WorldWideScience

Sample records for model plant building

  1. Comparison of test and earthquake response modeling of a nuclear power plant containment building

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, M.G.; Kot, C.A.; Hsieh, B.J.

    1985-01-01

    The reactor building of a BWR plant was subjected to dynamic testing, a minor earthquake, and a strong earthquake at different times. Analytical models simulating each of these events were devised by previous investigators. A comparison of the characteristics of these models is made in this paper. The different modeling assumptions involved in the different simulation analyses restrict the validity of the models for general use and also narrow the comparison down to only a few modes. The dynamic tests successfully identified the first mode of the soil-structure system.

  2. Building and Researching the Bidding Model Based on the Cost of Power Plant

    Institute of Scientific and Technical Information of China (English)

    秦春申; 叶春; 赵景峰

    2004-01-01

    A bidding model of neural network was presented to pursue the largest benefit according to the policy of separating power plants from network and bidding transaction. This model bases on the cost of power plant and its research object is a power plant in the market. The market clearing price (MCP) can be predicted and an optimized load curve can be decided in this model. The model may provide technical support for the power plant.

  3. Fire modeling for Building 221-T - T Plant Canyon Deck and Railroad Tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Oar, D.L.

    1994-09-29

    This report was prepared by Hughes Associates, Inc. to document the results of fire models for building 221-T Canyon Deck and Railroad Tunnel. Backup data is contained in document No. WHC-SD-CP-ANAL-010, Rev. 0.

  4. Building relationships between plant traits and leaf spectra to reduce uncertainty in terrestrial ecosystem models

    Science.gov (United States)

    Lieberman-Cribbin, W.; Rogers, A.; Serbin, S.; Ely, K.

    2015-12-01

    Despite climate projections, there is uncertainty in how terrestrial ecosystems will respond to warming temperatures and increased atmospheric carbon dioxide concentrations. Earth system models are used to determine how ecosystems will respond in the future, but there is considerable variation in how plant traits are represented within these models. A potential approach to reducing uncertainty is the establishment of spectra-trait linkages among plant species. These relationships allow the accurate estimation of biochemical characteristics of plants from their shortwave spectral profiles. Remote sensing approaches can then be implemented to acquire spectral data and estimate plant traits over large spatial and temporal scales. This paper describes a greenhouse experiment conducted at Brookhaven National Laboratory in which spectra-trait relationships were investigated for 8 different plant species. This research was designed to generate a broad gradient in plant traits, using a range of species grown in different sized pots with different soil type. Fertilizer was also applied in different amounts to generate variation in plant C and N status that will be reflected in the traits measured, as well as the spectra observed. Leaves were sampled at different developmental stages to increase variation. Spectra and plant traits were then measured and a partial least-squares regression (PLSR) modeling approach was used to establish spectra-trait relationships. Despite the variability in growing conditions and plant species, our PLSR models could be used to accurately estimate plant traits from spectral signatures, yielding model calibration R2 and root mean square error (RMSE) values, respectively, of 0.85 and 0.30 for percent nitrogen by mass (Nmass%), R2 0.78 and 0.75 for carbon to nitrogen (C:N) ratio, 0.87 and 2.39 for leaf mass area (LMA), and 0.76 R2 and 15.16 for water (H2O) content. This research forms the basis for establishing new and more comprehensive spectra

  5. A Model for Optimization and Analysis of Energy Flexible Boiler Plants for Building Heating Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, J.R.

    1996-05-01

    This doctoral thesis presents a model for optimization and analysis of boiler plants. The model optimizes a boiler plant with respect to the annual total costs or with respect to energy consumption. The optimum solution is identified for a given number of energy carriers and defined characteristics of the heat production units. The number of heat production units and the capacity of units related to each energy carrier or the capacity of units related to the same energy carrier can be found. For a problem comprising large variation during a defined analysis period the model gives the operating costs and energy consumption to be used in an extended optimization. The model can be used to analyse the consequences with respect to costs and energy consumption due to capacity margins and shifts in the boundary conditions. The model is based on a search approach comprising an operational simulator. The simulator is based on a marginal cost method and dynamic programming. The simulation is performed on an hourly basis. A general boiler characteristic representation is maintained by linear energy or cost functions. The heat pump characteristics are represented by tabulated performance and efficiency as function of state and nominal aggregate capacities. The simulation procedure requires a heat load profile on an hourly basis. The problem of the presence of capacity margins in boiler plants is studied for selected cases. The single-boiler, oil-fired plant is very sensitive to the magnitude of the losses present during burner off-time. For a plant comprising two oil-fired burners, the impact of a capacity margin can be dampened by the selected capacity configuration. The present incentive, in Norway, to install an electric element boiler in an oil-fired boiler plant is analysed. 77 refs., 74 figs., 12 tabs.

  6. V-Model based Configuration Management Program for New-Build Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    An, Kyungik [PartDB Co. Ltd., Daejeon (Korea, Republic of); Cho, Yoon Sang [KHNP Co. Ltd., Daejeon (Korea, Republic of); Freeland, Kent R. [Industrial Analysts Incorporated, New Hampshire (United States)

    2014-05-15

    As NPP operators undertook design basis reconstitution efforts, they began to realize that the design basis is a foundation for Configuration Management (CM). This realization was made evident in the magnitude of the problems that were being observed. This experience also raised serious questions about how the information being developed to produce the design basis documents would be kept up to date in the future. A process to reconstitute the design basis is likely to be ineffective if CM controls are not in place. The right IT solution for CM depends upon a number of factors, including the nuclear power plant culture, budget, target technology, and the nuclear power plant owner/operator's standards, requirements and limitations for its generating fleet. Comprehensive CM Program for NPP is the single greatest strategy to meet the commitment to nuclear excellence. The safety and viability of nuclear power, particularly at the fleet level, depends upon the development of positive design control and design basis to better understanding plant operating dynamics and margin management, along with technology to control the realization of such design in the physical plant. However the most of plant facilities are modified many times, often without suitable support needed to confirm with their design base and to update their engineering data, maintenance rules and operating procedures. This lack of equilibrium between the requirements, design information and physical plant still remains a important issue. This study focuses on how to manage the configuration information of NPP using systems engineering V-model approach, and proposes data model to manage the configuration information in relation to manage their life cycle. Comprehensive CM Program and IMS for NPP life cycle support is the greatest strategy to meet the commitment to nuclear safety.

  7. Building Models and Building Modelling

    DEFF Research Database (Denmark)

    Jørgensen, Kaj Asbjørn; Skauge, Jørn

    I rapportens indledende kapitel beskrives de primære begreber vedrørende bygningsmodeller og nogle fundamentale forhold vedrørende computerbaseret modulering bliver opstillet. Desuden bliver forskellen mellem tegneprogrammer og bygnings­model­lerings­programmer beskrevet. Vigtige aspekter om......­lering og bygningsmodeller. Det bliver understreget at modellering bør udføres på flere abstraktions­niveauer og i to dimensioner i den såkaldte modelleringsmatrix. Ud fra dette identificeres de primære faser af bygningsmodel­lering. Dernæst beskrives de basale karakteristika for bygningsmodeller. Heri...... inkluderes en præcisering af begreberne objektorienteret software og objektorienteret modeller. Det bliver fremhævet at begrebet objektbaseret modellering giver en tilstrækkelig og bedre forståelse. Endelig beskrives forestillingen om den ideale bygningsmodel som værende én samlet model, der anvendes gennem...

  8. Building Models and Building Modelling

    DEFF Research Database (Denmark)

    Jørgensen, Kaj; Skauge, Jørn

    2008-01-01

    I rapportens indledende kapitel beskrives de primære begreber vedrørende bygningsmodeller og nogle fundamentale forhold vedrørende computerbaseret modulering bliver opstillet. Desuden bliver forskellen mellem tegneprogrammer og bygnings­model­lerings­programmer beskrevet. Vigtige aspekter om comp...

  9. Building information modelling (BIM)

    CSIR Research Space (South Africa)

    Conradie, Dirk CU

    2009-02-01

    Full Text Available The concept of a Building Information Model (BIM) also known as a Building Product Model (BPM) is nothing new. A short article on BIM will never cover the entire filed, because it is a particularly complex filed that is recently beginning to receive...

  10. Automated model building

    CERN Document Server

    Caferra, Ricardo; Peltier, Nicholas

    2004-01-01

    This is the first book on automated model building, a discipline of automated deduction that is of growing importance Although models and their construction are important per se, automated model building has appeared as a natural enrichment of automated deduction, especially in the attempt to capture the human way of reasoning The book provides an historical overview of the field of automated deduction, and presents the foundations of different existing approaches to model construction, in particular those developed by the authors Finite and infinite model building techniques are presented The main emphasis is on calculi-based methods, and relevant practical results are provided The book is of interest to researchers and graduate students in computer science, computational logic and artificial intelligence It can also be used as a textbook in advanced undergraduate courses

  11. Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes.

    Science.gov (United States)

    McCormack, M Luke; Guo, Dali; Iversen, Colleen M; Chen, Weile; Eissenstat, David M; Fernandez, Christopher W; Li, Le; Ma, Chengen; Ma, Zeqing; Poorter, Hendrik; Reich, Peter B; Zadworny, Marcin; Zanne, Amy

    2017-07-01

    Trait-based approaches provide a useful framework to investigate plant strategies for resource acquisition, growth, and competition, as well as plant impacts on ecosystem processes. Despite significant progress capturing trait variation within and among stems and leaves, identification of trait syndromes within fine-root systems and between fine roots and other plant organs is limited. Here we discuss three underappreciated areas where focused measurements of fine-root traits can make significant contributions to ecosystem science. These include assessment of spatiotemporal variation in fine-root traits, integration of mycorrhizal fungi into fine-root-trait frameworks, and the need for improved scaling of traits measured on individual roots to ecosystem-level processes. Progress in each of these areas is providing opportunities to revisit how below-ground processes are represented in terrestrial biosphere models. Targeted measurements of fine-root traits with clear linkages to ecosystem processes and plant responses to environmental change are strongly needed to reduce empirical and model uncertainties. Further identifying how and when suites of root and whole-plant traits are coordinated or decoupled will ultimately provide a powerful tool for modeling plant form and function at local and global scales. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. Building a Model Astrolabe

    CERN Document Server

    Ford, Dominic

    2012-01-01

    This paper presents a hands-on introduction to the medieval astrolabe, based around a working model which can be constructed from photocopies of the supplied figures. As well as describing how to assemble the model, I also provide a brief explanation of how each of its various parts might be used. The printed version of this paper includes only the parts needed to build a single model prepared for use at latitudes around 52{\\deg}N, but an accompanying electronic file archive includes equivalent images which can be used to build models prepared for use at any other latitude. The vector graphics scripts used to generate the models are also available for download, allowing customised astrolabes to be made.

  13. Using bioprocess stoichiometry to build a plant-wide mass balance based steady-state WWTP model.

    Science.gov (United States)

    Ekama, G A

    2009-05-01

    Steady-state models are useful for design of wastewater treatment plants (WWTPs) because they allow reactor sizes and interconnecting flows to be simply determined from explicit equations in terms of unit operation performance criteria. Once the overall WWTP scheme is established and the main system defining parameters of the individual unit operations estimated, dynamic models can be applied to the connected unit operations to refine their design and evaluate their performance under dynamic flow and load conditions. To model anaerobic digestion (AD) within plant-wide WWTP models, not only COD and nitrogen (N) but also carbon (C) fluxes entering the AD need to be defined. Current plant-wide models, like benchmark simulation model No 2 (BSM2), impose a C flux at the AD influent. In this paper, the COD and N mass balance steady-state models of activated sludge (AS) organics degradation, nitrification and denitrification (ND) and anaerobic (AD) and aerobic (AerD) digestion of wastewater sludge are extended and linked with bioprocess transformation stoichiometry to form C, H, O, N, chemical oxygen demand (COD) and charge mass balance based models so that also C (and H and O) can be tracked through the whole WWTP. By assigning a stoichiometric composition (x, y, z and a in C(x)H(y)O(z)N(a)) to each of the five main influent wastewater organic fractions and ammonia, these, and the products generated from them via the biological processes, are tracked through the WWTP. The model is applied to two theoretical case study WWTPs treating the same raw wastewater (WW) to the same final sludge residual biodegradable COD. It is demonstrated that much useful information can be generated with the relatively simple steady-state models to aid WWTP layout design and track the different products exiting the WWTP via the solid, liquid and gas streams, such as aerobic versus anaerobic digestion of waste activated sludge, N loads in recycle streams, methane production for energy recovery

  14. Forecasting risk of bankruptcy for machine-building plants

    Science.gov (United States)

    Telipenko, E.; Zakharova, A.; Sopova, Svetlana

    2015-09-01

    The paper presents an overview of well-known bankruptcy risk forecasting models, elaborated as by Russian so by foreign authors, on the basis of the data about financial and business activities of the biggest machine-building Russian plants. The authors substantiate and confirm appropriateness of a fuzzy set model to the problem of bankruptcy risk forecasting. This model is worked out on the basis of 10 most important factors, which have the greatest influence on sales proceeds as the main financial source for a production plant.

  15. CNOOC Builds Bitumen Plant in Sichuan

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ In the petrochemical sector, CNOOC is building a 300,000 tonsper-year bitumen plant in western China, marking its first such investment in the remote but fast developing region, the company said on December 3. CNOOC, which produces 20 per cent of China's domestic bitumen output, will own 88 per cent of the US$36 million project in Sichuan Province and two local firms will own the remaining 12 per cent. Bitumen, or asphalt, production is scheduled to begin by the end of June 2004.

  16. Simplified building model of districts

    NARCIS (Netherlands)

    Koene, F.G.H.; Bakker, L.G.; Lanceta, D.; Narmsara, S.

    2014-01-01

    In the setting of this paper, a building is represented by a simple model consisting of two thermal masses. Generic values were obtained for two unknown parameters in the model, capable of representing an office building, a single family dwelling and a multifamily dwelling, at three levels of therma

  17. Building performance modelling for sustainable building design

    National Research Council Canada - National Science Library

    Oduyemi, Olufolahan; Okoroh, Michael

    2016-01-01

    ...) called Ecotect for sustainable building design. Finally, it introduces a design tool analysis of a case study using Ecotect to evaluate various what if scenarios on a proposed multi-use building...

  18. Buildings Lean Maintenance Implementation Model

    Science.gov (United States)

    Abreu, Antonio; Calado, João; Requeijo, José

    2016-11-01

    Nowadays, companies in global markets have to achieve high levels of performance and competitiveness to stay "alive".Within this assumption, the building maintenance cannot be done in a casual and improvised way due to the costs related. Starting with some discussion about lean management and building maintenance, this paper introduces a model to support the Lean Building Maintenance (LBM) approach. Finally based on a real case study from a Portuguese company, the benefits, challenges and difficulties are presented and discussed.

  19. Building Mental Models by Dissecting Physical Models

    Science.gov (United States)

    Srivastava, Anveshna

    2016-01-01

    When students build physical models from prefabricated components to learn about model systems, there is an implicit trade-off between the physical degrees of freedom in building the model and the intensity of instructor supervision needed. Models that are too flexible, permitting multiple possible constructions require greater supervision to…

  20. Plant Landscape Design in Special Space of Ecological Buildings

    Institute of Scientific and Technical Information of China (English)

    Guoyong; ZHANG; Xiaogang; CHEN

    2014-01-01

    This paper mainly discussed the application of plant landscape design in special space of ecological buildings. From the concept of special space of ecological buildings,it elaborated social and ecological benefits of greening projects in special space. It proposed the classification method for special space of ecological building with habitat as the major part and combined with characteristics of building form. On the basis of such classification,it discussed green design method and plant selection principle,in the hope of providing certain reference for garden designers in green design of ecological buildings.

  1. Plant development models

    NARCIS (Netherlands)

    Chuine, I.; Garcia de Cortazar-Atauri, I.; Kramer, K.; Hänninen, H.

    2013-01-01

    In this chapter we provide a brief overview of plant phenology modeling, focusing on mechanistic phenological models. After a brief history of plant phenology modeling, we present the different models which have been described in the literature so far and highlight the main differences between them,

  2. Building performance modelling for sustainable building design

    Directory of Open Access Journals (Sweden)

    Olufolahan Oduyemi

    2016-12-01

    The output revealed that BPM delivers information needed for enhanced design and building performance. Recommendations such as the establishment of proper mechanisms to monitor the performance of BPM related construction are suggested to allow for its continuous implementation. This research consolidates collective movements towards wider implementation of BPM and forms a base for developing a sound BIM strategy and guidance.

  3. Flavored model building

    Energy Technology Data Exchange (ETDEWEB)

    Hagedorn, C.

    2008-01-15

    In this thesis we discuss possibilities to solve the family replication problem and to understand the observed strong hierarchy among the fermion masses and the diverse mixing pattern of quarks and leptons. We show that non-abelian discrete symmetries which act non-trivially in generation space can serve as profound explanation. We present three low energy models with the permutation symmetry S{sub 4}, the dihedral group D{sub 5} and the double-valued group T' as flavor symmetry. The T' model turns out to be very predictive, since it explains tri-bimaximal mixing in the lepton sector and, moreover, leads to two non-trivial relations in the quark sector, {radical}((m{sub d})/(m{sub s}))= vertical stroke V{sub us} vertical stroke and {radical}((m{sub d})/(m{sub s}))= vertical stroke (V{sub td})/(V{sub ts}) vertical stroke. The main message of the T' model is the observation that the diverse pattern in the quark and lepton mixings can be well-understood, if the flavor symmetry is not broken in an arbitrary way, but only to residual (non-trivial) subgroups. Apart from leading to deeper insights into the origin of the fermion mixings this idea enables us to perform systematic studies of large classes of discrete groups. This we show in our study of dihedral symmetries D{sub n} and D'{sub n}. As a result we find only five distinct (Dirac) mass matrix structures arising from a dihedral group, if we additionally require partial unification of either left-handed or left-handed conjugate fermions and the determinant of the mass matrix to be non-vanishing. Furthermore, we reveal the ability of dihedral groups to predict the Cabibbo angle {theta}{sub C}, i.e. vertical stroke V{sub us(cd)} vertical stroke = cos((3{pi})/(7)), as well as maximal atmospheric mixing, {theta}{sub 23}=({pi})/(4), and vanishing {theta}{sub 13} in the lepton sector. (orig.)

  4. Model Predictive Control for the Operation of Building Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yudong; Borrelli, Francesco; Hencey, Brandon; Coffey, Brian; Bengea, Sorin; Haves, Philip

    2010-06-29

    A model-based predictive control (MPC) is designed for optimal thermal energy storage in building cooling systems. We focus on buildings equipped with a water tank used for actively storing cold water produced by a series of chillers. Typically the chillers are operated at night to recharge the storage tank in order to meet the building demands on the following day. In this paper, we build on our previous work, improve the building load model, and present experimental results. The experiments show that MPC can achieve reduction in the central plant electricity cost and improvement of its efficiency.

  5. Residential building energy conservation and avoided power plant emissions by urban and community trees in the United States

    Science.gov (United States)

    David J. Nowak; Nathaniel Appleton; Alexis Ellis; Eric Greenfield

    2017-01-01

    Urban trees and forests alter building energy use and associated emissions from power plants by shading buildings, cooling air temperatures and altering wind speeds around buildings. Field data on urban trees were combined with local urban/community tree and land cover maps, modeling of tree effects on building energy use and pollutant emissions, and state energy and...

  6. Irregular Shaped Building Design Optimization with Building Information Modelling

    Directory of Open Access Journals (Sweden)

    Lee Xia Sheng

    2016-01-01

    Full Text Available This research is to recognise the function of Building Information Modelling (BIM in design optimization for irregular shaped buildings. The study focuses on a conceptual irregular shaped “twisted” building design similar to some existing sculpture-like architectures. Form and function are the two most important aspects of new buildings, which are becoming more sophisticated as parts of equally sophisticated “systems” that we are living in. Nowadays, it is common to have irregular shaped or sculpture-like buildings which are very different when compared to regular buildings. Construction industry stakeholders are facing stiff challenges in many aspects such as buildability, cost effectiveness, delivery time and facility management when dealing with irregular shaped building projects. Building Information Modelling (BIM is being utilized to enable architects, engineers and constructors to gain improved visualization for irregular shaped buildings; this has a purpose of identifying critical issues before initiating physical construction work. In this study, three variations of design options differing in rotating angle: 30 degrees, 60 degrees and 90 degrees are created to conduct quantifiable comparisons. Discussions are focused on three major aspects including structural planning, usable building space, and structural constructability. This research concludes that Building Information Modelling is instrumental in facilitating design optimization for irregular shaped building. In the process of comparing different design variations, instead of just giving “yes or no” type of response, stakeholders can now easily visualize, evaluate and decide to achieve the right balance based on their own criteria. Therefore, construction project stakeholders are empowered with superior evaluation and decision making capability.

  7. Upgrading of seismic design of nuclear power plant building

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Hiroshi [Tokyo Univ. (Japan). Faculty of Engineering; Kitada, Yoshio

    1997-03-01

    In Japan seismic design methodology of nuclear power plant (NPP) structures has been established as introduced in the previous session. And yet efforts have been continued to date to upgrade the methodology, because of conservative nature given to the methodology in regard to unknown phenomena and technically-limited modeling involved in design analyses. The conservative nature tends to produce excessive safety margins, and inevitably send NPP construction cost up. Moreover, excessive seismic design can increase the burden on normal plant operation, though not necessarily contributing to overall plant safety. Therefore, seismic engineering has put to many tests and simulation analyses in hopes to rationalize seismic design and enhance reliability of seismic safety of NPPs. In this paper, we describe some studies on structural seismic design of NPP underway as part of Japan`s effort to upgrade existing seismic design methodology. Most studies described here are carried out by NUPEC (Nuclear Power Engineering Company) funded by MITI (the Ministry of International Trade and Industry Japan), though, similar studies with the same motive are also carrying out by nuclear industries such as utilities, NPP equipment and system manufacturers and building constructors. This paper consists of three sections, each introducing studies relating to NPP structural seismic design, new siting technology, and upgrading of the methodology of structural design analyses. (J.P.N.)

  8. A Study on Plant Selection for Green Building Design

    Directory of Open Access Journals (Sweden)

    Izudinshah Abd. Wahab

    2013-02-01

    Full Text Available Previous researches show that incorporating natural elements in design has proven a significant result in balancing building indoor environment. Using plant as part of the design has been widely accepted to contribute good thermal impact as shown in bioclimatic design, green roofing system and living wall elements. As there are so many species of plants for selection, this research was carried out to analyze types of indoor plants that have the potential to contribute thermal comfort to their surrounding. Based on the fact that plant leaves are the part where transpiration and guttation take place, plants are categorized into seven types based on their leaves architecture. They were then tested on their impact on surrounding temperature and humidity. Result shows that Linear, Lanceolate and Oblong shaped leaves categories are good in lowering the relative humidity while the categories that are good in lowering the temperature are Linear, Lanceolate, Cordate and Oblong shaped leaves categories. The study was carried out through series of relative humidity and air temperature monitoring of several room casings that consist with the plants. Both relative humidity and air temperature of the rooms with plants were recorded lower compared with the one without plant. Different categories of plants do give good result in relative humidity and air temperature. Thus, with a good combination of plant installation inside or onto building, it may contribute towards providing a good thermal comfort to the occupants.

  9. Virtual building environments (VBE) - Applying information modeling to buildings

    Energy Technology Data Exchange (ETDEWEB)

    Bazjanac, Vladimir

    2004-06-21

    A Virtual Building Environment (VBE) is a ''place'' where building industry project staffs can get help in creating Building Information Models (BIM) and in the use of virtual buildings. It consists of a group of industry software that is operated by industry experts who are also experts in the use of that software. The purpose of a VBE is to facilitate expert use of appropriate software applications in conjunction with each other to efficiently support multidisciplinary work. This paper defines BIM and virtual buildings, and describes VBE objectives, set-up and characteristics of operation. It informs about the VBE Initiative and the benefits from a couple of early VBE projects.

  10. Selection of material for building pressure vessels and chemical plants

    Energy Technology Data Exchange (ETDEWEB)

    Huppertz, P.H.; Retter, A.

    1979-06-01

    The authors give on extensive survey on the materials used in building pressure vessels and chemical plants for a temperature region of -200 to +1000/sup 0/C. The effect of various influences on the material behaviour is critically examined on the existing control plant, where the differences to foreign control are indicated. NE metals also come into consideration apart from steels, especially with low-temperature application.

  11. Empirical Model Building Data, Models, and Reality

    CERN Document Server

    Thompson, James R

    2011-01-01

    Praise for the First Edition "This...novel and highly stimulating book, which emphasizes solving real problems...should be widely read. It will have a positive and lasting effect on the teaching of modeling and statistics in general." - Short Book Reviews This new edition features developments and real-world examples that showcase essential empirical modeling techniques Successful empirical model building is founded on the relationship between data and approximate representations of the real systems that generated that data. As a result, it is essential for researchers who construct these m

  12. Building Information Modeling Comprehensive Overview

    Directory of Open Access Journals (Sweden)

    Sergey Kalinichuk

    2015-07-01

    Full Text Available The article is addressed to provide a comprehensive review on recently accelerated development of the Information Technology within project market such as industrial, engineering, procurement and construction. Author’s aim is to cover the last decades of the growth of the Information and Communication Technology in construction industry in particular Building Information Modeling and testifies that the problem of a choice of the effective project realization method not only has not lost its urgency, but has also transformed into one of the major condition of the intensive technology development. All of it has created a great impulse on shortening the project duration and has led to the development of various schedule compression techniques what becomes a focus of modern construction.

  13. Generating navigation models from existing building data

    NARCIS (Netherlands)

    Liu, L.; Zlatanova, S.

    2013-01-01

    Research on indoor navigation models mainly focuses on geometric and logical models .The models are enriched with specific semantic information which supports localisation, navigation and guidance. Geometric models provide information about the structural (physical) distribution of spaces in a build

  14. BIM. Building Information Model. Special issue; BIM. Building Information Model. Themanummer

    Energy Technology Data Exchange (ETDEWEB)

    Van Gelder, A.L.A. [Arta and Consultancy, Lage Zwaluwe (Netherlands); Van den Eijnden, P.A.A. [Stichting Marktwerking Installatietechniek, Zoetermeer (Netherlands); Veerman, J.; Mackaij, J.; Borst, E. [Royal Haskoning DHV, Nijmegen (Netherlands); Kruijsse, P.M.D. [Wolter en Dros, Amersfoort (Netherlands); Buma, W. [Merlijn Media, Waddinxveen (Netherlands); Bomhof, F.; Willems, P.H.; Boehms, M. [TNO, Delft (Netherlands); Hofman, M.; Verkerk, M. [ISSO, Rotterdam (Netherlands); Bodeving, M. [VIAC Installatie Adviseurs, Houten (Netherlands); Van Ravenswaaij, J.; Van Hoven, H. [BAM Techniek, Bunnik (Netherlands); Boeije, I.; Schalk, E. [Stabiplan, Bodegraven (Netherlands)

    2012-11-15

    A series of 14 articles illustrates the various aspects of the Building Information Model (BIM). The essence of BIM is to capture information about the building process and the building product. [Dutch] In 14 artikelen worden diverse aspecten m.b.t. het Building Information Model (BIM) belicht. De essentie van BIM is het vastleggen van informatie over het bouwproces en het bouwproduct.

  15. Innovative Nuclear Power Plant Building Arrangement in Consideration of Decommissioning

    Directory of Open Access Journals (Sweden)

    Won-Jun Choi

    2017-04-01

    Full Text Available A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1 early site restoration; and (2 radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed.

  16. Innovative nuclear power plant building arragement in consideration of decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Jun; Roh, Myung Sub; Kim, Chang Lak [Dept. of Nuclear Power Plant Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2017-04-15

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1) early site restoration; and (2) radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed.

  17. Automatic Building Information Model Query Generation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yufei; Yu, Nan; Ming, Jiang; Lee, Sanghoon; DeGraw, Jason; Yen, John; Messner, John I.; Wu, Dinghao

    2015-12-01

    Energy efficient building design and construction calls for extensive collaboration between different subfields of the Architecture, Engineering and Construction (AEC) community. Performing building design and construction engineering raises challenges on data integration and software interoperability. Using Building Information Modeling (BIM) data hub to host and integrate building models is a promising solution to address those challenges, which can ease building design information management. However, the partial model query mechanism of current BIM data hub collaboration model has several limitations, which prevents designers and engineers to take advantage of BIM. To address this problem, we propose a general and effective approach to generate query code based on a Model View Definition (MVD). This approach is demonstrated through a software prototype called QueryGenerator. By demonstrating a case study using multi-zone air flow analysis, we show how our approach and tool can help domain experts to use BIM to drive building design with less labour and lower overhead cost.

  18. Building Information Modelling in Denmark and Iceland

    DEFF Research Database (Denmark)

    Jensen, Per Anker; Jóhannesson, Elvar Ingi

    2013-01-01

    Purpose – The purpose of this paper is to explore the implementation of building information modelling (BIM) in the Nordic countries of Europe with particular focus on the Danish building industry with the aim of making use of its experience for the Icelandic building industry. Design....../methodology/aptroach – The research is based on two separate analyses. In the first part, the deployment of information and communication technology (ICT) in the Icelandic building industry is investigated and compared with the other Nordic countries. In the second part the experience in Denmark from implementing and working...... for making standards and guidelines related to BIM. Public building clients are also encouraged to consider initiating projects based on making simple building models of existing buildings in order to introduce the BIM technology to the industry. Icelandic companies are recommended to start implementing BIM...

  19. Common Exercises in Whole Building HAM Modelling

    DEFF Research Database (Denmark)

    Rode, Carsten; Woloszyn, Monika

    2009-01-01

    Subtask 1 of the IEA ECBCS Annex 41 (IEA 2007) project had the purpose to advance development in modelling of integral Heat, Air and Moisture (HAM) transfer processes that take place in “whole buildings”. Such modelling considers all relevant elements of buildings: The indoor air, building envelo...

  20. Common Exercises in Whole Building HAM Modelling

    DEFF Research Database (Denmark)

    Rode, Carsten; Woloszyn, Monika

    2008-01-01

    Subtask 1 of the IEA Annex 41 project had the purpose to advance the development in modelling the integral heat, air and moisture transfer processes that take place in “whole buildings”. Such modelling comprises all relevant elements of buildings: The indoor air, the building envelope, the inside...

  1. Whole-building Hygrothermal Simulation Model

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2003-01-01

    An existing integrated simulation tool for dynamic thermal simulation of building was extended with a transient model for moisture release and uptake in building materials. Validation of the new model was begun with comparison against measurements in an outdoor test cell furnished with single mat...

  2. Safety assessment of a nuclear power plant building subjected to an aircraft crash

    Energy Technology Data Exchange (ETDEWEB)

    Thai, Duc-Kien; Kim, Seung-Eock, E-mail: sekim@sejong.ac.kr

    2015-11-15

    Highlights: • Numerical analysis of a nuclear auxiliary building under aircraft crash is conducted. • The analysis result of impact force is verified using the Riera function. • The safety assessment is performed with regard to different impact scenarios. • Discussions and conclusions on safety of the nuclear building are presented. - Abstract: This paper presents a safety assessment of a nuclear building subjected to an aircraft crash using numerical analysis. For impact simulation, the reinforced concrete (RC) Primary Auxiliary Building (PAB) of the Korea Standard Nuclear Power Plant (KSNP) is fully modeled and an aircraft model of a Boeing 767-400 is used. The Riera function is used to verify the analysis result of impact force–time history. The IRIS test is used to verify the structural behavior of the RC wall under impact loading. The safety assessment of the building is performed with regard to different impact scenarios. The safety of the nuclear building under aircraft crash, including (1) global structural safety, (2) local structural safety, and (3) vibration safety are evaluated and discussed. The results show that the global and local structural safety of the PAB is ensured in all impact scenarios. However, the vibration safety of the building is not ensured. In accordance, the regulatory guide of United States Nuclear Regulatory Commission (U.S. NRC), shutdown of the nuclear power plant is required.

  3. A Seminar in Mathematical Model-Building.

    Science.gov (United States)

    Smith, David A.

    1979-01-01

    A course in mathematical model-building is described. Suggested modeling projects include: urban problems, biology and ecology, economics, psychology, games and gaming, cosmology, medicine, history, computer science, energy, and music. (MK)

  4. Model for Refurbishment of Heritage Buildings

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2014-01-01

    A model intended for the selection of feasible refurbishment measures for heritage buildings was developed. The model showed how to choose, evaluate and implement measures that create synergy between the interests in preserving heritage values and creating cost efficient refurbishment that complies...... with the requirements for the use of the building. The model focuses on the cooperation and dialogue between authorities and owners, who refurbish heritage buildings. The developed model was used for the refurbishment of the listed complex, Fæstningens Materialgård. Fæstningens Materialgård is a case study where...

  5. Translating Building Information Modeling to Building Energy Modeling Using Model View Definition

    Directory of Open Access Journals (Sweden)

    WoonSeong Jeong

    2014-01-01

    Full Text Available This paper presents a new approach to translate between Building Information Modeling (BIM and Building Energy Modeling (BEM that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1 the BIM-based Modelica models generated from Revit2Modelica and (2 BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1 enables BIM models to be translated into ModelicaBEM models, (2 enables system interface development based on the MVD for thermal simulation, and (3 facilitates the reuse of original BIM data into building energy simulation without an import/export process.

  6. Translating building information modeling to building energy modeling using model view definition.

    Science.gov (United States)

    Jeong, WoonSeong; Kim, Jong Bum; Clayton, Mark J; Haberl, Jeff S; Yan, Wei

    2014-01-01

    This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM) and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica) development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1) the BIM-based Modelica models generated from Revit2Modelica and (2) BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1) enables BIM models to be translated into ModelicaBEM models, (2) enables system interface development based on the MVD for thermal simulation, and (3) facilitates the reuse of original BIM data into building energy simulation without an import/export process.

  7. Energy Savings Modeling of Standard Commercial Building Re-tuning Measures: Large Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2012-06-01

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS's capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This report investigates the energy savings potential of several common HVAC system retuning measures on a typical large office building prototype model, using the Department of Energy's building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated - each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All of these measures and combinations were simulated in 16 cities representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy

  8. Non-commutative standard model: model building

    CERN Document Server

    Chaichian, Masud; Presnajder, P

    2003-01-01

    A non-commutative version of the usual electro-weak theory is constructed. We discuss how to overcome the two major problems: (1) although we can have non-commutative U(n) (which we denote by U sub * (n)) gauge theory we cannot have non-commutative SU(n) and (2) the charges in non-commutative QED are quantized to just 0,+-1. We show how the latter problem with charge quantization, as well as with the gauge group, can be resolved by taking the U sub * (3) x U sub * (2) x U sub * (1) gauge group and reducing the extra U(1) factors in an appropriate way. Then we proceed with building the non-commutative version of the standard model by specifying the proper representations for the entire particle content of the theory, the gauge bosons, the fermions and Higgs. We also present the full action for the non-commutative standard model (NCSM). In addition, among several peculiar features of our model, we address the inherentCP violation and new neutrino interactions. (orig.)

  9. Structured building model reduction toward parallel simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Justin R. [Cornell University; Hencey, Brondon M. [Cornell University

    2013-08-26

    Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.

  10. Overview of the ITER Tokamak complex building and integration of plant systems toward construction

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, Jean-Jacques, E-mail: jean-jacques.cordier@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Bak, Joo-Shik [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Baudry, Alain [Engage Consortium, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Benchikhoune, Magali [Fusion For Energy (F4E), c/ Josep Pla, n.2, Torres Diagonal Litoral, E-08019 Barcelona (Spain); Carafa, Leontin; Chiocchio, Stefano [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Darbour, Romaric [Fusion For Energy (F4E), c/ Josep Pla, n.2, Torres Diagonal Litoral, E-08019 Barcelona (Spain); Elbez, Joelle; Di Giuseppe, Giovanni; Iwata, Yasuhiro; Jeannoutot, Thomas; Kotamaki, Miikka; Kuehn, Ingo; Lee, Andreas; Levesy, Bruno; Orlandi, Sergio [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Packer, Rachel [Engage Consortium, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Patisson, Laurent; Reich, Jens; Rigoni, Giuliano [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); and others

    2015-10-15

    The ITER Tokamak complex consists of Tokamak, diagnostic and tritium buildings. The Tokamak machine is located in the bioshield pit of the Tokamak building. Plant systems are implemented in the three buildings and are strongly interfacing with the Tokamak. The reference baseline (3D) configuration is a set of over 1000 models that today defines in an exhaustive way the overall layout of Tokamak and plant systems, needed for fixing the interfaces and to complete the construction design of the buildings. During the last two years, one of the main ITER challenges was to improve the maturity of the plant systems layout in order to confirm their integration in the building final design and freeze the interface definitions in-between the systems and to the buildings. The propagation of safety requirements in the design of the nuclear building like confinement, fire zoning and radiation shielding is of first priority. A major effort was placed by ITER Organization together with the European Domestic Agency (F4E) and the Architect Engineer as a joint team to fix the interfaces and the loading conditions to buildings. The most demanding systems in terms of interface definition are water cooling, cryogenic, detritiation, vacuum, cable trays and building services. All penetrations through the walls for piping, cables and other equipment have been defined, as well as all temporary openings needed for the installation phase. Project change requests (PCR) impacting the Tokamak complex buildings have been implemented in a tight allocated time schedule. The most demanding change was to implement a new design of the Tokamak basic machine supporting system. The 18 supporting columns of the cryostat (2001 baseline) were replaced at the end of 2012 by a concrete crown and radial concrete ribs linked to the basemat and to the bioshield surrounding the Tokamak. The change was implemented successfully in the building construction design to allow basemat construction phase being performed

  11. Comparison of Building Energy Modeling Programs: Building Loads

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Dandan [Tsinghua Univ., Beijing (China); Hong, Tianzhen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yan, Da [Tsinghua Univ., Beijing (China); Wang, Chuang [Tsinghua Univ., Beijing (China)

    2012-06-01

    This technical report presented the methodologies, processes, and results of comparing three Building Energy Modeling Programs (BEMPs) for load calculations: EnergyPlus, DeST and DOE-2.1E. This joint effort, between Lawrence Berkeley National Laboratory, USA and Tsinghua University, China, was part of research projects under the US-China Clean Energy Research Center on Building Energy Efficiency (CERC-BEE). Energy Foundation, an industrial partner of CERC-BEE, was the co-sponsor of this study work. It is widely known that large discrepancies in simulation results can exist between different BEMPs. The result is a lack of confidence in building simulation amongst many users and stakeholders. In the fields of building energy code development and energy labeling programs where building simulation plays a key role, there are also confusing and misleading claims that some BEMPs are better than others. In order to address these problems, it is essential to identify and understand differences between widely-used BEMPs, and the impact of these differences on load simulation results, by detailed comparisons of these BEMPs from source code to results. The primary goal of this work was to research methods and processes that would allow a thorough scientific comparison of the BEMPs. The secondary goal was to provide a list of strengths and weaknesses for each BEMP, based on in-depth understandings of their modeling capabilities, mathematical algorithms, advantages and limitations. This is to guide the use of BEMPs in the design and retrofit of buildings, especially to support China’s building energy standard development and energy labeling program. The research findings could also serve as a good reference to improve the modeling capabilities and applications of the three BEMPs. The methodologies, processes, and analyses employed in the comparison work could also be used to compare other programs. The load calculation method of each program was analyzed and compared to

  12. Team learning: building shared mental models

    NARCIS (Netherlands)

    Van den Bossche, Piet; Gijselaers, Wim; Segers, Mien; Woltjers, Geert; Kirschner, Paul A.

    2011-01-01

    Van den Bossche, P., Gijselaers, W., Segers, M., Woltjer, G., & Kirschner, P. A. (2011). Team learning: Building shared mental models. Instructional Science, 39, 283-301. doi:10.1007/s11251-010-9128-3.

  13. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  14. Integrating Building Information Modeling and Green Building Certification: The BIM-LEED Application Model Development

    Science.gov (United States)

    Wu, Wei

    2010-01-01

    Building information modeling (BIM) and green building are currently two major trends in the architecture, engineering and construction (AEC) industry. This research recognizes the market demand for better solutions to achieve green building certification such as LEED in the United States. It proposes a new strategy based on the integration of BIM…

  15. Integrating Building Information Modeling and Green Building Certification: The BIM-LEED Application Model Development

    Science.gov (United States)

    Wu, Wei

    2010-01-01

    Building information modeling (BIM) and green building are currently two major trends in the architecture, engineering and construction (AEC) industry. This research recognizes the market demand for better solutions to achieve green building certification such as LEED in the United States. It proposes a new strategy based on the integration of BIM…

  16. Plant integration of MITICA and SPIDER experiments with auxiliary plants and buildings on PRIMA site

    Energy Technology Data Exchange (ETDEWEB)

    Fellin, Francesco, E-mail: francesco.fellin@igi.cnr.it; Boldrin, Marco; Zaccaria, Pierluigi; Agostinetti, Piero; Battistella, Manuela; Bigi, Marco; Palma, Samuele Dal Bello Mauro Dalla; Fiorentin, Aldo; Luchetta, Adriano; Maistrello, Alberto; Marcuzzi, Diego; Ocello, Edoardo; Pasqualotto, Roberto; Pavei, Mauro; Pomaro, Nicola; Rizzolo, Andrea; Toigo, Vanni; Valente, Matteo; Zanotto, Loris; Calore, Luca; and others

    2015-10-15

    Highlights: • Focus on plant integration work supporting the realization of SPIDER and MITICA fusion experiments hosted in PRIMA buildings complex in Padova, Italy. • Huge effort of coordination and integration among many stakeholders, taking into account several constrains coming from experiments requirements (on-going) and precise time schedule and budget on buildings construction. • The paper also deals of interfaces management, coordination and integration of many competences, problems solving to find best solution also considering other aspects like safety and maintenance. - Abstract: This paper presents a description of the PRIMA (Padova Research on ITER Megavolt Accelerator) Plant Integration work, aimed at the construction of PRIMA Buildings, which will host two nuclear fusion test facilities named SPIDER and MITICA, finalized to test and optimize the neutral beam injectors for ITER experiment. These activities are very complex: inputs coming from the experiments design are changing time to time, while the buildings construction shall fulfill precise time schedule and budget. Moreover the decision process is often very long due to the high number of stakeholders (RFX, IO, third parties, suppliers, domestic agencies from different countries). The huge effort includes: forecasting what will be necessary for the integration of many experimental plants; collecting requirements and translating into inputs; interfaces management; coordination meetings with hundreds of people with various and different competences in construction and operation of fusion facilities, thermomechanics, electrical and control, buildings design and construction (civil plants plus architectural and structural aspects), safety, maintenance and management. The paper describes these activities and also the tools created to check and to validate the building design, to manage the interfaces and the organization put in place to achieve the required targets.

  17. Modelling and simulation of thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Eborn, J.

    1998-02-01

    Mathematical modelling and simulation are important tools when dealing with engineering systems that today are becoming increasingly more complex. Integrated production and recycling of materials are trends that give rise to heterogenous systems, which are difficult to handle within one area of expertise. Model libraries are an excellent way to package engineering knowledge of systems and units to be reused by those who are not experts in modelling. Many commercial packages provide good model libraries, but they are usually domain-specific and closed. Heterogenous, multi-domain systems requires open model libraries written in general purpose modelling languages. This thesis describes a model database for thermal power plants written in the object-oriented modelling language OMOLA. The models are based on first principles. Subunits describe volumes with pressure and enthalpy dynamics and flows of heat or different media. The subunits are used to build basic units such as pumps, valves and heat exchangers which can be used to build system models. Several applications are described; a heat recovery steam generator, equipment for juice blending, steam generation in a sulphuric acid plant and a condensing steam plate heat exchanger. Model libraries for industrial use must be validated against measured data. The thesis describes how parameter estimation methods can be used for model validation. Results from a case-study on parameter optimization of a non-linear drum boiler model show how the technique can be used 32 refs, 21 figs

  18. Building dynamic spatial environmental models

    NARCIS (Netherlands)

    Karssenberg, D.J.

    2003-01-01

    An environmental model is a representation or imitation of complex natural phenomena that can be discerned by human cognitive processes. This thesis deals with the type of environmental models referred to as dynamic spatial environmental models. The word ‘spatial’ refers to the geographic domain whi

  19. Whole-building Hygrothermal Simulation Model

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2003-01-01

    An existing integrated simulation tool for dynamic thermal simulation of building was extended with a transient model for moisture release and uptake in building materials. Validation of the new model was begun with comparison against measurements in an outdoor test cell furnished with single...... materials. Almost quasi-steady, cyclic experiments were used to compare the indoor humidity variation and the numerical results of the integrated simulation tool with the new moisture model. Except for the case with chipboard as furnishing, the predictions of indoor humidity with the detailed model were...

  20. Economic aspects and models for building codes

    DEFF Research Database (Denmark)

    Bonke, Jens; Pedersen, Dan Ove; Johnsen, Kjeld

    It is the purpose of this bulletin to present an economic model for estimating the consequence of new or changed building codes. The object is to allow comparative analysis in order to improve the basis for decisions in this field. The model is applied in a case study.......It is the purpose of this bulletin to present an economic model for estimating the consequence of new or changed building codes. The object is to allow comparative analysis in order to improve the basis for decisions in this field. The model is applied in a case study....

  1. Brookhaven buildings energy conservation optimization model

    Energy Technology Data Exchange (ETDEWEB)

    Carhart, S C; Mulherkar, S S; Sanborn, Y

    1978-01-01

    The Brookhaven Buildings Energy Conservation Optimization Model is a linear programming representation of energy use in buildings. Starting with engineering and economic data on cost and performance of energy technologies used in buildings, including both conversion devices (such as heat pumps) and structural improvements, the model constructs alternative flows for energy through the technologies to meet demands for space heating, air conditioning, thermal applications, and electric lighting and appliances. Alternative paths have different costs and efficiencies. Within constraints such as total demand for energy services, retirement of existing buildings, seasonal operation of certain devices, and others, the model calculates an optimal configuration of energy technologies in buildings. The penetration of the various basic technologies within this configuration is specified in considerable detail, covering new and retrofit markets for nine building types in four regions. Each market may choose from several appropriate conversion devices and four levels each of new and retrofit structural improvement. The principal applications for which the model was designed described briefly.

  2. Modelling the probability of building fires

    Directory of Open Access Journals (Sweden)

    Vojtěch Barták

    2014-12-01

    Full Text Available Systematic spatial risk analysis plays a crucial role in preventing emergencies.In the Czech Republic, risk mapping is currently based on the risk accumulationprinciple, area vulnerability, and preparedness levels of Integrated Rescue Systemcomponents. Expert estimates are used to determine risk levels for individualhazard types, while statistical modelling based on data from actual incidents andtheir possible causes is not used. Our model study, conducted in cooperation withthe Fire Rescue Service of the Czech Republic as a model within the Liberec andHradec Králové regions, presents an analytical procedure leading to the creation ofbuilding fire probability maps based on recent incidents in the studied areas andon building parameters. In order to estimate the probability of building fires, aprediction model based on logistic regression was used. Probability of fire calculatedby means of model parameters and attributes of specific buildings can subsequentlybe visualized in probability maps.

  3. Model building techniques for analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Walther, Howard P.; McDaniel, Karen Lynn; Keener, Donald; Cordova, Theresa Elena; Henry, Ronald C.; Brooks, Sean; Martin, Wilbur D.

    2009-09-01

    The practice of mechanical engineering for product development has evolved into a complex activity that requires a team of specialists for success. Sandia National Laboratories (SNL) has product engineers, mechanical designers, design engineers, manufacturing engineers, mechanical analysts and experimentalists, qualification engineers, and others that contribute through product realization teams to develop new mechanical hardware. The goal of SNL's Design Group is to change product development by enabling design teams to collaborate within a virtual model-based environment whereby analysis is used to guide design decisions. Computer-aided design (CAD) models using PTC's Pro/ENGINEER software tools are heavily relied upon in the product definition stage of parts and assemblies at SNL. The three-dimensional CAD solid model acts as the design solid model that is filled with all of the detailed design definition needed to manufacture the parts. Analysis is an important part of the product development process. The CAD design solid model (DSM) is the foundation for the creation of the analysis solid model (ASM). Creating an ASM from the DSM currently is a time-consuming effort; the turnaround time for results of a design needs to be decreased to have an impact on the overall product development. This effort can be decreased immensely through simple Pro/ENGINEER modeling techniques that summarize to the method features are created in a part model. This document contains recommended modeling techniques that increase the efficiency of the creation of the ASM from the DSM.

  4. Energy based prediction models for building acoustics

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2012-01-01

    In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...

  5. Building models for keratin disorders.

    Science.gov (United States)

    Koster, Maranke I

    2012-05-01

    Palmoplantar keratoderma is a hallmark of pachyonychia congenita (PC) and focal non-epidermolytic palmoplantar keratoderma (FNEPPK). By generating keratin 16 (Krt16)-deficient mice, Lessard and Coulombe, as described in this issue, have generated a mouse model to replicate these palmoplantar lesions. Studies using this model may provide novel insights into the molecular mechanisms responsible for the formation of palmoplantar lesions in PC and FNEPPK patients.

  6. Output Model of Steel Plant

    Institute of Scientific and Technical Information of China (English)

    ZHANG Long-qiang; TIAN Nai-yuan; ZHANG Jin; XU An-jun

    2008-01-01

    Based on the requirement of compactivity, continuity, and high efficiency, and taking full advantage of cushion capability of flexible parts such as external refining in new generation steel plant, an output model of steel plant was established in terms of matching between BOF and caster. Using this model, the BOF nominal capacity is selected, the caster output and equipment amount are computed, and then the steel plant output is computed.

  7. Network Model Building (Process Mapping)

    OpenAIRE

    Blau, Gary; Yih, Yuehwern

    2004-01-01

    12 slides Provider Notes:See Project Planning Video (Windows Media) Posted at the bottom are Gary Blau's slides. Before watching, please note that "process mapping" and "modeling" are mentioned in the video and notes. Here they are meant to refer to the NSCORT "project plan"

  8. Development of 3D models of buildings for containment of the nuclear power plant of Almaraz and of the Trillo Nuclear with the GOTHIC 8.0 code; Desarrollo de modelos 3D de los edificios de conten cion de la Central Nuclear de Almaraz y de la Central Nuclear de Trillo con el codigo GOTHIC 8.0

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, G.; Bocanegra Melian, R.; Fernandez Cosils, K.; Barreira Pereira, P.; Rey Peinado, L.; Posada Barral, J. M.

    2014-07-01

    The objective of the first phase of the research of CNAT and the UPM project is the construction of several three-dimensional models detailed GOTHIC 8.0 code of containment of a buildings plant type PWR-W and KWU, corresponding to the Central Nuclear de Almaraz (CNA) and Trillo (CNT) respectively. (Author)

  9. Impacts of Model Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sivaraman, Deepak [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bartlett, Rosemarie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) periodically evaluates national and state-level impacts associated with energy codes in residential and commercial buildings. Pacific Northwest National Laboratory (PNNL), funded by DOE, conducted an assessment of the prospective impacts of national model building energy codes from 2010 through 2040. A previous PNNL study evaluated the impact of the Building Energy Codes Program; this study looked more broadly at overall code impacts. This report describes the methodology used for the assessment and presents the impacts in terms of energy savings, consumer cost savings, and reduced CO2 emissions at the state level and at aggregated levels. This analysis does not represent all potential savings from energy codes in the U.S. because it excludes several states which have codes which are fundamentally different from the national model energy codes or which do not have state-wide codes. Energy codes follow a three-phase cycle that starts with the development of a new model code, proceeds with the adoption of the new code by states and local jurisdictions, and finishes when buildings comply with the code. The development of new model code editions creates the potential for increased energy savings. After a new model code is adopted, potential savings are realized in the field when new buildings (or additions and alterations) are constructed to comply with the new code. Delayed adoption of a model code and incomplete compliance with the code’s requirements erode potential savings. The contributions of all three phases are crucial to the overall impact of codes, and are considered in this assessment.

  10. Building a multilevel modeling network for lipid processing systems

    DEFF Research Database (Denmark)

    Mustaffa, Azizul Azri; Díaz Tovar, Carlos Axel; Hukkerikar, Amol

    2011-01-01

    data collected from existing process plants, and application of validated models in design and analysis of unit operations; iv) the information and models developed are used as building blocks in the development of methods and tools for computer-aided synthesis and design of process flowsheets (CAFD......The aim of this work is to present the development of a computer aided multilevel modeling network for the systematic design and analysis of processes employing lipid technologies. This is achieved by decomposing the problem into four levels of modeling: i) pure component property modeling...... and a lipid-database of collected experimental data from industry and generated data from validated predictive property models, as well as modeling tools for fast adoption-analysis of property prediction models; ii) modeling of phase behavior of relevant lipid mixtures using the UNIFAC-CI model, development...

  11. Heterotic model building: 16 special manifolds

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang-Hui [Department of Mathematics, City University,London, EC1V 0HB (United Kingdom); School of Physics, NanKai University,Tianjin, 300071 (China); Merton College, University of Oxford,Oxford OX14JD (United Kingdom); Lee, Seung-Joo [School of Physics, Korea Institute for Advanced Study,Seoul 130-722 (Korea, Republic of); Lukas, Andre; Sun, Chuang [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2014-06-12

    We study heterotic model building on 16 specific Calabi-Yau manifolds constructed as hypersurfaces in toric four-folds. These 16 manifolds are the only ones among the more than half a billion manifolds in the Kreuzer-Skarke list with a non-trivial first fundamental group. We classify the line bundle models on these manifolds, both for SU(5) and SO(10) GUTs, which lead to consistent supersymmetric string vacua and have three chiral families. A total of about 29000 models is found, most of them corresponding to SO(10) GUTs. These models constitute a starting point for detailed heterotic model building on Calabi-Yau manifolds in the Kreuzer-Skarke list. The data for these models can be downloaded http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/toricdata/index.html.

  12. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock

    Energy Technology Data Exchange (ETDEWEB)

    Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

    2011-02-01

    The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

  13. Modeling plants with sensor data

    Institute of Scientific and Technical Information of China (English)

    MA Wei; XIANG Bo; ZHA HongBin; LIU Jia; ZHANG XiaoPeng

    2009-01-01

    Sensor data,typically images and laser data,are essential to modeling real plants.However,due to the complex geometry of the plants,the measurement data are generally limited,thereby bringing great difficulties in classifying and constructing plant organs,comprising leaves and branches.The paper presents an approach to modeling plants with the sensor data by detecting reliable sharp features,i.e.the leaf apexes of the plants with leaves and the branch tips of the plants without leaves,on volumes recovered from the raw data.The extracted features provide good estimations of correct positions of the organs.Thereafter,the leaves are reconstructed separately by simply fitting and optimizing a generic leaf model.One advantage of the method is that it involves limited manual intervention.For plants without leaves,we develop an efficient strategy for decomposition-based skeletonization by using the tip features to reconstruct the 3D models from noisy laser data.Experiments show that the sharp feature detection algorithm is effective,and the proposed plant modeling approach is competent in constructing realistic models with sensor data.

  14. Technical safety appraisal: Buildings 776/777 Rocky Flats Plant

    Energy Technology Data Exchange (ETDEWEB)

    Field, H C

    1988-03-01

    Buildings 776/777 at the Rocky Flats Plant are major components of the production complex at the plant site. They have been in operation since 1957. The operations taking place in the buildings are nuclear weapons production support, processing of weapons assemblies returned from Pantex, waste processing, research and development in support of production, special projects, and those generated by support groups, such as maintenance. The appraisal team identified nine deficiencies that it believed required prompt attention. DOE management for EH, the program office (Defense Programs), and the field office analyzed the information provided by the appraisal team and instituted compensatory measures for closer monitoring of contractor activities by knowledgeable DOE staff and staff from other sites. Concurrently, the contractor was requested to address both short-term and long-term remedial measures to correct the identified issues as well as the underlying problems. The contractor has provided his action plan, which is included. This plan was under evaluation by EH and the DOE program office at the time this report was prepared. In addressing the major areas of concern identified above, a well as the specific deficiencies identified by the appraisal team, the contractor and the field office are cautioned to search for the root causes for the problems and to direct corrective actions to those root causes rather than solely to the symptoms to assure the sustainability of the improvements being made. The results of prior TSAs led DOE to conclude that previous corrective actions were not sufficient in that a large number of the individual findings are recurrent. Pending completion of remedial actions over the next few months, enhanced DOE oversight of the contractor is warranted.

  15. Italian Residential Buildings: Economic Assessments for Biomass Boilers Plants

    Directory of Open Access Journals (Sweden)

    Maurizio Carlini

    2013-01-01

    Full Text Available Biomass is increasingly used for energy generation since it represents a useful alternative to fossil fuel in order to face the pollutions and the global warming problem. It can be exploited for heating purposes and for supplying domestic hot water. The most common applications encompass wood and pellet boilers. The economic aspect is becoming an important issue in order to achieve the ambitious targets set by the European Directives on Renewable Sources. Thus, the present paper deals with the economic feasibility of biomass boiler plants with specific regard to an existing residential building. An Italian case study is further investigated, focusing the attention on European and national regulations on energy efficiency and considering the recent public incentives and supporting measures. The main thermoclimatic parameters—that is, heating degree days (HDDs, building thermal insulation and thermal needs—are taken into account. Moreover, the following economic indicators are calculated: cumulative cash flow, discounted cumulative cash flow, payback period (PP, net present value (NPV, Internal rate of return (IRR, discounted payback period (DPP, and profit index (PI.

  16. Mobile Modelling for Crowdsourcing Building Interior Data

    Science.gov (United States)

    Rosser, J.; Morley, J.; Jackson, M.

    2012-06-01

    Indoor spatial data forms an important foundation to many ubiquitous computing applications. It gives context to users operating location-based applications, provides an important source of documentation of buildings and can be of value to computer systems where an understanding of environment is required. Unlike external geographic spaces, no centralised body or agency is charged with collecting or maintaining such information. Widespread deployment of mobile devices provides a potential tool that would allow rapid model capture and update by a building's users. Here we introduce some of the issues involved in volunteering building interior data and outline a simple mobile tool for capture of indoor models. The nature of indoor data is inherently private; however in-depth analysis of this issue and legal considerations are not discussed in detail here.

  17. Sustainability Product Properties in Building Information Models

    Science.gov (United States)

    2012-09-01

    washers, dryers , etc. are indispensable in a passive house. Certification is through a third-party building certifier that has been ac- credited by the...Anchor Trenwyth Model Old World Tumbled - 4X8x16 Standard CMU - 8X8X16 Verastone Plus recycled filled and polished ground face masonry units

  18. Modelling of settlement induced building damage

    NARCIS (Netherlands)

    Giardina, G.

    2013-01-01

    This thesis focuses on the modelling of settlement induced damage to masonry buildings. In densely populated areas, the need for new space is nowadays producing a rapid increment of underground excavations. Due to the construction of new metro lines, tunnelling activity in urban areas is growing.

  19. Plant innate immunity multicomponent model

    Directory of Open Access Journals (Sweden)

    Giuseppe eAndolfo

    2015-11-01

    Full Text Available Our understanding of plant–pathogen interactions is making rapid advances in order to address issues of global importance such as improving agricultural productivity and sustainable food security. Innate immunity has evolved in plants, resulting in a wide diversity of defence mechanisms adapted to specific threats. The postulated PTI/ETI model describes two perception layers of plant innate immune system, which belong to a first immunity component of defence response activation. To better describe the sophisticated defence system of plants, we propose a new model of plant immunity. This model considers the plant’s ability to distinguish the feeding behaviour of their many foes, such as a second component that modulates innate immunity. This hypothesis provides a new viewpoint highlighting the relevance of hormone crosstalk and primary metabolism in regulating plant defence against the different behaviours of pathogens with the intention to stimulate further interest in this research area.

  20. Indoor Air Quality Building Education and Assessment Model Forms

    Science.gov (United States)

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  1. Indoor Air Quality Building Education and Assessment Model

    Science.gov (United States)

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM), released in 2002, is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  2. Reconstructing building mass models from UAV images

    KAUST Repository

    Li, Minglei

    2015-07-26

    We present an automatic reconstruction pipeline for large scale urban scenes from aerial images captured by a camera mounted on an unmanned aerial vehicle. Using state-of-the-art Structure from Motion and Multi-View Stereo algorithms, we first generate a dense point cloud from the aerial images. Based on the statistical analysis of the footprint grid of the buildings, the point cloud is classified into different categories (i.e., buildings, ground, trees, and others). Roof structures are extracted for each individual building using Markov random field optimization. Then, a contour refinement algorithm based on pivot point detection is utilized to refine the contour of patches. Finally, polygonal mesh models are extracted from the refined contours. Experiments on various scenes as well as comparisons with state-of-the-art reconstruction methods demonstrate the effectiveness and robustness of the proposed method.

  3. Functional–structural plant models: a growing paradigm for plant studies

    Science.gov (United States)

    Sievänen, Risto; Godin, Christophe; DeJong, Theodore M.; Nikinmaa, Eero

    2014-01-01

    A number of research groups in various areas of plant biology as well as computer science and applied mathematics have addressed modelling the spatiotemporal dynamics of growth and development of plants. This has resulted in development of functional–structural plant models (FSPMs). In FSPMs, the plant structure is always explicitly represented in terms of a network of elementary units. In this respect, FSPMs are different from more abstract models in which a simplified representation of the plant structure is frequently used (e.g. spatial density of leaves, total biomass, etc.). This key feature makes it possible to build modular models and creates avenues for efficient exchange of model components and experimental data. They are being used to deal with the complex 3-D structure of plants and to simulate growth and development occurring at spatial scales from cells to forest areas, and temporal scales from seconds to decades and many plant generations. The plant types studied also cover a broad spectrum, from algae to trees. This special issue of Annals of Botany features selected papers on FSPM topics such as models of morphological development, models of physical and biological processes, integrated models predicting dynamics of plants and plant communities, modelling platforms, methods for acquiring the 3-D structures of plants using automated measurements, and practical applications for agronomic purposes. PMID:25469374

  4. Functional-structural plant models: a growing paradigm for plant studies.

    Science.gov (United States)

    Sievänen, Risto; Godin, Christophe; DeJong, Theodore M; Nikinmaa, Eero

    2014-09-01

    A number of research groups in various areas of plant biology as well as computer science and applied mathematics have addressed modelling the spatiotemporal dynamics of growth and development of plants. This has resulted in development of functional-structural plant models (FSPMs). In FSPMs, the plant structure is always explicitly represented in terms of a network of elementary units. In this respect, FSPMs are different from more abstract models in which a simplified representation of the plant structure is frequently used (e.g. spatial density of leaves, total biomass, etc.). This key feature makes it possible to build modular models and creates avenues for efficient exchange of model components and experimental data. They are being used to deal with the complex 3-D structure of plants and to simulate growth and development occurring at spatial scales from cells to forest areas, and temporal scales from seconds to decades and many plant generations. The plant types studied also cover a broad spectrum, from algae to trees. This special issue of Annals of Botany features selected papers on FSPM topics such as models of morphological development, models of physical and biological processes, integrated models predicting dynamics of plants and plant communities, modelling platforms, methods for acquiring the 3-D structures of plants using automated measurements, and practical applications for agronomic purposes.

  5. Scripted Building Energy Modeling and Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hale, E.; Macumber, D.; Benne, K.; Goldwasser, D.

    2012-08-01

    Building energy modeling and analysis is currently a time-intensive, error-prone, and nonreproducible process. This paper describes the scripting platform of the OpenStudio tool suite (http://openstudio.nrel.gov) and demonstrates its use in several contexts. Two classes of scripts are described and demonstrated: measures and free-form scripts. Measures are small, single-purpose scripts that conform to a predefined interface. Because measures are fairly simple, they can be written or modified by inexperienced programmers.

  6. Building Information Modelling for Smart Built Environments

    Directory of Open Access Journals (Sweden)

    Jianchao Zhang

    2015-01-01

    Full Text Available Building information modelling (BIM provides architectural 3D visualization and a standardized way to share and exchange building information. Recently, there has been an increasing interest in using BIM, not only for design and construction, but also the post-construction management of the built facility. With the emergence of smart built environment (SBE technology, which embeds most spaces with smart objects to enhance the building’s efficiency, security and comfort of its occupants, there is a need to understand and address the challenges BIM faces in the design, construction and management of future smart buildings. In this paper, we investigate how BIM can contribute to the development of SBE. Since BIM is designed to host information of the building throughout its life cycle, our investigation has covered phases from architecture design to facility management. Firstly, we extend BIM for the design phase to provide material/device profiling and the information exchange interface for various smart objects. Next, we propose a three-layer verification framework to assist BIM users in identifying possible defects in their SBE design. For the post-construction phase, we have designed a facility management tool to provide advanced energy management of smart grid-connected SBEs, where smart objects, as well as distributed energy resources (DERs are deployed.

  7. Modelling and controlling hydropower plants

    CERN Document Server

    Munoz-Hernandez, German Ardul; Jones, Dewi Ieuan

    2013-01-01

    Hydroelectric power stations are a major source of electricity around the world; understanding their dynamics is crucial to achieving good performance.  Modelling and Controlling Hydropower Plants discusses practical and well-documented cases of modelling and controlling hydropower station modelling and control, focussing on a pumped storage scheme based in Dinorwig, North Wales.  Single-input-single-output and multiple-input-multiple-output models, which cover the linear and nonlinear characteristics of pump-storage hydroelectric power stations, are reviewed. The most important dynamic features are discussed, and the verification of these models by hardware in the loop simulation is described. To show how the performance of a pump-storage hydroelectric power station can be improved, classical and modern controllers are applied to simulated models of the Dinorwig power plant. These include PID, fuzzy approximation, feed-forward and model-based predictive control with linear and hybrid prediction models. Mod...

  8. Modeling golden section in plants

    Institute of Scientific and Technical Information of China (English)

    Lanling Zeng; Guozhao Wang

    2009-01-01

    Plants are complex structures, changing their shapes in response to environmental factors such as sunlight, water and neighboring plants. However, some mathematical rules can be found in their growth patterns, one of which is the golden section. The golden section can be observed in branching systems, phyllotaxis, flowers and seeds, and often the spiral arrangement of plant organs. In this study, tree, flower and fruit models have been generated by using the corresponding golden section characteristics, resulting in more natural patterns. Furthermore, the golden section can be found in the bifurcate angles of trees and lobed leaves, extending the golden section theory.

  9. Building information models for astronomy projects

    Science.gov (United States)

    Ariño, Javier; Murga, Gaizka; Campo, Ramón; Eletxigerra, Iñigo; Ampuero, Pedro

    2012-09-01

    A Building Information Model is a digital representation of physical and functional characteristics of a building. BIMs represent the geometrical characteristics of the Building, but also properties like bills of quantities, definition of COTS components, status of material in the different stages of the project, project economic data, etc. The BIM methodology, which is well established in the Architecture Engineering and Construction (AEC) domain for conventional buildings, has been brought one step forward in its application for Astronomical/Scientific facilities. In these facilities steel/concrete structures have high dynamic and seismic requirements, M&E installations are complex and there is a large amount of special equipment and mechanisms involved as a fundamental part of the facility. The detail design definition is typically implemented by different design teams in specialized design software packages. In order to allow the coordinated work of different engineering teams, the overall model, and its associated engineering database, is progressively integrated using a coordination and roaming software which can be used before starting construction phase for checking interferences, planning the construction sequence, studying maintenance operation, reporting to the project office, etc. This integrated design & construction approach will allow to efficiently plan construction sequence (4D). This is a powerful tool to study and analyze in detail alternative construction sequences and ideally coordinate the work of different construction teams. In addition engineering, construction and operational database can be linked to the virtual model (6D), what gives to the end users a invaluable tool for the lifecycle management, as all the facility information can be easily accessed, added or replaced. This paper presents the BIM methodology as implemented by IDOM with the E-ELT and ATST Enclosures as application examples.

  10. Building Chaotic Model From Incomplete Time Series

    Science.gov (United States)

    Siek, Michael; Solomatine, Dimitri

    2010-05-01

    This paper presents a number of novel techniques for building a predictive chaotic model from incomplete time series. A predictive chaotic model is built by reconstructing the time-delayed phase space from observed time series and the prediction is made by a global model or adaptive local models based on the dynamical neighbors found in the reconstructed phase space. In general, the building of any data-driven models depends on the completeness and quality of the data itself. However, the completeness of the data availability can not always be guaranteed since the measurement or data transmission is intermittently not working properly due to some reasons. We propose two main solutions dealing with incomplete time series: using imputing and non-imputing methods. For imputing methods, we utilized the interpolation methods (weighted sum of linear interpolations, Bayesian principle component analysis and cubic spline interpolation) and predictive models (neural network, kernel machine, chaotic model) for estimating the missing values. After imputing the missing values, the phase space reconstruction and chaotic model prediction are executed as a standard procedure. For non-imputing methods, we reconstructed the time-delayed phase space from observed time series with missing values. This reconstruction results in non-continuous trajectories. However, the local model prediction can still be made from the other dynamical neighbors reconstructed from non-missing values. We implemented and tested these methods to construct a chaotic model for predicting storm surges at Hoek van Holland as the entrance of Rotterdam Port. The hourly surge time series is available for duration of 1990-1996. For measuring the performance of the proposed methods, a synthetic time series with missing values generated by a particular random variable to the original (complete) time series is utilized. There exist two main performance measures used in this work: (1) error measures between the actual

  11. 3D modeling of buildings outstanding sites

    CERN Document Server

    Héno, Rapha?le

    2014-01-01

    Conventional topographic databases, obtained by capture on aerial or spatial images provide a simplified 3D modeling of our urban environment, answering the needs of numerous applications (development, risk prevention, mobility management, etc.). However, when we have to represent and analyze more complex sites (monuments, civil engineering works, archeological sites, etc.), these models no longer suffice and other acquisition and processing means have to be implemented. This book focuses on the study of adapted lifting means for "notable buildings". The methods tackled in this book cover las

  12. Virtual Plant Tissue: Building Blocks for Next-Generation Plant Growth Simulation.

    Science.gov (United States)

    De Vos, Dirk; Dzhurakhalov, Abdiravuf; Stijven, Sean; Klosiewicz, Przemyslaw; Beemster, Gerrit T S; Broeckhove, Jan

    2017-01-01

    Motivation: Computational modeling of plant developmental processes is becoming increasingly important. Cellular resolution plant tissue simulators have been developed, yet they are typically describing physiological processes in an isolated way, strongly delimited in space and time. Results: With plant systems biology moving toward an integrative perspective on development we have built the Virtual Plant Tissue (VPTissue) package to couple functional modules or models in the same framework and across different frameworks. Multiple levels of model integration and coordination enable combining existing and new models from different sources, with diverse options in terms of input/output. Besides the core simulator the toolset also comprises a tissue editor for manipulating tissue geometry and cell, wall, and node attributes in an interactive manner. A parameter exploration tool is available to study parameter dependence of simulation results by distributing calculations over multiple systems. Availability: Virtual Plant Tissue is available as open source (EUPL license) on Bitbucket (https://bitbucket.org/vptissue/vptissue). The project has a website https://vptissue.bitbucket.io.

  13. Methodology for Modeling Building Energy Performance across the Commercial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  14. Modeling of solar polygeneration plant

    Science.gov (United States)

    Leiva, Roberto; Escobar, Rodrigo; Cardemil, José

    2017-06-01

    In this work, a exergoeconomic analysis of the joint production of electricity, fresh water, cooling and process heat for a simulated concentrated solar power (CSP) based on parabolic trough collector (PTC) with thermal energy storage (TES) and backup energy system (BS), a multi-effect distillation (MED) module, a refrigeration absorption module, and process heat module is carried out. Polygeneration plant is simulated in northern Chile in Crucero with a yearly total DNI of 3,389 kWh/m2/year. The methodology includes designing and modeling a polygeneration plant and applying exergoeconomic evaluations and calculating levelized cost. Solar polygeneration plant is simulated hourly, in a typical meteorological year, for different solar multiple and hour of storage. This study reveals that the total exergy cost rate of products (sum of exergy cost rate of electricity, water, cooling and heat process) is an alternative method to optimize a solar polygeneration plant.

  15. Automatic Generation of 3D Building Models with Multiple Roofs

    Institute of Scientific and Technical Information of China (English)

    Kenichi Sugihara; Yoshitugu Hayashi

    2008-01-01

    Based on building footprints (building polygons) on digital maps, we are proposing the GIS and CG integrated system that automatically generates 3D building models with multiple roofs. Most building polygons' edges meet at right angles (orthogonal polygon). The integrated system partitions orthogonal building polygons into a set of rectangles and places rectangular roofs and box-shaped building bodies on these rectangles. In order to partition an orthogonal polygon, we proposed a useful polygon expression in deciding from which vertex a dividing line is drawn. In this paper, we propose a new scheme for partitioning building polygons and show the process of creating 3D roof models.

  16. Lipid Processing Technology: Building a Multilevel Modeling Network

    DEFF Research Database (Denmark)

    Diaz Tovar, Carlos Axel; Mustaffa, Azizul Azri; Hukkerikar, Amol

    of these unit operations with respect to performance parameters such as minimum total cost, product yield improvement, operability etc., and process intensification for the retrofit of existing biofuel plants. In the fourth level the information and models developed are used as building blocks...... in the upcoming years major challenges in terms of design and development of better products and more sustainable processes. Although the oleo chemical industry is mature and based on well established processes, the complex systems that lipid compounds form, the lack of accurate predictive models...... for their physical properties and unit operation models for their processing have limited computeraided methods and tools for process synthesis, modeling and simulation to be widely used for design, analysis, and optimization of these processes. In consequence, the aim of this work is to present the development...

  17. Modeling pollutant penetration across building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, De-Ling; Nazaroff, William W.

    2001-04-01

    As air infiltrates through unintentional openings in building envelopes, pollutants may interact with adjacent surfaces. Such interactions can alter human exposure to air pollutants of outdoor origin. We present modeling explorations of the proportion of particles and reactive gases (e.g., ozone) that penetrate building envelopes as air enters through cracks and wall cavities. Calculations were performed for idealized rectangular cracks, assuming regular geometry, smooth inner crack surface and steady airflow. Particles of 0.1-1.0 {micro}m diameter are predicted to have the highest penetration efficiency, nearly unity for crack heights of 0.25 mm or larger, assuming a pressure difference of 4 Pa or greater and a flow path length of 3 cm or less. Supermicron and ultrafine particles are significantly removed by means of gravitational settling and Brownian diffusion, respectively. In addition to crack geometry, ozone penetration depends on its reactivity with crack surfaces, as parameterized by the reaction probability. For reaction probabilities less than {approx}10{sup -5}, penetration is complete for cracks heights greater than 1 mm. However, penetration through mm scale cracks is small if the reaction probability is {approx}10{sup -4} or greater. For wall cavities, fiberglass insulation is an efficient particle filter, but particles would penetrate efficiently through uninsulated wall cavities or through insulated cavities with significant airflow bypass. The ozone reaction probability on fiberglass fibers was measured to be 10{sup -7} for fibers previously exposed to high ozone levels and 6 x 10{sup -6} for unexposed fibers. Over this range, ozone penetration through fiberglass insulation would vary from >90% to {approx}10-40%. Thus, under many conditions penetration is high; however, there are realistic circumstances in which building envelopes can provide substantial pollutant removal. Not enough is yet known about the detailed nature of pollutant penetration

  18. Iterative build OMIT maps: Map improvement by iterative model-building and refinement without model bias

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720, USA; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, England; Terwilliger, Thomas; Terwilliger, T.C.; Grosse-Kunstleve, Ralf Wilhelm; Afonine, P.V.; Moriarty, N.W.; Zwart, P.H.; Hung, L.-W.; Read, R.J.; Adams, P.D.

    2008-02-12

    A procedure for carrying out iterative model-building, density modification and refinement is presented in which the density in an OMIT region is essentially unbiased by an atomic model. Density from a set of overlapping OMIT regions can be combined to create a composite 'Iterative-Build' OMIT map that is everywhere unbiased by an atomic model but also everywhere benefiting from the model-based information present elsewhere in the unit cell. The procedure may have applications in the validation of specific features in atomic models as well as in overall model validation. The procedure is demonstrated with a molecular replacement structure and with an experimentally-phased structure, and a variation on the method is demonstrated by removing model bias from a structure from the Protein Data Bank.

  19. A focus on building information modelling.

    Science.gov (United States)

    Ryan, Alison

    2014-03-01

    With the Government Construction Strategy requiring a strengthening of the public sector's capability to implement Building Information Modelling (BIM) protocols, the goal being that all central government departments will be adopting, as a minimum, collaborative Level 2 BIM by 2016, Alison Ryan, of consulting engineers, DSSR, explains the principles behind BIM, its history and evolution, and some of the considerable benefits it can offer. These include lowering capital project costs through enhanced co-ordination, cutting carbon emissions, and the ability to manage facilities more efficiently.

  20. Le soluzioni Building Information Modeling di Bentley

    Directory of Open Access Journals (Sweden)

    Fulvio Bernardini

    2007-04-01

    Full Text Available La questione dell’interoperabilità dei dati negli ultimi anni è stata continuamente dibattuta dai professionisti dei vari settori. L’edilizia col suo ciclo di vita non hanno fatto eccezione e da quando il concetto di Building Information Modeling (BIM ha fatto il suo ingresso nel mondo dell’architettura, dell’ingegneria e delle costruzioni (AEC, le fasi inerenti il processo del buildingnon sono più state considerate separatamente. Bentley Systems, da sempre attiva nel settore delle infrastrutture, propone un’ampia gamma di soluzioni studiate proprio per coprire questo bisogno.

  1. Modelling seasonality in Australian building approvals

    Directory of Open Access Journals (Sweden)

    Harry M Karamujic

    2012-02-01

    Full Text Available The paper examines the impact of seasonal influences on Australian housing approvals, represented by the State of Victoria[1] building approvals for new houses (BANHs. The prime objective of BANHs is to provide timely estimates of future residential building work. Due to the relevance of the residential property sector to the property sector as whole, BANHs are viewed by economic analysts and commentators as a leading indicator of property sector investment and as such the general level of economic activity and employment. The generic objective of the study is to enhance the practice of modelling housing variables. In particular, the study seeks to cast some additional light on modelling the seasonal behaviour of BANHs by: (i establishing the presence, or otherwise, of seasonality in Victorian BANHs; (ii if present, ascertaining is it deterministic or stochastic; (iii determining out of sample forecasting capabilities of the considered modelling specifications; and (iv speculating on possible interpretation of the results. To do so the study utilises a structural time series model of Harwey (1989. The modelling results confirm that the modelling specification allowing for stochastic trend and deterministic seasonality performs best in terms of diagnostic tests and goodness of fit measures. This is corroborated with the analysis of out of sample forecasting capabilities of the considered modelling specifications, which showed that the models with deterministic seasonal specification exhibit superior forecasting capabilities. The paper also demonstrates that if time series are characterized by either stochastic trend or seasonality, the conventional modelling approach[2] is bound to be mis-specified i.e. would not be able to identify statistically significant seasonality in time series.According to the selected modeling specification, factors corresponding to June, April, December and November are found to be significant at five per cent level

  2. CERN awards "Gold CMS Award" to Savyolovsk machine-building Plant

    CERN Multimedia

    2007-01-01

    "The contribution pf Savyolovsk machine-building Plant OJSC into the international program to develop an CMS unit was recognized by the European Nuclear Research Center with "Gold Prize"for 2007. (1 small paragraph)

  3. Building a Democratic Model of Science Teaching

    Directory of Open Access Journals (Sweden)

    Suhadi Ibnu

    2016-02-01

    Full Text Available Earlier in the last century, learning in science, as was learning in other disciplines, was developed according to the philosophy of behaviorism. This did not serve the purposes of learning in science properly, as the students were forced to absorb information transferred from the main and the only source of learning, the teacher. Towards the end of the century a significant shift from behaviorism to constructivism philosophy took place. The shift promoted the development of more democratic models of learning in science which provided greater opportunities to the students to act as real scientist, chattering for the building of knowledge and scientific skills. Considering the characteristics of science and the characteristics of the students as active learners, the shift towards democratic models of learning is unavoidable and is merely a matter of time

  4. Building information modelling (BIM: now and beyond

    Directory of Open Access Journals (Sweden)

    Salman Azhar

    2012-12-01

    Full Text Available Building Information Modeling (BIM, also called n-D Modeling or Virtual Prototyping Technology, is a revolutionary development that is quickly reshaping the Architecture-Engineering-Construction (AEC industry. BIM is both a technology and a process. The technology component of BIM helps project stakeholders to visualize what is to be built in a simulated environment to identify any potential design, construction or operational issues. The process component enables close collaboration and encourages integration of the roles of all stakeholders on a project. The paper presents an overview of BIM with focus on its core concepts, applications in the project life cycle and benefits for project stakeholders with the help of case studies. The paper also elaborates risks and barriers to BIM implementation and future trends.

  5. Building information modelling (BIM: now and beyond

    Directory of Open Access Journals (Sweden)

    Salman Azhar

    2015-10-01

    Full Text Available Building Information Modeling (BIM, also called n-D Modeling or Virtual Prototyping Technology, is a revolutionary development that is quickly reshaping the Architecture-Engineering-Construction (AEC industry. BIM is both a technology and a process. The technology component of BIM helps project stakeholders to visualize what is to be built in a simulated environment to identify any potential design, construction or operational issues. The process component enables close collaboration and encourages integration of the roles of all stakeholders on a project. The paper presents an overview of BIM with focus on its core concepts, applications in the project life cycle and benefits for project stakeholders with the help of case studies. The paper also elaborates risks and barriers to BIM implementation and future trends.

  6. A Team Building Model for Software Engineering Courses Term Projects

    Science.gov (United States)

    Sahin, Yasar Guneri

    2011-01-01

    This paper proposes a new model for team building, which enables teachers to build coherent teams rapidly and fairly for the term projects of software engineering courses. Moreover, the model can also be used to build teams for any type of project, if the team member candidates are students, or if they are inexperienced on a certain subject. The…

  7. A Team Building Model for Software Engineering Courses Term Projects

    Science.gov (United States)

    Sahin, Yasar Guneri

    2011-01-01

    This paper proposes a new model for team building, which enables teachers to build coherent teams rapidly and fairly for the term projects of software engineering courses. Moreover, the model can also be used to build teams for any type of project, if the team member candidates are students, or if they are inexperienced on a certain subject. The…

  8. Energy modeling of two office buildings with data center for green building design

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yiqun; Yin, Rongxin; Huang, Zhizhong [Institute of Building Performance and Technology, Sino-German College of Applied Sciences, Tongji University, Shanghai 200092 (China)

    2008-07-01

    Energy simulation models are developed with EnergyPlus for two office buildings in a R and D center in Shanghai, China to evaluate the energy cost savings of green building design options compared with the baseline building. As a R and D center of an international IT corporation, there are data centers in the two buildings, which make them different from typical office buildings. The data centers house high energy consuming IT equipments and need 24 h air-conditioning every day all year round. In order to achieve energy cost savings, multiple energy efficiency strategies are employed for design proposed building, encompassing high performance building envelope, lighting system, and HVAC system. Through energy modeling, the design proposed options are compared to an ASHRAE 90.1-2004 compliant budget model to highlight energy cost savings versus ''standard practice'' and show the potential LEED trademark Credit EA1 - Optimize Energy Performance. Meanwhile, they are also compared to China Code model to figure out the energy cost savings versus the most popular practice conforming to China Public Building Energy Saving Design Standard. The whole building energy simulation results show that the yearly energy cost saving of the proposed design will be approximately 27% from China Code building and 21% from ASHRAE budget building, which can achieve 4 points for LEED credit due to energy performance optimization. (author)

  9. LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.

    Directory of Open Access Journals (Sweden)

    Kara R Lind

    Full Text Available LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

  10. LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.

    Science.gov (United States)

    Lind, Kara R; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico

    2014-01-01

    LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

  11. Structural evaluation of existing plutonium buildings and auxiliary structures at Rocky Flats Plant

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    Existing plutonium handling and storage buildings at the DOE Rocky Flats Plant were evaluated for their structural resistance to seismic, tornado, and extreme wind loadings and the impact of tornado-driven missiles. This report presents the summary results of the study for all the buildings included in the study and makes preliminary general recommendations for upgrading where needed. Detailed analyses and backup calculations performed for the several buildings are presented in separate reports.

  12. Building information modeling based on intelligent parametric technology

    Institute of Scientific and Technical Information of China (English)

    ZENG Xudong; TAN Jie

    2007-01-01

    In order to push the information organization process of the building industry,promote sustainable architectural design and enhance the competitiveness of China's building industry,the author studies building information modeling (BIM) based on intelligent parametric modeling technology.Building information modeling is a new technology in the field of computer aided architectural design,which contains not only geometric data,but also the great amount of engineering data throughout the lifecycle of a building.The author also compares BIM technology with two-dimensional CAD technology,and demonstrates the advantages and characteristics of intelligent parametric modeling technology.Building information modeling,which is based on intelligent parametric modeling technology,will certainly replace traditional computer aided architectural design and become the new driving force to push forward China's building industry in this information age.

  13. Modeling and Simulation of Multi-Room Buildings

    Directory of Open Access Journals (Sweden)

    D.W.U. Perera

    2016-04-01

    Full Text Available Buildings are one of the largest energy consumers in the world which accounts for nearly 40% of the total global energy consumption. In the countries where cold climate conditions predominate, space heating is the key contributor to the increased energy consumption. Today there is a growing trend to use Building Energy Management Systems (BEMS to control the energy consumption of buildings in an efficient manner. BEMS require a good heating model of the building to be integrated for better control purposes. This article refers to the development of different types of physics based buillding heating models, regarding single-zone, multi-floor and multi-room buildings. They address the propriety of each model in building heating control concerning the prediction accuracy and the prediction time. These models are verified for a residential building having three floors. According to the results, the multi-floor model is recognized to have the best qualifications obliged as a model for control.

  14. LFRic: Building a new Unified Model

    Science.gov (United States)

    Melvin, Thomas; Mullerworth, Steve; Ford, Rupert; Maynard, Chris; Hobson, Mike

    2017-04-01

    The LFRic project, named for Lewis Fry Richardson, aims to develop a replacement for the Met Office Unified Model in order to meet the challenges which will be presented by the next generation of exascale supercomputers. This project, a collaboration between the Met Office, STFC Daresbury and the University of Manchester, builds on the earlier GungHo project to redesign the dynamical core, in partnership with NERC. The new atmospheric model aims to retain the performance of the current ENDGame dynamical core and associated subgrid physics, while also enabling a far greater scalability and flexibility to accommodate future supercomputer architectures. Design of the model revolves around a principle of a 'separation of concerns', whereby the natural science aspects of the code can be developed without worrying about the underlying architecture, while machine dependent optimisations can be carried out at a high level. These principles are put into practice through the development of an autogenerated Parallel Systems software layer (known as the PSy layer) using a domain-specific compiler called PSyclone. The prototype model includes a re-write of the dynamical core using a mixed finite element method, in which different function spaces are used to represent the various fields. It is able to run in parallel with MPI and OpenMP and has been tested on over 200,000 cores. In this talk an overview of the both the natural science and computational science implementations of the model will be presented.

  15. Mathematical Modelling Plant Signalling Networks

    KAUST Repository

    Muraro, D.

    2013-01-01

    During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.

  16. Systematic model building with flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Plentinger, Florian

    2009-12-19

    The observation of neutrino masses and lepton mixing has highlighted the incompleteness of the Standard Model of particle physics. In conjunction with this discovery, new questions arise: why are the neutrino masses so small, which form has their mass hierarchy, why is the mixing in the quark and lepton sectors so different or what is the structure of the Higgs sector. In order to address these issues and to predict future experimental results, different approaches are considered. One particularly interesting possibility, are Grand Unified Theories such as SU(5) or SO(10). GUTs are vertical symmetries since they unify the SM particles into multiplets and usually predict new particles which can naturally explain the smallness of the neutrino masses via the seesaw mechanism. On the other hand, also horizontal symmetries, i.e., flavor symmetries, acting on the generation space of the SM particles, are promising. They can serve as an explanation for the quark and lepton mass hierarchies as well as for the different mixings in the quark and lepton sectors. In addition, flavor symmetries are significantly involved in the Higgs sector and predict certain forms of mass matrices. This high predictivity makes GUTs and flavor symmetries interesting for both, theorists and experimentalists. These extensions of the SM can be also combined with theories such as supersymmetry or extra dimensions. In addition, they usually have implications on the observed matter-antimatter asymmetry of the universe or can provide a dark matter candidate. In general, they also predict the lepton flavor violating rare decays {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma}, and {tau} {yields} e{gamma} which are strongly bounded by experiments but might be observed in the future. In this thesis, we combine all of these approaches, i.e., GUTs, the seesaw mechanism and flavor symmetries. Moreover, our request is to develop and perform a systematic model building approach with flavor symmetries and

  17. Modeling and dynamic behaviour of hydropower plants

    CERN Document Server

    Kishor, Nand

    2017-01-01

    This book presents a systematic approach to mathematical modeling of different configurations of hydropower plants over four sections - modeling and simulation approaches; control of hydropower plants; operation and scheduling of hydropower plants, including pumped storage; and special features of small hydropower plants.

  18. Modelling meristem development in plants

    OpenAIRE

    Heisler, Marcus G.; Jönsson, Henrik

    2007-01-01

    Meristems continually supply new cells for post-embryonic plant development and coordinate the initiation of new organs, such as leaves and flowers. Meristem function is regulated by a large and interconnected dynamic system that includes transcription networks, intercellular protein signalling, polarized transport of hormones and a constantly changing cellular topology. Mathematical modelling, in which the dynamics of a system are simulated using explicitly defined interactions, can serve as...

  19. Building Information Modeling in engineering teaching

    DEFF Research Database (Denmark)

    Andersson, Niclas; Andersson, Pernille Hammar

    2010-01-01

    The application of Information and Communication Technology (ICT) in construction supports business as well as project processes by providing integrated systems for communication, administration, quantity takeoff, time scheduling, cost estimating, progress control among other things. The rapid...... technological development of ICT systems and the increased application of ICT in industry significantly influence the management and organisation of construction projects, and consequently, ICT has implications for the education of engineers and the preparation of students for their future professional careers...... in this case is represented by adopting Building Information Modelling, BIM, for construction management purposes. Course evaluations, a questionnaire and discussions with students confirm a genuinely positive attitude towards the role-play simulation and interaction with industry professionals. The students...

  20. Field Guide to Plant Model Systems.

    Science.gov (United States)

    Chang, Caren; Bowman, John L; Meyerowitz, Elliot M

    2016-10-06

    For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photosynthesize differently. Empowered by the availability of large-scale sequencing and new technologies for investigating gene function, many new plant models are being proposed and studied. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Advances in Multi-Sensor Scanning and Visualization of Complex Plants: the Utmost Case of a Reactor Building

    Science.gov (United States)

    Hullo, J.-F.; Thibault, G.; Boucheny, C.

    2015-02-01

    In a context of increased maintenance operations and workers generational renewal, a nuclear owner and operator like Electricité de France (EDF) is interested in the scaling up of tools and methods of "as-built virtual reality" for larger buildings and wider audiences. However, acquisition and sharing of as-built data on a large scale (large and complex multi-floored buildings) challenge current scientific and technical capacities. In this paper, we first present a state of the art of scanning tools and methods for industrial plants with very complex architecture. Then, we introduce the inner characteristics of the multi-sensor scanning and visualization of the interior of the most complex building of a power plant: a nuclear reactor building. We introduce several developments that made possible a first complete survey of such a large building, from acquisition, processing and fusion of multiple data sources (3D laser scans, total-station survey, RGB panoramic, 2D floor plans, 3D CAD as-built models). In addition, we present the concepts of a smart application developed for the painless exploration of the whole dataset. The goal of this application is to help professionals, unfamiliar with the manipulation of such datasets, to take into account spatial constraints induced by the building complexity while preparing maintenance operations. Finally, we discuss the main feedbacks of this large experiment, the remaining issues for the generalization of such large scale surveys and the future technical and scientific challenges in the field of industrial "virtual reality".

  2. Potential energy savings in buildings by an urban tree planting programme in California

    Science.gov (United States)

    E.G. McPherson; J.R. Simpson

    2003-01-01

    Tree canopy cover data from aerial photographs and building energy simulations were applied to estimate energy savings from existing trees and new plantings in California. There are approximately 177.3 million energy-conserving trees in California communities and 241.6 million empty planting sites. Existing trees are projected to reduce annual air conditioning energy...

  3. How promotions work : SCAN*PRO-based evolutionary model building

    NARCIS (Netherlands)

    van Heerde, H.J.; Leeflang, P.S.H.; Wittink, D.R.

    2002-01-01

    We provide a rationale for evolutionary model building. The basic idea is that to enhance user acceptance it is important that one begins with a relatively simple model. Simplicity is desired so that managers understand models. As a manager uses the model and builds up experience with this decision

  4. Geometry model construction in infrared image theory simulation of buildings

    Institute of Scientific and Technical Information of China (English)

    谢鸣; 李玉秀; 徐辉; 谈和平

    2004-01-01

    Geometric model construction is the basis of infrared image theory simulation. Taking the construction of the geometric model of one building in Harbin as an example, this paper analyzes the theoretical groundings of simplification and principles of geometric model construction of buildings. It then discusses some particular treatment methods in calculating the radiation transfer coefficient in geometric model construction using the Monte Carlo Method.

  5. A geodynamic model of Andean mountain building

    Science.gov (United States)

    Schellart, Wouter P.

    2017-04-01

    The Andes mountain range in South America is the longest in the world and is unique in that it has formed at a subduction zone and not at a continent-continent collision zone. The mountain range has formed due to overriding plate shortening since the Late Cretaceous, and its origin and the driving mechanism(s) responsible for its formation remain a topic of intense debate. Here I present a buoyancy-driven geodynamic model of South American-style subduction, mantle flow and overriding plate deformation, illustrating how subduction-induced mantle flow drives overriding plate deformation. The model reproduces several first-order characteristics of the Andes, including major crustal thickening (up to double the initial crustal thickness) and hundreds of km of east-west shortening in the Central Andes, as well as a slab geometry that is comparable to that of the Nazca slab below the Central Andes. Ultimately, the geodynamic model shows that subduction-induced mantle flow is responsible for Andean-style mountain building.

  6. JCCL to Build Copper Plant in Zengcheng City

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>On August 17, Jiangxi Copper Company Lim-ited (JCCL) and Zengcheng City signed an agreement to build a copper project in the Zengcheng Economy and Technology Devel-opment Zone. Representatives from both sides including Zeng Chiming, a member of the Standing Committee of CPC Zengcheng Mu-

  7. Building groundwater modeling capacity in Mongolia

    Science.gov (United States)

    Valder, Joshua F.; Carter, Janet M.; Anderson, Mark T.; Davis, Kyle W.; Haynes, Michelle A.; Dorjsuren Dechinlhundev,

    2016-06-16

    Ulaanbaatar, the capital city of Mongolia (fig. 1), is dependent on groundwater for its municipal and industrial water supply. The population of Mongolia is about 3 million people, with about one-half the population residing in or near Ulaanbaatar (World Population Review, 2016). Groundwater is drawn from a network of shallow wells in an alluvial aquifer along the Tuul River. Evidence indicates that current water use may not be sustainable from existing water sources, especially when factoring the projected water demand from a rapidly growing urban population (Ministry of Environment and Green Development, 2013). In response, the Government of Mongolia Ministry of Environment, Green Development, and Tourism (MEGDT) and the Freshwater Institute, Mongolia, requested technical assistance on groundwater modeling through the U.S. Army Corps of Engineers (USACE) to the U.S. Geological Survey (USGS). Scientists from the USGS and USACE provided two workshops in 2015 to Mongolian hydrology experts on basic principles of groundwater modeling using the USGS groundwater modeling program MODFLOW-2005 (Harbaugh, 2005). The purpose of the workshops was to bring together representatives from the Government of Mongolia, local universities, technical experts, and other key stakeholders to build in-country capacity in hydrogeology and groundwater modeling.A preliminary steady-state groundwater-flow model was developed as part of the workshops to demonstrate groundwater modeling techniques to simulate groundwater conditions in alluvial deposits along the Tuul River in the vicinity of Ulaanbaatar. ModelMuse (Winston, 2009) was used as the graphical user interface for MODFLOW for training purposes during the workshops. Basic and advanced groundwater modeling concepts included in the workshops were groundwater principles; estimating hydraulic properties; developing model grids, data sets, and MODFLOW input files; and viewing and evaluating MODFLOW output files. A key to success was

  8. Optimizing Energy Consumption in Building Designs Using Building Information Model (BIM)

    Science.gov (United States)

    Egwunatum, Samuel; Joseph-Akwara, Esther; Akaigwe, Richard

    2016-09-01

    Given the ability of a Building Information Model (BIM) to serve as a multi-disciplinary data repository, this paper seeks to explore and exploit the sustainability value of Building Information Modelling/models in delivering buildings that require less energy for their operation, emit less CO2 and at the same time provide a comfortable living environment for their occupants. This objective was achieved by a critical and extensive review of the literature covering: (1) building energy consumption, (2) building energy performance and analysis, and (3) building information modeling and energy assessment. The literature cited in this paper showed that linking an energy analysis tool with a BIM model helped project design teams to predict and create optimized energy consumption. To validate this finding, an in-depth analysis was carried out on a completed BIM integrated construction project using the Arboleda Project in the Dominican Republic. The findings showed that the BIM-based energy analysis helped the design team achieve the world's first 103% positive energy building. From the research findings, the paper concludes that linking an energy analysis tool with a BIM model helps to expedite the energy analysis process, provide more detailed and accurate results as well as deliver energy-efficient buildings. The study further recommends that the adoption of a level 2 BIM and the integration of BIM in energy optimization analyse should be made compulsory for all projects irrespective of the method of procurement (government-funded or otherwise) or its size.

  9. Optimizing Energy Consumption in Building Designs Using Building Information Model (BIM

    Directory of Open Access Journals (Sweden)

    Egwunatum Samuel

    2016-09-01

    Full Text Available Given the ability of a Building Information Model (BIM to serve as a multi-disciplinary data repository, this paper seeks to explore and exploit the sustainability value of Building Information Modelling/models in delivering buildings that require less energy for their operation, emit less CO2 and at the same time provide a comfortable living environment for their occupants. This objective was achieved by a critical and extensive review of the literature covering: (1 building energy consumption, (2 building energy performance and analysis, and (3 building information modeling and energy assessment. The literature cited in this paper showed that linking an energy analysis tool with a BIM model helped project design teams to predict and create optimized energy consumption. To validate this finding, an in-depth analysis was carried out on a completed BIM integrated construction project using the Arboleda Project in the Dominican Republic. The findings showed that the BIM-based energy analysis helped the design team achieve the world’s first 103% positive energy building. From the research findings, the paper concludes that linking an energy analysis tool with a BIM model helps to expedite the energy analysis process, provide more detailed and accurate results as well as deliver energy-efficient buildings. The study further recommends that the adoption of a level 2 BIM and the integration of BIM in energy optimization analyse should be made compulsory for all projects irrespective of the method of procurement (government-funded or otherwise or its size.

  10. Implementation of Models for Building Envelope Air Flow Fields in a Whole Building Hygrothermal Simulation Tool

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2009-01-01

    Simulation tools are becoming available which predict the heat and moisture conditions in the indoor environment as well as in the envelope of buildings, and thus it has become possible to consider the important interaction between the different components of buildings and the different physical...... phenomena which occur. However, there is still room for further development of such tools. This paper will present an attempt to integrate modelling of air flows in building envelopes into a whole building hygrothermal simulation tool. Two kinds of air flows have been considered: 1. Air flow in ventilated...... cavity such as in the exterior cladding of building envelopes, i.e. a flow which is parallel to the construction plane. 2. Infiltration/exfiltration of air through the building envelope, i.e. a flow which is perpendicular to the construction plane. The new models make it possible to predict the thermal...

  11. Construction Cost Prediction by Using Building Information Modeling

    National Research Council Canada - National Science Library

    Remon F. Aziz

    2015-01-01

    The increased interest in using Building Information Modeling (BIM) in detailed construction cost estimates calls for methodologies to evaluate the effectiveness of BIM-Assisted Detailed Estimating (BADE...

  12. A View on Future Building System Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  13. Plant memory: a tentative model.

    Science.gov (United States)

    Thellier, M; Lüttge, U

    2013-01-01

    All memory functions have molecular bases, namely in signal reception and transduction, and in storage and recall of information. Thus, at all levels of organisation living organisms have some kind of memory. In plants one may distinguish two types. There are linear pathways from reception of signals and propagation of effectors to a type of memory that may be described by terms such as learning, habituation or priming. There is a storage and recall memory based on a complex network of elements with a high degree of integration and feedback. The most important elements envisaged are calcium waves, epigenetic modifications of DNA and histones, and regulation of timing via a biological clock. Experiments are described that document the occurrence of the two sorts of memory and which show how they can be distinguished. A schematic model of plant memory is derived as emergent from integration of the various modules. Possessing the two forms of memory supports the fitness of plants in response to environmental stimuli and stress.

  14. Understanding obsolescence: a conceptual model for buildings

    NARCIS (Netherlands)

    Thomsen, A.; Van der Flier, K.

    2011-01-01

    What is obsolescence? Numerous older buildings have been demolished due to being labelled as obsolete. There is a general understanding that buildings, similar to machinery and durable consumer goods, should be demolished and replaced when they become obsolete. The truth of this assertion is examine

  15. Understanding obsolescence: a conceptual model for buildings

    NARCIS (Netherlands)

    Thomsen, A.; Van der Flier, K.

    2011-01-01

    What is obsolescence? Numerous older buildings have been demolished due to being labelled as obsolete. There is a general understanding that buildings, similar to machinery and durable consumer goods, should be demolished and replaced when they become obsolete. The truth of this assertion is

  16. Iterative model-building, structure refinement, and density modification with the PHENIX AutoBuild Wizard

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720, USA; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, England; Terwilliger, Thomas; Terwilliger, T.C.; Grosse-Kunstleve, Ralf Wilhelm; Afonine, P.V.; Moriarty, N.W.; Zwart, P.H.; Hung, L.-W.; Read, R.J.; Adams, P.D.

    2007-04-29

    The PHENIX AutoBuild Wizard is a highly automated tool for iterative model-building, structure refinement and density modification using RESOLVE or TEXTAL model-building, RESOLVE statistical density modification, and phenix.refine structure refinement. Recent advances in the AutoBuild Wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model completion algorithms, and automated solvent molecule picking. Model completion algorithms in the AutoBuild Wizard include loop-building, crossovers between chains in different models of a structure, and side-chain optimization. The AutoBuild Wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 {angstrom} to 3.2 {angstrom}, resulting in a mean R-factor of 0.24 and a mean free R factor of 0.29. The R-factor of the final model is dependent on the quality of the starting electron density, and relatively independent of resolution.

  17. Building Energy Modeling: A Data-Driven Approach

    Science.gov (United States)

    Cui, Can

    Buildings consume nearly 50% of the total energy in the United States, which drives the need to develop high-fidelity models for building energy systems. Extensive methods and techniques have been developed, studied, and applied to building energy simulation and forecasting, while most of work have focused on developing dedicated modeling approach for generic buildings. In this study, an integrated computationally efficient and high-fidelity building energy modeling framework is proposed, with the concentration on developing a generalized modeling approach for various types of buildings. First, a number of data-driven simulation models are reviewed and assessed on various types of computationally expensive simulation problems. Motivated by the conclusion that no model outperforms others if amortized over diverse problems, a meta-learning based recommendation system for data-driven simulation modeling is proposed. To test the feasibility of the proposed framework on the building energy system, an extended application of the recommendation system for short-term building energy forecasting is deployed on various buildings. Finally, Kalman filter-based data fusion technique is incorporated into the building recommendation system for on-line energy forecasting. Data fusion enables model calibration to update the state estimation in real-time, which filters out the noise and renders more accurate energy forecast. The framework is composed of two modules: off-line model recommendation module and on-line model calibration module. Specifically, the off-line model recommendation module includes 6 widely used data-driven simulation models, which are ranked by meta-learning recommendation system for off-line energy modeling on a given building scenario. Only a selective set of building physical and operational characteristic features is needed to complete the recommendation task. The on-line calibration module effectively addresses system uncertainties, where data fusion on

  18. Vibration Response of Multi Storey Building Using Finite Element Modelling

    Science.gov (United States)

    Chik, T. N. T.; Zakaria, M. F.; Remali, M. A.; Yusoff, N. A.

    2016-07-01

    Interaction between building, type of foundation and the geotechnical parameter of ground may trigger a significant effect on the building. In general, stiffer foundations resulted in higher natural frequencies of the building-soil system and higher input frequencies are often associated with other ground. Usually, vibrations transmitted to the buildings by ground borne are often noticeable and can be felt. It might affect the building and become worse if the vibration level is not controlled. UTHM building is prone to the ground borne vibration due to closed distance from the main road, and the construction activities adjacent to the buildings. This paper investigates the natural frequency and vibration mode of multi storey office building with the presence of foundation system and comparison between both systems. Finite element modelling (FEM) package software of LUSAS is used to perform the vibration analysis of the building. The building is modelled based on the original plan with the foundation system on the structure model. The FEM results indicated that the structure which modelled with rigid base have high natural frequency compare to the structure with foundation system. These maybe due to soil structure interaction and also the damping of the system which related to the amount of energy dissipated through the foundation soil. Thus, this paper suggested that modelling with soil is necessary to demonstrate the soil influence towards vibration response to the structure.

  19. Modeling thermally active building components using space mapping

    DEFF Research Database (Denmark)

    Pedersen, Frank; Weitzmann, Peter; Svendsen, Svend

    2005-01-01

    In order to efficiently implement thermally active building components in new buildings, it is necessary to evaluate the thermal interaction between them and other building components. Applying parameter investigation or numerical optimization methods to a differential-algebraic (DAE) model....... This paper describes the principle of the space mapping technique, and introduces a simple space mapping technique. The technique is applied to a lumped parameter model of a thermo active component, which provides a model of the thermal performance of the component as a function of two design parameters...... of a building provides a systematic way of estimating efficient building designs. However, using detailed numerical calculations of the components in the building is a time consuming process, which may become prohibitive if the DAE model is to be used for parameter variation or optimization. Unfortunately...

  20. Statistical models describing the energy signature of buildings

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Thavlov, Anders

    2010-01-01

    Approximately one third of the primary energy production in Denmark is used for heating in buildings. Therefore efforts to accurately describe and improve energy performance of the building mass are very important. For this purpose statistical models describing the energy signature of a building, i.......e. the heat dynamics of the building, have been developed. The models can be used to obtain rather detailed knowledge of the energy performance of the building and to optimize the control of the energy consumption for heating, which will be vital in conditions with increasing fluctuation of the energy supply...... or varying energy prices. The paper will give an overview of statistical methods and applied models based on experiments carried out in FlexHouse, which is an experimental building in SYSLAB, Risø DTU. The models are of different complexity and can provide estimates of physical quantities such as UA...

  1. Complementarity of Historic Building Information Modelling and Geographic Information Systems

    Science.gov (United States)

    Yang, X.; Koehl, M.; Grussenmeyer, P.; Macher, H.

    2016-06-01

    In this paper, we discuss the potential of integrating both semantically rich models from Building Information Modelling (BIM) and Geographical Information Systems (GIS) to build the detailed 3D historic model. BIM contributes to the creation of a digital representation having all physical and functional building characteristics in several dimensions, as e.g. XYZ (3D), time and non-architectural information that are necessary for construction and management of buildings. GIS has potential in handling and managing spatial data especially exploring spatial relationships and is widely used in urban modelling. However, when considering heritage modelling, the specificity of irregular historical components makes it problematic to create the enriched model according to its complex architectural elements obtained from point clouds. Therefore, some open issues limiting the historic building 3D modelling will be discussed in this paper: how to deal with the complex elements composing historic buildings in BIM and GIS environment, how to build the enriched historic model, and why to construct different levels of details? By solving these problems, conceptualization, documentation and analysis of enriched Historic Building Information Modelling are developed and compared to traditional 3D models aimed primarily for visualization.

  2. Environmental sustainability modeling with exergy methodology for building life cycle

    Institute of Scientific and Technical Information of China (English)

    刘猛; 姚润明

    2009-01-01

    As an important human activity,the building industry has created comfortable space for living and work,and at the same time brought considerable pollution and huge consumption of energy and recourses. From 1990s after the first building environmental assessment model-BREEAM was released in the UK,a number of assessment models were formulated as analytical and practical in methodology respectively. This paper aims to introduce a generic model of exergy assessment on environmental impact of building life cycle,taking into consideration of previous models and focusing on natural environment as well as building life cycle,and three environmental impacts will be analyzed,namely energy embodied exergy,resource chemical exergy and abatement exergy on energy consumption,resource consumption and pollutant discharge respectively. The model of exergy assessment on environmental impact of building life cycle thus formulated contains two sub-models,one from the aspect of building energy utilization,and the other from building materials use. Combining theories by ecologists such as Odum,building environmental sustainability modeling with exergy methodology is put forward with the index of exergy footprint of building environmental impacts.

  3. Building Energy Model Development for Retrofit Homes

    Energy Technology Data Exchange (ETDEWEB)

    Chasar, David; McIlvaine, Janet; Blanchard, Jeremy; Widder, Sarah H.; Baechler, Michael C.

    2012-09-30

    Based on previous research conducted by Pacific Northwest National Laboratory and Florida Solar Energy Center providing technical assistance to implement 22 deep energy retrofits across the nation, 6 homes were selected in Florida and Texas for detailed post-retrofit energy modeling to assess realized energy savings (Chandra et al, 2012). However, assessing realized savings can be difficult for some homes where pre-retrofit occupancy and energy performance are unknown. Initially, savings had been estimated using a HERS Index comparison for these homes. However, this does not account for confounding factors such as occupancy and weather. This research addresses a method to more reliably assess energy savings achieved in deep energy retrofits for which pre-retrofit utility bills or occupancy information in not available. A metered home, Riverdale, was selected as a test case for development of a modeling procedure to account occupancy and weather factors, potentially creating more accurate estimates of energy savings. This “true up” procedure was developed using Energy Gauge USA software and post-retrofit homeowner information and utility bills. The 12 step process adjusts the post-retrofit modeling results to correlate with post-retrofit utility bills and known occupancy information. The “trued” post retrofit model is then used to estimate pre-retrofit energy consumption by changing the building efficiency characteristics to reflect the pre-retrofit condition, but keeping all weather and occupancy-related factors the same. This creates a pre-retrofit model that is more comparable to the post-retrofit energy use profile and can improve energy savings estimates. For this test case, a home for which pre- and post- retrofit utility bills were available was selected for comparison and assessment of the accuracy of the “true up” procedure. Based on the current method, this procedure is quite time intensive. However, streamlined processing spreadsheets or

  4. Building

    OpenAIRE

    Seavy, Ryan

    2014-01-01

    Building for concrete is temporary. The building of wood and steel stands against the concrete to give form and then gives way, leaving a trace of its existence behind. Concrete is not a building material. One does not build with concrete. One builds for concrete. MARCH

  5. Mathematical models for plant-herbivore interactions

    Science.gov (United States)

    Feng, Zhilan; DeAngelis, Donald L.

    2017-01-01

    Mathematical Models of Plant-Herbivore Interactions addresses mathematical models in the study of practical questions in ecology, particularly factors that affect herbivory, including plant defense, herbivore natural enemies, and adaptive herbivory, as well as the effects of these on plant community dynamics. The result of extensive research on the use of mathematical modeling to investigate the effects of plant defenses on plant-herbivore dynamics, this book describes a toxin-determined functional response model (TDFRM) that helps explains field observations of these interactions. This book is intended for graduate students and researchers interested in mathematical biology and ecology.

  6. Rhode Island Model Evaluation & Support System: Building Administrator. Edition III

    Science.gov (United States)

    Rhode Island Department of Education, 2015

    2015-01-01

    Rhode Island educators believe that implementing a fair, accurate, and meaningful educator evaluation and support system will help improve teaching, learning, and school leadership. The primary purpose of the Rhode Island Model Building Administrator Evaluation and Support System (Rhode Island Model) is to help all building administrators improve.…

  7. DEVELOPING PARAMETRIC BUILDING MODELS – THE GANDIS USE CASE

    Directory of Open Access Journals (Sweden)

    W. Thaller

    2012-09-01

    Full Text Available In the course of a project related to green building design, we have created a group of eight parametric building models that can be manipulated interactively with respect to dimensions, number of floors, and a few other parameters. We report on the commonalities and differences between the models and the abstractions that we were able to identify.

  8. Working group report: Flavor physics and model building

    Indian Academy of Sciences (India)

    M K Parida; Nita Sinha; B Adhikary; B Allanach; A Alok; K S Babu; B Brahmachari; D Choudhury; E J Chun; P K Das; A Ghosal; D Hitlin; W S Hou; S Kumar; H N Li; E Ma; S K Majee; G Majumdar; B Mishra; G Mohanty; S Nandi; H Pas; M K Parida; S D Rindani; J P Saha; N Sahu; Y Sakai; S Sen; C Sharma; C D Sharma; S Shalgar; N N Singh; S Uma Sankar; N Sinha; R Sinha; F Simonetto; R Srikanth; R Vaidya

    2006-11-01

    This is the report of flavor physics and model building working group at WHEPP-9. While activities in flavor physics have been mainly focused on -physics, those in model building have been primarily devoted to neutrino physics. We present summary of working group discussions carried out during the workshop in the above fields, and also briefly review the progress made in some projects subsequently

  9. Building a (UN) condom manufacturing plant for social marketing projects.

    Science.gov (United States)

    Yonese, T

    1994-12-01

    At the 10th International Conference on AIDS held in Yokohama, Japan, August 7-12, 1994, reports revealed that the social marketing of condoms has become popular and successful in developing countries. The nongovernmental organization distribution approach is very useful in providing condoms to new users, whose numbers have been increasing since the condom was identified as effective in preventing sexually transmitted diseases (STDs), including HIV. The rapid establishment of semi-commercial outlets even in remote areas enabled many people to obtain condoms more easily than from the government program and at a cheaper price. The social marketing concept has a clear advantage: condoms can be distributed with little government budget disbursement, and the project is based on self-reliance. Meanwhile, the additional free supply programs by many governments of developing countries are reportedly not functioning efficiently, since often large quantities of condoms, donated by agencies for family planning and STD programs, pile up in warehouses and do not reach those who need them. Moreover, the demand for condoms is limited because of the lack of effective campaigns to encourage their use. Quality condoms can be procured at lower costs if a special manufacturing plant could be built that produces condoms exclusively for the social marketing free supply program. Such a condom plant could be built in a developing country where good quality latex, the material used for condoms, is available. The unit production cost of condoms at the proposed plant would be lower compared to costs in developed countries because personnel expenses in latex-producing countries such as Malaysia, Thailand, Indonesia, India, and Sri Lanka, are cheaper, and the price of latex itself is lower. Mass production is possible because the demand for condoms for the social marketing projects is expected to grow even more.

  10. A first-order thermal model for building design

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, E.H. [Centre for Experimental and Numerical Thermoflow, Univ. of Pretoria (South Africa); Richards, P.G. [Centre for Experimental and Numerical Thermoflow, Univ. of Pretoria (South Africa); Lombard, C. [Centre for Experimental and Numerical Thermoflow, Univ. of Pretoria (South Africa)

    1994-12-31

    Simplified thermal models of buildings can successfully be applied in building design. This paper describes the derivation and validation of a first-order thermal model which has a clear physical interpretation, is based on uncomplicated calculation procedures and requires limited input information. Because extensive simplifications and assumptions are inherent in the development of the model, a comprehensive validation study is reported. The validity of the thermal model was proven with 70 validation studies in 32 buildings comprising a wide range of thermal characteristics. The accuracy of predictions compares well with other sophisticated programs. The proposed model is considered to be eminently suitable for incorporation in an efficient design tool. (orig.)

  11. ANALYSIS OF SUFFICIENCY OF THE BEARING CAPACITY OF BUILDING STRUCTURES OF OPERATING SITES OF MAIN BUILDINGS OF THERMAL POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Alekseeva Ekaterina Leonidovna

    2012-10-01

    Full Text Available Upon examination of eleven main buildings of power plants, analysis of defects and damages of building structures was performed. Thereafter, the damageability of principal bearing structures of main buildings of thermal plants was analyzed. It was identified that the fastest growing defects and damages were concentrated in the structures of operating sites. The research of the rate of development of the most frequent damages and defects made it possible to conclude that internal corrosion of the reinforcing steel was the most dangerous defect, as far as the reinforced concrete elements of operating sites were concerned. Methods of mathematical statistics were applied to identify the reinforcing steel development pattern inside reinforced concrete elements of floors of operating sites. It was identified that the probability of corrosion of reinforced concrete elements of operating sites was distributed in accordance with the demonstrative law. Based on these data, calculation of strength of reinforced concrete slabs and metal beams was performed in terms of their regular sections, given the natural loads and the realistic condition of structures. As a result, dependence between the bearing capacity reserve ratio and the corrosion development pattern was identified for reinforced concrete slabs and metal beams of operating sites. In order to analyze the sufficiency of the bearing capacity of building structures of operating sites in relation to their time in commission, equations were derived to identify the nature of dependence between the sufficiency of the bearing capacity of reinforced concrete slabs and metal beams of the operating sites and their time in commission.

  12. CAL--ERDA program manual. [Building Design Language; LOADS, SYSTEMS, PLANT, ECONOMICS, REPORT, EXECUTIVE, CAL-ERDA

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, B. D.; Diamond, S. C.; Bennett, G. A.; Tucker, E. F.; Roschke, M. A.

    1977-10-01

    A set of computer programs, called Cal-ERDA, is described that is capable of rapid and detailed analysis of energy consumption in buildings. A new user-oriented input language, named the Building Design Language (BDL), has been written to allow simplified manipulation of the many variables used to describe a building and its operation. This manual provides the user with information necessary to understand in detail the Cal-ERDA set of computer programs. The new computer programs described include: an EXECUTIVE Processor to create computer system control commands; a BDL Processor to analyze input instructions, execute computer system control commands, perform assignments and data retrieval, and control the operation of the LOADS, SYSTEMS, PLANT, ECONOMICS, and REPORT programs; a LOADS analysis program that calculates peak (design) zone and hourly loads and the effect of the ambient weather conditions, the internal occupancy, lighting, and equipment within the building, as well as variations in the size, location, orientation, construction, walls, roofs, floors, fenestrations, attachments (awnings, balconies), and shape of a building; a Heating, Ventilating, and Air-Conditioning (HVAC) SYSTEMS analysis program capable of modeling the operation of HVAC components including fans, coils, economizers, humidifiers, etc.; 16 standard configurations and operated according to various temperature and humidity control schedules. A plant equipment program models the operation of boilers, chillers, electrical generation equipment (diesel or turbines), heat storage apparatus (chilled or heated water), and solar heating and/or cooling systems. An ECONOMIC analysis program calculates life-cycle costs. A REPORT program produces tables of user-selected variables and arranges them according to user-specified formats. A set of WEATHER ANALYSIS programs manipulates, summarizes and plots weather data. Libraries of weather data, schedule data, and building data were prepared.

  13. CAL--ERDA users manual. [Building Design Language; LOADS, SYSTEMS, PLANT, ECONOMICS, REPORT, EXECUTIVE, CAL-ERDA

    Energy Technology Data Exchange (ETDEWEB)

    Graven, R. M.; Hirsch, P. R.

    1977-10-30

    A new set of computer programs capable of rapid and detailed analysis of energy consumption in buildings is described. The Building Design Language (BDL) has been written to allow simplified manipulation of the many variables used to describe a building and its operation. Programs presented in this manual include: (1) a Building Design Language program to analyze the input instructions, execute computer system control commands, perform data assignments and data retrieval, and control the operation of the LOADS, SYSTEMS, PLANT, ECONOMICS, and REPORT programs; (2) a LOADS analysis program which calculates peak (design) loads and hourly space loads due to ambient weather conditions and the internal occupancy, lighting, and equipment within the building, as well as variations in the size, location, orientation, construction, walls, roofs, floors, fenestrations, attachments (awnings, balconies), and shape of a building; (3) a HEATING, Ventilating, and Air-Conditioning (HVAC) SYSTEMS program capable of modeling the operation of HVAC components, including fans, coils, economizers, and humidifiers; (4) a PLANT equipment program which models the operation of boilers, chillers, electrical-generation equipment (e.g., diesel engines or turbines), heat-storage apparatus (e.g., chilled or heated water) and solar heating and/or cooling systems; (5) an ECONOMICS analysis program which calculates life-cycle costs; (6) a REPORT program which produces tables of user-selected variables and arranges them according to user-selected formats; and (7) an EXECUTIVE processor to create computer-system control commands. Libraries of weather data, typical schedule data, and data on the properties of walls, roofs, and floors are available.

  14. Impacts of building information modeling on facility maintenance management

    Energy Technology Data Exchange (ETDEWEB)

    Ahamed, Shafee; Neelamkavil, Joseph; Canas, Roberto [Centre for Computer-assisted Construction Technologies, National Research Council of Canada, London, Ontario (Canada)

    2010-07-01

    Building information modeling (BIM) is a digital representation of the physical and functional properties of a building; it has been used by construction professionals for a long time and stakeholders are now using it in different aspects of the building lifecycle. This paper intends to present how BIM impacts the construction industry and how it can be used for facility maintenance management. The maintenance and operations of buildings are in most cases still managed through the use of drawings and spreadsheets although life cycle costs of a building are significantly higher than initial investment costs; thus, the use of BIM could help in achieving a higher efficiency and so important benefits. This study is part of an ongoing research project, the nD modeling project, which aims at predicting building energy consumption with better accuracy.

  15. Methods for implementing Building Information Modeling and Building Performance Simulation approaches

    DEFF Research Database (Denmark)

    Mondrup, Thomas Fænø

    In the present thesis, a number of studies into the adoption of Building Information Modeling (BIM) and Building Performance Simulation (BPS) are presented. The thesis has two main goals. The first is to explore the benefits and challenges of adopting (a) BIM as a platform for Architecture......, Engineering, Construction, and Facility Management (AEC/ FM) communication, and (b) BPS as a platform for early-stage building performance prediction. The second is to develop (a) relevant AEC/FM communication support instruments, and (b) standardized BIM and BPS execution guidelines and information exchange...... to improve early-stage building performance prediction. However, because of complex BPS information exchange structures, the BPS process is not always practical, highlighting the need for these structures to be simplified and more, clearly articulated. In this thesis, buildingSMART standard approaches...

  16. Reducing the operational energy demand in buildings using building information modeling tools and sustainability approaches

    Directory of Open Access Journals (Sweden)

    Mojtaba Valinejad Shoubi

    2015-03-01

    Full Text Available A sustainable building is constructed of materials that could decrease environmental impacts, such as energy usage, during the lifecycle of the building. Building Information Modeling (BIM has been identified as an effective tool for building performance analysis virtually in the design stage. The main aims of this study were to assess various combinations of materials using BIM and identify alternative, sustainable solutions to reduce operational energy consumption. The amount of energy consumed by a double story bungalow house in Johor, Malaysia, and assessments of alternative material configurations to determine the best energy performance were evaluated by using Revit Architecture 2012 and Autodesk Ecotect Analysis software to show which of the materials helped in reducing the operational energy use of the building to the greatest extent throughout its annual life cycle. At the end, some alternative, sustainable designs in terms of energy savings have been suggested.

  17. Characterizing Indoor Airflow and Pollutant Transport using Simulation Modeling for Prototypical Buildings. I. Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, M.D.; Daisey, J.M.; Feustel, H.E.

    1999-06-01

    This paper describes the first efforts at developing a set of prototypical buildings defined to capture the key features affecting airflow and pollutant transport in buildings. These buildings will be used to model airflow and pollutant transport for emergency response scenarios when limited site-specific information is available and immediate decisions must be made, and to better understand key features of buildings controlling occupant exposures to indoor pollutant sources. This paper presents an example of this approach for a prototypical intermediate-sized, open style, commercial building. Interzonal transport due to a short-term source release, e.g., accidental chemical spill, in the bottom and the upper floors is predicted and corresponding HVAC system operation effects and potential responses are considered. Three-hour average exposure estimates are used to compare effects of source location and HVAC operation.

  18. Armagh Observatory - Historic Building Information Modelling for Virtual Learning in Building Conservation

    Science.gov (United States)

    Murphy, M.; Chenaux, A.; Keenaghan, G.; GIbson, V..; Butler, J.; Pybusr, C.

    2017-08-01

    In this paper the recording and design for a Virtual Reality Immersive Model of Armagh Observatory is presented, which will replicate the historic buildings and landscape with distant meridian markers and position of its principal historic instruments within a model of the night sky showing the position of bright stars. The virtual reality model can be used for educational purposes allowing the instruments within the historic building model to be manipulated within 3D space to demonstrate how the position measurements of stars were made in the 18th century. A description is given of current student and researchers activities concerning on-site recording and surveying and the virtual modelling of the buildings and landscape. This is followed by a design for a Virtual Reality Immersive Model of Armagh Observatory use game engine and virtual learning platforms and concepts.

  19. DEVELOPING VERIFICATION SYSTEMS FOR BUILDING INFORMATION MODELS OF HERITAGE BUILDINGS WITH HETEROGENEOUS DATASETS

    Directory of Open Access Journals (Sweden)

    L. Chow

    2017-08-01

    Full Text Available The digitization and abstraction of existing buildings into building information models requires the translation of heterogeneous datasets that may include CAD, technical reports, historic texts, archival drawings, terrestrial laser scanning, and photogrammetry into model elements. In this paper, we discuss a project undertaken by the Carleton Immersive Media Studio (CIMS that explored the synthesis of heterogeneous datasets for the development of a building information model (BIM for one of Canada’s most significant heritage assets – the Centre Block of the Parliament Hill National Historic Site. The scope of the project included the development of an as-found model of the century-old, six-story building in anticipation of specific model uses for an extensive rehabilitation program. The as-found Centre Block model was developed in Revit using primarily point cloud data from terrestrial laser scanning. The data was captured by CIMS in partnership with Heritage Conservation Services (HCS, Public Services and Procurement Canada (PSPC, using a Leica C10 and P40 (exterior and large interior spaces and a Faro Focus (small to mid-sized interior spaces. Secondary sources such as archival drawings, photographs, and technical reports were referenced in cases where point cloud data was not available. As a result of working with heterogeneous data sets, a verification system was introduced in order to communicate to model users/viewers the source of information for each building element within the model.

  20. Calibrating Building Energy Models Using Supercomputer Trained Machine Learning Agents

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL; Edwards, Richard [ORNL; Parker, Lynne Edwards [ORNL

    2014-01-01

    Building Energy Modeling (BEM) is an approach to model the energy usage in buildings for design and retrofit purposes. EnergyPlus is the flagship Department of Energy software that performs BEM for different types of buildings. The input to EnergyPlus can often extend in the order of a few thousand parameters which have to be calibrated manually by an expert for realistic energy modeling. This makes it challenging and expensive thereby making building energy modeling unfeasible for smaller projects. In this paper, we describe the Autotune research which employs machine learning algorithms to generate agents for the different kinds of standard reference buildings in the U.S. building stock. The parametric space and the variety of building locations and types make this a challenging computational problem necessitating the use of supercomputers. Millions of EnergyPlus simulations are run on supercomputers which are subsequently used to train machine learning algorithms to generate agents. These agents, once created, can then run in a fraction of the time thereby allowing cost-effective calibration of building models.

  1. Mathematical Models Light Up Plant Signaling

    NARCIS (Netherlands)

    Chew, Y.H.; Smith, R.W.; Jones, H.J.; Seaton, D.D.; Grima, R.; Halliday, K.J.

    2014-01-01

    Plants respond to changes in the environment by triggering a suite of regulatory networks that control and synchronize molecular signaling in different tissues, organs, and the whole plant. Molecular studies through genetic and environmental perturbations, particularly in the model plant Arabidopsis

  2. Mathematical Models Light Up Plant Signaling

    NARCIS (Netherlands)

    Chew, Y.H.; Smith, R.W.; Jones, H.J.; Seaton, D.D.; Grima, R.; Halliday, K.J.

    2014-01-01

    Plants respond to changes in the environment by triggering a suite of regulatory networks that control and synchronize molecular signaling in different tissues, organs, and the whole plant. Molecular studies through genetic and environmental perturbations, particularly in the model plant Arabidopsis

  3. Level of detail technique for plant models

    Institute of Scientific and Technical Information of China (English)

    Xiaopeng ZHANG; Qingqiong DENG; Marc JAEGER

    2006-01-01

    Realistic modelling and interactive rendering of forestry and landscape is a challenge in computer graphics and virtual reality. Recent new developments in plant growth modelling and simulation lead to plant models faithful to botanical structure and development, not only representing the complex architecture of a real plant but also its functioning in interaction with its environment. Complex geometry and material of a large group of plants is a big burden even for high performances computers, and they often overwhelm the numerical calculation power and graphic rendering power. Thus, in order to accelerate the rendering speed of a group of plants, software techniques are often developed. In this paper, we focus on plant organs, i.e. leaves, flowers, fruits and inter-nodes. Our approach is a simplification process of all sparse organs at the same time, i. e. , Level of Detail (LOD) , and multi-resolution models for plants. We do explain here the principle and construction of plant simplification. They are used to construct LOD and multi-resolution models of sparse organs and branches of big trees. These approaches take benefit from basic knowledge of plant architecture, clustering tree organs according to biological structures. We illustrate the potential of our approach on several big virtual plants for geometrical compression or LOD model definition. Finally we prove the efficiency of the proposed LOD models for realistic rendering with a virtual scene composed by 184 mature trees.

  4. Integrating Building Information Modeling and Augmented Reality to Improve Investigation of Historical Buildings

    Directory of Open Access Journals (Sweden)

    Francesco Chionna

    2015-12-01

    Full Text Available This paper describes an experimental system to support investigation of historical buildings using Building Information Modeling (BIM and Augmented Reality (AR. The system requires the use of an off-line software to build the BIM representation and defines a method to integrate diagnostic data into BIM. The system offers access to such information during site investigation using AR glasses supported by marker and marker-less technologies. The main innovation is the possibility to contextualize through AR not only existing BIM properties but also results from non-invasive tools. User evaluations show how the use of the system may enhance the perception of engineers during the investigation process.

  5. Whole-Building Hygrothermal Modeling in IEA Annex 41

    DEFF Research Database (Denmark)

    Rode, Carsten; Woloszyn, Monika

    2007-01-01

    . The IEA Annex 41 project runs from 2004–2007, coming to conclusion just before the Thermal Performance of the Exterior Envelopes of Whole Buildings X conference. The Annex 41 project and its Subtask 1 do not aim to produce one state-of-the-art hygrothermal simulation model for whole buildings, but rather...

  6. Making Connections to the "Real World": A Model Building Lesson

    Science.gov (United States)

    Horibe, Shusaku; Underwood, Bret

    2009-01-01

    Classroom activities that include the process of model building, in which students build simplified physical representations of a system, have the potential to help students make meaningful connections between physics and the real world. We describe a lesson designed with this intent for an introductory college classroom that engages students in…

  7. Modelling Technology for Building Fire Scene with Virtual Geographic Environment

    Science.gov (United States)

    Song, Y.; Zhao, L.; Wei, M.; Zhang, H.; Liu, W.

    2017-09-01

    Building fire is a risky activity that can lead to disaster and massive destruction. The management and disposal of building fire has always attracted much interest from researchers. Integrated Virtual Geographic Environment (VGE) is a good choice for building fire safety management and emergency decisions, in which a more real and rich fire process can be computed and obtained dynamically, and the results of fire simulations and analyses can be much more accurate as well. To modelling building fire scene with VGE, the application requirements and modelling objective of building fire scene were analysed in this paper. Then, the four core elements of modelling building fire scene (the building space environment, the fire event, the indoor Fire Extinguishing System (FES) and the indoor crowd) were implemented, and the relationship between the elements was discussed also. Finally, with the theory and framework of VGE, the technology of building fire scene system with VGE was designed within the data environment, the model environment, the expression environment, and the collaborative environment as well. The functions and key techniques in each environment are also analysed, which may provide a reference for further development and other research on VGE.

  8. Hierarchical Model Predictive Control for Sustainable Building Automation

    Directory of Open Access Journals (Sweden)

    Barbara Mayer

    2017-02-01

    Full Text Available A hierarchicalmodel predictive controller (HMPC is proposed for flexible and sustainable building automation. The implications of a building automation system for sustainability are defined, and model predictive control is introduced as an ideal tool to cover all requirements. The HMPC is presented as a development suitable for the optimization of modern buildings, as well as retrofitting. The performance and flexibility of the HMPC is demonstrated by simulation studies of a modern office building, and the perfect interaction with future smart grids is shown.

  9. Modelling the heat dynamics of a residential building unit: Application to Norwegian buildings

    Directory of Open Access Journals (Sweden)

    D.W.U. Perera

    2014-01-01

    Full Text Available The paper refers to the development of a continuous time mathematical heating model for a building unit based on the first principles. The model is described in terms of the state space variables, and a lumped parameter approach is used to represent the room air temperature and air density using mass and energy balances. The one-dimensional heat equation in cartesian coordinates and spherical coordinates is discretized in order to describe the thermic characteristics of the layers of the building framework and furniture respectively. The developed model is implemented in a MATLAB environment, and mainly a theoretical approach is used to validate it for a residential building unit. Model is also validated using experimental data for a limited period. Short term simulations are used to test the energy efficiency of the building unit with regard to factors such as the operation of heat sources, ventilation, occupancy patterns of people, weather conditions, features of the building structure and heat recovery. The results are consistent and are obtained considerably fast, implying that the model can be used further in modelling the heating dynamics of complex architectural designs and in control applications.

  10. Building Component Library: An Online Repository to Facilitate Building Energy Model Creation; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, K.; Long, N.; Swindler, A.

    2012-05-01

    This paper describes the Building Component Library (BCL), the U.S. Department of Energy's (DOE) online repository of building components that can be directly used to create energy models. This comprehensive, searchable library consists of components and measures as well as the metadata which describes them. The library is also designed to allow contributors to easily add new components, providing a continuously growing, standardized list of components for users to draw upon.

  11. D Topological Indoor Building Modeling Integrated with Open Street Map

    Science.gov (United States)

    Jamali, A.; Rahman, A. Abdul; Boguslawski, P.

    2016-09-01

    Considering various fields of applications for building surveying and various demands, geometry representation of a building is the most crucial aspect of a building survey. The interiors of the buildings need to be described along with the relative locations of the rooms, corridors, doors and exits in many kinds of emergency response, such as fire, bombs, smoke, and pollution. Topological representation is a challenging task within the Geography Information Science (GIS) environment, as the data structures required to express these relationships are particularly difficult to develop. Even within the Computer Aided Design (CAD) community, the structures for expressing the relationships between adjacent building parts are complex and often incomplete. In this paper, an integration of 3D topological indoor building modeling in Dual Half Edge (DHE) data structure and outdoor navigation network from Open Street Map (OSM) is presented.

  12. The Dutch sustainable building policy: A model for developing countries?

    Energy Technology Data Exchange (ETDEWEB)

    Melchert, Luciana [Faculty of Architecture and Urbanism, University of Sao Paulo, Rua do Lago, 876, CEP 05508.900, Sao Paulo SP (Brazil)

    2007-02-15

    This article explores the institutionalization of environmental policies in the Dutch building sector and the applicability of the current model to developing countries. First, it analyzes the transition of sustainable building practices in the Netherlands from the 1970s until today, exploring how these were originally embedded in a discourse on 'de-modernization', which attempted to improve the environmental performance of building stocks by means of self-sufficient technologies, whereas nowadays they adopt a framework of 'ecological modernization', with integrative approaches seeking to improve the environmental performance of building stocks through more efficient-rather than self-sufficient-technologies. The study subsequently shows how the current Dutch sustainable building framework has thereby managed to achieve a pragmatic and widely accepted rationale, which can serve to orient the ecological restructuring of building stocks in developing countries. (author)

  13. Guidelines for Using Building Information Modeling for Energy Analysis of Buildings

    Directory of Open Access Journals (Sweden)

    Thomas Reeves

    2015-12-01

    Full Text Available Building energy modeling (BEM, a subset of building information modeling (BIM, integrates energy analysis into the design, construction, and operation and maintenance of buildings. As there are various existing BEM tools available, there is a need to evaluate the utility of these tools in various phases of the building lifecycle. The goal of this research was to develop guidelines for evaluation and selection of BEM tools to be used in particular building lifecycle phases. The objectives of this research were to: (1 Evaluate existing BEM tools; (2 Illustrate the application of the three BEM tools; (3 Re-evaluate the three BEM tools; and (4 Develop guidelines for evaluation, selection and application of BEM tools in the design, construction and operation/maintenance phases of buildings. Twelve BEM tools were initially evaluated using four criteria: interoperability, usability, available inputs, and available outputs. Each of the top three BEM tools selected based on this initial evaluation was used in a case study to simulate and evaluate energy usage, daylighting performance, and natural ventilation for two academic buildings (LEED-certified and non-LEED-certified. The results of the case study were used to re-evaluate the three BEM tools using the initial criteria with addition of the two new criteria (speed and accuracy, and to develop guidelines for evaluating and selecting BEM tools to analyze building energy performance. The major contribution of this research is the development of these guidelines that can help potential BEM users to identify the most appropriate BEM tool for application in particular building lifecycle phases.

  14. Structural Simulations and Conservation Analysis -Historic Building Information Model (HBIM

    Directory of Open Access Journals (Sweden)

    C. Dore

    2015-02-01

    Full Text Available In this paper the current findings to date of the Historic Building Information Model (HBIM of the Four Courts in Dublin are presented. The Historic Building Information Model (HBIM forms the basis for both structural and conservation analysis to measure the impact of war damage which still impacts on the building. The laser scan survey was carried out in the summer of 2014 of the internal and external structure. After registration and processing of the laser scan survey, the HBIM was created of the damaged section of the building and is presented as two separate workflows in this paper. The first is the model created from historic data, the second a procedural and segmented model developed from laser scan survey of the war damaged drum and dome. From both models structural damage and decay simulations will be developed for documentation and conservation analysis.

  15. Generating navigation models from existing building data

    NARCIS (Netherlands)

    Liu, L.; Zlatanova, S.

    2013-01-01

    Research on indoor navigation models mainly focuses on geometric and logical models .The models are enriched with specific semantic information which supports localisation, navigation and guidance. Geometric models provide information about the structural (physical) distribution of spaces in a

  16. Building energy modeling for green architecture and intelligent dashboard applications

    Science.gov (United States)

    DeBlois, Justin

    Buildings are responsible for 40% of the carbon emissions in the United States. Energy efficiency in this sector is key to reducing overall greenhouse gas emissions. This work studied the passive technique called the roof solar chimney for reducing the cooling load in homes architecturally. Three models of the chimney were created: a zonal building energy model, computational fluid dynamics model, and numerical analytic model. The study estimated the error introduced to the building energy model (BEM) through key assumptions, and then used a sensitivity analysis to examine the impact on the model outputs. The conclusion was that the error in the building energy model is small enough to use it for building simulation reliably. Further studies simulated the roof solar chimney in a whole building, integrated into one side of the roof. Comparisons were made between high and low efficiency constructions, and three ventilation strategies. The results showed that in four US climates, the roof solar chimney results in significant cooling load energy savings of up to 90%. After developing this new method for the small scale representation of a passive architecture technique in BEM, the study expanded the scope to address a fundamental issue in modeling - the implementation of the uncertainty from and improvement of occupant behavior. This is believed to be one of the weakest links in both accurate modeling and proper, energy efficient building operation. A calibrated model of the Mascaro Center for Sustainable Innovation's LEED Gold, 3,400 m2 building was created. Then algorithms were developed for integration to the building's dashboard application that show the occupant the energy savings for a variety of behaviors in real time. An approach using neural networks to act on real-time building automation system data was found to be the most accurate and efficient way to predict the current energy savings for each scenario. A stochastic study examined the impact of the

  17. Assessment of energy utilization and leakages in buildings with building information model energy

    Directory of Open Access Journals (Sweden)

    Egwunatum I. Samuel

    2017-03-01

    Full Text Available Given the ability of building information models (BIM to serve as a multidisciplinary data repository, this study attempts to explore and exploit the sustainability value of BIM in delivering buildings that require less energy for operations, emit less carbon dioxide, and provide conducive living environments for occupants. This objective was attained by a critical and extensive literature review that covers the following: (1 building energy consumption, (2 building energy performance and analysis, and (3 BIM and energy assessment. Literature cited in this paper shows that linking an energy analysis tool with a BIM model has helped project design teams to predict and create optimized energy consumption by conducting building energy performance analysis utilizing key performance indicators on average thermal transmitters, resulting heat demand, lighting power, solar heat gains, and ventilation heat losses. An in-depth analysis was conducted on a completed BIM integrated construction project utilizing the Arboleda Project in the Dominican Republic to validate the aforementioned findings. Results show that the BIM-based energy analysis helped the design team attain the world׳s first positive energy building. This study concludes that linking an energy analysis tool with a BIM model helps to expedite the energy analysis process, provide more detailed and accurate results, and deliver energy-efficient buildings. This study further recommends that the adoption of level 2 BIM and BIM integration in energy optimization analysis must be demanded by building regulatory agencies for all projects regardless of procurement method (i.e., government funded or otherwise or size.

  18. Jeddah Historical Building Information Modelling "JHBIM" - Object Library

    Science.gov (United States)

    Baik, A.; Alitany, A.; Boehm, J.; Robson, S.

    2014-05-01

    The theory of using Building Information Modelling "BIM" has been used in several Heritage places in the worldwide, in the case of conserving, documenting, managing, and creating full engineering drawings and information. However, one of the most serious issues that facing many experts in order to use the Historical Building Information Modelling "HBIM", is creating the complicated architectural elements of these Historical buildings. In fact, many of these outstanding architectural elements have been designed and created in the site to fit the exact location. Similarly, this issue has been faced the experts in Old Jeddah in order to use the BIM method for Old Jeddah historical Building. Moreover, The Saudi Arabian City has a long history as it contains large number of historic houses and buildings that were built since the 16th century. Furthermore, the BIM model of the historical building in Old Jeddah always take a lot of time, due to the unique of Hijazi architectural elements and no such elements library, which have been took a lot of time to be modelled. This paper will focus on building the Hijazi architectural elements library based on laser scanner and image survey data. This solution will reduce the time to complete the HBIM model and offering in depth and rich digital architectural elements library to be used in any heritage projects in Al-Balad district, Jeddah City.

  19. Jeddah Historical Building Information Modeling "JHBIM" Old Jeddah - Saudi Arabia

    Science.gov (United States)

    Baik, A.; Boehm, J.; Robson, S.

    2013-07-01

    The historic city of Jeddah faces serious issues in the conservation, documentation and recording of its valuable building stock. Terrestrial Laser Scanning and Architectural Photogrammetry have already been used in many Heritage sites in the world. The integration of heritage recording and Building Information Modelling (BIM) has been introduced as HBIM and is now a method to document and manage these buildings. In the last decade many traditional surveying methods were used to record the buildings in Old Jeddah. However, these methods take a long time, can sometimes provide unreliable information and often lack completeness. This paper will look at another approach for heritage recording by using the Jeddah Historical Building Information Modelling (JHBIM).

  20. DIMO, a plant dispersal model

    NARCIS (Netherlands)

    Wamelink, G.W.W.; Jochem, R.; Greft, van der J.G.M.; Franke, J.; Malinowska, A.H.; Geertsema, W.; Prins, A.H.; Ozinga, W.A.; Hoek, van der D.C.J.; Grashof-Bokdam, C.J.

    2014-01-01

    Due to human activities many natural habitats have become isolated. As a result the dispersal of many plant species is hampered. Isolated populations may become extinct and have a lower probability to become reestablished in a natural way. Moreover, plant species may be forced to migrate to new area

  1. Features of Functioning the Integrated Building Thermal Model

    Directory of Open Access Journals (Sweden)

    Morozov Maxim N.

    2017-01-01

    Full Text Available A model of the building heating system, consisting of energy source, a distributed automatic control system, elements of individual heating unit and heating system is designed. Application Simulink of mathematical package Matlab is selected as a platform for the model. There are the specialized application Simscape libraries in aggregate with a wide range of Matlab mathematical tools allow to apply the “acausal” modeling concept. Implementation the “physical” representation of the object model gave improving the accuracy of the models. Principle of operation and features of the functioning of the thermal model is described. The investigations of building cooling dynamics were carried out.

  2. Modelling the heat dynamics of buildings using stochastic

    DEFF Research Database (Denmark)

    Andersen, Klaus Kaae; Madsen, Henrik

    2000-01-01

    This paper describes the continuous time modelling of the heat dynamics of a building. The considered building is a residential like test house divided into two test rooms with a water based central heating. Each test room is divided into thermal zones in order to describe both short and long term...... variations. Besides modelling the heat transfer between thermal zones, attention is put on modelling the heat input from radiators and solar radiation. The applied modelling procedure is based on collected building performance data and statistical methods. The statistical methods are used in parameter...... estimation and model validation, while physical knowledge is used in forming the model structure. The suggested lumped parameter model is thus based on thermodynamics and formulated as a system of stochastic differential equations. Due to the continuous time formulation the parameters of the model...

  3. Artificial intelligence support for scientific model-building

    Science.gov (United States)

    Keller, Richard M.

    1992-01-01

    Scientific model-building can be a time-intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientific development team to understand. We believe that artificial intelligence techniques can facilitate both the model-building and model-sharing process. In this paper, we overview our effort to build a scientific modeling software tool that aids the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high-level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities.

  4. Model-based explanation of plant knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Huuskonen, P.J. [VTT Electronics, Oulu (Finland). Embedded Software

    1997-12-31

    This thesis deals with computer explanation of knowledge related to design and operation of industrial plants. The needs for explanation are motivated through case studies and literature reviews. A general framework for analysing plant explanations is presented. Prototypes demonstrate key mechanisms for implementing parts of the framework. Power plants, steel mills, paper factories, and high energy physics control systems are studied to set requirements for explanation. The main problems are seen to be either lack or abundance of information. Design knowledge in particular is found missing at plants. Support systems and automation should be enhanced with ways to explain plant knowledge to the plant staff. A framework is formulated for analysing explanations of plant knowledge. It consists of three parts: 1. a typology of explanation, organised by the class of knowledge (factual, functional, or strategic) and by the target of explanation (processes, automation, or support systems), 2. an identification of explanation tasks generic for the plant domain, and 3. an identification of essential model types for explanation (structural, behavioural, functional, and teleological). The tasks use the models to create the explanations of the given classes. Key mechanisms are discussed to implement the generic explanation tasks. Knowledge representations based on objects and their relations form a vocabulary to model and present plant knowledge. A particular class of models, means-end models, are used to explain plant knowledge. Explanations are generated through searches in the models. Hypertext is adopted to communicate explanations over dialogue based on context. The results are demonstrated in prototypes. The VICE prototype explains the reasoning of an expert system for diagnosis of rotating machines at power plants. The Justifier prototype explains design knowledge obtained from an object-oriented plant design tool. Enhanced access mechanisms into on-line documentation are

  5. Communicate and collaborate by using building information modeling

    DEFF Research Database (Denmark)

    Mondrup, Thomas Fænø; Karlshøj, Jan; Vestergaard, Flemming

    Building Information Modeling (BIM) represents a new approach within the Architecture, Engineering, and Construction (AEC) industry, one that encourages collaboration and engagement of all stakeholders on a project. This study discusses the potential of adopting BIM as a communication...

  6. A procedure for Building Product Models

    DEFF Research Database (Denmark)

    Hvam, Lars

    1999-01-01

    , easily adaptable concepts and methods from data modeling (object oriented analysis) and domain modeling (product modeling). The concepts are general and can be used for modeling all types of specifications in the different phases in the product life cycle. The modeling techniques presented have been...

  7. A simplified dynamic model for existing buildings using CTF and thermal network models

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xinhua; Wang, Shengwei [Department of Building Services Engineering, The Hong Kong Polytechnic University (China)

    2008-09-15

    An alternative simplified building model is developed to describe existing building system aiming at providing performance benchmark for performance evaluation and diagnosis at building level and performance prediction for air-conditioning system optimal control. This model combines detailed physical models of building envelopes and a thermal network model of building internal mass. The detailed physical models are the CTF (Conduction Transfer Function) models of building envelopes based on the easily available detailed physical properties of exterior walls and roof. The thermal network model is the 2R2C model, and its parameters are estimated and optimized using genetic algorithm with short-term monitored operation data. The parameter optimization of the simplified building internal mass model (2R2C) and the simplified dynamic building model (i.e., CTF+2R2C model) are validated in a high-rising commercial office building under various weather conditions. This CTF+2R2C model is an alternative modeling approach for simulating the overall building dynamic thermal performance when CTF model is chosen to model the building envelope. (author)

  8. BIM-enabled Conceptual Modelling and Representation of Building Circulation

    Directory of Open Access Journals (Sweden)

    Jin Kook Lee

    2014-08-01

    Full Text Available This paper describes how a building information modelling (BIM-based approach for building circulation enables us to change the process of building design in terms of its computational representation and processes, focusing on the conceptual modelling and representation of circulation within buildings. BIM has been designed for use by several BIM authoring tools, in particular with the widely known interoperable industry foundation classes (IFCs, which follow an object-oriented data modelling methodology. Advances in BIM authoring tools, using space objects and their relations defined in an IFC’s schema, have made it possible to model, visualize and analyse circulation within buildings prior to their construction. Agent-based circulation has long been an interdisciplinary topic of research across several areas, including design computing, computer science, architectural morphology, human behaviour and environmental psychology. Such conventional approaches to building circulation are centred on navigational knowledge about built environments, and represent specific circulation paths and regulations. This paper, however, places emphasis on the use of ‘space objects’ in BIM-enabled design processes rather than on circulation agents, the latter of which are not defined in the IFCs’ schemas. By introducing and reviewing some associated research and projects, this paper also surveys how such a circulation representation is applicable to the analysis of building circulation-related rules.

  9. Development and validation of a building design waste reduction model.

    Science.gov (United States)

    Llatas, C; Osmani, M

    2016-10-01

    Reduction in construction waste is a pressing need in many countries. The design of building elements is considered a pivotal process to achieve waste reduction at source, which enables an informed prediction of their wastage reduction levels. However the lack of quantitative methods linking design strategies to waste reduction hinders designing out waste practice in building projects. Therefore, this paper addresses this knowledge gap through the design and validation of a Building Design Waste Reduction Strategies (Waste ReSt) model that aims to investigate the relationships between design variables and their impact on onsite waste reduction. The Waste ReSt model was validated in a real-world case study involving 20 residential buildings in Spain. The validation process comprises three stages. Firstly, design waste causes were analyzed. Secondly, design strategies were applied leading to several alternative low waste building elements. Finally, their potential source reduction levels were quantified and discussed within the context of the literature. The Waste ReSt model could serve as an instrumental tool to simulate designing out strategies in building projects. The knowledge provided by the model could help project stakeholders to better understand the correlation between the design process and waste sources and subsequently implement design practices for low-waste buildings.

  10. Rapid Texture Mapping from Image Sequences for Building Geometry Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zuxun; WU Jun; ZHANG Jianqing

    2003-01-01

    An effective approach,mapping the texture for building model based on the digital photogrammetric theory, is proposed. The easily-acquired image sequences from digital video camera on helicopter are used astexture resource, and the correspon-dence between the space edge in building geometry model and its line feature in image sequences is determined semiautomatically. The experimental results in production of three-dimensional data for car navigation show us an attractive future both in efficiency and effect.

  11. Plant Growth Models Using Artificial Neural Networks

    Science.gov (United States)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  12. Building 3D models with modo 701

    CERN Document Server

    García, Juan Jiménez

    2013-01-01

    The book will focus on creating a sample application throughout the book, building gradually from chapter to chapter.If you are new to the 3D world, this is the key to getting started with a modern software in the modern visualization industry. Only minimal previous knowledge is needed.If you have some previous knowledge about 3D content creation, you will find useful tricks that will differentiate the learning experience from a typical user manual from this, a practical guide concerning the most common problems and situations and how to solve them.

  13. Development of hazard-compatible building fragility and vulnerability models

    Science.gov (United States)

    Karaca, E.; Luco, N.

    2008-01-01

    We present a methodology for transforming the structural and non-structural fragility functions in HAZUS into a format that is compatible with conventional seismic hazard analysis information. The methodology makes use of the building capacity (or pushover) curves and related building parameters provided in HAZUS. Instead of the capacity spectrum method applied in HAZUS, building response is estimated by inelastic response history analysis of corresponding single-degree-of-freedom systems under a large number of earthquake records. Statistics of the building response are used with the damage state definitions from HAZUS to derive fragility models conditioned on spectral acceleration values. Using the developed fragility models for structural and nonstructural building components, with corresponding damage state loss ratios from HAZUS, we also derive building vulnerability models relating spectral acceleration to repair costs. Whereas in HAZUS the structural and nonstructural damage states are treated as if they are independent, our vulnerability models are derived assuming "complete" nonstructural damage whenever the structural damage state is complete. We show the effects of considering this dependence on the final vulnerability models. The use of spectral acceleration (at selected vibration periods) as the ground motion intensity parameter, coupled with the careful treatment of uncertainty, makes the new fragility and vulnerability models compatible with conventional seismic hazard curves and hence useful for extensions to probabilistic damage and loss assessment.

  14. Modeling of electromigration salt removal methods in building materials

    DEFF Research Database (Denmark)

    Johannesson, Björn; Ottosen, Lisbeth M.

    2008-01-01

    A model is established for the prediction of the effect of salt removal of building materials using electromigration. Salt-induced decay of building materials, such as masonry and sandstone, is a serious threat to our cultural heritage. Electromigration of salts from building materials, sensitive...... for salt attack of various kinds, is one potential method to preserve old building envelopes. By establishing a model for ionic multi-species diffusion, which also accounts for external applied electrical fields, it is proposed that an important complement to the experimental tests and that verification...... can be obtained. One important issue is to be able to optimizing the salt removing electromagration method in the field by first studying it theoretically. Another benefit is that models can give some answers concerning the effect of the inner surfaces of the material on the diffusion mechanisms...

  15. Building footprint extraction from digital surface models using neural networks

    Science.gov (United States)

    Davydova, Ksenia; Cui, Shiyong; Reinartz, Peter

    2016-10-01

    Two-dimensional building footprints are a basis for many applications: from cartography to three-dimensional building models generation. Although, many methodologies have been proposed for building footprint extraction, this topic remains an open research area. Neural networks are able to model the complex relationships between the multivariate input vector and the target vector. Based on these abilities we propose a methodology using neural networks and Markov Random Fields (MRF) for automatic building footprint extraction from normalized Digital Surface Model (nDSM) and satellite images within urban areas. The proposed approach has mainly two steps. In the first step, the unary terms are learned for the MRF energy function by a four-layer neural network. The neural network is learned on a large set of patches consisting of both nDSM and Normalized Difference Vegetation Index (NDVI). Then prediction is performed to calculate the unary terms that are used in the MRF. In the second step, the energy function is minimized using a maxflow algorithm, which leads to a binary building mask. The building extraction results are compared with available ground truth. The comparison illustrates the efficiency of the proposed algorithm which can extract approximately 80% of buildings from nDSM with high accuracy.

  16. Modelling of Building Interiors with Mobile Phone Sensor Data

    Directory of Open Access Journals (Sweden)

    Julian Rosser

    2015-06-01

    Full Text Available Creating as-built plans of building interiors is a challenging task. In this paper we present a semi-automatic modelling system for creating residential building interior plans and their integration with existing map data to produce building models. Taking a set of imprecise measurements made with an interactive mobile phone room mapping application, the system performs spatial adjustments in accordance with soft and hard constraints imposed on the building plan geometry. The approach uses an optimisation model that exploits a high accuracy building outline, such as can be found in topographic map data, and the building topology to improve the quality of interior measurements and generate a standardised output. We test our system on building plans of five residential homes. Our evaluation shows that the approach enables construction of accurate interior plans from imprecise measurements. The experiments report an average accuracy of 0.24 m, close to the 0.20 m recommended by the CityGML LoD4 specification.

  17. Danish and Brazilian Modeling of Whole-Building Hygrothermal Performance

    DEFF Research Database (Denmark)

    Rode, Carsten; Mendes, Nathan; Grau, Karl

    2006-01-01

    computational analysis of the hygrothermal performance of whole buildings. Such developments have led to new hygrothermal models for whole buildings. The paper gives examples of two such recent developments and will illustrate some calculation results that can be obtained. Finally the paper will mention some......The humidity of rooms and moisture conditions of materials in the enclosure of buildings depend much on each other because of the moisture exchange that takes place over the interior surfaces. These moisture influences also depend strongly on the thermal conditions of indoor spaces and enclosure...... the humidity low and thus reduce the risk of moisture damage in the building enclosure. In either case the indoor humidity has a direct or indirect impact on the energy performance of the HVAC system of a building. To analyze this situation, one could benefit from some recent developments in integrated...

  18. Modeling thermally active building components using space mapping

    DEFF Research Database (Denmark)

    Pedersen, Frank; Weitzmann, Peter; Svendsen, Svend

    2005-01-01

    simplified models of the components do not always provide useful solutions, since they are not always able to reproduce the correct thermal behavior. The space mapping technique transforms a simplified, but computationally inexpensive model, in order to align it with a detailed model or measurements....... This paper describes the principle of the space mapping technique, and introduces a simple space mapping technique. The technique is applied to a lumped parameter model of a thermo active component, which provides a model of the thermal performance of the component as a function of two design parameters......In order to efficiently implement thermally active building components in new buildings, it is necessary to evaluate the thermal interaction between them and other building components. Applying parameter investigation or numerical optimization methods to a differential-algebraic (DAE) model...

  19. An Occupant Behavior Model for Building Energy Efficiency and Safety

    Science.gov (United States)

    Pan, L. L.; Chen, T.; Jia, Q. S.; Yuan, R. X.; Wang, H. T.; Ding, R.

    2010-05-01

    An occupant behavior model is suggested to improve building energy efficiency and safety. This paper provides a generic outline of the model, which includes occupancy behavior abstraction, model framework and primary structure, input and output, computer simulation results as well as summary and outlook. Using information technology, now it's possible to collect large amount of information of occupancy. Yet this can only provide partial and historical information, so it's important to develop a model to have full view of the researched building as well as prediction. We used the infrared monitoring system which is set at the front door of the Low Energy Demo Building (LEDB) at Tsinghua University in China, to provide the time variation of the total number of occupants in the LEDB building. This information is used as input data for the model. While the RFID system is set on the 1st floor, which provides the time variation of the occupants' localization in each region. The collected data are used to validate the model. The simulation results show that this presented model provides a feasible framework to simulate occupants' behavior and predict the time variation of the number of occupants in the building. Further development and application of the model is also discussed.

  20. Building models for marketing decisions : past, present and future

    NARCIS (Netherlands)

    Leeflang, P.S.H.; Wittink, Dick R.

    2000-01-01

    We review five eras of model building in marketing, with special emphasis on the fourth and the fifth eras, the present and the future. At many firms managers now routinely use model-based results for marketing decisions. Given an increasing number of successful applications, the demand for models t

  1. Building models for marketing decisions : Past, present and future

    NARCIS (Netherlands)

    Leeflang, PSH; Wittink, DR

    2000-01-01

    We review five eras of model building in marketing, with special emphasis on the fourth and the fifth eras, the present and the future. At many firms managers now routinely use model-based results for marketing decisions. Given an increasing number of successful applications, the demand for models t

  2. Estimating Fallout Building Attributes from Architectural Features and Global Earthquake Model (GEM) Building Descriptions

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Michael B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kane, Staci R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-01

    A nuclear explosion has the potential to injure or kill tens to hundreds of thousands (or more) of people through exposure to fallout (external gamma) radiation. Existing buildings can protect their occupants (reducing fallout radiation exposures) by placing material and distance between fallout particles and individuals indoors. Prior efforts have determined an initial set of building attributes suitable to reasonably assess a given building’s protection against fallout radiation. The current work provides methods to determine the quantitative values for these attributes from (a) common architectural features and data and (b) buildings described using the Global Earthquake Model (GEM) taxonomy. These methods will be used to improve estimates of fallout protection for operational US Department of Defense (DoD) and US Department of Energy (DOE) consequence assessment models.

  3. Risk Classification Model for Design and Build Projects

    Directory of Open Access Journals (Sweden)

    O. E. Ogunsanmi

    2011-07-01

    Full Text Available The purpose of this paper is to investigate if the various risk sources in Design and Build projects can be classified into three risk groups of cost, time and quality using the discriminant analysis technique. Literature search was undertaken to review issues of risk sources, classification of the identified risks into a risk structure, management of risks and effects of risks all on Design and Build projects as well as concepts of discriminant analysis as a statistical technique. This literature review was undertaken through the use of internet, published papers, journal articles and other published reports on risks in Design and Build projects. A research questionnaire was further designed to collect research information. This research study is a survey research that utilized cross-sectional design to capture the primary data. The data for the survey was collected in Nigeria. In all 40 questionnaires were sent to various respondents that included Architects, Engineers, Quantity Surveyors and Builders who had used Design and Build procurement method for their recently completed projects. Responses from these retrieved questionnaires that measured the impact of risks on Design and Build were analyzed using the discriminant analysis technique through the use of SPSS software package to build two discriminant models for classifying risks into cost, time and quality risk groups. Results of the study indicate that time overrun and poor quality are the two factors that discriminate between cost, time and quality related risk groups. These two discriminant functions explain the variation between the risk groups. All the discriminating variables of cost overrun, time overrun and poor quality demonstrate some relationships with the two discriminant functions. The two discriminant models built can classify risks in Design and Build projects into risk groups of cost, time and quality. These classifications models have 72% success rate of classification

  4. Guided Inquiry and Consensus-Building Used to Construct Cellular Models

    Directory of Open Access Journals (Sweden)

    Joel I. Cohen

    2015-02-01

    Full Text Available Using models helps students learn from a “whole systems” perspective when studying the cell. This paper describes a model that employs guided inquiry and requires consensus building among students for its completion. The model is interactive, meaning that it expands upon a static model which, once completed, cannot be altered and additionally relates various levels of biological organization (molecular, organelle, and cellular to define cell and organelle function and interaction. Learning goals are assessed using data summed from final grades and from images of the student’s final cell model (plant, bacteria, and yeast taken from diverse seventh grade classes. Instructional figures showing consensus-building pathways and seating arrangements are discussed. Results suggest that the model leads to a high rate of participation, facilitates guided inquiry, and fosters group and individual exploration by challenging student understanding of the living cell.

  5. Building a Structural Model: Parameterization and Structurality

    Directory of Open Access Journals (Sweden)

    Michel Mouchart

    2016-04-01

    Full Text Available A specific concept of structural model is used as a background for discussing the structurality of its parameterization. Conditions for a structural model to be also causal are examined. Difficulties and pitfalls arising from the parameterization are analyzed. In particular, pitfalls when considering alternative parameterizations of a same model are shown to have lead to ungrounded conclusions in the literature. Discussions of observationally equivalent models related to different economic mechanisms are used to make clear the connection between an economically meaningful parameterization and an economically meaningful decomposition of a complex model. The design of economic policy is used for drawing some practical implications of the proposed analysis.

  6. Building fire zone model with symbolic mathematics

    Institute of Scientific and Technical Information of China (English)

    武红梅; 郜冶; 周允基

    2009-01-01

    To apply the fire modelling for the fire engineer with symbolic mathematics,the key equations of a zone model were demonstrated. There were thirteen variables with nine constraints,so only four ordinary differential equations (ODEs) were required to solve. A typical fire modelling with two-room structure was studied. Accordingly,the source terms included in the ODEs were simplified and modelled,and the fourth Runge-Kutta method was used to solve the ordinary differential equations (ODEs) with symbolic mathematics. Then a zone model could be used with symbolic mathematics. It is proposed that symbolic mathematics is possible for use by fire engineer.

  7. Research on Dynamic Model's Building of Active Magnetic Suspension Systems

    Institute of Scientific and Technical Information of China (English)

    SHI Jian; YAN Guo-zheng; LI Li-chuan; WANG Kun-dong

    2006-01-01

    An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn't depend on system's physical parameters. The rotor can be reliably suspended under the unit feedback control system designed with the primary dynamic model obtained. Online identification in frequency domain is processed to give the precise model. Comparisons show that the experimental method is much closer to the precise model than the theoretic method based on magnetic circuit law. So this experimental method is a good choice to build the primary dynamic model of AMSS.

  8. Duct thermal performance models for large commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wray, Craig P.

    2003-10-01

    Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach

  9. Foundation requirements for the buildings of the Paks nuclear power plant, Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Vago, I. (Paksi Atomeroemue Vallalat (Hungary))

    1983-01-01

    Prior to the construction of the Paks nuclear plant buildings, the soil mechanics had to be taken into consideration. The investigations needed for the foundation of the power plant are discussed. The strata of the soil under the site were explored. The load bearing capability and the solidity of the soil was investigated using a dynamic probe technique with /sup 137/Cs isotope. The groundwater level was also studied. It was found that the stratification is uniform, the ground subsidence conditions are acceptable and the strata are well loadable. The packing of the grained strata is difficult but the landfilling was constructed to form a dense ground.

  10. Seismic resistance design of nuclear power plant building structures in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kitano, Takehito [Kansai Electric Power Co., Inc., Osaka (Japan)

    1997-03-01

    Japan is one of the countries where earthquakes occur most frequently in the world and has incurred a lot of disasters in the past. Therefore, the seismic resistance design of a nuclear power plant plays a very important role in Japan. This report describes the general method of seismic resistance design of a nuclear power plant giving examples of PWR and BWR type reactor buildings in Japan. Nuclear facilities are classified into three seismic classes and is designed according to the corresponding seismic class in Japan. Concerning reactor buildings, the short-term allowable stress design is applied for the S1 seismic load and it is confirmed that the structures have a safety margin against the S2 seismic load. (J.P.N.)

  11. Modelling, design, and optimization of net-zero energy buildings

    CERN Document Server

    Athienitis, Andreas

    2015-01-01

    Building energy design is currently going through a period of major changes. One key factor of this is the adoption of net-zero energy as a long term goal for new buildings in most developed countries. To achieve this goal a lot of research is needed to accumulate knowledge and to utilize it in practical applications. In this book, accomplished international experts present advanced modeling techniques as well as in-depth case studies in order to aid designers in optimally using simulation tools for net-zero energy building design. The strategies and technologies discussed in this book are, ho

  12. Building a better model of cancer

    Directory of Open Access Journals (Sweden)

    DeGregori James

    2006-10-01

    Full Text Available Abstract The 2006 Cold Spring Harbor Laboratory meeting on the Mechanisms and Models of Cancer was held August 16–20. The meeting featured several hundred presentations of many short talks (mostly selected from the abstracts and posters, with the airing of a number of exciting new discoveries. We will focus this meeting review on models of cancer (primarily mouse models, highlighting recent advances in new mouse models that better recapitulate sporadic tumorigenesis, demonstrations of tumor addiction to tumor suppressor inactivation, new insight into senescence as a tumor barrier, improved understanding of the evolutionary paths of cancer development, and environmental/immunological influences on cancer.

  13. A procedure for building product models

    DEFF Research Database (Denmark)

    Hvam, Lars; Riis, Jesper; Malis, Martin

    2001-01-01

    with product models. The next phase includes an analysis of the product assortment, and the set up of a so-called product master. Finally the product model is designed and implemented using object oriented modelling. The procedure is developed in order to ensure that the product models constructed are fit...... for the business processes they support, and properly structured and documented, in order to facilitate that the systems can be maintained continually and further developed. The research has been carried out at the Centre for Industrialisation of Engineering, Department of Manufacturing Engineering, Technical...

  14. Treatments of plant biomass for cementitious building materials – A review

    OpenAIRE

    Vo, Thi To Loan; Navard, Patrick

    2016-01-01

    International audience; The use of plant biomass for developing energy efficient and low cost construction materials is an emerging field in building construction and civil engineering. Although the biomass-based cement and concrete composites have several advantages, such as low densities, low amount of CO2 gas emission, good thermal and acoustic insulation, there are also disadvantages or open questions like the durability of biomass in alkaline cement matrix, the high absorption of water a...

  15. Thirteen challenges in modelling plant diseases

    Science.gov (United States)

    The underlying structure of epidemiological models, and the questions that models can be used to address, do not necessarily depend on the identity of the host. This means that certain preoccupations of plant disease modelers are similar to those of modelers of diseases in animals and humans. Howeve...

  16. Team learning: building shared mental models

    NARCIS (Netherlands)

    Bossche, van den P.; Gijselaers, W.; Segers, M.; Woltjer, G.B.; Kirschner, P.

    2011-01-01

    To gain insight in the social processes that underlie knowledge sharing in teams, this article questions which team learning behaviors lead to the construction of a shared mental model. Additionally, it explores how the development of shared mental models mediates the relation between team learning

  17. Team Learning: Building Shared Mental Models

    Science.gov (United States)

    Van den Bossche, Piet; Gijselaers, Wim; Segers, Mien; Woltjer, Geert; Kirschner, Paul

    2011-01-01

    To gain insight in the social processes that underlie knowledge sharing in teams, this article questions which team learning behaviors lead to the construction of a shared mental model. Additionally, it explores how the development of shared mental models mediates the relation between team learning behaviors and team effectiveness. Analyses were…

  18. Building Mathematical Models Of Solid Objects

    Science.gov (United States)

    Randall, Donald P.; Jones, Kennie H.; Von Ofenheim, William H.; Gates, Raymond L.; Matthews, Christine G.

    1989-01-01

    Solid Modeling Program (SMP) version 2.0 provides capability to model complex solid objects mathematically through aggregation of geometric primitives (parts). System provides designer with basic set of primitive parts and capability to define new primitives. Six primitives included in present version: boxes, cones, spheres, paraboloids, tori, and trusses. Written in VAX/VMS FORTRAN 77.

  19. Team learning: building shared mental models

    NARCIS (Netherlands)

    Bossche, van den P.; Gijselaers, W.; Segers, M.; Woltjer, G.B.; Kirschner, P.

    2011-01-01

    To gain insight in the social processes that underlie knowledge sharing in teams, this article questions which team learning behaviors lead to the construction of a shared mental model. Additionally, it explores how the development of shared mental models mediates the relation between team learning

  20. RF building block modelling : optimization and synthesis

    NARCIS (Netherlands)

    Cheng, Wei

    2012-01-01

    For circuit designers it is desirable to have relatively simple RF circuit models that do give decent estimation accuracy and provide sufficient understanding of circuits. Chapter 2 in this thesis shows a general weak nonlinearity model that meets these demands. Using a method that is related to har

  1. Building a Database for a Quantitative Model

    Science.gov (United States)

    Kahn, C. Joseph; Kleinhammer, Roger

    2014-01-01

    A database can greatly benefit a quantitative analysis. The defining characteristic of a quantitative risk, or reliability, model is the use of failure estimate data. Models can easily contain a thousand Basic Events, relying on hundreds of individual data sources. Obviously, entering so much data by hand will eventually lead to errors. Not so obviously entering data this way does not aid linking the Basic Events to the data sources. The best way to organize large amounts of data on a computer is with a database. But a model does not require a large, enterprise-level database with dedicated developers and administrators. A database built in Excel can be quite sufficient. A simple spreadsheet database can link every Basic Event to the individual data source selected for them. This database can also contain the manipulations appropriate for how the data is used in the model. These manipulations include stressing factors based on use and maintenance cycles, dormancy, unique failure modes, the modeling of multiple items as a single "Super component" Basic Event, and Bayesian Updating based on flight and testing experience. A simple, unique metadata field in both the model and database provides a link from any Basic Event in the model to its data source and all relevant calculations. The credibility for the entire model often rests on the credibility and traceability of the data.

  2. RF building block modeling: optimization and synthesis

    NARCIS (Netherlands)

    Cheng, W.

    2012-01-01

    For circuit designers it is desirable to have relatively simple RF circuit models that do give decent estimation accuracy and provide sufficient understanding of circuits. Chapter 2 in this thesis shows a general weak nonlinearity model that meets these demands. Using a method that is related to

  3. Building Water Models, A Different Approach

    CERN Document Server

    Izadi, Saeed; Onufriev, Alexey V

    2014-01-01

    Simplified, classical models of water are an integral part of atomistic molecular simulations, especially in biology and chemistry where hydration effects are critical. Yet, despite several decades of effort, these models are still far from perfect. Presented here is an alternative approach to constructing point charge water models - currently, the most commonly used type. In contrast to the conventional approach, we do not impose any geometry constraints on the model other than symmetry. Instead, we optimize the distribution of point charges to best describe the "electrostatics" of the water molecule, which is key to many unusual properties of liquid water. The search for the optimal charge distribution is performed in 2D parameter space of key lowest multipole moments of the model, to find best fit to a small set of bulk water properties at room temperature. A virtually exhaustive search is enabled via analytical equations that relate the charge distribution to the multipole moments. The resulting "optimal"...

  4. Modeling Operating Modes during Plant Life Cycle

    DEFF Research Database (Denmark)

    Jørgensen, Sten Bay; Lind, Morten

    2012-01-01

    Modelling process plants during normal operation requires a set a basic assumptions to define the desired functionalities which lead to fullfillment of the operational goal(-s) for the plant. However during during start-up and shut down as well as during batch operation an ensemble of interrelate...

  5. Integration of inaccurate data into model building and uncertainty assessment

    Energy Technology Data Exchange (ETDEWEB)

    Coleou, Thierry

    1998-12-31

    Model building can be seen as integrating numerous measurements and mapping through data points considered as exact. As the exact data set is usually sparse, using additional non-exact data improves the modelling and reduces the uncertainties. Several examples of non-exact data are discussed and a methodology to honor them in a single pass, along with the exact data is presented. This automatic procedure is valid for both ``base case`` model building and stochastic simulations for uncertainty analysis. 5 refs., 3 figs.

  6. Nonlinear Economic Model Predictive Control Strategy for Active Smart Buildings

    DEFF Research Database (Denmark)

    Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.

    2016-01-01

    Nowadays, the development of advanced and innovative intelligent control techniques for energy management in buildings is a key issue within the smart grid topic. A nonlinear economic model predictive control (EMPC) scheme, based on the branch-and-bound tree search used as optimization algorithm...... for solving the nonconvex optimization problem is proposed in this paper. A simulation using the nonlinear model-based controller to control the temperature levels of an intelligent office building (PowerFlexHouse) is addressed. Its performance is compared with a linear model-based controller. The nonlinear...

  7. Modelling energy demand in the Norwegian building stock

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Igor

    2008-07-15

    Energy demand in the building stock in Norway represents about 40% of the final energy consumption, of which 22% goes to the residential sector and 18% to the service sector. In Norway there is a strong dependency on electricity for heating purposes, with electricity covering about 80% of the energy demand in buildings. The building sector can play an important role in the achievement of a more sustainable energy system. The work performed in the articles presented in this thesis investigates various aspects related to the energy demand in the building sector, both in singular cases and in the stock as a whole. The work performed in the first part of this thesis on development and survey of case studies provided background knowledge that was then used in the second part, on modelling the entire stock. In the first part, a literature survey of case studies showed that, in a life cycle perspective, the energy used in the operating phase of buildings is the single most important factor. Design of low-energy buildings is then beneficial and should be pursued, even though it implies a somewhat higher embodied energy. A case study was performed on a school building. First, a methodology using a Monte Carlo method in the calibration process was explored. Then, the calibrated model of the school was used to investigate measures for the achievement of high energy efficiency standard through renovation work. In the second part, a model was developed to study the energy demand in a scenario analysis. The results showed the robustness of policies that included conservation measures against the conflicting effects of the other policies. Adopting conservation measures on a large scale showed the potential to reduce both electricity and total energy demand from present day levels while the building stock keeps growing. The results also highlighted the inertia to change of the building stock, due to low activity levels compared to the stock size. It also became clear that a deeper

  8. Energy savings modelling of re-tuning energy conservation measures in large office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nick; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2014-10-20

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS’s capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This paper investigates the energy savings potential of several common HVAC system re-tuning measures on a typical large office building, using the Department of Energy’s building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply-air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated – each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All the individual measures and combinations were simulated in 16 climate locations representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual total HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy

  9. Active Shapes for Automatic 3D Modeling of Buildings

    NARCIS (Netherlands)

    Sirmacek, B.; Lindenbergh, R.C.

    2015-01-01

    Recent technological developments help us to acquire high quality 3D measurements of our urban environment. However, these measurements, which come as point clouds or Digital Surface Models (DSM), do not directly give 3D geometrical models of buildings. In addition to that, they are not suitable for

  10. A Heat Dynamic Model for Intelligent Heating of Buildings

    DEFF Research Database (Denmark)

    Thavlov, Anders; Bindner, Henrik W.

    2015-01-01

    This article presents a heat dynamic model for prediction of the indoor temperature in an office building. The model has been used in several flexible load applications, where the indoor temperature is allowed to vary around a given reference to provide power system services by shifting the heati...

  11. Modelling diversity in building occupant behaviour: a novel statistical approach

    DEFF Research Database (Denmark)

    Haldi, Frédéric; Calì, Davide; Andersen, Rune Korsholm

    2016-01-01

    We propose an advanced modelling framework to predict the scope and effects of behavioural diversity regarding building occupant actions on window openings, shading devices and lighting. We develop a statistical approach based on generalised linear mixed models to account for the longitudinal nat...

  12. Proposed Methodology for Generation of Building Information Model with Laserscanning

    Institute of Scientific and Technical Information of China (English)

    Shutao Li; J(o)rg lsele; Georg Bretthauer

    2008-01-01

    For refurbishment and state review of an existing old building,a new model reflecting the current state is often required especially when the original plans are no longer accessible.Laser scanners are used more and more as surveying instruments for various applications because of their high-precision scanning abilities.For buildings,the most notable and widely accepted product data model is the IFC product data model.It is designed to cover the whole lifecycle and supported by various software vendors and enables applications to efficiently share and exchange project information.The models obtained with the laser scan-ner,normally sets of points ("point cloud"),have to be transferred to an IFC compatible building information model to serve the needs of different planning states.This paper presents an approach designed by the German Research Center in Karlsmhe (Forschungszentrum Kadsmhe) to create an IFC compatible building information model from laser range images.The methodology through the entire process from data acquisi tion to the IFC compatible product model was proposed in this paper.In addition,IFC-Models with different level of detail (LoDs) were introduced and discussed within the work.

  13. A Pathway Idea in Model Building

    Science.gov (United States)

    Mathai, A. M.; Haubold, H. J.

    2014-01-01

    The pathway idea is a way of going from one family of functions to another family of functions and yet another family of functions through a parameter in the mode l so that a switching mechanism is introduced into the model through a parameter. The advantage of the idea is that the model can cover the ideal or stable situation in a physical situation as well as cover the unstable neighborhoods or move from unstable neighborhoods to the stable situation. The basic idea is illustrated for the real scalar case here and its connections to topics in astrophysics and non-extens ive statistical mechanics, namely superstatistics and Tsallis statistics, Mittag-Leffler models, hypergeometric functions and generalized special functions such as the H-function etc are pointed out. The pathway idea is available for the real and complex rectangular matrix variate cases but only the real scalar case is illustrated here.

  14. Seismic soil–structure interaction analysis of a nuclear power plant building founded on soil and in degraded concrete stiffness condition

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, Reza V., E-mail: reza.farahani@rizzoassoc.com; Dessalegn, Tewodros M., E-mail: tewodros.dessalegn@rizzoassoc.com; Vaidya, Nishikant R., E-mail: nish.vaidya@rizzoassoc.com; Bazan-Zurita, Enrique, E-mail: enrique.bazanz@rizzoassoc.com

    2016-02-15

    Highlights: • Three dimensional finite element modeling of a Nuclear Power Plant (NPP) building founded on soil is described. • A simplified technique to consider degraded stiffness of concrete members in seismic analysis of NPP buildings is presented. • The effect of subsurface profiles on the seismic response of a NPP building is investigated. - Abstract: This study describes three-dimensional (3-D) finite element (FE) modeling and seismic Soil-Structure Interaction (SSI) analysis of a Nuclear Power Plant (NPP) Diesel Generator Building (DGB) that is founded on soil in degraded concrete stiffness condition. A new technique is presented that uses two horizontal and vertical FE models to consider the concrete stiffness reduction of NPP buildings subjected to orthogonal ground motion excitations, in which appropriate stiffness reduction factors, based on the input motion orientation, are applied. Seismic SSI analysis is performed for each model separately, and dynamic responses are calculated in the three global directions. The results of the analysis for the two FE models are then combined, using the square-root-of-the-sum-of-squares (SRSS) combination rule. A sensitivity analysis is also performed to investigate the subsurface profile effect on the In-Structure (acceleration) Response Spectra (ISRS) of the building when subjected to site-specific Foundation Input Response Spectra (FIRS) that exhibit high spectral amplifications in the high-frequency range. The sensitivity analysis considers three strain-compatible subsurface profiles that represent Lower-Bound (LB), Best-Estimate (BE), and Upper-Bound (UB) conditions at the DGB site. The sensitivity analysis results indicate that the seismic response of the DGB founded on soil highly depends on the subsurface profile; i.e., each of the LB, BE, and UB subsurface profiles can maximize building seismic response when subjected to FIRS that exhibit high spectral amplifications in the high-frequency range

  15. Building probabilistic graphical models with Python

    CERN Document Server

    Karkera, Kiran R

    2014-01-01

    This is a short, practical guide that allows data scientists to understand the concepts of Graphical models and enables them to try them out using small Python code snippets, without being too mathematically complicated. If you are a data scientist who knows about machine learning and want to enhance your knowledge of graphical models, such as Bayes network, in order to use them to solve real-world problems using Python libraries, this book is for you. This book is intended for those who have some Python and machine learning experience, or are exploring the machine learning field.

  16. Impact of the U.S. National Building Information Model Standard (NBIMS) on Building Energy Performance Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bazjanac, Vladimir

    2007-08-01

    The U.S. National Institute for Building Sciences (NIBS) started the development of the National Building Information Model Standard (NBIMS). Its goal is to define standard sets of data required to describe any given building in necessary detail so that any given AECO industry discipline application can find needed data at any point in the building lifecycle. This will include all data that are used in or are pertinent to building energy performance simulation and analysis. This paper describes the background that lead to the development of NBIMS, its goals and development methodology, its Part 1 (Version 1.0), and its probable impact on building energy performance simulation and analysis.

  17. BUILDING A SUSTAINABLE REGION ECONOMIC DEVELOPMENT MODEL

    Directory of Open Access Journals (Sweden)

    Pshunetlev A. A.

    2014-09-01

    Full Text Available The article contains basic assumptions of the region sustainable economic development model, which can be used to gain new knowledge about economic processes, contribute to the stability of the regional development, as well as serve as an educational tool in the study of relevant disciplines

  18. Model-Based Power Plant Master Control

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Katarina; Thomas, Jean; Funkquist, Jonas

    2010-08-15

    The main goal of the project has been to evaluate the potential of a coordinated master control for a solid fuel power plant in terms of tracking capability, stability and robustness. The control strategy has been model-based predictive control (MPC) and the plant used in the case study has been the Vattenfall power plant Idbaecken in Nykoeping. A dynamic plant model based on nonlinear physical models was used to imitate the true plant in MATLAB/SIMULINK simulations. The basis for this model was already developed in previous Vattenfall internal projects, along with a simulation model of the existing control implementation with traditional PID controllers. The existing PID control is used as a reference performance, and it has been thoroughly studied and tuned in these previous Vattenfall internal projects. A turbine model was developed with characteristics based on the results of steady-state simulations of the plant using the software EBSILON. Using the derived model as a representative for the actual process, an MPC control strategy was developed using linearization and gain-scheduling. The control signal constraints (rate of change) and constraints on outputs were implemented to comply with plant constraints. After tuning the MPC control parameters, a number of simulation scenarios were performed to compare the MPC strategy with the existing PID control structure. The simulation scenarios also included cases highlighting the robustness properties of the MPC strategy. From the study, the main conclusions are: - The proposed Master MPC controller shows excellent set-point tracking performance even though the plant has strong interactions and non-linearity, and the controls and their rate of change are bounded. - The proposed Master MPC controller is robust, stable in the presence of disturbances and parameter variations. Even though the current study only considered a very small number of the possible disturbances and modelling errors, the considered cases are

  19. Scope of Building Information Modeling (BIM in India

    Directory of Open Access Journals (Sweden)

    Mahua Mukherjee

    2009-01-01

    Full Text Available The design communication is gradually being changed from 2D based to integrated 3D digital interface. Building InformationModeling (BIM is a model-based design concept, in which buildings will be built virtually before they get built outin the field, where data models organized for complete integration of all relevant factors in the building lifecycle whichalso manages the information exchange between the AEC (Architects, Engineers, Contractors professionals, to strengthenthe interaction between the design team. BIM is a shared knowledge about the information for decisions making during itslifecycle. There’s still much to be learned about the opportunities and implications of this tool.This paper deals with the status check of BIM application in India, to do that a survey has been designed to check the acceptanceof BIM till date, while this application is widely accepted throughout the industry in many countries for managingproject information with capabilities for cost control and facilities management.

  20. Exploitation of Semantic Building Model in Indoor Navigation Systems

    Science.gov (United States)

    Anjomshoaa, A.; Shayeganfar, F.; Tjoa, A. Min

    2009-04-01

    There are many types of indoor and outdoor navigation tools and methodologies available. A majority of these solutions are based on Global Positioning Systems (GPS) and instant video and image processing. These approaches are ideal for open world environments where very few information about the target location is available, but for large scale building environments such as hospitals, governmental offices, etc the end-user will need more detailed information about the surrounding context which is especially important in case of people with special needs. This paper presents a smart indoor navigation solution that is based on Semantic Web technologies and Building Information Model (BIM). The proposed solution is also aligned with Google Android's concepts to enlighten the realization of results. Keywords: IAI IFCXML, Building Information Model, Indoor Navigation, Semantic Web, Google Android, People with Special Needs 1 Introduction Built environment is a central factor in our daily life and a big portion of human life is spent inside buildings. Traditionally the buildings are documented using building maps and plans by utilization of IT tools such as computer-aided design (CAD) applications. Documenting the maps in an electronic way is already pervasive but CAD drawings do not suffice the requirements regarding effective building models that can be shared with other building-related applications such as indoor navigation systems. The navigation in built environment is not a new issue, however with the advances in emerging technologies like GPS, mobile and networked environments, and Semantic Web new solutions have been suggested to enrich the traditional building maps and convert them to smart information resources that can be reused in other applications and improve the interpretability with building inhabitants and building visitors. Other important issues that should be addressed in building navigation scenarios are location tagging and end-user communication

  1. Shade trees reduce building energy use and CO2 emissions from power plants.

    Science.gov (United States)

    Akbari, H

    2002-01-01

    Urban shade trees offer significant benefits in reducing building air-conditioning demand and improving urban air quality by reducing smog. The savings associated with these benefits vary by climate region and can be up to $200 per tree. The cost of planting trees and maintaining them can vary from $10 to $500 per tree. Tree-planting programs can be designed to have lower costs so that they offer potential savings to communities that plant trees. Our calculations suggest that urban trees play a major role in sequestering CO2 and thereby delay global warming. We estimate that a tree planted in Los Angeles avoids the combustion of 18 kg of carbon annually, even though it sequesters only 4.5-11 kg (as it would if growing in a forest). In this sense, one shade tree in Los Angeles is equivalent to three to five forest trees. In a recent analysis for Baton Rouge, Sacramento, and Salt Lake City, we estimated that planting an average of four shade trees per house (each with a top view cross section of 50 m2) would lead to an annual reduction in carbon emissions from power plants of 16,000, 41,000, and 9000 t, respectively (the per-tree reduction in carbon emissions is about 10-11 kg per year). These reductions only account for the direct reduction in the net cooling- and heating-energy use of buildings. Once the impact of the community cooling is included, these savings are increased by at least 25%.

  2. Empirical data validation for model building

    Science.gov (United States)

    Kazarian, Aram

    2008-03-01

    Optical Proximity Correction (OPC) has become an integral and critical part of process development for advanced technologies with challenging k I requirements. OPC solutions in turn require stable, predictive models to be built that can project the behavior of all structures. These structures must comprehend all geometries that can occur in the layout in order to define the optimal corrections by feature, and thus enable a manufacturing process with acceptable margin. The model is built upon two main component blocks. First, is knowledge of the process conditions which includes the optical parameters (e.g. illumination source, wavelength, lens characteristics, etc) as well as mask definition, resist parameters and process film stack information. Second, is the empirical critical dimension (CD) data collected using this process on specific test features the results of which are used to fit and validate the model and to project resist contours for all allowable feature layouts. The quality of the model therefore is highly dependent on the integrity of the process data collected for this purpose. Since the test pattern suite generally extends to below the resolution limit that the process can support with adequate latitude, the CD measurements collected can often be quite noisy with marginal signal-to-noise ratios. In order for the model to be reliable and a best representation of the process behavior, it is necessary to scrutinize empirical data to ensure that it is not dominated by measurement noise or flyer/outlier points. The primary approach for generating a clean, smooth and dependable empirical data set should be a replicated measurement sampling that can help to statistically reduce measurement noise by averaging. However, it can often be impractical to collect the amount of data needed to ensure a clean data set by this method. An alternate approach is studied in this paper to further smooth the measured data by means of curve fitting to identify remaining

  3. Actant model of an extraction plant

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Helle

    1999-05-01

    Facing a growing complexity of industrial plants, we recognise the need for qualitative modelling methods capturing functional and causal complexity in a human-centred way. The present paper presents actant modelling as a functional modelling method rooted in linguistics and semiotics. Actant modelling combines actant models from linguistics with multilevel flow modelling (MFM). Thus the semantics of MFM functions is developed further and given an interpretation in terms of actant functions. The present challenge is to provide coherence between seemingly different categories of knowledge. Yet the gap between functional and causal modelling methods can be bridged. Actant modelling provides an open and provisional, but in no way exhaustive or final answer as to how teleological concepts like goals and functions relate to causal concepts. As the main focus of the paper an actant model of an extraction plant is presented. It is shown how the actant model merges functional and causal knowledge in a natural way.

  4. Building Qualitative Models of Thermodynamic Processes

    Science.gov (United States)

    2007-01-01

    two containers 61 53 Envisionment for simple flow with thermal properties 62 54 Envisionment for simple flow without thermal properties 63 55 A...pump and a path connecting two containers 64 56 Scenario input for a pump and a return path between two containers . . 64 57 Envisionment for the...Specifically, the domain model is written in the language of QPE[8], an envisioner for Qualitative Process theory . We assume a reading knowledge of QP theory

  5. A Unified Building Model for 3D Urban GIS

    Directory of Open Access Journals (Sweden)

    Ihab Hijazi

    2012-07-01

    Full Text Available Several tasks in urban and architectural design are today undertaken in a geospatial context. Building Information Models (BIM and geospatial technologies offer 3D data models that provide information about buildings and the surrounding environment. The Industry Foundation Classes (IFC and CityGML are today the two most prominent semantic models for representation of BIM and geospatial models respectively. CityGML has emerged as a standard for modeling city models while IFC has been developed as a reference model for building objects and sites. Current CAD and geospatial software provide tools that allow the conversion of information from one format to the other. These tools are however fairly limited in their capabilities, often resulting in data and information losses in the transformations. This paper describes a new approach for data integration based on a unified building model (UBM which encapsulates both the CityGML and IFC models, thus avoiding translations between the models and loss of information. To build the UBM, all classes and related concepts were initially collected from both models, overlapping concepts were merged, new objects were created to ensure the capturing of both indoor and outdoor objects, and finally, spatial relationships between the objects were redefined. Unified Modeling Language (UML notations were used for representing its objects and relationships between them. There are two use-case scenarios, both set in a hospital: “evacuation” and “allocating spaces for patient wards” were developed to validate and test the proposed UBM data model. Based on these two scenarios, four validation queries were defined in order to validate the appropriateness of the proposed unified building model. It has been validated, through the case scenarios and four queries, that the UBM being developed is able to integrate CityGML data as well as IFC data in an apparently seamless way. Constraints and enrichment functions are

  6. Modelling asymmetric growth in crowded plant communities

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2010-01-01

    A class of models that may be used to quantify the effect of size-asymmetric competition in crowded plant communities by estimating a community specific degree of size-asymmetric growth for each species in the community is suggested. The model consists of two parts: an individual size-asymmetric ......A class of models that may be used to quantify the effect of size-asymmetric competition in crowded plant communities by estimating a community specific degree of size-asymmetric growth for each species in the community is suggested. The model consists of two parts: an individual size...

  7. Models of plant populations and communities

    Energy Technology Data Exchange (ETDEWEB)

    Huston, M.

    1990-01-01

    This document is the overview of the plant section in the book, {und Individual-Based Models and Approaches in Ecology}. A brief description of each of the chapters is provided, as well as a comparison of the models presented in each chapter. Four of the six chapters deal with single species interactions, one dealt with a two species system (plants and pollinators) and one deals with multispecies interactions. Both i-state distribution models and i-state configuration models are discussed. (MHB)

  8. Building tomorrow's nuclear power plants with 4{sup +}D VR technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Il S.; Yoon, Sang H.; Shim, Kyu W.; Yu, Yong H.; Suh, Kune Y. [PhiloSOPhIA, Inc., Seoul (Korea, Republic of)

    2002-04-15

    There continues to be an increasing demand of electricity around the globe to fuel the industrial growth and to promote the human welfare. The economic activities have brought about richness in our material and cultural lives, in which process the electric power has been at the heart of the versatile energy sources. In order to timely and competitively respond to rapidly changing energy environment in the twenty-first century there is a growing need to build the advanced nuclear power plants in the unlimited workspace of virtual reality (VR) prior to commissioning. One can then realistically evaluate their construction time and cost per varying methods and options available from the leading-edge technology. In particular a great deal of efforts have yet to be made for time- and cost-dependent plant simulation and dynamically coupled database construction in the VR space. The operator training and personnel education may also benefit from the VR technology. The present work is being proposed in the three-dimensional space and time plus cost coordinates, i. e. four plus dimensional (4{sup +}D) coordinates. The 4{sup +}D VR application will enable the nuclear industry to narrow the technological gap from the other leading industries that have long since been employing the VR engineering. The 4{sup +}D technology will help nurture public understanding of the special discipline of nuclear power plants. The technology will also facilitate public access to the knowledge on the nuclear science and engineering which has so far been monopolized by the academia, national laboratories and the heavy industry. The 4{sup +}D virtual design and construction will open up the new horizon for revitalization of the nuclear industry over the globe in the foreseeable future. Considering the long construction and operation time for the nuclear power plants, the preliminary VR simulation capability for the plants will supply the vital information not only for the actual design and

  9. XLISP-Stat Tools for Building Generalised Estimating Equation Models

    Directory of Open Access Journals (Sweden)

    Thomas Lumley

    1996-12-01

    Full Text Available This paper describes a set of Lisp-Stat tools for building Generalised Estimating Equation models to analyse longitudinal or clustered measurements. The user interface is based on the built-in regression and generalised linear model prototypes, with the addition of object-based error functions, correlation structures and model formula tools. Residual and deletion diagnostic plots are available on the cluster and observation level and use the dynamic graphics capabilities of Lisp-Stat.

  10. Model-building codes for membrane proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Shirley, David Noyes; Hunt, Thomas W.; Brown, W. Michael; Schoeniger, Joseph S. (Sandia National Laboratories, Livermore, CA); Slepoy, Alexander; Sale, Kenneth L. (Sandia National Laboratories, Livermore, CA); Young, Malin M. (Sandia National Laboratories, Livermore, CA); Faulon, Jean-Loup Michel; Gray, Genetha Anne (Sandia National Laboratories, Livermore, CA)

    2005-01-01

    We have developed a novel approach to modeling the transmembrane spanning helical bundles of integral membrane proteins using only a sparse set of distance constraints, such as those derived from MS3-D, dipolar-EPR and FRET experiments. Algorithms have been written for searching the conformational space of membrane protein folds matching the set of distance constraints, which provides initial structures for local conformational searches. Local conformation search is achieved by optimizing these candidates against a custom penalty function that incorporates both measures derived from statistical analysis of solved membrane protein structures and distance constraints obtained from experiments. This results in refined helical bundles to which the interhelical loops and amino acid side-chains are added. Using a set of only 27 distance constraints extracted from the literature, our methods successfully recover the structure of dark-adapted rhodopsin to within 3.2 {angstrom} of the crystal structure.

  11. Building a generalized distributed system model

    Science.gov (United States)

    Mukkamala, R.

    1992-01-01

    The key elements in the second year (1991-92) of our project are: (1) implementation of the distributed system prototype; (2) successful passing of the candidacy examination and a PhD proposal acceptance by the funded student; (3) design of storage efficient schemes for replicated distributed systems; and (4) modeling of gracefully degrading reliable computing systems. In the third year of the project (1992-93), we propose to: (1) complete the testing of the prototype; (2) enhance the functionality of the modules by enabling the experimentation with more complex protocols; (3) use the prototype to verify the theoretically predicted performance of locking protocols, etc.; and (4) work on issues related to real-time distributed systems. This should result in efficient protocols for these systems.

  12. SIMPLIFIED BUILDING MODELS EXTRACTION FROM ULTRA-LIGHT UAV IMAGERY

    Directory of Open Access Journals (Sweden)

    O. Küng

    2012-09-01

    Full Text Available Generating detailed simplified building models such as the ones present on Google Earth is often a difficult and lengthy manual task, requiring advanced CAD software and a combination of ground imagery, LIDAR data and blueprints. Nowadays, UAVs such as the AscTec Falcon 8 have reached the maturity to offer an affordable, fast and easy way to capture large amounts of oblique images covering all parts of a building. In this paper we present a state-of-the-art photogrammetry and visual reconstruction pipeline provided by Pix4D applied to medium resolution imagery acquired by such UAVs. The key element of simplified building models extraction is the seamless integration of the outputs of such a pipeline for a final manual refinement step in order to minimize the amount of manual work.

  13. Integrated Urban System and Energy Consumption Model: Residential Buildings

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available This paper describes a segment of research conducted within the project PON 04a2_E Smart Energy Master for the energetic government of the territory conducted by the Department of Civil, Architectural and Environment Engineering, University of Naples "Federico II".  In particular, this article is part of the study carried out for the definition of the comprehension/interpretation model that correlates buildings, city’s activities and users’ behaviour in order to promote energy savings. In detail, this segment of the research wants to define the residential variables to be used in the model. For this purpose a knowledge framework at international level has been defined, to estimate the energy requirements of residential buildings and the identification of a set of parameters, whose variation has a significant influence on the energy consumption of residential buildings.

  14. Combined Grammar for the Modeling of Building Interiors

    Science.gov (United States)

    Becker, S.; Peter, M.; Fritsch, D.; Philipp, D.; Baier, P.; Dibak, C.

    2013-11-01

    As spatial grammars have proven successful and efficient to deliver LOD3 models, the next challenge is their extension to indoor applications, leading to LOD4 models. Therefore, a combined indoor grammar for the automatic generation of indoor models from erroneous and incomplete observation data is presented. In building interiors where inaccurate observation data is available, the grammar can be used to make the reconstruction process robust, and verify the reconstructed geometries. In unobserved building interiors, the grammar can generate hypotheses about possible indoor geometries matching the style of the rest of the building. The grammar combines concepts from L-systems and split grammars. It is designed in such way that it can be derived from observation data fully automatically. Thus, manual predefinitions of the grammar rules usually required to tune the grammar to a specific building style, become obsolete. The potential benefit of using our grammar as support for indoor modeling is evaluated based on an example where the grammar has been applied to automatically generate an indoor model from erroneous and incomplete traces gathered by foot-mounted MEMS/IMU positioning systems.

  15. HOW ECOLOGICAL ENGINEERING HELPED TO CONTINUE BUILDING AND UPGRADE OF THE OPOLE POWER PLANT

    Directory of Open Access Journals (Sweden)

    Jan Siuta

    2016-09-01

    Full Text Available Principles of ecological engineering were applied for upgrading the Opole Power Plant under construction, complete with modern installation to protect the environment. The modernized project was a subject of „Integrated environmental impact assessment of the Opole Power Plant” developed by the Institute of Environmental Protection in 1981. The main issues covered by the impact assessment were presented and discussed at the national scientific conference attended, among others, by the representatives of local community from Opole. The conference was organized by the Polish Society of Ecological Engineering on June 5 and 6, 1992. The main aim of the conference was to identify and deliver as broad as possible analysis of environmental conditions for designing, building and operating coal fired power plants. A secondary goal, though of main concern for the Opole agglomeration, was to evaluate many-sided environmental risks resulting from the construction and operation of the Power Plant. The feasibility of continuing the construction of a power generating facility that meets the requirements of the 21st century was demonstrated by the fact that the Opole Power Plant S.A. was awarded the ISO 14001 - Environmental Management System certificate by the British Standards Institution. Advanced construction of the two consecutive blocks of a combined power of 1800 MW in the Opole Power Plant substantiates the validity and effectiveness of the conference organized in 1992.

  16. An analytical model of memristors in plants.

    Science.gov (United States)

    Markin, Vladislav S; Volkov, Alexander G; Chua, Leon

    2014-01-01

    The memristor, a resistor with memory, was postulated by Chua in 1971 and the first solid-state memristor was built in 2008. Recently, we found memristors in vivo in plants. Here we propose a simple analytical model of 2 types of memristors that can be found within plants. The electrostimulation of plants by bipolar periodic waves induces electrical responses in the Aloe vera and Mimosa pudica with fingerprints of memristors. Memristive properties of the Aloe vera and Mimosa pudica are linked to the properties of voltage gated K(+) ion channels. The potassium channel blocker TEACl transform plant memristors to conventional resistors. The analytical model of a memristor with a capacitor connected in parallel exhibits different characteristic behavior at low and high frequency of applied voltage, which is the same as experimental data obtained by cyclic voltammetry in vivo.

  17. Semi-Automatic Modelling of Building FAÇADES with Shape Grammars Using Historic Building Information Modelling

    Science.gov (United States)

    Dore, C.; Murphy, M.

    2013-02-01

    This paper outlines a new approach for generating digital heritage models from laser scan or photogrammetric data using Historic Building Information Modelling (HBIM). HBIM is a plug-in for Building Information Modelling (BIM) software that uses parametric library objects and procedural modelling techniques to automate the modelling stage. The HBIM process involves a reverse engineering solution whereby parametric interactive objects representing architectural elements are mapped onto laser scan or photogrammetric survey data. A library of parametric architectural objects has been designed from historic manuscripts and architectural pattern books. These parametric objects were built using an embedded programming language within the ArchiCAD BIM software called Geometric Description Language (GDL). Procedural modelling techniques have been implemented with the same language to create a parametric building façade which automatically combines library objects based on architectural rules and proportions. Different configurations of the façade are controlled by user parameter adjustment. The automatically positioned elements of the façade can be subsequently refined using graphical editing while overlaying the model with orthographic imagery. Along with this semi-automatic method for generating façade models, manual plotting of library objects can also be used to generate a BIM model from survey data. After the 3D model has been completed conservation documents such as plans, sections, elevations and 3D views can be automatically generated for conservation projects.

  18. Overcoming Microsoft Excel's Weaknesses for Crop Model Building and Simulations

    Science.gov (United States)

    Sung, Christopher Teh Boon

    2011-01-01

    Using spreadsheets such as Microsoft Excel for building crop models and running simulations can be beneficial. Excel is easy to use, powerful, and versatile, and it requires the least proficiency in computer programming compared to other programming platforms. Excel, however, has several weaknesses: it does not directly support loops for iterative…

  19. Getting Started and Working with Building Information Modeling

    Science.gov (United States)

    Smith, Dana K.

    2009-01-01

    This article will assume that one has heard of Building Information Modeling or BIM but has not developed a strategy as to how to get the most out of it. The National BIM Standard (NBIMS) has defined BIM as a digital representation of physical and functional characteristics of a facility. As such, it serves as a shared knowledge resource for…

  20. Building information modeling (BIM) approach to the GMT Project

    Science.gov (United States)

    Teran, Jose; Sheehan, Michael; Neff, Daniel H.; Adriaanse, David; Grigel, Eric; Farahani, Arash

    2014-07-01

    The Giant Magellan Telescope (GMT), one of several next generation Extremely Large Telescopes (ELTs), is a 25.4 meter diameter altitude over azimuth design set to be built at the summit of Cerro Campánas at the Las Campánas Observatory in Chile. The paper describes the use of Building Information Modeling (BIM) for the GMT project.

  1. Aligning building information model tools and construction management methods

    NARCIS (Netherlands)

    Hartmann, Timo; van Meerveld, H.J.; Vossebeld, N.; Adriaanse, Adriaan Maria

    2012-01-01

    Few empirical studies exist that can explain how different Building Information Model (BIM) based tool implementation strategies work in practical contexts. To help overcoming this gap, this paper describes the implementation of two BIM based tools, the first, to support the activities at an estimat

  2. Plant Modeling for Human Supervisory Control

    DEFF Research Database (Denmark)

    Lind, Morten

    1999-01-01

    This paper provides an overview of multilevel flow modelling (MFM) and its application for design of displays for the supervisory control of industrial plant. The problem of designing the inforrrzatian content of sacpervisory displays is discussed and plant representations like MFM using levels...... is also provided by an analysis of the relations between levels of abstraction. It is also described how MFM supparts reazsonin about control actions by defining levels of intervention and by modal distinctions between function enablement and initiation....

  3. Plant Growth Modelling and Applications: The Increasing Importance of Plant Architecture in Growth Models

    Science.gov (United States)

    Fourcaud, Thierry; Zhang, Xiaopeng; Stokes, Alexia; Lambers, Hans; Körner, Christian

    2008-01-01

    Background Modelling plant growth allows us to test hypotheses and carry out virtual experiments concerning plant growth processes that could otherwise take years in field conditions. The visualization of growth simulations allows us to see directly and vividly the outcome of a given model and provides us with an instructive tool useful for agronomists and foresters, as well as for teaching. Functional–structural (FS) plant growth models are nowadays particularly important for integrating biological processes with environmental conditions in 3-D virtual plants, and provide the basis for more advanced research in plant sciences. Scope In this viewpoint paper, we ask the following questions. Are we modelling the correct processes that drive plant growth, and is growth driven mostly by sink or source activity? In current models, is the importance of soil resources (nutrients, water, temperature and their interaction with meristematic activity) considered adequately? Do classic models account for architectural adjustment as well as integrating the fundamental principles of development? Whilst answering these questions with the available data in the literature, we put forward the opinion that plant architecture and sink activity must be pushed to the centre of plant growth models. In natural conditions, sinks will more often drive growth than source activity, because sink activity is often controlled by finite soil resources or developmental constraints. PMA06 This viewpoint paper also serves as an introduction to this Special Issue devoted to plant growth modelling, which includes new research covering areas stretching from cell growth to biomechanics. All papers were presented at the Second International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA06), held in Beijing, China, from 13–17 November, 2006. Although a large number of papers are devoted to FS models of agricultural and forest crop species, physiological and genetic

  4. Costs and Benefits in the Recovery of Historic Buildings: The Application of an Economic Model

    Directory of Open Access Journals (Sweden)

    Antonio Nesticò

    2015-11-01

    Full Text Available Until now, the policies on sustainability relating to regeneration interventions on historic buildings have dealt with the casing of the buildings in order to regulate and control the flow of air, light and energy from outside to inside and vice versa. However, recent technological developments in home comfort and energy savings highlight the efficiency of the plants and the proper management of the building-plant system, while respecting the criteria of integrated conservation and the multiple constraints that characterize historic buildings. This study proposes a methodological process that identifies the optimal steps from a technical and economical point of view, by providing a combination of traditional architectural conservation interventions with innovative technology systems. The calculation algorithms are developed with a specific software based on UNI TS 11300 regulations, which allows for the thermodynamic modelling of the structure. The preparation of the feasibility plan allows testing the cost-effectiveness of the work proposed, considering the environmental benefits resulting from the reduced CO2 emissions. The impact of the financial results of the evaluation is also analyzed. This protocol provides industry operators a useful instrument for selecting the least expensive initiatives among those compatible with the multiple constraints that affect the design choices.

  5. Exploring Third-Grade Student Model-Based Explanations about Plant Relationships within an Ecosystem

    Science.gov (United States)

    Zangori, Laura; Forbes, Cory T.

    2015-01-01

    Elementary students should have opportunities to develop scientific models to reason and build understanding about how and why plants depend on relationships within an ecosystem for growth and survival. However, scientific modeling practices are rarely included within elementary science learning environments and disciplinary content is often…

  6. On a computational model of building thermal dynamic response

    Science.gov (United States)

    Jarošová, Petra; Vala, Jiří

    2016-07-01

    Development and exploitation of advanced materials, structures and technologies in civil engineering, both for buildings with carefully controlled interior temperature and for common residential houses, together with new European and national directives and technical standards, stimulate the development of rather complex and robust, but sufficiently simple and inexpensive computational tools, supporting their design and optimization of energy consumption. This paper demonstrates the possibility of consideration of such seemingly contradictory requirements, using the simplified non-stationary thermal model of a building, motivated by the analogy with the analysis of electric circuits; certain semi-analytical forms of solutions come from the method of lines.

  7. Modeling the Temperature Effect of Orientations in Residential Buildings

    Directory of Open Access Journals (Sweden)

    Sabahat Arif

    2012-07-01

    Full Text Available Indoor thermal comfort in a building has been an important issue for the environmental sustainability. It is an accepted fact that their designs and planning consume a lot of energy in the modern architecture of 20th and 21st centuries. An appropriate orientation of a building can provide thermally comfortable indoor temperatures which otherwise can consume extra energy to condition these spaces through all the seasons. This experimental study investigates the potential effect of this solar passive design strategy on indoor temperatures and a simple model is presented for predicting indoor temperatures based upon the ambient temperatures.

  8. Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building

    Energy Technology Data Exchange (ETDEWEB)

    Lata

    1996-09-26

    This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

  9. Analogue Behavioral Modeling of Switched-Current Building Block Circuits

    Institute of Scientific and Technical Information of China (English)

    ZENG Xuan; WANG Wei; SHI Jianlei; TANG Pushan; D.ZHOU

    2001-01-01

    This paper proposes a behavioral modeling technique for the second-generation switched-current building block circuits. The proposed models are capable of capturing the non-ideal behavior of switched-current circuits, which includes the charge injection effects and device mismatch effects. As a result, system performance degradations due to the building block imperfections can be detected at the early design stage by fast behavioral simulations. To evaluate the accuracy of the proposed models, we developed a time-domain behavioral simulator. Experimental results have shown that compared with SPICE, the behavioral modeling error is less than 2.15%, while behavioral simulation speed up is 4 orders in time-domain.

  10. Enhancements to ASHRAE Standard 90.1 Prototype Building Models

    Energy Technology Data Exchange (ETDEWEB)

    Goel, Supriya; Athalye, Rahul A.; Wang, Weimin; Zhang, Jian; Rosenberg, Michael I.; Xie, YuLong; Hart, Philip R.; Mendon, Vrushali V.

    2014-04-16

    This report focuses on enhancements to prototype building models used to determine the energy impact of various versions of ANSI/ASHRAE/IES Standard 90.1. Since the last publication of the prototype building models, PNNL has made numerous enhancements to the original prototype models compliant with the 2004, 2007, and 2010 editions of Standard 90.1. Those enhancements are described here and were made for several reasons: (1) to change or improve prototype design assumptions; (2) to improve the simulation accuracy; (3) to improve the simulation infrastructure; and (4) to add additional detail to the models needed to capture certain energy impacts from Standard 90.1 improvements. These enhancements impact simulated prototype energy use, and consequently impact the savings estimated from edition to edition of Standard 90.1.

  11. Lipid Processing Technology: Building a Multilevel Modeling Network

    DEFF Research Database (Denmark)

    Díaz Tovar, Carlos Axel; Mustaffa, Azizul Azri; Mukkerikar, Amol

    2011-01-01

    in design and analysis of unit operations; iv) the information and models developed are used as building blocks in the development of methods and tools for computer-aided synthesis and design of process flowsheets (CAFD). The applicability of this methodology is highlighted in each level of modeling through......The aim of this work is to present the development of a computer aided multilevel modeling network for the systematic design and analysis of processes employing lipid technologies. This is achieved by decomposing the problem into four levels of modeling: i) pure component property modeling...... and a lipid-database of collected experimental data from industry and generated data from validated predictive property models, as well as modeling tools for fast adoption-analysis of property prediction models; ii) modeling of phase behavior of relevant lipid mixtures using the UNIFACCI model, development...

  12. Plant model of KIPT neutron source facility simulator

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yan [Argonne National Lab. (ANL), Argonne, IL (United States); Wei, Thomas Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Grelle, Austin L. [Argonne National Lab. (ANL), Argonne, IL (United States); Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system is coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.

  13. Links Related to the Indoor Air Quality Building Education and Assessment Model

    Science.gov (United States)

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  14. Bibliography for the Indoor Air Quality Building Education and Assessment Model

    Science.gov (United States)

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  15. Product Modelling for Building Design: Annotated Bibliography (2nd Edition)

    DEFF Research Database (Denmark)

    Galle, Per

    1999-01-01

    This bibliography concerns research publications from 1976 to 1994-5, on product modelling in computer aided architectural design and computer aided engineering design of buildings and their surroundings. For each item of literature, full bibliographic information is given whenever available...... of literature is offered on machine interpretation of drawings, which may be relevant in the context of information exchange among different product models. Although the bibliography is fairly comprehensive as far as it goes, no completeness of coverage is claimed....

  16. Scenario-building considerations for financial planning models

    Energy Technology Data Exchange (ETDEWEB)

    Murray, S.; Carino, D.

    1994-12-31

    The construction of scenarios is an essential model-building step in stochastic programming. When a discrete sample of scenarios is chosen to represent a continuity of potential outcomes, scenario choice can impact both solution speed and quality. For financial planning models, techniques are discussed that ensure a scenario set matches moments of the continuous distribution and improvements in solution speed and quality are investigated.

  17. Product Modelling for Building Design: Annotated Bibliography (2nd Edition)

    DEFF Research Database (Denmark)

    Galle, Per

    1999-01-01

    This bibliography concerns research publications from 1976 to 1994-5, on product modelling in computer aided architectural design and computer aided engineering design of buildings and their surroundings. For each item of literature, full bibliographic information is given whenever available...... of literature is offered on machine interpretation of drawings, which may be relevant in the context of information exchange among different product models. Although the bibliography is fairly comprehensive as far as it goes, no completeness of coverage is claimed....

  18. First Prismatic Building Model Reconstruction from Tomosar Point Clouds

    Science.gov (United States)

    Sun, Y.; Shahzad, M.; Zhu, X.

    2016-06-01

    This paper demonstrates for the first time the potential of explicitly modelling the individual roof surfaces to reconstruct 3-D prismatic building models using spaceborne tomographic synthetic aperture radar (TomoSAR) point clouds. The proposed approach is modular and works as follows: it first extracts the buildings via DSM generation and cutting-off the ground terrain. The DSM is smoothed using BM3D denoising method proposed in (Dabov et al., 2007) and a gradient map of the smoothed DSM is generated based on height jumps. Watershed segmentation is then adopted to oversegment the DSM into different regions. Subsequently, height and polygon complexity constrained merging is employed to refine (i.e., to reduce) the retrieved number of roof segments. Coarse outline of each roof segment is then reconstructed and later refined using quadtree based regularization plus zig-zag line simplification scheme. Finally, height is associated to each refined roof segment to obtain the 3-D prismatic model of the building. The proposed approach is illustrated and validated over a large building (convention center) in the city of Las Vegas using TomoSAR point clouds generated from a stack of 25 images using Tomo-GENESIS software developed at DLR.

  19. Regulatory odour model development: Survey of modelling tools and datasets with focus on building effects

    DEFF Research Database (Denmark)

    Olesen, H. R.; Løfstrøm, P.; Berkowicz, R.;

    dispersion models for estimating local concentration levels in general. However, the report focuses on some particular issues, which are relevant for subsequent work on odour due to animal production. An issue of primary concern is the effect that buildings (stables) have on flow and dispersion. The handling...... of building effects is a complicated problem, and a major part of the report is devoted to the treatment of building effects in dispersion models...

  20. Exploring Third-Grade Student Model-Based Explanations about Plant Relationships within an Ecosystem

    Science.gov (United States)

    Zangori, Laura; Forbes, Cory T.

    2015-12-01

    Elementary students should have opportunities to develop scientific models to reason and build understanding about how and why plants depend on relationships within an ecosystem for growth and survival. However, scientific modeling practices are rarely included within elementary science learning environments and disciplinary content is often treated as discrete pieces separate from scientific practice. Elementary students have few, if any, opportunities to reason about how individual organisms, such as plants, hold critical relationships with their surrounding environment. The purpose of this design-based research study is to build a learning performance to identify and explore the third-grade students' baseline understanding of and their reasoning about plant-ecosystem relationships when engaged in the practices of modeling. The developed learning performance integrated scientific content and core scientific activity to identify and measure how students build knowledge about the role of plants in ecosystems through the practices of modeling. Our findings indicate that the third-grade students' ideas about plant growth include abiotic and biotic relationships. Further, they used their models to reason about how and why these relationships were necessary to maintain plant stasis. However, while the majority of the third-grade students were able to identify and reason about plant-abiotic relationships, a much smaller group reasoned about plant-abiotic-animal relationships. Implications from the study suggest that modeling serves as a tool to support elementary students in reasoning about system relationships, but they require greater curricular and instructional support in conceptualizing how and why ecosystem relationships are necessary for plant growth and development. This paper is based on data from a doctoral dissertation. An earlier version of this paper was presented at the 2015 international conference for the National Association for Research in Science

  1. Modeling Performance of Plant Growth Regulators

    Directory of Open Access Journals (Sweden)

    W. C. Kreuser

    2017-03-01

    Full Text Available Growing degree day (GDD models can predict the performance of plant growth regulators (PGRs applied to creeping bentgrass ( L.. The goal of this letter is to describe experimental design strategies and modeling approaches to create PGR models for different PGRs, application rates, and turf species. Results from testing the models indicate that clipping yield should be measured until the growth response has diminished. This is in contrast to reapplication of a PGR at preselected intervals. During modeling, inclusion of an amplitude-dampening coefficient in the sinewave model allows the PGR effect to dissipate with time.

  2. Model feedstock supply processing plants

    Directory of Open Access Journals (Sweden)

    V. M. Bautin

    2013-01-01

    Full Text Available The model of raw providing the processing enterprises entering into vertically integrated structure on production and processing of dairy raw materials, differing by an orientation on achievement of cumulative effect by the integrated structure acting as criterion function which maximizing is reached by optimization of capacities, volumes of deliveries of raw materials and its qualitative characteristics, costs of industrial processing of raw materials and demand for dairy production is developed.

  3. Vhrs Stereo Images for 3d Modelling of Buildings

    Science.gov (United States)

    Bujakiewicz, A.; Holc, M.

    2012-07-01

    The paper presents the project which was carried out in the Photogrammetric Laboratory of Warsaw University of Technology. The experiment is concerned with the extraction of 3D vector data for buildings creation from 3D photogrammetric model based on the Ikonos stereo images. The model was reconstructed with photogrammetric workstation - Summit Evolution combined with ArcGIS 3D platform. Accuracy of 3D model was significantly improved by use for orientation of pair of satellite images the stereo measured tie points distributed uniformly around the model area in addition to 5 control points. The RMS for model reconstructed on base of the RPC coefficients only were 16,6 m, 2,7 m and 47,4 m, for X, Y and Z coordinates, respectively. By addition of 5 control points the RMS were improved to 0,7 m, 0,7 m 1,0 m, where the best results were achieved when RMS were estimated from deviations in 17 check points (with 5 control points)and amounted to 0,4 m, 0,5 m and 0,6 m, for X, Y, and Z respectively. The extracted 3D vector data for buildings were integrated with 2D data of the ground footprints and afterwards they were used for 3D modelling of buildings in Google SketchUp software. The final results were compared with the reference data obtained from other sources. It was found that the shape of buildings (in concern to the number of details) had been reconstructed on level of LoD1, when the accuracy of these models corresponded to the level of LoD2.

  4. VHRS STEREO IMAGES FOR 3D MODELLING OF BUILDINGS

    Directory of Open Access Journals (Sweden)

    A. Bujakiewicz

    2012-07-01

    Full Text Available The paper presents the project which was carried out in the Photogrammetric Laboratory of Warsaw University of Technology. The experiment is concerned with the extraction of 3D vector data for buildings creation from 3D photogrammetric model based on the Ikonos stereo images. The model was reconstructed with photogrammetric workstation – Summit Evolution combined with ArcGIS 3D platform. Accuracy of 3D model was significantly improved by use for orientation of pair of satellite images the stereo measured tie points distributed uniformly around the model area in addition to 5 control points. The RMS for model reconstructed on base of the RPC coefficients only were 16,6 m, 2,7 m and 47,4 m, for X, Y and Z coordinates, respectively. By addition of 5 control points the RMS were improved to 0,7 m, 0,7 m 1,0 m, where the best results were achieved when RMS were estimated from deviations in 17 check points (with 5 control pointsand amounted to 0,4 m, 0,5 m and 0,6 m, for X, Y, and Z respectively. The extracted 3D vector data for buildings were integrated with 2D data of the ground footprints and afterwards they were used for 3D modelling of buildings in Google SketchUp software. The final results were compared with the reference data obtained from other sources. It was found that the shape of buildings (in concern to the number of details had been reconstructed on level of LoD1, when the accuracy of these models corresponded to the level of LoD2.

  5. Progress Towards an Interdisciplinary Science of Plant Phenology: Building Predictions Across Space, Time and Species Diversity

    Science.gov (United States)

    Wolkovich, Elizabeth M.; Cook, Benjamin I.; Davies, T. Jonathan

    2013-01-01

    Climate change has brought renewed interest in the study of plant phenology - the timing of life history events. Data on shifting phenologies with warming have accumulated rapidly, yet research has been comparatively slow to explain the diversity of phenological responses observed across latitudes, growing seasons and species. Here, we outline recent efforts to synthesize perspectives on plant phenology across the fields of ecology, climate science and evolution. We highlight three major axes that vary among these disciplines: relative focus on abiotic versus biotic drivers of phenology, on plastic versus genetic drivers of intraspecific variation, and on cross-species versus autecological approaches. Recent interdisciplinary efforts, building on data covering diverse species and climate space, have found a greater role of temperature in controlling phenology at higher latitudes and for early-flowering species in temperate systems. These efforts have also made progress in understanding the tremendous diversity of responses across species by incorporating evolutionary relatedness, and linking phenological flexibility to invasions and plant performance. Future research with a focus on data collection in areas outside the temperate mid-latitudes and across species' ranges, alongside better integration of how risk and investment shape plant phenology, offers promise for further progress.

  6. Model-Driven Engineering Support for Building C# Applications

    Science.gov (United States)

    Derezińska, Anna; Ołtarzewski, Przemysław

    Realization of Model-Driven Engineering (MDE) vision of software development requires a comprehensive and user-friendly tool support. This paper presents a UML-based approach for building trustful C# applications. UML models are refined using profiles for assigning class model elements to C# concepts and to elements of implementation project. Stereotyped elements are verified on life and during model to code transformation in order to prevent creation of an incorrect code. The Transform OCL Fragments into C# system (T.O.F.I.C.) was created as a feature of the Eclipse environment. The system extends the IBM Rational Software Architect tool.

  7. Model of how plants sense zinc deficiency

    DEFF Research Database (Denmark)

    Assuncao, Ana G.L.; Persson, Daniel Olof; Husted, Søren;

    2013-01-01

    to develop plant-based solutions addressing nutrient-use-efficiency and adaptation to nutrient-limited or -toxic soils. Recently two transcription factors of the bZIP family (basic-region leucine zipper) have been identified in Arabidopsis and shown to be pivotal in the adaptation response to zinc deficiency....... They represent not only the first regulators of zinc homeostasis identified in plants, but also a very promising starting-point that can provide new insights into the molecular basis of how plants sense and adapt to the stress of zinc deficiency. Considering the available information thus far we propose...... in this review a putative model of how plants sense zinc deficiency....

  8. Internet of Things building blocks and business models

    CERN Document Server

    Hussain, Fatima

    2017-01-01

    This book describes the building blocks and introductory business models for Internet of Things (IoT). The author provide an overview of the entire IoT architecture and constituent layers, followed by detail description of each block . Various inter-connecting technologies and sensors are discussed in context of IoT networks. In addition to this, concepts of Big Data and Fog Computing are presented and characterized as per data generated by versatile IoT applications . Smart parking system and context aware services are presented as an hybrid model of cloud and Fog Afterwards, various IoT applications and respective business models are discussed. Finally, author summarizes the IoT building blocks and identify research issues in each, and suggest potential research projects worthy of pursuing. .

  9. Building enterprise reuse program--A model-based approach

    Institute of Scientific and Technical Information of China (English)

    梅宏; 杨芙清

    2002-01-01

    Reuse is viewed as a realistically effective approach to solving software crisis. For an organization that wants to build a reuse program, technical and non-technical issues must be considered in parallel. In this paper, a model-based approach to building systematic reuse program is presented. Component-based reuse is currently a dominant approach to software reuse. In this approach, building the right reusable component model is the first important step. In order to achieve systematic reuse, a set of component models should be built from different perspectives. Each of these models will give a specific view of the components so as to satisfy different needs of different persons involved in the enterprise reuse program. There already exist some component models for reuse from technical perspectives. But less attention is paid to the reusable components from a non-technical view, especially from the view of process and management. In our approach, a reusable component model--FLP model for reusable component--is introduced. This model describes components from three dimensions (Form, Level, and Presentation) and views components and their relationships from the perspective of process and management. It determines the sphere of reusable components, the time points of reusing components in the development process, and the needed means to present components in terms of the abstraction level, logic granularity and presentation media. Being the basis on which the management and technical decisions are made, our model will be used as the kernel model to initialize and normalize a systematic enterprise reuse program.

  10. A continuous growth model for plant tissue

    Science.gov (United States)

    Bozorg, Behruz; Krupinski, Pawel; Jönsson, Henrik

    2016-12-01

    Morphogenesis in plants and animals involves large irreversible deformations. In plants, the response of the cell wall material to internal and external forces is determined by its mechanical properties. An appropriate model for plant tissue growth must include key features such as anisotropic and heterogeneous elasticity and cell dependent evaluation of mechanical variables such as turgor pressure, stress and strain. In addition, a growth model needs to cope with cell divisions as a necessary part of the growth process. Here we develop such a growth model, which is capable of employing not only mechanical signals but also morphogen signals for regulating growth. The model is based on a continuous equation for updating the resting configuration of the tissue. Simultaneously, material properties can be updated at a different time scale. We test the stability of our model by measuring convergence of growth results for a tissue under the same mechanical and material conditions but with different spatial discretization. The model is able to maintain a strain field in the tissue during re-meshing, which is of particular importance for modeling cell division. We confirm the accuracy of our estimations in two and three-dimensional simulations, and show that residual stresses are less prominent if strain or stress is included as input signal to growth. The approach results in a model implementation that can be used to compare different growth hypotheses, while keeping residual stresses and other mechanical variables updated and available for feeding back to the growth and material properties.

  11. Interannual variability of plant phenology in tussock tundra: modelling interactions of plant productivity, plant phenology, snowmelt and soil thaw

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Laundre, J.A.; Shaver, G.R.

    2003-01-01

    We present a linked model of plant productivity, plant phenology, snowmelt and soil thaw in order to estimate interannual variability of arctic plant phenology and its effects on plant productivity. The model is tested using 8 years of soil temperature data, and three years of bud break data of Betu

  12. Building 235-F Goldsim Fate And Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G. A.; Phifer, M. A.

    2012-09-14

    Savannah River National Laboratory (SRNL) personnel, at the request of Area Completion Projects (ACP), evaluated In-Situ Disposal (ISD) alternatives that are under consideration for deactivation and decommissioning (D&D) of Building 235-F and the Building 294-2F Sand Filter. SRNL personnel developed and used a GoldSim fate and transport model, which is consistent with Musall 2012, to evaluate relative to groundwater protection, ISD alternatives that involve either source removal and/or the grouting of portions or all of 235-F. This evaluation was conducted through the development and use of a Building 235-F GoldSim fate and transport model. The model simulates contaminant release from four 235-F process areas and the 294-2F Sand Filter. In addition, it simulates the fate and transport through the vadose zone, the Upper Three Runs (UTR) aquifer, and the Upper Three Runs (UTR) creek. The model is designed as a stochastic model, and as such it can provide both deterministic and stochastic (probabilistic) results. The results show that the median radium activity concentrations exceed the 5 ?Ci/L radium MCL at the edge of the building for all ISD alternatives after 10,000 years, except those with a sufficient amount of inventory removed. A very interesting result was that grouting was shown to basically have minimal effect on the radium activity concentration. During the first 1,000 years grouting may have some small positive benefit relative to radium, however after that it may have a slightly deleterious effect. The Pb-210 results, relative to its 0.06 ?Ci/L PRG, are essentially identical to the radium results, but the Pb-210 results exhibit a lesser degree of exceedance. In summary, some level of inventory removal will be required to ensure that groundwater standards are met.

  13. Building Detection Using Aerial Images and Digital Surface Models

    Science.gov (United States)

    Mu, J.; Cui, S.; Reinartz, P.

    2017-05-01

    In this paper a method for building detection in aerial images based on variational inference of logistic regression is proposed. It consists of three steps. In order to characterize the appearances of buildings in aerial images, an effective bag-of-Words (BoW) method is applied for feature extraction in the first step. In the second step, a classifier of logistic regression is learned using these local features. The logistic regression can be trained using different methods. In this paper we adopt a fully Bayesian treatment for learning the classifier, which has a number of obvious advantages over other learning methods. Due to the presence of hyper prior in the probabilistic model of logistic regression, approximate inference methods have to be applied for prediction. In order to speed up the inference, a variational inference method based on mean field instead of stochastic approximation such as Markov Chain Monte Carlo is applied. After the prediction, a probabilistic map is obtained. In the third step, a fully connected conditional random field model is formulated and the probabilistic map is used as the data term in the model. A mean field inference is utilized in order to obtain a binary building mask. A benchmark data set consisting of aerial images and digital surfaced model (DSM) released by ISPRS for 2D semantic labeling is used for performance evaluation. The results demonstrate the effectiveness of the proposed method.

  14. Toward a General Research Process for Using Dubin's Theory Building Model

    Science.gov (United States)

    Holton, Elwood F.; Lowe, Janis S.

    2007-01-01

    Dubin developed a widely used methodology for theory building, which describes the components of the theory building process. Unfortunately, he does not define a research process for implementing his theory building model. This article proposes a seven-step general research process for implementing Dubin's theory building model. An example of a…

  15. Toward a General Research Process for Using Dubin's Theory Building Model

    Science.gov (United States)

    Holton, Elwood F.; Lowe, Janis S.

    2007-01-01

    Dubin developed a widely used methodology for theory building, which describes the components of the theory building process. Unfortunately, he does not define a research process for implementing his theory building model. This article proposes a seven-step general research process for implementing Dubin's theory building model. An example of a…

  16. New concepts for dynamic plant uptake models

    DEFF Research Database (Denmark)

    Rein, Arno; Legind, Charlotte Nielsen; Trapp, Stefan

    2011-01-01

    Models for the prediction of chemical uptake into plants are widely applied tools for human and wildlife exposure assessment, pesticide design and for environmental biotechnology such as phytoremediation. Steady-state considerations are often applied, because they are simple and have a small data...

  17. Combining a Detailed Building Energy Model with a Physically-Based Urban Canopy Model

    Science.gov (United States)

    Bueno, Bruno; Norford, Leslie; Pigeon, Grégoire; Britter, Rex

    2011-09-01

    A scheme that couples a detailed building energy model, EnergyPlus, and an urban canopy model, the Town Energy Balance (TEB), is presented. Both models are well accepted and evaluated within their individual scientific communities. The coupled scheme proposes a more realistic representation of buildings and heating, ventilation and air-conditioning (HVAC) systems, which allows a broader analysis of the two-way interactions between the energy performance of buildings and the urban climate around the buildings. The scheme can be used to evaluate the building energy models that are being developed within the urban climate community. In this study, the coupled scheme is evaluated using measurements conducted over the dense urban centre of Toulouse, France. The comparison includes electricity and natural gas energy consumption of buildings, building façade temperatures, and urban canyon air temperatures. The coupled scheme is then used to analyze the effect of different building and HVAC system configurations on building energy consumption, waste heat released from HVAC systems, and outdoor air temperatures for the case study of Toulouse. Three different energy efficiency strategies are analyzed: shading devices, economizers, and heat recovery.

  18. Variable cluster analysis method for building neural network model

    Institute of Scientific and Technical Information of China (English)

    王海东; 刘元东

    2004-01-01

    To address the problems that input variables should be reduced as much as possible and explain output variables fully in building neural network model of complicated system, a variable selection method based on cluster analysis was investigated. Similarity coefficient which describes the mutual relation of variables was defined. The methods of the highest contribution rate, part replacing whole and variable replacement are put forwarded and deduced by information theory. The software of the neural network based on cluster analysis, which can provide many kinds of methods for defining variable similarity coefficient, clustering system variable and evaluating variable cluster, was developed and applied to build neural network forecast model of cement clinker quality. The results show that all the network scale, training time and prediction accuracy are perfect. The practical application demonstrates that the method of selecting variables for neural network is feasible and effective.

  19. Towards The Long-Term Preservation of Building Information Models

    DEFF Research Database (Denmark)

    Beetz, Jacob; Dietze, Stefan; Berndt, René

    2013-01-01

    primarily been on textual and audio-visual media types. With the recent paradigm shift in architecture and construction from analog 2D plans and scale models to digital 3D information models of buildings, long-term preservation efforts must turn their attention to this new type of data. Currently......Long-term preservation of information about artifacts of the built environment is crucial to provide the ability to retrofit legacy buildings, to preserve cultural heritage, to ensure security precautions, to enable knowledge-reuse of design and engineering solutions and to guarantee the legal...... liabilities of all stakeholders (e.g. designer, engineers). Efforts for the digital preservation of information have come a long way and a number of mature methods, frameworks, guidelines and software systems are at the disposal of librarians and archivists. However, the focus of these developments has...

  20. Lidar-equipped uav for building information modelling

    Science.gov (United States)

    Roca, D.; Armesto, J.; Lagüela, S.; Díaz-Vilariño, L.

    2014-06-01

    The trend to minimize electronic devices in the last decades accounts for Unmanned Airborne Vehicles (UAVs) as well as for sensor technologies and imaging devices, resulting in a strong revolution in the surveying and mapping industries. However, only within the last few years the LIDAR sensor technology has achieved sufficiently reduction in terms of size and weight to be considered for UAV platforms. This paper presents an innovative solution to capture point cloud data from a Lidar-equipped UAV and further perform the 3D modelling of the whole envelope of buildings in BIM format. A mini-UAV platform is used (weigh less than 5 kg and up to 1.5 kg of sensor payload), and data from two different acquisition methodologies is processed and compared with the aim at finding the optimal configuration for the generation of 3D models of buildings for energy studies

  1. Building Information Modeling for Managing Design and Construction

    DEFF Research Database (Denmark)

    Berard, Ole Bengt

    outcome of construction work. Even though contractors regularly encounter design information problems, these issues are accepted as a condition of doing business and better design information has yet to be defined. Building information modeling has the inherent promise of improving the quality of design...... information by suggesting technologies and methods that are supposed to improve design information. However, building information modeling provides no means to assess these improvements of design information. This research introduces design information quality as an equivalent to information quality...... of five points, ranging from traditional to most innovative practice. However, since technology and practice changes rapidly, the definition of each score has to be adjusted regularly. Finally, the framework is applied to a construction project in order to evaluate its practical application. The framework...

  2. State reduced order models for the modelling of the thermal behavior of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Menezo, Christophe; Bouia, Hassan; Roux, Jean-Jacques; Depecker, Patrick [Institute National de Sciences Appliquees de Lyon, Villeurbanne Cedex, (France). Centre de Thermique de Lyon (CETHIL). Equipe Thermique du Batiment]. E-mail: menezo@insa-cethil-etb.insa-lyon.fr; bouia@insa-cethil-etb.insa-lyon.fr; roux@insa-cethil-etb.insa-lyon.fr; depecker@insa-cethil-etb.insa-lyon.fr

    2000-07-01

    This work is devoted to the field of building physics and related to the reduction of heat conduction models. The aim is to enlarge the model libraries of heat and mass transfer codes through limiting the considerable dimensions reached by the numerical systems during the modelling process of a multizone building. We show that the balanced realization technique, specifically adapted to the coupling of reduced order models with the other thermal phenomena, turns out to be very efficient. (author)

  3. Model for Determining Geographical Distribution of Heat Saving Potentials in Danish Building Stock

    Directory of Open Access Journals (Sweden)

    Stefan Petrovic

    2014-02-01

    Full Text Available Since the global oil crisis in the 1970s, Denmark has followed a path towards energy independency by continuously improving its energy efficiency and energy conservation. Energy efficiency was mainly tackled by introducing a high number of combined heat and power plants in the system, while energy conservation was predominantly approached by implementing heat saving measures. Today, with the goal of 100% renewable energy within the power and heat sector by the year 2035, reductions in energy demand for space heating and the preparation of domestic hot water remain at the top of the agenda in Denmark. A highly detailed model for determining heat demand, possible heat savings and associated costs in the Danish building stock is presented. Both scheduled and energy-saving renovations until year 2030 have been analyzed. The highly detailed GIS-based heat atlas for Denmark is used as a container for storing data about physical properties for 2.5 million buildings in Denmark. Consequently, the results of the analysis can be represented on a single building level. Under the assumption that buildings with the most profitable heat savings are renovated first, the consequences of heat savings for the economy and energy system have been quantified and geographically referenced. The possibilities for further improvements of the model and the application to other geographical regions have been discussed.

  4. PEB: thermal oriented architectural modeling for building energy efficiency regulations

    OpenAIRE

    Leclercq, Pierre; Juchmes, Roland; Delfosse, Vincent; Safin, Stéphane; Dawans, Arnaud; Dawans, Adrien

    2011-01-01

    As part of the overhauling of the building energy efficiency regulations (following European directive 2002/91/CE), the Wallonia and Brussels-Capital Region commissioned the LUCID to develop an optional 3D graphic encoding module to be integrated with the core energy efficiency computation engine developed by Altran Europe. Our contribution consisted mostly in analyzing the target users’ needs and representations (ergonomics, UI, interactions) and implementing a bespoke 3D CAD modeler dedicat...

  5. A model of backdraft phenomenon in building fires

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to further investigate the physical mechanism of the backdraft phenomenon in building fires, a simplified math ematical model is established based on energy balance equation, and its catastrophe mechanism is analyzed based on catastrophe theory, and the relationship between system control variables and fire conditions is studied. It is indicated that the backdraft phenomenon is a kind of typical catastrophe behavior, and of the common characteristics of catastrophe.

  6. Model code for energy conservation in new building construction

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    In response to the recognized lack of existing consensus standards directed to the conservation of energy in building design and operation, the preparation and publication of such a standard was accomplished with the issuance of ASHRAE Standard 90-75 ''Energy Conservation in New Building Design,'' by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., in 1975. This standard addressed itself to recommended practices for energy conservation, using both depletable and non-depletable sources. A model code for energy conservation in building construction has been developed, setting forth the minimum regulations found necessary to mandate such conservation. The code addresses itself to the administration, design criteria, systems elements, controls, service water heating and electrical distribution and use, both for depletable and non-depletable energy sources. The technical provisions of the document are based on ASHRAE 90-75 and it is intended for use by state and local building officials in the implementation of a statewide energy conservation program.

  7. Simulation and Big Data Challenges in Tuning Building Energy Models

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL

    2013-01-01

    EnergyPlus is the flagship building energy simulation software used to model whole building energy consumption for residential and commercial establishments. A typical input to the program often has hundreds, sometimes thousands of parameters which are typically tweaked by a buildings expert to get it right . This process can sometimes take months. Autotune is an ongoing research effort employing machine learning techniques to automate the tuning of the input parameters for an EnergyPlus input description of a building. Even with automation, the computational challenge faced to run the tuning simulation ensemble is daunting and requires the use of supercomputers to make it tractable in time. In this proposal, we describe the scope of the problem, the technical challenges faced and overcome, the machine learning techniques developed and employed, and the software infrastructure developed/in development when taking the EnergyPlus engine, which was primarily designed to run on desktops, and scaling it to run on shared memory supercomputers (Nautilus) and distributed memory supercomputers (Frost and Titan). The parametric simulations produce data in the order of tens to a couple of hundred terabytes.We describe the approaches employed to streamline and reduce bottlenecks in the workflow for this data, which is subsequently being made available for the tuning effort as well as made available publicly for open-science.

  8. Compound leaf development in model plant species.

    Science.gov (United States)

    Bar, Maya; Ori, Naomi

    2015-02-01

    Plant leaves develop in accordance with a common basic program, which is flexibly adjusted to the species, developmental stage and environment. Two key stages of leaf development are morphogenesis and differentiation. In the case of compound leaves, the morphogenesis stage is prolonged as compared to simple leaves, allowing for the initiation of leaflets. Here, we review recent advances in the understanding of how plant hormones and transcriptional regulators modulate compound leaf development, yielding a substantial diversity of leaf forms, focusing on four model compound leaf organisms: cardamine (Cardamine hirsuta), tomato (Solanum lycopersicum), medicago (Medicago truncatula) and pea (Pisum sativum).

  9. Mitigation of dense gas releases in buildings: use of simple models.

    Science.gov (United States)

    Deaves, D M; Gilham, S; Spencer, H

    2000-01-07

    When an accidental release of a hazardous material is considered within a safety case or risk assessment, its off-site effects are generally assessed by calculating the dispersion of vapour from the site. Although most installations handling flammables will be in the open air, many types of plant, particularly those handling toxics, are enclosed, partly to provide some form of containment and hence to mitigate the effects of any release. When such a release occurs within a building, the gas or vapour will undergo some mixing before emerging from any openings. The degree of mixing will depend upon the building geometry and the nature of the ventilation, which in turn may be modified by the leak. This situation is considered in this paper, with specific application to calculating the rate of release of a dense vapour from a building. All the calculations presented are based upon simple zone modelling, such that the region occupied by the vapour is assumed to be well mixed, and, in the isothermal case, either its concentration or its depth increases as it is fed by the gas leak. Transfer of air or gas/air mixture through the building openings is estimated by use of standard ventilation calculation methods. For the non-isothermal case, a preliminary model is presented in which it is assumed that there is complete mixing throughout the building and no wind-driven ventilation effects. A moderate release of chlorine is used as an example, and results are shown of the effects of various ventilation possibilities on the release rate to the atmosphere. In addition, comparisons are given between model results and experimental data, demonstrating the level of confidence which can be placed in the models, and also identifying areas where there is scope for further improvement.

  10. Modeled effects of an improved building insulation scenario in Europe on air pollution, health and societal costs

    DEFF Research Database (Denmark)

    Bønløkke, Jakob Hjort; Holst, Gitte Juel; Sigsgaard, Torben

    2015-01-01

    Background: In Europe a substantial share of the energy supply is used for domestic heating and cooling. The quality of building insulation thus significantly impacts air pollution. Objectives: To model the effects of an improved building insulation scenario in Europe on air pollution levels...... and the resulting effects on health and economy. Methods: Projected energy savings between 2005 and 2020 were calculated for an improved building insulation scenario and a business as usual scenario. The resulting changes in emissions (e.g. from power plants) were used in the Comprehensive Air-Quality Model...... 78678 LY in Europe. A total of 7173 cases of persistent chronic bronchitis could be avoided annually. Several other health outcomes improved similarly. The saved societal costs totaled 6.64 billion € annually. Conclusions: In addition to carbon emission reductions, an improved building insulation...

  11. Plant adaptive behaviour in hydrological models (Invited)

    Science.gov (United States)

    van der Ploeg, M. J.; Teuling, R.

    2013-12-01

    Models that will be able to cope with future precipitation and evaporation regimes need a solid base that describes the essence of the processes involved [1]. Micro-behaviour in the soil-vegetation-atmosphere system may have a large impact on patterns emerging at larger scales. A complicating factor in the micro-behaviour is the constant interaction between vegetation and geology in which water plays a key role. The resilience of the coupled vegetation-soil system critically depends on its sensitivity to environmental changes. As a result of environmental changes vegetation may wither and die, but such environmental changes may also trigger gene adaptation. Constant exposure to environmental stresses, biotic or abiotic, influences plant physiology, gene adaptations, and flexibility in gene adaptation [2-6]. Gene expression as a result of different environmental conditions may profoundly impact drought responses across the same plant species. Differences in response to an environmental stress, has consequences for the way species are currently being treated in models (single plant to global scale). In particular, model parameters that control root water uptake and plant transpiration are generally assumed to be a property of the plant functional type. Assigning plant functional types does not allow for local plant adaptation to be reflected in the model parameters, nor does it allow for correlations that might exist between root parameters and soil type. Models potentially provide a means to link root water uptake and transport to large scale processes (e.g. Rosnay and Polcher 1998, Feddes et al. 2001, Jung 2010), especially when powered with an integrated hydrological, ecological and physiological base. We explore the experimental evidence from natural vegetation to formulate possible alternative modeling concepts. [1] Seibert, J. 2000. Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrology and Earth System Sciences 4(2): 215

  12. Dynamic Metabolic Model Building Based on the Ensemble Modeling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Liao, James C. [Univ. of California, Los Angeles, CA (United States)

    2016-10-01

    Ensemble modeling of kinetic systems addresses the challenges of kinetic model construction, with respect to parameter value selection, and still allows for the rich insights possible from kinetic models. This project aimed to show that constructing, implementing, and analyzing such models is a useful tool for the metabolic engineering toolkit, and that they can result in actionable insights from models. Key concepts are developed and deliverable publications and results are presented.

  13. Stochastic spatial models of plant diseases

    CERN Document Server

    Brown, D H

    2001-01-01

    I present three models of plant--pathogen interactions. The models are stochastic and spatially explicit at the scale of individual plants. For each model, I use a version of pair approximation or moment closure along with a separation of timescales argument to determine the effects of spatial clustering on threshold structure. By computing the spatial structure early in an invasion, I find explicit corrections to mean field theory. In the first chapter, I present a lattice model of a disease that is not directly lethal to its host, but affects its ability to compete with neighbors. I use a type of pair approximation to determine conditions for invasions and coexistence. In the second chapter, I study a basic SIR epidemic point process in continuous space. I implement a multiplicative moment closure scheme to compute the threshold transmission rate as a function of spatial parameters. In the final chapter, I model the evolution of pathogen resistance when two plant species share a pathogen. Evolution may lead...

  14. 植物与建筑造景模式探讨%Inquiry on plants and building landscaping pattern

    Institute of Scientific and Technical Information of China (English)

    罗建伟

    2011-01-01

    This paper inquires the plants and building landscaping pattern,analyzes the unification and variation of plants and building landscaping,and describes the application of coordination and comparison in plants and building landscaping,balance and stability%针对植物与建筑造景模式进行了探讨,分析了植物与建筑组景中的统一与变化,并阐述了植物与建筑组景中协调和对比的应用,植物与建筑的均衡和稳定等内容,以期指导环境景观设计工作。

  15. Numerical Investigation of a Moisture Evaporation Model in Building Materials

    CERN Document Server

    Amirkhanov, I V; Pavlish, M; Puzynina, T P; Puzynin, I V; Sarhadov, I

    2005-01-01

    The properties of a model of moisture evaporation in a porous building material of a rectangular form proposed in [1] are investigated. Algorithms of solving a nonlinear diffusion equation with initial and boundary conditions simulating the dynamic distribution of moisture concentration, calculation of coefficients of a polynomial describing transport of moisture with usage of experimental measurement of moisture concentration in a sample are developed and investigated. Research on the properties of the model is carried out depending on the degree of the polynomial, a set of its coefficients, and the quantity of the used experimental data.

  16. The Proposal of Model for Building Cooperation Management in Company

    Directory of Open Access Journals (Sweden)

    Josef Vodák

    2015-12-01

    Full Text Available The goal of the article is to use detailed literature analysis and findings of an empirical research, and to propose model for building cooperation management in a company. The article brings a valuable tool to company managers in a form of a complex and detailed model to achieve successful implementation of cooperation management in a company. The article thus provides a tool for company managers for managing their cooperation projects and activities. Use of this tool is meant to help minimize occurrence of conflict situations and to support smooth progress of cooperation activities.

  17. An Iterative Algorithm to Build Chinese Language Models

    CERN Document Server

    Luo, X; Luo, Xiaoqiang; Roukos, Salim

    1996-01-01

    We present an iterative procedure to build a Chinese language model (LM). We segment Chinese text into words based on a word-based Chinese language model. However, the construction of a Chinese LM itself requires word boundaries. To get out of the chicken-and-egg problem, we propose an iterative procedure that alternates two operations: segmenting text into words and building an LM. Starting with an initial segmented corpus and an LM based upon it, we use a Viterbi-liek algorithm to segment another set of data. Then, we build an LM based on the second set and use the resulting LM to segment again the first corpus. The alternating procedure provides a self-organized way for the segmenter to detect automatically unseen words and correct segmentation errors. Our preliminary experiment shows that the alternating procedure not only improves the accuracy of our segmentation, but discovers unseen words surprisingly well. The resulting word-based LM has a perplexity of 188 for a general Chinese corpus.

  18. A Building Model Framework for a Genetic Algorithm Multi-objective Model Predictive Control

    DEFF Research Database (Denmark)

    Arendt, Krzysztof; Ionesi, Ana; Jradi, Muhyiddine;

    Model Predictive Control (MPC) of building systems is a promising approach to optimize building energy performance. In contrast to traditional control strategies which are reactive in nature, MPC optimizes the utilization of resources based on the predicted effects. It has been shown that energy...... savings potential of this technique can reach up to 40% compared to conventional control strategies depending on the particular building type. However, the effort needed to implement MPC in buildings is significant and often considered prohibitive. That is why until now fully-functional MPC has been...

  19. Metadata and their impact on processes in Building Information Modeling

    Directory of Open Access Journals (Sweden)

    Vladimir Nyvlt

    2014-04-01

    Full Text Available Building Information Modeling (BIM itself contains huge potential, how to increase effectiveness of every project in its all life cycle. It means from initial investment plan through project and building-up activities to long-term usage and property maintenance and finally demolition. Knowledge Management or better say Knowledge Sharing covers two sets of tools, managerial and technological. Manager`s needs are real expectations and desires of final users in terms of how could they benefit from managing long-term projects, covering whole life cycle in terms of sparing investment money and other resources. Technology employed can help BIM processes to support and deliver these benefits to users. How to use this technology for data and metadata collection, storage and sharing, which processes may these new technologies deploy. We will touch how to cover optimized processes proposal for better and smooth support of knowledge sharing within project time-scale, and covering all its life cycle.

  20. Map algebra and model algebra for integrated model building

    NARCIS (Netherlands)

    Schmitz, O.; Karssenberg, D.J.; Jong, K. de; Kok, J.-L. de; Jong, S.M. de

    2013-01-01

    Computer models are important tools for the assessment of environmental systems. A seamless workflow of construction and coupling of model components is essential for environmental scientists. However, currently available software packages are often tailored either to the construction of model compo

  1. Procedural Modeling for Rapid-Prototyping of Multiple Building Phases

    Science.gov (United States)

    Saldana, M.; Johanson, C.

    2013-02-01

    RomeLab is a multidisciplinary working group at UCLA that uses the city of Rome as a laboratory for the exploration of research approaches and dissemination practices centered on the intersection of space and time in antiquity. In this paper we present a multiplatform workflow for the rapid-prototyping of historical cityscapes through the use of geographic information systems, procedural modeling, and interactive game development. Our workflow begins by aggregating archaeological data in a GIS database. Next, 3D building models are generated from the ArcMap shapefiles in Esri CityEngine using procedural modeling techniques. A GIS-based terrain model is also adjusted in CityEngine to fit the building elevations. Finally, the terrain and city models are combined in Unity, a game engine which we used to produce web-based interactive environments which are linked to the GIS data using keyhole markup language (KML). The goal of our workflow is to demonstrate that knowledge generated within a first-person virtual world experience can inform the evaluation of data derived from textual and archaeological sources, and vice versa.

  2. Modelling energy demand in the buildings sector within the EU

    Energy Technology Data Exchange (ETDEWEB)

    O Broin, Eoin

    2012-11-01

    In the on-going effort within the EU to tackle greenhouse gas emissions and secure future energy supplies, the buildings sector is often referred to as offering a large potential for energy savings. The aim of this thesis is to produce scenarios that highlight the parameters that affect the energy demands and thus potentials for savings of the building sector. Top-down and bottom-up approaches to modelling energy demand in EU buildings are applied in this thesis. The top-down approach uses econometrics to establish the historical contribution of various parameters to energy demands for space and water heating in the residential sectors of four EU countries. The bottom-up approach models the explicit impact of trends in energy efficiency improvement on total energy demand in the EU buildings stock. The two approaches are implemented independently, i.e., the results from the top-down studies do not feed into those from the bottom-up studies or vice versa. The explanatory variables used in the top-down approach are: energy prices; heating degree days, as a proxy for outdoor climate; a linear time trend, as a proxy for technology development; and the lag of energy demand, as a proxy for inertia in the system. In this case, inertia refers to the time it takes to replace space and water heating systems in reaction to price changes. The analysis gives long-term price elasticities of demand as follows: for France, -0.17; for Italy, -0.35; for Sweden, -0.27; and for the UK, -0.35. These results reveal that the price elasticity of demand for space and water heating is inelastic in each of these cases. Nonetheless, scenarios created for the period up to 2050 using these elasticities and an annual price increase of 3 % show that demand can be reduced by more than 1 % per year in France and Sweden and by less than 1 % per year in Italy and the UK. In the bottom-up modelling, varying rates for conversion efficiencies, heating standards for new buildings, end-use efficiency, and

  3. Theory Building- Towards an understanding of business model innovation processes

    DEFF Research Database (Denmark)

    Taran, Yariv; Boer, Harry; Lindgren, Peter

    2009-01-01

    Companies today, in some industries more than others, invest more capital and resources just to stay competitive, develop more diverse solutions, and increasingly start to think more radically, when considering to innovate their business model. However, the development and innovation of business...... models is a complex venture and has not been widely researched yet. The objective of this paper is therefore 1) to build a [descriptive] theoretical understanding, based on Christensen's (2005) three-step procedure, to business models and their innovation and, as a result of that, 2) to strengthen...... researchers' and practitioners' perspectives as to how the process of business model innovation can be realized. By using various researchers' perspectives and assumptions, we identify relevant inconsistencies, which consequently lead us to propose possible supplementary solutions. We conclude our paper...

  4. Functional Testing Protocols for Commercial Building Efficiency Baseline Modeling Software

    Energy Technology Data Exchange (ETDEWEB)

    Jump, David; Price, Phillip N.; Granderson, Jessica; Sohn, Michael

    2013-09-06

    This document describes procedures for testing and validating proprietary baseline energy modeling software accuracy in predicting energy use over the period of interest, such as a month or a year. The procedures are designed according to the methodology used for public domain baselining software in another LBNL report that was (like the present report) prepared for Pacific Gas and Electric Company: ?Commercial Building Energy Baseline Modeling Software: Performance Metrics and Method Testing with Open Source Models and Implications for Proprietary Software Testing Protocols? (referred to here as the ?Model Analysis Report?). The test procedure focuses on the quality of the software?s predictions rather than on the specific algorithms used to predict energy use. In this way the software vendor is not required to divulge or share proprietary information about how their software works, while enabling stakeholders to assess its performance.

  5. A SWOT analysis on the implementation of Building Information Models within the geospatial environment

    NARCIS (Netherlands)

    Isikdag, U.; Zlatanova, S.

    2009-01-01

    Building Information Models as product models and Building Information Modelling as a process which supports information management throughout the lifecycle of a building are becoming more widely used in the Architecture/Engineering/Construction (AEC) industry. In order to facilitate various urban m

  6. A SWOT analysis on the implementation of Building Information Models within the geospatial environment

    NARCIS (Netherlands)

    Isikdag, U.; Zlatanova, S.

    2009-01-01

    Building Information Models as product models and Building Information Modelling as a process which supports information management throughout the lifecycle of a building are becoming more widely used in the Architecture/Engineering/Construction (AEC) industry. In order to facilitate various urban

  7. Occupants' satisfaction toward building environmental quality: structural equation modeling approach.

    Science.gov (United States)

    Kamaruzzaman, Syahrul Nizam; Egbu, C O; Zawawi, Emma Marinie Ahmad; Karim, Saipol Bari Abd; Woon, Chen Jia

    2015-05-01

    It is accepted that occupants who are more satisfied with their workplace's building internal environment are more productive. The main objective of the study was to measure the occupants' level of satisfaction and the perceived importance of the design or refurbishment on office conditions. The study also attempted to determine the factors affecting the occupants' satisfaction with their building or office conditions. Post-occupancy evaluations were conducted using a structured questionnaire developed by the Built Environment Research Group at the University of Manchester, UK. Our questionnaires incorporate 22 factors relating to the internal environment and rate these in terms of "user satisfaction" and "degree of importance." The questions were modified to reflect the specific setting of the study and take into consideration the local conditions and climate in Malaysia. The overall mean satisfaction of the occupants toward their office environment was 5.35. The results were measured by a single item of overall liking of office conditions in general. Occupants were more satisfied with their state of health in the workplace, but they were extremely dissatisfied with the distance away from a window. The factor analysis divided the variables into three groups, namely intrusion, air quality, and office appearance. Structural equation modeling (SEM) was then used to determine which factor had the most significant influence on occupants' satisfaction: appearance. The findings from the study suggest that continuous improvement in aspects of the building's appearance needs to be supported with effective and comprehensive maintenance to sustain the occupants' satisfaction.

  8. A Building Model Framework for a Genetic Algorithm Multi-objective Model Predictive Control

    DEFF Research Database (Denmark)

    Arendt, Krzysztof; Ionesi, Ana; Jradi, Muhyiddine

    2016-01-01

    implemented only in few buildings. The following difficulties hinder the widespread usage of MPC: (1) significant model development time, (2) limited portability of models, (3) model computational demand. In the present study a new model development framework for an MPC system based on a Genetic Algorithm (GA...

  9. Structural equation modeling: building and evaluating causal models: Chapter 8

    Science.gov (United States)

    Grace, James B.; Scheiner, Samuel M.; Schoolmaster, Donald R.

    2015-01-01

    Scientists frequently wish to study hypotheses about causal relationships, rather than just statistical associations. This chapter addresses the question of how scientists might approach this ambitious task. Here we describe structural equation modeling (SEM), a general modeling framework for the study of causal hypotheses. Our goals are to (a) concisely describe the methodology, (b) illustrate its utility for investigating ecological systems, and (c) provide guidance for its application. Throughout our presentation, we rely on a study of the effects of human activities on wetland ecosystems to make our description of methodology more tangible. We begin by presenting the fundamental principles of SEM, including both its distinguishing characteristics and the requirements for modeling hypotheses about causal networks. We then illustrate SEM procedures and offer guidelines for conducting SEM analyses. Our focus in this presentation is on basic modeling objectives and core techniques. Pointers to additional modeling options are also given.

  10. Modelling consensus building in Delphi practices for participated transport planning

    CERN Document Server

    Pira, Michela Le; Ignaccolo, Matteo; Pluchino, Alessandro

    2015-01-01

    In this study a consensus building process based on a combination of Analytic Hierarchy Process (AHP) and Delphi method is presented and applied to the decision-making process about alternative policy measures to promote cycling mobility. An agent-based model is here used to reproduce the same process of convergence of opinions, with the aim to understand the role of network topology, stakeholder influence and other sensitive variables on the emergence of consensus. It can be a useful tool for decision-makers to guide them in planning effective participation processes.

  11. Fractional and multivariable calculus model building and optimization problems

    CERN Document Server

    Mathai, A M

    2017-01-01

    This textbook presents a rigorous approach to multivariable calculus in the context of model building and optimization problems. This comprehensive overview is based on lectures given at five SERC Schools from 2008 to 2012 and covers a broad range of topics that will enable readers to understand and create deterministic and nondeterministic models. Researchers, advanced undergraduate, and graduate students in mathematics, statistics, physics, engineering, and biological sciences will find this book to be a valuable resource for finding appropriate models to describe real-life situations. The first chapter begins with an introduction to fractional calculus moving on to discuss fractional integrals, fractional derivatives, fractional differential equations and their solutions. Multivariable calculus is covered in the second chapter and introduces the fundamentals of multivariable calculus (multivariable functions, limits and continuity, differentiability, directional derivatives and expansions of multivariable ...

  12. Building CMU Sphinx language model for the Ho

    Directory of Open Access Journals (Sweden)

    Mohamed Yassine El Amrani

    2016-11-01

    Full Text Available This paper investigates the use of a simplified set of Arabic phonemes in an Arabic Speech Recognition system applied to Holy Quran. The CMU Sphinx 4 was used to train and evaluate a language model for the Hafs narration of the Holy Quran. The building of the language model was done using a simplified list of Arabic phonemes instead of the mainly used Romanized set in order to simplify the process of generating the language model. The experiments resulted in very low Word Error Rate (WER reaching 1.5% while using a very small set of audio files during the training phase when using all the audio data for both the training and the testing phases. However, when using 90% and 80% of the training data, the WER obtained was respectively 50.0% and 55.7%.

  13. Building SO$_{10}$- models with $\\mathbb{D}_{4}$ symmetry

    CERN Document Server

    Laamara, R Ahl; Saidi, E H

    2015-01-01

    Using characters of finite group representations and monodromy of matter curves in F-GUT, we complete partial results in literature by building SO$% _{10}$ models with dihedral $\\mathbb{D}_{4}$ discrete symmetry. We first revisit the $\\mathbb{S}_{4}$-and $\\mathbb{S}_{3}$-models from the discrete group character view, then we extend the construction to $\\mathbb{D}_{4}$.\\ We find that there are three types of $SO_{10}\\times \\mathbb{D}_{4}$ models depending on the ways the $\\mathbb{S}_{4}$-triplets break down in terms of irreducible $\\mathbb{D}_{4}$- representations: $\\left({\\alpha} \\right) $ as $\\boldsymbol{1}_{_{+,-}}\\oplus \\boldsymbol{1}_{_{+,-}}\\oplus \\boldsymbol{1}_{_{-,+}};$ or $\\left({\\beta}\\right) \\boldsymbol{\\ 1}_{_{+,+}}\\oplus \\boldsymbol{1}_{_{+,-}}\\oplus \\boldsymbol{1}_{_{-,-}};$ or also $\\left({\\gamma}\\right) $ $\\mathbf{1}_{_{+,-}}\\oplus \\mathbf{2}_{_{0,0}}$. Superpotentials and other features are also given.

  14. Towards a reference plant trait ontology for modeling knowledge of plant traits and phenotypes

    Science.gov (United States)

    Ontology engineering and knowledge modeling for the plant sciences is expected to contribute to the understanding of the basis of plant traits that determine phenotypic expression in a given environment. Several crop- or clade-specific plant trait ontologies have been developed to describe plant tr...

  15. Plant parameters for plant functional groups of western rangelands to enable process-based simulation modeling

    Science.gov (United States)

    Regional environmental assessments with process-based models require realistic estimates of plant parameters for the primary plant functional groups in the region. “Functional group” in this context is an operational term, based on similarities in plant type and in plant parameter values. Likewise...

  16. Toward Building a New Seismic Hazard Model for Mainland China

    Science.gov (United States)

    Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z.

    2015-12-01

    At present, the only publicly available seismic hazard model for mainland China was generated by Global Seismic Hazard Assessment Program in 1999. We are building a new seismic hazard model by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data using the methodology recommended by Global Earthquake Model (GEM), and derive a strain rate map based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones based on seismotectonics. For each zone, we use the tapered Gutenberg-Richter (TGR) relationship to model the seismicity rates. We estimate the TGR a- and b-values from the historical earthquake data, and constrain corner magnitude using the seismic moment rate derived from the strain rate. From the TGR distributions, 10,000 to 100,000 years of synthetic earthquakes are simulated. Then, we distribute small and medium earthquakes according to locations and magnitudes of historical earthquakes. Some large earthquakes are distributed on active faults based on characteristics of the faults, including slip rate, fault length and width, and paleoseismic data, and the rest to the background based on the distributions of historical earthquakes and strain rate. We evaluate available ground motion prediction equations (GMPE) by comparison to observed ground motions. To apply appropriate GMPEs, we divide the region into active and stable tectonics. The seismic hazard will be calculated using the OpenQuake software developed by GEM. To account for site amplifications, we construct a site condition map based on geology maps. The resulting new seismic hazard map can be used for seismic risk analysis and management, and business and land-use planning.

  17. Vision-based building energy diagnostics and retrofit analysis using 3D thermography and building information modeling

    Science.gov (United States)

    Ham, Youngjib

    The emerging energy crisis in the building sector and the legislative measures on improving energy efficiency are steering the construction industry towards adopting new energy efficient design concepts and construction methods that decrease the overall energy loads. However, the problems of energy efficiency are not only limited to the design and construction of new buildings. Today, a significant amount of input energy in existing buildings is still being wasted during the operational phase. One primary source of the energy waste is attributed to unnecessary heat flows through building envelopes during hot and cold seasons. This inefficiency increases the operational frequency of heating and cooling systems to keep the desired thermal comfort of building occupants, and ultimately results in excessive energy use. Improving thermal performance of building envelopes can reduce the energy consumption required for space conditioning and in turn provide building occupants with an optimal thermal comfort at a lower energy cost. In this sense, energy diagnostics and retrofit analysis for existing building envelopes are key enablers for improving energy efficiency. Since proper retrofit decisions of existing buildings directly translate into energy cost saving in the future, building practitioners are increasingly interested in methods for reliable identification of potential performance problems so that they can take timely corrective actions. However, sensing what and where energy problems are emerging or are likely to emerge and then analyzing how the problems influence the energy consumption are not trivial tasks. The overarching goal of this dissertation focuses on understanding the gaps in knowledge in methods for building energy diagnostics and retrofit analysis, and filling these gaps by devising a new method for multi-modal visual sensing and analytics using thermography and Building Information Modeling (BIM). First, to address the challenges in scaling and

  18. Optimal and Sustainable Plant Refurbishment in Historical Buildings: A Study of an Ancient Monastery Converted into a Showroom in Florence

    Directory of Open Access Journals (Sweden)

    Carla Balocco

    2013-04-01

    Full Text Available The aim of this research is to study the possibility and sustainability of retrofit and refurbishment design solutions on historical buildings converted to different uses and often clashing with their original purpose and architectural features. The building studied is an ancient monastery located in the historical center of Florence (Italy. Today the original cloister is covered over by a single glazed pitched roof and used as a fashion showroom. Our proposed solution concerns a reversible and sustainable plant design integrated with an active transparent building casing. The existing glazed pitched roof was reconsidered and re-designed as part of the existing heating, ventilation and air conditioning (HVAC plant system, based on the functioning of an active thermal buffer to control the high heat flow rates and external thermal loads due to solar radiation. Hourly whole building energy analysis was carried out to check the effectiveness and energy sustainability of our proposed solution. Results obtained showed, from the historical-architectural, energy and environmental points of view, its sustainability due to the building-plant system integration and interaction with its location, the external climatic conditions and defined expected uses, in particular with reference to indoor thermal comfort.

  19. Modelling of heat and moisture transfer in buildings - I. Model program

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X. [Laboratory of Structural Engineering and Building Physics, Department of Civil and Environmental Engineering, Helsinki University of Technology, Hut (Finland)

    2002-07-01

    The overall objective of this work is to develop an accurate model for predicting heat and moisture transfer in buildings including building envelopes and indoor air. The model is based on the fundamental thermodynamic relations. Darcy's law, Fick's law and Fourier's law are used in describing the transfer equations. The resultant nonlinear system of partial differential equations is discretized in space by the finite element method. The time marching scheme, Crank-Nicolson scheme, is used to advance the solution in time. The final numerical solution provides transient temperature and moisture distributions in building envelopes as well as temperature and moisture content for building's indoor air subject to outdoor weather conditions described as temperature, relative humidity, solar radiation and wind speed. A series measurements were conducted in order to investigate the model performance. The simulated values were compared against the actual measured values. A good agreement was obtained. (author)

  20. DIVA: an iterative method for building modular integrated models

    Science.gov (United States)

    Hinkel, J.

    2005-08-01

    Integrated modelling of global environmental change impacts faces the challenge that knowledge from the domains of Natural and Social Science must be integrated. This is complicated by often incompatible terminology and the fact that the interactions between subsystems are usually not fully understood at the start of the project. While a modular modelling approach is necessary to address these challenges, it is not sufficient. The remaining question is how the modelled system shall be cut down into modules. While no generic answer can be given to this question, communication tools can be provided to support the process of modularisation and integration. Along those lines of thought a method for building modular integrated models was developed within the EU project DINAS-COAST and applied to construct a first model, which assesses the vulnerability of the world's coasts to climate change and sea-level-rise. The method focuses on the development of a common language and offers domain experts an intuitive interface to code their knowledge in form of modules. However, instead of rigorously defining interfaces between the subsystems at the project's beginning, an iterative model development process is defined and tools to facilitate communication and collaboration are provided. This flexible approach has the advantage that increased understanding about subsystem interactions, gained during the project's lifetime, can immediately be reflected in the model.

  1. Electric Power Plants and Generation Stations, Power Plants - is a seperate layer, however, we have them included in local building layer as well, Published in 2010, 1:2400 (1in=200ft) scale, Effingham County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Electric Power Plants and Generation Stations dataset current as of 2010. Power Plants - is a seperate layer, however, we have them included in local building layer...

  2. Building predictive models of soil particle-size distribution

    Directory of Open Access Journals (Sweden)

    Alessandro Samuel-Rosa

    2013-04-01

    Full Text Available Is it possible to build predictive models (PMs of soil particle-size distribution (psd in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographic wetness index. The PMs explained more than half of the data variance. This performance is similar to (or even better than that of the conventional soil mapping approach. For some size fractions, the PM performance can reach 70 %. Largest uncertainties were observed in geologically more complex areas. Therefore, significant improvements in the predictions can only be achieved if accurate geological data is made available. Meanwhile, PMs built on terrain attributes are efficient in predicting the particle-size distribution (psd of soils in regions of complex geology.

  3. Representing plant hydraulics in a global Earth system model.

    Science.gov (United States)

    Kennedy, D.; Gentine, P.

    2015-12-01

    Earth system models need improvement to reproduce observed seasonal and diurnal cycles of photosynthesis and respiration. Model water stress parameterizations lag behind the plant physiology literature. A plant hydraulics model is developed and deployed in a global Earth system model (NCAR CESM 1.2.2 with CLM 4.5). Assimilation and transpiration are attenuated according to literature cavitation curves. Water stress is evaluated based on plant functional type hydraulic parameters forced by soil moisture and atmospheric conditions. Resolving the plant water status allows for modelling divergent strategies for water stress. The case of isohydric versus anisohydric species is presented, showing that including plant hydraulic traits alter modelled photosynthesis and transpiration.

  4. Developing a Hierarchical Decision Model to Evaluate Nuclear Power Plant Alternative Siting Technologies

    Science.gov (United States)

    Lingga, Marwan Mossa

    A strong trend of returning to nuclear power is evident in different places in the world. Forty-five countries are planning to add nuclear power to their grids and more than 66 nuclear power plants are under construction. Nuclear power plants that generate electricity and steam need to improve safety to become more acceptable to governments and the public. One novel practical solution to increase nuclear power plants' safety factor is to build them away from urban areas, such as offshore or underground. To date, Land-Based siting is the dominant option for siting all commercial operational nuclear power plants. However, the literature reveals several options for building nuclear power plants in safer sitings than Land-Based sitings. The alternatives are several and each has advantages and disadvantages, and it is difficult to distinguish among them and choose the best for a specific project. In this research, we recall the old idea of using the alternatives of offshore and underground sitings for new nuclear power plants and propose a tool to help in choosing the best siting technology. This research involved the development of a decision model for evaluating several potential nuclear power plant siting technologies, both those that are currently available and future ones. The decision model was developed based on the Hierarchical Decision Modeling (HDM) methodology. The model considers five major dimensions, social, technical, economic, environmental, and political (STEEP), and their related criteria and sub-criteria. The model was designed and developed by the author, and its elements' validation and evaluation were done by a large number of experts in the field of nuclear energy. The decision model was applied in evaluating five potential siting technologies and ranked the Natural Island as the best in comparison to Land-Based, Floating Plant, Artificial Island, and Semi-Embedded plant.

  5. 5D Building Information Modelling – A Practicability Review

    Directory of Open Access Journals (Sweden)

    Lee Xia Sheng

    2016-01-01

    Full Text Available Quality, time and cost are the three most important elements in any construction project. Building information that comes timely and accurately in multiple dimensions will facilitate a refined decision making process which can improve the construction quality, time and cost. 5 dimensional Building Information Modelling or 5D BIM is an emerging trend in the construction industry that integrates all the major information starting from the initial design to the final construction stage. After that, the integrated information is arranged and communicated through Virtual Design and Construction (VDC. This research is to gauge the practicability of 5D BIM with an action research type pilot study by the means of hands-on modelling of a conceptual bungalow design based on one of the most popular BIM tools. A bungalow is selected as a study subject to simulate the major stages of 5D BIM digital workflow. The whole process starts with developing drawings (2D into digital model (3D, and is followed by the incorporation of time (4D and cost (5D. Observations are focused on the major factors that will affect the practicability of 5D BIM, including the modelling effort, inter-operability, information output and limitations. This research concludes that 5D BIM certainly has high level practicability which further differentiates BIM from Computer Aided Design (CAD. The integration of information not only enhanced the efficiency and accuracy of process in all stages, but also enabled decision makers to have a sophisticated interpretation of information which is almost impossible with the conventional 2D CAD workflow. Although it is possible to incorporate more than 5 dimensions of information, it is foreseeable that excessive information may escalate the complexity unfavourably for BIM implementation. 5D BIM has achieved a significant level of practicability; further research should be conducted to streamline implementation. Once 5D BIM is matured and widely

  6. Compressive sensing as a paradigm for building physics models

    Science.gov (United States)

    Nelson, Lance J.; Hart, Gus L. W.; Zhou, Fei; Ozoliņš, Vidvuds

    2013-01-01

    The widely accepted intuition that the important properties of solids are determined by a few key variables underpins many methods in physics. Though this reductionist paradigm is applicable in many physical problems, its utility can be limited because the intuition for identifying the key variables often does not exist or is difficult to develop. Machine learning algorithms (genetic programming, neural networks, Bayesian methods, etc.) attempt to eliminate the a priori need for such intuition but often do so with increased computational burden and human time. A recently developed technique in the field of signal processing, compressive sensing (CS), provides a simple, general, and efficient way of finding the key descriptive variables. CS is a powerful paradigm for model building; we show that its models are more physical and predict more accurately than current state-of-the-art approaches and can be constructed at a fraction of the computational cost and user effort.

  7. Stereovision vibration measurement test of a masonry building model

    Science.gov (United States)

    Shan, Baohua; Gao, Yunli; Shen, Yu

    2016-04-01

    To monitor 3D deformations of structural vibration response, a stereovision-based 3D deformation measurement method is proposed in paper. The world coordinate system is established on structural surface, and 3D displacement equations of structural vibration response are acquired through coordinate transformation. The algorithms of edge detection, center fitting and matching constraint are developed for circular target. A shaking table test of a masonry building model under Taft and El Centro earthquake at different acceleration peak is performed in lab, 3D displacement time histories of the model are acquired by the integrated stereovision measurement system. In-plane displacement curves obtained by two methods show good agreement, this suggests that the proposed method is reliable for monitoring structural vibration response. Out-of-plane displacement curves indicate that the proposed method is feasible and useful for monitoring 3D deformations of vibration response.

  8. 3D Building Model Fitting Using A New Kinetic Framework

    CERN Document Server

    Brédif, Mathieu; Pierrot-Deseilligny, Marc; Maître, Henri

    2008-01-01

    We describe a new approach to fit the polyhedron describing a 3D building model to the point cloud of a Digital Elevation Model (DEM). We introduce a new kinetic framework that hides to its user the combinatorial complexity of determining or maintaining the polyhedron topology, allowing the design of a simple variational optimization. This new kinetic framework allows the manipulation of a bounded polyhedron with simple faces by specifying the target plane equations of each of its faces. It proceeds by evolving continuously from the polyhedron defined by its initial topology and its initial plane equations to a polyhedron that is as topologically close as possible to the initial polyhedron but with the new plane equations. This kinetic framework handles internally the necessary topological changes that may be required to keep the faces simple and the polyhedron bounded. For each intermediate configurations where the polyhedron looses the simplicity of its faces or its boundedness, the simplest topological mod...

  9. Flood vulnerability assessment of residential buildings by explicit damage process modelling

    DEFF Research Database (Denmark)

    Custer, Rocco; Nishijima, Kazuyoshi

    2015-01-01

    The present paper introduces a vulnerability modelling approach for residential buildings in flood. The modelling approach explicitly considers relevant damage processes, i.e. water infiltration into the building, mechanical failure of components in the building envelope and damage from water con...

  10. Models in theory building: the case of early string theory

    Energy Technology Data Exchange (ETDEWEB)

    Castellani, Elena [Department of Philosophy, Florence (Italy)

    2013-07-01

    The history of the origins and first steps of string theory, from Veneziano's formulation of his famous scattering amplitude in 1968 to the 'first string revolution' in 1984, provides rich material for discussing traditional issues in the philosophy of science. This paper focusses on the initial phase of this history, that is the making of early string theory out of the 'dual theory of strong interactions' motivated by the aim of finding a viable theory of hadrons in the framework of the so-called S-matrix theory of the Sixties: from the first two models proposed (the Dual Resonance Model and the Shapiro-Virasoro Model) to all the subsequent endeavours to extend and complete the theory, including its string interpretation. As is the aim of this paper to show, by representing an exemplary illustration of the building of a scientific theory out of tentative and partial models this is a particularly fruitful case study for the current philosophical discussion on how to characterize a scientific model, a scientific theory, and the relation between models and theories.

  11. Model building and model checking for biochemical processes.

    Science.gov (United States)

    Antoniotti, Marco; Policriti, Alberto; Ugel, Nadia; Mishra, Bud

    2003-01-01

    A central claim of computational systems biology is that, by drawing on mathematical approaches developed in the context of dynamic systems, kinetic analysis, computational theory and logic, it is possible to create powerful simulation, analysis, and reasoning tools for working biologists to decipher existing data, devise new experiments, and ultimately to understand functional properties of genomes, proteomes, cells, organs, and organisms. In this article, a novel computational tool is described that achieves many of the goals of this new discipline. The novelty of this system involves an automaton-based semantics of the temporal evolution of complex biochemical reactions starting from the representation given as a set of differential equations. The related tools also provide ability to qualitatively reason about the systems using a propositional temporal logic that can express an ordered sequence of events succinctly and unambiguously. The implementation of mathematical and computational models in the Simpathica and XSSYS systems is described briefly. Several example applications of these systems to cellular and biochemical processes are presented: the two most prominent are Leibler et al.'s repressilator (an artificial synthesized oscillatory network), and Curto- Voit-Sorribas-Cascante's purine metabolism reaction model.

  12. Implementation of Models for Building Envelope Air Flow Fields in a Whole Building Hygrothermal Simulation Tool

    DEFF Research Database (Denmark)

    Sørensen, Karl Grau; Rode, Carsten

    2009-01-01

    Simulation tools are becoming available which predict the heat and moisture conditions in the indoor environment as well as in the envelope of buildings, and thus it has become possible to consider the important interaction between the different components of buildings and the different physical ...

  13. Building Models from the Bottom Up: The HOBBES Project

    Science.gov (United States)

    Medellin-Azuara, J.; Sandoval Solis, S.; Lund, J. R.; Chu, W.

    2013-12-01

    Water problems are often bigger than technical and data challenges associated in representing a water system using a model. Controversy and complexity is inherent when water is to be allocated among different uses making difficult to maintain coherent and productive discussions on addressing water problems. Quantification of a water supply system through models has proven to be helpful to improve understanding, explore and develop adaptable solutions to water problems. However, models often become too large and complex and become hostages of endless discussions of the assumptions, their algorithms and their limitations. Data management organization and documentation keep model flexible and useful over time. The UC Davis HOBBES project is a new approach, building models from the bottom up. Reversing the traditional model development, where data are arranged around a model algorithm, in Hobbes the data structure, organization and documentation are established first, followed by application of simulation or optimization modeling algorithms for a particular problem at hand. The HOBBES project establishes standards for storing, documenting and sharing datasets on California water system. This allows models to be developed and modified more easily and transparently, with greater comparability. Elements in the database have a spatial definition and can aggregate several infrastructural elements into detailed to coarse representations of the water system. Elements in the database represent reservoirs, groundwater basins, pumping stations, hydropower and water treatment facilities, demand areas and conveyance infrastructure statewide. These elements also host time series, economic and other information from hydrologic, economic, climate and other models. This presentation provides an overview of the project HOBBES project, its applications and prospects for California and elsewhere. The HOBBES Project

  14. Mass balance-based plant-wide wastewater treatment plant models ...

    African Journals Online (AJOL)

    2006-07-03

    Jul 3, 2006 ... Mass balance-based plant-wide wastewater treatment plant models – Part ... organics under anaerobic conditions .... which limit the capacity of the WWTP. ..... Thermophilic Heat Treatment on the Anaerobic Digestibility of Pri-.

  15. BUILDING ROBUST APPEARANCE MODELS USING ON-LINE FEATURE SELECTION

    Energy Technology Data Exchange (ETDEWEB)

    PORTER, REID B. [Los Alamos National Laboratory; LOVELAND, ROHAN [Los Alamos National Laboratory; ROSTEN, ED [Los Alamos National Laboratory

    2007-01-29

    In many tracking applications, adapting the target appearance model over time can improve performance. This approach is most popular in high frame rate video applications where latent variables, related to the objects appearance (e.g., orientation and pose), vary slowly from one frame to the next. In these cases the appearance model and the tracking system are tightly integrated, and latent variables are often included as part of the tracking system's dynamic model. In this paper we describe our efforts to track cars in low frame rate data (1 frame/second) acquired from a highly unstable airborne platform. Due to the low frame rate, and poor image quality, the appearance of a particular vehicle varies greatly from one frame to the next. This leads us to a different problem: how can we build the best appearance model from all instances of a vehicle we have seen so far. The best appearance model should maximize the future performance of the tracking system, and maximize the chances of reacquiring the vehicle once it leaves the field of view. We propose an online feature selection approach to this problem and investigate the performance and computational trade-offs with a real-world dataset.

  16. Transformation of Malaysian Construction Industry with Building Information Modelling (BIM

    Directory of Open Access Journals (Sweden)

    Latiffi Aryani Ahmad

    2016-01-01

    Full Text Available Building Information Modelling (BIM is a revolution of technology and a process that transformed the way building is planned, designed, analysed, constructed and managed. The revolution of technology and process could increase the quality of construction projects. The knowledge of BIM has been expanding in many countries including Malaysia. Since its inception, the use of BIM has broadened up widely with different purposes. The aims of this paper is to investigate the BIM implementation and uses in Malaysian construction projects. The methodologies adopted for structuring this paper are by using literature review and semi-structured interview with construction players that have experienced and being involved in projects using BIM. The purpose of literature review is to illustrate on the pervious research on the subject matter. Meanwhile, the purpose of interviews is to explore the involvement of construction players, years of experience in projects using BIM and BIM uses in construction projects. The findings revealed that BIM has been implemented in Malaysia since 2007 by various construction players, which are client, architect, C&S engineer, M&E engineer, QS, contractor, facilities manager and BIM consultant. The findings also revealed that BIM is used for project’ visualisation, improving project design, detecting design clashes, quantity take off and operation and maintenance. Further work will be focused on the current practices of construction players in projects using BIM.

  17. Multivariate soft-modeling to predict radiocesium soil-to-plant transfer.

    Science.gov (United States)

    Rigol, Anna; Camps, Marta; De Juan, Anna; Rauret, Gemma; Vidal, Miquel

    2008-06-01

    A multivariate soft-modeling approach based on an exploratory principal component analysis (PCA) followed by a partial least squares regression (PLS) was developed, tested, and validated to estimate radiocesium transfer to grass from readily measurable soil characteristics. A data set with 145 soil samples and 21 soil and plant parameters was used. Samples were soils from various field plots contaminated by the Chernobyl accident (soddy-podzolic and peaty soils), submitted to several agricultural treatments (disking, ploughing, fertilization, and liming). Parameters included soil characteristics and the corresponding radiocesium soil-to-plant transfer factors. PCA of data showed that soil samples were grouped according to the field plots and that they covered a wide range of possible soil-to-plant transfer scenarios. PLS was used to design and build the multivariate prediction model. The soil database was split in two parts: (i) a representative calibration set for training purposes and model building and (ii) a prediction set for external validation and model testing. The regression coefficients of the model confirmed the relevant parametersto describe radiocesium soil-to-plant transfer variation (e.g., phyllosilicate content and NH4+ status), which agreed with previous knowledge on the interaction mechanisms of this radionuclide in soils. The prediction of soil-to-plant transfer was satisfactory with an error of the same order of magnitude as the variability of field replicates.

  18. BIM (Building Information Modeling) and TCO (Total Cost of Ownership)

    Science.gov (United States)

    Christensen, Douglas K.

    2009-01-01

    There are some words in the building industry that seem to be clear and understandable to say, yet they need some help in understanding the depth of the meaning. When the term maintenance is talked about there seems to be some agreement that it does not mean building a new building. Maintenance as a term covers many areas and if not clarified…

  19. Evaluation of Model Recognition for Grammar-Based Automatic 3d Building Model Reconstruction

    Science.gov (United States)

    Yu, Qian; Helmholz, Petra; Belton, David

    2016-06-01

    In recent years, 3D city models are in high demand by many public and private organisations, and the steadily growing capacity in both quality and quantity are increasing demand. The quality evaluation of these 3D models is a relevant issue both from the scientific and practical points of view. In this paper, we present a method for the quality evaluation of 3D building models which are reconstructed automatically from terrestrial laser scanning (TLS) data based on an attributed building grammar. The entire evaluation process has been performed in all the three dimensions in terms of completeness and correctness of the reconstruction. Six quality measures are introduced to apply on four datasets of reconstructed building models in order to describe the quality of the automatic reconstruction, and also are assessed on their validity from the evaluation point of view.

  20. Modeling of an Air Conditioning System with Geothermal Heat Pump for a Residential Building

    Directory of Open Access Journals (Sweden)

    Silvia Cocchi

    2013-01-01

    Full Text Available The need to address climate change caused by greenhouse gas emissions attaches great importance to research aimed at using renewable energy. Geothermal energy is an interesting alternative concerning the production of energy for air conditioning of buildings (heating and cooling, through the use of geothermal heat pumps. In this work a model has been developed in order to simulate an air conditioning system with geothermal heat pump. A ground source heat pump (GSHP uses the shallow ground as a source of heat, thus taking advantage of its seasonally moderate temperatures. GSHP must be coupled with geothermal exchangers. The model leads to design optimization of geothermal heat exchangers and to verify the operation of the geothermal plant.

  1. Using functional–structural plant models to study, understand and integrate plant development and ecophysiology.

    Science.gov (United States)

    DeJong, Theodore M; Da Silva, David; Vos, Jan; Escobar-Gutiérrez, Abraham J

    2011-10-01

    Functional–structural plant models (FSPMs) explore and integrate relationships between a plant’s structure and processes that underlie its growth and development. In recent years, the range of topics being addressed by scientists interested in functional–structural plant modelling has expanded greatly. FSPM techniques are now being used to dynamically simulate growth and development occurring at the microscopic scale involving cell division in plant meristems to the macroscopic scales of whole plants and plant communities. The plant types studied also cover a broad spectrum from algae to trees. FSPM is highly interdisciplinary and involves scientists with backgrounds in plant physiology, plant anatomy, plant morphology, mathematics, computer science, cellular biology, ecology and agronomy. This special issue of Annals of Botany features selected papers that provide examples of comprehensive functional–structural models, models of key processes such as partitioning of resources, software for modelling plants and plant environments, data acquisition and processing techniques and applications of functional–structural plant models for agronomic purposes.

  2. Physical and JIT Model Based Hybrid Modeling Approach for Building Thermal Load Prediction

    Science.gov (United States)

    Iino, Yutaka; Murai, Masahiko; Murayama, Dai; Motoyama, Ichiro

    Energy conservation in building fields is one of the key issues in environmental point of view as well as that of industrial, transportation and residential fields. The half of the total energy consumption in a building is occupied by HVAC (Heating, Ventilating and Air Conditioning) systems. In order to realize energy conservation of HVAC system, a thermal load prediction model for building is required. This paper propose a hybrid modeling approach with physical and Just-in-Time (JIT) model for building thermal load prediction. The proposed method has features and benefits such as, (1) it is applicable to the case in which past operation data for load prediction model learning is poor, (2) it has a self checking function, which always supervises if the data driven load prediction and the physical based one are consistent or not, so it can find if something is wrong in load prediction procedure, (3) it has ability to adjust load prediction in real-time against sudden change of model parameters and environmental conditions. The proposed method is evaluated with real operation data of an existing building, and the improvement of load prediction performance is illustrated.

  3. Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft{sup 2} of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL.

  4. Thermal models of buildings. Determination of temperatures, heating and cooling loads. Theories, models and computer programs

    Energy Technology Data Exchange (ETDEWEB)

    Kaellblad, K.

    1998-05-01

    The need to estimate indoor temperatures, heating or cooling load and energy requirements for buildings arises in many stages of a buildings life cycle, e.g. at the early layout stage, during the design of a building and for energy retrofitting planning. Other purposes are to meet the authorities requirements given in building codes. All these situations require good calculation methods. The main purpose of this report is to present the authors work with problems related to thermal models and calculation methods for determination of temperatures and heating or cooling loads in buildings. Thus the major part of the report deals with treatment of solar radiation in glazing systems, shading of solar and sky radiation and the computer program JULOTTA used to simulate the thermal behavior of rooms and buildings. Other parts of thermal models of buildings are more briefly discussed and included in order to give an overview of existing problems and available solutions. A brief presentation of how thermal models can be built up is also given and it is a hope that the report can be useful as an introduction to this part of building physics as well as during development of calculation methods and computer programs. The report may also serve as a help for the users of energy related programs. Independent of which method or program a user choose to work with it is his or her own responsibility to understand the limits of the tool, else wrong conclusions may be drawn from the results 52 refs, 22 figs, 4 tabs

  5. A new modelling approach of a multizone building to assess the influence of building orientation in Saharan climate

    Directory of Open Access Journals (Sweden)

    Hamdani Maamar

    2015-01-01

    Full Text Available Orientation of building is a very important factor which is directly connected to the standards of thermal comfort within building. It is guided by natural elements like sunlight and its intensity, direction of the wind, seasons of the year and temperature variations. The orientation effect of a non-air-conditioned building on its thermal performance has been analyzed in terms of direct solar gain and temperature index for hot-dry climates. This paper aims at introducing an improved methodology for the dynamic modeling of buildings by the thermal nodal method. The evaluation is derived from a series of computer simulations. As a result, the influence of orientation changing depends on the floors and exterior walls constructing materials, the insulation levels and application of the inseparable rules of the bioclimatic design.

  6. Status and Perceptions of the Application of Building Information Modeling for Improved Building Projects Delivery in Nigeria

    Directory of Open Access Journals (Sweden)

    S.C Ugochukwu

    2015-11-01

    Full Text Available Building Information Modeling (BIM is a new and innovative approach to building design, construction, and management. It is a cutting-edge, state of the art technology that is not only transforming, but improving the building delivery/production process in developed countries of the world. Sadly, Nigeria is yet to adopt this revolutionary technology in her construction industry. This study thus, sought to evaluate the present status of application of BIM in building projects in Nigeria, with a view to betoning its importance in improving the present state of building delivery in the country. This was effected by means of a field survey of building professionals in which their perceptions were analyzed, based on a structured questionnaire administration; in order to elicit their level of awareness of BIM application, determine their extent of participation in BIM projects, identify and rank the most suitable procurement method that encourages BIM application, the barriers to the application of BIM and the benefits of BIM application to building delivery in Nigeria. Results/Findings revealed that knowledge of BIM application among professionals is very poor (33%, participation/use of BIM in projects is non-existent, the collaborative method of procurement best supports BIM application, lack of awareness remains the major barrier to BIM application, while simultaneous access to project database by stakeholders is the highest ranked benefit of BIM application. The study concludes that Nigeria still has a long way to go in understanding, embracing and applying BIM to improve the traditional and stagnant state of her building delivery process. Hence, all hands should be on deck; the government, professional bodies, construction organizations and the academia to ensure that BIM becomes a priority with respect to legislations, training, research and use in the Nigerian building industry

  7. Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact

    Directory of Open Access Journals (Sweden)

    Sungwoo Lee

    2015-12-01

    Full Text Available The increased popularity of building information modeling (BIM for application in the construction of eco-friendly green buildings has given rise to techniques for evaluating green buildings constructed using BIM features. Existing BIM-based green building evaluation techniques mostly rely on externally provided evaluation tools, which pose problems associated with interoperability, including a lack of data compatibility and the amount of time required for format conversion. To overcome these problems, this study sets out to develop a template (the “green template” for evaluating the embodied environmental impact of using a BIM design tool as part of BIM-based building life-cycle assessment (LCA technology development. Firstly, the BIM level of detail (LOD was determined to evaluate the embodied environmental impact, and constructed a database of the impact factors of the embodied environmental impact of the major building materials, thereby adopting an LCA-based approach. The libraries of major building elements were developed by using the established databases and compiled evaluation table of the embodied environmental impact of the building materials. Finally, the green template was developed as an embodied environmental impact evaluation tool and a case study was performed to test its applicability. The results of the green template-based embodied environmental impact evaluation of a test building were validated against those of its actual quantity takeoff (2D takeoff, and its reliability was confirmed by an effective error rate of ≤5%. This study aims to develop a system for assessing the impact of the substances discharged from concrete production process on six environmental impact categories, i.e., global warming (GWP, acidification (AP, eutrophication (EP, abiotic depletion (ADP, ozone depletion (ODP, and photochemical oxidant creation (POCP, using the life a cycle assessment (LCA method. To achieve this, we proposed an LCA method

  8. Building a sustainable Academic Health Department: the South Carolina model.

    Science.gov (United States)

    Smith, Lillian Upton; Waddell, Lisa; Kyle, Joseph; Hand, Gregory A

    2014-01-01

    Given the limited resources available to public health, it is critical that university programs complement the development needs of agencies. Unfortunately, academic and practice public health entities have long been challenged in building sustainable collaborations that support practice-based research, teaching, and service. The academic health department concept offers a promising solution. In South Carolina, the partners started their academic health department program with a small grant that expanded into a dynamic infrastructure that supports innovative professional exchange and development programs. This article provides a background and describes the key elements of the South Carolina model: joint leadership, a multicomponent memorandum of agreement, and a shared professional development mission. The combination of these elements allows the partners to leverage resources and deftly respond to challenges and opportunities, ultimately fostering the sustainability of the collaboration.

  9. Building Information Modelling for Cultural Heritage: A review

    Science.gov (United States)

    Logothetis, S.; Delinasiou, A.; Stylianidis, E.

    2015-08-01

    We discuss the evolution and state-of-the-art of the use of Building Information Modelling (BIM) in the field of culture heritage documentation. BIM is a hot theme involving different characteristics including principles, technology, even privacy rights for the cultural heritage objects. Modern documentation needs identified the potential of BIM in the recent years. Many architects, archaeologists, conservationists, engineers regard BIM as a disruptive force, changing the way professionals can document and manage a cultural heritage structure. The latest years, there are many developments in the BIM field while the developed technology and methods challenged the cultural heritage community in the documentation framework. In this review article, following a brief historic background for the BIM, we review the recent developments focusing in the cultural heritage documentation perspective.

  10. A Suggested Model for Building Robust Biomedical Implants Registries.

    Science.gov (United States)

    Aloufi, Bader; Alshagathrah, Fahad; Househ, Mowafa

    2017-01-01

    Registries are an essential source of information for clinical and non-clinical decision-makers; because they provide evidence for post-market clinical follow-up and early detection of safety signals for biomedical implants. Yet, many of todays biomedical implants registries are facing a variety of challenges relating to a poorly designed dataset, the reliability of inputted data and low clinician and patient participation. The purpose of this paper is to present a best practice model for the implementation and use of biomedical implants registries to monitor the safety and effectiveness of implantable medical devices. Based on a literature review and an analysis of multiple national relevant registries, we identified six factors that address contemporary challenges and are believed to be the keys for building a successful biomedical implants registry, which include: sustainable development, international comparability, data reliability, purposeful design, ease of patient participation, and collaborative development at the national level.

  11. Coupling of Groundwater Transport and Plant Uptake Models

    DEFF Research Database (Denmark)

    Rein, Arno; Bauer-Gottwein, Peter; Trapp, Stefan

    2010-01-01

    Plants significantly influence contaminant transport and fate. Important processes are uptake of soil and groundwater contaminants, as well as biodegradation in plants and their root zones. Models for the prediction of chemical uptake into plants are required for the setup of mass balances...... to groundwater transport simulation tools. Exemplary simulations of plant uptake were carried out, in order to estimate concentrations in the soilplant- air system and the influence of plants on contaminant mass fluxes from soil to groundwater....

  12. Building Simulation Modelers are we big-data ready?

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL

    2014-01-01

    Recent advances in computing and sensor technologies have pushed the amount of data we collect or generate to limits previously unheard of. Sub-minute resolution data from dozens of channels is becoming increasingly common and is expected to increase with the prevalence of non-intrusive load monitoring. Experts are running larger building simulation experiments and are faced with an increasingly complex data set to analyze and derive meaningful insight. This paper focuses on the data management challenges that building modeling experts may face in data collected from a large array of sensors, or generated from running a large number of building energy/performance simulations. The paper highlights the technical difficulties that were encountered and overcome in order to run 3.5 million EnergyPlus simulations on supercomputers and generating over 200 TBs of simulation output. This extreme case involved development of technologies and insights that will be beneficial to modelers in the immediate future. The paper discusses different database technologies (including relational databases, columnar storage, and schema-less Hadoop) in order to contrast the advantages and disadvantages of employing each for storage of EnergyPlus output. Scalability, analysis requirements, and the adaptability of these database technologies are discussed. Additionally, unique attributes of EnergyPlus output are highlighted which make data-entry non-trivial for multiple simulations. Practical experience regarding cost-effective strategies for big-data storage is provided. The paper also discusses network performance issues when transferring large amounts of data across a network to different computing devices. Practical issues involving lag, bandwidth, and methods for synchronizing or transferring logical portions of the data are presented. A cornerstone of big-data is its use for analytics; data is useless unless information can be meaningfully derived from it. In addition to technical

  13. Multi-criteria decision model for retrofitting existing buildings

    Directory of Open Access Journals (Sweden)

    M. D. Bostenaru Dan

    2004-01-01

    Full Text Available Decision is an element in the risk management process. In this paper the way how science can help in decision making and implementation for retrofitting buildings in earthquake prone urban areas is investigated. In such interventions actors from various spheres are involved. Their interests range among minimising the intervention for maximal preservation or increasing it for seismic safety. Research was conducted to see how to facilitate collaboration between these actors. A particular attention was given to the role of time in actors' preferences. For this reason, on decision level, both the processural and the personal dimension of risk management, the later seen as a task, were considered. A systematic approach was employed to determine the functional structure of a participative decision model. Three layers on which actors implied in this multi-criteria decision problem interact were identified: town, building and element. So-called 'retrofit elements' are characteristic bearers in the architectural survey, engineering simulations, costs estimation and define the realms perceived by the inhabitants. This way they represent an interaction basis for the interest groups considered in a deeper study. Such orientation means for actors' interaction were designed on other levels of intervention as well. Finally, an 'experiment' for the implementation of the decision model is presented: a strategic plan for an urban intervention towards reduction of earthquake hazard impact through retrofitting. A systematic approach proves thus to be a very good communication basis among the participants in the seismic risk management process. Nevertheless, it can only be applied in later phases (decision, implementation, control only, since it serves verifying and improving solution and not developing the concept. The 'retrofit elements' are a typical example of the detailing degree reached in the retrofit design plans in these phases.

  14. Constructing wetlands: measuring and modeling feedbacks of oxidation processes between plants and clay-rich material

    Science.gov (United States)

    Saaltink, Rémon; Dekker, Stefan C.; Griffioen, Jasper; Wassen, Martin J.

    2016-04-01

    Interest is growing in using soft sediment as a building material in eco-engineering projects. Wetland construction in the Dutch lake Markermeer is an example: here the option of dredging some of the clay-rich lake-bed sediment and using it to construct 10.000 ha of wetland will soon go under construction. Natural processes will be utilized during and after construction to accelerate ecosystem development. Knowing that plants can eco-engineer their environment via positive or negative biogeochemical plant-soil feedbacks, we conducted a six-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineering species. We applied inverse biogeochemical modeling to link observed changes in pore water composition to biogeochemical processes. Two months after transplantation we observed reduced plant growth and shriveling as well as yellowing of foliage. The N:P ratios of plant tissue were low and were affected not by hampered uptake of N but by enhanced uptake of P. Plant analyses revealed high Fe concentrations in the leaves and roots. Sulfate concentrations rose drastically in our experiment due to pyrite oxidation; as reduction of sulfate will decouple Fe-P in reducing conditions, we argue that plant-induced iron toxicity hampered plant growth, forming a negative feedback loop, while simultaneously there was a positive feedback loop, as iron toxicity promotes P mobilization as a result of reduced conditions through root death, thereby stimulating plant growth and regeneration. Given these two feedback mechanisms, we propose that when building wetlands from these mud deposits Fe-tolerant species are used rather than species that thrive in N-limited conditions. The results presented in this study demonstrate the importance of studying the biogeochemical properties of the building material and the feedback mechanisms between plant and soil prior to finalizing the design of the eco-engineering project.

  15. A fuzzy-based model to implement the global safety buildings index assessment for agri-food buildings

    Directory of Open Access Journals (Sweden)

    Francesco Barreca

    2014-06-01

    Full Text Available The latest EU policies focus on the issue of food safety with a view to ensuring adequate and standard quality levels for the food produced and/or consumed within the EC. To that purpose, the environment where agricultural products are manufactured and processed plays a crucial role in achieving food hygiene. As a consequence, it is of the outmost importance to adopt proper building solutions which meet health and hygiene requirements as well as to use suitable tools to measure the levels achieved. Similarly, it is necessary to verify and evaluate the level of workers’ safety and welfare in their working environment. Workers’ safety has not only an ethical and social value but also an economic implication, since possible accidents or environmental stressors are the major causes of the lower efficiency and productivity of workers. Therefore, it is fundamental to design suitable models of analysis that allow assessing buildings as a whole, taking into account both health and hygiene safety as well as workers’ safety and welfare. Hence, this paper proposes an assessment model that, based on an established study protocol and on the application of a fuzzy logic procedure, allows assessing the global safety level of an agri-food building by means of a global safety buildings index. The model here presented is original since it uses fuzzy logic to evaluate the performances of both the technical and environmental systems of an agri-food building in terms of health and hygiene safety of the manufacturing process as well as of workers’ health and safety. The result of the assessment is expressed through a triangular fuzzy membership function which allows carrying out comparative analyses of different buildings. A specific procedure was developed to apply the model to a case study which tested its operational simplicity and the validity of its results. The proposed model allows obtaining a synthetic and global value of the building performance of

  16. Crop plants as models for understanding plant adaptation and diversification

    Directory of Open Access Journals (Sweden)

    Kenneth M Olsen

    2013-08-01

    Full Text Available Since the time of Darwin, biologists have understood the promise of crop plants and their wild relatives for providing insight into the mechanisms of phenotypic evolution. The intense selection imposed by our ancestors during plant domestication and subsequent crop improvement has generated remarkable transformations of plant phenotypes. Unlike evolution in natural settings, descendent and antecedent conditions for crop plants are often both extant, providing opportunities for direct comparisons through crossing and other experimental approaches. Moreover, since domestication has repeatedly generated a suite of domestication syndrome traits that are shared among crops, opportunities exist for gaining insight into the genetic and developmental mechanisms that underlie parallel adaptive evolution. Advances in our understanding of the genetic architecture of domestication-related traits have emerged from combining powerful molecular technologies with advanced experimental designs, including nested association mapping, genome-wide association studies, population genetic screens for signatures of selection, and candidate gene approaches. These studies may be combined with high-throughput evaluations of the various omics involved in trait transformation, revealing a diversity of underlying causative mutations affecting phenotypes and their downstream propagation through biological networks. We summarize the state of our knowledge of the mutational spectrum that generates phenotypic novelty in domesticated plant species, and our current understanding of how domestication can reshape gene expression networks and emergent phenotypes. An exploration of traits that have been subject to similar selective pressures across crops (e.g., flowering time suggests that a diversity of targeted genes and causative mutational changes can underlie parallel adaptation in the context of crop evolution.

  17. Plant growth simulation for landscape scale hydrologic modeling

    Science.gov (United States)

    Landscape scale hydrologic models can be improved by incorporating realistic, process-oriented plant models for simulating crops, grasses, and woody species. The objective of this project was to present some approaches for plant modeling applicable to hydrologic models like SWAT that can affect the...

  18. A Model for Sustainable Building Energy Efficiency Retrofit (BEER) Using Energy Performance Contracting (EPC) Mechanism for Hotel Buildings in China

    Science.gov (United States)

    Xu, Pengpeng

    Hotel building is one of the high-energy-consuming building types, and retrofitting hotel buildings is an untapped solution to help cut carbon emissions contributing towards sustainable development. Energy Performance Contracting (EPC) has been promulgated as a market mechanism for the delivery of energy efficiency projects. EPC mechanism has been introduced into China relatively recently, and it has not been implemented successfully in building energy efficiency retrofit projects. The aim of this research is to develop a model for achieving the sustainability of Building Energy Efficiency Retrofit (BEER) in hotel buildings under the Energy Performance Contracting (EPC) mechanism. The objectives include: • To identify a set of Key Performance Indicators (KPIs) for measuring the sustainability of BEER in hotel buildings; • To identify Critical Success Factors (CSFs) under EPC mechanism that have a strong correlation with sustainable BEER project; • To develop a model explaining the relationships between the CSFs and the sustainability performance of BEER in hotel building. Literature reviews revealed the essence of sustainable BEER and EPC, which help to develop a conceptual framework for analyzing sustainable BEER under EPC mechanism in hotel buildings. 11 potential KPIs for sustainable BEER and 28 success factors of EPC were selected based on the developed framework. A questionnaire survey was conducted to ascertain the importance of selected performance indicators and success factors. Fuzzy set theory was adopted in identifying the KPIs. Six KPIs were identified from the 11 selected performance indicators. Through a questionnaire survey, out of the 28 success factors, 21 Critical Success Factors (CSFs) were also indentified. Using the factor analysis technique, the 21 identified CSFs in this study were grouped into six clusters to help explain project success of sustainable BEER. Finally, AHP/ANP approach was used in this research to develop a model to

  19. 3D Modeling of Interior Building Environments and Objects from Noisy Sensor Suites

    Science.gov (United States)

    2015-05-14

    in many fields of study, including architecture, building energy efficiency , virtual walk-throughs of buildings, indoor navigation, and augmented and...virtual reality model [4, 5]. Building energy efficiency simulations can use watertight meshes of the environment to estimate air- flow and heat

  20. Building performance simulation in the early design stage: An introduction to integrated dynamic models

    DEFF Research Database (Denmark)

    Negendahl, Kristoffer

    2015-01-01

    Designing with building performance simulation feedback in the early design stage has existed since the early days of computational modeling. However, as a consequence of a fragmented building industry building performance simulations (BPSs) in the early design stage are closely related to who is...

  1. A data-driven model for maximization of methane production in a wastewater treatment plant.

    Science.gov (United States)

    Kusiak, Andrew; Wei, Xiupeng

    2012-01-01

    A data-driven approach for maximization of methane production in a wastewater treatment plant is presented. Industrial data collected on a daily basis was used to build the model. Temperature, total solids, volatile solids, detention time and pH value were selected as parameters for the model construction. First, a prediction model of methane production was built by a multi-layer perceptron neural network. Then a particle swarm optimization algorithm was used to maximize methane production based on the model developed in this research. The model resulted in a 5.5% increase in methane production.

  2. Mathematical modeling of heat transfer in plant community

    Directory of Open Access Journals (Sweden)

    Finnikov K.A.

    2011-12-01

    Full Text Available The conductive, convective and radiation heat exchange process in a natural system including plants aggregation, air lower layer and ground upper layer, is examined. The mathematical model of process is formulated in 1d unsteady approach. The numerical simulation of plants aggregation cooling is performed for the case of a radiation frost. It is found up that mutual influence of plants in an aggregation on the heat exchange with environment grows with the increase of plants size and plants number per ground area. The influence leads to that lower parts of plants are cooled slower, while upper parts are cooled faster. The estimations are made for the quantity of heat emitted in a thermogenic plant that is enough to prevent the plant cold stress. It is shown that in presence of enforced air flow the rate of plants cooling is noticeably lower, as well as the quantity of heat enough to prevent the plant cold stress.

  3. Multilevel Flow Modelling of Process Plant for Diagnosis and Control

    DEFF Research Database (Denmark)

    Lind, Morten

    1982-01-01

    of complex systems. A model of a nuclear power plant (PWR) is presented in the paper for illustration. Due to the consistency of the method, multilevel flow models provide specifications of plant goals and functions and may be used as a basis for design of computer-based support systems for the plant...... operator. Plant control requirements can be derived from the models and due to independence of the actual controller implementation the method may be used as a basis for design of control strategies and for the allocation of control tasks to the computer and the plant operator....

  4. A Thermal Simulation Tool for Building and Its Interoperability through the Building Information Modeling (BIM Platform

    Directory of Open Access Journals (Sweden)

    Christophe Nicolle

    2013-05-01

    Full Text Available This paper describes potential challenges and opportunities for using thermal simulation tools to optimize building performance. After reviewing current trends in thermal simulation, it outlines major criteria for the evaluation of building thermal simulation tools based on specifications and capabilities in interoperability. Details are discussed including workflow of data exchange of multiple thermal analyses such as the BIM-based application. The present analysis focuses on selected thermal simulation tools that provide functionalities to exchange data with other tools in order to obtain a picture of its basic work principles and to identify selection criteria for generic thermal tools in BIM. Significances and barriers to integration design with BIM and building thermal simulation tools are also discussed.

  5. Air conditioning and energy conservation. Improved space HVAC systems. Case studies: Office buildings, hotels, shopping centers, skyscrapers, industrial plants

    Energy Technology Data Exchange (ETDEWEB)

    Heiner, H.

    1988-08-01

    Rising energy prices and an increasing demand for comfortable rooms account for the importance attached to the windows and glass used for office buildings, hotels and industrial plants. Both windows and glass have a considerable influence on the thermal behavior and air conditioning of buildings. Among the latest developments are precious metal-coated insulating panes. Selected gases allow to reduce the total thickness of insulating glass and improve noise insulation. The case studies presented refer to the energy-saving air conditioning and space heating, heat recovery and cooling of rooms as well as to the respective control systems. Investigations into the specific energy consumption of building shells reveal the considerable space/tap water heating energy conservation potentials remaining to be utilized.

  6. Analysis and modelling of the energy consumption of chemical batch plants

    Energy Technology Data Exchange (ETDEWEB)

    Bieler, P.S.

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes two different approaches for the energy analysis and modelling of chemical batch plants. A top-down model consisting of a linear equation based on the specific energy consumption per ton of production output and the base consumption of the plant is postulated. The model is shown to be applicable to single and multi-product batches for batch plants with constant production mix and multi-purpose batch plants in which only similar chemicals are produced. For multipurpose batch plants with highly varying production processes and changing production mix, the top-down model produced inaccurate results. A bottom-up model is postulated for such plants. The results obtained are discussed that show that the electricity consumption for infrastructure equipment was significant and responsible for about 50% of total electricity consumption. The specific energy consumption for the different buildings was related to the degree of automation and the production processes. Analyses of the results of modelling are presented. More detailed analyses of the energy consumption of this apparatus group show that about 30 to 40% of steam energy is lost and thus a large potential for optimisation exists. Various potentials for making savings, ranging from elimination of reflux conditions to the development of a new heating/cooling-system for a generic batch reactor, are identified.

  7. L-Py: an L-System simulation framework for modeling plant development based on a dynamic language

    Directory of Open Access Journals (Sweden)

    Frederic eBoudon

    2012-05-01

    Full Text Available The study of plant development requires increasingly powerful modeling tools to help understand and simulate the growth and functioning of plants. In the last decade, the formalism of L-systems has emerged as a major paradigm for modeling plant development. Previous implementations of this formalism were made based on static languages, i.e. languages that require explicit definition of variable types before using them. These languages are often efficient but involve quite a lot of syntactic overhead, thus restricting the flexibility of use for modelers. In this work, we present an adaptation of L-systems to the Python language, a popular and powerful open-license dynamic language. We show that the use of dynamic language properties makes it possible to enhance the development of plant growth models: i by keeping a simple syntax while allowing for high-level programming constructs, ii by making code execution easy and avoiding compilation overhead iii allowing a high level of model reusability and the building of complex modular models iv and by providing powerful solutions to integrate MTG data-structures (that are a common way to represent plants at several scales into L-systems and thus enabling to use a wide spectrum of computer tools based on MTGs developed for plant architecture. We then illustrate the use of L-Py in real applications to build complex models or to teach plant modeling in the classroom.

  8. L-py: an L-system simulation framework for modeling plant architecture development based on a dynamic language.

    Science.gov (United States)

    Boudon, Frédéric; Pradal, Christophe; Cokelaer, Thomas; Prusinkiewicz, Przemyslaw; Godin, Christophe

    2012-01-01

    The study of plant development requires increasingly powerful modeling tools to help understand and simulate the growth and functioning of plants. In the last decade, the formalism of L-systems has emerged as a major paradigm for modeling plant development. Previous implementations of this formalism were made based on static languages, i.e., languages that require explicit definition of variable types before using them. These languages are often efficient but involve quite a lot of syntactic overhead, thus restricting the flexibility of use for modelers. In this work, we present an adaptation of L-systems to the Python language, a popular and powerful open-license dynamic language. We show that the use of dynamic language properties makes it possible to enhance the development of plant growth models: (i) by keeping a simple syntax while allowing for high-level programming constructs, (ii) by making code execution easy and avoiding compilation overhead, (iii) by allowing a high-level of model reusability and the building of complex modular models, and (iv) by providing powerful solutions to integrate MTG data-structures (that are a common way to represent plants at several scales) into L-systems and thus enabling to use a wide spectrum of computer tools based on MTGs developed for plant architecture. We then illustrate the use of L-Py in real applications to build complex models or to teach plant modeling in the classroom.

  9. Fast Visual Modeling for Plant Based on Real Images

    Institute of Scientific and Technical Information of China (English)

    LI Yun-feng; ZHU Qing-sheng; CAO Yu-kun; LIU Yin-bin; HE Xi-ping

    2004-01-01

    Structures of natural plants are complex and difficult to model. This paper proposes a fast visual modeling for plants based on a small set of images, and establishes a reasonable plant model.Based on knowledge about growth patterns of the plant, image segmentation and 3D reconstruction are first performed to construct the plant skeleton (trunk and major branches), from which the remainder of the plant grows. Then the system produces the realistic plant model images based on image synthesis and validation. It is unnecessary to acquire the complex structure (such as the complex production rules of L-systems). The method provides a high degree of control over the final shape by image validation,resulting in realistic reconstruction.

  10. Model for Determining Geographical Distribution of Heat Saving Potentials in Danish Building Stock

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2014-01-01

    Since the global oil crisis in the 1970s, Denmark has followed a path towards energy independency by continuously improving its energy efficiency and energy conservation. Energy efficiency was mainly tackled by introducing a high number of combined heat and power plants in the system, while energy...... conservation was predominantly approached by implementing heat saving measures. Today, with the goal of 100% renewable energy within the power and heat sector by the year 2035, reductions in energy demand for space heating and the preparation of domestic hot water remain at the top of the agenda in Denmark....... A highly detailed model for determining heat demand, possible heat savings and associated costs in the Danish building stock is presented. Both scheduled and energy-saving renovations until year 2030 have been analyzed. The highly detailed GIS-based heat atlas for Denmark is used as a container for storing...

  11. Modelling of nuclear power plant decommissioning financing.

    Science.gov (United States)

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW.

  12. The road plan model: Information model for planning road building activities

    Science.gov (United States)

    Azinhal, Rafaela K.; Moura-Pires, Fernando

    1994-01-01

    The general building contractor is presented with an information model as an approach for deriving a high-level work plan of construction activities applied to road building. Road construction activities are represented in a Road Plan Model (RPM), which is modeled in the ISO standard STEP/EXPRESS and adopts various concepts from the GARM notation. The integration with the preceding road design stage and the succeeding phase of resource scheduling is discussed within the framework of a Road Construction Model. Construction knowledge is applied to the road design and the terrain model of the surrounding road infrastructure for the instantiation of the RPM. Issues regarding the implementation of a road planner application supporting the RPM are discussed.

  13. New Concept for Museum Storage Buildings – Evaluation of Building Performance Model for Simulation of Storage

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Knudsen, Lise Ræder; Kollias, Christos Georgios

    2016-01-01

    is close to be CO2 neutral. The analysis shows very good agreement between simulations and measurements, meaning that the proposed methods can be used for designing museum storage buildings. The analysis also shows, that the weather conditions of previous years, affect the indoor environment...

  14. Modelling the life-cycle of sustainable, living buildings

    NARCIS (Netherlands)

    Van Nederveen, S.; Gielingh, W.

    2009-01-01

    Credit-reductions by banks, as a consequence of the global monetary crisis, will hit the construction industry for many years to come. There are however still financing opportunities for building projects that are perceived as less risky. Buildings that are not only sustainable, but also flexible an

  15. Procedure for identifying models for the heat dynamics of buildings

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik

    This report describes a new method for obtaining detailed information about the heat dynamics of a building using frequent reading of the heat consumption. Such a procedure is considered to be of uttermost importance as a key procedure for using readings from smart meters, which is expected...... to be installed in almost all buildings in the coming years....

  16. VOC sink behaviour on building materials--model evaluation

    Science.gov (United States)

    The event of 11 September 2001 underscored the need to study the vulnerability of buildings to weapons of mass destruction (WMD), including chemical, biological, physical, and radiological agents. Should these agents be released inside a building, they would interact with interio...

  17. A research and evaluation capacity building model in Western Australia.

    Science.gov (United States)

    Lobo, Roanna; Crawford, Gemma; Hallett, Jonathan; Laing, Sue; Mak, Donna B; Jancey, Jonine; Rowell, Sally; McCausland, Kahlia; Bastian, Lisa; Sorenson, Anne; Tilley, P J Matt; Yam, Simon; Comfort, Jude; Brennan, Sean; Doherty, Maryanne

    2016-12-27

    Evaluation of public health programs, services and policies is increasingly required to demonstrate effectiveness. Funding constraints necessitate that existing programs, services and policies be evaluated and their findings disseminated. Evidence-informed practice and policy is also desirable to maximise investments in public health. Partnerships between public health researchers, service providers and policymakers can help address evaluation knowledge and skills gaps. The Western Australian Sexual Health and Blood-borne Virus Applied Research and Evaluation Network (SiREN) aims to build research and evaluation capacity in the sexual health and blood-borne virus sector in Western Australia (WA). Partners' perspectives of the SiREN model after 2 years were explored. Qualitative written responses from service providers, policymakers and researchers about the SiREN model were analysed thematically. Service providers reported that participation in SiREN prompted them to consider evaluation earlier in the planning process and increased their appreciation of the value of evaluation. Policymakers noted benefits of the model in generating local evidence and highlighting local issues of importance for consideration at a national level. Researchers identified challenges communicating the services available through SiREN and the time investment needed to develop effective collaborative partnerships. Stronger engagement between public health researchers, service providers and policymakers through collaborative partnerships has the potential to improve evidence generation and evidence translation. These outcomes require long-term funding and commitment from all partners to develop and maintain partnerships. Ongoing monitoring and evaluation can ensure the partnership remains responsive to the needs of key stakeholders. The findings are applicable to many sectors.

  18. Modelling soil-plant-atmosphere interactions by coupling the regional weather model WRF to mechanistic plant models

    Science.gov (United States)

    Klein, C.; Hoffmann, P.; Priesack, E.

    2012-04-01

    Climate change causes altering distributions of meteorological factors influencing plant growth and its interactions between the land surface and the atmosphere. Recent studies show, that uncertainties in regional and global climate simulations are also caused by lacking descriptions of the soil-plant-atmosphere system. Therefore, we couple a mechanistic soil-plant model to a regional climate and forecast model. The detailed simulation of the water and energy exchanges, especially the transpiration of grassland and forests stands, are the key features of the modelling framework. The Weather Research and Forecasting model (WRF) (Skamarock 2008) is an open source mesoscale numerical weather prediction model. The WRF model was modified in a way, to either choose its native, static land surface model NOAH or the mechanistic eco-system model Expert-N 5.0 individually for every single grid point within the simulation domain. The Expert-N 5.0 modelling framework provides a highly modular structure, enabling the development and use of a large variety of different plant and soil models, including heat transfer, nitrogen uptake/turnover/transport as well as water uptake/transport and crop management. To represent the key landuse types grassland and forest, we selected two mechanistic plant models: The Hurley Pasture model (Thornley 1998) and a modified TREEDYN3 forest simulation model (Bossel 1996). The models simulate plant growth, water, nitrogen and carbon flows for grassland and forest stands. A mosaic approach enables Expert-N to use high resolution land use data e.g. CORINE Land Cover data (CLC, 2006) for the simulation, making it possible to simulate different land use distributions within a single grid cell. The coupling results are analyzed for plausibility and compared with the results of the default land surface model NOAH (Fei Chen and Jimy Dudhia 2010). We show differences between the mechanistic and the static model coupling, with focus on the feedback effects

  19. Image-Based Modeling of Plants and Trees

    CERN Document Server

    Kang, Sing Bang

    2009-01-01

    Plants and trees are among the most complex natural objects. Much work has been done attempting to model them, with varying degrees of success. In this book, we review the various approaches in computer graphics, which we categorize as rule-based, image-based, and sketch-based methods. We describe our approaches for modeling plants and trees using images. Image-based approaches have the distinct advantage that the resulting model inherits the realistic shape and complexity of a real plant or tree. We use different techniques for modeling plants (with relatively large leaves) and trees (with re

  20. Mathematical modeling of stress-strain state of the system HPP building - soil base with account for the phased construction of the building

    Directory of Open Access Journals (Sweden)

    Orekhov Vyacheslav Valentinovich

    Full Text Available The interaction process of a power plant building with the soil base is studied basing on mathematical modeling of the construction process of Kambarata-2 HPP, taking into account the excavation of foundation pit, the concreting schedule of the building construction, the HPP units putting into operation and territory planning. Mathematical modeling of stress-strain state of the system “power plant - soil base” in the process of construction was performed by using the computer program “Zemlya” (the Earth, which implements the method of finite elements. Such a behavior of soil was described using elastoplastic soil model, the parameters of which were determined from the results of the triaxial tests. As shown by the results of the research, the continuous change of settlement, slope, deflection and torsion of the bottom plate and accordingly change of stressed-strained state of power plant are noted during the construction process. The installed HPP construction schedule, starting from the construction of the first block and the adjacent mounting platform, is leading to the formation of initial roll of bottom plate to the path of the mounting pad. In the process of further construction of powerhouse, up to the 29th phase of construction (out of 40, a steady increase in its subsidence (maximum values of about 4.5 cm is noted. Filling of foundation pit hollows and territorial planning of the construction area lead to drastic situation. In this case, as a territory planning points exceeded the relief, the plastic deformation in the soil evolves, resulting in significant subsidence of the bottom plate under the first block (up to 7.4 cm. As a result, the additional subsidence of the soil of bottom plate edges lead to the large vertical movement in relation to its central part and it is bent around the X axis, resulting in a large horizontal tensile stress values of Sz (up to 2.17 MPa in the constructive elements of the upper part of the

  1. Energy Savings Modeling and Inspection Guidelines for Commercial Building Federal Tax Deductions for Buildings in 2016 and Later

    Energy Technology Data Exchange (ETDEWEB)

    Deru, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Field-Macumber, Kristin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code (IRC) enacted in Section 1331 of the 2005 Energy Policy Act (EPAct) of 2005, noted in Internal Revenue Service (IRS) Notices 2006-52 (IRS 2006), 2008-40 (IRS 2008) and 2012-26 (IRS 2012), and updated by the Protecting Americans from Tax Hikes (PATH) Act of 2015. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning (HVAC); and service hot water (SHW) systems. This document applies to buildings placed in service on or after January 1, 2016.

  2. Uncertainty modelling of critical column buckling for reinforced concrete buildings

    Indian Academy of Sciences (India)

    Kasim A Korkmaz; Fuat Demir; Hamide Tekeli

    2011-04-01

    Buckling is a critical issue for structural stability in structural design. In most of the buckling analyses, applied loads, structural and material properties are considered certain. However, in reality, these parameters are uncertain. Therefore, a prognostic solution is necessary and uncertainties have to be considered. Fuzzy logic algorithms can be a solution to generate more dependable results. This study investigates the material uncertainties on column design and proposes an uncertainty model for critical column buckling reinforced concrete buildings. Fuzzy logic algorithm was employed in the study. Lower and upper bounds of elastic modulus representing material properties were defined to take uncertainties into account. The results show that uncertainties play an important role in stability analyses and should be considered in the design. The proposed approach is applicable to both future numerical and experimental researches. According to the study results, it is seen that, calculated buckling load values are stayed in lower and upper bounds while the load values are different for same concrete strength values by using different code formula.

  3. Implementation of building information modeling in Malaysian construction industry

    Science.gov (United States)

    Memon, Aftab Hameed; Rahman, Ismail Abdul; Harman, Nur Melly Edora

    2014-10-01

    This study has assessed the implementation level of Building Information Modeling (BIM) in the construction industry of Malaysia. It also investigated several computer software packages facilitating BIM and challenges affecting its implementation. Data collection for this study was carried out using questionnaire survey among the construction practitioners. 95 completed forms of questionnaire received against 150 distributed questionnaire sets from consultant, contractor and client organizations were analyzed statistically. Analysis findings indicated that the level of implementation of BIM in the construction industry of Malaysia is very low. Average index method employed to assess the effectiveness of various software packages of BIM highlighted that Bentley construction, AutoCAD and ArchiCAD are three most popular and effective software packages. Major challenges to BIM implementation are it requires enhanced collaboration, add work to a designer, interoperability and needs enhanced collaboration. For improving the level of implementing BIM in Malaysian industry, it is recommended that a flexible training program of BIM for all practitioners must be created.

  4. Model Pembelajaran Character Building dan Implikasinya Terhadap Perilaku Mahasiswa

    Directory of Open Access Journals (Sweden)

    Agus Masrukhin

    2013-10-01

    Full Text Available Character Building Subject is required for students in preparation to face the world outside the campus, workplace, society, peers, and even family. Character Building is a process or efforts done to develop, improve and/or to shape characters, dispositions, psychological nature, morals (manners of human beings (people that indicate attitudes and good behaviors. Values and factors that influence the Character Building are spirit, togetherness, and caring. The concept of Character Building which could be obtained in formal institutions (campus, informal institutions (family, and non-formal institutions (courses, student spiritual clubs has an influence and impact on the character of students, whether intentional or not. Nevertheless, it will not happen if there is no self-consciousness in the student. Good Character Building will also be a benchmark in the workplace. Learning Character Building that students get apparently contributes to the formation of student character, of which influences their behaviors. The effect can be seen from the attitude of students such as honesty, trustworthiness in maintaining trust and job given. Character Building is a subject that imparts the values of good behavior to students; and therefore when they jump into the workplace, there will no longer happen the cases of corruption and fraud resulting from the dishonesty because people like that do not have a good character.  

  5. MODELLING AND SIMULATION MATTERS UPON THE STATIC ANALYSIS OF A BUILDING

    Directory of Open Access Journals (Sweden)

    DUTA Alina

    2017-05-01

    Full Text Available The present paper puts forward a method applied to determine the static analysis and the stress of a two-level building, via an analysis with finite elements for building construction domain. Prior to this, we shall deal with a strategic issue, i.e. the achievement of a model with finite elements to validate the best approximation for the building structure. The method endorsed comes to replace the mathematical model, which is more complicated. However, a central issue that has to be dealt with before determining the displacements and the stress analysis is the achievement of the model with finite elements, as the best approximation of the building structure.

  6. [Sutural physical model building in the three-dimensional finite-element model of maxillofacial bones].

    Science.gov (United States)

    Liu, Chang; Zhu, Xian-chun; Zhang, Xing; Tai, Yin-xia; Yan, Sen

    2011-02-01

    To build the physical model of four suturae which are related to the growth of maxilla in the three-dimensional finite-element model of maxillofacial bones. A 16 years old volunteer with individual normal occlusion, good periodontium health condition and without diseases of temporomandibular joint was chosen to be the material of modeling. The three-dimensional finite-element model of the volunteer's maxillofacial bones was built using the CT scan and the finite-element modeling method. Finally we built the physical model of four suturae which were related to the growth of maxilla in the model of maxillofacial bones. The model of maxillofacial bones with 86,575 nodes and 485,915 elements was generated. This model contained four suturae including sutura frontomaxillaris, sutura zygomaticomaxillaris, sutura temporozygomatica and sutura pterygopalatine. A three-dimensional finite-element model of maxillofacial bones with good biological similarity was developed.

  7. EXPERIMENTAL DESIGN APPLIED TO MODELING OF THE AIR-TIGHTNESS OF A BUILDING

    OpenAIRE

    2015-01-01

    The paper presents experimental designs that can be used in modeling of the air-tightness of buildings as second-order functions using response surface method and corresponding experiment designs. The factors supposed to be significant for a model of building air-tightness—and thus those used in experiment designs—are the heat transfer coefficient for external walls, the heat transfer coefficient of the windows, and the position of the housing units with respect to the building envelope. We c...

  8. Geomatic techniques for the generation of building information models towards their introduction in Integrated Management Systems

    OpenAIRE

    Diaz Vilariño, Lucia

    2015-01-01

    This research project proposes the use of geomatic techniques to reconstruct in a highly automated way semantic building models that might be subjected to energy analysis. Other non-destructive techniques such as infrared thermography are explored to obtain descriptive attributes for enriching the models. Building stock is considered as an important contributor to the global energy consumption and buildings energy efficiency has become a priority strategy in the European energy policy. Bu...

  9. Hybrid LCA model for assessing the embodied environmental impacts of buildings in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Minho, E-mail: minmin40@hanmail.net [Asset Management Division, Mate Plus Co., Ltd., 9th Fl., Financial News Bldg. 24-5 Yeouido-dong, Yeongdeungpo-gu, Seoul, 150-877 (Korea, Republic of); Hong, Taehoon, E-mail: hong7@yonsei.ac.kr [Department of Architectural Engineering, Yonsei University, Seoul, 120-749 (Korea, Republic of); Ji, Changyoon, E-mail: chnagyoon@yonsei.ac.kr [Department of Architectural Engineering, Yonsei University, Seoul, 120-749 (Korea, Republic of)

    2015-01-15

    The assessment of the embodied environmental impacts of buildings can help decision-makers plan environment-friendly buildings and reduce environmental impacts. For a more comprehensive assessment of the embodied environmental impacts of buildings, a hybrid life cycle assessment model was developed in this study. The developed model can assess the embodied environmental impacts (global warming, ozone layer depletion, acidification, eutrophication, photochemical ozone creation, abiotic depletion, and human toxicity) generated directly and indirectly in the material manufacturing, transportation, and construction phases. To demonstrate the application and validity of the developed model, the environmental impacts of an elementary school building were assessed using the developed model and compared with the results of a previous model used in a case study. The embodied environmental impacts from the previous model were lower than those from the developed model by 4.6–25.2%. Particularly, human toxicity potential (13 kg C{sub 6}H{sub 6} eq.) calculated by the previous model was much lower (1965 kg C{sub 6}H{sub 6} eq.) than what was calculated by the developed model. The results indicated that the developed model can quantify the embodied environmental impacts of buildings more comprehensively, and can be used by decision-makers as a tool for selecting environment-friendly buildings. - Highlights: • The model was developed to assess the embodied environmental impacts of buildings. • The model evaluates GWP, ODP, AP, EP, POCP, ADP, and HTP as environmental impacts. • The model presents more comprehensive results than the previous model by 4.6–100%. • The model can present the HTP of buildings, which the previous models cannot do. • Decision-makers can use the model for selecting environment-friendly buildings.

  10. A mass transfer model for predicting emission of the volatile organic compounds in wet building materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tao; JIA Li

    2008-01-01

    A new mass transfer model is developped to predict the volatile organic compounds (VOCs) from fresh wet building materials. The dry section of wet materials during the process of VOC emission from wet building materials is considered in this new model, differing from the mass transfer-based models in other literatures. The mechanism of effect of saturated vapor pressure on the surface of wet building materials in the process of VOC emission is discussed. The concentration of total volatile organic compounds (TVOC) in the building materials gradually decreases as the emission of VOCs begins, and the vapor pressure of VOCs on the surface of wet building materials decreases in the case of newly wet building materials. To ensure the partial pressure of VOCs on the surface of wet building materials to be saturated vapor pressure, the interface of gas-wet layer is lowered, and a dry layer of no-volatile gases in the material is formed. Compared with the results obtained by VB model, CFD model and the ex-periment data, the results obtained by the present model agree well with the results obtained by CFD model and the experiment data. The present model is more accurate in predicting emission of VOC from wet building materials than VB model.

  11. Hydraulic modelling of drinking water treatment plant operations

    OpenAIRE

    L. C. Rietveld; Borger, K.J.; Van Schagen, K.M.; Mesman, G.A.M.; G. I. M. Worm

    2008-01-01

    For a drinking water treatment plant simulation, water quality models, a hydraulic model, a process-control model, an object model, data management, training and decision-support features and a graphic user interface have been integrated. The integration of a hydraulic model in the simulator is necessary to correctly determine the division of flows over the plant's lanes and, thus, the flow through the individual treatment units, based on valve positions and pump speeds. The flow through a un...

  12. A Hierarchical Building Segmentation in Digital Surface Models for 3D Reconstruction

    Directory of Open Access Journals (Sweden)

    Yiming Yan

    2017-01-01

    Full Text Available In this study, a hierarchical method for segmenting buildings in a digital surface model (DSM, which is used in a novel framework for 3D reconstruction, is proposed. Most 3D reconstructions of buildings are model-based. However, the limitations of these methods are overreliance on completeness of the offline-constructed models of buildings, and the completeness is not easily guaranteed since in modern cities buildings can be of a variety of types. Therefore, a model-free framework using high precision DSM and texture-images buildings was introduced. There are two key problems with this framework. The first one is how to accurately extract the buildings from the DSM. Most segmentation methods are limited by either the terrain factors or the difficult choice of parameter-settings. A level-set method are employed to roughly find the building regions in the DSM, and then a recently proposed ‘occlusions of random textures model’ are used to enhance the local segmentation of the buildings. The second problem is how to generate the facades of buildings. Synergizing with the corresponding texture-images, we propose a roof-contour guided interpolation of building facades. The 3D reconstruction results achieved by airborne-like images and satellites are compared. Experiments show that the segmentation method has good performance, and 3D reconstruction is easily performed by our framework, and better visualization results can be obtained by airborne-like images, which can be further replaced by UAV images.

  13. Enhanced air dispersion modelling at a typical Chinese nuclear power plant site: Coupling RIMPUFF with two advanced diagnostic wind models.

    Science.gov (United States)

    Liu, Yun; Li, Hong; Sun, Sida; Fang, Sheng

    2017-09-01

    An enhanced air dispersion modelling scheme is proposed to cope with the building layout and complex terrain of a typical Chinese nuclear power plant (NPP) site. In this modelling, the California Meteorological Model (CALMET) and the Stationary Wind Fit and Turbulence (SWIFT) are coupled with the Risø Mesoscale PUFF model (RIMPUFF) for refined wind field calculation. The near-field diffusion coefficient correction scheme of the Atmospheric Relative Concentrations in the Building Wakes Computer Code (ARCON96) is adopted to characterize dispersion in building arrays. The proposed method is evaluated by a wind tunnel experiment that replicates the typical Chinese NPP site. For both wind speed/direction and air concentration, the enhanced modelling predictions agree well with the observations. The fraction of the predictions within a factor of 2 and 5 of observations exceeds 55% and 82% respectively in the building area and the complex terrain area. This demonstrates the feasibility of the new enhanced modelling for typical Chinese NPP sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Semantic Bim and GIS Modelling for Energy-Efficient Buildings Integrated in a Healthcare District

    Science.gov (United States)

    Sebastian, R.; Böhms, H. M.; Bonsma, P.; van den Helm, P. W.

    2013-09-01

    The subject of energy-efficient buildings (EeB) is among the most urgent research priorities in the European Union (EU). In order to achieve the broadest impact, innovative approaches to EeB need to resolve challenges at the neighbourhood level, instead of only focusing on improvements of individual buildings. For this purpose, the design phase of new building projects as well as building retrofitting projects is the crucial moment for integrating multi-scale EeB solutions. In EeB design process, clients, architects, technical designers, contractors, and end-users altogether need new methods and tools for designing energy-efficiency buildings integrated in their neighbourhoods. Since the scope of designing covers multiple dimensions, the new design methodology relies on the inter-operability between Building Information Modelling (BIM) and Geospatial Information Systems (GIS). Design for EeB optimisation needs to put attention on the inter-connections between the architectural systems and the MEP/HVAC systems, as well as on the relation of Product Lifecycle Modelling (PLM), Building Management Systems (BMS), BIM and GIS. This paper is descriptive and it presents an actual EU FP7 large-scale collaborative research project titled STREAMER. The research on the inter-operability between BIM and GIS for holistic design of energy-efficient buildings in neighbourhood scale is supported by real case studies of mixed-use healthcare districts. The new design methodology encompasses all scales and all lifecycle phases of the built environment, as well as the whole lifecycle of the information models that comprises: Building Information Model (BIM), Building Assembly Model (BAM), Building Energy Model (BEM), and Building Operation Optimisation Model (BOOM).

  15. Simplified floor-area-based energy-moisture-economic model for residential buildings

    Science.gov (United States)

    Martinez, Luis A.

    In the United States, 21% of all energy is used in residential buildings (40% of which is for heating and cooling homes). Promising improvements in residential building energy efficiency are underway such as the Building America Program and the Passive House Concept. The ability of improving energy efficiency in buildings is enhanced by building energy modeling tools, which are well advanced and established but lack generality (each building has to be modeled individually) and require high cost, which limits many residential buildings from taking advantage of such powerful tools. This dissertation attempts to develop guidelines based on a per-building-floor-area basis for designing residential buildings that achieve maximum energy efficiency and minimum life cycle cost. Energy and moisture-mass conservation principles were formulated for residential buildings on a per-building-floor-area basis. This includes thermal energy balance, moisture-mass conservation and life cycle cost. The analysis also includes the effects of day-lighting, initial cost estimation and escalation rates. The model was implemented on Excel so it is available for broader audiences and was validated using the standard BESTEST validation procedure for energy models yielding satisfactory results for different scenarios, within a 90% confidence interval. Using the model, parametric optimization studies were conducted in order to study how each variable affects energy and life cycle cost. An efficient whole-building optimization procedure was developed to determine the optimal design based on key design parameters. Whole-building optimization studies were conducted for 12 climate zones using four different criteria: minimum energy consumption, minimum life cycle cost (35 years) using constant energy costs and minimum life cycle cost (35 years) varying escalation rates (-5%, 10%). Conclusions and recommendations were inferred on how to design an optimal house, using each criterion and for all

  16. USING OF NET PRESENT VALUE (NPV) TO TEST THE INTEGRATED MODEL IN BUILDING MANAGEMENT INFORMATION SYSTEMS

    OpenAIRE

    Omar, Mohammad; Abdullah, Khairul

    2017-01-01

    The integrated model is a new model that is recently developed in order to build the management information systems (MIS's) by using the classical approach system development methodology. The integrated model aims to address the drawbacks of the classical approach in consumption additional time and cost while building the MIS's. The integrated model was subjected to two tests by using the mathematical probability theories in order to ensure the validity of the integrated model in it...

  17. Dynamic modeling of Badaling molten salt tower CSP pilot plant

    Science.gov (United States)

    Yang, Zijiang; Lu, Jiahui; Zhang, Qiangqiang; Li, Zhi; Li, Xin; Wang, Zhifeng

    2017-06-01

    Under the collaboration framework between EDF China R&D Centre and CAS-IEE, a preliminary numerical model of 1MWth molten salt tower solar power demonstration plant in Badaling, Beijing is presented in this paper. All key components in the plant are presented throughout detailed modules in the model according to its design specifications. Control strategies are also implemented to maintain the design system performance at transient scenario. By this model some key design figures of plant has been validated and it will be used to guide experiment set-up and plant commissioning.

  18. Analysis of technical-economic requirements for the construction of a solar power plant on the roof of the business building of the Electrical Engineering Institute 'Nikola Tesla'

    National Research Council Canada - National Science Library

    Grbić Maja; Antić Radoslav; Ponoćko Jelena; Mikulović Jovan; Đurišić Željko

    2014-01-01

    This paper presents an analysis of the technical-economic requirements for the construction of a solar power plant on the roof of the business building of the Electrical Engineering Institute 'Nikola Tesla' in Belgrade...

  19. Empirical Validation of Building Simulation Software : Modeling of Double Facades

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Heiselberg, Per

    The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group.......The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group....

  20. Model of how plants sense zinc deficiency

    NARCIS (Netherlands)

    Assuncao, A.G.L.; Persson, D.P.; Husted, S.; Schjorring, J.K.; Alexander, R.D.; Aarts, M.G.M.

    2013-01-01

    Plants are capable of inducing a range of physico-chemical and microbial modifications of the rhizosphere which can mobilize mineral nutrients or prevent toxic elements from entering the roots. Understanding how plants sense and adapt to variations in nutrient availability is essential in order to d

  1. Reviewing the Role of Stakeholders in Operational Research: Opportunities for Group Model Building

    NARCIS (Netherlands)

    Gooyert, V. de; Rouwette, E.A.J.A.; Kranenburg, H.L. van

    2013-01-01

    Stakeholders have always received much attention in system dynamics, especially in the group model building tradition, which emphasizes the deep involvement of a client group in building a system dynamics model. In organizations, stakeholders are gaining more and more attention by managers who try t

  2. Prediction model for sound transmission from machinery in buildings: feasible approaches and problems to be solved

    NARCIS (Netherlands)

    Gerretsen, E.

    2000-01-01

    Prediction models for the airborne and impact sound transmission in buildings have recently been established (EN 12354- 1&2:1999). However, these models do not cover technical installations and machinery as a source of sound in buildings. Yet these can cause unacceptable sound levels and it is

  3. Integrating Smartphone Images and Airborne LIDAR Data for Complete Urban Building Modelling

    Science.gov (United States)

    Zhang, Shenman; Shan, Jie; Zhang, Zhichao; Yan, Jixing; Hou, Yaolin

    2016-06-01

    A complete building model reconstruction needs data collected from both air and ground. The former often has sparse coverage on building façades, while the latter usually is unable to observe the building rooftops. Attempting to solve the missing data issues in building reconstruction from single data source, we describe an approach for complete building reconstruction that integrates airborne LiDAR data and ground smartphone imagery. First, by taking advantages of GPS and digital compass information embedded in the image metadata of smartphones, we are able to find airborne LiDAR point clouds for the corresponding buildings in the images. In the next step, Structure-from-Motion and dense multi-view stereo algorithms are applied to generate building point cloud from multiple ground images. The third step extracts building outlines respectively from the LiDAR point cloud and the ground image point cloud. An automated correspondence between these two sets of building outlines allows us to achieve a precise registration and combination of the two point clouds, which ultimately results in a complete and full resolution building model. The developed approach overcomes the problem of sparse points on building façades in airborne LiDAR and the deficiency of rooftops in ground images such that the merits of both datasets are utilized.

  4. INTEGRATING SMARTPHONE IMAGES AND AIRBORNE LIDAR DATA FOR COMPLETE URBAN BUILDING MODELLING

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2016-06-01

    Full Text Available A complete building model reconstruction needs data collected from both air and ground. The former often has sparse coverage on building façades, while the latter usually is unable to observe the building rooftops. Attempting to solve the missing data issues in building reconstruction from single data source, we describe an approach for complete building reconstruction that integrates airborne LiDAR data and ground smartphone imagery. First, by taking advantages of GPS and digital compass information embedded in the image metadata of smartphones, we are able to find airborne LiDAR point clouds for the corresponding buildings in the images. In the next step, Structure-from-Motion and dense multi-view stereo algorithms are applied to generate building point cloud from multiple ground images. The third step extracts building outlines respectively from the LiDAR point cloud and the ground image point cloud. An automated correspondence between these two sets of building outlines allows us to achieve a precise registration and combination of the two point clouds, which ultimately results in a complete and full resolution building model. The developed approach overcomes the problem of sparse points on building façades in airborne LiDAR and the deficiency of rooftops in ground images such that the merits of both datasets are utilized.

  5. Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences

    Science.gov (United States)

    Bucksch, Alexander; Atta-Boateng, Acheampong; Azihou, Akomian F.; Battogtokh, Dorjsuren; Baumgartner, Aly; Binder, Brad M.; Braybrook, Siobhan A.; Chang, Cynthia; Coneva, Viktoirya; DeWitt, Thomas J.; Fletcher, Alexander G.; Gehan, Malia A.; Diaz-Martinez, Diego Hernan; Hong, Lilan; Iyer-Pascuzzi, Anjali S.; Klein, Laura L.; Leiboff, Samuel; Li, Mao; Lynch, Jonathan P.; Maizel, Alexis; Maloof, Julin N.; Markelz, R. J. Cody; Martinez, Ciera C.; Miller, Laura A.; Mio, Washington; Palubicki, Wojtek; Poorter, Hendrik; Pradal, Christophe; Price, Charles A.; Puttonen, Eetu; Reese, John B.; Rellán-Álvarez, Rubén; Spalding, Edgar P.; Sparks, Erin E.; Topp, Christopher N.; Williams, Joseph H.; Chitwood, Daniel H.

    2017-01-01

    The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics. PMID:28659934

  6. Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences

    Directory of Open Access Journals (Sweden)

    Alexander Bucksch

    2017-06-01

    Full Text Available The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics.

  7. Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences.

    Science.gov (United States)

    Bucksch, Alexander; Atta-Boateng, Acheampong; Azihou, Akomian F; Battogtokh, Dorjsuren; Baumgartner, Aly; Binder, Brad M; Braybrook, Siobhan A; Chang, Cynthia; Coneva, Viktoirya; DeWitt, Thomas J; Fletcher, Alexander G; Gehan, Malia A; Diaz-Martinez, Diego Hernan; Hong, Lilan; Iyer-Pascuzzi, Anjali S; Klein, Laura L; Leiboff, Samuel; Li, Mao; Lynch, Jonathan P; Maizel, Alexis; Maloof, Julin N; Markelz, R J Cody; Martinez, Ciera C; Miller, Laura A; Mio, Washington; Palubicki, Wojtek; Poorter, Hendrik; Pradal, Christophe; Price, Charles A; Puttonen, Eetu; Reese, John B; Rellán-Álvarez, Rubén; Spalding, Edgar P; Sparks, Erin E; Topp, Christopher N; Williams, Joseph H; Chitwood, Daniel H

    2017-01-01

    The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics.

  8. Structural system identification of buildings by a wave method based on a layered Timoshenko beam model

    Science.gov (United States)

    Ebrahimian, Mahdi; Todorovska, Maria I.

    2014-03-01

    A layered Timoshenko beam (TB) model of a high-rise building is presented and applied to system identification of a full-scale building from recorded seismic response. This model is a new development in a wave method for earthquake damage detection and structural health monitoring being developed by the authors' research group. The method is based on monitoring changes in the wave properties of the structure, such as the velocity of wave propagation vertically through the structure. This model is an improvement over the previously used layered shear beam (SB) model because it accounts for wave dispersion caused by flexural deformation present in addition to shear. It also accounts for the rotatory inertia and the variation of the building properties with height. The case study is a 54-story steel frame building located in downtown Los Angeles. Recorded accelerations during the Northridge earthquake of 1994 are used for system identification of the NS response. The model parameters are identified by matching, in the least squares sense, the model and observed impulse response functions at all levels where motion was recorded. The model is then used to compute the building vertical phase and group velocities. Impulse responses computed by deconvolution of the recorded motions with the roof response are used, which represent the building response to a virtual source at the roof. The better match of transfer-function amplitudes of the fitted TB model than of previously fitted SB model indicates that the layered TB model is a better physical model for this building.

  9. An automation model of Effluent Treatment Plant

    Directory of Open Access Journals (Sweden)

    Luiz Alberto Oliveira Lima Roque

    2012-07-01

    on the conservation of water resources, this paper aims to propose an automation model of an Effluent Treatment Plant, using Ladder programming language and supervisory systems.

  10. Computational Modeling of Auxin: A Foundation for Plant Engineering

    Directory of Open Access Journals (Sweden)

    Alejandro Morales-Tapia

    2016-12-01

    Full Text Available Since the development of agriculture, humans have relied on the cultivation of plants to satisfy our increasing demand for food, natural products, and other raw materials. As we understand more about plant development, we can better manipulate plants to fulfill our particular needs.Auxins are a class of simple metabolites that coordinate many developmental activities like growth and the appearance of functional structures in plants. Computational modeling of auxin has proven to be an excellent tool in elucidating many mechanisms that underlie these developmental events. Due to the complexity of these mechanisms, current modelling efforts are concerned only with single phenomena focused on narrow spatial and developmental contexts; but a general model of plant development could be assembled by integrating the insights from all of them.In this perspective, we summarize the current collection of auxin-driven computational models, focusing on how they could come together into a single model for plant development. A model of this nature would allow researchers to test hypotheses in silico and yield accurate predictions about the behavior of a plant under a given set of physical and biochemical constraints. It would also provide a solid foundation towards the establishment of plant engineering, a proposed discipline intended to enable the design and production of plants that exhibit an arbitrarily defined set of features.

  11. A model of plant strategies in fluvial hydrosystems

    NARCIS (Netherlands)

    Bornette, G.; Tabacchi, E.; Hupp, C.; Puijalon, S.; Rostan, J.C.

    2008-01-01

    1. We propose a model of plant strategies in temperate fluvial hydrosystems that considers the hydraulic and geomorphic features that control plant recruitment, establishment and growth in river floodplains. 2. The model describes first how the disturbance gradient and the grain-size of the river be

  12. Multilevel flow modeling of Monju Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Yoshikawa, Hidekazu; Jørgensen, Sten Bay

    2011-01-01

    Multilevel Flow Modeling is a method for modeling complex processes on multiple levels of means-end and part-whole abstraction. The modeling method has been applied on a wide range of processes including power plants, chemical engineering plants and power systems. The modeling method is supported...... functions and structure. The paper will describe how MFM can be used to represent the goals and functions of the Japanese Monju Nuclear Power Plant. A detailed explanation will be given of the model describing the relations between levels of goal, function and structural. Furthermore, it will be explained...

  13. The Analysis Regarding the Building of a Hydraulic Power Plant on the Black Sea Shore

    Directory of Open Access Journals (Sweden)

    Gheorghe Samoilescu

    2013-09-01

    Full Text Available The present paper represents the result of a research project regarding the construction of a wave driven hydraulic plant that is going to be installed on the Black Sea shore in the area of the city of Constanta. Several phases were analyzed: numerical simulations for the micro plant – wave energy theory; finite element simulation – results and conclusions; generating the blueprint for the construction of the plant.

  14. Development of a model for optimisation of a power plant mix by means of evolution strategy; Modellentwicklung zur Kraftwerksparkoptimierung mit Hilfe von Evolutionsstrategien

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Hans

    2008-09-17

    Within the scope of this thesis a model based on evolution strategy is depicted, which optimises the upgrade of an existing power plant mix. In doing so the optimisation problem is divided in two sections covering the building of new power plants as well as their ideal usage within the persisting power plant mix. The building of new power plants is optimised by means of mutations, while their ideal usage is specified by a heuristic classification according to the merit order of the power plant mix. By applying a residual yearly load curve the consumer load can be modelled, incorporating the impact of fluctuating power generation and its probability of occurrence. Power plant failures and the duration of revisions are adequately considered by means of a power reduction factor. The optimisation furthermore accommodates a limiting threshold for yearly carbon dioxide emissions as well as a premature decommissioning of power plants. (orig.)

  15. Experimental and Numerical Analysis of Wind Driven Natural Ventilation in a Building Scale Model

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; True, Jan Per Jensen; Sandberg, Mats;

    2004-01-01

    Airflow through openings in a cross ventilated building scale model was investigated in a wind tunnel and by numerical predictions. Predictions for a wind direction perpendicular to the building showed an airflow pattern consisting of streamlines entering the room, that originated from approximat......Airflow through openings in a cross ventilated building scale model was investigated in a wind tunnel and by numerical predictions. Predictions for a wind direction perpendicular to the building showed an airflow pattern consisting of streamlines entering the room, that originated from...

  16. Review of Development Survey of Phase Change Material Models in Building Applications

    Directory of Open Access Journals (Sweden)

    Hussein J. Akeiber

    2014-01-01

    Full Text Available The application of phase change materials (PCMs in green buildings has been increasing rapidly. PCM applications in green buildings include several development models. This paper briefly surveys the recent research and development activities of PCM technology in building applications. Firstly, a basic description of phase change and their principles is provided; the classification and applications of PCMs are also included. Secondly, PCM models in buildings are reviewed and discussed according to the wall, roof, floor, and cooling systems. Finally, conclusions are presented based on the collected data.

  17. Individualism in plant populations: using stochastic differential equations to model individual neighbourhood-dependent plant growth.

    Science.gov (United States)

    Lv, Qiming; Schneider, Manuel K; Pitchford, Jonathan W

    2008-08-01

    We study individual plant growth and size hierarchy formation in an experimental population of Arabidopsis thaliana, within an integrated analysis that explicitly accounts for size-dependent growth, size- and space-dependent competition, and environmental stochasticity. It is shown that a Gompertz-type stochastic differential equation (SDE) model, involving asymmetric competition kernels and a stochastic term which decreases with the logarithm of plant weight, efficiently describes individual plant growth, competition, and variability in the studied population. The model is evaluated within a Bayesian framework and compared to its deterministic counterpart, and to several simplified stochastic models, using distributional validation. We show that stochasticity is an important determinant of size hierarchy and that SDE models outperform the deterministic model if and only if structural components of competition (asymmetry; size- and space-dependence) are accounted for. Implications of these results are discussed in the context of plant ecology and in more general modelling situations.

  18. Plant lessons: exploring ABCB functionality through structural modeling

    Directory of Open Access Journals (Sweden)

    Aurélien eBailly

    2012-01-01

    Full Text Available In contrast to mammalian ABCB1 proteins, narrow substrate specificity has been extensively documented for plant orthologs shown to catalyze the transport of the plant hormone, auxin. Using the crystal structures of the multidrug exporters Sav1866 and MmABCB1 as templates, we have developed structural models of plant ABCB proteins with a common architecture. Comparisons of these structures identified kingdom-specific candidate substrate-binding regions within the translocation chamber formed by the transmembrane domains of ABCBs from the model plant Arabidopsis. These results suggest an early evolutionary divergence of plant and mammalian ABCBs. Validation of these models becomes a priority for efforts to elucidate ABCB function and manipulate this class of transporters to enhance plant productivity and quality.

  19. A New Model for Building Digital Science Education Collections

    Science.gov (United States)

    Niepold, F.; McCaffrey, M.; Morrill, C.; Ganse, J.; Weston, T.

    2005-12-01

    The Polar Regions play an integral role in how our Earth system operates. However, the Polar Regions are marginally studied in the K-12 classroom in the United States. The International Polar Year's (IPY) coordinated campaign of polar observations, research, and analysis that will be multidisciplinary in scope and international in participation offers a powerful opportunity for K-12 classroom. The IPY's scientific objective to better understand the key roles of the Polar Regions in global processes will allow students a window into the poles and this unique regions role in the Earth system. IPY will produce careful, useful scientific information that will advance our understanding of the Polar Regions and their connections to the rest of the globe. The IPY is an opportunity to inspire the next generation of very young Earth system scientists. The IPY's draft education & outreach position paper asks a key question that must guide future educational projects; "Why is the polar regions and polar research important to all people on earth?" In efforts to coordinate educational activities and collaborate with international projects, United States national agencies, and other educational initiatives, it is the purpose of this session to explore potential partnerships, while primarily recommending a model for educational product development and review. During such a large international science endeavor, numerous educational activities and opportunities are developed, but these educational programs can suffer from too many unconnected options being available to teachers and students. Additionally, activities often are incompatible with each other making classroom implementation unnecessarily complex and prohibitively time consuming for teachers. A newly develop educational activity collection technique developed for DLESE offers an effective model for IPY product gap analysis and development. The Climate Change Collection developed as a pilot project for the Digital Library

  20. Determination of the Thermal Insulation for the Model Building Approach and the Global Effects in Turkey

    Directory of Open Access Journals (Sweden)

    Cenk Onan

    2014-08-01

    Full Text Available One of the most important considerations to be considered in the design of energy efficient buildings is the thickness of the insulation to be applied to the building. In this study the existing building stock in Turkey has been investigated depending on parameters such as the height and the area. A model building has been created covering all of these buildings. Fuel emission reduction of combustion system was calculated in the case of insulation applied to this model building. Heat loss of the existing building stock and exhaust emissions and the contribution to the country's economy with the model building methodology are also determined. The results show that the optimum insulation thicknesses vary between 3.21 and 7.12 cm, the energy savings vary between 9.23 US$/m2 and43.95 US$/m2, and the payback periods vary between 1 and 8.8 years depending on the regions. As a result of the study when the optimum insulation thickness is applied in the model building, the total energy savings for the country are calculated to be 41.7 billion US$. And also total CO2 emissions for the country are calculated to be 57.2 billion kg CO2 per year after insulation.

  1. Consideration of hazardous and especially hazardous hydrometeorological impacts in design of buildings and structures of nuclear power plants

    Directory of Open Access Journals (Sweden)

    Bryukhan Fedor

    2016-01-01

    Full Text Available External impacts of the hydrometeorological origin have a significant influence on the safety level of objects of use of atomic energy (OUAE, including nuclear power plants (NPP. Therefore, the existing NPP-related safety regulations demand to consider such impacts at all stages of the NPP life cycle. It is important to make decisions on considering or ignoring certain external impacts while designing NPP buildings and structures. The main criterion for such decisions is the probability of a non-project accident associated with the release of radionuclides into the environment when an extreme phenomena occurs. The aim of this study is to develop a concept for refinement regulatory requirements, considering hydrometeorological factors in organization of NPP engineering protection. Criteria for consideration of hazardous and especially hazardous hydrometeorological impacts for design of NPP buildings and structures were analyzed, and recommendations for refinement of regulatory requirements, considering hydrometeorological factors in organization of NPP engineering protection, were developed.

  2. Automated 3D modelling of buildings from aerial and space imagery using image understanding techniques

    Science.gov (United States)

    Kim, Taejung

    The development of a fully automated mapping system is one of the fundamental goals in photogrammetry and remote sensing. As an approach towards this goal, this thesis describes the work carried out in the automated 3D modelling of buildings in urban scenes. The whole work is divided into three parts: the development of an automated height extraction system, the development of an automated building detection system, and the combination of these two systems. After an analysis of the key problems of urban-area imagery for stereo matching, buildings were found to create isolated regions and blunders. From these findings, an automated building height extraction system was developed. This stereoscopic system is based on a pyramidal (area-based) matching algorithm with automatic seed points and a tile-based control strategy. To remove possible blunders and extract buildings from other background objects, a series of "smart" operations using linear elements from buildings were also applied. A new monoscopic building detection system was developed based on a graph constructed from extracted lines and their relations. After extracting lines from a single image using low-level image processing techniques, line relations are searched for and a graph constructed. By finding closed loops in the graph, building hypotheses are generated. These are then merged and verified using shadow analysis and perspective geometry. After verification, each building hypothesis indicates either a building or a part of a building. By combining results from these two systems, 3D building roofs can be modelled automatically. The modelling is performed using height information obtained from the height extraction system and interpolation boundaries obtained from the building detection system. Other fusion techniques and the potential improvements due to these are also discussed. Quantitative analysis was performed for each algorithm presented in this thesis and the results support the newly

  3. A new methodology for building energy benchmarking: An approach based on clustering concept and statistical models

    Science.gov (United States)

    Gao, Xuefeng

    Though many building energy benchmarking programs have been developed during the past decades, they hold certain limitations. The major concern is that they may cause misleading benchmarking due to not fully considering the impacts of the multiple features of buildings on energy performance. The existing methods classify buildings according to only one of many features of buildings -- the use type, which may result in a comparison between two buildings that are tremendously different in other features and not properly comparable as a result. This research aims to tackle this challenge by proposing a new methodology based on the clustering concept and statistical analysis. The clustering concept, which reflects on machine learning algorithms, classifies buildings based on a multi-dimensional domain of building features, rather than the single dimension of use type. Buildings with the greatest similarity of features that influence energy performance are classified into the same cluster, and benchmarked according to the centroid reference of the cluster. Statistical analysis is applied to find the most influential features impacting building energy performance, as well as provide prediction models for the new design energy consumption. The proposed methodology as applicable to both existing building benchmarking and new design benchmarking was discussed in this dissertation. The former contains four steps: feature selection, clustering algorithm adaptation, results validation, and interpretation. The latter consists of three parts: data observation, inverse modeling, and forward modeling. The experimentation and validation were carried out for both perspectives. It was shown that the proposed methodology could account for the total building energy performance and was able to provide a more comprehensive approach to benchmarking. In addition, the multi-dimensional clustering concept enables energy benchmarking among different types of buildings, and inspires a new

  4. Urban weather data and building models for the inclusion of the urban heat island effect in building performance simulation.

    Science.gov (United States)

    Palme, M; Inostroza, L; Villacreses, G; Lobato, A; Carrasco, C

    2017-10-01

    This data article presents files supporting calculation for urban heat island (UHI) inclusion in building performance simulation (BPS). Methodology is used in the research article "From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect" (Palme et al., 2017) [1]. In this research, a Geographical Information System (GIS) study is done in order to statistically represent the most important urban scenarios of four South-American cities (Guayaquil, Lima, Antofagasta and Valparaíso). Then, a Principal Component Analysis (PCA) is done to obtain reference Urban Tissues Categories (UTC) to be used in urban weather simulation. The urban weather files are generated by using the Urban Weather Generator (UWG) software (version 4.1 beta). Finally, BPS is run out with the Transient System Simulation (TRNSYS) software (version 17). In this data paper, four sets of data are presented: 1) PCA data (excel) to explain how to group different urban samples in representative UTC; 2) UWG data (text) to reproduce the Urban Weather Generation for the UTC used in the four cities (4 UTC in Lima, Guayaquil, Antofagasta and 5 UTC in Valparaíso); 3) weather data (text) with the resulting rural and urban weather; 4) BPS models (text) data containing the TRNSYS models (four building models).

  5. Modeling energy flexibility of low energy buildings utilizing thermal mass

    DEFF Research Database (Denmark)

    Foteinaki, Kyriaki; Heller, Alfred; Rode, Carsten

    2016-01-01

    the load shifting potential of an apartment of a low energy building in Copenhagen is assessed, utilizing the heat storage capacity of the thermal mass when the heating system is switched off for relieving the energy system. It is shown that when using a 4-hour preheating period before switching off...... of the external envelope and the thermal capacity of the internal walls as the main parameters that affect the load shifting potential of the apartment....... to match the production patterns, shifting demand from on-peak hours to off-peak hours. Buildings could act as flexibility suppliers to the energy system, through load shifting potential, provided that the large thermal mass of the building stock could be utilized for energy storage. In the present study...

  6. A revised (PTVA model for assessing the vulnerability of buildings to tsunami damage

    Directory of Open Access Journals (Sweden)

    F. Dall'Osso

    2009-09-01

    Full Text Available The Papathoma Tsunami Vulnerability Assessment (PTVA Model (Papathoma, 2003 was developed in the absence of robust, well-constructed and validated building fragility models for assessing the vulnerability of buildings to tsunami. It has proven to be a useful tool for providing assessments of building vulnerability. We present an enhanced version (PTVA-3 of the model that takes account of new understanding of the factors that influence building vulnerability and significantly, introduce the use of the Analytic Hierarchy Process (AHP for weighting the various attributes in order to limit concerns about subjective ranking of attributes in the original model. We successfully test PTVA-3 using building data from Maroubra, Sydney, Australia.

  7. The exploitation of an ant-defended host plant by a shelter-building herbivore.

    Science.gov (United States)

    Eubanks, Micky D; Nesci, Kimberly A; Petersen, Mette K; Liu, Zhiwei; Sanchez, Horacio Bonfil

    1997-02-01

    Larvae of a Polyhymno species (Lepidoptera: Gelechiidae) feed on the ant-defended acacia, Acacia cornigera, in the tropical lowlands of Veracruz, Mexico. Polyhymno larvae construct sealed shelters by silking together the pinna or pinnules of acacia leaves. Although larval density and larval survival are higher on acacias not occupied by ants, shelters serve as a partial refuge from the ant Pseudomyrmex ferruginea (Hymenoptera: Formicidae), which defends A. cornigera plants; thus, shelters provide Polyhymno larvae access to an ant-defended host plant. P. ferruginea ants act as the primary antiherbivore defense of A. cornigera plants, which lack the chemical and mechanical defenses of non-ant-defended acacias. Thus, defeating the ant defense of A. cornigera provides Polyhymno larvae access to an otherwise poorly defended host plant. Damage caused by Polyhymno larval feeding reaches levels which can kill A. cornigera plants.

  8. On the Impact of Building Attenuation Models in VANET Simulations of Urban Scenarios

    Directory of Open Access Journals (Sweden)

    Luis Urquiza-Aguiar

    2015-01-01

    Full Text Available Buildings are important elements of cities for VANETs, since these obstacles may attenuate communications between vehicles. Consequently, the impact of buildings has to be considered as part of the attenuation model in VANET simulations of urban scenarios. However, the more elaborated the model, the more information needs to be processed during the simulation, which implies longer processing times. This complexity in simulations is not always worth it, because simplified channel models occasionally offer very accurate results. We compare three approaches to model the impact of buildings in the channel model of simulated VANETs in two urban scenarios. The simulation results for our evaluation scenarios of a traffic-efficiency application indicate that modeling the influence of buildings in urban areas as the total absence of communication between vehicles gives similar results to modeling such influence in a more realistic fashion and could be considered a conservative bound in the performance metrics.

  9. Construction cost prediction model for conventional and sustainable college buildings in North America

    Directory of Open Access Journals (Sweden)

    Othman Subhi Alshamrani

    2017-03-01

    Full Text Available The literature lacks in initial cost prediction models for college buildings, especially comparing costs of sustainable and conventional buildings. A multi-regression model was developed for conceptual initial cost estimation of conventional and sustainable college buildings in North America. RS Means was used to estimate the national average of construction costs for 2014, which was subsequently utilized to develop the model. The model could predict the initial cost per square feet with two structure types made of steel and concrete. The other predictor variables were building area, number of floors and floor height. The model was developed in three major stages, such as preliminary diagnostics on data quality, model development and validation. The developed model was successfully tested and validated with real-time data.

  10. Strategic Design, Optimization, and Modelling Issues of Net-Zero Energy Solar Buildings

    OpenAIRE

    ATHIENITIS, Andreas; Attia, Shady

    2010-01-01

    The design of net-zero energy solar buildings (NZESBs) presents a challenge because there is no established design strategy to systematically reach this goal and many of the available building energy tools have limited applicability for such advanced buildings. This paper reviews current design practice and tools for designing NZESBs through a literature review and a survey. It also discusses modelling issues and presents the procedure used in several redesign and optimization case studies of...

  11. Modeling Methodology of Progressive Collapse by the Example of Real High-Rise Buildings

    OpenAIRE

    Mariya Barabash

    2014-01-01

    The purpose of the research was to find out several ways to design real buildings with protective measures against progressive collapse. There are no uniform guidelines for choosing the type of finite element able to provide the necessary accuracy of the calculation model taking into account all the main factors affecting the strength and stability of the building. Therefore it is required to develop numerical methods for calculation on progressive collapse of buildings bearing structural ele...

  12. Aspects of Using CFD for Wind Comfort Modeling Around Tall Buildings

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Andersen, Lars

    2008-01-01

    The Light*House complex is investigated for uncomfortable wind climate and dangerous winds at pedestrian level. A CFD model is used for simulating the wind effect for 12 different directions and correlated to the wind statistics of a nearby meteorological station. Comparing to practical standards...... for safety and comfort, the results indicates that the building is safe for pedestrians. However, when designing surrounding builds, care shall be taken to avoid interaction between buildings....

  13. Nuclear emergency buildings of Asco and Vandellos II nuclear power plants; Centros alternativos de emergencias de las centrales nucleares de Asco y Vandellos II

    Energy Technology Data Exchange (ETDEWEB)

    Massuet, J.; Sabater, J.; Mirallas Esteban, S.

    2016-08-01

    The Nuclear Emergency Buildings sited at Asco and Vandellos II Nuclear Power Plants (NPP) are designed to safety manage emergencies in extreme situations, beyond the design basis of the Nuclear Power Plants. Designed in accordance with the requirements of the Spanish Nuclear Regulator (Consejo de Seguridad Nuclear-CSN) these buildings are ready to operate over a period of 72 hours without external assistance and ensure habitability for crews of 120 and 70 people respectively. This article describes the architectural conception, features and major systems of the Nuclear Emergency Buildings sited at Asco and Vandellos II. (Author)

  14. Supercomputer Assisted Generation of Machine Learning Agents for the Calibration of Building Energy Models

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL; Edwards, Richard [ORNL

    2013-01-01

    Building Energy Modeling (BEM) is an approach to model the energy usage in buildings for design and retrot pur- poses. EnergyPlus is the agship Department of Energy software that performs BEM for dierent types of buildings. The input to EnergyPlus can often extend in the order of a few thousand parameters which have to be calibrated manu- ally by an expert for realistic energy modeling. This makes it challenging and expensive thereby making building en- ergy modeling unfeasible for smaller projects. In this paper, we describe the \\Autotune" research which employs machine learning algorithms to generate agents for the dierent kinds of standard reference buildings in the U.S. building stock. The parametric space and the variety of building locations and types make this a challenging computational problem necessitating the use of supercomputers. Millions of En- ergyPlus simulations are run on supercomputers which are subsequently used to train machine learning algorithms to generate agents. These agents, once created, can then run in a fraction of the time thereby allowing cost-eective cali- bration of building models.

  15. Using Models to Provide Predicted Ranges for Building-Human Interfaces: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Long, N.; Scheib, J.; Pless, S.; Schott, M.

    2013-09-01

    Most building energy consumption dashboards provide only a snapshot of building performance; whereas some provide more detailed historic data with which to compare current usage. This paper will discuss the Building Agent(tm) platform, which has been developed and deployed in a campus setting at the National Renewable Energy Laboratory as part of an effort to maintain the aggressive energyperformance achieved in newly constructed office buildings and laboratories. The Building Agent(tm) provides aggregated and coherent access to building data, including electric energy, thermal energy, temperatures, humidity, and lighting levels, and occupant feedback, which are displayed in various manners for visitors, building occupants, facility managers, and researchers. This paper focuseson the development of visualizations for facility managers, or an energy performance assurance role, where metered data are used to generate models that provide live predicted ranges of building performance by end use. These predicted ranges provide simple, visual context for displayed performance data without requiring users to also assess historical information or trends. Several energymodelling techniques were explored including static lookup-based performance targets, reduced-order models derived from historical data using main effect variables such as solar radiance for lighting performance, and integrated energy models using a whole-building energy simulation program.

  16. Modeling and optimization of energy generation and storage systems for thermal conditioning of buildings targeting conceptual building design

    Energy Technology Data Exchange (ETDEWEB)

    Grahovac, Milica

    2012-11-29

    The thermal conditioning systems are responsible for almost half of the energy consump-tion by commercial buildings. In many European countries and in the USA, buildings account for around 40% of primary energy consumption and it is therefore vital to explore further ways to reduce the HVAC (Heating, Ventilation and Air Conditioning) system energy consumption. This thesis investigates the relationship between the energy genera-tion and storage systems for thermal conditioning of buildings (shorter: primary HVAC systems) and the conceptual building design. Certain building design decisions irreversibly influence a building's energy performance and, conversely, many generation and storage components impose restrictions on building design and, by their nature, cannot be introduced at a later design stage. The objective is, firstly, to develop a method to quantify this influence, in terms of primary HVAC system dimensions, its cost, emissions and energy consumption and, secondly, to enable the use of the developed method by architects during the conceptual design. In order to account for the non-stationary effects of the intermittent renewable energy sources (RES), thermal storage and for the component part load efficiencies, a time domain system simulation is required. An abstract system simulation method is proposed based on seven pre-configured primary HVAC system models, including components such as boil-ers, chillers and cooling towers, thermal storage, solar thermal collectors, and photovoltaic modules. A control strategy is developed for each of the models and their annual quasi-stationary simulation is performed. The performance profiles obtained are then used to calculate the energy consumption, carbon emissions and costs. The annuity method has been employed to calculate the cost. Optimization is used to automatically size the HVAC systems, based on their simulation performance. Its purpose is to identify the system component dimensions that provide

  17. 3D building modeling,organization and application in digital city system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The real world is a three-dimensional(3D)space requiring that 3D geospatial information applications be developed in alignment with the observer’s visual and perceptive habits.Particularly,3D building model data are required in a wide range of areas such as urban planning,environmental protection,real estate management and emergency response.At the same time,the development of Web service[LU1]technologies allows the possibility of the widely distributed 3D geospatial data on the web.3D city building model with its related information is an important part in the construction of a digital city system,and has become a staple resource on the web nowadays.In view of the hierarchical representation of a 3D building model,an abstract of a 3D building model based on structure details is studied,and a novel representation approach named 3D transparent building hierarchical model is presented in this paper.This approach fully uses both the existing 3D modeling technologies and CAD constructing mapping data.By the spatial relationship description,structural components inside a building can be represented and integrated as hierarchical models in a unified 3D space.In addition,based on the characteristics of the 3D building model data,a service-oriented architecture and Web service technologies for 3D city building models are discussed.The aim of the approach is that 3D city building models can be used as a kind of data resource service on the web,and can also exist independently in various different web applications.

  18. Moisture buffering and its consequence in whole building hygrothermal modeling

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2008-01-01

    both. A new test method specifies a protocol for determination of what has recently been termed the Moisture Buffer Value (MBV) of building products. The paper presents the definition of MBV and introduces a test protocol which has been proposed for its experimental determination. The MBV is primarily...

  19. Modeling Best Practice through Online Learning: Building Relationships

    Science.gov (United States)

    Cerniglia, Ellen G.

    2011-01-01

    Students may fear that they will feel unsupported and isolated when engaged in online learning. They don't know how they will be able to build relationships with their teacher and classmates solely based on written words, without facial expressions, tone of voice, and other nonverbal communication cues. Traditionally, online learning required…

  20. Modelling surface pressure fluctuation on medium-rise buildings

    NARCIS (Netherlands)

    Snæbjörnsson, J.T.; Geurts, C.P.W.

    2006-01-01

    This paper describes the results of two experiments into the fluctuating characteristics of windinduced pressures on buildings in a built-up environment. The experiments have been carried out independently in Iceland and The Netherlands and can be considered to represent two separate cases of buildi

  1. JOMAR - A model for accounting the environmental loads from building constructions

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Anne; Nereng, Guro; Vold, Mie; Bjoerberg, Svein; Lassen, Niels

    2008-07-01

    The objective for this project was to develop a model as a basis for calculation of environmental profile for whole building constructions, based upon data from databases and general LCA software, in addition to the model structure from the Nordic project on LCC assessment of buildings. The model has been tested on three building constructions; timber based, flexible and heavy as well as heavy. Total energy consumption and emissions contributing to climate change are calculated in a total life cycle perspective. The developed model and exemplifying case assessments have shown that a holistic model including operation phase is both important and possible to implement. The project has shown that the operation phase causes the highest environmental loads when it comes to the exemplified impact categories. A suggestion on further development of the model along two different axes in collaboration with a broader representation from the building sector is given in the report (author)(tk)

  2. Irrigation Optimization by Modeling of Plant-Soil Interaction

    OpenAIRE

    2011-01-01

    Irrigation scheduling is an important issue for crop management, in a general context of limited water resources and increasing concern about agricultural productivity. Methods to optimize crop irrigation should take into account the impact of water stress on plant growth and the water balance in the plant-soil-atmosphere system. In this article, we propose a methodology to solve the irrigation scheduling problem. For this purpose, a plant-soil interaction model is used to simulate the struct...

  3. Agent-Based Evacuation Model Incorporating Fire Scene and Building Geometry

    Institute of Scientific and Technical Information of China (English)

    TANG Fangqin; REN Aizhu

    2008-01-01

    A comprehensive description of the key factors affecting evacuations at fire scones is necessary for accurate simulations.An agent-based simulation model which incorporates the fire scene and the building geometry is developed using a fire dynamics simulator (FDS) based on the computational fluid dynamics and geographic information system (GIS) data to model the occupant response.The building entities are generated for FDS simulation while the spatial analysis on GIS data represents the occupant's knowledge of the building.The influence of the fire is based on a hazard assessment of the combustion products.The agent behavior and decisions are affected by environmental features and the fire field.A case study demonstrates that the evacuation model effectively simulates the coexistence and interactions of the major factors including occupants,building geometry,and fire disaster during the evacuation.The results can be used for the assessments of building designs regarding fire safety.

  4. Advanced System Identification for High-rise Building Using Shear-Bending Model

    Directory of Open Access Journals (Sweden)

    Kohei Fujita

    2016-11-01

    Full Text Available In order to identify physical model parameters of a high-rise building, a new story stiffness identification method is presented based on a shear-bending model and the identification function. Although a shear building model may be the simplest conventional model for representing tall buildings, the system identification (SI method using that model is not necessarily appropriate. This is because the influence of bending deformation is predominant in such high-rise buildings. For this reason, a shear-bending model is used where the shear and bending stiffnesses are unknown. In the previous researches using the shear-bending model, it was difficult to identify the bending stiffnesses stably and reliably. In this paper, to overcome such instability of bending stiffness identification of the shear-bending model, a new SI algorithm using both the shear model and the shear-bending model is presented. The proposed SI algorithm is based on the observation that the fundamental-mode shape of the identified shear model is similar to that of the shear-bending model identified in the previous SI method. In order to verify the advanced SI method, two different 20-story building models are investigated in the numerical simulations. From the results of the simulations, both the shear and bending stiffnesses of the shear-bending model are identified reliably and stably in the proposed SI method.

  5. Potential Improvement of Building Information Modeling (BIM) Implementation in Malaysian Construction Projects

    OpenAIRE

    Latiffi, Aryani,; Mohd, Suzila; Rakiman, Umol,

    2015-01-01

    Part 4: Building Information Modeling (BIM); International audience; Application of building information modeling (BIM), such as preview design clashes and visualize project’s model increase effectiveness in managing construction projects. However, its implementation in Malaysian construction projects is slow in order to see and gain the benefits. Therefore, this paper aims to explore on potential improvement that could increase BIM implementation in construction projects. A literature review...

  6. Roles and Responsibilities of Construction Players in Projects Using Building Information Modeling (BIM)

    OpenAIRE

    Latiffi, Aryani,; Brahim, Juliana; Fathi, Mohamad,

    2015-01-01

    Part 4: Building Information Modeling (BIM); International audience; Building Information Modeling (BIM) has been implemented in construction projects to overcome problems such as project delay, cost overrun and poor quality of project. BIM enhances construction player to perform their activities in effective and efficient through the development of three dimensional (3D) model. However, BIM requires changes in current practices among construction players in terms of the processes and technol...

  7. Building collaborative relationships with distributors in the Dutch potted flower and plant industry

    NARCIS (Netherlands)

    Claro, D.P.; Omta, S.W.F.

    2005-01-01

    The objective of this paper is to discuss the impact of the information network and trust on collaborative relationships as well as the impact of the collaboration on the performance of suppliers (i.e. growers). Combining network and trust, growers can build collaborative efforts, namely joint actio

  8. Arrival of the cold box for the cryogenic refrigeration plant and installation in building SHL5.

    CERN Multimedia

    Goran Perinic

    2002-01-01

    The pictures show the arrival of the cold box and the installation of both the cold box and the valve panel in building SHL5. The installation was achieved by lowering the components through an opening in the roof which had been specially forseen for this operation.

  9. A financing model to solve financial barriers for implementing green building projects.

    Science.gov (United States)

    Lee, Sanghyo; Lee, Baekrae; Kim, Juhyung; Kim, Jaejun

    2013-01-01

    Along with the growing interest in greenhouse gas reduction, the effect of greenhouse gas energy reduction from implementing green buildings is gaining attention. The government of the Republic of Korea has set green growth as its paradigm for national development, and there is a growing interest in energy saving for green buildings. However, green buildings may have financial barriers that have high initial construction costs and uncertainties about future project value. Under the circumstances, governmental support to attract private funding is necessary to implement green building projects. The objective of this study is to suggest a financing model for facilitating green building projects with a governmental guarantee based on Certified Emission Reduction (CER). In this model, the government provides a guarantee for the increased costs of a green building project in return for CER. And this study presents the validation of the model as well as feasibility for implementing green building project. In addition, the suggested model assumed governmental guarantees for the increased cost, but private guarantees seem to be feasible as well because of the promising value of the guarantee from CER. To do this, certification of Clean Development Mechanisms (CDMs) for green buildings must be obtained.

  10. A Financing Model to Solve Financial Barriers for Implementing Green Building Projects

    Directory of Open Access Journals (Sweden)

    Sanghyo Lee

    2013-01-01

    Full Text Available Along with the growing interest in greenhouse gas reduction, the effect of greenhouse gas energy reduction from implementing green buildings is gaining attention. The government of the Republic of Korea has set green growth as its paradigm for national development, and there is a growing interest in energy saving for green buildings. However, green buildings may have financial barriers that have high initial construction costs and uncertainties about future project value. Under the circumstances, governmental support to attract private funding is necessary to implement green building projects. The objective of this study is to suggest a financing model for facilitating green building projects with a governmental guarantee based on Certified Emission Reduction (CER. In this model, the government provides a guarantee for the increased costs of a green building project in return for CER. And this study presents the validation of the model as well as feasibility for implementing green building project. In addition, the suggested model assumed governmental guarantees for the increased cost, but private guarantees seem to be feasible as well because of the promising value of the guarantee from CER. To do this, certification of Clean Development Mechanisms (CDMs for green buildings must be obtained.

  11. Object-Oriented Database for Managing Building Modeling Components and Metadata: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Long, N.; Fleming, K.; Brackney, L.

    2011-12-01

    Building simulation enables users to explore and evaluate multiple building designs. When tools for optimization, parametrics, and uncertainty analysis are combined with analysis engines, the sheer number of discrete simulation datasets makes it difficult to keep track of the inputs. The integrity of the input data is critical to designers, engineers, and researchers for code compliance, validation, and building commissioning long after the simulations are finished. This paper discusses an application that stores inputs needed for building energy modeling in a searchable, indexable, flexible, and scalable database to help address the problem of managing simulation input data.

  12. Modeled effects of an improved building insulation scenario in Europe on air pollution, health and societal costs

    DEFF Research Database (Denmark)

    Bønløkke, Jakob Hjort; Holst, Gitte Juel; Sigsgaard, Torben

    2015-01-01

    and the resulting effects on health and economy. Methods: Projected energy savings between 2005 and 2020 were calculated for an improved building insulation scenario and a business as usual scenario. The resulting changes in emissions (e.g. from power plants) were used in the Comprehensive Air-Quality Model...... with extensions. Mean annual changes in the main air pollutants were derived for each country. World Health Organization (WHO) and European Union (EU) data on populations and on impacts of pollutants were used to derive health effects and costs. Effects on indoor air quality were not assessed. Results: Projected...... 78678 LY in Europe. A total of 7173 cases of persistent chronic bronchitis could be avoided annually. Several other health outcomes improved similarly. The saved societal costs totaled 6.64 billion € annually. Conclusions: In addition to carbon emission reductions, an improved building insulation...

  13. Single Plant Root System Modeling under Soil Moisture Variation

    Science.gov (United States)

    Yabusaki, S.; Fang, Y.; Chen, X.; Scheibe, T. D.

    2016-12-01

    A prognostic Virtual Plant-Atmosphere-Soil System (vPASS) model is being developed that integrates comprehensively detailed mechanistic single plant modeling with microbial, atmospheric, and soil system processes in its immediate environment. Three broad areas of process module development are targeted: Incorporating models for root growth and function, rhizosphere interactions with bacteria and other organisms, litter decomposition and soil respiration into established porous media flow and reactive transport models Incorporating root/shoot transport, growth, photosynthesis and carbon allocation process models into an integrated plant physiology model Incorporating transpiration, Volatile Organic Compounds (VOC) emission, particulate deposition and local atmospheric processes into a coupled plant/atmosphere model. The integrated plant ecosystem simulation capability is being developed as open source process modules and associated interfaces under a modeling framework. The initial focus addresses the coupling of root growth, vascular transport system, and soil under drought scenarios. Two types of root water uptake modeling approaches are tested: continuous root distribution and constitutive root system architecture. The continuous root distribution models are based on spatially averaged root development process parameters, which are relatively straightforward to accommodate in the continuum soil flow and reactive transport module. Conversely, the constitutive root system architecture models use root growth rates, root growth direction, and root branching to evolve explicit root geometries. The branching topologies require more complex data structures and additional input parameters. Preliminary results are presented for root model development and the vascular response to temporal and spatial variations in soil conditions.

  14. Quantitative plant ecology:statistical and ecological modelling of plant abundance

    OpenAIRE

    Damgaard, Christian

    2014-01-01

    This e-book is written in the Wolfram' CDF format (download free CDF player from Wolfram.com)The objective of this e-book is to introduce the population ecological concepts for measuring and predicting the ecological success of plant species. This will be done by focusing on the measurement and statistical modelling of plant species abundance and the relevant ecological processes that control species abundance. The focus on statistical modelling and likelihood function based methods also mean...

  15. Measurement and modelling of sap flow in maize plants

    Science.gov (United States)

    Heinlein, Florian; Biernath, Christian; Hoffmann, Peter; Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2014-05-01

    Climate change as well as the changing composition of the atmosphere will have an impact on future yield of agricultural plants. In order to better estimate these impacts new, mechanistic plant growth models are needed. These models should be able to dynamically reproduce the plants' reactions to modified climate state variables like temperature, atmospheric CO2-concentration and water availability. In particular, to better describe the crop response to more strongly changing water availability the simulation of plant-internal water and solute transport processes in xylem and phloem needs to be improved. Our existing water transport model consists of two coupled 1-D Richards equations to calculate water transport in the soil and in the plants. This model has already been successfully applied to single Fagus sylvatica L. trees. At present it is adapted to agricultural plants such as maize. To simulate the water transport within the plants a representation of the flow paths, i.e. the plant architecture, is required. Aboveground plant structures are obtained from terrestrial laser scan (TLS) measurements at different development stages. These TLSs have been executed at the lysimeter facilities of Helmholtz Zentrum München and at the TERENO (Terrestrial Environmental Observatories) research farm Scheyern. Additionally, an L-system model is used to simulate aboveground and belowground plant architectures. In a further step, the quality of the explicit water flow model has to be tested using measurements. The Heat-Ratio-Method has been employed to directly measure sap flow in larger maize plants during a two-months-period in summer 2013 with a resolution of 10 minutes and thus, the plants' transpiration can be assessed. Water losses from the soil are determined by measuring the weight of lysimeters. From this evapotranspiration can be calculated. Transpiration and evapotranspiration are also simulated by application of the modelling system Expert-N. This framework

  16. 栽培植物群落组建理论的研究%The Building Theory of Cultivated Plant Community

    Institute of Scientific and Technical Information of China (English)

    杜心田; 孙敦玄; 马新民; 王同朝

    2001-01-01

    For the development of plant production we studied the stereoscopic cropping by means of investigation and experiment and systematically summarized its theory part.This paper advanced the principles and modes of plant population and commuity composition,generalized the principles and methods of dispasition of spatial and temperal structure,and provided the scientific basis for building the ecological enginearing of cultivated plant community.

  17. 3D TOPOLOGICAL INDOOR BUILDING MODELING INTEGRATED WITH OPEN STREET MAP

    Directory of Open Access Journals (Sweden)

    A. Jamali

    2016-09-01

    Full Text Available Considering various fields of applications for building surveying and various demands, geometry representation of a building is the most crucial aspect of a building survey. The interiors of the buildings need to be described along with the relative locations of the rooms, corridors, doors and exits in many kinds of emergency response, such as fire, bombs, smoke, and pollution. Topological representation is a challenging task within the Geography Information Science (GIS environment, as the data structures required to express these relationships are particularly difficult to develop. Even within the Computer Aided Design (CAD community, the structures for expressing the relationships between adjacent building parts are complex and often incomplete. In this paper, an integration of 3D topological indoor building modeling in Dual Half Edge (DHE data structure and outdoor navigation network from Open Street Map (OSM is presented.

  18. Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kaiyu; Yan, Da; Hong, Tianzhen; Guo, Siyue

    2014-02-28

    Overtime is a common phenomenon around the world. Overtime drives both internal heat gains from occupants, lighting and plug-loads, and HVAC operation during overtime periods. Overtime leads to longer occupancy hours and extended operation of building services systems beyond normal working hours, thus overtime impacts total building energy use. Current literature lacks methods to model overtime occupancy because overtime is stochastic in nature and varies by individual occupants and by time. To address this gap in the literature, this study aims to develop a new stochastic model based on the statistical analysis of measured overtime occupancy data from an office building. A binomial distribution is used to represent the total number of occupants working overtime, while an exponential distribution is used to represent the duration of overtime periods. The overtime model is used to generate overtime occupancy schedules as an input to the energy model of a second office building. The measured and simulated cooling energy use during the overtime period is compared in order to validate the overtime model. A hybrid approach to energy model calibration is proposed and tested, which combines ASHRAE Guideline 14 for the calibration of the energy model during normal working hours, and a proposed KS test for the calibration of the energy model during overtime. The developed stochastic overtime model and the hybrid calibration approach can be used in building energy simulations to improve the accuracy of results, and better understand the characteristics of overtime in office buildings.

  19. Development and evaluation of a building energy model integrated in the TEB scheme

    Directory of Open Access Journals (Sweden)

    B. Bueno

    2011-11-01

    Full Text Available The use of air-conditioning systems is expected to increase as a consequence of global-scale and urban-scale climate warming. In order to represent future scenarios of urban climate and building energy consumption, the Town Energy Budget (TEB scheme must be improved. This paper presents a new building energy model (BEM that has been integrated in the TEB scheme. BEM-TEB makes it possible to represent the energy effects of buildings and building systems on the urban climate and to estimate the building energy consumption at city scale (~10 km with a resolution of a neighbourhood (~100 m. The physical and geometric definition of buildings in BEM has been intentionally kept as simple as possible, while maintaining the required features of a comprehensive building energy model. The model considers a single thermal zone, where the thermal inertia of building materials associated with multiple levels is represented by a generic thermal mass. The model accounts for heat gains due to transmitted solar radiation, heat conduction through the enclosure, infiltration, ventilation, and internal heat gains. As a difference with respect to other building parameterizations used in urban climate, BEM includes specific models for real air-conditioning systems. It accounts for the dependence of the system capacity and efficiency on indoor and outdoor air temperatures and solves the dehumidification of the air passing through the system. Furthermore, BEM includes specific models for passive systems, such as window shadowing devices and natural ventilation. BEM has satisfactorily passed different evaluation processes, including testing its modelling assumptions, verifying that the chosen equations are solved correctly, and validating the model with field data.

  20. Modeling the Buoyancy System of a Wave Energy Power Plant

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Nielsen, Kirsten M.

    2009-01-01

    A nonlinear dynamic model of the buoyancy system in a wave energy power plant is presented. The plant ("Wave Dragon") is a floating device using the potential energy in overtopping waves to produce power. A water reservoir is placed on top of the WD, and hydro turbines lead the water to the sea...

  1. Stoichiometric plant-herbivore models and their interpretation

    NARCIS (Netherlands)

    Kuang, Y.; Huisman, J.; Elser, J.J.

    2004-01-01

    The purpose of this note is to mechanistically formulate a math-ematically tractable model that specifically deals with the dynamics of plant-herbivore interaction in a closed phosphorus (P)-limiting environment. The key to our approach is the employment of the plant cell P quota and the Droop

  2. Modeling the Buoyancy System of a Wave Energy Power Plant

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Nielsen, Kirsten M.

    2009-01-01

    A nonlinear dynamic model of the buoyancy system in a wave energy power plant is presented. The plant ("Wave Dragon") is a floating device using the potential energy in overtopping waves to produce power. A water reservoir is placed on top of the WD, and hydro turbines lead the water to the sea...

  3. Editorial: Plant organ abscission: from models to crops

    Science.gov (United States)

    The shedding of plant organs is a highly coordinated process essential for both vegetative and reproductive development (Addicott, 1982; Sexton and Roberts, 1982; Roberts et al., 2002; Leslie et al., 2007; Roberts and Gonzalez-Carranza, 2007; Estornell et al., 2013). Research with model plants, name...

  4. The development of Arabidopsis as a plant model

    NARCIS (Netherlands)

    Koornneef, M.; Meinke, D.W.

    2010-01-01

    Twenty-five years ago, Arabidopsis thaliana emerged as the model organism of choice for research in plant biology. A consensus was reached about the need to focus on a single organism to integrate the classical disciplines of plant science with the expanding fields of genetics and molecular biology.

  5. Modeling the kinetics of essential oil hydrodistillation from plant materials

    Directory of Open Access Journals (Sweden)

    Milojević Svetomir Ž.

    2013-01-01

    Full Text Available The present work deals with modeling the kinetics of essential oils extraction from plant materials by water and steam distillation. The experimental data were obtained by studying the hydrodistillation kinetics of essential oil from juniper berries. The literature data on the kinetics of essential oils hydrodistillation from different plant materials were also included into the modeling. A physical model based on simultaneous washing and diffusion of essential oil from plant materials were developed to describe the kinetics of essential oils hydrodistillation, and two other simpler models were derived from this physical model assuming either instantaneous washing followed by diffusion or diffusion with no washing (i.e. the first-order kinetics. The main goal was to compare these models and suggest the optimum ones for water and steam distillation and for different plant materials. All three models described well the experimental kinetic data on water distillation irrespective of the type of distillation equipment and its scale, the type of plant materials and the operational conditions. The most applicable one is the model involving simultaneous washing and diffusion of the essential oil. However, this model was generally inapplicable for steam distillation of essential oils, except for juniper berries. For this hydrodistillation technique, the pseudo first-order model was shown to be the best one. In a few cases, a variation of the essential oil yield with time was observed to be sigmoidal and was modeled by the Boltzmann sigmoid function.

  6. Building a sustainable comprehensive Women's Health Program: the Michigan model.

    Science.gov (United States)

    Rogers, Juliet L; Johnson, Timothy R B; Warner, Patricia; Thorson, Jayne A; Punch, Margaret R

    2007-01-01

    The Women's Health Program at the University of Michigan was established in 1993 and has developed into a successful, federally supported program that links clinical research and education activities across the University. It has focused on human resource capacity building, sustainable financial support and infrastructure, and adaptability to change and opportunities. Widely accepted standards, demonstrated value, committed leaders/champions, and participatory culture have contributed to its success and are important to its future.

  7. HyperKhaler Metrics Building and Integrable Models

    CERN Document Server

    Saidi, E H

    1994-01-01

    Methods developed for the analysis of integrable systems are used to study the problem of hyperK\\"ahler metrics building as formulated in D=2 N=4 supersymmetric harmonic superspace. We show, in particular, that the constraint equation $\\beta\\partial^{++2}\\omega -\\xi^{++2}\\exp 2\\beta\\omega =0$ and its Toda like generalizations are integrable. Explicit solutions together with the conserved currents generating the symmetry responsible of the integrability of these equations are given. Other features are also discussed

  8. Development of a dynamical systems model of plant programmatic performance on nuclear power plant safety risk

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Stephen M. [Sensortex, Inc., 515 Schoolhouse Road, Kennett Square, PA 19348 (United States)]. E-mail: smhess@sensortex.com; Albano, Alfonso M. [Department of Physics, Bryn Mawr College, Bryn Mawr, PA 19010 (United States); Gaertner, John P. [Electric Power Research Institute, 1300 Harris Boulevard, Charlotte, NC 28262 (United States)

    2005-10-01

    Application of probabilistic risk assessment (PRA) techniques to model nuclear power plant accident sequences has provided a significant contribution to understanding the potential initiating events, equipment failures and operator errors that can lead to core damage accidents. Application of the lessons learned from these analyses has resulted in significant improvements in plant operation and safety. However, this approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. The research described in this paper presents an alternative approach to addressing this issue. In this paper we propose a dynamical systems model that describes the interaction of important plant processes on nuclear safety risk. We discuss development of the mathematical model including the identification and interpretation of significant inter-process interactions. Next, we review the techniques applicable to analysis of nonlinear dynamical systems that are utilized in the characterization of the model. This is followed by a preliminary analysis of the model that demonstrates that its dynamical evolution displays features that have been observed at commercially operating plants. From this analysis, several significant insights are presented with respect to the effective control of nuclear safety risk. As an important example, analysis of the model dynamics indicates that significant benefits in effectively managing risk are obtained by integrating the plant operation and work management processes such that decisions are made utilizing a multidisciplinary and collaborative approach. We note that although the model was developed specifically to be applicable to nuclear power plants, many of the insights and conclusions obtained are likely applicable to other process industries.

  9. The influence of modified water chemistries on metal oxide films, activity build-up and stress corrosion cracking of structural materials in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Maekelae, K.; Laitinen, T.; Bojinov, M. [VTT Manufacturing Technology, Espoo (Finland)

    1999-03-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of actuated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for {sup 60}Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (orig.) 127 refs.

  10. Implementing a business improvement model based on integrated plant information

    Directory of Open Access Journals (Sweden)

    Swanepoel, Hendrika Francina

    2016-11-01

    Full Text Available The World Energy Council defines numerous challenges in the global energy arena that put pressure on owners and /operators to operate run existing plant better and more efficiently. As such there is an increasing focus on the use of business and technical plant information and data to make better, more integrated, and more informed decisions on the plant. The research study developed a business improvement model (BIM that can be used to establish an integrated plant information management infrastructure as the core foundation for of business improvement initiatives. Operational research then demonstrated how this BIM approach could be successfully implemented to improve business operations and provide decision-making insight.

  11. Plant Phenotyping using Probabilistic Topic Models: Uncovering the Hyperspectral Language of Plants.

    Science.gov (United States)

    Wahabzada, Mirwaes; Mahlein, Anne-Katrin; Bauckhage, Christian; Steiner, Ulrike; Oerke, Erich-Christian; Kersting, Kristian

    2016-03-09

    Modern phenotyping and plant disease detection methods, based on optical sensors and information technology, provide promising approaches to plant research and precision farming. In particular, hyperspectral imaging have been found to reveal physiological and structural characteristics in plants and to allow for tracking physiological dynamics due to environmental effects. In this work, we present an approach to plant phenotyping that integrates non-invasive sensors, computer vision, as well as data mining techniques and allows for monitoring how plants respond to stress. To uncover latent hyperspectral characteristics of diseased plants reliably and in an easy-to-understand way, we "wordify" the hyperspectral images, i.e., we turn the images into a corpus of text documents. Then, we apply probabilistic topic models, a well-established natural language processing technique that identifies content and topics of documents. Based on recent regularized topic models, we demonstrate that one can track automatically the development of three foliar diseases of barley. We also present a visualization of the topics that provides plant scientists an intuitive tool for hyperspectral imaging. In short, our analysis and visualization of characteristic topics found during symptom development and disease progress reveal the hyperspectral language of plant diseases.

  12. Dynamics of an ant-plant-pollinator model

    Science.gov (United States)

    Wang, Yuanshi; DeAngelis, Donald L.; Nathaniel Holland, J.

    2015-03-01

    In this paper, we consider plant-pollinator-ant systems in which plant-pollinator interaction and plant-ant interaction are both mutualistic, but there also exists interference of pollinators by ants. The plant-pollinator interaction can be described by a Beddington-DeAngelis formula, so we extend the formula to characterize plant-pollinator mutualisms, including the interference by ants, and form a plant-pollinator-ant model. Using dynamical systems theory, we show uniform persistence of the model. Moreover, we demonstrate conditions under which boundary equilibria are globally asymptotically stable. The dynamics exhibit mechanisms by which the three species could coexist when ants interfere with pollinators. We define a threshold in ant interference. When ant interference is strong, it can drive plant-pollinator mutualisms to extinction. Furthermore, if the ants depend on pollination mutualism for their persistence, then sufficiently strong ant interference could lead to their own extinction as well. Yet, when ant interference is weak, plant-ant and plant-pollinator mutualisms can promote the persistence of one another.

  13. Sustainable energy planning with efficient office buildings and cogeneration plants in Frankfurt am Main.

    Science.gov (United States)

    Friedel, Wendelin; Neumann, Werner

    2004-06-01

    Sustainable development of a city not only is determined through the amount of protected areas, but it is also an important task to integrate sustainable development in urban energy planning. In the last 10 years, many new areas for offices and residential buildings have been developed in Frankfurt am Main. In this context, the municipality has taken over a new role as organizer for the integrated energy planning. This article gives an overview of the achievements.

  14. Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Woods, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Winkler, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-01-01

    This study examines the effective moisture penetration depth (EMPD) model, and its suitability for building simulations. The EMPD model is a compromise between the simple, inaccurate effective capacitance approach and the complex, yet accurate, finite-difference approach. Two formulations of the EMPD model were examined, including the model used in the EnergyPlus building simulation software. An error in the EMPD model we uncovered was fixed with the release of EnergyPlus version 7.2, and the EMPD model in earlier versions of EnergyPlus should not be used.

  15. Model development and validation of a solar cooling plant

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano, Darine; Garcia-Gabin, Winston [Escuela de Ingenieria Electrica, Facultad de Ingenieria, Universidad de Los Andes, La Hechicera, Merida 5101 (Venezuela); Bordons, Carlos; Camacho, Eduardo F. [Departamento de Ingenieria de Sistemas y Automatica, Escuela Superior de Ingenieros, Universidad de Sevilla, Camino de Los Descubrimientos s/n, Sevilla 41092 (Spain)

    2008-03-15

    This paper describes the dynamic model of a solar cooling plant that has been built for demonstration purposes using market-available technology and has been successfully operational since 2001. The plant uses hot water coming from a field of solar flat collectors which feed a single-effect absorption chiller of 35 kW nominal cooling capacity. The work includes model development based on first principles and model validation with a set of experiments carried out on the real plant. The simulation model has been done in a modular way, and can be adapted to other solar cooling-plants since the main modules (solar field, absorption machine, accumulators and auxiliary heater) can be easily replaced. This simulator is a powerful tool for solar cooling systems both during the design phase, when it can be used for component selection, and also for the development and testing of control strategies. (author)

  16. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Zhang, Xinxin

    2014-01-01

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow...

  17. Implementing a Technology-Supported Model for Cross-Organisational Learning and Knowledge Building for Teachers

    Science.gov (United States)

    Tammets, Kairit; Pata, Kai; Laanpere, Mart

    2012-01-01

    This study proposed using the elaborated learning and knowledge building model (LKB model) derived from Nonaka and Takeuchi's knowledge management model for supporting cross-organisational teacher development in the temporarily extended organisations composed of universities and schools. It investigated the main LKB model components in the context…

  18. Effectiveness of Training Model Capacity Building for Entrepreneurship Women Based Empowerment Community

    Science.gov (United States)

    Idawati; Mahmud, Alimuddin; Dirawan, Gufran Darma

    2016-01-01

    The purpose of this research was to determine the effectiveness of a training model for capacity building of women entrepreneurship community-based. Research type approach Research and Development Model, which refers to the model of development research that developed by Romiszowki (1996) combined with a model of development Sugiono (2011) it was…

  19. Semi-Automatic Building Models and FAÇADE Texture Mapping from Mobile Phone Images

    Science.gov (United States)

    Jeong, J.; Kim, T.

    2016-06-01

    Research on 3D urban modelling has been actively carried out for a long time. Recently the need of 3D urban modelling research is increased rapidly due to improved geo-web services and popularized smart devices. Nowadays 3D urban models provided by, for example, Google Earth use aerial photos for 3D urban modelling but there are some limitations: immediate update for the change of building models is difficult, many buildings are without 3D model and texture, and large resources for maintaining and updating are inevitable. To resolve the limitations mentioned above, we propose a method for semi-automatic building modelling and façade texture mapping from mobile phone images and analyze the result of modelling with actual measurements. Our method consists of camera geometry estimation step, image matching step, and façade mapping step. Models generated from this method were compared with actual measurement value of real buildings. Ratios of edge length of models and measurements were compared. Result showed 5.8% average error of length ratio. Through this method, we could generate a simple building model with fine façade textures without expensive dedicated tools and dataset.

  20. Implications of the modelling of stratified hot water storage tanks in the simulation of CHP plants

    Energy Technology Data Exchange (ETDEWEB)

    Campos Celador, A., E-mail: alvaro.campos@ehu.es [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain); Odriozola, M.; Sala, J.M. [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain)

    2011-08-15

    Highlights: {yields} Three different modelling approaches for simulation of hot water tanks are presented. {yields} The three models are simulated within a residential cogeneration plant. {yields} Small differences in the results are found by an energy and exergy analysis. {yields} Big differences between the results are found by an advanced exergy analysis. {yields} Results on the feasibility study are explained by the advanced exergy analysis. - Abstract: This paper considers the effect that different hot water storage tank modelling approaches have on the global simulation of residential CHP plants as well as their impact on their economic feasibility. While a simplified assessment of the heat storage is usually considered in the feasibility studies of CHP plants in buildings, this paper deals with three different levels of modelling of the hot water tank: actual stratified model, ideal stratified model and fully mixed model. These three approaches are presented and comparatively evaluated under the same case of study, a cogeneration plant with thermal storage meeting the loads of an urbanisation located in the Bilbao metropolitan area (Spain). The case of study is simulated by TRNSYS for each one of the three modelling cases and the so obtained annual results are analysed from both a First and Second-Law-based viewpoint. While the global energy and exergy efficiencies of the plant for the three modelling cases agree quite well, important differences are found between the economic results of the feasibility study. These results can be predicted by means of an advanced exergy analysis of the storage tank considering the endogenous and exogenous exergy destruction terms caused by the hot water storage tank.