid (ABA) induces stomatal closure by promoting net K+-efflux from guard cells through outwardrectifying K+ (K+ out) channels to regulate plant water homeostasis. Here, we show that the Arabidopsis thaliana guard cell outward-rectifying K+ (ATGORK) channel is a direct target for ABA in the regulation of stomatal aperture and hence gas exchange and transpiration. Addition of (±)-ABA, but not the biologically inactive (−)-isomer, increases K+ out channel activity in Vicia faba guard cell protoplast. A similar ABA

  7. Synthesis of Model Based Robust Stabilizing Reactor Power Controller for Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Arshad Habib Malik

    2011-04-01

    Full Text Available In this paper, a nominal SISO (Single Input Single Output model of PHWR (Pressurized Heavy Water Reactor type nuclear power plant is developed based on normal moderator pump-up rate capturing the moderator level dynamics using system identification technique. As the plant model is not exact, therefore additive and multiplicative uncertainty modeling is required. A robust perturbed plant model is derived based on worst case model capturing slowest moderator pump-up rate dynamics and moderator control valve opening delay. Both nominal and worst case models of PHWR-type nuclear power plant have ARX (An Autoregressive Exogenous structures and the parameters of both models are estimated using recursive LMS (Least Mean Square optimization algorithm. Nominal and worst case discrete plant models are transformed into frequency domain for robust controller design purpose. The closed loop system is configured into two port model form and H? robust controller is synthesized. The H?controller is designed based on singular value loop shaping and desired magnitude of control input. The selection of desired disturbance attenuation factor and size of the largest anticipated multiplicative plant perturbation for loop shaping of H? robust controller form a constrained multi-objective optimization problem. The performance and robustness of the proposed controller is tested under transient condition of a nuclear power plant in Pakistan and found satisfactory.

  8. Phytophthora nicotianae is the predominant Phytophthora species in citrus nurseries in Egypt

    Directory of Open Access Journals (Sweden)

    Yosra AHMED

    2013-01-01

    Full Text Available Phytophthora root rot is considered to be the most destructive disease to citrus production in Egypt. Phytophthora species are generally present in citrus nurseries, where soil pots containing the survival propagules are considered responsible for their spread into new orchards. The goal of this study was to investigate the distribution and seasonal variation of Phytophthora species in soil and feeder roots in two Egyptian citrus nurseries, characterized by different management, and to identify Phytophthora species associated with root rot. Soil and root samples were collected at monthly intervals from Sour orange and Volkameriana lemon rootstocks during March-July period. The inoculum density of Phytophthora species, and the percentage of infected feeder roots, were estimated using the plate dilution method in conjunction with selective media. Phytophthora isolates were identified according to their morphological characteristics and on the basis of the ITS regions of the rDNA. Phytophthora nicotianae was the predominant isolated species, followed by P. citrophthora and P. palmivora. Phytophthora nicotianae was detected in both nurseries, while P. citrophthora and P. palmivora were recovered only in one nursery. Inoculum density of Phytophthora species fluctuated during spring and summer according to the environmental conditions, rootstock, and nursery management practices.

  9. Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome.

    Directory of Open Access Journals (Sweden)

    Pierre Lefeuvre

    Full Text Available Despite having single stranded DNA genomes that are replicated by host DNA polymerases, viruses in the family Geminiviridae are apparently evolving as rapidly as some RNA viruses. The observed substitution rates of geminiviruses in the genera Begomovirus and Mastrevirus are so high that the entire family could conceivably have originated less than a million years ago (MYA. However, the existence of geminivirus related DNA (GRD integrated within the genomes of various Nicotiana species suggests that the geminiviruses probably originated >10 MYA. Some have even suggested that a distinct New-World (NW lineage of begomoviruses may have arisen following the separation by continental drift of African and American proto-begomoviruses ∼110 MYA. We evaluate these various geminivirus origin hypotheses using Bayesian coalescent-based approaches to date firstly the Nicotiana GRD integration events, and then the divergence of the NW and Old-World (OW begomoviruses. Besides rejecting the possibility of a<2 MYA OW-NW begomovirus split, we could also discount that it may have occurred concomitantly with the breakup of Gondwanaland 110 MYA. Although we could only confidently narrow the date of the split down to between 2 and 80 MYA, the most plausible (and best supported date for the split is between 20 and 30 MYA--a time when global cooling ended the dispersal of temperate species between Asia and North America via the Beringian land bridge.

  10. In vitro and in vivo activities of eugenol against tobacco black shank caused by Phytophthora nicotianae.

    Science.gov (United States)

    Jing, Changliang; Gou, Jianyu; Han, Xiaobin; Wu, Qian; Zhang, Chengsheng

    2017-10-01

    Phytophthora nicotianae causes serious black shank disease in tobacco. Syringa oblata essential oil and its main components were evaluated to develop an effective and environmentally friendly biocontrol agent. Eugenol, which exhibited the strongest activity, was intensively investigated in vitro and in vivo. The mycelial growth of P. nicotianae was inhibited by eugenol at a minimum inhibitory concentration of 200μgmL -1 , and inhibition occurred in a dose-dependent manner. Extracellular pH and extracellular conductivity results indicated that eugenol increased membrane permeability. Flow cytometry and fluorescent staining results further showed that eugenol disrupted mycelial membranes but did not affect spore membrane integrity. The in vivo results confirmed that treatment of tobacco with various concentrations of eugenol formulations reduced disease incidence and better controlled against the disease. Our results suggested that the ability of eugenol to control tobacco black shank depended on its ability to damage mycelial membranes and that eugenol formulations have potential as an eco-friendly antifungal agent for controlling tobacco blank shank. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues.

    Science.gov (United States)

    Grimberg, Åsa; Carlsson, Anders S; Marttila, Salla; Bhalerao, Rishikesh; Hofvander, Per

    2015-08-08

    Carbon accumulation and remobilization are essential mechanisms in plants to ensure energy transfer between plant tissues with different functions or metabolic needs and to support new generations. Knowledge about the regulation of carbon allocation into oil (triacylglycerol) in plant storage tissue can be of great economic and environmental importance for developing new high-yielding oil crops. Here, the effect on global gene expression as well as on physiological changes in leaves transiently expressing five homologs of the transcription factor WRINKLED1 (WRI1) originating from diverse species and tissues; Arabidopsis thaliana and potato (Solanum tuberosum) seed embryo, poplar (Populus trichocarpa) stem cambium, oat (Avena sativa) grain endosperm, and nutsedge (Cyperus esculentus) tuber parenchyma, were studied by agroinfiltration in Nicotiana benthamiana. All WRI1 homologs induced oil accumulation when expressed in leaf tissue. Transcriptome sequencing revealed that all homologs induced the same general patterns with a drastic shift in gene expression profiles of leaves from that of a typical source tissue to a source-limited sink-like tissue: Transcripts encoding enzymes for plastid uptake and metabolism of phosphoenolpyruvate, fatty acid and oil biosynthesis were up-regulated, as were also transcripts encoding starch degradation. Transcripts encoding enzymes in photosynthesis and starch synthesis were instead down-regulated. Moreover, transcripts representing fatty acid degradation were up-regulated indicating that fatty acids might be degraded to feed the increased need to channel carbons into fatty acid synthesis creating a futile cycle. RT-qPCR analysis of leaves expressing Arabidopsis WRI1 showed the temporal trends of transcripts selected as 'markers' for key metabolic pathways one to five days after agroinfiltration. Chlorophyll fluorescence measurements of leaves expressing Arabidopsis WRI1 showed a significant decrease in photosynthesis, even though

  12. Elucidating the interaction between light competition and herbivore feeding patterns using functional-structural plant modelling.

    Science.gov (United States)

    de Vries, Jorad; Poelman, Erik H; Anten, Niels; Evers, Jochem B

    2018-01-24

    Plants usually compete with neighbouring plants for resources such as light as well as defend themselves against herbivorous insects. This requires investment of limiting resources, resulting in optimal resource distribution patterns and trade-offs between growth- and defence-related traits. A plant's competitive success is determined by the spatial distribution of its resources in the canopy. The spatial distribution of herbivory in the canopy in turn differs between herbivore species as the level of herbivore specialization determines their response to the distribution of resources and defences in the canopy. Here, we investigated to what extent competition for light affects plant susceptibility to herbivores with different feeding preferences. To quantify interactions between herbivory and competition, we developed and evaluated a 3-D spatially explicit functional-structural plant model for Brassica nigra that mechanistically simulates competition in a dynamic light environment, and also explicitly models leaf area removal by herbivores with different feeding preferences. With this novel approach, we can quantitatively explore the extent to which herbivore feeding location and light competition interact in their effect on plant performance. Our results indicate that there is indeed a strong interaction between levels of plant-plant competition and herbivore feeding preference. When plants did not compete, herbivory had relatively small effects irrespective of feeding preference. Conversely, when plants competed, herbivores with a preference for young leaves had a strong negative effect on the competitiveness and subsequent performance of the plant, whereas herbivores with a preference for old leaves did not. Our study predicts how plant susceptibility to herbivory depends on the composition of the herbivore community and the level of plant competition, and highlights the importance of considering the full range of dynamics in plant-plant-herbivore interactions

  13. Evaluating experimental design for soil-plant model selection with Bayesian model averaging

    Science.gov (United States)

    Wöhling, Thomas; Geiges, Andreas; Nowak, Wolfgang; Gayler, Sebastian

    2013-04-01

    The objective selection of appropriate models for realistic simulations of coupled soil-plant processes is a challenging task since the processes are complex, not fully understood at larger scales, and highly non-linear. Also, comprehensive data sets are scarce, and measurements are uncertain. In the past decades, a variety of different models have been developed that exhibit a wide range of complexity regarding their approximation of processes in the coupled model compartments. We present a method for evaluating experimental design for maximum confidence in the model selection task. The method considers uncertainty in parameters, measurements and model structures. Advancing the ideas behind Bayesian Model Averaging (BMA), the model weights in BMA are perceived as uncertain quantities with assigned probability distributions that narrow down as more data are made available. This allows assessing the power of different data types, data densities and data locations in identifying the best model structure from among a suite of plausible models. The models considered in this study are the crop models CERES, SUCROS, GECROS and SPASS, which are coupled to identical routines for simulating soil processes within the modelling framework Expert-N. The four models considerably differ in the degree of detail at which crop growth and root water uptake are represented. Monte-Carlo simulations were conducted for each of these models considering their uncertainty in soil hydraulic properties and selected crop model parameters. The models were then conditioned on field measurements of soil moisture, leaf-area index (LAI), and evapotranspiration rates (from eddy-covariance measurements) during a vegetation period of winter wheat at the Nellingen site in Southwestern Germany. Following our new method, we derived the BMA model weights (and their distributions) when using all data or different subsets thereof. We discuss to which degree the posterior BMA mean outperformed the prior BMA

  14. 3D Core Model for simulation of nuclear power plants: Simulation requirements, model features, and validation

    International Nuclear Information System (INIS)

    Zerbino, H.

    1999-01-01

    In 1994-1996, Thomson Training and Simulation (TT and S) earned out the D50 Project, which involved the design and construction of optimized replica simulators for one Dutch and three German Nuclear Power Plants. It was recognized early on that the faithful reproduction of the Siemens reactor control and protection systems would impose extremely stringent demands on the simulation models, particularly the Core physics and the RCS thermohydraulics. The quality of the models, and their thorough validation, were thus essential. The present paper describes the main features of the fully 3D Core model implemented by TT and S, and its extensive validation campaign, which was defined in extremely positive collaboration with the Customer and the Core Data suppliers. (author)

  15. Can inducible resistance in plants cause herbivore aggregations? Spatial patterns in an inducible plant/herbivore model.

    Science.gov (United States)

    Anderson, Kurt E; Inouye, Brian D; Underwood, Nora

    2015-10-01

    Many theories regarding the evolution of inducible resistance in plants have an implicit spatial component, but most relevant population dynamic studies ignore spatial dynamics. We examined a spatially explicit model of plant inducible resistance and herbivore population dynamics to explore how realistic features of resistance and herbivore responses influence spatial patterning. Both transient and persistent spatial patterns developed in all models examined, where patterns manifested as wave-like aggregations of herbivores and variation in induction levels. Patterns arose when herbivores moved away from highly induced plants, there was a lag between damage and deployment of induced resistance, and the relationship between herbivore density and strength of the induction response had a sigmoid shape. These mechanisms influenced pattern formation regardless of the assumed functional relationship between resistance and herbivore recruitment and mortality. However, in models where induction affected herbivore mortality, large-scale herbivore population cycles driven by the mortality response often co-occurred with smaller scale spatial patterns driven by herbivore movement. When the mortality effect dominated, however, spatial pattern formation was completely replaced by spatially synchronized herbivore population cycles. Our results present a new type of ecological pattern formation driven by induced trait variation, consumer behavior, and time delays that has broad implications for the community and evolutionary ecology of plant defenses.

  16. Offering model for a virtual power plant based on stochastic programming

    DEFF Research Database (Denmark)

    PandŽić, Hrvoje; Morales González, Juan Miguel; Conejo, Antonio J.

    2013-01-01

    electricity in both the day-ahead and the balancing markets seeking to maximize its expected profit. Such model is mathematically rigorous, yet computationally efficient.The offering problem is cast as a two-stage stochastic mixed-integer linear programming model which maximizes the virtual power plant...... expected profit. The uncertain parameters, including the power output of the intermittent source and the market prices, are modeled via scenarios based upon historical data. The proposed model is applied to a realistic case study and conclusions are drawn. © 2013 Elsevier Ltd.......A virtual power plant aggregates various local production/consumption units that act in the market as a single entity. This paper considers a virtual power plant consisting of an intermittent source, a storage facility, and a dispatchable power plant. The virtual power plant sells and purchases...

  17. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Graf, P.; Scott, G.; Ning, A.; King, R.; Guo, Y.; Parsons, T.; Damiani, R.; Felker, F.; Veers, P.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.

  18. Beyond the Canon: Within-Plant and Population-Level Heterogeneity in Jasmonate Signaling Engaged by Plant-Insect Interactions

    Directory of Open Access Journals (Sweden)

    Dapeng Li

    2016-03-01

    Full Text Available Plants have evolved sophisticated communication and defense systems with which they interact with insects. Jasmonates are synthesized from the oxylipin pathway and act as pivotal cellular orchestrators of many of the metabolic and physiological processes that mediate these interactions. Many of these jasmonate-dependent responses are tissue-specific and translate from modulations of the canonical jasmonate signaling pathway. Here we provide a short overview of within-plant heterogeneities in jasmonate signaling and dependent responses in the context of plant-insect interactions as illuminated by examples from recent work with the ecological model, Nicotiana attenuata. We then discuss means of manipulating jasmonate signaling by creating tissue-specific jasmonate sinks, and the micrografting of different transgenic plants. The metabolic phenotyping of these manipulations provides an integrative understanding of the functional significance of deviations from the canonical model of this hormonal pathway. Additionally, natural variation in jasmonate biosynthesis and signaling both among and within species can explain polymorphisms in resistance to insects in nature. In this respect, insect-guided explorations of population-level variations in jasmonate metabolism have revealed more complexity than previously realized and we discuss how different “omic” techniques can be used to exploit the natural variation that occurs in this important signaling pathway.

  19. Improved apple latent spherical virus-induced gene silencing in multiple soybean genotypes through direct inoculation of agro-infiltratedNicotiana benthamianaextract.

    Science.gov (United States)

    Gedling, C R; Ali, E M; Gunadi, A; Finer, J J; Xie, K; Liu, Y; Yoshikawa, N; Qu, F; Dorrance, A E

    2018-01-01

    Virus induced gene silencing (VIGS) is a powerful genomics tool for interrogating the function of plant genes. Unfortunately, VIGS vectors often produce disease symptoms that interfere with the silencing phenotypes of target genes, or are frequently ineffective in certain plant genotypes or tissue types. This is especially true in crop plants like soybean [ Glycine max (L.) Merr]. To address these shortcomings, we modified the inoculation procedure of a VIGS vector based on Apple latent spherical virus (ALSV). The efficacy of this new procedure was assessed in 19 soybean genotypes using a soybean Phytoene desaturase ( GmPDS1 ) gene as the VIGS target. Silencing of GmPDS1 was easily scored as photo-bleached leaves and/or stems. In this report, the ALSV VIGS vector was modified by mobilizing ALSV cDNAs into a binary vector compatible with Agrobacterium tumefaciens -mediated delivery, so that VIGS-triggering ALSV variants could be propagated in agro-infiltrated Nicotiana benthamiana leaves. Homogenate of these N. benthamiana leaves was then applied directly onto the unifoliate of young soybean seedlings to initiate systemic gene silencing. This rapid inoculation method bypassed the need for a particle bombardment apparatus. Among the 19 soybean genotypes evaluated with this new method, photo-bleaching indicative of GmPDS1 silencing was observed in nine, with two exhibiting photo-bleaching in 100% of the inoculated individuals. ALSV RNA was detected in pods, embryos, stems, leaves, and roots in symptomatic plants of four genotypes. This modified protocol allowed for inoculation of soybean plants via simple mechanical rubbing with the homogenate of N. benthamiana leaves agro-infiltrated with ALSV VIGS constructs. More importantly, inoculated plants showed no apparent virus disease symptoms which could otherwise interfere with VIGS phenotypes. This streamlined procedure expanded this functional genomics tool to nine soybean genotypes.

  20. Effects of different potting growing media for Petunia grandiflora and Nicotiana alata Link & Otto on photosynthetic capacity, leaf area, and flowering potential

    Directory of Open Access Journals (Sweden)

    Gheorghe Cristian Popescu

    2015-03-01

    Full Text Available Petunia grandiflora Juss. and Nicotiana alata Link & Otto are two of the most widely spread plants on the market for annual potted ornamental plants. In order to identify the most adequate substrate formula we analyzed the effects of different potting growing media used for P. hybrida grandiflora 'Bravo' and N. alata 'Dinamo' on their photosynthetic capacity, leaf area, and flowering potential. Optimization of growing media formula for petunia and ornamental tobacco was performed by preparing four growing media mixing fallow soil (FS, Biolan peat (BP, acid peat (AP, leaf compost (C, and perlite (P in different proportions. The physiological potential of petunia and ornamental tobacco was investigated by photosynthesis and respiration rate and chlorophyll pigments in leaves, while the vegetative and flowering phenological stages were evaluated by number of leaves per plant, leaf area, number of flowers per plant and leaf area/flowers ratio. These measurements were significantly influenced by the different potting growing media used in this study. In the flowering stage, the highest photosynthesis rates (8.612 μmol CO2 m-2 s-1 as well as leaf area (1.766 dm² of petunias were obtained on growing media with 60% biolan peat, 30% acid peat and 10% perlite (BP60-AP30-P10. Flowering responses to growing conditions vary greatly among plants and the biggest number of ornamental tobacco flowers (22 flowers plant-1 was registered as an effect of BP60-AP30-P10 media. Growing media with the BP60-AP30-P10 formula seem to be the most adequate growth substrate to develop profitable crops for petunias and ornamental tobacco with high decorative value.

  1. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure.

    Science.gov (United States)

    Strasser, Richard; Stadlmann, Johannes; Schähs, Matthias; Stiegler, Gabriela; Quendler, Heribert; Mach, Lukas; Glössl, Josef; Weterings, Koen; Pabst, Martin; Steinkellner, Herta

    2008-05-01

    A common argument against using plants as a production system for therapeutic proteins is their inability to perform authentic human N-glycosylation (i.e. the presence of beta1,2-xylosylation and core alpha1,3-fucosylation). In this study, RNA interference (RNAi) technology was used to obtain a targeted down-regulation of the endogenous beta1,2-xylosyltransferase (XylT) and alpha1,3-fucosyltransferase (FucT) genes in Nicotiana benthamiana, a tobacco-related plant species widely used for recombinant protein expression. Three glyco-engineered lines with significantly reduced xylosylated and/or core alpha1,3-fucosylated glycan structures were generated. The human anti HIV monoclonal antibody 2G12 was transiently expressed in these glycosylation mutants as well as in wild-type plants. Four glycoforms of 2G12 differing in the presence/absence of xylose and core alpha1,3-fucose residues in their N-glycans were produced. Notably, 2G12 produced in XylT/FucT-RNAi plants was found to contain an almost homogeneous N-glycan species without detectable xylose and alpha1,3-fucose residues. Plant-derived glycoforms were indistinguishable from Chinese hamster ovary (CHO)-derived 2G12 with respect to electrophoretic properties, and exhibited functional properties (i.e. antigen binding and HIV neutralization activity) at least equivalent to those of the CHO counterpart. The generated RNAi lines were stable, viable and did not show any obvious phenotype, thus providing a robust tool for the production of therapeutically relevant glycoproteins in plants with a humanized N-glycan structure.

  2. Mass balance-based plant-wide wastewater treatment plant models ...

    African Journals Online (AJOL)

    2006-07-03

    Jul 3, 2006 ... WW wastewater. WWTP wastewater treatment plant. List of symbols. bH, b'H. OHO endogenous respiration and death rates (/d). Additional subscripts T and 20 denote rates at T and 20oC fav, fat. OHO fraction of AS with respect to VSS and TSS. Additional subscripts i or e denote aerobic digester influent or ...

  3. A dynamic growth model of vegetative soya bean plants: model structure and behaviour under varying root temperature and nitrogen concentration

    Science.gov (United States)

    Lim, J. T.; Wilkerson, G. G.; Raper, C. D. Jr; Gold, H. J.

    1990-01-01

    A differential equation model of vegetative growth of the soya bean plant (Glycine max (L.) Merrill cv. Ransom') was developed to account for plant growth in a phytotron system under variation of root temperature and nitrogen concentration in nutrient solution. The model was tested by comparing model outputs with data from four different experiments. Model predictions agreed fairly well with measured plant performance over a wide range of root temperatures and over a range of nitrogen concentrations in nutrient solution between 0.5 and 10.0 mmol NO3- in the phytotron environment. Sensitivity analyses revealed that the model was most sensitive to changes in parameters relating to carbohydrate concentration in the plant and nitrogen uptake rate.

  4. Prediction of lacking control power in power plants using statistical models

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, B.; Stoustrup, Jakob

    2007-01-01

    Prediction of the performance of plants like power plants is of interest, since the plant operator can use these predictions to optimize the plant production. In this paper the focus is addressed on a special case where a combination of high coal moisture content and a high load limits the possible...... errors; the second uses operating point depending statistics of prediction errors. Using these methods on the previous mentioned case, it can be concluded that the second method can be used to predict the power plant performance, while the first method has problems predicting the uncertain performance...... plant load, meaning that the requested plant load cannot be met. The available models are in this case uncertain. Instead statistical methods are used to predict upper and lower uncertainty bounds on the prediction. Two different methods are used. The first relies on statistics of recent prediction...

  5. A general model for techno-economic analysis of CSP plants with thermochemical energy storage systems

    Science.gov (United States)

    Peng, Xinyue; Maravelias, Christos T.; Root, Thatcher W.

    2017-06-01

    Thermochemical energy storage (TCES), with high energy density and wide operating temperature range, presents a potential solution for CSP plant energy storage. We develop a general optimization based process model for CSP plants employing a wide range of TCES systems which allows us to assess the plant economic feasibility and energy efficiency. The proposed model is applied to a 100 MW CSP plant employing ammonia or methane TCES systems. The methane TCES system with underground gas storage appears to be the most promising option, achieving a 14% LCOE reduction over the current two-tank molten-salt CSP plants. For general TCES systems, gas storage is identified as the main cost driver, while the main energy driver is the compressor electricity consumption. The impacts of separation and different reaction parameters are also analyzed. This study demonstrates that the realization of TCES systems for CSP plants is contingent upon low storage cost and a reversible reaction with proper reaction properties.

  6. Development of supplier evaluation model applying in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Yonggang; Fang Chunfa

    2006-01-01

    It is essential for the safe and stable operations of Nuclear Power Plants that various resources in the supply chain are effectively managed. Supplier is a significant resource of nuclear entities serving as an extension of the operation process. Scientific and radiation evaluation of the performance of suppliers is of vital importance to an effective and high quality supply chain. This paper establishes an advance and practical supplier evaluation system that is applicable for the operational nuclear power plants, based on the analysis of the current operation status of Daya Bay Nuclear Power Station against its targeted objectives, the acquisition of relevant practices home and abroad and the benchmarking with advanced peers, in order to enhance the core competence of nuclear power plant. (authors)

  7. Uncertain and multi-objective programming models for crop planting structure optimization

    Directory of Open Access Journals (Sweden)

    Mo LI,Ping GUO,Liudong ZHANG,Chenglong ZHANG

    2016-03-01

    Full Text Available Crop planting structure optimization is a significant way to increase agricultural economic benefits and improve agricultural water management. The complexities of fluctuating stream conditions, varying economic profits, and uncertainties and errors in estimated modeling parameters, as well as the complexities among economic, social, natural resources and environmental aspects, have led to the necessity of developing optimization models for crop planting structure which consider uncertainty and multi-objectives elements. In this study, three single-objective programming models under uncertainty for crop planting structure optimization were developed, including an interval linear programming model, an inexact fuzzy chance-constrained programming (IFCCP model and an inexact fuzzy linear programming (IFLP model. Each of the three models takes grayness into account. Moreover, the IFCCP model considers fuzzy uncertainty of parameters/variables and stochastic characteristics of constraints, while the IFLP model takes into account the fuzzy uncertainty of both constraints and objective functions. To satisfy the sustainable development of crop planting structure planning, a fuzzy-optimization-theory-based fuzzy linear multi-objective programming model was developed, which is capable of reflecting both uncertainties and multi-objective. In addition, a multi-objective fractional programming model for crop structure optimization was also developed to quantitatively express the multi-objective in one optimization model with the numerator representing maximum economic benefits and the denominator representing minimum crop planting area allocation. These models better reflect actual situations, considering the uncertainties and multi-objectives of crop planting structure optimization systems. The five models developed were then applied to a real case study in Minqin County, north-west China. The advantages, the applicable conditions and the solution methods

  8. Quantifying the effect of crop spatial arrangement on weed suppression using functional-structural plant modelling.

    Science.gov (United States)

    Evers, Jochem B; Bastiaans, Lammert

    2016-05-01

    Suppression of weed growth in a crop canopy can be enhanced by improving crop competitiveness. One way to achieve this is by modifying the crop planting pattern. In this study, we addressed the question to what extent a uniform planting pattern increases the ability of a crop to compete with weed plants for light compared to a random and a row planting pattern, and how this ability relates to crop and weed plant density as well as the relative time of emergence of the weed. To this end, we adopted the functional-structural plant modelling approach which allowed us to explicitly include the 3D spatial configuration of the crop-weed canopy and to simulate intra- and interspecific competition between individual plants for light. Based on results of simulated leaf area development, canopy photosynthesis and biomass growth of the crop, we conclude that differences between planting pattern were small, particularly if compared to the effects of relative time of emergence of the weed, weed density and crop density. Nevertheless, analysis of simulated weed biomass demonstrated that a uniform planting of the crop improved the weed-suppression ability of the crop canopy. Differences in weed suppressiveness between planting patterns were largest with weed emergence before crop emergence, when the suppressive effect of the crop was only marginal. With simultaneous emergence a uniform planting pattern was 8 and 15 % more competitive than a row and a random planting pattern, respectively. When weed emergence occurred after crop emergence, differences between crop planting patterns further decreased as crop canopy closure was reached early on regardless of planting pattern. We furthermore conclude that our modelling approach provides promising avenues to further explore crop-weed interactions and aid in the design of crop management strategies that aim at improving crop competitiveness with weeds.

  9. Three-dimensional modelling of soil-plant interactions : consistent coupling of soil and plant root systems

    OpenAIRE

    Schröder, Tom

    2009-01-01

    To understand how the uptake of water by roots locally affects and is affected by the soil water distribution, 3D soil-root water transfer models are needed. Nowadays, fully coupled 3D models at the plant scale, that simulate water flow along water potential gradients in the soil-root continuum, are available. However, the coupling of the soil and root system is not investigated thoroughly. In the available models the soil water potential gradient below the soil spatial discretization is negl...

  10. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

    International Nuclear Information System (INIS)

    Brown, Theresa J.; Wirth, Sharon

    1999-01-01

    This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model presented here

  11. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,THERESA J.; WIRTH,SHARON

    1999-09-01

    This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model

  12. Anti-sense expression of putrescine N-methyltransferase confirms defensive role of nicotine in Nicotiana sylvestris against Manduca sexta

    NARCIS (Netherlands)

    Voelckel, C.; Krugel, T.; Gase, K.; Heidrich, N.; Van Dam, N.M.; Winz, R.; Baldwin, I.T.

    2001-01-01

    Several lines of evidence support the defensive function of nicotine production in the Nicotiana genus against a range of herbivores, but the evidence is largely correlative. To suppress nicotine production in planta and to test its defensive function, we expressed DNA of putrescine N-methyl

  13. Identification of a mitochondrial external NADPH dehydrogenase by overexpression in transgenic ¤Nicotiana sylvestris¤

    DEFF Research Database (Denmark)

    Michalecka, A.M.; Agius, S.C.; Møller, I.M.

    2004-01-01

    (P)H dehydrogenases, was introduced into Nicotiana sylvestris. Transgenic lines with high transcript and protein levels for St-NDB1 had up to threefold increased activity of external NADPH dehydrogenase in isolated mitochondria as compared to the wild type (WT). In two lines, the external NADPH dehydrogenase activity...

  14. Silencing an N-Acyltransferase-Like Involved in Lignin Biosynthesis in Nicotiana attenuata Dramatically Alters Herbivory-Induced Phenolamide Metabolism

    NARCIS (Netherlands)

    Gaquerel, E.; Kotkar, H.; Onkokesung, N.; Galis, I.; Baldwin, I.T.

    2013-01-01

    In a transcriptomic screen of Manduca sexta-induced N-acyltransferases in leaves of Nicotiana attenuata, we identified an N-acyltransferase gene sharing a high similarity with the tobacco lignin-biosynthetic hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) gene whose

  15. De invloed van auxine, tryptofaan en enige anorganische zouten op de infectie van Nicotiana glutinosa met tabaksmozaiekvirus

    NARCIS (Netherlands)

    Liem, A.S.N.

    1963-01-01

    The number of necrotic spots arising on leaves of Nicotiana glutinosa after inoculation with tobacco mosaic virus was less than in controls without additives, if the water in which the leaves floated hadβ-indoleacetic acid (IAA),α-naphthylacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D)

  16. Evolution of rDNA in Nicotiana allopolyploids: A potential link between rDNa homogenization and epigenetics

    Czech Academy of Sciences Publication Activity Database

    Kovařík, Aleš; Nešpor Dadejová, Martina; Lim, Y.K.; Chase, M.W.; Clarkson, J.J.; Knapp, S.; Leitch, A.R.

    2008-01-01

    Roč. 101, č. 6 (2008), s. 815-823 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GA521/07/0116 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : rDNA * allopolyploidy * evolution-Nicotiana Subject RIV: BO - Biophysics Impact factor: 2.755, year: 2008

  17. Development of a Novel Bidirectional Canopy Reflectance Model for Row-Planted Rice and Wheat

    Directory of Open Access Journals (Sweden)

    Kai Zhou

    2014-08-01

    Full Text Available Rice and wheat are mainly planted in a row structure in China. Radiative transfer models have the potential to provide an accurate description of the bidirectional reflectance characteristics of the canopies of row-planted crops, but few of them have addressed the problem of row-planted structures. In this paper, a new 4SAIL-RowCrop model for row-planted rice and wheat canopies was developed by integrating the 4SAIL model and the Kimes geometric model. The Kimes model and the Kimes–Porous geometric optics (GO module were used to simulate different scene component proportions. Spectral reflectance and transmittance were subsequently calculated using the 4SAIL model to determine the reflectance of crucial scene components: the illuminated canopy, illuminated background and shadowed background. The model was validated by measuring the reflectance of rice and wheat cultivars at different growth stages, planting densities and nitrogen fertilization rates. The directional and nadir reflectance simulated by the model agreed well with experimental data, with squared correlation coefficients of 0.69 and 0.98, root mean square errors of 0.013 and 0.009 and normalized root mean square errors of 15.8% and 12.4%, respectively. The results indicate that the 4SAIL-RowCrop model is suitable for simulating the spectral reflectance of the canopy of row-planted rice and wheat.

  18. Variable hydraulic resistances and their impact on plant drought response modelling.

    Science.gov (United States)

    Baert, Annelies; De Schepper, Veerle; Steppe, Kathy

    2015-04-01

    Plant drought responses are still not fully understood. Improved knowledge on drought responses is, however, crucial to better predict their impact on individual plant and ecosystem functioning. Mechanistic models in combination with plant measurements are promising for obtaining information on plant water status and can assist us in understanding the effect of limiting soil water availability and drought stress. While existing models are reliable under sufficient soil water availability, they generally fail under dry conditions as not all appropriate mechanisms seem yet to have been implemented. We therefore aimed at identifying mechanisms underlying plant drought responses, and in particular investigated the behaviour of hydraulic resistances encountered in the soil and xylem for grapevine (Vitis vinifera L.) and oak (Quercus robur L.). A variable hydraulic soil-to-stem resistance was necessary to describe plant drought responses. In addition, implementation of a variable soil-to-stem hydraulic resistance enabled us to generate an in situ soil-to-stem vulnerability curve, which might be an alternative to the conventionally used vulnerability curves. Furthermore, a daily recalibration of the model revealed a drought-induced increase in radial hydraulic resistance between xylem and elastic living tissues. Accurate information on plant hydraulic resistances and simulation of plant drought responses can foster important discussions regarding the functioning of plants and ecosystems during droughts. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions,